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Exploring the role of CENP-A Ser18 phosphorylation in CIN and Tumorigenesis

Weiguo Zhang?, Gary H. Karpen?, and Qing Zhang®

“Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Department of Molecular and Cell Biology, University of
California, Berkeley, CA, USA; PDepartment of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, University of North

Carolina, Chapel Hill, NC, USA

ABSTRACT

Chromosome instability (CIN) contributes to the development of many cancer. In this paper, we summarize
our recent finding that a novel pathway by which FBW7 loss promotes Centromere Protein A (CENP-A)
phosphorylation on Serine 18 through Cyclin E1/CDK2, therefore promoting CIN and tumorigenesis. Our
finding demonstrates the importance of CENP-A post-translational modification on modulating

centromere and mitotic functions in cancer.

Chromosome instability (CIN) contributes to tumor heteroge-
neity, drug resistance and cancer progression, and high levels
of CIN are associated with poor patient survival for many can-
cer types."? Major mechanisms proposed for CIN include
oncogene-induced replication stress, telomere dysfunction, and
aberrant mitosis." FBW7 is a tumor suppressor protein fre-
quently mutated in multiple cancer types, and belongs to the F-
box protein family as part of the SCF ubiquitin E3 ligase com-
plex.” Cyclin El is a well-characterized FBW7 substrate that
regulates G1/S cell cycle entry. Aberrant accumulation of
Cyclin E1 due to overexpression or FBW7 mutation leads to
polyploidy®, and is prevalent in many types of cancers. Existing
evidence strongly suggests that Cyclin E1 misregulation results
in genomic instability primarily through excessive replication
origin firing and oncogene-induced replication stress.” How-
ever, we have recently identified a novel pathway where FBW7
modulates phosphorylation of an essential centromere protein
CENtromere Protein A (CENP-A) through Cyclin E1/CDK2,
presenting a new paradigm for how this tumor suppressor reg-
ulates CIN and tumorigenesis through centromere and mitotic
functions.®

The centromere is the specialized chromatin locus that
recruits the kinetochore, and is crucial for proper mitosis and
genome maintenance. The centromere is enriched for CENP-
A, an important histone H3 variant that is considered a key epi-
genetic mark for centromere identity and propagation.”® Too
little or too much of CENP-A can disrupt genome integrity.
CENP-A depletion displaces the downstream components of
the Constitutive Centromere-Associated Network (CCAN) and
the KMN network (KNL1 complex, MIS12 complex, NDC80
complex) from centromeres and kinetochores, resulting in
chromosome missegregation.””'> Moreover, ectopic localization
of CENP-A to non-centromeric loci due to overexpression or
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targeted recruitment leads to fragmented chromosomes in Dro-
sophila melanogaster and human cell lines."*' At least in Dro-
sophila this is through formation of neo-centromeres and
ectopic kinetochores.">'® Therefore, faithful chromosome seg-
regation requires tight regulation of CENP-A protein levels, to
ensure proper CENP-A nucleosome assembly only at centro-
meres.'” In tumors, overexpression of centromere and kineto-
chore genes is prevalent.'®'? Importantly, centromere gene
upregulation strongly correlates with CIN and poor prognosis
in numerous human cancer types'®*’, and predicts enhanced
cancer cell and patient sensitivity to genotoxic adjuvant thera-
pies.'® However, it is unclear whether centromere misregula-
tion contributes to malignancy, or is merely a consequence of
other changes during tumor progression.

Post-translational modifications of centromere proteins also
influence centromere functions. These include phosphorylation
of Serl6 and Ser18 residues within the CENP-A N terminal
tail**, as well as Ser68 in the histone fold domain.”>*® Ser to Ala
mutations at these sites lead to defective CENP-A deposition or
mitotic defects, although there is some debate about how essen-
tial these modifications are in normal cells.??” Nevertheless,
CENP-A and other centromere and kinetochore protein genes
are rarely mutated in large TCGA patient datasets'®, thus the
clinical relevance of these modifications and the potential roles
of CENP-A regulation in cancer progression remain poorly
understood.

