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NUCLEAR FUSION: 1 (1961) 101—120

FLUCTUATIONS OF A PLASMA (I)*

NorMAN ROSTOKER
JouN JAY HoPKINS LABORATORY FOR PURE AND APPLIED SCIENCE
GENERAL Atomic DiIvisioN oF GENERAL DyNamics CORPORATION

SAN Dieco, CALIFORNIA

We consider a fully ionized plasma. At time ¢ the state of the system is represented by a point
X in the phase space of all the particles. We define DdXdX’ ...dX() as the joint probability
that at time ¢ the system will be in (X, dX), at time ¢’ in (X', dX’), etc. A systematic procedure
has been developed for calculating any desired moment of D, as an expansion in the discreteness
parameters e, m, and 1/n. Spectral densities and autocorrelation functions can thus be obtained
without any ‘‘StoBzahlansatz’ or Markoffian assumption. A comprehensive treatment of a plasma
in thermal equilibrium has been carried out. A large class of non-equilibrium states may exist
in a hot plasma for sufficient time to be considered stationary. Fluctuations have been calculated
for the class of spatially homogeneous states of an infinite plasma. It is of some interest that
thermal equilibrium relationships such as Kirchhoff’s radiation law and the fluctuation-dis-
sipation theorem survive. As an application we have calculated the degree of excitation of the
collective modes such as plasma waves, ion oscillations, etc. For distribution functions which
approach instability as some parameter is varied, the energy for some modes becomes very large
and ultimately becomes infinite as instability is approached.
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1.1 INTRODUCTION

The state of a plasma at time ¢ is represented by
a point in phase space X =(X;, v;}; (Xg, Vg). . . (Xn, Vn)
where X,, v, are position and velocity of the n-th
particle. For an ensemble of systems D, (X,t)dX
means the probability that at time ¢ a system will
be in the volume element (X, dX) of phase space.
D, (X,t) determines the expectation value for the
measurement of any observable at position x and
time ¢, i.e.,

(O(x, t)):fD1 (Xt) 0 (xt) dX. (1)

density; Zq,, Vi 0 x—x,,), the current density, etc.

n
If a plasma is in thermal equilibrium, (O (x¢t))=0 for
these quantities. However there are spontaneous
fluctuations so that

(0% (x, 1)) =fD1 (X, 1) 0% (xt) dX#£0. (2
1t is possible to make more sophisticated measure-

ments of fluctuating quantities whose expectation
values are not determined by D, (Xt). We shall be

* Research on controlled thermonuclear reactions is & joint program carried out by General Atomic and the

Texas Atomic Energy Research Foundation.
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concerned in particular with the auto-correlation
function, see, e.g. Lax [1]:

LT
C{r)=Im —|dtO@)0(t+ 1) (3)
T—>oc0 —T/Z
— 1 Dolwvé’ d
=350 S de
and the spectral density
T2
S (w) = lim ——ffdtdt e—ie=00 () 0(t) (@)
T—co
“Tp

3]

=fe—i‘”0’(r)dr.

- 00

To determine the expectation value of quantities
like O (t) O (t'), the state of the system at time ¢ is
insufficient. It is necessary to consider a more general
description of the plasma that involves D, (Xt;
X't'YdX dX’', the probability that at time ¢ the
system will be in (X, dX), and at time ¢' in (X', dX").
In terms of this function the expectation value is

(0#) 0 (

For a stationary random process this will depend
only on T=t"—1t so that

CEN=O )0 {t+7). (6)

Laplace transforms will be employed in most cal-
culations. To express S(w) and C (1) in terms of
Laplace transforms, consider the identity

t)) =[Dy (Xt; X'¢) 01) 0 (¢) AX dX". (5)

S (w)= %fd w'Jdt el — o)iS (@) .

— 00 00

Now,
[ateiw-or=ns @ —w)+iP—1
0
0
fdtel(m _w)‘—ﬂa((() _U))—IP w—w >
where P means the principal part. Let
. S % do’ ’
S+ (l CU) = (2“)) + '2l_n Pf w’—ww S(a)) (7)
. S 1 g d ’ ,
5 (o) = 257 — 5 P[0 8 );
then -
S+ (iw)+ 8 (w)==5 (w)
S*(iw)—S-(iw)=%pf%

S+ (p) is the Laplace transform of the function C+ (1)
where
0t (v)=C(7)

=0v

(z>0)
(z<0).

8- (p) is the Laplace transform of the function C- (7)
where

C-(t)=C(7) (r<0)
=0 (t>0).
For example;
o 1 L
7}1_n)10 3 “:_Ji': (p) el”dpz ﬂfSﬂF (iw)e'**dw

1 : 1 - ,
—_ iwr _— _ 4 ! ai(0 — w) T ’
= 2nfdwe 2nfdwfdte S ()
— o0 — o0 0

—de S (e

— o0

fdt el 7§ (v —1)

=2Lnfdweiwrs<w)=0(r) (v>0)

=0 (r>0).

Since C (t) is an even function of 7,
8= (p) =8+ (—p).
S+ (p) is regular in the right half of the p-plane and
8- (p) is regular in the left half.
According to Eq. (4), S (w) must be real if w is
real. S+ (iw) is, however, complex; the real and im-
aginary parts satisfy a dispersion relation.

Im [S+ (iw)] = (iw)] (8

or

Re [S$* (iw)] = ———Pf —Im [$* (iw)].
The real and imaginary parts of St (iw) are Hilbert
transforms. An alternative way of writing Egs. (8) is

[ole]

. St(io)dw’

lim [2LGe)de’

A0 o'—w—14i
—00

in which it is clear that the equa.lity exists because
of the fact that St (iw) is regular in the lower half
of the w-plane (or S+ (p) is regular in the right half of
the p-plane). Similarly

lim =0 (10)

A0

j‘o S~ (io) do’
w'—w 414

because S~ (iw) is regular in the upper half of the
w-plane.

The spectral density and auto-correlation function
can be generalized to include spatial fluctuations and



also different components of a tensor. The spectral
density is defined as

S0 (K, 00) =lim— o ”dxdx dtdt e=il0E—0+k- (=)

V,T—eo X O0q(Xt)0p(x"t")

= hm ----- Oa (k, w) Ok, w), (11)

which is Hermitian. The auto-correlation function is
dkdo
Oaﬁ (l‘, T) —f'Tz n‘) 1

VT jdxdto (Xt) Op (X LT, +7) .

(12)
The symmetry properties of these quantities are
=S§a(k:w) :S:ﬁ(—
Cmﬂ (r: t) == Oﬂa (_ T, _T) .

ei(wr-{—k-r)Saﬂ(k’ w)

= lim
V,T—>co

8y p(k, ) k,—w)

The total fluctuation is symmetric, i.e.,

fdkdo
Cap(0,0) = [ gy Sus (K, )

. 1
=hm»~ﬁfdxdt0a(xt) 05(xt). (13)
VT

For a spatially homogeneous plasma and a stationary
random process (O (xt) Og (X +T, t 4+ 7)) depends only
onr and 7 so that Cyp (r, T) = (04 (xt) Op (X +T, £+ T)).
A systematic procedure will be developed for cal-
culating C,s. Fourier transforms will be employed
for the spatial co-ordinates and Laplace transforms
for the time. The result will be obtained in the form

dp

» - dk .

Cap (r,7) =JEHGNJ e e Saskp)  (14)
=Ca(r,7) (r>0)
=0 (r<0).

The previous discussion of the two-sided Laplace
transforms may be applied to infer a Hermitian and
an anti-Hermitian spectral density.

Stp (ki) = 22l 5= P b0’ g5k o)
8o (k, iw) = S“"(" @ _ PJ do” 84 (k, ')
:Sﬁa(_k:—lw) =[Sﬂa(k:1w)]

The Hermitian spectral density is
Sap(k,0) = 8% (ki) + [Sfa(k,iw)]*
There is also an anti-Hermitian spectral density
Aypk, 0)=28qpk,io)—[Sk.(k iw)]*
i do’
=% PJ‘ o'— o

which is simply related to the Hilbert transform of
the Hermitian spectral density. If 2 8)s(k,iw) is

Sotﬂ(k’ CU') )

FLUCTUATIONS OF PLASMAS

symmetric, the real part will be the spectral density
and the imaginary part will be its Hilbert transform.
We shall begin with a plasma consisting of electrons
and randomly distributed positive ions of infinite
mass. Only Coulomb forces will be considered. The
calculations will be progressively generalized to include
ions of finite mass, constant external magnetic field,
the complete electromagnetic field and relativistic
modifications. In Section 1 we shall consider only
Coulomb interactions and thermal equilibrium.

1.2 JOINT PROBABILITY FUNCTIONS

Dy (Xt; X' ;---XOt0)dX dX'---dXE) means
the joint probability that at time ¢ the system will
be in (X, dX), at time ¢’ in (X', dX’) etc. The entire
system is trivially Markoffian so that all functions D
can be expressed in terms of D, and D,. D, (Xt; X'¢')
satisfies the Liouville equation in the variables X',

{at +2v,, 8x, mZax ,,lx — X'l av,.} o XX ) 0
n=1 l#n (15)

and the initial condltlon
D, (Xt; X' t')=D, (Xt) 0 (X' — X)

where
ﬂ d(x

Coulomb forces only are considered and the ions
are omitted from the problem in the usual way. For
present purposes it is sufficient to determine

- xn (V',,——' vn) .

