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EPIGRAPH

You talk when you cease to be at peace with your thoughts;
And when you can no longer dwell in the solitude of your heart

you live in your lips, and sound is a diversion and a pastime.
And in much of your talking, thinking is half murdered.

Gibran Kahlil Gibran

The real cycle you’re working on is a cycle called yourself.
The machine that appears to be “out there” and the person
that appears to be “in here” are not two separate things.
They grow toward Quality or fall away from Quality together.

Robert M. Pirsig
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ABSTRACT OF THE DISSERTATION

Exploiting Network Boundaries for Spectral Clustering and Tensor Network Generative
Modeling

by
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Doctor of Philosophy in Physics
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Professor Alexander Cloninger, Chair
Professor Yi-Zhuang You, Co-Chair

In many systems, both physical and mathematical, internal boundaries play an outsized

role in dictating the large-scale behavior of the system. This theme is explored here in two

parts: by identifying natural boundaries to diffusion on undirected graphs for the improvement

of spectral graph methods for clustering and classification, and by imposing boundaries in

two dimensional PEPS tensor networks to reduce their computational complexity for image

generation. In the graph diffusion work, an algorithm is developed that identifies and removes

vertices serving as bridges between well-connected clusters. With the use of this algorithm, the

performance of unsupervised spectral clustering on graphs derived from synthetic point cloud

xi



data shows excellent cluster separation down to approximately two-thirds the point cloud gap

size that standard spectral clustering alone tolerates. The same vertex-removal scheme applied

to a diffusion-informed active learning classification algorithm shows an approximately order-

of-magnitude best-case reduction in the classification error rate on benchmark hyperspectral

imagery data in the low-label-query-limit versus the same active learning algorithm applied

without vertex removal. The PEPS work proposes a scheme whereby such networks are cut

into overlapping patch networks, whose individual contraction complexity is comparatively low.

Feasibility testing is performed showing that in principle, this scheme could be used for image

in-painting, and has intuitively appealing model features that are directly reflective of the data.
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Chapter 1

Graph Clustering via Bridge Identification
and Removal

Consider an undirected weighted graph G = (V,E,w) with nonnegative weights w :

V ×V → [0,+∞)R. If G is a disconnected graph made of Nclusters ≡ NC connected components,

then random walks starting in one of the clusters will fully explore that cluster in the infinite time

limit, and never jump to other clusters. Indeed, a well-known theorem of graph theory guarantees

that there are NC eigenvectors of the various graph Laplacians with eigenvalue 0 in this case

(Chung 1997).

Now loosen the strong assumption of a disconnected graph slightly by adding weak

connections between the NC (formerly) connected components, which we now denote as clusters.

Assuming the connections between clusters are weak enough, there will be intermediate times

where the intra-cluster random walk properties are approximately those of the formerly isolated

clusters. That is to say, at short to intermediate times, the behavior of random walks that begin in

cluster i are approximately those of a random walk of the induced subgraph of cluster i alone.

This behavior can be used to identify clusters on graphs which are connected, but only

weakly so. The field of spectral graph theory addresses precisely this question. While there

is much work on spectral clustering on graphs, much of it focuses on examining the specific

properties of eigenvectors of the graph Laplacian with small eigenvalues (the so-called low-
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frequency1, or first eigenvectors) and attempting to extract relevant information from these

vectors (Schiebinger, Wainwright, and Yu 2015; X. Cheng and Mishne 2020; Nadler and Galun

2006).

In the sufficiently weak inter-cluster connection regime, spectral clustering is spectac-

ularly successful. However, when there are stronger connections between clusters, or even

if the inter-cluster connections are weak, but the cluster sizes are disparate, the information

needed to separate clusters from one another can be buried in Laplacian eigenvectors with larger

eigenvalues (Alexander Cloninger and Czaja 2015). This has led to a concerted effort to find

ways to extract information from “deeper in the spectrum” of the graph Laplacian in order to be

able to extend the regime of effectiveness of spectral clustering.

In this work, we propose using time-domain information from |V | independent diffusion

processes on an undirected graph G = (V,E,w) to weaken the inter-cluster connections prior to

employing techniques, such as spectral clustering, whose performance improves in the weak-

inter-cluster-coupling limit. Despite being rooted in time-domain intuitions and definitions, the

algorithm proposed herein is efficiently calculable from eigenvectors of the graph Laplacian

itself, and so may be naturally incorporated into the analysis of any data set that is amenable

to spectral clustering or other techniques which rely on at-least-partial eigendecompositions of

graph Laplacians.

1.1 Score-based Clustering

Score-based methods are one way to identify vertices of interest within a larger graph.

The general methodology is:

1. Design a score function Sw : V −→ R, which using only the weights w of the graph G, maps

each vertex to a real number that will be large on the vertices of interest v ∈Vinterest, and

small on all other vertices.
1This may be a misnomer, as argued by (Saito 2018).
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2. Evaluate this function on every vertex of the graph G.

3. Identify some critical value Sthreshold which separates vertices of interest (where S(v ∈

Vinterest)> Sthreshold) from the rest of the graph (where S(v /∈Vinterest)< Sthreshold).

If our goal is to perform general clustering, this methodology suffers from a critical

flaw, however: because it separates the vertices into only two subsets, it effectively tries to

two-color the clusters of the graph (see Formanowicz and Tanaś 3912 for an overview of graph

coloring). This is doomed to failure, as generically we cannot avoid distinct clusters that are

directly connected both falling on the same side of our scoring threshold Sthreshold. Even in the

case of planar graphs, the celebrated four-color theorem shows that up to four colors are needed

in general (Appel and Haken 1989).

Fortunately, the analogy with graph coloring (and by extension, map coloring) suggests

a way to extend score-based methods to general clustering problems: rather than attempting

to identify all the vertices in a cluster, we can instead identify vertices2 that connect different

clusters. Drawing an analogy to the map coloring problem, this is the equivalent of defining our

score to identify the borders of countries, rather than their interiors.

1.2 The Utility of Boundary Vertex Identification

Consider a weighted graph G = (V,E,w) with the vertex set partitioned into disjoint

subsets as:

V =

(
NC⊔

n=1

Vn

)
⊔VB (1.1)

where Vn is the set of vertices in cluster n, and VB is the set of boundary vertices which connect

the clusters to one another. G has an associated symmetric weight matrix
=
W ∈ R|V |×|V | with

2The astute reader may object that it makes more sense to identify edges instead of vertices that connect clusters.
In some contexts this is true. However, when using graph methods to perform data clustering/labeling, typically
each vertex corresponds to a data point in the data set. There is then a natural notion of boundary vertices as data
points which share some features of prototypical vertices from multiple clusters, and do not clearly belong to any
one cluster.

3



non-negative elements Wi j = w(vi,v j)≥ 0. Noting that R|V |×|V | = R|V |⊗R|V |, we can split R|V |

analogously to the vertex set:

R|V | =

(
NC⊕

n=1

R|Vn|

)
⊕R|Vb|

which induces a block structure on the weight matrix by ordering its elements according to the

vertex partition:

=
W G =



=
W (1,1) · · ·

=
W (1,NC)

=
W (1,B)

... . . . ...
...

=
W (NC,1) · · ·

=
W (NC,NC)

=
W (NC,B)

=
W (B,1) · · ·

=
W (B,NC)

=
W (B,B)


where the elements of block (p,q) correspond to the weight function evaluated on a vertex from

Vp and a vertex from Vq, i.e. W (p,q)
∗,∗ = w(u,v)

∣∣
u∈Vp, v∈Vq

. Note that the symmetry of
=
W G implies

=
W (B,n) =

(
=
W (n,B)

)†
.

It is insightful to omit the off-diagonal cluster-to-cluster blocks, as vertices which strongly

connect two different clusters would be identified as bridge vertices under any reasonable analysis.

Denoting the diagonal blocks
=
W (n,n) ≡

=
W (n) for simplicity, the weight matrix becomes

=
W G =



=
W (1)

=
W (1,B)

. . . ...

=
W (NC)

=
W (NC,B)

=
W (B,1) · · ·

=
W (B,NC)

=
W (B)


This makes visually apparent the fact that, were we to define a subgraph without the boundary

vertices, the clustering problem would become much simpler. Defining the induced subgraph

4



with only vertices in the clusters, which we call the volume vertices, as

Gvol. ≡ G[V1⊔V2⊔·· ·VNC ] = G[V\VB]

its associated weight matrix W Gvol. is:

=
W GC =


=
W (1)

. . .

=
W (NC)


With only (visually omitted) very weak connections between the clusters, Gvol. is much easier to

cluster by any traditional graph clustering method than the original graph G precisely because

of the removal of the boundary vertices. Thus, our program becomes identifying the boundary

vertices to enable this dramatic simplification.

After clustering is applied to this pruned subgraph GC, the question of what to do with

the pruned boundary vertices in VB remains. This is ultimately context-dependent, as in some

graphs, they may represent data points where the label is fundamentally uncertain. In cases

where a label is expected on every data point, any approach to spreading known labels on part of

a graph to labels on the full graph may be used, e.g. label diffusion (see section 2.3.2).

1.3 Designing a Boundary-Identifying Score: A Narrative

To identify boundary vertices (or bridge vertices; the two terms are interchangeable in

this text), consider the following continuous-time process:

∂t
¯
f †(t) =−

¯
f †(t)

=
Lr.w. (1.2)
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where
¯
f † ∈

(
R|V |

)†
is a row vector,

(
R|V |

)†
is the dual vector space to R|V |, and

=
Lr.w. is the

random walk-normalized graph Laplacian of the graph G = (V,E,w):

=
Lr.w. ≡

=
I−

=SSd
−1

=
W [

¯
d]i ≡

|V |

∑
j=1

Wi j [
=SSd]i j = δi jdi, (1.3)

where for any vector
¯
v ∈ Rn,

=Av ∈ Rn×n is diagonal square matrix with the elements of
¯
v on the

main diagonal3. Throughout this document,
=
L without qualification should be assumed to refer to

this random walk-normalized Laplacian unless specifically stated otherwise. See Chung 1997 for

a classic overview of spectral graph theory, or Liu and Han 2018 for a contemporary overview

including the various normalizations of the graph Laplacian.

Since
=
L is independent of t, the formal solution to (1.2) is

¯
f †(t) =

¯
f †(0)e−=Lt (1.4)

which is well-behaved for all t ≥ 0 due to the eigenvalues of
=
L being non-negative. In particular,

if we wish to consider what the probability of a random walk starting at vertex i returning back

to that same vertex after time t, the relevant quantity is:

Ri(t)≡ ¯
e(i)

†
· e−=Lt ·

¯
e(i) =

[
e−=Lt

]
ii

(1.5)

where
¯
e(i) is the ith standard basis vector. We shall henceforth refer to

¯
R(t) as the return

probability.

The qualitative behavior of the return probability
¯
R(t) for connected4 graphs with strong

intracluster connections, but weak intercluster connections can be deduced by recognizing that

each element of
¯
R(t) corresponds to the probability that a random walk started on vertex vi

3The direction of the slash for this vector-to-diagonal-matrix notation is intended to be evocative of the main
diagonal of the matrix.

