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ABSTRACT OF THE THESIS

Near-Field Lighting Estimation via Ray Regression

by

Cheng Wang

Master of Science in Computer Science

University of California San Diego, 2024

Professor Tzu-mao Li, Chair

Accurate lighting estimation is crucial for enhancing realism in virtual environments

used in augmented reality, virtual reality, and film production, ensuring seamless integration

of virtual objects into real-world scenes. While traditional far-field lighting representations,

such as environment maps, face challenges in capturing near-field lighting nuances, recent

advancements have leveraged deep learning and inverse rendering methods to predict per-pixel

environment maps, volumes, or emitters. These techniques, though effective for tasks like object

insertion, often either lack editability for dynamic lighting adjustments, or are hindered by high

computational costs and ambiguities between reflection and emission. Here, we explore fast

near-field lighting estimation from the perspective of point light position prediction. Specifically,
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we train a vision transformer as a regressor to predict point light position given a single observed

image. We provide two alternatives to over-parameterize the target by representing point lights

as rays corresponding to image patches, which is later jointly processed by a diffusion vision

transformer, offering an editable and neural network-friendly representation. Our approach is

trained and evaluated on a custom dataset derived from OpenRooms, featuring 259 scenes with

diverse lighting conditions, to comprehensively assess our method’s effectiveness. Quantitative

and qualitative experiment results show that our representations outperform naive end-to-end

model merely outputing 3D positions. The positions predicted by our models deviate from

the ground truth by around 0.35 and 0.38 of the scene scale, in contrast to the naive position

prediction method which achieves around 0.60, all trained on the first 200 scenes in our dataset.
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Introduction

Accurate lighting estimation plays a critical role in enhancing the realism of virtual

environments across various applications, including augmented reality (AR), virtual reality

(VR), and film production. The ability to edit and estimate lighting effectively ensures that

virtual objects are integrated seamlessly into real-world scenes, providing visually coherent and

immersive experiences. Traditional far-field lighting representations, such as environment maps

introduced by Debevec in 1997 [6], have become foundational in simulating ambient lighting

for photorealistic rendering. These representations, however, face challenges in capturing the

nuances of near-field lighting, where light sources are closer to the scene and exhibit significant

spatial variation and complex interactions with objects. These disadvantages are especially

obvious in indoor scenes. We illustrate this in a basic Cornell box (Figure 1)

Recent advancements in near-field lighting estimation have leveraged deep learning

and inverse rendering methods to predict per-pixel environment maps [38, 8, 14], volumes

[27, 29, 16], or emitters on the scene mesh [1, 32]. Although these techniques work well for

tasks like object insertion, representing light as per-pixel environment maps or volumes is not

editable and thus limits their utility in scenarios requiring dynamic lighting adjustments or user-

driven modifications. In contrast, methods like inverse path tracing and neural rendering have

significantly improved the accuracy of material and lighting optimization, offering more detailed

and editable lighting models that can be fine-tuned for various applications. However, these

methods often struggle with the computational cost, making them less practical for real-time

applications, and they also face challenges in resolving ambiguities between reflection and

emission, which can lead to inaccuracies in the estimated lighting conditions. This trade-off
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Figure 1. An simple visual comparison between near-field and far-field lighting. Left: The area
light is modeled as near-field lighting located on the ceiling. This can result in correct shading of
objects, and correct interaction between objects and the environment, like indirect illumination
and shadows. Right: The surroundings of the central objects are estimated with an environment
map. The two balls are illuminated as if the light is right on top of them, and shadows must be
rendered with extra rendering passes or tricks.

between editability, computational efficiency, and accuracy remains a critical area of research in

the field of lighting estimation.

In this thesis, we investigate the approach of over-parameterizing point lights during

neural network training. By increasing the number of parameters used to define the light

source, we aim to create a smoother optimization landscape and improve the quality of gradient

information, leading to more stable and effective updates during the optimization process.