Wi (X t; X' t') = V? f D, (Xt; X' t') (dX)N-1 (dX")N-1

(16)

where all coordinates are integrated out except X;, Xj'.
The method consists of taking moments of the Liou-
ville equation to produce chains of equations. The
chains are solved by an expansion procedure in which
the parameters of expansion are e, m or 1/» as discussed
previously by RosTokEr and RosENBLUTH [2]. The
determination of W,; is very directly related to the

previously discussed problem of test particles in a
plasma [2].
Let )
w(X, ;X t) =V f D, (Xt; X' ¢') (@X)N-L  (17)
p satisfies the Liouville equation in (X';¢) and the
initial condition _ , '
(X, X )=V D (X')d(X'; — Xy (18)

Assuming that D, (Xt) is symmetric with respect to
the interchange of the co-ordinates of any two particles
it follows that v is also symmetrlc except for particle
one, i.e., particle one is a singled-out test particle.
We have thus reduced the problem to the previously
discussed test-particle problem except that we have
different initial conditions for the present case.
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The s-body functions may be defined as follows:

fo (X, -- X3 t)= stz)1 (Xt) (dX)N-+
Fo(Xpt; X, —- X!y 1, t)
- V*‘f:p (X, t; X' ¢)dX, dX! 4 - dX'n
O (X, 6 X, - X\t
= V‘fw (X, t; X' ¢) dX! 1 -~ dX'N. (19)

We note that

Wi (X X, ) =09, (X8 X' )

Wi (Xt X, t)=F, (X,¢t; X, t').

By taking moments of the Liouville equation, coupled
chains of equations are obtained for Fi, ;. These
chains have previously been terminated by expanding
in terms of the discreteness parameters [2]. For our

present purposes we need to know Wﬁ’, Wig), Wy,
The equations for these functions are as follows:

{i.{_v '._a-
oy 1 ’

B ) S W 4 Xy )= 0

X
(20)
Wi (X, 65 X, ) =V f (v,) 6 (X, — X,)
d , 0 g
{WH2 e T }W(O’(Xlt;Xz £)=0

(21)
ng) (X1t Xy 8) =10 (X, Xy'58) =F (vy) f (v3)).

En©® means the macroscopic. field

’ ! a 1 ! !
EQx’, ) =nefw_xz,_lf(vz)dx2 =0.

|x'—

P N @
[+ Vo o WL X ) — o  0) -5
f (vl) WX, 15 X' ) dXS'}
=0
{|x2 —X—V, (¢'—1)] + f [ Xy — x5
 (22)
: 2 oxp [—|x,—X,'| /L
WX, 1 X, )= — g 2RI 1Dl )
In the above equations
' 3 1 4 e
f0)= (527 exp l—mv?/26), 75 = =55

The solutions of these equations are
WXyt X0 ) =V (07) 8 [X'3- %= V3 (= )] 6 (V3= V)
WX, 85 X' 8) = (v) f (v,) (23)

eik: (%"~ %)

WX, 4 X, ) =1 (0 1 0) [

(2w)?
ap p('—1) 4
fT—:i—e Wk (vq,V,)

where
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1
n (k Lp?) & (K, 0) (p +ik - vy)
[1_ i(k-vy) (n/k) U (k, p) J}
(k Lp)*e (k, p)

Wk (Vy, Vo) = —
_ik-v,
p+ik-v,
_k(f@)av
Uk r) =)o

. el lik-9fjavdV
¢(k,p) =1——3 fm—v*

|
XL+

=1+(10L;D)2[1—fk—p-U(k,p)].

1.3 FLUCTUATIONS OF ELECTRIC FIELD

Consider first the total fluctuation

0 e 7} e
B (xt) B (xt)) = j Dl(Xt)Z'a—xa s s g X

me f 1 @
6xa|x—x1|3x5|x
7]
2029 2
+ nte f — |X—'x1| axﬂ,x_le fo(Xy, X,) dX, dX,. (24)
It is clear that to obtain the lowest order result
consistently, f, is required to lowest order and f,
to first order. Substituting the thermal equilibrium
functions we obtain the result
N o [ dk Icakﬁ] 1
(Eo(xt) Eg(xt))=(4me) nJ PN ]1 M+ &Lpy] S
(25)
The term [1 4 (k Lp)*]~! comes from the terms in
Eq. (24) where I n. These terms can be neglected
for k> 1/Lp, but are quite important for k< 1/Lp.
The energy associated with a given k can be obtained
from

x| fi(v)dX,

(E-Ey [ dk 6 1
8=  J(27)® 2 1+ (kLp)® "’ (25.1)

The energy per degree of freedom in the electric field
is evidently @/2 for kLp<1 and much less for
kLp> 1.

To obtain the spectral density consider the ensemble
average

(B (xt)Eg(x"t')
' 0 4 ’
= [y (Xt X' Z‘ahlx_x”axﬂ o X dX

Ln
ne: [ @ 1 % 1
V ) oxe |x—x,| 0" | X —X,’|
W (X, X, t')dX, d X,
1 0 1
2 52
+n ef@ma [x—x,| oxp" |x"—x;|
WX, t; X,'t,)dX,d X, .

After substituting from Eq. (23) and carrying out
the integrations, the result is

y+ioo
By (x,6) By (x', ) = (4 me)n ip

2ri
y—ioo
’Cakﬂ (Tt/k)U(kvp)
ke (k,0)e(k,p)

dk , - ,
p{t' —1t) pik s (X — x)
xf e e



According to the definitions of Egs. (12.1) and (14)
kakp (n/k)U(k, p)

Sysk,p) = dme)?n W etk 0)e(kop) (26)
The spectral density is therefore
Saup (K @) = 2Re[S5s (K, iw)]
— (4me)n %’“ﬁ 2= RTE[(Z(}‘w;ﬁi)l (27)
U (k,iw) ’}1’3}) énj‘[wﬁf—(v)%y—ll]
- %J’f( )[ma(w+ k-v')+ Pﬁ]dv’.

If we define v, =k-v/k and m v»?=0,
1l ex [_ ”'_12]
ﬂﬁ p 52

r (—w /k)dw

— o)

i ol el :('“—3 + (@ @> )

F('vn) =Jﬂf(’v)’U_|_d’UJ_d0=

Uk,iw)=F(—awlk) + f

L
(28)

When kLp> 1, |&(k, o) [P 1; when kLp<l and
w>kv

NN N S 1
et o | L —( 2T+ e e | — gz )

(29)

In this case the denominator exhibits a resonance
at w =wp. The spectral density S, s (k, w) must satisfy
the relation

- lw
[Saplbiw) G = Ba (x0) By (<O,
or -
f F(—w/k) , _  (kLp)®
& ) Te(k,1m) ‘2 1 + (kLp)? * (30)

By using the asymptotic forms for &(k,iw) the
integration can easily be carried out and we obtain

F(—-w/k) dw
k e

- 0

~1

Kiw)? =

== (k Lp)*

(kLp > 1)

(kLp<l).

By carrying out the integration approximately, making
use of asymptotic forms, it is apparent that only
values of k for which weakly damped plasma oscilla-
tions exist are fully excited to the energy /2 per
mode. It is possible to carry out the integration
exactly by a contour method, but this gives less
physical insight. From Eq. (27) it is apparent that
Sy« p (K, w) must be an even function of w. Since

FLUCTUATIONS OF PLASMAS

oo

1 do’ ,
W)+ o P [ Sap ko),

—

285 (kyiw) = Sqp(k,

and the Hilbert transform of 8, 4 is an odd function of w,

[=e]

oodw dw .
{Wsmk,w): S 2855 (K, i)
kaks 272 1 [do UK, i)
— 2 = sl
= (4me)?n Wk s (50 2me (ki@
w-PLANE
) -
‘w=Re'®

Fig. 1 Contour of integration used in evaluating the
integral of Eq. (30).

The most convenient contour of integration is
illustrated in Fig. 1. In the lower half of the w-plane
U (k,iw)/e (k,iw) has no poles. On the boundary
circle w = R e

lim U (kiw) = 1 —
R—>oc0
lim ¢(k,iw)=1
R—cc
U (k,iw)
fd A —jda 0. (31)
Therefore
Td kaks 1
S Sap (k) = (e n = e,

which agrees with Eq. (25) since ¢ (&, 0) is equal to
(k Lp)*/[1 + (k Lp)?].

For a plasma consisting of electrons and ions,
Eqs. (26) and (27) apply if we define U and ¢ as follows:

U (k, p) = 2

j

ek p) =1 30

i

fi@w)dv’ ¢
p}-{-lk \ (32)

(ik-ofjjov)dv’
p+ik-v’

2
mj v )

B = (o) exp( ok

wpit=4T nez/

14 SUPERPOSITION OF DRESSED PARTICLES

Consider the Vlasov equation

af e 00 of
X "oy =0

a_f Ly.
ot ‘m 0x OV
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where

Vip = — 47:[gext—neffdv—|—ne] .

3
Suppose at { = — oo, fO) = (m|2% O)2 exp [—m v?[20)]
and an external charge density of order e is switched
on adiabatically; i.e.,

Oext = lim g (k, w) ei(@—idtgik -x,
A—=0

If Eqgs. (33) are solved in the usual way, the result is

4ok, w)

ei(wt+k~x)
k?e(K,iw)

O (x,t) = (34)

and
e k.of0)/ov

by = fO (p) —
f,v58) = fO () — - =< =57

D (x,1).

It is therefore clear that ¢ (k, iw) may be interpreted
as a dielectric constant.

