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Abstract 

This paper discusses in detail the robustness of the Capetanakis Collision Resolution 
Algorithm (CCRA) for multiple access networks. In particular, we show that the algorithm is 
robust against errors that cause different stations to see different feedback information on the 
results of the transmission attempts, and we quantify, through simulations, the performance 
(throughput/delay) degradation caused by those unshared errors. 

1. Introduction 

In a multiple-access environment, where a number of geographically separated stations 
communicate over a single shared communication channel, contention-based protocols pro­
vide a relatively efficient way of communication [1]. Contention-based access protocols are 
characterized by collisions and retransmissions. These protocols simultaneously offer trans­
mission rights to a group of stations in the hope that exactly one of the stations has a packet 
to send. If, however, two or more stations send packets on the channel at the same time, 
these messages interfere with each other and none of them will be correctly received by the 
destination station( s ). In such cases, stations retransmit packets according to a collision 
resolution algorithm until packets are successfully received by the destination station_( s ). 

Among a variety of collision resolution algorithms that have been investigated, a class 
of tree algorithms [2, 3] is one with the outstanding property to maximize the throughput 
and to minimize the transmission delay between the arrival of a message at the network and 
its deli,very. Among the various tree algorithms, we investigate the Capetanakis Collision 
Resolution Algorithm (CCRA) [2], because it is known to be simple and easy to implement, 
yet to yield good performance and stability. The CCRA is also robust to the type of error 
where all the stations see the same error. The CCRA lends itself to straightforward analysis 
and simulation, while retaining the favorable stability and performance properties of tree 
algorithms. 

In most of the tree algorithms including CCRA time is slotted, and all the stations agree 
on the beginning of each slot. One slot length is equal to transmission time of a packet. All 
stations have access to a feedback channel, through which they can monitor network channel 
activity. In particular, each station can determine whether each time slot contained zero, one, 
or more than one transmission attempts. For the purpose of our discussion this feedback 
is assumed to be immediate and to require none of the channel bandwidth used for data 
transmission. Using this feedback information, the CCRA provides some of the benefits of 
cooperation among the stations without imposing any additional traffic as network overhead. 

In most of the studies on tree algorithms, it is assumed that the forward channel is 
error-free, and thus, all stations in the system can observe the channel activity correctly. 
After each transmission, all stations are correctly informed of whether the slot was empty 
(LACK), contained one packet (ACK), or contained a collision (NACK). However, in the 
presence of fading, jamming, physical obstacles, or channel noise, this assumption does not 
always correspond to reality. 

In modeling an error environment, there are two types of errors. The first type of 
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error is the uniform error where every station sees the same error. The second type of 
error is an unshared error where different stations may see different errors. In both types 
of error environment, there are six possible cases of channel errors. Those are LACK­
to-NACK, NACK-to-ACK, ACK-to-NACK, ACK-to-LACK, NACK-to-LACK, and NACK­
to-ACK errors. LACK-to-NACK error incorrectly identifies an empty slot as a collision, 
NACK-to-ACK error identifies an collision as a successful slot, and so forth. 

This paper demonstrates the robustness of the CCRA to the second type of error in which 
different stations see different feedback, even though the errors are not generally recognized 
by the stations at the time the errors occur. The methods we use are a combination of 
analysis and simulation. 

In section 2 of this paper we describe the CCRA and review previous work, especially in 
regard to treatment of feedback errors. Section 3 describes the network model used in this 
paper and section 4 uses that model to analyze the response of the CCRA to errors that 
cause different stations to see different feedback indications. We show that, in the limit of 
low error frequency, the network quickly recovers from these errors. Section 5 describes a 
simulation study that quantifies the effects of the errors on the maximum throughput of the 
network. The final section reviews our conclusions. 

2. The Tree Algorithm and Review of Previous Work 

2.1. Capetanakis Collision Resolution Algorithm (CCRA) 

We first define a collision resolution interval ( CRI) as a particular sequence of time slots. 
In the first time slot, all stations are enabled, meaning that they may attempt to transmit 
during the slot if they have at least one message to send. If more than one station attempts to 
send during the initial slot, the transmissions collide and none of the attempts is successful. 
The CRI terminates when all of those stations have successfully transmitted their messages. 
A new CRI begins in the next slot after a CRI terminates. The shortest possible CRI has 
length one, when the number of stations initially attempting to send is zero or one. There is 
no upper bound for the length of a CRI in which two or more stations collide in the initial 
slot. 