4For clustering tasks, we may assume that G is connected. If G is not connected, we can split it into its connected
components in linear time in the size of the graph and cluster each connected component separately (Pearce 2005).
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returns to that same vertex after time t, and thus each element corresponds to an independent

diffusion process on the same graph. Since this graph is connected, the diffusion process has a

unique infinite time limit5, the so-called equilibrium distribution
¯
π , proportional to the degree

vector:

¯
π ≡ ¯

d

¯
1†

¯
d ¯

π
†
=
Lr.w. =

¯
0† ∀

¯
v† ∈

(
R|V |

)†
,

¯
v†e−t

=
Lr.w.
−−−−→
t→+∞

(
¯
v†

¯
1

)
¯
π

† (1.6)

Since every diffusion process on G converges to
¯
π , this implies that

lim
t→+∞ ¯

R(t) =
¯
π. (1.7)

Understanding the finite time behavior of
¯
R(t) in the weak coupling limit is facilitated

by using the partition of the vertex set V =
(⊔NC

n=1Vn

)
⊔VB to create the corresponding induced

subgraphs
{

GV1, · · · ,GVNC
,GVB

}
. We then draw a notational distinction between the restriction

of
¯
R(t) to a subset of the vertices of G, denoted

�

¯
R(∗)(t) ∈ R|V∗| for the restriction to the vertex

subset V∗ ⊂ V , and the return probability computed on the corresponding induced subgraph,

denoted ˚
¯
R(∗)(t) ∈ R|V∗| for the return probability on GV∗

6. The use of � is intended to be

evocative of a graph with two clusters (the circles) connected by a bridge/boundary vertex set

(the line)7; the use of ◦ to denote the return probability on the induced subgraph of a cluster is

then natural.

With this notation, it is trivially true that
¯
R(t) =

(⊕NC
n=1

�

¯
R(n)(t)

)
⊕
�

¯
R(B)(t). Indeed, such

an equality is exactly true for any partition of the vertices V , regardless of whether that partition

respects the cluster structure of the graph. The key insight is that in the weak inter-cluster

5The fact that this global equilibrium distribution always exists is a consequence of our assumption that the
graph in question is connected and undirected, and that the Laplacian of any connected undirected weighted graph
has a single unique equilibrium distribution (Chung 1997).

6In practice, ˚
¯
R(∗)(t) is constructed by using the principal submatrix of G’s weight matrix

=
W corresponding to the

vertex subset V∗, and forming the corresponding subgraph Laplacian from it,
=̊
L(∗). The subgraph return probability

is then ˚
¯
R(∗)(t)≡ diag

(
e−t ˚

=
L(∗)
)
∈ R|V∗|.

7Indeed,� is visually strikingly similar the so-called dumbbell point cloud, which is a common toy example.
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coupling limit for a vertex partition that respects the cluster structure,

�

¯
R(n)(t)≈ an(t) ˚

¯
R(n)(t), (1.8)

i.e. the return probability in cluster n of the full graph G is approximately the same as the return

probability of the corresponding subgraph GVn , up to a time-dependent (positive) proportionality

constant. This is a consequence of the fact that any reasonable definition of a well-defined cluster

Vn from a graph diffusion perspective requires that the corresponding induced subgraph GVn be

connected and have a short mixing time T mix
n ≪ T mix

global, where T mix
global is the mixing time of the

full graph G. Note that this is not true of the boundary/bridge portion of the return probability

generically, even in the weak-coupling limit. Thus:

¯
R(t)≈

(
NC⊕

n=1

an(t) ˚
¯
R(n)(t)

)
⊕
�

¯
R(B)(t). (1.9)

For short times t < T mix
n , the behavior of ˚

¯
R(n)(t) depends on the details of the cluster’s

induced subgraph GVn . But for t > T mix
n , ˚

¯
R(n)(t) is well-approximated by the equilibrium

distribution of GVn , which we denote ˚
¯
π(n). Thus, in the intermediate time regime where t >

maxn(T mix
n ),

¯
R
(

t > max
n

(T mix
n )

)
≈

(
NC⊕

n=1

an(t) ˚
¯
π
(n)

)
⊕
�

¯
R(B)(t). (1.10)

Recognizing that in the weak inter-cluster coupling limit, the global equilibrium distribution

should satisfy

¯
π =

(
NC⊕

n=1

�

¯
π
(n)

)
⊕�

¯
π
(B) ≈

(
NC⊕

n=1

µ
(n)
π ˚

¯
π
(n)

)
⊕�

¯
π
(B) (1.11)

where µ
(n)
π ∈ (0,1)R represents the equilibrium probability mass in cluster n, we define the

rescaled return probability as:

¯
R(t)≡

¯
R(t)⊘

¯
π (1.12)
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where ⊘ is the element-wise division operator between vectors:
¯
z =

¯
x⊘

¯
y =⇒ zi = xi/yi. Then

our expected behavior for this rescaled return probability for intermediate times is:

¯
R
(

t > max
n

(T mix
n )

)
≈

(
NC⊕

n=1

αn(t) ¯
1
(n)

)
⊕
�

¯
R(B)(t) (1.13)

where αn(t) ≡ an(t)

µ
(n)
π

∈ (0,+∞)R, and we leave
�

¯
R(b)(t) ≡

�

¯
R(B)(t)⊘�

¯
π (B) unsimplified due to

its complex behavior that depends on the specific structure of the boundary vertices and their

coupling to the clusters.

In the weak coupling limit,
¯
R’s simple behavior is suggestive. While using the values

of
¯
R directly to try to cluster vertices based on the values of the coefficients αn(t) may have

immediate appeal due to its simplicity, it suffers from simple failure modes8. Instead, note that at

intermediate times for two vertices in the same cluster u,v ∈Vn, Ru−Rv ≈ 0, while generically

Ru−Rw �≈ 0 for w ∈VB.9 Thus we propose the instantaneous boundary identification score

si(t)≡

(
|V |

∑
j=1

∣∣∣∣[e−T
=

Lr.w.
]

i j︸ ︷︷ ︸
≡Ki j(T )

(
Ri(t)−R j(t)

)∣∣∣∣p
) 1

p

≡
[
RNp

(
¯
∇

=
K(T ) ¯

R(t)
)]

i
(1.14)

where for any matrix
=
M ∈RN×M, RNp(=

M) ∈RN is the column vector of p-norms of the rows of

=
M, and we use the diffusion kernel

=
K(T )≡ e−T

=
Lr.w.

for some fixed time T to define the distance

on the graph differences in
¯
R(t) will be compared across. In particular, choosing a sufficiently

small value of T suppresses contributions to the instantaneous score from Ru−Rv for u,v in

different clusters. The boundary identification score is then defined as:

Si ≡
∫ +∞

0
dt w(t)si(t) =

∫ +∞

0
dt w(t)

[
RNp

(
¯
∇

=
K(T ) ¯

R(t)
)]

i
(1.15)

8One example is a graph with two identical clusters. One would expect the α1(t)≈ α2(t) in this case.
9Note that the elements of

¯
R(t) are being indexed with vertices here. The meaning is clear despite the (arguable)

abuse of notation, and we will not draw a distinction between the function R : R+×V 7→ R and the elements of the
time-dependent column vector

¯
R(t).
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where w(t) : R→ [0,+∞)R is a weighting function allowing the score to focus on specific

timescales.

This score in equation (1.15) was constructed based on a qualitative description of the

expected behavior of diffusion on graphs with well-defined, weakly coupled clusters. Based on

this exposition, Si should be large on vertices that connect clusters together, and small in the

interiors of clusters.

1.4 Connection to the Spectral Embedding Norm

The boundary identification score
¯
S explored in this work is defined in terms of local

differences of the rescaled return probability
¯
R(t). Later, in equations (2.11) and (2.12),

¯
R(t)

will be expressed in terms of the right eigenvectors of the random walk Laplacian:

¯
R(t) ∝

|V |

∑
k=1

e−λ
(L)
k t(

¯
rk)
⊙2

=
Lr.w.

¯
rk = λ

(L)
k ¯

rk (1.16)

The work of X. Cheng and Mishne 2020 defined a so-called spectral embedding norm in terms

of a similar sum of element-wise squares of the same Laplacian right eigenvectors:

¯
Ss.e.n. ≡

I

∑
i=1

(
¯
ri)
⊙2 I ∈ [1, |V |]Z (1.17)

where the eigenvectors
¯
ri are assumed to be sorted in order of increasing eigenvalues λ

(L)
i , and I

controls how deep into the spectrum
¯
Ss.e.n. uses information from.

There is a clear quantitative connection between these quantities. Define the timescale

associated with an eigenvalue as Tk ≡ 1/λ
(L)
k . If there is a large timescale gap such that TI

TI+1
≫ 1,

then splitting the sum over eigenvectors in equation (1.16) and evaluating
¯
R(t) between these
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two timescales such that TI+1≪ t≪ TI reveals:

¯
R(TI+1≪ t≪ TI) ∝

I

∑
k=1

e−t/Tk(
¯
rk)
⊙2

︸ ︷︷ ︸
≈

¯
Ss.e.n. for t≪TI

+
|V |

∑
k=I+1

e−t/Tk(
¯
rk)
⊙2

︸ ︷︷ ︸
≈0 for t≫TI+1

≈
¯
Ss.e.n.. (1.18)

In the absence of such a large timescale gap, there is no clean correspondence between
¯
R and

¯
Ss.e.n., though a qualitative connection remains.

In light of this relationship, the success of the spectral embedding norm at identifying

small anomalous clusters of data points has an intuitive explanation. Small clusters will have

an enormous rescaled return probability at intermediate times before a random walk starting

in the anomaly is likely to leave it. On the other hand, random walks in large clusters have a

much larger portion of the graph to explore, and the return probability drops more quickly at

intermediate times. Thus we expect Ranomaly(t)≫Rlarge cluster(t) for a broad range of appropriate

intermediate times t for well-defined anomalies, and by extension, Ss.e.n.
anomaly≫ Ss.e.n.

large cluster for a

broad range of values of I, since the value of I controls the time t at which
¯
Ss.e.n. is approximating

the rescaled return probability
¯
R(t).

That being said, the spectral embedding norm relies on a hard truncation of the sum with

no eigenvalue-based weightings of the various vectors, which is a deeply unnatural quantity.

Indeed, a large portion of X. Cheng and Mishne 2020 is devoted to such concerns and to what

degree they are or are not mitigated by summing over a particular fraction of the eigenvectors.

This can all be sidestepped by instead considering a quantity rooted in the natural time-domain

dynamics of the diffusion process, such as
¯
R(t), from which the boundary-identifying score

¯
S of

this work is derived.

1.5 Tractable Toy Models

With our boundary identifying score
¯
S in hand, let us understand its behavior in some

simple, analytically tractable cases. The general score in equation (1.15) contains a few tunable
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parameters: the time weighting function w(t) : R+→ R+, the row p-norm with p ∈ [1,∞), and

the timescale T used in the weighted graph gradient
¯
∇

=
K(T ) to define the distance on the graph

across which values of
¯
R(t) are compared. This setting is too general for our purpose here,

however, and so we first simplify the weighted graph difference
¯
∇

=
K(T ) by focusing on the small-T

regime:

Lemma 1. For a vertex function f : V → R, the weighted graph gradient
¯
∇

=
K(T )

¯
f obeys:

¯
∇

=
K(T )

¯
f = T

(
¯
∇

=
P r.w.

¯
f
)
+O(T 2)

consequently,

lim
T→0+

1
T ¯

∇
=
K(T )

¯
f =

¯
∇

=
P r.w.

¯
f

Proof.

Using the power series definition of the matrix exponential yields

[
¯
∇

=
K(T )

¯
f
]

i j
=
[
e−T

=
Lr.w.
]

i j
( fi− f j) =

[
=
I+

+∞

∑
n=1

(
−T

=
Lr.w.

)n

]
i j

( fi− f j). (1.19)

Since ( fi− f j)
∣∣
i= j = 0, the

=
I term drops out, leaving

[
¯
∇

=
K(T )

¯
f
]

i j
=−T Lr.w.

i j ( fi− f j)+O(T 2) =−T
(
=
I−Pr.w.

i j
)
( fi− f j)+O(T 2). (1.20)

Once again, the
=
I term drops out, leaving

¯
∇

=
K(T ) = ¯

∇
=
K(T ) = T

¯
∇

=
P r.w.