For a test charge gext= —ed (x —X,— v,t) and
o (k, w) = —ee ik % § (w+k-vy). The electric field at
a point X due to a fully “dressed” test particle at
X' =X+ Vot with velocity v' =v, is

dk
@2 ny?

ik

eik-(x—x’) .
ek, —iK-V)

E(x, X') =4nef (35)
If we imagine the particles of the plasma immersed
in a dielectric medium characterized by ¢ (k, iw), then
the Coulomb electric field due to a particle is effectively
replaced by Eq. (35). If this is done the particles can
then be regarded as statistically independent in the
following sense:

(Ba(x) By (x' ')
= 7 [ B (x, X0) Bp (x', Xy') W (X, 65 X, ¢) d X, d Xy
CZ"1]‘(")1) .
X[ ikt 40
Therefore
2855 (K iw) = (4me)2n L2k 27
Fl—olk) . igf do'Fl—a k)
X { TEioF T = PJ (o—w) |e(k,iw’)]2}'

oo

This is the same as the previous result and was
obtained by ‘‘dressing the particles” and neglecting
the contribution from W (X,t; X,'t'), the cor-
relation of different particles.* Similarly in the cal-
culation of

(By(xt) Bs(x)) = fDl (X6) 3 Bq (%, %) Ep (%, %) d X
In

we can neglect the terms I n, or assume f, (X, X, ¢) =
=f(v,) f (v,) provided E (x, X,) isreplaced by E (x, X,,).

* This method of obtaining the spectral density of
electric field fluctuation was first pointed out to the
author by W. B. Thompson of the Atomic Energy
Research Establishment, Harwell, United Kingdom, in
a lecture given at General Atomic in January 1960.
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Thus

(B (xt) By(xt)=n f F(0)) Ba(X, X,) Bp(x, X;) dx, dv,

B dk f()dv kaks
44’“’”[ @) f SRk vy) o (K, TR V)

With the change of variable w=k-v, this becomes

(dkdw kaks 27 F(—wlk)
@2n)* kB & ek, 1o)|?

(By (xt) Bg(xt)) = (4me)2n J
in agreement with Eq. (27).

1.5 FLUCTUATION-DISSIPATION THEOREM

Consider the Vlasov equation

of of e
77 TV

p. 9f
xwmE iy =0
Suppose that at t=—oco, f=f® = (m2x @)%
exp (— m %2 0) and the electric field is switched
on adiabatically, i.e.,

E =lim B (k/k)eite —it)tgik-x
A—>0

It is assumed that K is of order e so that f=f(0) 4 f1)
where

af of

ot ox

of©

oy 0.

_‘*x.
m
After solving for f(), the total current density is

determined

j(zt) =——nefvf(l) (xv;t)dv + ;_n%

— 1 (k) @k,
The result for the current amplitude is
= (1/z) B
where

4n
iwe (K, i)
__ 4= 1

g =r+iz =
> T;(k’l—w)';[Ime—{-lReE] .

Since —Im e=(k Lp)~2 (n/k) w F (— w/[k), the spectral
density of the electric field fluctuations may be
expressed as

Sup (K, ©) =2 O 1 kq kg/k? . (37)

1.6 KircEHOFF'S RADIATION LAw
The energy density of the electrostatic field is

(E(xt) - E(x¢)) _[dkdw

8= =) Wk

where
4zne® 1 F(—owlk)

Wik, 0)= —— & o)

From the previous problem, the absorption coefficient
may be defined as follows: the power absorption is



1 .
§1B= 7Re7uEu*

By Ly*

—a(k,w)%Re .

The absorption coefficient is

a(k,w)=8nRe(l/z,) = —2wIme(k,iw)
1 2
= (k—LD)—zTn(UZF(—-‘(()/k) .

According to Kirchhoff’s law, we should expect that
the emission per unit volume from the plasma would be
e(k,w) =Wk, ow)ak, o)
Com O ot il
(k Lp)* k* le(k,iw)|?

(38)

That this is the case can be seen by a direct calculation
of the emission. The force on a test particle of velocity
v’ is from Eq. (35),

dk ik
14 — ‘1 ' 7 — 2
F(v)=—eEx'X dme @ T (=i V)
dk k Ime(k,—ik-v)
_— 2 —_—
= 4‘”.] @ & ek, —ik- V)

The rate at which the particle loses energy is
v'-F (v') which is therefore the rate of emission of
energy from one particle. For a plasma in equilibrium
there are nf (v') particles in (X', dX’) so that the
total emission per unit volume is

dk , kv Ime(k,—ik-v)
4Tcne2f—(2n)3 fdv f(v) 2 Ie(k,—ik~v’)|2

If we change the variable of integration to w = —k-v
the result is

’

J‘dkdw e
(2n)
where e (k, w) is given by Eq. (38). Kirchhoff’s law
has previously been stated for plasma waves [2] in
the form

e (k)=02¢L (k) {39)

where ¢ (k) is Landau’s damping coefficient. This
result is recovered if we integrate Eq. (38) over w
for kLp< 1. Eq. (38) is more general than Eq. (39)
in that it applies to all wavelengths including kLp> 1
in which case plasma waves are very strongly damped.

1.7 FLUCTUATIONS OF CURRENT DENSITY

The current density is j=— eZV,, 0 (X — Xu). The

n
ensemble average of (jx(Xt)js (x'¢')) is calculated
making use of Eq. (23). The result is

Stp(k,iw) = ne? {%% U (k, io) [6a,,——’“—;‘;f—ﬂ]

— e 4O

(k, io) is the spectral density

S = e S22 (a0 5]

P sReeny)

ko k
—{_' k4ﬂ
The real part of 2 S;p

ico(chD)Z[l

(41)
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We note that S (k, w) differs from the corresponding
quantity for the electric field by a factor of (w/4 )2
This could have been anticipated because the spectral
density is essentially an ensemble average of the
square of Fourier components. According to Maxwell’s
cquations iw g (k, w)+ik-j(k, w)=0, ik-E (k, w) =
=47mo (k,w), or k-j(k, w)=— (iw/47) [k-E (k, w)].
The relationship between the spectral densities is
thus apparent.

The above result can also be obtained by a super-
position of independent dressed test particles as in
Section 1.4. The current density at x due to a dressed
test particle with X, =(x,, v,) is

jx, X))=—ev,;0(x—Xx, )—nefvéf(( v,t)dv
where [2]

81XV, )= 4r:e dk

B ©
X [kk (ffvlfffz] [kzs(k,;l ik vl)] ’

Eq. (41) may be obtained as follows:

(Ja(x£) jp (X', 1))
- _lea(x X)) je (3" X)) WO (X1t Xy't) d X, d Xy

J. Jflfl exk (x—x)ep(l—l)s* (k p)

ei k- (x—x,)

Substltutlng W,® from Eq. (23) we obtain the same
result for 2 Re S5 (k, iw) as Eq. (41).

A fluctuation dissipation theorem exists for the
current density that involves a different dissipation
tensor from that previously employed for the electric
field fluctuations. It is defined as follows:

of of e of
7 T "a‘;—‘w:[w V‘p] v =0

VE— 47renUf(x,v,t)dv—1}.

At t=— oo, f=f" (v) and an external electric field
of order e is switched on adiabatically, i.e.,

Ee (xt)=1lim E (kw)efo—iingik x
A—>0

We can calculate the conduction current as
j(xt):~nefvf”>(xv,t)dv

= j (k) eifet+k-x)

where
jo (K, 0) =0us (K, iw) B (k, o)
and
. C] ko k
Oup (ks i) = —@“{m Z U (ki) (6a,3—72~ﬁ)
. Y 1 .
+ k‘ ](l) (kLD)z [I_E(le)_l} .
The theorem for current fluctuations is
Sis(k, iw) =0 oxp (k, iw) (42)
or
Sup (K, ©) =2 O Re [0 (K, i)].
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1.8 FLUCTUATIONS WITH A CONSTANT MAGNETIC FIELD

The calculations in this case follow the same pattern
as in the case of zero magnetic field. The only new
feature is the addition of the term — (efm ¢) (v xB)-
-(0 f|€ v) to the Vlasov equations. The resultant spiral
unperturbed orbits make the calculations considerably
more involved. However, no new techniques are
required so that we shall simply discuss the results.

The dielectric constant is

J,,"’(k_L a)ilk-of]ov]u

e(k, p) = 1—3 Jd p+ilk- vl (43)
where
of of n of
[k‘ﬂ]ﬂ—’“z— @ bor

[k'v]n: kzvz+ %?)_L

azvj_/wc
w.=e Blme.
We note that
(k 0) =14 (LLD)Z

as in the case of zero magnetic field. The other function
required to express the results is

- oo 2

Jn? (kJ_ CL)

Ulk,p p+1[k Vin

with this definition
e (k, p)=1-+(k Lp)=2[1 —(m p/k) U (k, p)].

The joint probability functions are as follows:
WO (X 8 Xy )=V f(v,) 6 [xy —x (¢')] 6[vy" — v (¥')]

(44)

where 7=t — ¢ and

V({t')=—wvy sin(f;+wT)ex
+vy,c08(fit+wc T

X (') =X, +a [cos (B, +w: T) — cos f,]) ex
+afsin (f; +ocv) —sin fy] ¢+ 01, T €

W (X, t; Xy ) =f (v1) f (v5)

Ly“]‘vlz ez

dk . .
clk (%"= x,)
@n)p

d ,
X f% er (=0 Wi (V1 V')

WE (X1t Xy )= f ) f @03) |

Wok (Vi V5) =

exp {—i[ky @, cos (B — ) — Kk ay cos (B; — o]}
n (k Lp)te (k, 0)

iy —mn J"l (ICJ_ al) J;;,‘ (IG_]_ (1:2)

[P + 1 (k- vg)n,]

xX

exp {i [y (By — &) —ny (fr— )]}
f i(K- Vy)n, ik vy (=/k) U (k,p) N
X 11+ p+i(k: vy [ (k Lp)*e (k, p) ] ’
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Most of the previous results for zero magnetic field
are recovered in the following sense; results that
depend only on k and p remain formally the same,
but with the new definitions of U (k, p) and ¢ (k, p).
The expressions that contain position and velocity
coordinates are formally similar with the exception
of the Bessel-function sums and the angular factors
produced by the spiral orbits. For example, the electric
field at x due to a fully dressed particle at position x
and velocity v’ is

dk ik

Ex X)= N Eh ik - (x—x)
Tulkya')J (kL a’) it eil-n)6 = o) -
2 (k —1i [k . V/]n) ) (40)

H, )1

This is to be compared with Eq. (35). The spectral
density of electric field fluctuations can be calculated
in the manner of Eq. (36).