The CCRA is a distributed algorithm that resolves a collision among simultaneously 
transmitted packets. In the CCRA, a set of colliding stations partition itself when a collision 
is recognized. One partition remains enabled and attempts to send in the next slot. The 
other partition is disabled until all of the enabled stations transmit successfully. A simple 
calculation, performed separately at each station, reveals the termination of the CRI, after 
which all stations are enabled. An almost identical calculation determines when the stations 
in a disabled partition can be enabled. The method of partitioning is relatively unimportant, 
as long as the partitioning algorithm is fully distributed. Message arrival times or random 
"coin-tossing" are commonly used to implement the partitioning. (The method by which 
stations recognize the ends of CRis is described below in section 2.2.) 

As an example, Figure 1 shows a sequence of time slots in a CRI for a three station 
network. All three stations (a, b and c) have a packet to send. Each slot is labeled with a 
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slot number and the set of stations that attempt to send during that slot. In slot 1, all three 
stations attempt to send, resulting in a collision. The set of stations {a, b, c} is partitioned 
into {b} and {a,c}. In slot 2, station b sends (i.e., successful transmission in slot 2). In slot 
3, stations a and c send and collide again. After the collision in slot 3, {a, c} is partitioned 
into an empty set and {a,c}. Slot 4 is empty because the set of enabled stations happens to 
be empty. In slot 5, a and c send. The partitioning of {a, c} after slot 5 produces {a} and 
{c}. In slot 7, all three stations have successfully transmitted their messages. 

Note the that following subsequences of time slots in Figure 1 have (some of) the char­
acteristics of a CRI. 

• 2 

• 3, 4, 5, 6, 7 

• 4 

• 5, 6, 7 

In each of the subsequences, all the stations enabled at the beginning of the sequence have 
successfully transmitted at the end of the sequence. The only difference between. these 
subsequences and a CRI is that they begin with fewer than all stations enabled. We refer to 
these sequences as sub-CRis. 

2.2 Tree Representation of a CRI and Distributed Recognition of a CRI 

The CRI in Figure 1 can be represented by the binary tree shown in Figure 2. Each node 
of the tree is labeled with the number of the corresponding time slot. Slot 1 is the root of 
the tree, and the four subsequences mentioned in the previous subsection are subtrees. The 
interior nodes (1, 3, 5) of the tree correspond to the time slots that had collisions, and the 
leaf nodes (2, 4, 6, 7) of the tree correspond to time slots without collisions (i.e., successful 
slots and empty slots). Any CRI resulting from a binary partitioning of enabled stations can 
be represented as a binary tree with the same correspondences. A Q-ary partitioning r:r1.n 
likewise be represented as a Q-ary tree. 

One property of trees leads to the simple calculation by which stations can recognize 
the termination of a CRI and recognize the termination of a subsequence (i.e., sub-CRI) 
corresponding to a subtree. For any complete tree, with branching ratio Q, 

(Q - l)J - L + 1 = O (1) 

where L is the number of leaf nodes, and I is the number of interior nodes. Each station can 
count interior nodes and leaf nodes, and determine when Equation 1 is satisfied, signaling 
the end of a CRI. The proof of the above is inductive and is presented in Appendix A. 

For binary tree collision resolution, as each station recognizes collisions, successful trans­
missions, and empty slots, it calculates the expression E + S - C, where E is the number of 
empty slots, Sis the number of successful transmissions, and C is the number of collision. 
In fact, E and S always appear as a sum, and the stations need only distinguish between 
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collisionless time slots and time slots with collisions. Because 

E+S=L, C=I, (2) 

the tree and the corresponding ORI are complete when 

E+S-C=l. (3) 

All stations calculate E + S - C in parallel and, in the absence of errors, agree on the value; 
they all recognize satisfaction of equation (3) at the same time. 

A temporarily disabled station additionally calculates the same expression for the subtree 
representing the subsequence during which it is disabled. When the corresponding value is 
one, the subtree, and the subsequence during which the station is disabled, are complete 
and the station is enabled. All disabled stations calculate the expression independently but, 
again, in the absence of errors, agree on the value, so they all become enabled simultaneously. 