Drawing inspiration from Zhang et al. [37], who represented cameras as bundles of rays for

end-to-end camera pose estimation, our method converts point lights to rays to predict their

positions in indoor scenes. This technique offers an editable representation that is also well-suited

for neural network learning, achieving a balance between flexibility and computational efficiency.

We then provide two alternatives based on this idea, one of which predicts rays in full Plücker

coordinates [26] and another predicts directions and constructs rays with an auxiliary depth

estimation step. Both methods show superior results compared to naive position prediction with

the same network architecture, while the last one attains better performance by circumventing

2



predicting noisy moments, which is essentially not suitable for neural network-based architecture.

Our methods are lightning fast at inference time, in contrast with inverse path tracing.

Our method is trained and evaluated using a custom dataset derived from the OpenRooms

dataset [17]. We disable all lighting in the scenes, and introduce a randomly positioned point

light. For each scene, we generate HDR images, ground truth ray bundles, and ground truth

point light position. The dataset includes 259 scenes, each with 5 light sources, offering diverse

training and evaluation conditions.
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Chapter 1

Related Work

The advancements in lighting estimation techniques have broad implications for various

applications, including augmented reality (AR), virtual reality (VR), and special effects in movies.

Accurate and editable lighting models enhance the realism of virtual object insertion, providing

more immersive and visually coherent experiences. The integration of deep learning approaches

further automates the process, reducing the reliance on specialized equipment and expertise.

1.1 Far-field Lighting Estimation

Far-field lighting is a critical component in achieving photorealistic rendering in computer

graphics. The concept of the environment map, introduced by Debevec in 1997 [6], has become

a foundational technique for approximating lighting around objects. An environment map is a

texture that describes the light entering or exiting a specific point in space from all directions.

This technique is commonly used to simulate sky lighting, colored ambient light, or a lighting

studio. This section reviews significant advancements in the field, organized by method categories

and specific applications.

1.1.1 Light Probes

The early work from Nishino et al. [20] used human eyes’ reflections to estimate

environmental lighting, while Debevec et al. involved capturing HDR environment maps using

light probes, which accurately record the lighting conditions of a scene [5]. These light probes
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and commonly occurring objects are proven effective for creating realistic lighting models but

require specialized equipment and expertise. There are a number of later methods requiring

specific light probes or relying on naturally occurring elements in the scene. Lombardi and

Nishino [19] introduced a cornea shape model and use human eyes as natural light probes.

Georgoulis et al. [9] explored how much information about the environment can be retrieved

from foreground objects acting as complexly shaped mirrors. Calian et al. [3] and Yi et al.

[34] explored using faces as light probes. Park et al. [22] modeled highly specular objects like

chip bags and reconstruct detailed environment maps. Yu et al. [35] model the appearance

of accidental light probes by photogrammetrically principled shading and recover incidental

illumination via differentiable rendering. In a recent work from Phongthawee et al. [25], a light

probe is inserted into the image by diffusion inpainting and then used for lighting estimation.

1.1.2 Indoor and Outdoor Lighting Estimation

The far-field lighting estimation methods involve no light probes are usually designed

specifically for indoor scenes, outdoor scenes, or both:

Barron et al. [2] fit a multivariate Gaussian to the spherical-harmonic illumination and

run optimization to estimate shape, illumination, and material. Weber et al. [31] trained a CNN

to predict environment light represented in latent code from known objects. Gardner et al. [7]

proposed deep parametric indoor lighting estimation by representing lighting as a set of discrete

far-field 3D lights. Garon et al. [8] developed a fast method for spatially-varying indoor lighting

estimation. Zhan et al. [36] presented EMLight, a robust solution for lighting estimation using

a regression network and a neural projector. Weber et al. [30] introduced an editable HDR

lighting estimation framework for indoor images. They predict a parametric far-field light and

a non-parametric environment map from image and indoor layout. Li et al. Stylelight [28]

trains a GAN on thousands of panoramas and uses GAN inversion at test time to find a latent

code that generates a full panorama matching the input image. [16] reconstructs a spherical

Gaussian lighting volume (SGLV) via a tailored 3D encoder-decoder, employing volume ray
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tracing, a hybrid blending network, an in-network Monte-Carlo rendering layer, and recurrent

neural networks (RNN) to ensure spatially and temporally consistent lighting predictions.