(Be (xt) Bp (x't))
= 5[ Ba @ X) Byl X)) WX, 15 X,'0) d Xy d X

dpJ‘ dk

= Jeeil T T S o).

The result for Sqs (k, ) =2 Re Si; (k

kakp 27 ReU(k,iw)

Ok Je(k,iw)[?

,tw) is

Sep(k,w) = (47e)n
which is formally the same as Eq. (27).

As in Section 1.5, a resistance can be defined. The
only modification is the addition of the Lorentz force
term to the Vlasov equation. The result is formally
the same, i.e.,

U (k,io)

(4me)in =
[ekio) |’

7” = k2@ TRG

so that, as before,
Saﬂ (k, (}J) =2 @ 7 ka kﬂ/kz

Similarly the formal expressions for Kirchhoff’s law
in Section 1.6 are unaltered.

The current density fluctuations are somewhat more
involved so that a more detailed discussion will be
given. The ensemble average is
G (0 J (0 = (e V) [ W (X, 6 Xy 0) 8 (x—xy)

o(X —x,)v, v,/ dX,dX/
+n282f W (X, 8 X, ¢) 0 (x —X,)
0 (X' —X, ) v, v, dX, dX,'. (46)
W(U) and WY are given by Eq. (44). It is convenient

to express a,ll vectors and tensors in te1 ms of the unit
vectors

o, —k/k, 0,=k xB/ (kB) and e, =k xB x k (k, B).

The cartesian components of k, v and B are (k cos «,
k sina, kz); (—wv,sinf, v cosp,v;); and (0,0, B).



Therefore v=v, ¢, +v,¢,-+v5€;5
1 .

where v1=v-01=7[kzvz—h_ vy sin (f — a)]

Vy= -— v COS (ﬁ—a

k
Vy= ’l Ve k v, sin (f — a).

We can associate with these components certain
symbolic components

00 = (k> vz +n0w) [k

’1)2(']) —i U;L o "' ("G - )/. n ( ’L )
K1 —
n) Vo —— We .
3 ! ’C ‘b l{:J_ "

The purpose of the symbolic components is to express
quantities like v, exp [i k) acos (f§ —a)] in terms of
Bessel-function sums. For example,

vyexp [i k) acos (f—a)]

=D Jn(lLa)eln® =+ 5D (kop.—k) vy sin(f—u)}/k

n

=D Ju(kya)ein— o+ w2y,

n

The result for Hq. (46) is

. . ’ ’ Lk d 1 r T
DI, 1)) = [ [ 5ol ror
X D) 8tp(k, p) eqep
of

where

Ssp(k,p) = ne'-'f/(o) (v)GdVZ

I (e @) valh) v

P —|— iko, (M
nezp © (v Jn? (k) a) va(")
+ e | 100 2 pF i ko,
JIn? (k 1 a)vglm*
xf;(m (@) dv 2 i (47)

A conductivity tensor is defined as follows:
af af o 2 / e
IR T v

V2¢=4nne[ffdv~—l].
At t= —— oo, f==f(9 (v) and the external field

E (x, t)=1im E (k, w) ei(>—i D1 gik-x
A—0

is switched on adiabatically, & is of order [e].
The linear response is calculated and

ja(x,t):—nefvaéf(x, v,t)dv
= o (K, ) el (@ +k-x);

jo (K, 0) = 04p (k, iw) Eg (k, w).
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Placing p=iw, the result for g,p is

Uaﬂ(k:p) =
ne? 'fd V1O (v) v, J'vﬂ'(_T)eik-[x'(—r)—xle—,nd.[
— Gy JAVI@ @) v
(kLp)*e (K, ) .
% fik-v'(—r)eik-lx'<—ﬂ—xle—wdr
0

X J‘dv/(o) (v)fv,g’ (—1) eik'["'(-')—"'e—"'dr} .
0
(48)

The orbit functions x’ (z), v’ () are given by Eq. (44).
After making Bessel function expansions and carrying
out the angular integrations, we find that S;; (k, p)=
=0 0,5 (k, p) which is the fluctuation dissipation
theorem.

In order to establish a superposition principle, con-
sider the Hermitian spectral density

Syp (k, w) =855 (K, i) + [Sfa (k, iw)]*
and substitute
1 . P
Py v O R mid (w -+ kv,™) + PNy
into Eq. (47). The result is

Sap (ky ) = 2nne2fdvf<0> ()

DIt (@) v vg™* 8 [ - Tow, ™)

ne? [
(kLp)* 18 (k 1)
i o)

- *(klw (5a+177a)(£ﬁ +1"7[3 )"

y (62 —17a) (Ep™ —imp¥)

where

Ealk,) =7 3[4V IO ) T2 (b )0, 6 [0 + ko, )

(k, ) = Z'Pfd v

This can be put in a more suggestive form by intro-
ducing the effective velocity

1 iw
(kLp)* e(k,i w) (£

f(o) () Ju2 (kL a) e (M)
[@+ kv, ()]

8Va(k, i) = — —ind,

in terms of which

Saup (b, w) = 27 ne? j Avf® (v) 37,2 (k) a)d[w+ko,™)

X [vaM—08V,] [vpM—8Vg]*. (49)

We shall now obtain this result by superposing
independent dressed test particles. The current density
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at X, due to a dressed test particle at X can be found
by solving the test particle problem [2].

ju (Xg, X) = —evaé(xo—x)—nefvaéfdv

— [ ™ Y L)
where
Ia (k, ’v) = _ee—-ik_Lacos(ﬁ—a)Z Ju (k_L a) ein(B—a+nf2)
n
J’ o v, n)
X Ve U To)Te (& — Ko,
gy [0 ) T (kb1 a’) va’C
Zf V- [”"('")—Ul(")—il] }
m

— —ee—iklacos(B—a) 2(]}1(16l a)ein(B— o+ =)

n

X (v — 0V, (k, —iko™)} .
We can now compute

(8§ E)
B Ltf’ (X, Xy) j (x, X)) Wy, @O (Xt Xy ¢) d X, d XY

—f(2n)3f211 eik: rept S"‘ﬂ(k’p) €y Cp -
af
The result is
JIu® (k1 a)
+ — 2 n ]
Sep (k. p) = me ff LDy you

n

X [0a® — 8V, (k, — i kv,™) ]

X [0p™ — 8V (k, — i kv, ™) |*

The Hermitian spectral density clearly agrees with
Eq. (49). The anti-Hermitian spectral density is the
Hilbert transform of the Hermitian spectral density
so that the superposition of dressed test particles
gives completely equivalent results.

2. Non-equilibrium states with Coulomb forces

2.1 INTRODUCTION

A hot plasma may exist in a state quite different
from thermodynamic equilibrium for a substantial
length of time. Indeed, it is upon this fact that the
hope for fusion power is based. Such states are ap-
proximately stationary and it is of some interest to
consider fluctuations.

The states about which we shall examine fluctuations
are stationary in the sense of our expansion. They
will be adequately described for our present purposes
by specifying the one-body distribution function to
lowest order. This in turn uniquely determines the
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two-body correlation function. For example the one-
body distribution function will be a solution of
ne: ( 0

(0)
.afo_— ————1—,'f(0)( )dX/

ox m JoxX |x—x

(0)
af 0.

(1)

We shall consider only spatially homogeneous so-
lutions f(9 =f(0) (v). There are two restrictions on
the function f(® (v). First of all, there must be no
current density

j:-nefﬂfb(v)vdv:o,

because the magnetic field term is absent in Eq. (1).
Second, the secular equation

oy @t ik-a3f,(0v B
el p) = 1= [ Ty =0,

must have no roots in which p has a positive real
part, i.e., the state f(9 (v) must be stable.

The two-body correlation function satisfies the
equation

(V75 +V 20 P wX>
”7:2 ohO f@x 'x o7 P& X ax”
_ ""f "’3";(,‘” JW - _1X,, P(X,X")dX"
=%%7£Trbmu“1—mwﬁh]
(2

This equation determines P (X X') when f,(0 (v) is
given [3). This information is sufficient to determine
the auto-correlation function and spectral density for
any quantity such as electric field or current density.
Calculations will be made for a plasma consisting
of electrons and infinite-mass ions, electrons and finite-
mass ions and then a constant magnetic field will be
added.

2.2 JOINT PROBABILITY FUNCTIONS

This treatment will be quite similar to Section 1.2.
It is however more convenient to introduce condi-
tional probability functions for our present purposes, so
that we shall repeat some of the previous discussion.
The function D, (Xt; X't') satisfies the Liouville
equation in the co-ordinates X', t' and the initial
conditions

D, (Xt; X't)=D, (Xt) § (X'— X).

The function C (Xt | X't") is defined by integrating
out all initial co-ordinates but one, i.e.,

f (X, 8) O (X 8| XY= me (Xt; X't') (dX)N-1

@)

where
X )= VfD1 (Xt) (dX)N-1



C (X,t| X't') satisfies the Liouville equation in (X', #')
and the initial condition

Xt| X't)=V D, (X't)6(X'\— X))/, (X1, t). (4)
The s-body functions are defined as in Section 1:
Fo(X 8| Xy-- X1, 1)
- sto (X, t| X'¢)dX, dX!,o-- d Xy
O (Xt X --XJ, 1)
= sto (Xyt| X't) dX)41--dX

fo (X, == X )= V[ D, (Xt) @XN-1

The initial conditions for one- and two-body functions
are as follows

2, X/ t)=ViX,/— X,
-92 (X, X2’5t) =Vé(X,/—X,) 12 Xy X2,§ Oif1 (X1 8)
F, (X, t)=f, (X, Xy 5 0/f (X4 ) (5)

Fy, (X, Xy t)=f3 (X4, Xy, X5 0)/f (X, 8).