2.3 Past Work on the Effect of Errors on Tree Algorithms 

A lot of studies have been made in the performance of tree-based algorithms in uiiiform 
error environment, i.e. error environment where every station sees the same error. Massey 
(4] has examined the error-robustness of CORA and MCCRA (Modified CORA) in this error 
environment. He has considered all six cases of channel errors (described in introduction 
section) and found that CORA is robust to channel error whereas MCCRA is extremely 
sensitive to such channel errors. In practice, however, due to a sufficiently powerful error­
detecting code, it is unlikely that LACK-to-ACK and NACK-to-ACK errors occur. From 
a signal to noise ratio argument, it is also unlikely that a message would be undetected; 
namely, NACK-to-LACK and ACK-to-LACK errors are unlikely to happen. Therefore, it is 
not unrealistic to study tree-based algorithms ~nder the assumption that LACK-to-NACK 
and ACK-to-NACK errors are the only possible errors, and the probabilities of the other 
kinds of errors (e.g. LACK-to-ACK, NACK-to-ACK, etc.) are equal to zero. Massey has 
also examined CORA and MCCRA under this assumption. It has been found that MCCRA 
is still sensitive to such channel errors. Simple LACK-to-NACK error can cause deadlock 
creating infinite number of blank-skip slots. It is concluded that the slightly increased 
throughput of the MCCRA comes at too great a price in increased sensitivity of channel 
errors compared to the CORA. A "cure" of the MCCRA is also suggested; by limiting the 
number of blank-skip slots, such deadlock can be avoided. 

Because of the reasons we have explained above, many studies to investigate the tree­
based algorithms have been made under the assumption that LACK-to-NACK and ACK­
to-N ACK errors are the only possible errors. Vvedenskaya and Tsybakov (5] have studied 
the effect of a noisy channel on free-access stack algorithms. They have shown that stack 
algorithms are robust to those channel errors. Ho and Wolf [6] have modified MCCRA using 
Massey's suggestion; he has modified algorithm such that it limits the number of successive 
skipped slots. It has been shown that this modified algorithm is robust to channel errors. 
Ryter [7] and Humblet [8] have examined the Gallager's algorithm. They have found that 
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Gallager's algorithm is not stable for a noisy channel. Ryter modified the algorithm such that 
it allows to stop splitting an transmission interval at some point and transmit the packets in 
the entire interval. Humblet modified Gallager's algorithm in a similar way. Both modified 
algorithms are found to be error-robust. 

Cidon, et. al. [9, 10] examined tree-based algorithms with different channel model. They 
assumed erasure (the phenomena of failing to detect any packet) and capture (the phenomena 
of detecting only single packet out of many) as well as noise errors (LACK-to-NACK, ACK­
to-NACK), and they proposed algorithms for this channel model. In their model, although 
every station sees the same error, different stations may have different knowledge about what 
really happened. For instance, those stations whose packets were transmitted in a certain 
slot and were acknowledged by a LACK can detect the error, whereas no other station in 
the system can. They can either retransmit immediately (PERSIST scheme) or wait until 
the current CRI ends and then retransmit (WAIT scheme). 

So far, only one study has been made in the second type of error environment where 
different stations see the different errors. Kurose, et al. [11] have examined stack algorithms 
in an unshared error environment. In their model, it is assumed that each station inde­
pendently sees either the correct feedback (LACK, ACK, or NACK) or no feedback at all 
(NONE). Because of the asymmetric and independent nature of the feedback error, different 
stations may take different actions as a result of the observed channel feedback information. 
According to the possible responses to the receipt of a NONE feedback signal, several modifi­
cations to the basic stack algorithm are proposed and shown that those modified algorithms 
are robust to the channel errors. 

The work of Kurose is applied to an stack access algorithm similar to the CCRA. After 
collisions, the colliding stations are partitioned into enabled and disabled sets. Disabled 
stations monitor the feedback channel and perform the same calculation as disabled station 
in the CCRA to decide when to become re-enabled. In the stack algorithm, however, stations 
with new messages can attempt transmission in the next time slot and need not wait until 
the beginning of CRI. 

3. The Model Analyzed in This Paper 

For the analysis and simulation described in this paper, we assume that channel time 
is slotted, and all the stations agree on the beginning of each slot. One slot length is equal 
to transmission time of a packet. All stations have access to a feedback channel, through 
which they can monitor network channel activity. In particular, each station can determine 
whether each time slot contained zero, one, or more than one transmission attempts. This 
feedback is assumed to be immediate and to require none of the channel bandwidth used for 
data transmission. 

We investigate the CCRA with the arrival epoch modification. (Using the notion of 
arrival epochs [2, 4] applied to the CCRA simplifies analysis and allows an extra degree 
of freedom that can be used to optimize performance.) At stations, time is divided into a 
contiguous sequence of arrival epochs. We assume that arrival epochs are of equal length, 

5 



agreed upon ahead of time by all stations. 

Messages that arrive in the i-th arrival epoch are transmitted in the i-th CRI. More 
precisely, a message that arrives in arrival epoch i at station A will be transmitted in the 
i-th CRI for station A. Note that unshared errors can cause different stations to see different 
CRis and, hence, i-th CRI for some station may be j-th CRI for another station ( i =f:. j). 