We found that increased Cyclin E1 levels promote CIN and
tumor growth through centromere misregulation.® Specifically,
loss of the tumor suppressor FBW? results in increased Cyclin
E1/CDK?2 activity, leading to hyper-phosphorylation of CENP-
A at the N- terminal Ser18 site, and reduced CENP-A, CENP-B
and HECI levels at centromeres. Mechanistically, our study
demonstrated that Cyclin E1/CDK2 is necessary and sufficient
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Figure 1. A schematic model of FBW7 defects leading to Cyclin E1 overexpression,
CENP-A Ser18 hyper-phosphorylation and chromosomal instability. In FBW7 wild-
type cells, CENP-A is successfully deposited at centromeres in late mitosis and early
G1 cell cycle phases in the absence of ectopic Cyclin E1/CDK2 activity. In contrast,
FBW7 null cells accumulate Cyclin E1, and Cyclin E1 itself is frequently amplified in
many cancers. Excessive Cyclin E1/CDK2 activity promotes aberrant CENP-A phos-
phorylation at the Ser18 residue, reduced CENP-A deposition at the centromere,
lagging chromosomes and bridges in mitosis, and micronuclei (MN) formation
associated with tumor progression.
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for CENP-A Ser18 phosphorylation both in vitro and in cul-
tured cells. Further, excessive CENP-A Ser18 phosphorylation
enhances CIN, including chromosome missegregation and
micronucleus formation, and promotes anchorage-independent
growth and tumor progression (Fig. 1). Strong evidence for the
relevance of their findings to human clinical cancers was dem-
onstrated using a disease relevant FBW?7 mutation, human clin-
ical cancer tissues and a xenograft mouse model. Moreover, our
results suggest that Serl8 hyper-phosphorylation due to
increased Cyclin E1 activity and/or FBW7 loss reduces efficient
CENP-A deposition at centromeres. Mechanistically, these
results suggest that the HJURP chaperone and assembly factor
does not interact with CENP-A S18D (Ser to Asp) mutant as
efficiently as with WT proteins. Together with the data from
clinical human breast cancer samples, we identify an important
new function for aberrant Cyclin E1/CDK2 activation in can-
cer, distinguishable from its well-established role in the G1/S
transition.® Previous research on Cyclin E1 in oncogenesis pri-
marily focused on its role in replication initiation, which sup-
ports oncogene-induced replication stress.” However, the
results from us suggest that an additional mechanism acting
through centromere misregulation also occurs in a significant
proportion of human cancers where FBW? is lost or Cyclin E1
is overexpressed.®

The exact mechanism responsible for reduced interaction
between HJURP and CENP-A upon CENP-A phosphorylation
on Ser18 is currently unclear. Previous structural and molecular
studies indicated direct interactions between the HJURP N-ter-
minal region and the CENP-A histone fold domain.*** In our

study, the failure of a phospho-mimetic CENP-A to be effi-
ciently recruited to LacO arrays by LacI-HJURP, and decreased
in vitro binding of HJURP in CENP-A S18D mutants, imply a
reduced ability to form a competitive pre-nucleosomal complex
or less competitive chromatin incorporation.® Perhaps CENP-
A Serl8 phosphorylation perturbs the stable interaction
between HJURP N terminal Scm3 domain and CENP-A his-
tone fold domain. Additionally, it is possible that centromeric
CENP-A phosphorylated at Serl8 reduces efficient HJURP
recruitment for new CENP-A loading at endogenous
centromeres.

Regardless, these results suggest that the CENP-A N termi-
nal tail, and specifically levels of Ser18 phosphorylation, modu-
late proper centromeric CENP-A nucleosome assembly and
centromere function. Previous domain replacement experi-
ments using histone H3 N terminal tail suggested that CENP-A
N terminal tail is not absolutely essential for cell viability.”
However, the possibility that phosphorylation modulates cen-
tromere function in a cancer context could not be ruled out in
those experiments. The results shown in our research are con-
sistent with many findings in the field showing that the CENP-
A N terminal tail regulates centromere functions in multiple
species’™”, including proper CENP-B function in human
cells’®?, epigenetic stability of centromeres in fission yeast™*
CENP-A protein stability in budding yeast and Drosophila®*?,
and meiosis and organismal fertility in Arabidopsis.*® Interest-
ingly, ectopic overexpression of a CENP-A S18A mutation led
to modest but statistically insignificant chromosome missegre-
gation in HeLa cells where most CENP-A is phosphorylated™;
while in our publication, CENP-A S18D or forced hyper-phos-
phorylation in DLD1 cells induces micronuclei.® The mecha-
nistic details of this pathway await further investigation to
better understand its role in carcinogenesis, and for future
applications to therapeutic intervention.
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