(The abbreviated notation 2, (X, t') will be employed
instead of 2, (X, t| X, t') wherever this can be accom-
plished without confusion.)

F; and Q; are determined by taking moments of
the Liouville equation and then expanding; i.e.,

]?s:Fs(o)‘f'Fs(l)‘*‘- R

where the parameter of expansion is e, m, or 1/n. This
procedure has been carried out in detail for the test-
particle problem [2]. Essentially the same equations
apply to the present problem. However the initial
conditions are different in the present case; in partic-
ular we do not wish to assume that the field particles
are initially in thermal equilibrium. It is assumed that
a partial specification of the initial density in phase
space D, (X¢) is given in terms of its moments. For
a spatially homogeneous plasma

O (V) + D (v ) =/, (V1 0)
fo (X3 Xpt)=f; V1t) f1 (Vo) + P (X}, X,)

fa (X3 Xp Xgst)=f; (V1) f1 (Vo 1) f1 (V5t)

+1O (vy) P (X, Xy) + 1O (vy) P (X}, Xy)

+H® (vy) P (X, Xy). (6)
P (X,, X,) is first order in the expansion parameter,
symmetric with respect to the interchange of X, and
X,, and depends on the spatial co-ordinates only as
X,—X;. It is determined by f,(® (v,) according to

Eq. (1). It is convenient to introduce a conditional
probability defined by

P (X, Xp)=£,"9(vy) G (X

For present purposes it is necessary to calculate £,
to zero order and F, to first order. The required initial
conditions are from Egs. (5) and (6)

_QI(O) (X1I t)= Ve (Xll— X1)
F O (X t) =1 (vy) (8)
FiWY (X, ) =f (v 1) +G (X, | Xy).

fx (X t) =

1] Xo) ()
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The zero-order functions satisfy the differential equa-
tion

[0, g1 9
\orv TN ox,

P 2\ 2,0 (X, 1)
— —F, (0) 1 n, % 1 10 — (
BN P 3 = 0 O
where
Eu® (z't')=7gej—a-~—l F(O)(X t)dX’
1 0x," |x," — X,/ |

The solutions are

Q0 (X )=V OIX,'—X—v, ('—1)] 6 (vi'—Vy)

FO (X t) =19 (vy). (10)

The equation for the first order contribution to F, is

) , o PP Y O R
for t v me POX -G L
1 F,0 )(X t)

{1x2—x1—v1 57 [ TE X, }=SHE,}.

(11)

This is the usual equation for the field particle distri-
bution [2] except for the term St {F;}. The form of
this collision operator is

1
m 6x2 (X, —xg'| 8v

St{F,} = S P(Xy, Xy'50) d Xy .

P(X,,X,;t') depends only on X,’—X, so that
St{F,} is independent of spatial co-ordinates.

The solution of Eq. (11) subject to the initial con-
dition of Eq. (8) is obtained in the usual way [2] by
integrating along the characteristic or unperturbed
orbits and making use of Fourier and Laplace trans-
forms. The result is

,
Fy0 (X 6) =, (0 1)+ [StH{F,}de”

"=t

y+ico
&k |k.(x’—x)‘d7J er (' —1) ’
+ IS EAA 1J_2nim{"G"(vl|v2)
Y —100
ik-9£,00v," w,? 1 Gr(vq|v) ]
T k) R [p+1(k vy T (m—ik-v)‘dvj}

(12)
In this expression,

. _wp2 ik-2f®av
e(k,p) =1 kzj p+ik-v

and Gk (v, | v,) is defined such that
1 .
T L

The particular moments of D, (Xt; X't') that are
usually required are

W, (Xit; X' t) = V2 f D, (Xt; X't') (dX)N-1 (d X')N-1,
The only two independent moments are

Wi (Xt X)) =f (X, 0) 2, (X, t]| X,'t),

Wi (Xt Xy t))=f, (X, 8) Fy (X8| X,'t).
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We shall require W, only to zero order and W, to
first order. The results for these quantities are as
follows

WO (Xty; Xy't)=V £, (vy) 8 [2)—X,—V; (¢'—1)]

0 [vi'—wvil (13)
W (X1t Xy 8) = £ (V) L9 (V)
WXty X,y t)—fl“)’( DHM (V) + [, (v ) 1 O(vy)

eik c(x,"—x;)

+HO (v) fSt (Bl ar 4[5

"=t

VPW~mmm%>

J2mi
where
1 1
IV,,L-(VI,Vz) = (;) '—-‘*‘—‘—“(p T k. VZ) {7?» PL- (VI! Vz)
k-0/O0v, . af[ fOv,
T ks R [*——“Hk v
Py, (v, V) \) J
+n f (p+ik-v) }
and Py (vVy, Vo) =1, (vy) Gk (v, | Vo).

With the present restriction to a spatially homogen-
eous plasma, there is never any contribution from
W® or the first three terms of W{). They will
henceforth be simply omitted. :

For some applications additional moments are
required of D, (Xt; X't') such as

Vs f Dy(Xt,X't')(d X)N-2(d X')N-1

(14)
The independent functions are Wy, Wiy, and W,
which are obtained by a simple generalization of the
procedure employed to calculate W,, and W,,. The
problem is one of two singled-out test particles, which
to the order considered in the present calculations,
do not interact. The results are as follows

Wiie(Xi, Xjt; X&' t')

ng)l (X, Xo 85 Xy 8)=VHO (vy) /119 (v,)
0 (X' —X,;— vy ('—28)]1 6 [V, —V,]
WO(X 1, Xot; X5't) = VHO (v) /L O(V,)

O[Xy' —Xy—V ('—1)] 0 (Vo' —V))
WO (X, Xy, 85 X' t) =1, (v4) P (X, X))
+ £, (v)) WD (X,t; X't)
+1,9 (vo) WX ¢; X' t). .. (15)
In the latter expression we have omitted terms such
as [0 (v5') /19 (v,) f1'¥ (vy¢), which give no contri-
bution for a spatially homogeneous plasma.
2.3. ELECTRIC FIELD FLUCTUATIONS

The ensemble average is calculated as in Section 1.3:

(E (x) E (x't)))

, e 0 e ,
[D (X¢t; X ”Z o | X—X| ox’ |x’—x,,’|'dXdX
ne2 o 1 }3 1

_ne 1 o9 o (0) . 14t b ’
= V ax|x_xl‘ X’ Ixf_x tl W]] (‘X].t’X]. t )d'de Yl

7] 1 a 1 (1) . Iy ’
+n262Jav|x AL 1W (X, t; X,'t"dX,dX,
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After carrying out the integrations as far as possible,

(E(x)E 't)) = f27tl oy eik fS+(k,p
where T=t'—¢, r=x'—x and
S+ (k,p) = (4m)iner X
avy 4H® (vy) dv,dv,
X{fp—i—ik v, +fp+ik v, ("”Pk(vhv2)

a)p k. 3(fl;(01))/)3"2 [pf_l:ozl((v_l)vl_*_ flzef:ll’k - ])}

To achieve a more manageable form the following
quantities are introduced

+

_ k (A(v)dv _ NS
Uk, p) = - [y e (v) = n‘[Pk(v,‘ v
In terms of these quantities
kk 1
§*(k,p) = (4m)*ne* 43 TEp
hi* (vy) d v,
{_' kp+jp+1kv}’ (16)
and
. kk 1
S+ (k,](,()) = (4TC)2 net—— ]C“ w ] IC U(k l(x))

T * (v..)dvn
+1]l>0,[1 (0 + k- v, — 1))}
where the interpretation of the integral is such that

lim — __F
10 (0 +k-v, —id) o+ K v,

=7nid(w-+k-v,) +

To make any further progress we must make use of
some of the properties of the pair distribution func-
tion Pg (v, vy). The Fourier transform of Eq. (2)
is

lim [K-(v,— V) —1A] % P (v, Vy)

A—0

k-2 fl(")

- ‘ZI; {[ HO (vy) + e (VI)]
www+M(MﬁJEQ-

After dividing by k- (v,— v,)—iA and integrating over
v, we obtain an integral equation for h (v,)

mm=ﬁpﬁﬁfw—ww4kmwwo
[ Uk —ik-vy)

ik-0/,® w,,
+ _av—
hi* (vo) dv, -
Syl oo
Let Hy (u) =J.dv hie (v) 0 (w —k - v/k), multiply Eq. (17)
by 6 (w+k-v,) and integrate over v,. The result is

_
e (k,iw)

(ki) l%

+J; (.zi (kv?)vff—z sl 09

Hi (—ofk) = {[1 —e(k,iw)] Re U (k,io)

U (K, iw)




We can now suxbstltute this result into Eq. (16) and
obtain:
S+ (k,iw) — (47)2ne? ’,‘Cf‘ “T‘
[1—e(k,iw)] : Hi (— o/k)|
X{—elma ~RelU(k,iw)— Ime |[°

Since S+ is a symmetric dyadic, the spectral density is

S(k,w) = 2Re S+ (k,iw)

kk 27 [Re Uk, io)

= @) ne e T ek e T

Im Hi (— w/k) }

Ime

It has been previously established by LENARD [3] that
Im Hj (— w/k)=0. The final result is therefore

kk 27 ReU(k,iw)

S (k,w) = Bk Je(Kia@)

4 m)2ne?

