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Abstract

Excipients, considered “inactive ingredients,” are a major component of formulated drugs and play
key roles in their pharmacokinetics. Despite their pervasiveness, whether they are active on any
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targets has not been systematically explored. We computed the likelihood that approved excipients
would bind to molecular targets. Testing in vitro revealed 25 excipient activities, ranging from
low-nanomolar to high-micromolar concentration. Another 109 activities were identified by
testing against clinical safety targets. In cellular models, five excipients had fingerprints predictive
of system-level toxicity. Exposures of seven excipients were investigated, and in certain
populations, two of these may reach levels of in vitro target potency, including brain and gut
exposure of thimerosal and its major metabolite, which had dopamine D3 receptor dissociation
constant Ky values of 320 and 210 nM, respectively. Although most excipients deserve their status
as inert, many approved excipients may directly modulate physiologically relevant targets.

For most drug products, the major components by mass are not the active pharmaceutical
ingredient (API) but rather are excipients; these are classified as “inactive ingredients” in the
FDA'’s Inactive Ingredients Database (11D; www.fda.gov/Drugs/InformationOnDrugs/
ucm113978.htm). Examples of excipients are molecules such as lactose, pectin, and xanthan
gum, which stabilize the API in pill form; antioxidants such as propyl gallate that improve
shelf life; detergents such as sodium lauryl sulfate that solubilize the API in the gut; and
dyes such as FD&C Yellow No. 5 (tartrazine), D&C Red No. 28 (Phloxine B), and FD&C
Blue No. 1 (Brilliant Blue FCF) that color medicines so that they can be better dis-
tinguished by patients and pharmacists. In many drug formulations, excipients can reach
concentrations of hundreds of micromolar to millimolar in the gastrointestinal tract, up to
100 times the concentration achieved by the API.

Despite excipients’ widespread use, their activity on molecular targets has not been
systematically investigated; their “inactive” designation derives from gross tolerability
studies in animals or from historical precedents. Most approved excipients lack obvious
toxicity at allowed concentrations in animal studies. However, the ways in which they
interact with molecular targets—and thus how they might perturb pharmacology in a way
not visible in whole-animal tests—have remained largely unexplored. A few, such as
bithionol [21 CFR 700.11 (1)] and amaranth, formerly known as FD&C Red No. 2 [21 CFR
81.30 (2)], have been removed from use over concerns of photosensitization and
tumorigenicity (3), respectively. Some excipients, such as Methylene Blue, are used directly
as drugs; others closely resemble known bioactives (Fig. 1A). Thus, although approved
excipients may lack gross physiological effects, it is conceivable that some may in fact have
specific activity on molecular targets, perturbing their functions and those of the cellular
networks in which they are involved. Meanwhile, approved excipients may be swapped in
drug formulations (4) as long as they do not affect the pharmacokinetics of the API. This
could affect drug activity, as different excipients would be expected to have different target
activities, influencing the overall side effects of the medicine.

Predicting and testing excipient activity on in vitro targets

We used a two-part strategy to systematically investigate the activity of approved inactive
ingredients against biologically relevant molecular targets. First, we computationally
predicted plausible targets for excipients from among 3000 medically relevant proteins,
using chemoinformatic (5) inference (6, 7), an approach that has previously been used to

Science. Author manuscript; available in PMC 2021 March 15.


http://www.fda.gov/Drugs/InformationOnDrugs/ucm113978.htm
http://www.fda.gov/Drugs/InformationOnDrugs/ucm113978.htm

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Pottel et al.

Page 3

predict off-targets and mechanism-of-action targets for drugs and probes (8-10). Second, we
empirically screened widely used excipients against a panel of 28 toxicity-related targets
regularly used to identify potential clinical adverse events of drug candidates (targets
associated with clinical safety) (11), and against several other targets with important roles in
drug toxicity or drug activity (such as the organic anion transporter; see below).