The i-th CRI cannot begin until after all k-th CRis (k < i) end. In a heavily loaded 
network, the CRI may be delayed a long time, waiting for the completion of earlier CRis. 

To simplify the analysis, we look at the blocked access variation, in which the i-th CRI 
cannot begin until after the i-th arrival epoch ends. (A free access version allows the i-th CRI 
to begin before the termination of the i-th arrival epoch.) In a lightly loaded network, the 
CRI can start immediately after the end of the corresponding arrival epoch. Every station 
that has a message arrive in an arrival epoch attempts to transmit the message in the first 
slot of the corresponding CRI. 

CRis need not be contiguous. A CRI may terminate before the next CRI can begin. 
In that case, the stations must wait, leaving slots empty before the beginning of the next 
CRI. The important property of the arrival epochs is that all messages that arrive before 
the end of i-th arrival epoch are successfully transmitted before the end of the i-th CRI. An 
equivalent property is that all messages that arrive in the i-th arrival epoch are transmitted 
in the i-th CRI. 

The arrival epochs decouple the number of stations attempting to transmit in consecutive 
CRis. The number of stations participating in one CRI has no affect on the number of 
stations that participate in the next CRI, greatly simplifying the performance analysis of 
the algorithm. 

The ideal number of stations to participate in a CRI is one. In that case, no time slots are 
wasted in collisions or empty slots. The throughput of those CRis is 1. The worst number 
of stations to participate in a CRI is zero, for which the throughput is 0. For CRis with 
two or more stations, the average throughput is between 0 and 1. By optimally choosing the 
lengths of the arrival epochs, the distribution of CRI lengths can be adjusted to maximize 
throughput. 

To summarize, we assume in this paper that the CCRA is used with the arrival epoch 
modification. When a message arrives at a station, the messages is blocked along with all 
other messages that arrive during the same arrival epoch, until at least the end of the arrival 
epoch. If messages from earlier arrival epochs are still being transmitted, the new messages 
are also blocked until all the messages from previous arrival epochs have been successfully 
transmitted. 

Additionally we assume that for some time slots some number of stations see incorrect 
feedback on the feedback channel. We show that the effect of any single error is temporary, 
and assume that the error frequency is low enough that no error occurs before recovery from 
the effects of the previous error. When such an error occurs, it may be any of the various 
types of error, ACK-to-LACK, NACK-to-ACK, etc. In the following, LACK to NACK or 
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ACK to NACK error is referred to as a "leaf to interior" error, NACK to ACK or NACK to 
LACK error as an "interior to leaf' error, LACK to ACK or ACK to LACK error as a "leaf 
to leaf" error. Note that, when more than one station errs in a slot, all the erring stations 
make the same type or error (i.e., either "leaf to interior", "interior to leaf" or "leaf to leaf" 
type error). Accordingly, an error partitions the network into two sets, those that made no 
error and those that made the (identical type) error. 

4. Robustness against Unshared Errors 

All the performance and error analysis of the CCRA assumes that all the stations agree 
on when CRis begin and end. If errors could cause permanent disagreement among the 
stations, then that previous work is in applicable, and would have to be redone to include 
the effects of the errors. The possibility that even a single error could permanently destroy 
the cooperation among the stations would have to be included in the analysis. Using arrival 
epochs to control the transmission of messages would be especially affected because the 
performance enhancements and simplified analysis assume agreement among the stations on 
the CRis. This section shows that errors cause only temporary disagreement among stations 
about when CRis begin and end. Thus, if the error rate is low, the network spends almost 
all of its time operating in accordance with the assumptions. 

As noted by Massey [4], a long sequence of time slots without collisions, observed by all 
stations without errors, causes all stations to become synchronized (i.e., all stations agree 
on the beginnings and ends of CRis ). This agreement occurs because every CRI without a 
collision in the first slot has length one. Once a station begins to see a sequence of CRis with 
length one, every time slot terminates a CRI. If some other station is in the middle of a longer 
CRI, the sequence of collisionless time slots will eventually terminate the longer CRI and 
that station will then be synchronized with the stations seeing single slot CRis. Complete, 
single slot, CRis are either empty or contain a successful transmission. Generally, such a 
sequence of collisionless time slots would only occur when the network has no messages to 
send. A fortunate coincidence of several successful transmissions without collisions would 
have the same effect. Note that we have assumed that the sequence of collisionless time slots 
is observed correctly by all stations. If one or more stations erroneously see a collision on 
the feedback channel, then those stations will require two additional 1collisionless time slots 
before they again become synchronized with the correct stations. Once all the stations have 
begun to correctly observe a sequence of unit length collisionless CRis, then all the stations 
are operating with the same feedback information, and they are synchronized. 