(19)

This is formally the same as Eq. (27) in Section 1. The
previous derivation can easily be generalized to apply
to a plasma consisting of electrons and ions. Eq. (19)
still applies with the following new definitions
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wp] ik- 6]1(0)/8\’
Sp _1_2 f p+lk v V,

i (v)dv

U(k,p) = Py (20)

where wp?=4= ne?/m; and the summation is over
particle species.

To indicate some of the features of non-equilibrium
states, the electrostatic energy per degree of freedom
will be calculated. That is

<E(x,z)8.ﬂE(x,z)) _ fdkdw W (k)
where
W (k) = 47:]::62% Re U (k,iw) (21)

le(k,iw)]® °
and the energy per degree of freedom is defined as

w
f2 k).

Consider for example, a plasma in which the electron
and ion distribution functions are

(22)

100) =) expl--mer*/264

100 =(g7g) " expl—mn?/26],

where @; € @.. Asymptotic forms for U and ¢ can
be employed in various regions of w, k& space as illus-
trated in Fig. 2. The following definitions are employed

1 4nne?
mev =0 5=,

1 4nne?
mivi¥ = 91’ TF = 0; .

FLUCTUATIONS OF PLASMAS
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Fig. 2 Asymptotic forms for U and ¢ in various regions
of w, k space.

i) Plasma wave region: If k <1/L, and o > kv,
the asymptotic forms are as follows:

1  \2 1/ w\2
. 136, 1)
ReU(k,iw) o2 — e e ——e i
( )_'\/271:’032 +'\/27r'ui2
1/ w\2
1 ) (kv)
= e ¢ smce >
V27 e 7 ]“’e

L Pl T (“’_a':e)z
2 \ko,) (kLe)® g
where wp? = wpe? 4 wp®. The denominator in Eq. (21)

has a resonance at w =wp. The result obtained from
integrating across this resonance is

212
le(hio)pax|1— 2

Ok) _ @ 1 .
T = —2—fOI' k <—L“ (23)

ii) Ion wave region: If kL; <1 and kv. > w >kv;
the asymptotic forms are as follows

Re U (k,iw) = + e
T2

()T

1 w\27 2
© w? 1 1 _?(k”i):l
+ ?k_[T+Te :

The resonance now takes place at

'\/ m vt

. 1
|€(k,1w)|2=[l +(’CT¢)2_

wo? =wpi® (k Le)? | [1 + (k Le)?] (24)
The resonant width is
do 11/ BL2 +
—w—o - 2 2 [ +( l:‘) ]

A+ (e[

which remains sufficiently small for approximate
integration as long as @. > ©; and kL; << 1. The

16 1
2 6; 1+ (kLy)® }
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result obtained from integrating across the ion reso-

nance is

O(k) _ Oc (kL)
2 T 2 1+ (kLy?

{ ‘_+V_e"p[ T ]}_
W el (25)

If kL. <1, then O (k)=~0. (kL.)? provided that
Mefmi > (6./0;) exp (— 0./O;) and O (k)=~0; (kL.)?
for the other direction of the inequality. For kL.~1,
O (k) 225 O, or +0; according to the sign of the same
inequality. For kL. >1 the exponential terms will
eventually dominate and @ (k)=~6;. For moderately
high electron temperature, the energy/degree of free-
dom increases monotonically with k from zero to
+0i. For very high electron temperature there is a
maximum in the neighborhood of kL.~1 which is
about 1+ 0..

Another case of interest is where there is a small
number of runaway electrons. For example,

w|~ w!

_@_ 1+ (]}CLe) ]}

1—(4 1 2
S
(2moy?)
an 1 : 1 (v+ V)2
+ 3 exp [—“2‘ *—v““]
2Zmv?)?
filO@w) =d(v+ V). (26)

For simplicity the ions are assumed to have infinite
mass. If nV;=V.4n there will be no current as
required for a spatially homogeneous plasma. The
requirement for stability is

S el )]

The validity of the present calculations is restricted
to cases where Eq. (27) is satisfied. However we can
consider the energy per mode as An increases up to the
limit given by Eq. (27). Asymptotic forms for U and ¢
can be employed for various regions of w, k. space as
indicated in Fig. 3. The z-axis is taken to be in the
direction of V., and we consider only modes for which
kx=ky,=0.
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Fig. 3 Asymptotic forms for U and ¢ in various regions
of w, k. space.

A resonance takes place at w =w, of width
do 1 |/= wp \3 1/ wp )2
o 2 V;{(kzvo) exP[ Z(kzvo) ]
(wp—kz V) wp2dn 1 ({wp — k> V,\2
+ kzv, n(kzvl)zexp [_?( kzv, ) ]}
Provided k. <wp/vy, and An/n < (v,/V.)?, then
Awjwp € 1 so that the resonance is sharp. The
result obtained from integrating across the resonance is
given in Eq. (28), at bottom of page. The latter
term of Eq. (28) comes from the region of k.>0, 0w <0
where the first exponential always dominates. As
long as k. > wp/Ve or k. € wp/V. the first expo-

nential dominates and @ (k) ~ @,. However when
kr=wp[(Ve — v,) == wp/ Ve, then

Okz) _ O
2 = 4
l exp [_%(Ve/vo){l + (vodn [ vyn)
X114 I
I exp [_?(Vg/vo)z]_ (An[n) (vy]v,)? (vy] Ve)

(29)

As long as Eq. (27) is satisfied, this result remains

finite. However the energy for modes in the neigh-

borhood of k.=~ wy/V. becomes very large and ulti-
mately infinite as

SBR[ 2]

1 1 (0—kzVe)?
+5 7\/2 —_— 3 %P [_? (kzv,)® ] 2.4. THEOREMS RELATING TO FLUCTUATIONS
For w >k v, and k. < wpfv, The electric field due to a test charge is defined as
|8(k,ia))|2 fOllO\VS‘ )
1 e e[ — L (] DIy Zop+ 222 3 _siqp (30
_[ w2]+2lkzvo(lczvo) xp|— 3 (5o S TV a5 of+t -3 {ft (30
—k2V, 24An 1 f{w--k: V2|2
+2 Koo, ncz)lxc)zvl)z exp [—7(——(0 lcz; ) ]} V2D =4me[d(X—X;— Vi) + nféf dv].
wp? Vo dn (wp — k2 Ve)?
O(k) O oxp (— 2kz27)02) i ( nv, )GXP [_ 2 (kzv,)? :' O, 28
2 4 wp? wp — koz Ve\ [ kzvy\ A1 [v\2 (wp — kz Ve)? +3- (28)
oxp (_ 2k227’02) ( kzv, ) wp | m (71) oxp [— 2kztv,® ]
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This differs frora the thermal equilibrium problem in
that St {f}, the collision term for the field particles
does not vanish. However, for a spatially homogeneous
plasma it is independent of position, and can be neg-
lected because it; only drives the k =0 modes. The cal-
culation is therefore identical to the thermal equili-
brium problem formally. The electric field at a point x
due to a fully dressed test particle at x, with velocity
v, is
— - ak ik (x—x) ik
E(x X, = 4n ef @ap ° ke (k, — iK-v)
and the superposition theorem is retained i.e.,
(E (x,t) E (x"¢))

=;_;f]«“ (%, X)) B (X, X)) WO (X, t; X,'t) d X, d X’

leads to Eq. (19) for S (k, w).
For the same reason the calculation of 7=
— [4n/(w ] e |?)] Ime (k,iw) in Section 1.5 remains
formally correct. Therefore the fluctuation-dissipation

theorem takes the form
) (k: w)= 20 (k> (U) 7y (ks

w) k k[k? (31)

where
4 ntne? o Re U(k,iw)

Okw)=——F—¢ Tme (K, iw)

Consider for example, the case of electrons and ions at
different temperatures:

Q(k CU) 09 X

o M

(o[-
(32)

If @.=06; it is clear that O (k, w)=0,=6;. Many
limiting cases are possible for @, ;. For example, if
©.>6;, then O (k, w) == O; for w< kv; and O (k, w) =~
o= O, for w> kv.. 1t is clear that for non-equilibrium
states the fluctuation-dissipation relation is not very
useful.

The previous calculation of the absorption coeffi-
cient in Section 1.6 also remains formally correct, i.e.,

]
sy

a(k, w)=—2wIm ¢ (k, iw).

According to Kirchhoff’s law we should expect that the
emission per unif, volume from the plasma would be

e (k, ) = a(k,w) Wk o)
4nne? 2nw Re U (k,iw)Ime(k, lw)
k* k [e(k,1w)|?

(33)

The force on a test particle is — e E (x;, X,) so that
the spontaneous emission from nf® (v,) test particles
per unit volume is

k v Ime (k. iw)
|e(k,iw)|?"

4mtne? {72—)?,— [d Vi)

FLUCTUATIONS OF PLASMAS

Since Re U (k,iw)zjf (V') dV' 8 (w + k- v//k), this
reduces to

dk
f @) 2s ek
where e (k, w) is given by Eq. (33). In a situation where
instability is approached, Re é—0, Im &~0 so that

¢ (k, ) - co. However, the emission

d
e (k) =f 5o ¢
remains finite. For example if f;i® (v) is given by

Eqgs. (26), the result from integrating across the reso-
nance at w =wp is

0,08 = 0.5 2 foxp[— 5 (2]
Sl G =)
X exp [_%____w,, —-’CzVe)]} (34)

kzv,

which remains finite when k., ~w,/V. and
an v; \2 Ve Ve
Té("’_o) v—oexP[-7(vo)]'

2.5. FORKER-PLANCK EQUATIONS

The fact that Im H,=0 is sufficient to determine
Im A (v,) in Eq. (17) and the collision operator

dk 4rk

St =— o av @ = mh(v), (35)

is therefore determined as shown by Levarp [3]. It
is however instructive to obtain this result by the
present methods.