The chemoinformatic Similarity Ensemble Approach (SEA,; http://seal6.ucsf.bkslab.org)
posits that targets with ligands that resemble a bait compound—here, an excipient—may
also bind that compound. This approach has been used to predict side effects and
mechanism-of-action targets for drugs (12-14). Of the 3296 FDA-approved excipients in the
11D, 639 excipients that are well-defined, monomeric molecules—excluding, for instance,
compound excipients such as honey and dye mixtures [see http://excipients.ucsf.bkslab.org
(15)]— were computationally screened by SEA against 3117 human targets in the ChEMBL
database for which ligands are known. From the nearly 2 million possible excipient-target
pairs implied, just over 20,000 emerged as plausible, with SEA E-values of 107 or better
[these E-values, akin to those in BLAST (16-18), reflect the likelihood that a prediction
would occur at random; lower E-values are more significant]. Of these, 69 excipient-target
pairs were prioritized by visual inspection of the excipient versus the target ligands,
eliminating those, for instance, where there was a key physical difference between the
excipient “bait” and the ligands of the target (such as a charge group that might be important
for binding) that was overlooked in the overall chemoinformatic similarity, as in previous
studies (6, 12, 13). These 69 were tested experimentally in vitro in functional assays,
typically with full dose-response curves (Fig. 1). Nineteen excipients were found to be active
against at least one of 12 targets, including muscarinic acetylcholine receptors, the intestinal
organic anion transporter 2B1 (OATP2B1), and catechol O-methyltransferase (COMT), for a
total of 25 excipient-target activities, a 36% success rate (characteristic excipients are shown
in Table 1; tables S1 to S5 list all 69 predictions, including those that failed to confirm
experimentally). Active excipients were counter-screened for colloidal aggregation (19-21),
a common source of false positives in vitro; any excipient for which aggregation was
observed within an order of magnitude of its target activity was discounted as potentially
artifactual (22). On-target activities well above predicted fed-gut concentrations were also
excluded [estimated as the maximum allowed dosage into a 250-ml volume (23)].

In a different approach, we experimentally screened 73 commonly used excipients against a
panel of 28 targets associated with drug clinical safety (11), and also against other bio-
relevant targets including the drug target VMAT2, the well-known ion channel toxicity
targets Nay1.5 and Cay1.2, and two transporters with roles in drug pharmacokinetics, BSEP
and OATP2BL1. Of these, 32 excipients were active against one or more targets, for a total of
109 activities, almost all of which have potency values of 30 UM or less (characteristic
excipients are shown in Table 2; table S6 lists all excipients tested against the clinical safety
panel). The panel involves both binding and functional assays; for enzymes and transporters
functional inhibition was used, whereas for receptors such as 5SHT2B and the hERG ion
channel, both radioligand binding and functional assays were typically performed. Overall,
just over 50% of these activities were measured in functional assays.
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From the two approaches, 38 “inactive ingredients” emerged with 134 activities against 44
targets (Tables 1 and 2 and tables S1 to S3). These activities ranged from 15 nM to 260 uM;
30 (22%) were submicromolar, with several in the low- to mid-nanomolar range, and another
37% were lower than 10 uM. These activities are more potent than the on-target activities of
some small-molecule therapeutic drugs, which have a median affinity of ~20 nM (24).

Excipient cell-based toxicities

Although these activities belie the designation of these ingredients as “inactive,” they do not
necessarily imply that the excipients will have activities on organ systems that would mani-
fest in health or behavioral changes of an individual. Such systemic disturbances depend on
integrated effects on tissues, and on exposure of the excipient to their targets in relevant
contexts in the body.

Accordingly, 12 of the target-active excipients were further investigated with the BioMAP
Diversity PLUS panel, a suite of cell-based systems widely used to model drug- and
chemical-induced effects and toxicology in vascular, lung, skin, and inflammatory tissues,
among others (25-27) (see supplementary materials). These 12 were prioritized for testing
by several criteria, including their frequency of use in drug formulations and their coverage
of different excipient functions (e.g., colorants, antimicrobials, antioxidants, emulsifiers, and
surfactants). Although we mostly tested excipients found to be active in the in vitro assays,
several inactive ones were also included. Excipients with poor solubility were excluded.
Each excipient generated a profile on 148 biomarker readouts in the cells, at four different
concentrations (22) (Table 3 and fig. S14).