Hold-Geoffroy et al. [11] developed a CNN-based technique for estimating HDR outdoor

illumination from a single LDR image. Hold-Geoffroy et al. [10] further refined deep sky

modeling for outdoor lighting estimation.

LeGendre et al. [13] developed DeepLight for unconstrained mobile mixed reality

applications, covering both indoor and outdoor scenes. Dastjerdi et al. [4] trains a conditional

GAN on 200k panoramas to directly predict an HDR map from an input image, which is able to

estimate both indoor and outdoor HDR lighting conditions.

Editable lighting models are particularly beneficial when automatic estimations require

manual corrections for improved accuracy or creative purposes. The latest methods make ad-

vanced lighting estimation accessible to non-expert users and bridge the gap between professional

and consumer applications.

1.2 Near-field Lighting Estimation

Near-field lighting estimation is a critical aspect of rendering realistic scenes where light

sources cannot be approximated as infinitely distant. Environment maps, while useful for certain

scenarios, fall short in accurately capturing the characteristics of near-field lights, which include

intensity falloff with distance, and specific directionality. Also, the interaction between near-field

lights and scene geometry and materials is dynamic. Lights can cause realistic effects such as

soft shadows and sharp specular highlights that change with the object’s orientation and material

properties.

Environment maps assume that all light sources are at an infinite distance, which leads

to several issues when applied to near-field lighting. The uniform illumination assumption

does not capture the spatially varying illumination of near-field lights. Shadows and reflections

become unrealistic because environment maps cannot simulate the sharp transitions and detailed
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reflections caused by nearby lights. Scenes requiring precise light positioning and interaction,

like indoor scenes, suffer from a loss of detail and realism when environment maps are used for

lighting.

Early work [24] explored interactive optimization of lighting parameters. Several ad-

vanced techniques have been developed to accurately estimate near-field lighting, addressing the

limitations of environment maps. These methods leverage modern computational techniques, in-

cluding differentiable rendering and deep learning, to provide more realistic lighting in rendered

scenes.

1.2.1 Differentiable Rendering

Methods based on inverse path tracing jointly optimize material and lighting in the

scene. Azinović et al. [1] introduced an inverse path tracing algorithm for joint material and

lighting estimation. This method is able to retrieve light sources and physically based material

properties accurately and simultaneously, making rendering of sharp shadows or high-frequency

lighting changes possible. A recent work from Wu and Zhu et al. [32] proposed Factorized

Inverse Path Tracing (FIPT), addressing the high computational cost and reflection-emission

ambiguities of traditional inverse path tracing by employing a factored light transport formulation

and identifying emitters through rendering errors, enabling faster and more accurate material

and lighting optimization. Lipp et al. [18] proposed an adjoint light tracing method that enables

gradient-based lighting design optimization in a view-independent (camera-free) way. It allows

for interactive optimization by painting illumination targets directly onto the 3D scene or use

existing baked illumination data.

1.2.2 Deep Learning

Some recent works model spatial lighting as per-pixel environment maps [38, 8, 14]

or volumes [27, 29]. But their non-parametric representations can mainly be used for object

insertion and are not editable. Li et al. [15] presented a method for editing complex indoor
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lighting from a single image, using predicted depth and light source segmentation masks, by

employing a holistic scene reconstruction method for reflectance and parametric 3D lighting

estimation along with a neural rendering framework for re-rendering.