¯
f +O(T 2) (1.21)

The limit then follows trivially.
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vB

v1 v2

w1B w2B

w11

wBB

w22

vB

v1 v2p1

q1

p2

q2

1− p1 1− p2

1−q1−q2

Figure 1.1. A toy model with two ’clusters’ represented by vertices v1, v2, and a
bridge vertex vB connecting them. On the left is the undirected weighted graph, and
at the right is the corresponding random walk state transition diagram induced by
the weighted graph.

Then in the T → 0+ limit, the score becomes:

1
T

Si −−−−→
T→0+

∫ +∞

0
dt w(t) RN p

(
¯
∇

=
P r.w.

¯
R(t)

)
, (1.22)

which has a number of advantages analytically, not the least of which being that the structure of

=
Pr.w. is sparse and simple in the examples that follow, greatly simplifying computations. The

simplest version of the score that we will use furthermore fixes w(t) = 1 and p = 1, which gives

what we term the effective score as:

Seff.
i ≡

∫ +∞

0
dt
|V |

∑
j=1

Pr.w.
i j
∣∣Ri(t)−R j(t)

∣∣ (1.23)

1.5.1 2-Cluster Toy Model

Consider the toy model weighted graph shown in figure (1.1). This is the simplest

non-trivial model of two clusters, represented by vertices v1 and v2, connected by a set of bridge

points, represented by the vertex vB. Its weights, degrees, and row-normalized transition matrix

are:
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=
W =


w11 0 w1B

0 w22 w2B

wB1 wB2 wBB

 =⇒
¯
d =


w11 +w1B

w22 +w2B

w1B +w2B +wBB

≡


d1

d2

dB

 (1.24)

=
P =

=SSd
−1

=
W =


1− p1 0 p1

0 1− p2 p2

q1 q2 1−q1−q2

 (1.25)

Note that symmetry of the weight matrix requires wi j = w ji, which has been used

in various places above for simplicity or consistency, as desired. The transition matrix in

equation (1.25) corresponds to the state transition diagram in figure (1.1), where the definitions

of p1, p2,q1,q2 ∈ [0,1] are implied by the matrix equations. In particular, in the regime of

interest where v1,v2 represent clusters, we expect (0,1) ∋ p1, p2≪ 1 since p1, p2 represent the

probabilities of leaving the clusters to go to the bridge vertex. However, while the probabilities of

leaving the bridge vertex to go to the clusters q1,q2 > 0 and q1 +q2 < 1, they are not generically

close to 0 in the domain of interest.

We can exploit the structure of our score function and the simplicity of this model to

extract an exact relationship between the scores of these vertices with minimal computation:

Theorem 1. The instantaneous score
¯
s(t) of the three-vertex graph shown in figure (1.1) obeys:

sB(t) =
((

q1

p1
s1(t)

)p

+

(
q2

p2
s2(t)

)p)1/p

Furthermore, for the 1-norm (i.e. p = 1), the score
¯
S obeys:

SB =
q1

p1
S1 +

q2

p2
S2
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Proof.

From the definition of the score:

¯
S =

∫ +∞

0
dt w(t)

¯
s(t) =

∫ +∞

0
dt w(t)RN p

(
¯
∇

=
Pr.w.

¯
R(t)

)

Defining ∆Ri j(t)≡Ri(t)−R j(t), noting that ∆Ri j =−∆R ji, and using # for elements whose

finite values drop out:

∇
=
PR(t) =


# 0 p1

0 # p2

q1 q2 #

⊙


0 # ∆R1B(t)

# 0 ∆R2B(t)

−∆R1B(t) −∆R2B(t) 0



=


0 0 p1∆R1B(t)

0 0 p2∆R2B(t)

−q1∆R1B(t) −q2∆R2B(t) 0


Then:

RN p

(
¯
∇

=
P ¯
R(t)

)
=


p1 |∆R1B(t)|

p2 |∆R2B(t)|

((q1 |∆R1B(t)|)p +(q2 |∆R2B(t)|)p)1/p

 (1.26)

which implies

¯
s(t) = RN p

(
¯
∇

=
P ¯
R(t)

)
=


s1(t)

s2(t)

sB(t)

=


s1(t)

s2(t)((
q1
p1

s1(t)
)p

+
(

q2
p2

s2(t)
)p)1/p

 (1.27)

For the p = 1 norm, the linearity of integration then implies SB = q1
p1

S1 +
q2
p2

S2.

In this simple model, the score on the boundary vertex vB is a weighted sum of the
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scores on the cluster vertices {v1,v2}. The weights in the sum are precisely those ratios qn
pn

that

determine how much more likely the diffusion process is to leave the boundary to a cluster than

it is to leave a cluster to the boundary. This is, of course, large in the domain in interest.

Note that no particular properties of
¯
R(t) were used in this computation! Defining

our score with any vertex function would have produced an identical result, which here is a

consequence of the limited freedom in a 3-vertex graph, the structure of
=
Pr.w., and its use to

define the graph difference operator ∇
=
P r.w. . Once internal substructure is added to the clusters

and bridge, however, the choice of
¯
R becomes relevant.

1.5.2 Adding Substructure

It is common practice to coarse-grain large graphs by grouping together sets of vertices

in the original graph into a single vertex in the new graph. There is a rich body of work applying

graph diffusion-based methods to inform this coarse-graining in the hopes of preserving some

underlying structure (Lafon and Lee 2006; Gfeller and De Los Rios 2007; Villegas et al. 2023).

Here, we will do the opposite, and “decorate” an initial coarse-grained representation of a

clustered graph to analyze the more general case.

We may add substructure to the graph in figure (1.1) as illustrated in figure (1.2) by

replacing each vertex v∗ with a set of vertices V∗ ⊂V , and each real non-negative edge weight

wi j ≡ w(vi,v j) by a real matrix with non-negative entries W (Vi,Vj)≡ =
W i j ∈R|Vi|×R|V j| obeying

(
=
W i j)† =

=
W ji, corresponding to the block structure of the weight matrix:

=
W =


=
W 11 0

=
W 1B

0
=
W 22

=
W 2B

=
W B1

=
W B2

=
W BB

 (1.28)

For any matrix
=
AN×M, define the row sums vector

¯
Ar.s. to be the N-element column vector

with the sum of each row of
=
A as its elements, i.e.

¯
Ar.s. ≡ =

A
¯
1. Then the full-graph degrees

�

¯
d ∗
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VB

V1 V2
=
W 1B

=
W B1

=
W 2B

=
W B2

=
W 11

=
W 22

=
W BB

VB

V1 V2

=
p(1)

=
q(1)

=
p(2)

=
q(2)

(
=
I−

=S
p(1)r.s.

)
=̊
P(1)

(
=
I−

=S
p(2)r.s.

)
=̊
P(2)

(
=
I−

=S
q(1)r.s.−

=S
q(2)r.s.

)
=̊
P(B)

Figure 1.2. A more realistic model with two clusters with vertex sets V1, V2, and
a set of bridge vertices VB connecting them. On the left is the (now directed)
weighted graph, where the matrix-weights necessitate a directed representation to
accommodate the matrix transpose associated with the pairing of the two edges
(Vi,Vj) and (Vj,Vi). At the right is the corresponding random walk state transition
diagram induced by the weighted graph, where the “states” V∗ now correspond to an
element in R|V∗|.

and sub-graph degrees ˚
¯
d ∗ are

˚
¯
d(1) =

¯
W 11

r.s.
�

¯
d (1) = ˚

¯
d(1)+

¯
W 1B

r.s.

˚
¯
d(2) =

¯
W 22

r.s.
�

¯
d (2) = ˚

¯
d(2)+

¯
W 2B

r.s.

˚
¯
d(B) =

¯
W BB

r.s.
�

¯
d (B) =

¯
W B1

r.s. + ¯
W B2

r.s. + ˚
¯
d(B)

(1.29)

so that the full degree vector is
¯
d =

�

¯
d (1)⊕

�

¯
d (2)⊕

�

¯
d (B). The row-normalized transition matrix

is then:

=
P =

=SSd
−1

=
W =



(�
=SSd
(1)
)−1

=
W 11

=
0

(�
=SSd
(1)
)−1

=
W 1B

=
0

(�
=SSd
(B)
)−1

=
W 22

(�
=SSd
(B)
)−1

=
W 2B

(�
=SSd
(B)
)−1

=
W B1

(�
=SSd
(B)
)−1

=
W B2

(�
=SSd
(B)
)−1

=
W BB


(1.30)
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We can put this into a more suggestive form by expanding the inverse of the full-graph

degrees
(�

=SSd
(∗)
)−1

in terms of the subgraph degrees ˚
=SSd
(∗) by repeatedly applying the identity

1
x+δ

=
(

1− δ

x+δ

)
1
x . In particular, take x = ˚

=SSd
(∗), and x+δ =

�

=SSd
(∗). Since every diagonal element

of both ˚
=SSd
(∗) and

�

=SSd
(∗) is strictly greater than 0, there are no issues with division by zero. Then,

define

=
p(1)≡

(�
=SSd
(1)
)−1

=
W 1B

=
p(2)≡

(�
=SSd
(2)
)−1

=
W 2B

=
q(1)≡

(�
=SSd
(B)
)−1

=
W B1

=
q(2)≡

(�
=SSd
(B)
)−1

=
W B2

=̊
P(1)≡

(
˚
=SSd
(1)
)−1

=
W 11

=̊
P(2)≡

(
˚
=SSd
(2)
)−1

=
W 22

(1.31)

and introduce the notation: for any matrix
=
A ∈ RN×M with row sum vector

¯
Ar.s. ∈ RN , the

matrix
=SSAr.s. ∈ RN×N is the diagonal square matrix with the row sums of

=
A on its main diagonal,

i.e. [
=SSAr.s.]i j = δi j

(
∑

M
k=1[=A]ik

)
. With these definitions in hand, the block transition matrix can be

written in an analogous form to the three-vertex case in equation (1.25),

=
P =


(
=
I−

=S
p(1)r.s.)=̊P

(1)
=
0

=
p(1)

=
0 (

=
I−

=S
p(2)r.s.)=̊P

(2)
=
p(2)

=
q(1)

=
q(2) (

=
I−

=S
q(1)r.s.−

=S
q(2)r.s.)=̊P

(B)

 , (1.32)

as shown in in the state-transition diagram in figure (1.2).

A few notes about equation (1.32):

1.
=
p(∗) ∈ R|V∗|×|VB| controls the outflow from V∗ to the bridge vertices VB. In the weak

coupling limit, we expect ∑ j p(∗)i j =
[
Sp
(∗)
r.s.

]
ii
≪ 1

2.
=
q(∗) ∈ R|VB|×|V∗| controls the inflow from the bridge vertices VB to the cluster V∗. While

∑ j q(∗)i j =
[
Sq
(∗)
r.s.

]
ii
∈ [0,1], the weak coupling limit does not guarantee that the row-sums of

=
q(∗) (i.e. the diagonal elements of

=S
q(∗)) are small. Indeed, the bridge vertices are precisely
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those that have fast outflow for diffusion processes starting on them, versus slow inflow

for diffusion processes starting in the clusters.