This section demonstrates that a somewhat stronger statement can be made. A single 
error will always be resolved within two CRis, even if there is no long sequence of collisionless 
time slots, provided that no more errors occur in the network before the :first error is resolved. 
In other words, within two CRis after an error, the erring stations recognize the end of a 
CRI simultaneously with the correct stations. After that synchronization, the erring stations 
behave correctly in following the protocol of the CCRA. As shown by the results of our 
simulation study, in section 5, this short error resolution time sharply limits the effects of 
errors on throughput and response time when the error rate is low. 
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The proof depends on the structure of the tree that represents a ORI, and considers single 
errors in isolation. We do not consider the effects of multiple errors before the synchronization 
is regained. Our analysis, therefore, applies only in the limit of low error frequency, when 
the higher prder effects of multiple errors can be correctly ignored. 

Using the tree construction algorithm, described above in section 2.2, even an erring 
station implicitly constructs a sequence of trees, but the trees may be different from those 
of the correct stations. Now we examine the differences that unshared errors cause in the 
trees that different stations see. 

The proof that the CCRA recovers automatically from unshared errors does not require 
that the tree structure be binary, but applies to arbitrary branching ratios in the partition­
ing. As an example, assume that the network stations use a 3-ary tree structure to resolve 
collisions. Figure 3 shows a complete 3-ary tree representing a 16 slot CRI as observed by 
some of the stations on a network. Collisions occurred at slots 1, 3, 5, 8, and 13. All the 
other slots were empty or contained a successful transmission. 

Now suppose that the other stations on the network observed a successful transmission 
or an empty slot at slot 5. These stations assign a leaf node to the tree to slot 5 as shown 
in Figure 4. The original CRI is then resolved at slot six. The next ten slots in Figure 4 
constitute three more complete CRis (and three more complete trees.) We have not specified 
what actually happened in slot 5, nor have we specified how many stations are in either of 
the two sets. Clearly one set of stations is correct and the other set has erred, but the 
proof applies for both cases, because it does not depend on which set was correct. This 
discrepancy could have been caused by the stations in Figure 3 seeing a "leaf to interior" 
error (i.e., LACK to NACK, or ACK to NACK), or it could have caused by the stations of 
Figure 4 seeing an "interior to leaf" error (i.e., NACK to ACK, or NACK to LACK). 

In all slots except for slot 5, all the stations on the network agree on the feedback results. 
In Figures 3 and 4, all nodes other than node 5 are the same. For the stations of Figure 
3, the 16 time slots constitute a single CRI and the stations of Figure 3 are ready to begin 
a new CRI with slot 17. The stations in Figure 4 have constructed four complete 3-ary 
trees corresponding to four complete CRis. (The third CRI in Figure 4 contained only one 
time slot, which corresponds the degenerate tree at node 12.) The stations of Figure 4 are 
also ready to begin another CRI with slot 17. If no more errors occur, all the stations will 
construct identical trees and recognize the same CRls after slot 16. 

Note that the trees rooted at nodes 8, 12, and 13 in Figure 4 are identical to the subtrees 
rooted at the _corresponding nodes in Figure 3. This observation leads us to construct a 
proof that stations will auto~atically resynchronize, after an error, within Q CRis, where 
the branching ratio of the CCRA is Q. 

Theorem: 

Assume a feedback channel errors causes some stations (partition 1) to assign a leaf node 
to a particular time slot, while other stations (partition 2) assign an interior node to the 
same time slot. In other words, the stations of partition 1 had an "interior to leaf" error 
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or the stations of partition 2 had a "leaf to interior" error. Thus the proof applies to both 
types of errors. When the stations of partition 2 complete the current CRI, the stations of 
partition 1 will have observed exactly Q + 1 CRis, where Q is the branching ratio of the 
collision resolution tree. 

Proof: 

Assume that, since the beginning of the current time slot, a station has observed I (inte­
rior) collision time slots, and L (leaf) time slots that contained either zero or one transmission 
attempts. Let 

N = (Q - l)J - L + 1 (4) 

where Q is the tree branching ratio, I is the number of observed interior nodes, and L is the 
number of observed leaf nodes. 