Near-field lighting estimation is crucial for achieving realistic rendering in scenarios

where light sources are close to the scene. Advanced techniques such as inverse path tracing

and editable lighting estimation provide more accurate and realistic results by capturing the

dynamic interactions between light and scene geometry. These methods address the limitations

of environment maps, offering enhanced detail and realism in rendered scenes.

Chapter 1 is coauthored with Tao, Sirui. The thesis author was the primary author of this

chapter.
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Chapter 2

Method

To predict the position of a point light source, one solution is treating it as an optimization

problem. Thanks to recent advancements in differentiable rendering, we can theoretically find an

optimal position that minimizes the rendering loss with gradient descent. We usually start with

an initial guess, and then render the scene and calculate the loss between the rendered image

and the target image. Automatic differentiation enables us to attain the gradient of the loss with

respect to the light source position. By applying gradient descent, we iteratively adjust the light

source position until the loss converges or falls below a predefined threshold. However, this

approach assumes known scene geometry and reflection, which is often not accessible during

optimization. Recent inverse path tracing methods usually assume know geometry and jointly

optimize material and lighting, while this process usually takes hours on high-end GPUs.

Another natural solution to think of in this deep learning era, is training a neural network

to directly predict the point light position. This is also challenging due to the low accessibility of

related data, and, most importantly, the complexity of light interaction and the high-dimensional

nature of the data. Light interacts with objects in complex ways, requiring the network to

learn a highly non-linear relationship between visual features and the light source position.

Additionally, the diversity in scenes, including variations in geometry, material properties, and

textures, contributes to the high dimensionality of the data, making it difficult for the neural

network to generalize across different scenes with unique lighting conditions.
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In this thesis, we explore the strategy of over-parameterizing the point light representation

during neural network training. By increasing the number of parameters that define the light

source, we aim to create a smoother optimization landscape and enhance the quality of gradient

information, leading to more stable and effective updates during optimization. Inspired by Zhang

et al. [37], who proposes to represent cameras as bundles of camera-originated rays to train an

end-to-end camera pose estimation model, our method convert point lights to rays and aim to

predict point light position in indoor scenes.

2.1 Conversion Between Point Light and Rays

2.1.1 Ray Representation

Following the hypothesis that it may be difficult for a neural network to directly regress a

low-dimensional representation, such as the position of a point light source, we instead represent

point light position as a set of rays:

R = {r1,r2, . . . ,rN}, (2.1)

where we parameterize each ray using Plücker coordinates [26], following Zhang et al.

[37]:

r = ⟨d,m⟩ ∈ R6, (2.2)

where d and m are the direction and moment of the ray r. The moment m can be

computed by p×d where p is any point on the ray. When d is normalized, the length of m is

equal to the distance from the origin to the ray.

2.1.2 Converting point light to rays

Given a point light position pl ∈R3 and another point p ∈R3 on the ray, we can construct

a ray r ∈ R6 in Plücker coordinates:
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Figure 2.1. We show two visual example for converting a point light source to a ray bundle. We
first split the images with a p× p grid (in this example p = 3). For each patch in the grid, we
shoot a ray from camera to the center pixel and intersect with the scene (shown as a red cross).
The ray for each patch is the line connecting the intersection point and the ground truth point
light source position (shown as a yellow star).

d =
p−pl

||p−pl||
, (2.3)

m = pl ×d. (2.4)

We show how we convert a point light to a bundle of rays in Figure 2.1. For each view,

we first split the images with a p× p grid. For each patch in the grid, we shoot a ray from camera

to the center pixel and intersect with the scene. The ray for each patch is then the line connecting

the intersection point and the ground truth point light source position. This construction aims to

associate each patch in the grid across the image with a ray.