3.
=̊
P(1) and

=̊
P(2) are the transition matrices for the induced subgraphs GV1 and GV2 of clusters

1 and 2. Since the outflow from the clusters to the bridge vertices is small in the weak cou-

pling limit, we expect the internal diffusion dynamics in clusters 1 and 2 to be dominated

by
=̊
P(1),

=̊
P(2), and the inflow from the bridge vertices VB. Furthermore, since

=̊
P(1) and

=̊
P(2)

represent the internal dynamics of clusters, we expect them to induce dynamics with rapid

mixing times.

4.
=̊
P(B) is the transition matrix for the induced subgraph GVB of the bridge vertices. Even in the

weak coupling limit, we expect
=̊
P(B) to be a poor predictor of the diffusion dynamics in VB

due to the strong outflow from these vertices to clusters A and B. Furthermore, the subgraph

of bridge vertices may exhibit various pathological features, such as disconnectedness or

extremely long mixing times.

1.5.3 N-cluster subgraph equilibrium coupling model

Consider a generalization of the 2-cluster model in section 1.5.1 with NC clusters and

a set of bridge vertices. If the coupling between each cluster and the bridge is only via their

subgraph equilibrium distributions ˚
¯
π(∗), this model can be exactly related to a coarse grained

model consisting of an (NC +1)-vertex graph Gc.g..
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The weight matrix for this model is:

=
W =



=
W 11 0 a1 ˚

¯
π(1)

(
˚
¯
π(B)

)†

. . . ...

0
=
W NCNC aNC ˚

¯
π(NC)

(
˚
¯
π(B)

)†

a1 ˚
¯
π(B)

(
˚
¯
π(1)

)†
· · · aNC ˚

¯
π(B)

(
˚
¯
π(NC)

)†

=
W BB


(1.33)

where
=
W nB = an ˚

¯
π(n)

(
˚
¯
π(B)

)†
, with subgraph equilibrium distributions ˚

¯
π(∗) ≡ ˚

¯
d(∗)/D̊(∗), D̊(∗) ≡

¯
1

† ˚
¯
d(∗). This results in a simple structure for the full graph degree vector and equilibrium

distribution, with the components on each cluster and bridge subgraph proportional to the

corresponding subgraph components:

¯
d =

(
NC⊕

n=1

�

¯
d (n)

)
⊕
�

¯
d (B) =

(
NC⊕

n=1

D̊n +an

D̊n

˚
¯
d(n)

)
⊕ D̊B +a1 + · · ·+an

D̊B

˚
¯
d(B) (1.34)

¯
π =

(
NC⊕

n=1

D̊n +an

D
˚
¯
π
(n)

)
⊕ ∑n an + D̊B

D
˚
¯
π
(B), D≡

NC

∑
n=1

(
D̊n +2an

)
+ D̊B (1.35)

as well as a simple structure to the corresponding transition and Laplacian matrices:

=
P =

=SSd
−1

=
W =



(1− p1)=̊P
(1) 0 p1 ¯

1
(1)
(

˚
¯
π(B)

)†

. . . ...

0 (1− pNC)=̊P
(NC) pNC ¯

1
(NC)

(
˚
¯
π(B)

)†

q1 ¯
1
(B)
(

˚
¯
π(1)

)†
· · · qNC ¯

1
(B)
(

˚
¯
π(NC)

)†
(1−qB)=̊P

(B)


(1.36)
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=
L≡

=
I−

=
P =



(1− p1)=̊L
(1)+ p1=I

(1) 0 −p1 ¯
1
(1)
(

˚
¯
π(B)

)†

. . . ...

0 (1− pNC)=̊L
(NC)+ pNC=

I(NC) −pNC ¯
1
(NC)

(
˚
¯
π(B)

)†

−q1 ¯
1
(B)
(

˚
¯
π(1)

)†
· · · −qNC ¯

1
(B)
(

˚
¯
π(NC)

)†
(1−qB)=̊L

(B)+qB=
I(B)


(1.37)

where qB ≡ ∑
NC
n=1 qn, and the definitions of p∗ and q∗ are implied by the matrix equations.

Combining this the time-evolution equation of a diffusion process, ∂t¯
v†(t) = −

¯
v†(t)

=
L,

and a compatible partitioning of
¯
v =

(⊕NC
n=1

�

¯
v (n)

)
⊕�

¯
v (B), we have a system of NC+1 differential

equations governing the time evolution of
¯
v†(t):

∂t
�

¯
v (n)†

=−(1− pn)
�

¯
v (n)†

=̊
L(n)− pn

�

¯
v (n)†

+qn

(
�

¯
v (B)†

¯
1
(B)
)

˚
¯
π
(n)†

(1.38)

∂t
�

¯
v (B)†

=−(1−qB)
�

¯
v (B)†

=̊
L(B)−qB

�

¯
v (B)†

+

(
NC

∑
n=1

pn
�

¯
v (n)†

¯
1
(n)

)
˚
¯
π
(B)†

. (1.39)

With the only coupling between these equations happening between the subgraph equilibrium

distributions, they can be solved with a coarse-graining ansatz:

�

¯
v (n)(t) = µn(t) ˚

¯
π
(n)+

¯
γ
(n)(t),

¯
γ
(n)†

(t)
¯
1
(n) ≡ 0, (1.40)

where µn(t) =
�

¯
v (n)(t)†

¯
1
(n) represents the total probability mass in cluster n at time t (mirroring

the use of µ as a symbol for mass in physics), and γ(n)(t) represents the deviation from the sub-

graph equilibrium distribution (mirroring the use of γ to represent the skewness of a distribution

in statistics). By dotting these equations on the right with
¯
1 or

=
I−

¯
1

¯
π†, we can separate the

behavior of
¯
µ(t) ∈ RNC+1 from the

¯
γ(∗) terms. Then

¯
µ satisfies a coarse-grained time evolution
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equation:

∂t
¯
µ

†(t) =−
¯
µ

†(t)
=
Lc.g.,

=
Lc.g. =



p1 0 −p1

. . . ...

0 pNC −pNC

−q1 · · · −qNC qB


, (1.41)

which has the formal solution
¯
µ†(t) =

¯
µ†(0)e−=L

c.g.t , and the
¯
γ(∗)(t) terms satisfy:

∂t
¯
γ
(n)†

(t) =−
¯
γ
(n)†

(t)
(

pn=I
(n)+(1− pn)=̊L

(n)
)

(1.42)

∂t
¯
γ
(B)†

(t) =−
¯
γ
(B)†

(t)
(

qB=
I(B)+(1−qB)=̊L

(B)
)
, (1.43)

so their time evolution is governed solely by the corresponding subgraph Laplacians and the

transition rates out of each cluster:

¯
γ
(n)†

(t) =−
¯
γ
(n)†

(0) e−(1−pn) ˚
=
L(n)te−pnt (1.44)

¯
γ
(B)†

(t) =−
¯
γ
(B)†

(0) e−(1−qB) ˚
=
L(B)te−qBt . (1.45)

Using the notation
¯
e(∗,i) ∈ R|V∗| for the ith standard basis vector in partition ∗’s vector

space, the return probabilities for a diffusion process starting on vertex i of cluster n are:

�

R(n)
i (t) =

[
e−=L

c.g.t
]

nn︸ ︷︷ ︸
µn(t)

π̊
(n)
i +

(
¯
e(n,i)− ˚

¯
π
(n)
)†

︸ ︷︷ ︸
¯
γ(n)

†
(0)

· e−(1−pn) ˚
=
L(n)t ·

¯
e(n,i)e−pnt (1.46)

=
[
e−=L

c.g.t
]

nn
π̊
(n)
i +

([
e−(1−pn) ˚

=
L(n)t
]

ii
− π̊

(n)
i

)
e−pnt , (1.47)

and the return probabilities for starting on vertex i of the bridge vertices are:

�

R(B)
i (t) =

[
e−=L

c.g.t
]

BB
π̊
(B)
i +

([
e−(1−qB) ˚

=
L(B)t
]

ii
− π̊

(B)
i

)
e−qBt , (1.48)
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The rescaled return probabilities are found by element-wise dividing these quantities by the

global equilibrium distribution
¯
π , which can be written in terms of

¯
µπ ≡ limt→+∞

¯
µ(t) as

¯
π =

(⊕NC
n=1 µπ

n ˚
¯
π(n)

)
⊕µπ

B ˚
¯
π(B):

�

R
(n)
i (t)≡

R(n)
i (t)
�
π
(n)
i

=

[
e−=L

c.g.t
]

nn
µπ

n
+

1
µπ

n


[
e−(1−pn) ˚

=
L(n)t
]

ii

π̊
(n)
i

−1

e−pnt (1.49)

�

R
(B)
i (t)≡

R(B)
i (t)
�
π
(B)
i

=

[
e−=L

c.g.t
]

BB
µπ

B
+

1
µπ

B


[
e−(1−qB) ˚

=
L(B)t
]

ii

π̊
(B)
i

−1

e−qBt (1.50)

Defining the coarse-grained and subgraph rescaled return probabilities as

Rc.g.
n (t)≡

[
e−=L

c.g.(t)
]

nn
µπ

n
Rc.g.

B (t)≡

[
e−=L

c.g.(t)
]

BB
µπ

B
(1.51)

R̊
(n)
i (t)≡

[
e− ˚

=
L(n)(t)

]
ii

π̊
(n)
i

R̊
(B)
i (t)≡

[
e− ˚

=
L(B)(t)

]
ii

π̊
(B)
i

(1.52)

the full-graph rescaled return probabilities can be rewritten as

�

R
(n)
i (t) = Rc.g.

n (t)+
1

µπ
n

(
R̊

(n)
i ((1− pn)t)−1

)
e−pnt (1.53)

�

R
(B)
i (t) = Rc.g.

B (t)+
1

µπ
B

(
R̊

(B)
i ((1−qB)t)−1

)
e−qBt (1.54)

The rescaled return probabilities of subgraph equilibrium coupling model are thus deter-

mined by a simple combination of the coarse-grained reduced model with only NC +1 vertices

and the subgraph behavior of each part of the graph partition.

We can now relate the instantaneous score�
¯
s (∗)(t) to the subgraph and coarse grained

scores ˚
¯
s(∗)(t) and sc.g.

∗ (t) using the effective instantaneous score
¯
seff. defined analogously to

¯
Seff.
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in equation (1.23):

seff.
i ≡ lim

T→0+

1
T

si(t)
∣∣

p=1 = ∑
j

∣∣Pi j
(
Ri(t)−R j(t)

)∣∣ . (1.55)

Using the relevant differences in rescaled full graph return probabilities expressed in terms of the

subgraph and coarse-grained quantities

�

R
(n)
i (t)−

�

R
(n)
j (t) =

1
µπ

n

(
R̊

(n)
i ((1− pn)t)− R̊

(n)
j ((1− pn)t)

)
e−pnt

�

R
(n)
i (t)−

�

R
(B)
i (t) =

(
Rc.g.

n (t)−Rc.g.
B (t)

)
+

R̊
(n)
i ((1− pn)t)−1

µπ
n

e−pnt−
R̊

(B)
j ((1−qB)t)−1

µπ
B

e−qBt


�

R
(B)
i (t)−

�

R
(B)
j (t) =

1
µπ

B

(
R̊

(B)
i ((1−qB)t)− R̊

(B)
j ((1−qB)t)

)
e−qBt

and the expressions for the subgraph and coarse grained scores

sc.g.
n (t) = pn

∣∣Rc.g.
n (t)−Rc.g.