In section 2 it was proved that N = 0 indicates that the CRI and the corresponding tree 
are complete. More generally, N can be interpreted as the number of subtrees required to 
complete the current tree (or CRI). For instance, see Figure 5, which shows a partial tree 
with 5 interior nodes (1, 2, 5, 6, 8) and 3 leaf nodes (3, 4, 7). Equation 6 indicates th_at the 
number of missing subtrees in Figure 5 is N = (2 - 1) x 5 - 3 + 1 = 3. The three missing 
subtrees are labeled a, b, and c in Figure 5. The missing subtrees may be of any depth. Each 
subtree could represent a single time slot or many slots. 

Each new time slot in the CRI adds a new node to the incomplete tree, changing the 
value of N. If the time slot adds an interior node to the tree, N becomes N + Q - 1. If 
the time slot adds a leaf node to the tree, then N becomes N - 1. Thus, if some stations 
(partition 1) add a leaf node and some stations (partition 2) add an interior node, the value 
of N will be greater by Q at the stations of partition 2 than at the stations of partition 1. 

That difference, Q, is invariant in later time slots if both sets of stations agree on the 
feedback from subsequent time slots. When N reaches zero for the stations of partition 1, 
the value of N will be Q at the stations of partition 2. The next time slot begins a new CRI 
for the stations of partition 1, and it begins a new sub-CRI corresponding to one of the Q 
missing subtrees for the stations of partition 2. Each new CRI for the stations of partition 1 
will constitute one of the missing subtrees for the stations of partition 2. When the CRI for 
the partition 2 stations is finally complete, the stations of partition 1 will have seen exactly 
Q + 1 complete CRis. 

Thus the all the stations begin a new CRI together after the partition 2 stations see a 
single CRI while the partition 1 stations see Q + 1 CRis. In the absence of more errors, the 
stations will then stay synchronized in the sense that they all begin and end CRis together. 

The use of arrival epochs can introduce a subtle complication to the proof for networks 
operating below saturation. This complication is discussed in Appendix B. 

The above theorem, in fact, shows that there exist renewal points in the CCRA. A 
renewal point is the termination of a CRI at a time t, such that, there exists an arrival 
time, to :'.S t, for which all messages that have arrived at the network in (0, to) have been 
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successfully transmitted in (0, t). In Figure 6, four messages have arrived at the network 
before the time to, and they arrive at stations a, b, c and d. At some later time t, which is 
the end of a ORI, all four messages have been successfully transmitted, making t a renewal 
point corresponding to to. In the absence of errors, all stations agree on the value of to, but 
errors can cause stations to disagree on the value of to that corresponds to a renewal point 
at t. 

When arrival epochs are used to assign messages to CRis, the errors can cause stations 
to permanently disagree on the correspondence between arrival epochs and CRis. Thus, the 
j-th ORI may include messages from the j-th arrival epoch at some stations, but from other 
arrival epochs at other stations. This disagreement is caused by the difference (equal to the 
tree branching ratio) of the number of CRis observed by the different stations between the 
occurrence of the the error and the resynchronization. 

In the absence of feedback errors, the CORA causes renewal points to occur at the end 
of each ORI. For each renewal interval there is a corresponding arrival interval such that all 
messages that arrive in the arrival interval are successfully transmitted in the corresponding 
renewal interval. 

In this section, we have shown that renewal intervals can exist even in the presence of 
errors that cause the stations to see different results on the feedback channel. Because the 
effects of these errors are temporary, the renewal interval is extended to the time when all 
stations again agree on the beginning of a new ORI. Thus, a renewal interval may span 
several CRis. (Stations may disagree on the arrival times that correspond to renewal points, 
though.) When the stations again agree on the beginning points of CRis, the CORA operates 
as if the error had never occurred, and the throughput limit is unaffected. 

5. Performance of CCRA with Unshared Errors : Simulation Study 

In this section we present simulation results and discuss the effect of unshared errors on 
the performance of the CORA with arrival epoch modification. In our simulation studies, 
we assume a finite number of stations N on a network, each generating a new packet with 
the probability q per slot (i.e., geometric arrivals). We assume constant length packets, and 
the transmission time of a packet is equal to a slot length. In the following, we measure 
time in slots. Each station has buffer space only for a packet (per arrival epoch), and thus, 
it can accept maximum one packet per arrival epoch. Packets arriving at a station which 
already has a packet are lost due to buffer overflow. The length of an arrival epoch is L slots. 
Each station sees incorrect feedback with probability Perror per slot. In other words, with 
probability Perror a station sees either a "leaf to interior" error or an "interior to leaf" error. 
A "leaf to leaf" error is not considered, since CORA is robust to this type of error, and the 
performance of the algorithm is not affected by this type of error. In our simulation studies, 
multiple stations may make errors in a slot, but we assume each renewal interval contains 
one or zero error slot (low error frequency assumption). Note that all the erring stations 
make the same type of error, either "leaf to interior" error or "interior to leaf" error. Refer 
to section 3 for more detailed description of the model. 
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The performance measures we investigate are 

• the average packet transmission delay D, i.e., the average time between arrival and 
departure (end of successful transmission) of a packet 

• the throughput S, the probability of successful transmission per slot 

• the loss probability Ploss of packets at a station due to buffer overflow 

• the average length T of renewal intervals; the average time to resynchronize, given that 
an error has happened. 