2.1.3 Converting rays to point light

We can convert the rays back to point light position pl by solving for the 3D world

position closest to the intersection of all rays in R:

pl = argmin
p∈R3

∑
<d,m>∈R

∥p×d−m∥2 . (2.5)
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2.2 Light Position Estimation via Ray Regression

The point light position estimation pipeline is shown in Figure 2.2. We construct a

uniform p× p grid over each image and construct p2 rays. Given ground truth camera param-

eters and scene geometry, we can compute the ground truth intersection points {p1, . . . ,pN}

corresponding to the center pixel in each patch. Then we convert the point light to a ray bundle

represented by Plücker coordinates parameters d and m.

To build a connection between these rays and their corresponding image patches, we

extract the spatial image feature of dimension d with a pretrained model:

f f eat(I) = f ∈ Rp×p×d. (2.6)

To embed the position information, we additionally concatenate the pixel coordinate u

in normalized device coordinates (NDC) and noisy rays ε ∈ Rp×p×6. Then we use a diffusion

transformer architecture that jointly processes each of the p2 vectors from N images, and predicts

the ray corresponding to each patch:

{R̂i}N
i=1 = fregress

(
{fi ⊕ui ⊕ ε i}p2·N

i=1

)
. (2.7)

The t of the diffusion transformer is always set to tmax. We train the diffusion transformer

with a L2 reconstruction loss of the predicted rays:

Lrecon =
N

∑
i=1

∥R̂i −Ri∥2
2. (2.8)
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Figure 2.2. Our point light position prediction pipeline. First concatenate image features and
noisy rays represented with directions and moments in Plücker coordinates. The ray parameters
are mapped to RGB colors and visualized. Then we use a Diffusion Transformer [23] to jointly
process single or multiple images and corresponding noisy rays to predict the denoised rays.
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Chapter 3

Implementation Details

Since we have no access to the world space origin and rotation during testing, predicting

rays in the scene world space is meaningless. To handle coordinate system ambiguity, we

transform the ray bundles to camera space. We then found that the moments of a ray bundle

will likely be noisy under such transformation, and the transformer architecture is not capable to

fit the training data when the moments of the rays are too noisy. In Figure 3.1, we show what

we meant by noisy moments and smooth moments, where the three channels of moments are

linearly mapped from [−1,1]3 to [0,255] and shown in RGB colors. To smoothen the moments,

we make the cone formed by the rays cover the origin as much as possible. Therefore, we

additionally translate the coordinates of the rays such that the mean of the intersection points

becomes the origin of the new coordinate system. This will satisfy the aforementioned condition

in many of the cases, but can still produce highly noisy moments under certain scene and viewing

condition, due to the complexity of scenes and the depth variance of the views. Consequently,

when generating ground truth data for each view, we set the origin at the mean of the intersection

points between all rays and the scene, and rotate the world coordinates with camera rotation.

We also propose an alternative solution to address noisy moments. Rather than predicting

the entire Plücker representation, we make our diffusion transformer focus solely on predicting

the directions of the rays, thereby avoiding the challenge of noisy moments. With depth

values and the camera parameters, we can compute the intersection points p as described in

14



Figure 3.1. Noisy (left) and smooth (right) moments of 10×10 rays for one view. The moment
values are linearly mapped from [−1,1]3 to [0,255] and visualized in RGB colors. When the
rays are simply represented with Plücker coordinates in world space, the moments are noisy for
almost all views. In contrast, when we translate the rays such that the cone formed by the rays
covers the coordinate origin, the moments can become much more smooth.

subsection 2.1.2. We then determine the point light position from the rays using the same

methodology. It is important to note that the depth estimation may have a different scale

compared to the scene, but this discrepancy does not hinder the prediction of the relative light

position. We adjust the predicted point light according to the ratio between the estimated depth

and the ground truth depth during evaluation. This alternative approach has been shown to

effectively enhance prediction accuracy.

In both of the implementations, stable depth estimation technique is required to compute

the world space coordinates of the central points of each image patch. For the first method, the

mean of these points serves as the coordinate origin of the ray representations. Therefore, we

utilize an off-the-shelf depth estimation model, Depth Anything [33], to estimate depth maps

during evaluation.