The number of particles in (X', dX’) at time ¢ is

FX 1= 30X —x () [v — v (8] (36)

where x,’ (t'), v, (t') describe the orbit of the =
particle. f (X', t') satisfies the equation

0 0 e !
57 +V g0 — B 2@y =0 @)
with
. 8 1
E (X s t ) = GZW m
l#n
Eq. (37) can be integrated along the unperturbed linear
orbits and the result can then be substituted back
into Eq. (37) to obtain
a ’ 1
[

0 Y ’ Y ’ ’.,
v B X —V ¢ —1),v';4)

4 ,
{"a? T

.

2 6 ’ ’ " ’ ’ " ’ "

+(%) W-E(x,t)fdt E[X+V (t"—t); t"]
=t

X Wf[x +V’ (t”-—

£),v';t"] (38)
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The next step is to take the ensemble average of each
term in the equation. Thus

GOV =
IZ 0 —x1)o (V' =V, ) D(X¢t; X"t" ; X't")dXd X"dX’
=nfi (X',t)
where f, is the usual one-body function.

(E (X, t) f [xX'— v’ ('—1t), v'; t])

_f Zax x,_ 6[x—v( — ) — Xq]
l#n
X8 (V—va) D (Xt; X"t"; X't')dX dX"dX’
4 1 oty
=nzeJ.a—x,|x—,_—x2—,T6[X—V (t—t)——xl]

XO(V—vy) Wi (X8 X, ) d X, d X,
Making use of Eq. (13) we finally get the result

p'—1t)q ik

2 0) € Tl
mteh V)f(zn)a oni K (k, p—lk V)

dv' Py (v, V') 1

ety +ap A-o)
As usual, it is assumed that this expression goes to its
asymptotic form, determined by the pole at p=0,
in a time sufficiently short compared to observable
times, that the asymptotic form is always a good

approximation. Thus

EX)[X =V E—1),v;])
Nnefl( )(V )f dk 4-ck ImE(ngFlk v’)
=nEX,X)f, (0)(v).

In the second term on the right hand side of Eq. (38),
it is necessary to make use of Egs. (15), the probability
distributions for two singled-out particles. The result is

<E (Xltl) E [xl +vl (t”— tl); t”] f [xl +vl (t”— t’), vl; tll]>
=nC+ [ (t'—1t"), t'—t"] £, (V')
where
dk [ d .
CH 9 = | g 5ar TS K D)

and S+ (k, p) is given by Eq. (16). The form of the
Fokker-Planck equation is therefore

(o7 +V 52 &) =St

e 7]
m OV

(il fare v

where

- B, X') LO(V)

Ct(r,7)=C(r, 7)

=0

(r>0)
(t<0)

so that C+ can be replaced by C in the integration.
C is a symmetric dyadic in the present case so that
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C (r,7)=C(—r,—17). If most of the integral comes
from values of T less than any observable time, we
can use the asymptotic value; i.e.,

t'—t

fd‘l: Ctr(v1,1) FC(V'T 7)dt

dk
—2f

Now, substituting from Eq. (19), the final result is

—ik-v').

Ime

4nwe? 0 dk
St == av 27:)3{| (k,—ik-v)[? szlm(v)
T wp? (0)
+_pMH.9_fx_}_

(40)

Although this is in a different form, the result is iden-
tical to that of Lenard. The purpose of the present
calculation has been simply to express the Fokker-
Planck coefficients in terms of the electric field fluc-
tuations.

There is another problem in which at =0 all par-
ticles but one have the distribution function f(® (v)
which is spatially homogeneous. One particle is singled
out and initially has the arbitrary distribution func-
tion 2 (X). The lowest order one-body function for
the singled-out particle is

WO (X, 0)=[Q(X;) 6 (X — X, ()] dX, (41)

where ¢ [X —X (£)] =6 (Xx—X;—Vt) & (V—V,).
first order equation for W is

The

0 1%

{5 +v W} W (Xt) = St{W}

The determination of St {W} has previously been

accomplished in the case where the field particle

distribution is Maxwellian [2]. The equations previous-

ly employed are applicable with some alterations that

will be cited. The collision operator takes the form
SH{W| =—

m

2 2 .
= drwo 1. 2 Ww)} (42)
with

F= —nefE (x,X) 0f (X, X'; t) d X'

T- —nefE (x,X') 6 (X, X'; 1) d X'

éf is determined by the equations

0 '
{—a—t+v 2oy, }6f(XX )
e 9f0 8¢(X,x,t, ,
== v aw TS0} 43)

V2 (X, X, ) =4med(X —x) 47 nefaf(X,X',t)dv'.

In this case the only additional term is St {f® (v)}
given by Eq. (40). Since it only drives the k =0 modes,
it can be omitted and the result is formally the same
as before.



G is determined by the equations:

e e
U A ) — 2Ly X),
(44)
VA (X, X t)= 4nnefGXX' tydv',
and
P X) =—dme[-f SEED OF) + Ay

@=)P

where he (V') is given by Eq. (17). It is a straightfor-
ward matter to solve these equations and show that

St{W} = — 2. {E(x X) WO (X )
e . 7 o .

+§ - [(h Sk, —ik-v): 57 WO X}

(45)

The coefficients are the same as before. This is a

Fokker-Planck equation of the classic type where the

coefficients do not contain the dependent variable.

1@ (v) is required to be spatially homogeneous, but
W© (X¢) is not.

2.6 FLUCTUATIONS WITH A CONSTANT MAGNETIC FIELD

The calculations follow the same pattern as in the
case of zero magnetic field. The details of the calcula-
tions will be omitted here. The velocity coordinates
(v, B, vz) will be employed where the magnetic field
is taken to be in the z-direction. The spatially homo-
geneous one-body function f® (v, ,v;) is independent
of .

The joint probability functions are as follows:

WOXt; X't)

= VIO WX —x @)L= 5 (0 00 (B - f-0e7)
. (46)

where 7=t'—1¢ and

x(t) = x + a[cos (f + w.T) — cos f] ex

+ a[sin (f + w.7) —sinf] e, + vz7e:
Wi (Xt; X'8) = fO (V) O (v')

+ [ |5 e R W (v, V) (@47)
where r=x"—x, k=(k,, o, k2),
Woe (v, V) = (1/n) exp [— ik, a’cos (f'— )]
I (kL a) o i 5= )

2 i

w,, [k-2f8v
¢(k, p)

[f("'(v Yerik Lacos(ﬂ—a)z

—|—jdv” n Py (V, v ) e—ik a cos(ﬂ”—a)

2 Ju(lk1a”) in”ei"” 6"~ arl}
L itk Al

n

{’nPk(V V) +i

Ju (b a)i"e! "B~
p+i[K-V]a

FLUCTUATIONS OF PLASMAS

(K-V]n= k2 v+ no,

o f(o) . 0 f(o) n aj(“)

[k ov ]" =k 0vz @ ov
- Jut (k) a)i[k-2f0v],
¢(k.2) prilkvle

Quantities analogous to ke (v,) and Hy. () in Section 2.3
are introduced as follows:

he (V) =fnPk v, v)dv'

= e—ikjacos(B— a)zh" () ,v:) Ik @it ein(— )

n

H (u) = Z’f Pn(v y,02) T2 (b @) 8 (w—[Kk-V]uJK) dv.

The results for the electric field fluctuations are then
formally the same as the zero magnetic field case
including the theorems discussed in Section 2.4. For
example,

St (k,iw)

= (4m)net—r —w/k))

I m e

kk =i f1—e(k, iw)

Bk U elme ReU_

§(48)
where the present definitions of ¢ and H apply and

Jn2(k
Uk p)= ‘f avf “”(V)Z +1(rkl31.,

It has been established, that Im H (u) =0 in the pre-
sence of a magnetic field, RostorEr [4]. Therefore

kk 2= ReU(k,io)

S (k,w)=(4n)*ne* — T Te(kiw)

(49)
and

S+(k,iw)=

It should be noted that Eqgs. (48), (49) and (50) imply
an explicit expression for Re H (u)

Re H (u) _ [1_ Rece (k, —iku)] Re U

Ime |s|2 Ime

du’ ReU(k, —iku’)
Pfu —u |e(k, —1ku )2 6D
By means of the procedure employed in Section 2.5,
the Fokker-Planck equation for a spatially homoge-
neous plasma with a constant magnetic field is
obtained. The result is

0 17
(v = SyxB Lhixn=st{y (2
0
St{f} = — - B(x, X) [O(v)
20 2
+ () W-JodrC(r(r);r) FEILI0)
dk ik —ik jacos(f—a
E(x,X)=4me T % © k  acos(B—a)
Jn (k_La') i" ei" (B—2)
2 ek, —i[k-Vv]n) (53)

n
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and r () =X (t) — X where x (1) is given in Eq. (47).
It should be noted that C (r (7); 7)%C (r (—71); —71)
so that the limits of the z-integration in Eq. (52)
may not be changed from (0, oo) to (— oo, oo). Instead
we have

oo

[drC(r(r);r)

_J(2 )""ZJ (kya)d,(k a)in— " eitn—n) (-

X S+(K, — i [K-V]). (54)

where S+ (k,iw) is given by Eq. (48) or Egs. (49)
and (50). The only dependence on « is through the
operators

7 k b7} . %
k'é‘;: — icos(ﬂ——a)a—ﬂ—— k_LS]n(ﬁ—a)m
o
+k2?5_: (55)

so that the a-integrations can easily be carried out.
This accomplishes the following reduction of the
Fokker-Planck equation

4 me? dk 1
SHf} = — o [ 2

n

0
‘a‘V]nJ"Z (k, a)

1) _ mia? [ReU (k,—i[k- V],

X{e(k,—i[k-v],o ks [|e(k,—i[k“-v]n)|2

o]

i do’  ReU(k,iw)
+;P fw/‘*‘[k‘v]n |"3(k:iw,)|2 ][k W:l f(O)}
(56)
where
21 ki Ju'(kia) 0
[ 3e), = o s Tk Feera) 05

Since & f(9/8 8 =0 for a spatially homogeneous plasma,
the result is simply

4r dk 1
SHfy = — m6 @n)® &*
2[ : a—v]nJ,F(h @) Imhn(v ,,vs)
where
1
— Imha(v ;) = W_W{ fO(v) Ime

+ 227 Ro oU [k 2fe ’] L.67)

This result has been obtained previously [4]. We note
that the terms involving the Hilbert transform of
the spectral density have all dropped out, not because
of symmetry of C[r(z), 7], but because f© (v) is
independent of 8. In the case of a test-particle problem
the Fokker-Planck equation takes the form

7

(24 v 2~ 2 yxn 2l =stu)
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where

e 0
St} = = 57
and E (x, X), C [r (1), ] are the same as in Eq. (52).
In this case however w(® (X, t), the lowest order one-

body function for the singled-out particle is arbitrary
so that o w®/9 0.