We also investigate the effect of arrival epoch length on the CORA performance; We obtain 
the optimal length Lopt of an arrival epoch to maximize the throughput. 

For a 20 station network (N = 20), Figure 7 shows the throughput S as a function of 
a total arrival rate q x N (per slot) for various values of arrival epoch length L. In this 
figure, stations are assumed to make no error (Perror = 0). From this figure, it can be seen 
that the L = 2 achieves the highest maximum throughput of 0.486 (Lopt = 2). This valu~ 
(0.486) is same as the theoretical upper bound (0.487) for the throughput of the CORA with 
arrival epoch modification (i.e., so called part-and-try or interval searching algorithm} in an 
error free environment [12, 13]. This verifies the accuracy of our simulation model. Figure 
8 shows the average transmission delay D for the same network in Figure 7. L is equal to 
Lopt = 2 and 10 in Figure 8. As shown in Figures 7 and 8, although L = 2 achieves the 
maximum throughput of 0.486, the delay becomes very large as the input rate approaches 
to the maximum throughput. Thus, it may be concluded that the CORA should be used in 
a light or moderate traffic environment. 

In Figures 9 and 10, we assume Perror = 0.2 and N = 20. Figure 9 shows the throughput 
S for various values of L. Horizontal line represents q X N. Lopt is 2, and the corresponding 
maximum throughput is 0.418. Retransmissions due to feedback error causes increase in 
channel traffic, and thus, the maximum throughput decreases. Figure 10 shows the trans­
mission delay D for the same network with L = Lopt = 2. As is the case where there is no 
feedback error, the transmission delay becomes very large as the traffic approaches to the 
maximum throughput, and it is not practical to operate the CORA in such a high traffic 
environment. 

When L > 2, packets may be lost at a station due to buffer overflow. Figure 11 shows 
the packet loss probability Pzoss as a function of an total arrival rate q x N for a 20 station 
network (N = 20) with L = Lopt = 2, L = 3 and L = 10. Perror = 0.2 in Figure 11. For 
the same network,· Figure 12 shows the average renewal interval T. Both Figures show that 
L = Lopt = 2 achieves small loss probability Ploss and requires short time to resynchronize. 

Table 1 shows the maximum throughput Sand the optimal arrival epoch length Lopt for 
various values of feedback error probability Perror· It can be seen that L = 2 achieves the 
maximum throughput for all cases. 

6. Conclusions 
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The Capetanakis Collision Resolution Algorithm (CCRA) and its variants provide stabil­
ity and throughput improvements over random back off algorithms such as ALOHA. These 
algorithms require that all stations on a multiple access network monitor a feedback channel 
that tells whether each time slot contained a collision of two or more messages, or no colli­
sion. The analysis of the algorithms usually assumes that all stations get the same feedback 
information, even if the feedback is wrong. 

Shared feedback information allows the stations to recognize collectively when all the 
participants in a collision have successfully transmitted their messages. When all stations 
get the same feedback information, they all recognize, simultaneously, the beginning and end 
of each collision resolution interval (CRI). 

In this paper we show that unshared errors, which cause stations to see different feedback 
for the same time slot, cause only temporary disagreement among the stations about when 
CRis begin and end. No single error can cause a permanent destruction of the simultaneous 
recognition of CRis. We also show the effect of unshared errors on the performance of the 
CCRA through simulations. 
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Appendix A : Proof of Equation (1) 

In this appendix, we present proof of equation ( 1) for a Q-ary tree. 

(Q - l)J - L + 1 = O (1) 

As the basis of the induction, consider the degenerate tree, with one node. The node is 
a leaf because it has no children, and there are no interior nodes. For the degenerate tree, 
L = 1, and I= 0, satisfying equation (1). 

For the second part of the inductive proof, assume that equation (1) holds for all trees 
with less than N nodes. We show that equation 1 must also hold for all trees with N nodes. 