B (t)
∣∣

sc.g.
B (t) =

NC

∑
n=1

qn
∣∣Rc.g.

n (t)−Rc.g.
B (t)

∣∣= NC

∑
n=1

qn

pn
sc.g.

n (t)

s̊(n)i (t) =
|Vn|

∑
j=1

∣∣∣P̊(n)
i j

(
R̊

(n)
i (t)− R̊

(n)
j (t)

)∣∣∣
s̊(B)i (t) =

|VB|

∑
j=1

∣∣∣P̊(B)
i j

(
R̊

(B)
i (t)− R̊

(B)
j (t)

)∣∣∣
some simple but tedious manipulations and the fact that |x + y| ∈

[∣∣|x| − |y|∣∣, |x|+ |y|]
R
∈
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[
|x|− |y|, |x|+ |y|

]
R

yield:

�s (n)
i (t) = sc.g.

n (t)+
1− pn

µπ
n

e−pnt s̊(n)i ((1− pn)t)+δ
�s (n)

i (t) (1.56)

�s (B)
i (t) = sc.g.

B (t)+
1−qB

µπ
B

e−qBt s̊(B)i ((1−qB)t)+δ
�s (B)

i (t) (1.57)

where the spread of possible values are dictated by the δ
�s (∗)

i (t) terms:

δ
�s (n)

i (t) ∈

[
−pn

|VB|

∑
j=1

π̊
(B)
j

∣∣∣∆(nB)
i j (t)

∣∣∣ , +pn

|VB|

∑
j=1

π̊
(B)
j

∣∣∣∆(nB)
i j (t)

∣∣∣] (1.58)

δ
�s (B)

i (t) ∈

[
−

NC

∑
n=1

qn

|Vn|

∑
j=1

π̊
(n)
j

∣∣∣∆(nB)
ji (t)

∣∣∣ , + NC

∑
n=1

qn

|Vn|

∑
j=1

π̊
(n)
j

∣∣∣∆(nB)
ji (t)

∣∣∣] (1.59)

∆
(nB)
i j (t)≡

R̊
(n)
i ((1− pn)t)−1

µπ
n

e−pnt−
R̊

(B)
j ((1−qB)t)−1

µπ
B

e−qBt . (1.60)

These δ
�s (∗) terms capture the comparison between the internal subgraph dynamics of the NC

cluster partitions and the internal dynamics of the bridge points, so it should not be surprising

that a simpler exact relation is not forthcoming in this context.

Let’s pause and appreciate the results in equations (1.56) and (1.57): The instantaneous

score for a coupled graph of NC clusters and a set of bridge points can be expressed in terms of

the scores of a coarse-grained model with only NC +1 vertices, and the internal dynamics of

the subgraphs corresponding to the clusters and the bridge, up to some smearing that reflects

the differences of the internal dynamics of the cluster and the bridge subgraphs. Furthermore,

since sc.g.
B (t) = ∑n

qn
pn

sc.g.
n (t), the coarse-grained model terms strongly push the instantaneous

scores of the bridge vertices above the scores of the vertices in the clusters as long as the rate of

transitioning out of the bridge and into cluster n, qn, is large compared to the rate of transitioning

from cluster n into the bridge, namely pn.
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1.6 Time-domain Arbitrary Weak-Coupling Limit

We will now examine the weak-coupling limit of a diffusion process on a graph with

arbitrary bridge-cluster coupling structure. The diffusion process on such a graph with NC

clusters is governed by:

∂t¯
v†(t) =−

¯
v†(t)

=
L

=
L =

=
I−

=
P (1.61)

=
P =



(
=
I−

=S
p(1)r.s.)=̊P

(1)
=
0

=
p(1)

. . . ...

=
0 (

=
I−

=S
p(NC)

r.s. )
=̊
P(NC)

=
p(NC)

=
q(1) . . .

=
q(NC) (

=
I−

=S
qB

r.s.)=̊P
(B)


(1.62)

=
L =



=̊
L(1)+

=S
p(1)r.s.=̊P

(1)
=
0 −

=
p(1)

. . . ...

=
0

=̊
L(NC)+

=S
p(NC)

r.s. =̊
P(NC) −

=
p(NC)

−
=
q(1) . . . −

=
q(NC)

=̊
LB +

=S
qB

r.s.=̊P
(B)


(1.63)

Writing
¯
v†(t) =

(⊕NC
n=1 ¯

v(n)
†
(t)
)
⊕

¯
v(B)

†
(t), we find:

∂t¯
v(n)

†
(t) =−

¯
v(n)

†
(t)
(

=̊
L(n)+

=S
p(n)r.s.=̊P

(n)
)
+

¯
v(B)

†
(t)

=
q(n) (1.64)
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∂t¯
v(B)

†
(t) =

NC

∑
n=1 ¯

v(n)
†
(t)

=
p(n)−

¯
v(B)

†
(t)
(

=̊
L(B)+

=S
q(B)r.s. =̊P

(B)
)
. (1.65)

In the weak coupling limit of interest, the
=
p(∗) terms are small in magnitude but otherwise

arbitrary, while the
=
q(∗) terms are unconstrained. To achieve this, first, replace all

=
p(∗) with η

=
p(∗),

where η ∈ (0,1]R. Then we will perform our analysis by looking for the limiting behavior as

η → 0+.

1.6.1 Timescale separation

Defining a new timescale through τ ≡ ηt and dividing through by η allows us to separate

terms more clearly:

∂τ ¯
v(n)

†
(τ) =−

¯
v(n)

†
(τ)

(
1
η =̊

L(n)+
=S
p(n)r.s.=̊P

(n)
)
+

¯
v(B)

† 1
η =

q(n) (1.66)

∂τ ¯
vB†

(τ) =
NC

∑
n=1 ¯

v(n)
†
(τ)

=
p(n)−

¯
v(B)

†
(τ)

(
1
η =̊

L(B)+
1
η =S

q(B)r.s. =̊P
(B)
)

(1.67)

Rearranging to group most of the 1
η

terms on the left with the time derivative, and using the

notation for a left-acting derivative as f (x)
←
∂x ≡ ∂x f (x), we find:

¯
v(n)

†
(τ)

[
←
∂τ +

1
η =̊

L(n)
]
=

¯
v(B)

†
(τ)

1
η =

q(n)−
¯
v(n)

†

=S
p(n)r.s.=̊P

(n) (1.68)

¯
vB†

(τ)

[
←
∂τ +

1
η

(
=̊
L(B)+

=S
q(B)r.s. =̊P

(B)
)]

=
NC

∑
m=1 ¯

v(m)†
(τ)

=
p(m) (1.69)

1.6.2 Decoupling Clusters from the Bridge

Now, for brevity, introduce the notation for a lossy laplacian as:

=̃
L(B) ≡

=̊
L(B)+

=S
q(B)r.s. =̊P

(B) =
=
I− (

=
I−

=S
q(B)r.s. )=̊P

(B) (1.70)
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where the structure of
[
=S
q(B)r.s.

]
ii
∈ [0,1) guarantees that

=̃
L(B) has strictly positive eigenvalues10 (see

the appendix for a discussion of the properties of these lossy Laplacians). With this, equation

(1.69) can be formally solved by using the Green’s function for the operator
[←
∂τ +

1
η =̃

L(B)
]

satisfying the initial condition
¯
v(B)

†
(0+) =

¯
v(B)i.c.

†
:

¯
v(B)

†
(τ) =

¯
v(B)i.c.

†
e−

1
η =̃

L(B)τ +
∫

∞

0
dτ
′

(
NC

∑
m=1 ¯

v(n)
†
(τ ′)

=
p(m)

)
e−

1
η =̃

L(B)(τ−τ ′)
Θ(τ− τ

′) (1.71)

where Θ(∗) is the standard Heaviside step function.

Because the matrix exponential decays rapidly as τ increases for τ > τ ′ due to the

factor of 1
η

and the strictly positive eigenvalues of
=̃
L(B), this integral can be evaluated by Taylor

expanding the term in parentheses about the point τ ′ = τ and integrating order by order. Using

the results of section B.1, we have:

¯
v(B)

†
(τ) =

long-time behavior︷ ︸︸ ︷(
NC

∑
m=1 ¯

v(m)†
(τ)

=
p(m)

)
η

(
=̃
L(B)

)−1

=
I+η

←
∂τ

(
=̃
L(B)

)−1

+


¯
v(B)i.c.

†
−

(
NC

∑
m=1 ¯

v(m)†
(τ)

=
p(m)

)
η

(
=̃
L(B)

)−1

=
I+η

←
∂τ

(
=̃
L(B)

)−1

∣∣∣∣∣∣∣
τ=0


︸ ︷︷ ︸

≡
¯
b†

i.t. is the source of the bridge initial transient

e−
1
η =̃

L(B)τ

=

(
NC

∑
m=1 ¯

v(m)†
(τ)

=
p(m)

)
η

(
=̃
L(B)

)−1

=
I+η

←
∂τ

(
=̃
L(B)

)−1 + ¯
b†

i.t.e
− 1

η =̃
L(B)τ

(1.72)

where
=̃
L(B) is guaranteed to be invertible due to its strictly positive eigenvalues, and

η(
=̃
L(B))−1

=
I+η

←
∂τ (=̃L

(B))−1

is formal shorthand for the geometric series expansion of the denominator. Note there is no

10You might ask how we can be sure that
=A
q(B)r.s. has the correct structure to ensure that

=̃
L(B) has strictly positive

eigenvalues, i.e. at least one non-zero entry on each of the connected components of the bridge vertex subset VB?
Because the bridge vertices are precisely those with rapid outflow to the cluster vertices, so each of the connected
components of the bridge subgraph must be connected to at least one of the clusters, guaranteeing the condition we
need for any reasonable identification of the bridge vertex subset VB.
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ordering ambiguity from the fraction notation here, as every part of the denominator individually

commutes with the numerator of this expression.

Using equation (1.72) to eliminate
¯
v(B)

†
from equation (1.68) yields:

¯
v(n)

†
(τ)

[
←
∂τ +

1
η =̊

L(n)
]
−

¯
b†

i.t.
1
η

e−
1
η =̃

L(B)τ

=
q(n)

=
NC

∑
m=1 ¯

v(m)†
(τ)

=
p(m) (

=̃
L(B))−1

=
I+η

←
∂τ(=̃L

(B))−1=
q(n)−

¯
v(n)

†
(τ)

=S
p(n)r.s.=̊P

(n)
(1.73)

where all terms that directly contribute to rapid time-variation (due to various factors of 1
η

) are

grouped on the left. Defining the left-acting matrix-differential bridge-mediated distributor for

brevity:

=

←
Dm→n ≡

=
p(m) (

=̃
L(B))−1

=
I+η

←
∂τ(=̃L

(B))−1=
q(n)

=
=
p(m)(

=̃
L(B))−1

=
q(n)+η

(
−
←
∂τ

=
p(m)(

=̃
L(B))−2

=
q(n)
)
+η

2
(←

∂
2
τ =

p(m)(
=̃
L(B))−3

=
q(n)
)
+ · · ·

≡
=
Dm→n

0 +η
=

←
Dm→n

1 +η
2
=

←
Dm→n

2 + · · · ,
=

←
Dm→n

r ≡ (−
←
∂τ)

r
=
p(m)

(
=̃
L(B)

)−(r+1)

=
q(n),

(1.74)

and including the initial condition for
¯
v(n)

†
explicitly with a delta function, we can rewrite

equation (1.73) as:

¯
v(n)

†
(τ)

[
←
∂τ +

1
η =̊

L(n)
]
−

¯
v(n)i.c.

†
δ (τ)−

¯
b†

i.t.
1
η

e−
1
η =̃

L(B)τ

=
q(n)

=
NC

∑
m=1 ¯

v(m)†
(τ)

=

←
Dm→n−

¯
v(n)

†
(τ)

=S
p(n)r.s.=̊P

(n).