These effects were compared to more than 4000 drug and chemical reference profiles in the
BioMAP database. For example, butylparaben, a widely used excipient coformulated with
APIs as varied as acetaminophen, hydrocodone, di-phenhydramine, and fluoxetine, had a
cellular efficacy fingerprint suggesting inflammation-related activity. This excipient dose-
dependently decreased MCP-1 (monocyte chemoattractant protein 1, or CCL2) and SPGE2
(soluble prosta-glandin E2) in peripheral blood mononuclear cells and venular endothelial
cells, whereas its biomarker profile shared six common activities with the anti-inflammatory
nabumetone at 30 UM (Pearson correlation r=0.735) (fig. S2). Meanwhile, propyl gallate,
an excipient coformulated in drugs such as Advil Sinus Congestion and Pain, Janumet,
ezetimibe, and simvastatin, was antiproliferative in B and T cells, coronary artery smooth
muscle cells, endothelial cells, and fibroblasts, at 10 or 30 uM. Propy! gallate had cellular
activities that mapped to the immunomodulatory and inflammation-related activities of
phenazopyridine (fig. S7) and mycophenolate, anesthetic, and immunosuppressant drugs,
respectively. Intriguingly, at lower concentrations, propyl gallate’s profile most resembled
that of caffeic acid phenethyl ester, a 15-lipoxygenase inhibitor with anti-inflammatory and
immunomodulatory properties, consistent with our observation that propyl gallate is an
inhibitor of 5-lipoxygenase with a potency of 430 nM (Table 2). Another interesting
example is diethyl phthalate. Notably, diethyl phthalate modulated tumor necrosis factor-a
(TNF-a) in a dose-dependent manner (Table 3), as previously observed (28). Furthermore,
TNF-a production can be affected by PDE4 inhibition (29)—an in vitro activity of diethyl
phthalate determined in this study (concentration of 50% inhibition 1C5y = 8.5 UM; Table 1).
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Finally, the BioMap profile of diethyl phthalate matched that of roflumilast (= 0.72) (fig.
S11), a PDE4 inhibitor used to treat chronic obstructive pulmonary disease (COPD). Several
of the excipients that were active in isolated enzyme and receptor assays, including
aspartame, propylene glycol, and tartrazine (FD&C Yellow No. 5), had no measurable
activity in these cell-based systems.

Systemic exposure of excipients in animal models

Excipients are often exposed at high concentrations to targets in the gut epithelia, including
the intestinal uptake transporter OATP2B1, calcium and sodium ion channels, and bile acid
transporters; however, for systemic impact they must cross intestinal and metabolic barriers
and enter the general circulation. Accordingly, we investigated seven of the more active and
widely used excipients for exposure in blood after oral dosing in a rodent model (Table 4
and Fig. 2). Most did not reach blood concentrations high enough to modulate their targets
upon oral dosing, which suggests that despite potent target-based and even cell-based
activities, they were sequestered in the gut or were rapidly metabolized. Examples include
butylparaben, which—although administered at doses up to 8 mg (5 ml) in several
medications, implying a concentration of 160 uM, in the fed-state gut—reaches only
negligible concentrations in the blood when dosed at 10 mg/kg in the rat, likely reflecting
rapid metabolism in the blood. Similarly, FD&C Red No. 3 reaches a peak concentration
(Gnax) Value of 17 nM only after a 1.0 mg/kg oral dose, making its 92 nM inhibition of
phosphodiesterase 3A (PDE3A) less concerning, particularly with a 99% plasma protein
binding. The 15 nM COMT inhibitor propyl gallate reaches Cyax Values of 5 nM only after a
10 mg/kg oral dose, much higher than its maximum dose of 2 mg in drug formulations, even
allowing for allometric scaling. [However, as discussed below, propyl gallate is used in
much higher amounts in food, and there is some indication that COMT has a role in gut
disorders, where propylparaben will reach much higher concentrations (30).] Moreover, at
least therapeutically, most of COMT’s functions are in the central nervous system, and it is
likely that brain exposure would be even lower than in the general circulation. Of the orally
dosed excipients, only the antiseptic cetylpyridinium chloride, which occurs in mouthwash,
reached a blood Gy, that was in the range of its activity against the dopamine D3 receptor
(Gmax = 260 nM, IC5q = 550 nM).

There are other routes to the systemic circulation, such as excipients in injected drug
formulations. One we investigated was thimerosal (www.spectrumchemical.com/MSDS/
TH125 AGHS.pdf), an antibacterial present in several parenteral applications, notably
vaccines such as those for influenza and diphtheria/tetanus, but also broadly used in
ophthalmic solutions (31), antivenom injections (32), and topical applications of
dermatological products (33). Thimerosal is well known for its discounted association with
autism, after epidemiological studies failed to find causal correlation between pre- and
postnatal vaccination and neuropsychological man-ifestations (34-36). Still, because
thimerosal is a mercury derivative (Fig. 1C), there has been a move to limit or eliminate it in
parenteral formulations, particularly in pediatric vaccines (37, 38). Indeed, thimerosal was
removed from childhood vaccines in the United States in 2001 (33). Nonetheless, the
molecule is still used in industrial preparation of vaccines, and it continues to occur in
multidose adult influenza vaccines in the United States (39, 40) and in multidose vaccines,
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including for infant vaccination, in the developing world (www.who.int/vaccine_safety/
GACVSsymposiumTrack1-Safety-issues-reviewed-during-early21st-centuryRev2.pdf?
ua=1). Administered from such multidose formulations, a patient could receive 12.5 to 25 g
of thimerosal per vaccination (38-40).