For the general Q-ary tree, the left hand side of equation 1 becomes 

(Al) 
j J 

where L; is the number of leaves in subtree j, and I; is the number of interior nodes in 
subtree j. The right hand side of equation Al includes the root interior node which is not 
in either subtree. Figure Al shows the root of a binary tree ( Q = 2) with N nodes. Each 
of its children is the root of a subtree with less than N nodes and the subtrees are labeled 1 
and 2. Rearranging the right hand side of equation Al yields 

L((Q - l)(I; - L;)) + (Q - 1) + 1 = :EC-1) + Q = -Q + Q = 0 (A2) 
j j 

using the induction assumption, ( Q - l)Ij - Lj + 1 = 0. 
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Appendix B : Resynchronization with Arrival Epochs 

When stations use arrival epochs to assign messages to CRis, it can occur that the j-th 
arrival epoch terminates before the (j-1)-st CRI terminates. In this case, the j-th CRI must 
be delayed. The simplest protocol requires that stations must wait for the end of the j-th 
arrival epoch before they can transmit in the j-th CRI. This waiting causes one or more 
empty slots, between CRis, during which no messages can be transmitted. For the purpose 
of the analysis of unshared errors, and to distinguish them from the normal sequence of CRls 
we will refer to each empty slot as a "ghost" CRI of length one. 

In the absence of errors, no station will observe any transmissions or collisions during 
the ghost CRls. however, errors can cause stations to disagree temporarily on when CRis 
terminate. Thus an error can cause a station to observe a collision or transmission in a time 
slot that should have been, a ghost CRI, because some other station or stations may not 
have completed a normal CRI. The same effect would be caused by a "LACK to NACK" 
or "LACK to ACK" feedback error that occurs during a ghost CRI. To allow for errors, the 
CCRA must be extended to behave correctly when transmissions or collisions are observed 
during ghost CRis. 

It is sufficient to require stations to monitor ghost CRis in the same way as normal 
CRis. A ghost CRI is just like a normal CRI during which that station had no messages 
to send. If the ghost CRI is observed to begin with a successful transmission, that ghost 
CRI has length one, just as if that slot had been empty. Only if a ghost CRI begins with 
an observed collision, will that ghost CRI have length greater than one. In that case, the 
observing station must remain blocked until the apparent collision is resolved by satisfying 
Equation 3. 

Note that collisions or transmissions can be observed during ghost CRis only when errors 
occur, either before or during the ghost CRI. When the observation is made, however, the 
observing station does not have enough information to determine whether the error occurred 
at that time slot or previously. Nor can the station determine whether the feedback error 
occurred at that station or some other station. 

Once we require that each station treat ghost CRls just like normal CRls for which it 
has no messages, the proof of section 4 applies even if some of the CRis in the proof are 
ghost CRis instead of normal CRis. 

Figure Bl shows an example in which some stations observe a collision in a slot that 
should have been a ghost CRI. Those station see a single ghost CRI of five slots, while the 
other stations see ~ single ghost CRI, followed by two normal CRls. 
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Fig.l T. Suda, J. Bae and D. Baxter 
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Fig.l An Example of Collision Resolution Interval ( CRI) 
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Fig.2 T. Suda, J. Bae and D. Baxter 

Fig.2 A Binary Tree Representation of the CRI Shown in Fig.l 

17 



Fig.3 T. Suda, J. Bae and D. Baxter 

Fig.3 A Tertiary Tree Representation of a Sixteen Slot CRI 
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Fig.4 T. Suda, J. Bae and D. Baxter 

Fig.4 Four Trees, Resulting from a Single Feedback Error in the CRI of Fig.3 
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Fig.5 T. Suda, J. Bae and D. Baxter 

Fig.5 A Partial Tree, Representing an Incomplete CRI 

20 



Fig.6 
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Fig.6 An Arrival Epoch, and its Collision Resoluti0n Interval 
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Fig.7 
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Fig.7 Throughput S (N = 20, Perror = 0) 
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Fig.8 
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Fig.8 Average Transmission Delay D (N = 20, Perror = 0) 
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Fig.9 
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Fig.9 Throughput S (N = 20, Perror = 0.2) 
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Fig.10 
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Fig.10 Average Transmission Delay D (N = 20, Perror = 0.2) 
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Fig.11 
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Fig.12 
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Fig.12 Average Renewal Interval Length T (N = 20, Perror = 0.2) 
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Tab.1 T. Suda, J. Bae and D. Baxter 

Perr or s Lopt 

0 0.486 2 

0.1 0.462 2 

0.2 0.418 2 

Tab.l Maximum Throughput Sand Optimal Arrival Epoch Length Lopt 

28 



Fig.Al T. Suda, J. Bae and D. Baxter 
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Fig.Bl T. Suda, J. Bae and D. Baxter 
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