(1.75)

This is an exact closed system of NC equations which is the result of integrating out the degrees of

freedom in the boundary vertices. The penalty we pay for this is hidden in
¯
b†

i.t. and
=

←
D∗→∗, namely

arbitrarily high order derivatives
←
∂τ and powers of

(
=̃
L(B)

)−1
. Fortunately, these high-order

contributions are controlled by positive powers of our coupling scaling parameter η .
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1.6.3 Separation of the Cluster Equilibrium Subspace

We are now notationally and conceptually prepared to show the main result of this

development: in the weak-coupling limit,
¯
v†(τ) should behave as

lim
η→0+ ¯

v†(τ > 0) = µ
(1)(τ) ˚

¯
π
(1)†
⊕·· ·⊕µ

(NC)(τ) ˚
¯
π
(NC)

†
⊕

¯
v(B)

†
(τ), (1.76)

where the behavior on the boundary vertices,
¯
v(B)

†
(τ), is left unspecified for now. To derive this,

recall the definition of the weak-coupling limit to be the η ≈ 0+ regime, where equation (1.75)

takes the form

¯
v(n)

†
(τ)

[
←
∂τ +

1
η =̊

L(n)
]
−

¯
v(n)i.c.

†
δ (τ)−

¯
v(B)i.c.

† 1
η

e−
1
η =̃

L(B)τ

=
q(n)

=
NC

∑
m=1 ¯

v(m)†
(τ)

=
q(m)

(
=̃
L(B)

)−1

=
p(n)−

¯
v(n)

†
(τ)

=S
p(n)r.s.=̊P

(n).

(1.77)

This has the formal solution

¯
v(n)

†
(τ) =

¯
v(n)i.c.

†
e−

1
η

˚
=
L(n)τ +

∫
τ

0
dτ
′
¯
v(B)i.c.

† 1
η

e−
1
η =̃

L(B)τ ′

=
q(n)e−

1
η

˚
=
L(n)(τ−τ ′)

+
∫

τ

0
dτ
′
( NC

∑
m=1 ¯

v(m)†
(τ ′)

=
q(m)

(
=̃
L(B)

)−1

=
p(n)−

¯
v(n)

†
(τ ′)

=S
p(n)r.s.=̊P

(n)

︸ ︷︷ ︸
≡

¯
f (n)†

(τ ′)

)
e−

1
η

˚
=
L(n)(τ−τ ′).

(1.78)

In the region where η ≈ 0+ and any non-infinitesimal τ > 0,11 we can perform the integral

involving
¯
v(B)i.c.

†
, yielding:

¯
v(n)

†
(τ)

τ>0−−−→
η≈0+ ¯

v(n)i.c.

†

=
P

(n)
π +

¯
v(b)i.c.

†(
=̃
L(B)

)−1

=
q(n)

=
P

(n)
π +

∫
τ

0
dτ
′

¯
f (n)

†
(τ ′)e−

1
η

˚
=
L(n)(τ−τ ′), (1.79)

11Henceforth, in the η ≈ 0+ regime, stating τ > 0 should be considered synonymous with the regime where
matrix exponentials of the form e−

1
η
(∗)τ can be replaced with their infinite-τ limits.
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where
=
P

(n)
π ≡

¯
1
(n) ˚

¯
π(n). Differentiating annihilates the first two terms, and the Leibniz integral

rule on the third term yields:

∂τ ¯
v(n)

†
(τ)

τ>0−−−→
η≈0+ ¯

f (n)
†
(τ)+

∫
τ

0
dτ
′

¯
f (n)

†
(τ ′)e−

1
η

˚
=
L(n)(τ−τ ′)

(
− 1

η =̊
L(n)
)

=
¯
f (n)

†
(τ)−

¯
f (n)

†
(τ)
(

=̊
L(n)
)+

=̊
L(n)

=
¯
f (n)

†
(τ)

(
=
I(n)−

(
=̊
L(n)
)+

=̊
L(n)
)

︸ ︷︷ ︸
=

=
P

(n)
π

=
¯
f (n)

†
(τ)

=
P

(n)
π ,

(1.80)

where we have used the fact that
¯
f (n)

†
(τ) can be treated as a constant in the integral12 because of

the rapid exponential decay of e−
1
η

˚
=
L(n)(τ−τ ′), and

=
I(n)−

(
=̊
L(n)
)+

=̊
L(n) =

=
P

(n)
π due to the properties

of the the Moore-Penrose pseudoinverse and the fact that the subgraph of the nth cluster is

connected.

Having established that ∂τ ¯
v(n)

†
(τ)

τ>0−−−→
η≈0+

(
¯
f (n)

†
(τ)

¯
1
(n)
)

˚
¯
π(n), we can integrate back

from τ =+∞ to find:

¯
v(n)

†
(τ) =

¯
v(n)

†
(+∞)−

∫ +∞

τ

dτ ∂τ ¯
v(n)

†
(τ)

τ>0−−−→
η≈0+

µ
(n)
π ˚

¯
π
(n)−

(∫ +∞

τ

dτ
¯
f (n)

†
(τ)

¯
1
(n)
)

˚
¯
π
(n)

∝ ˚
¯
π
(n)

(1.81)

where the fact that
¯
v(n)

†
(+∞) =

�

¯
π (n) = µ

(n)
π ˚

¯
π(n)+O(η) has been used, µ

(n)
π is the equilibrium

probability mass in cluster n, and the terms scaling with η have been thrown away. Combining

this with the η → 0+ limit of equation (1.72) then gives the full weak-coupling limit expression

for
¯
v†(τ > 0) to leading order in η as:

¯
v†(τ)

τ>0−−−→
η≈0+

(
NC⊕

n=1

µ
(n)(τ) ˚

¯
π
(n)†
)
⊕

(
η

NC

∑
m=1

µ
(m)(τ) ˚

¯
π
(m)

=
p(m)

(
=̃
L(B)

)−1
)
. (1.82)

12

¯
f (n)

†
(τ) is the result of a fixed (η-independent in the η ≈ 0+ regime) linear operator acting on

¯
v†(τ), so it must

be a sum of decaying exponentials in τ , with clear timescale separation inherited from the spectrum of
=
L
∣∣

p∗→η p∗ .

This justifies replacing
¯
f (n)

†
(τ ′) with

¯
f (n)

†
(τ) in the integral, leading to the stated result.
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The time evolution of the cluster probability masses µ(n)(τ) can be recovered by inserting this

expression into the basic time evolution equation for the diffusion process, ∂τ ¯
v†(τ) =−

¯
v†(τ) 1

η =
L,

yielding the coarse-grained effective time evolution equation:

∂τ

¯
µ

†(τ) =−
¯
µ

†(τ)
=
Lc.g.

µ , (1.83)

where
¯
µ†(τ) ∈

(
RNC

)† is the vector of cluster probability masses with elements
[

¯
µ†(τ)

]
n
=

µ(n)(τ), and
=
Lc.g.

µ ∈ RNC×NC is the effective Laplacian on this graph, with elements

[
=
Lc.g.

µ

]
nm ≡ ˚

¯
π
(n)†

=
p(m)

(
=̃
L(B)

)−1

¯
q(m)

r.s. −δnm ˚
¯
π
(m)†

¯
p(m)

r.s. . (1.84)

Note that this coarse-grained Laplacian governing the cluster probability masses
¯
µ†(τ) does

not have the special mostly-diagonal structure of the coarse-grained Laplacian in the N-cluster

subgraph equilibrium coupling model of section 1.5.3, but rather is more general.

This chapter, in part, is being prepared for submission for publication of the material. The

dissertation author was the primary investigator and author of this material. Professor Alexander

Cloninger is the sole co-author of the material being prepared for submission for publication.
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Chapter 2

Graph Clustering Numerics

2.1 Graph Transition and Laplacian Matrices

A connected undirected weighted graph G = (V,E,w) has both a random-walk transition

matrix
=
Pr.w. ≡

=SSd
−1

=
W and a symmetric transition matrix

=
Psym. ≡

=SSd
− 1

2
=
W

=SSd
− 1

2 . Since
=
Psym. is a

real symmetric matrix, it has an eigendecomposition in terms of real orthonormal eigenvectors

¯
xn ∈ R|V | and real eigenvalues λ

(P)
n ∈ R:

=
Psym. =

|V |

∑
i=1

λ
(P)
i ¯

xi ¯
x†

i ¯
x†

i · ¯
x j = δi j (2.1)

The eigen-decomposition of the random-walk transition matrix then trivially follows from the

fact that
=
Psym. and

=
Pr.w. =

=SSd
− 1

2
=
Psym.

=SSd
+ 1

2 are similar matrices:

=
Pr.w. =

|V |

∑
i=1

λ
(P)
i ¯

ri¯
l†
i ¯

ri ≡ =SSd
− 1

2

¯
xi, ¯

li ≡ =SSd
+ 1

2

¯
xi, ¯

l†
i · ¯

r j = δi j (2.2)

where
{

¯
ri

∣∣∣=Pr.w.

¯
ri = λ

(P)
i ¯

ri, i ∈ [1, |V |]Z
}

and
{

¯
li
∣∣∣
¯
l†
i =
Pr.w. = λ

(P)
i ¯

l†
i , i ∈ [1, |V |]Z

}
are the right

and left eigenvectors of
=
Pr.w., respectively.

The random walk Laplacian
=
Lr.w. ≡

=
I−

=
Pr.w. has the same eigenvectors as

=
Pr.w., with its
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eigenvalues shifted and reversed as:

=
Lr.w. =

|V |

∑
i=1

λ
(L)
i ¯

ri¯
l†
i λ

(L)
i ≡ 1−λ

(P)
i . (2.3)

Since the eigenvalues of the transition matrices
=
Pr.w. and

=
Psym. lie in the interval [−1,1]R (easily

proven with the Gershgorin Circle Theorem, see Bell 1965), the eigenvalues of
=
L lie in the

interval [0,2]R. Henceforth, λi ≡ λ
(L)
i will be assumed to refer to the eigenvalues of a Laplacian,

not a transition matrix, unless otherwise specified.

It is sometimes convenient to define a lazy random walk1 transition matrix by averaging

=
P with the identity matrix:

=
Plazy ≡

1
2
(
=
I+

=
P
)

(2.4)

Because the eigenvalues of lazy random walks are guaranteed to lie in the interval [0,1]R, they

allow an exact correspondence between a discrete time process accessed by integer powers of

=
Plazy, and a continuous time process defined by

=
P t

lazy = e−t
=
Llazy

=
Llazy ≡− ln

(
=
Plazy

)
t ∈ [0,+∞)R (2.5)

where the eigenvalues of
=
L lazy are in the interval [0,+∞)R.2

This correspondence between
=
P t

lazy and e−t
=
Llazy is convenient for two reasons. First, this

discrete/continuous time correspondence allows simple validation of the behavior of numerical

routines based on eigendecompositions of
=
L used to define continuous time processes. Second,

certain computations3 are more efficiently done by performing a small number of matrix-vector

multiplications to compute the action of
=
P t

lazy on a vector rather than resorting to a (partial or

full) eigendecomposition to define a continuous-time process. For these reasons, the numerical

1See Oliveira and Peres n.d. for discussion of the behavior of lazy random walks
2Strictly speaking, if

=
Plazy has a zero eigenvalue, then

=
Llazy will have an infinite eigenvalue. This situation can be

avoided by adding a self-loop with an arbitrarily small positive weight on each vertex to enforce λ
(Plazy)

i ∈ (0,1]R.
3In particular, computations at short times when e−t

=
L has significant contributions from many eigenvectors are

computationally expensive in an eigendecomposition formulation.
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results presented here generally use lazy random walk transition and Laplacian matrices.