We find that thimerosal binds to the dopamine D3 receptor with a Ky of 320 nM, whereas its
primary metabolite, ethyl mercury, binds to the same receptor with a Ky of ~210 nM and to
the dopamine D5 receptor with a Ky of ~150 nM (Table 2 and table S7). Mercury levels after
newborn and infant vaccination containing thimerosal reached an average Gpax 0f 5 ng/ml
(25 nM) in the blood, with a calculated half-life £, of 3.7 days and a complete clearance 30
days after vaccination (41). The level of Hg in the stool was higher, reaching an average
Ciax 0f 45 ng/ml (225 nM) (41). Allometric scaling from infant monkeys (42), the only
study measuring brain exposure, projected an estimated 13 to 24 ng/g (65 to 120 nM) Cnax
of mercury in the brain of human infants, with #,, of ~21 days (fig. S15A and table S8).
Meanwhile, in a study measuring results after repeated vaccination in human adults (43), the
median blood concentration was 0.33 ng/ml (0.17 to 1.3 ng/ml = 0.85 to 6.5 nM) for Hg and
0.14 ng/ml (0.06 to 0.43 ng/ml = 0.7 to 2.2 nM) for ethyl mercury, respectively, with a mean
half-life of 5.6 days. Although the blood concentration of Hg in adults was substantially
lower than projected for infants, the mercury-containing molecules are expected to
concentrate and accumulate in the brain, reaching concentrations of 25 to 30 nM.

Taken together, these observations suggest that thimerosal and ethyl mercury may reach gut
and brain concentrations in the human infant that overlap with their affinity (Ky) values for
the dopamine D3 receptor (Table 2). For this receptor, the safety margin for the ratio of
pharmacokinetic exposure to IC5 is ~1 (i.e., the exposed concentration should be less than
concentration required for 75% receptor occupancy) (44). This does not demonstrate in vivo
D3 receptor activity of thimerosal and ethyl mercury, even for infants (who are no longer
exposed to this excipient in the developed world). Still, the activity on the dopamine D3
receptor, and for ethyl mercury the dopamine Dsg receptor—both important targets and
antitargets, present both in brain and gut— does make a physiological effect by thimerosal
plausible.

Discussion

A key observation from this study is that many “inactive ingredients,” ubiquitous in drug
formulations, have direct activities against biologically relevant enzymes, receptors, ion
channels, and transporters in vitro. Overall, we observed 134 activities for 38 excipients
were observed (Tables 1 and 2 and tables S1 to S3). These activities covered a wide range:
15 nM for propyl gallate on COMT; mid-nanomolar activities for thimerosal at the
dopamine D3 receptor, of FD&C Red No. 3 at phosphodiesterase 3A (PDE3A), and for
benzethonium chloride at the vesicular monoamine transporter VMAT2; low-micromolar
activities for cetylpyridinium chloride and benzethonium chloride at the hERG ion channel;
and mid-micromolar activities for butylparaben at the muscarinic receptor CHRM1 and for
diethyl phthalate at PDE4D. Many of these enzymes and receptors have crucial roles in
neurotransmitter signaling, including COMT, the phosphodiesterases, the VMAT?2
transporter, and the dopamine and muscarinic receptors, which have pleiotropic
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physiological effects and are targeted by multiple therapeutic drugs, whereas the hERG ion
channel is notorious for serious adverse drug-related cardiac effects. The median, in vitro
activity of all tested excipients that had measurable activity was 5.9 pM. For several
excipients, such as propyl gallate, thimerosal, and FD&C Red No. 3, their target-based 1Csq
values overlap with those of therapeutic drugs (24). At the same time, many of these
excipients are administered at much higher doses than the API whose physical behavior and
stability they are intended to modulate and protect. Although most will never reach systemic
circulation, it is clear, even from this preliminary study, that excipients such as
cetylpyridinium chloride and thimerosal do so at concentrations that are high enough to
plausibly affect the function of the proteins identified here, all of which are well-accepted
therapeutic or toxicity targets.