We use a pre-trained model, DINOv2 (S/14) [21] as our image feature extractor. We use

a DiT [23] with 16/24/32 transformer blocks for the fregress with t always set to tmax = 100 to

jointly process each of the p2 tokens from one single image. The ray regression model takes

about 2 weeks to train on a NVIDIA 3090 GPU for 500 iterations on the full dataset.
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Chapter 4

Experiments

4.1 Experimental Setup

4.1.1 Dataset

We created a customized dataset with the scene data in OpenRooms dataset [17]. To

generate our training data, we select a scene from the dataset, disable all environment lighting

and area emitters, and introduce a randomly positioned point light within the room. To better

mimic real-world lighting conditions, we assign a random yellow-ish color to the light. For each

view in the dataset, we render a high-dynamic-range (HDR) image using the physically-based

renderer Mitsuba 3 [12] with a resolution of 560×420. Additionally, we generate ground truth

ray bundle data for each view, ensuring enough data for our supervised learning scheme.

In total, our dataset comprises 259 scenes, each with 5 different light sources, providing

a diverse set of lighting conditions for training and evaluation. An overview of our generated

dataset is illustrated in Figure 4.1.

For both approaches described in chapter 3, to ensure correct scaling of the predicted

position, we also add the depth ground truth into our dataset.

4.1.2 Baselines

To demonstrate the effectiveness of over-parameterizing point lights, we conduct ex-

periment and show the result from the same model architecture only outputing a 3D position
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Figure 4.1. An overview of the synthetic dataset used in our method. Totally 16 views out of
four different scenes are shown in this figure.

directly as our baseline. This method also suffer from coordinates ambiguity, so all the predicted

positions are in camera space, and are later transformed back to world space for difference

computation.

We described two designs in the previous section: predicting rays represented in full

Plücker coordinates, and predicting ray directions and constructing rays with depth estimation.

We conduct experiments on both and show the results.

4.2 Metrics

We evaluate our model on individual images from our evaluation dataset by computing

the mean prediction deviation percentage. For all three methods, we first evaluate the models to

determine a position in camera space, then transform this position back to world space using the

ground truth camera parameters. We scale the prediction relative to the camera position, utilizing
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the scale ratio derived from the center values of the estimated and ground truth depths. Note

that this is not a cheating step because predicting a relative instead of absolute position from

the viewing point is natural and reasonable in the real world. Finally, we calculate the distance

from the ground truth light position. To account for varying scene scales, we compute the ratio

of the prediction loss to the scene scale and report the mean across all validation data, ensuring

fairness.

4.3 Evaluation

We report the mean point light position prediction deviation percentage with respect to

scene scales under 3 setups in Table 4.1. The naive position prediction achieve best quantitative

score when the training data size is small, but get worse as the data size increases. We suspect

the unnormalized scenes to be the reason of this trend. Compared to directly predicting positions,

our method based on full Plücker coordinates show consistent results across all training data

sizes. Our last method predicting directions and constructing rays based on depth estimation

achieve best quantitative performance trained on larger size of data. It can be shown in the results

that our over-parameterization plays an essential role in the optimization.

We also do an ablation study on the number of transformer blocks, shown in Table 4.2.

However, we found no explicit relationship between the number of transformer blocks and

prediction accuracy.

To illustrate the superiority of our method, we rendered three scenes using the predicted

results and compared them with the ground truth images in Figure 4.2. Generally, when the model

can capture directions but moments are too noisy to predict, as in the first row, the ”Direction +

Depth” model is the only one capable of producing plausible results. When most moments can

be predicted accurately, both of our alternative methods provide acceptable results. When the

diffusion vision transformer cannot predict ray directions, all three setups fail, as shown in the

third row.

18



Table 4.1. The mean prediction deviation percentage of the three methods. We also investigate
the effect of size of training dataset.