2.2 Computing the Score

The general version of the score,

¯
S =

∫ +∞

0
dt w(t) RNp

(
∇

=
K(T ) ¯

R(t)
)

=
K(T )≡ e−T

=
Lr.w.

(2.6)

contains multiple tunable elements: w(t) : R+→ R+, the time weighting function used to focus

the score’s attention on specific time regimes; p in the matrix row norm RNp(∗), used to control

which p-norm we use to define the scalar magnitude of the difference between Ri(t) and nearby

values of the
¯
R(t); and the diffusion time T ∈ [0,+∞), used to define how far on the graph we

compare values in the graph difference operator ∇
=
K(T ).

For the sake of simplicity, computational efficiency, and to avoid over-tuning our algo-

rithm to the specific datasets under consideration, we make the following fixed choices for all

numerical results that follow:

• w(t) = Θ(t− tmin), so all timescales are weighted equally and minimal tuning is done to

the data at hand. In practice, a truncated eigendecomposition of
=
L is used with only the

slowest-evolving modes (i.e. those with the smallest eigenvalues λ
(L)
i ) retained. The error

this truncation induces decreases exponentially above tthreshold ≡

• p = 1, which is in some sense the natural choice in this context since RNp=1
(
=
K(T )

)
=

¯
1;

and

• Replace
=
K(T ) with

=
Pr.w., which is equivalent to using the quantity limT→0+

1
T ¯

S as our

score.
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These choices mean that our effective score function in this chapter is:

Seff.
i ≡

∫ +∞

0
dt Θ(t− tmin)

[
RNp=1

(
¯
∇

=
Pr.w.

¯
R(t)

)]
i
=
∫ +∞

tmin

dt
|V |

∑
j=1

Pr.w.
i j
∣∣Ri(t)−R j(t)

∣∣ (2.7)

where we have pulled Pr.w.
i j out of the absolute value sign since its elements are non-negative. The

use of
=
Pr.w. instead of

=
K(T ) in particular allows computations to take advantage of the sparsity

structure of the weight matrix, since if
=
W is sparse,

=
Pr.w. is as well, but

=
K(T ) is not in general.

This is important for large problems, as often
=
Pr.w. will be extremely sparse, and

¯
R(t) can be

efficiently approximated from its the top few eigenvectors which are efficiently computable (see

Lehoucq, Sorensen, and Yang 1998).

To compute the effective score
¯
Seff., we need only form the matrix

=
Pr.w., be able to

efficiently approximate
¯
R(t) for arbitrary t ∈ [0,+∞)R, and evaluate the integral in equation

(2.7). The rescaled return probability
¯
R(t) is formed from the element-wise division of the

the return probability Ri(t) =
[
e−t

=
Lr.w.
]

ii
by the ergodic distribution

¯
π ≡

¯
d/D, D ≡

¯
d†

¯
1. The

ergodic distribution is trivial to compute, so we focus our attention on computing Ri(t).

The power series definition of the matrix exponential implies that

e−t
=
Lr.w.

= e−t
=Ad
− 1

2
=
Lsym.

=Ad
+ 1

2
=

=SSd
− 1

2 e−t
=
Lsym.

=SSd
+ 1

2 . (2.8)

Since we are only interested in the diagonal elements of e−t
=
Lr.w.

, the powers of the diagonal

degree matrix drop out completely:

[
e−t

=
Lr.w.
]

ii
= d

− 1
2

i

[
e−t

=
Lsym.

]
ii

d
+ 1

2
i =

[
e−t

=
Lsym.

]
ii
, (2.9)

and using the eigendecomposition of
=
Lsym. = ∑

|V |
k=1 λ

(L)
k ¯

xk ¯
x†

k yields:

[
e−t

=
Lr.w.
]

ii
=
|V |

∑
k=1

e−λ
(L)
k t ([

¯
xk]i)

2 ≡
|V |

∑
k=1

e−λ
(L)
k t [

¯
xk⊙ ¯

xk]i (2.10)
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where ⊙ is the hadamard product (i.e. the element-wise product). The rescaled return probability

¯
R(t) is then:

¯
R(t) =

|V |

∑
k=1

e−λ
(L)
k t

¯
xk⊙ ¯

xk⊘ ¯
π︸ ︷︷ ︸

≡
¯
ξk

=
|V |

∑
k=1

e−λ
(L)
k t

¯
ξk (2.11)

where we have defined
¯
ξk as a notational convenience. Comparing the definition of

¯
ξk to those

of the right eigenvectors of
=
Lr.w. (see equations 2.2 and 2.3) reveals that

¯
ξk = (

¯
d†

¯
1)(

¯
rk)
⊙2 =⇒

¯
R(t) = (

¯
d†

¯
1)
|V |

∑
k=1

e−λ
(L)
k t(

¯
rk)
⊙2 (2.12)

so the rescaled return probability
¯
R(t) is a time-varying weighted sum of the element-wise

squares of the right eigenvectors of the random walk Laplacian
=
Lr.w..

The connection between the
¯
ξ vectors and the eigenvectors of

=
Psym. and

=
Lsym. allows

cheap evaluation of
¯
R(t) for any t ∈ [0,+∞)R once the eigenvalues and eigenvectors are in hand:

¯
R(t) =

|V |

∑
k=1

e−λ
(L)
k t

¯
ξk =

|V |

∑
k=1

(
λ
(P)
k

)t

¯
ξk. (2.13)

In practice, for computations on large graphs, only the eigenvector/eigenvalue pairs corresponding

to the long-time behavior (i.e. those pairs with Laplacian eigenvalues below a cutoff λ
(L)
threshold)

are computed. Then, if one hopes to approximate the true value of
¯
Seff., tmin should be set above

a cutoff tmin > c/λ
(L)
threshold, where the truncation error decreases exponentially as the constant

c ∈ (0,+∞)R is increased.4

The last part of the computation of the score is the evaluation of the time integral. For

this, a variety of numerical integration algorithms can be used. However, because of the widely

disparate timescales present in the integrand due to the dynamics of diffusion on the graph, a

vectorized numerical integration algorithm which adaptively subdivides the integration interval

should be preferred. Here, QUADPACK (Piessens et al. 2012) is used through its inclusion in

4This can be trivially confirmed by examining the exact error term from the omitted eigenvector/eigenvalue pairs
in equation (??) to bound the error on

¯
R(t), then using the triangle inequality to connect this to the error in

¯
Seff..
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SciPy (Virtanen et al. 2020).

2.3 Clustering Strategies with the Score in Hand

With
¯
Seff. computed on a graph G, we now wish to exploit this separation of boundary

vertices, where the value of
¯
Seff. is expected to be large, from volume vertices, where the value

of
¯
Seff. is expected to be small. In this work this partition will be applied as a front-end to two

clustering algorithms: spectral clustering using a k-means backend (see Liu and Han 2018 for an

exposition), and active learning using label diffusion (Zhu 2005) to disseminate the true labels of

queried vertices to the rest of the graph.

In both cases, we will use a simple strategy to make use of
¯
Seff.: Define the set of

boundary vertices, Vbndry, to be the |Vbndry| ∈ (0, |V |)Z vertices in G with the largest values of

Seff., and define the set of volume vertices as Vvol. ≡ V\Vbndry. Then form the corresponding

induced subgraphs Gbndry and Gvol. from this partition of the vertices of G. With better separation

between the clusters in Gvol. than in the original graph G, we may then perform clustering on

Gvol. in whatever way we see fit so long as that method will be able to take advantage of the

better separation between clusters in Gvol. as compared to G.

The question of how to handle label assignments for the vertices in Vbndry then remains,

and is context-specific. For some tasks, these may be vertices you do not wish to assign labels to

at all—e.g. for graphs derived from some underlying data set, it may be that vertices that join

two clusters correspond to data points that do not closely align with the features of the archetypal

examples of any cluster. For other data sets, complete labeling may be important, and we may

then use a technique like label diffusion on the full graph G to propagate the computed labels of

Vvol. to the remaining vertices in Vbndry, even if our initial labeling was performed with spectral

clustering with a k-means backend.

The centrality of label diffusion in these discussions and the results that follow is due to

the fact that it has the same root source of ‘distance’ on the graph that the boundary-identifying
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score
¯
S has, namely the action of the Laplacian on vertex functions of the graph. It is thus a

natural way of propagating labels across the graph that will be improved by the boundary vertex

pruning the score
¯
S enables.

2.3.1 Spectral Clustering with k-Means: a Brief Definition

Spectral Clustering with k-Means as a backend is a well-known algorithm that, given a

weighted undirected graph G = (V,E,w) and a number of requested clusters Nreq.
C , computes a

label assignment according to the following algorithm:

Algorithm 1. A brief overview of spectral clustering with a k-means backend

Require:
=
W ∈ R|V |×|V | is a symmetric weight matrix with non-negative elements

=
Lr.w.←

=
I−

=SSd
−1

=
W

=
V ← right eigvects

(
=
Lr.w.

)
▷ columns of

=
V are the right eigenvectors of

=
Lr.w.

=
X spect.←

=
V:, 1:Nreq.

C
▷ columns of

=
X spect. ∈ R|V |×Nreq.

C are the Nreq.
C

eigenvectors with the smallest eigenvalues

¯
Y ← k means

(
=
X spect., Nreq.

C

)
▷

¯
Y ∈ Z|V | are the integer labels

The right eigenvectors of
=
Lr.w. are preferred for the spectral embedding

=
X spect. in this work

because, in the case of NC disconnected components in G, the elements of the NC eigenvectors of

=
Lr.w. with the lowest eigenvalues will be element-wise constant on each connected component,

making the k-means clustering on the spectral embedding trivial (Liu and Han 2018). In particular,

because we are performing spectral clustering on the volume subgraph Gvol., which we expect to

be closer to the disconnected case even for a strongly-connected full graph G after removal of

the boundary vertices, we want to use a spectral embedding that takes advantage of this property.
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2.3.2 Active Clustering using Label Diffusion

The notion of diffusion on a graph discussed so far involves a process which preserves

the sum of the elements of the vector undergoing the diffusion process:

¯
v†(t)≡

¯
v†(0)e−t

=
Lr.w.

=⇒
¯
v†(t)

¯
1=

¯
v†(0)e−t

=
Lr.w.

¯
1=

¯
v†(0)

¯
1, (2.14)

which is easily proven by using the power series definition of the matrix exponential and the fact

that
=
Lr.w.

¯
1=

¯
0. In particular, the infinite time limit is the ergodic distribution:

¯
v†(t)−−−−→

t→+∞
c
¯
π ∝

¯
d, c ∈ R (2.15)

which is undesirable if one wishes to use a diffusion process to propagate labels across a graph

as the final result will incorporate the degrees of the vertices.

Instead, label diffusion acts
=
L or

=
P to the right on a column vector:

¯
h(t) = e−t

=
Lr.w.

¯
h(0) (2.16)

which has a constant vector as its infinite time limit:

¯
h(t)−−−−→

t→+∞
c

¯
1, c ∈ R, (2.17)

which is more suitable to propagating labels across a graph, as a reasonable requirement of any

label propagation scheme is that vertices the algorithm is certain have the same label should have

the same value at the end of label propagation process. In general, an DL-element vector is used

as a label for each vertex, whence h becomes a matrix
=
h ∈ R|V |×DL , with each row being the

vector label assigned to the corresponding vertex. While there are many more complex variations

(such as Wang, Tu, and Tsotsos 2013), a simplified algorithm for label diffusion is presented in

algorithm (2), where the last step assigning an integer label to each vertex is performed under
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the assumption that the ground-truth vertex labels are encoded as one-hot (i.e. standard basis)

vectors.