The collision operator can be expressed as

E(x, X)w® (X, )

J dvC(r (), 7) - —w(°>(Xt) (58)

St {10} = 4 5 gor 01 Faw® + 5o Fa®

1 ow® 1 8 o w®)

Tul e Tep Twravy LM Gy
9 T aw() 1 @ ow(®)
— T ap(0) e —
+6vazz6'vzw vi? of® 'v_LE)v_LvJ- b2 5,
P dw® 1 (8T 0 Tsp | dw®
+a_vaﬁz dv (au avz) o8 }

The coefficients in this collision operator are obtained
from Eq. (56).

dk ky Jn¥k | a) Ime
_ 2
Fz_4TCe J 3 ]czz [ k —1[k V]n l2
dk 1 vn  Ju2(kpa)Ime
—d4me? | — V2
Fﬁ._4ﬂe f(2n)3 k22a le(k, —i[k- v]n)|?
— (3 o _dk k2 yvJu¥ (ki a)Re Uk, - i[k-v],)
Tzz_(ZTCCUJp) (27_:)3 15 Is(k’—i[k-V]n”Z

n

an (k_l_ a) ReU
le(ky —i[k - v]y)|*

Tﬂﬂ = (2Ttewp) f(Z )3 k5 2(%)2

n

2t

n

_an(k.La)Ey_‘
[e(ky —i[k-V]a)|? ~

Tse = 2mewy)?

These coefficients are the same as in the spatially
homogeneous case. The additional coefficients are

dk k) Inlkra)dy (k1 a)Ree
— 2
Fo=dme f )@ k22 [e(k, — 10K -V |°

dk k. % v [Ju'(kLa)]2Re U

T = Cmewn)® | 5o [e(k, — (k- V]2

(2rewp)® [ dk k)
n (2m)® kS

X PJw-f'dIEE Vi

Teﬂ: -

ZTu( @) (kya)

ReU(k iw)
|e(k,iw)|?

ng= (2newp)2j(dk klkzZJn(k_j_a) g (kJ_a)

T 2m)3

Re U (k,iw)

le(k,iw)|® °

v dow’
X P‘[w+[k~v]n



2.7 DIFFUSION IN THE PRESENCE OF A CONSTANT
MAGNETIC FIELD

Consider the test-particle problem where the lowest
order one-body function is

w® (X ')
=[x’

v

—x@1 L= 50— 08 (B B+ wc)

and x (7) is given in Eq. (43). This function simply
describes the motion of the test particle on its unper-
turbed orbit. We shall be interested in the quantity

T = [wX )ydX'r,?
where
= —2@F + [y —y@P
If w(X't')=w® (X't'), it is clear that (r;2)=0. The
collision operator, however, has the effect of spreading
out the distribution function so that if w(X'¢)=

=w® +w®), then (r;%z£0. To caleulate w®, we
integrate Eq. (58) along the unperturbed orbits:

t
wW) (X't = J'dt" St {w® (t")}
=1t

where
w® (") =0 {&' +a’ (cos [f' +w, (t" —t')] — cos f')
—a—a(cos [f+w (t" —1t)] — cos §)}
X0 {y +a (sin[f +w. (' —¢t))—sinf)—y
—a (sin[f +w, ("' —t)] —sin f)}
X0 [ 4v (' —t)—z—uw (' —1)]
) — ' '
x 2ELZY) 5 (0 — ) 15— —wc (¢ — 1)
(60)
Eq. (59) is employed for St {w(©®}. To calculate (o, %
we first carry out the coordinate integration, then the
velocity integration and finally the time integration.

It will be apparent that only two terms in St {w(©®}
produce anything so that the others will be omitted.

2mn o

;
ro® = [d [ag o, do,’
t 0 0

X [{a' (cos [f' + wc (" —t")] — cos )

— a(cos[f + w (¢ — t)] — cos [ + wc (' — £)])}?
+ & (sin [f' + et — 1)) — sinp)
—a@ﬂﬁ+watwn—wmm+wﬂu4mm

1 [ Ty 4 T 91
“m l_ﬁf 652 v 3UJ_ PB ov |
8 (v

L) 518 — B — we — 1),

Now integrate by parts twice. It is apparent that the
only contributions obtain when r, 2 is differentiated
twice. The result is therefore

" 4 ”n
(%= f aE" 2 (T + Tya) (1 — c05 0 (¢ — )]

t"=t

IR

{Teo =+ Tﬁﬂ} (tl - t) (61)

m w2

FLUCTUATIONS OF PLASMAS

for ¢ —t> 1/w.. In terms of the electric field

fluctuations
T- ;{—ZJ‘dTC(r (1):7)d,
0
where
Ch(),?)=EEHEE+r@),t-}1).

Therefore (r 2 =D (t' —t), where the diffusion co-
efficient is

D= %fjdr@l xt)- B, (x +r(@),t+1)  (62)
0

and
-E

B

I‘AJ_ZE—

An elementary derivation of a formula similar to
Eq. (62) has previously been given by Spirzer [5].
Eq. (62) is, in fact, the same as Spitzer’s formula for
a zero-velocity test charge; i.e., r(7)=0.

Spitzer has discussed the effect of an instability
of the collective modes of oscillation on the diffusion
coefficient D. It is a qualitative discussion because
his formula is not explicit and because non-linear
effects are considered. The present calculations do
not include non-linear effects since they are restricted
to stable distribution functions. However we may
consider a distribution function that approaches
instability when some parameter is varied such as
that given by Eq. (26). Only a zero velocity test
charge will be considered so that

oot A et
+%%§ﬁ%4 (63)
where
ReU(k, - iw.) =2—kﬁfdr{exp [q: iwcr—_(_kzgo—’)z
— (k1 ap)®> (1 — cos wf-;)]
-+ -A;?exp [? iwet 4+ ik:Ver _@L;r)?

— (k, a)?(1— cosan r)] (64)

ay = Volwe, @ = vijwc;

ek, Liw)= 1—m{fdf exp [F 10 7]
0

2 k= 2
27 ©XP [— (+T) — (k| ag)?(1 — cos wcr)]
an :02 . .
+ —( ) fdtexp [FioT+ikVer]
l
0
7} ke 2
5+ €XP [—— (—;;T) —(k a)?(1— cosam:)]}

(65)

where 1/Lg%= wp?/v,?.
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We assume that wp>w, and (4 n/n) (vefv,)2< 1.
A n is the parameter to be varied to ultimately pro-
duce instability. Eq. (63) can be evaluated by con-
sidering various regions of k-space in which U and ¢
have simple asymptotic forms. For example if k> 1/L,,

e~1, Re Ugl/\/27t vo% and

44/2 agte? In (kmax Ly)
3nb2 Lyt mu, ’

Dy~

(66)

where kmax is the usual cut-off at the inverse of the
closest distance of approach. This is the usual classical
result. Now consider the contribution from the region
kay<<1 where

Re U(k, + i) =

k { 1 1 w; \2
[ bz | \/2n1;02exp[_ 7(7@ vo) ]
1 (4 wc—k2Ve)? }
e [
. ke wp\272
le(k, Liwd) |2 o [1 — (—Z—i) ]
ki1 ]. We 1 wWe 27
T e [~ v (e
(Fowc—k-Ve) An [ vy\2 1 [ Fo.—k.V:\2]12
[ ez | vy T(?/’—1) P [_?( kz v, ) ]}
It is more convenient to carry out the integration

in spherical coordinates i.e., ko=ku, k) =kV1—pu?,
dk=2nk?dkdy. There is a resonance for u?=w:/wy*
that is sufficiently narrow to permit approximate
methods of integration as long as ka,< 1 and
(Anin) (vo/v,)2<€ 1. After integrating across the
resonance

.+_
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D = (67)

(27)3 L moy \wp

_L{ee )] Zodn o[ L(ev—kVe)?
gl 7 A b e )

1{ wp\2] wp—kVe[v,\34n 1 (wpy—kV, 2]
P [_f(k_vu) ]'F__wp_(i—) TEXP[ 2 (T)

If Anjn =0, the result is small compared to Eq. (66).
However, if

4n (vl)'l Ve [ 1 Ve-r’
— >t —Fexp|—= ,

n vy] vy 2 v,

4 afe® 1 (&)3%3 [kzdkx
0

the denominator in Eq. (67) becomes infinite for
k=~ wy/V.. We may therefore expect significant contri-
butions to the diffusion coefficient from the collective
modes when they become unstable. The present
formalism is not suitable for calculating the diffusion
coefficient under these circumstances, since it diverges.
It should be possible to treat the linear phase of
instabilities by an extension of the present formalism
in which the time-dependence of the Fokker-Planck
coefficients is retained.
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