# of scenes used for training 10 20 30 40 50 200

Directly predict position 0.298 0.363 0.367 0.413 0.431 0.598
Directions and moments 0.373 0.361 0.371 0.387 0.411 0.382
Directions and depth 0.335 0.366 0.357 0.368 0.366 0.357

Table 4.2. We compute the ratio of prediction deviation in world space to scene scale and report
the mean across all validation data.

# of transformer blocks 16 32 48

Directions and moments 0.411 0.438 0.448
Directions and depth 0.366 0.386 0.367

Evaluating our models on one single image takes less than one second on all of the GPUs

we used for testing.
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Figure 4.2. We evaluate the direct position prediction network (”Position”), our ray regression
network under Plücker ray representation (”Directions + Moments”), and our ray regression
network representing rays with directions and points acquired from depth estimation (”Directions
+ Depth”), and pick three scene configurations and render the predicted point light to demonstrate
the effectiveness of our proposed model. (1) The prediction from the first two models deviate
from the ground truth, while the third model predicts acceptable point light position. Since the
point light position is close to the table, shadow cast on the wall show significant difference
with ground truth, while the overall shadow direction of the furniture is correct. (2) The last two
methods generate almost the same image with the ground truth, while the first one fails. (3) All
three methods fail to predict plausible point light position.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In conclusion, our work explores a new method for near-field lighting estimation by

over-parameterizing point lights during neural network training. By converting point light into

rays for predicting their positions in indoor scenes, our method offers an editable and neural

network-friendly representation. This approach addresses some of the limitations of traditional

far-field lighting representations and recent near-field lighting estimation methods, which often

struggle with editability or computational efficiency. Our method, trained and evaluated on

a custom dataset derived from OpenRooms [17], demonstrates its effectiveness in capturing

diverse lighting conditions under various indoor scene configurations. It also shows the efficacy

of over-parameterized representations by comparing with naive position prediction with the

same network architecture. This contribution provides a valuable balance between flexibility and

computational efficiency, paving the way for more accurate and editable lighting estimation in

various applications.

5.2 Future Work

One problem of predicting point light position is its low generalizability for real scenes,

where point lights almost doesn’t exist and area lights are more common. To upgrade our method

to apply to area light prediction, we think the ray bundle representation may be replaced with
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cone bundle representation, where we predict a number of cones pointing to and ideally covering

the target light source.

While the patchwise regression-based architecture can predict our distributed ray-based

parametrization, the task of predicting light sources in the form of rays may still be ambiguous.

To handle inherent uncertainty in the predictions due to partial observations, we can extend the

previously described regression approach to instead learn a diffusion-based probabilistic model

over our distributed ray representation, analogous to the ray diffusion method in [37].

The dataset we use in this work is synthetic and, although diverse, lacks realism. Intro-

ducing real dataset with near-field lighting information will be crucial for lighting estimation

tasks.
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[12] Wenzel Jakob, Sébastien Speierer, Nicolas Roussel, Merlin Nimier-David, Delio Vicini,
Tizian Zeltner, Baptiste Nicolet, Miguel Crespo, Vincent Leroy, and Ziyi Zhang. Mitsuba 3
renderer, 2022. https://mitsuba-renderer.org.

[13] Chloe LeGendre, Wan-Chun Ma, Graham Fyffe, John Flynn, Laurent Charbonnel, Jay
Busch, and Paul Debevec. Deeplight: Learning illumination for unconstrained mobile
mixed reality. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5918–5928, 2019.

[14] Zhengqin Li, Mohammad Shafiei, Ravi Ramamoorthi, Kalyan Sunkavalli, and Manmohan
Chandraker. Inverse rendering for complex indoor scenes: Shape, spatially-varying lighting
and svbrdf from a single image. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 2475–2484, 2020.

[15] Zhengqin Li, Jia Shi, Sai Bi, Rui Zhu, Kalyan Sunkavalli, Miloš Hašan, Zexiang Xu,
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