Although the systemic exposure of most excipients remains limited at regulated maximum
doses in medicines, the wide and chronic use of multiple drugs, sometimes with overlapping
excipients [for instance, in elderly populations (45)] could result in higher dosing of
excipients than allowed for in any one drug, and thus in increased systemic levels. The
widespread occurrence in foods, drinks, and cosmetics of many of the same excipients that
occur in drugs may further exacerbate excipient exposure. Indeed, many of the excipients
investigated here—including colorants such as tartrazine, FD&C Red No. 40, and FD&C
Blue No. 1; preservatives such propyl gallate; and sweeteners such as aspartame—occur in
food and drinks in even higher amounts than they do in drugs (for instance, propyl gallate is
allowed in foods at an acceptable daily intake of 0.5 mg kg~ day~2, a 35-mg daily intake for
a 70-kg adult, which might bring the COMT effect within the range of that absorbed in the
rat study). Altered gut absorption (46) and local effects on the microbiome (47) could
exacerbate unexpected effects of target-active excipients.

Although most excipients may not reach relevant systemic exposure, two of the seven for
which pharmacokinetics were explored— cetylpyridinium chloride and thimerosal—may do
s0. No study has demonstrated that thimerosal leads to in vivo toxicities, and we have not
done so here. Still, our observation that the affinities of thimerosal and ethyl mercury for the
D3 dopamine receptor overlap their pharmacokinetic exposure makes the occurrence of
target-based activity at least plausible. Consistent with this view, rats treated with thimerosal
postnatally had impaired locomotor function, increased anxiety/neophobia in the open field,
and alterations in social behavior (48), all side effects that are well-precedented for
dopamine receptor ligands (49, 50). In these rodent studies, immunohistochemistry revealed
a decline in striatal D, receptor density (48), and prenatal treatment with thimerosal
impaired the serotonergic and dopaminergic systems in the rat brain (51). We note that two
independent studies in nonhuman primates did not find alterations in behavior after
thimerosal treatment (52); however, immunohistochemistry experiments were not pursued in
either study, and in one study the behavioral tests lacked challenges to dopaminergic
components (53).

For excipients with inherent on-target activity, it is plausible that they will lead to different
outcomes than the API alone would have, as could different excipients used with the same
API. Although a detailed investigation is beyond the scope of this study, such excipient

switching is well known. It is allowed as long as switching these “inactive ingredients” can
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be shown not to compromise the exposure of the API itself, and as long as replacements are
in fact as inactive as they are assumed to be (4). If, however, the excipients have their own
on-target activity, and if they are exposed to that target, the last assumption breaks down.
There may be early indications that this is the case for some drug formulations.

An example is the API levothyroxine (T4), available in Synthroid and in generic
formulations, which contains Aluminum Lake dyes and lactose, among other excipients
(www.rxabbvie.com/pdf/synthroid.pdf). There has been concern that dye and food allergies,
as well as gastrointestinal comorbidities, may arise from these excipients (54, 55).
Levothyroxine can also be delivered without these excipients in a soft gel form, containing
only water, glycerin, and gelatin (56). The removal of the other excipients appears to aid the
absorption of levothyroxine with less dependence on the level of stomach acid and fewer
interactions with other medications (57, 58).

A second example is the APl ketamine, formulated with the antimicrobial benzethonium
chloride as the sole excipient in an intravenous formulation. Benzethonium chloride has
well-documented toxicity (59), and we find it to have multiple in vitro activities (Table 2).
Ketalar has had substantial reports of ventricular arrhythmias (www.accessdata.fda. gov/
drugsatfda_docs/label/2012/016812s039Ibl. pdf; https://open.fda.gov/data/faers/). Such
cardiac adverse drug reactions often reflect activity on the hERG ion channel (60). Whereas
ketamine itself has no detectable hERG activity, we find that benzethonium chloride is a 0.5
UM hERG blocker. Although benzethonium chloride should only reach a concentration of 90
nM in the blood given its dosage with ketamine, this is within the factor of 30 safety window
at which one may be concerned about adverse events. We caution that these are just
examples of possible adverse effects and are inevitably muddied by several confounds,
including those inherent in databases such as the FDA Adverse Event Reporting System
(FAERS) (61). Disentangling the possible activities of these and other excipients from the
drugs with which they are paired will demand further investigation; no definite conclusions
should be drawn from this study.

This work retains several caveats. Perhaps the most important is the lack of systemic
exposure for many excipients tested here, even those that have potent in vitro activities. The
physical properties of these molecules often preclude gut absorption, or they are rapidly
metabolized. Thus, despite potent in vitro activities (Tables 1 and 2), and even activities in
cellular assays designed to model organ-level toxicities (Table 3), these excipients
effectively remain inert in the body. Also, we emphasize that most excipients examined were
inactive even in vitro, at least against the targets prioritized here; a majority of the excipients
tested showed no binding, no functional activity, and no toxicity in the assays conducted.
Finally, even when we observed on-target binding and cellular toxicity, these were not
directly linked to whole-animal toxicity. What this study does is reveal excipient activity on
biological targets associated with therapeutic and toxic side effects; it does not demonstrate
that even the target active excipients lead to toxic effects. Still, knowing these target-based
activities allows investigation of particular excipients for particular effects in a way rarely
possible with whole-animal studies alone.
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These cautions should not obscure the principal observations from this work: Drug
excipients, classified as “inactive ingredients” and often present in large amounts in single-
drug formulations, can have substantial activities on medically relevant targets. Excipient
exposure may be especially high in populations, such as the elderly, that take multiple
medicines together. With affinities that dip to the low- and mid-nanomolar, the in vitro
activities of excipients overlap with those of therapeutic drugs (24). Although many
excipients do not reach the general circulation, several do, as shown even in this limited,
proof-of-concept study. Once they do so, they can have unplanned pharmacology of their
own. Most excipients genuinely are inactive and will continue to play crucial roles in drug
formulations; by contrast, those excipients that have relevant in vitro activities and that reach
substantial systemic concentrations may merit further review, beyond the gross animal
physiology previously under-taken in safety studies.

This work suggests a systematic method to identify such active “inactive ingredients,”
including the detection of allergenic and immunogenic properties. Replacements are readily
available for most excipients, including non-catechol antioxidants for propyl gallate, plant-
based colorants for the aromatic azo dyes, and, in the case of thimerosal, simply replacing
multidose formulations with single-dose vials (which do not, even now, have thimerosal in
them), with relatively minor cost effect (62). However, many of the excipients studied here,
such as propyl gallate, diethyl phthalate, butylparaben, and tartrazine (63), also occur as
food and cosmetic additives, often in far larger amounts than in drugs; this too merits review.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Motivation for testing excipient activity, operational workflow, and selected in vitro
concentration-response curves.

(A) The similarity between excipients (top) and FDA-approved drugs (bottom).
Benzethonium chloride is itself FDA-approved as a topical antiseptic wash. (B) Workflow.
More than 600 molecular excipients were screened computationally, and a list of potential
protein targets was predicted for each one on the basis of its SEA E-value. A subset of high-
ranking excipient-target pairs was tested in vitro. In a second set of experiments, commonly
used excipients were experimentally tested against a panel of clinical toxicity targets; these
tests were unrelated to the SEA predictions, although sometimes they overlapped. (C)
Molecular structures of thimerosal and ethyl mercury. (D) Concentration-response curves of
selected excipient-target pairs with activity ranging from low-nanomolar (propyl gallate
inhibition of COMT) to mid-micromolar (tartrazine binding to dopamine D1). Red curves
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represent a reference positive control; blue curves represent excipient binding: (a) propyl
gallate and reference compound tolcapone binding to COMT; (b) tartrazine and reference
compound (+)-butaclamol binding to DRD1; (c) diethyl phthalate and reference compound
RO 20-1724 binding to PDE4D; (d) thimerosal and reference compound (+)-butaclamol
binding to DRD3; (e) butylparaben and reference compound L670596 binding to TBXAZ2R;
(f) benzethonium chloride and reference compound potriptyline binding to SLC6A2
(previously known). The D3 binding curve for thimerosal is one representative of replicates
in three separate laboratories. Additional dose-response curves are provided in fig. S1.
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Fig. 2. Time-concentration profiles of excipients administered to rats.
(A to D) Time-concentration curves of blood exposure in rats after i.v. (1 mg/kg) application

of excipients and oral administration of propyl gallate (10 mg/kg) (A), D&C Red No. 6 (1
mg/kg) (B), cetylpyridinium chloride (1 mg/kg) (C), and FD&C Red No. 3 (1 mg/kg) (D).
Insets are expanded views of the oral administration curves. Error bars denote SD from
measurements in three rats.
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