Algorithm 2. A brief overview of label diffusion

Require:
=
W ∈ R|V |×|V |+ ▷ graph weight matrix

Require:
=
ZZP2

known = =
ZZPknown, =

ZZP2
unknown = =

ZZPunknown ▷ diagonal projectors

Require:
=
ZZPknown + =

ZZPunknown = =
I ▷ vertices split into known- and unknown-label subsets

Require:
=
hknown ∈ R|V |×DL s.t.

=
ZZPknown=

hknown = =
hknown ▷ the known label matrix

=
h =

=
0|V |×DL ▷ label matrix, each row is a DL-element label vector

=
Pr.w.←

=SSd
−1

=
W

repeat

=
h←

=
ZZPunknown=P

r.w.
=
h+

=
hknown

until
=
h converges

yi = argmax j(hi j) ▷ yi is the integer label assigned to vi

For active learning where the algorithm can request the true labels for a small number

of data points/vertices of its choosing (see Settles 2011 for details), it is natural for us to prefer

a method of point selection that is intrinsically compatible with the features of the graph that

are being enhanced by boundary vertex removal. Algorithm (3) uses the label diffusion process

outlined in algorithm (2) to find vertices that take a long time under label diffusion to be labeled

by the already-queried points. This is appealing, as the boundary vertex set removal used to

define the volume subgraph will create very weakly connected clusters. Then algorithm (3) is

intuitively likely to query at least one label from each cluster before it begins querying multiple

labels from any cluster, modulo common considerations of widely disparate cluster sizes and

inter-cluster connection strengths.

It is notable that algorithm (3) decides all of the data points it wishes to query labels

for at once, which corresponds to the batch-mode active learning as discussed in Settles 2011.

Knowing all the labels we wish to query in advance is often preferable in practice, as there may

be significant overhead or time delays to acquiring one label at a time.
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Algorithm 3. Selecting distant points on a graph for active learning as determined by the label
diffusion dynamics

Require:
=
W ∈ R|V |×|V |+ ▷ the weight matrix of a graph

Require: NQ ∈ [1, |Vvol.|) ▷ number of vertices to choose whose labels will be queried

=
Pr.w.←

=SSd
−1

=
W

Q←{qrandom} ▷ seed the set of vertex indices to query with qrandom ∈ [1, |V |]Z
while |Q|< NQ do

¯
h←

¯
0|V |×1

=
ZZPunknown← =

I
for all q ∈ Q do

hq← 1 ▷ initialize with ones where you’ve already decided to query[
=
ZZPunknown

]
qq← 0 ▷ construct unknown label projector for label diffusion

end for

¯
hknown← ¯

h

repeat

¯
h←

=
ZZPunknown=P

r.w.

¯
h+

¯
hknown

until partial diffusion on the graph is achieved

Q← Q∪{argmini(hi)}
end while
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2.4 Graph Construction from Point Clouds

While the boundary identifying score
¯
S, computed from the rescaled return probability

¯
R(t), is defined solely by the graph G, much real-world data is in the form of point clouds{

¯
x(n)
∣∣∣
¯
x(n) ∈ RD, n ∈ [1,Np]Z

}
. In this work we use a Gaussian kernel with an adaptive band-

width set by the kth nearest neighbor distance to define G from a point cloud, as shown in

algorithm 4.

Algorithm 4. Constructing an undirected graph weight matrix from point cloud data

X ←
{

¯
x(n)
∣∣∣
¯
x(n) ∈ RD, n ∈ [1,Np]Z

}
▷ the point cloud

di j ≡
∣∣∣
¯
x(i)−

¯
x( j)
∣∣∣ ▷ pairwise Euclidean distance matrix

¯
σ (k) =

[
rowsort(

=
d)
]

:,k ▷ sort the rows of
=
d and take the kth smallest distance from each row

Wi j← exp
(
− di j

σ
(k)
i σ

(k)
j

)

The adaptive bandwidth construction has a number of appealing qualities, first and

foremost being that the weight matrix it produces
=
W is invariant not only to global spatial

dilation of the point cloud
¯
x→ c

¯
x ∀

¯
x ∈ X , but for sufficiently well-separated clusters is also

approximately invariant to per-cluster spatial dilation. There is no reason to generically expect

that a single fixed bandwidth for the entire point cloud is appropriate for well-separated portions

of the data which may be generated by completely different mechanisms. We argue—solely

qualitatively—that it is changes in density that matter, not the value of the density itself in nearly

constant-density regions of the point cloud.

2.5 Benchmarking Clustering

At its core, the goal of clustering is to take a set of data, X = {xn |n ∈ [1,Nx]Z }5, and

produce some number NC of subsets of those data points
{

Ci
∣∣Ci ⊂ X , i ∈ [1,NC]Z

}
, called

5The elements of D are often called data points. We will use this terminology generically, even for elements of
the data set that are not points in the intuitive geometric meaning of the word.
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clusters, such that points within each subset are similar to each other in some meaningful way.

Depending on the nature of the data and any downstream tasks that will use the clustering result,

NC may be specified as part of the input to the algorithm, or it may be dynamically determined;

the clusters may be disjoint (i.e. Ci∩C j = /0 ∀i, j | i ̸= j), or some data points may belong to

multiple clusters; the union of these clusters may be equal to the full data set (i.e.
⋃NC

i=1Ci = D),

or there may be elements from the full data set that are not included in any cluster.

Quantifying the quality of a clustering on a particular data set is a challenging task in its

own right, at the most basic level due to the fact that the notion of a good clustering is itself not

universal, but depends on the specific notion of what constitutes a good cluster. The notion of a

good cluster can either be generic—e.g. an isotropically distributed set of points in Euclidean

space all close to their mean6—or specific to one data set—i.e. a gold standard, ground-truth

clustering is provided to which all predicted clusterings should be compared.

For the results presented here we will focus solely on data for which a ground-truth

clustering is available, and where the ground-truth labeling is such that every data point belongs

to exactly one ground-truth cluster, called its ground-truth label. In such cases, a perfect predicted

clustering7 is simple to identify. However, there is still no unique way of deciding which of two

imperfect predicted clusterings is “better” than the other.

We will rely on three quantitative notions when evaluating a predicted clustering: the

error rate, the V-measure, and the P4-metric. Their formulation is simplest in terms of the

so-called confusion matrix.

2.5.1 The Confusion Matrix

For a data set X , assume we have both a ground-truth clustering with Ng.t.
C distinct labels

and a predicted clustering with Npred.
C distinct labels. Then the confusion matrix

=
M ∈ ZNg.t.

C ×Npred.
C

+

6This is the notion of a ”good cluster“ that the k-means clustering algorithm relies upon
7In this context, a perfect predicted clustering means that the predicted label of every point matches that point’s

ground-truth label, modulo an inconsequential one-to-one matching between the name assigned to the predicted
labels and ground-truth labels.
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is a matrix where Mi j is the number of data points with ground-truth label i and predicted label j.

For example, consider the confusion matrix

=
M =

6 0 0
0 0 9
0 8 1

 . (2.18)

The first row of
=
M tells us that every data point with the first ground-truth label has the first

predicted label (corresponding to the first column); the second row of
=
M tells us that every data

point with the second ground-truth label has the third predicted label (column 3); the third row

of
=
M tells us that the data points with the third ground-truth label are split, with 8 of them given

the second predicted label, and one of them given the third predicted label.

Several features are worth noting:

• The sum of all the entries of
=
M is the number of data points, |X |.

• The row sums of
=
M are the numbers of data points in each of the ground-truth clusters.

• The column sums of
=
M are the numbers of data points in each of the predicted clusters.

• A reasonable approach to finding a good matching between the ground-truth label names

and the predicted label names is to find the permutation of the columns that maximizes the

sum of the diagonal entries.

Some clustering algorithms inherently produce predicted cluster names with no relation to the

ground-truth cluster names, such as spectral k-means clustering. In these cases, if Ng.t.
C = Npred.

C ,

this approach of permuting the columns to maximize the diagonal sum of the confusion matrix is

a necessary first step before some clustering metrics which assume a one-to-one mapping between

the ground-truth and predicted cluster names can be used. For square confusion matrices where

this column permutation to maximize the sum of the diagonal entries has already been done,

we will use the notation
=
Mmatched. This is called the assignment problem, and is well-studied

(Burkard and Cela 1999).
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2.5.2 The Error Rate

This is conceptually the simplest, but also potentially the most misleading clustering

metric. Assuming a one-to-one correspondence between the names used for the labels in the

ground-truth clustering and predicted clustering already exists, and defining NC ≡ Ng.t.
C = Npred.

C ,

the error rate is:

ER≡ number of incorrect labels
number of data points

=
∑

NC
i=1 Mmatched

ii

∑
NC
i=1 ∑

NC
j=1 Mmatched

i j

(2.19)

While simple to compute, grossly imbalanced class sizes will result in extremely low error rates

for what could reasonably be considered “bad” predicted clusterings. For example, if D consists

of 106 data points in two classes, with 10 data points in one class, and 106−10 points in the other,

a predicted clustering which assigned every data point to the label of the larger ground-truth

cluster would have an error rate of:

ER =
10
106 = 10−5 = 0.001%. (2.20)

But in applications, identifying elements of the rarer class is frequently the most important

and relevant task, leaving the error rate grossly unsuited as a general clustering metric. It also

requires making a label name correspondence in advance.

However, in cases where the ground-truth cluster sizes are not too dissimilar and a

suitable one-to-one matching between the ground-truth and predicted cluster names is available,

it can provide a simple and intuitive measure of the quality of a predicted clustering.

2.5.3 The V-measure

The V-measure relies on information-theoretic notions to remove the dependence on a

label name matching, and combines two relevant notions of the quality of a predicted clustering—

homogeneity and completeness—to produce a single real number in the interval [0,1]R, where a
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V-measure of 1 indicates a perfect matching (Rosenberg and Hirschberg 2007).

The Homogeneity

The homogeneity h ∈ [0,1]R of a predicted clustering answers the question “how much

information does knowing the predicted label of a data point tell me about the ground-truth

label of that data point?” It is 1 when every data point in a predicted cluster shares the same

ground-truth label for every predicted cluster. On the other hand, the homogeneity is low when

the predicted clusters contain mixtures of ground-truth labels. It is defined as

h =

 1− H(Cg.t.|Cpred.)

H(Cg.t.)
if H(Cg.t.,Cpred.) ̸= 0

1 if H(Cg.t.,Cpred.) = 0
(2.21)

where the two entropies H can be more easily expressed by defining the normalized confusion

matrix probability distribution
=
p and its marginals as:

pi j ≡
1
|D|

Mi j pg.t.
i ≡

Npred.
C

∑
j=1

pi j ppred.
j ≡

Ng.t.
C

∑
i=1

pi j (2.22)

where pi j is the fraction of data points which are in the ith ground-truth cluster and the jth

predicted cluster. Then:

H(Cg.t.)≡−
Ng.t.

C

∑
i=1

pg.t.
i ln pg.t.

i (2.23)

H(Cg.t.
∣∣Cpred.)≡−

Ng.t.
C

∑
i=1

Npred.
C

∑
j=1

pi j ln

(
pi j

ppred.
j

)
(2.24)

The Completeness

The completeness c ∈ [0,1]R of a predicted clustering answers the question “how much

information does knowing the ground-truth label of a data point tell me about the predicted
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label of that data point?” It is 1 when every data point in a ground-truth cluster shares the same

predicted label for every ground-truth cluster. On the other hand, the completeness is low when

the ground-truth clusters contain mixtures of predicted labels. It is defined as

c≡

 1− H(Cpred.|Cg.t.)

H(Cpred.)
if H(Cg.t.,Cpred.) ̸= 0

1 if H(Cg.t.,Cpred.) = 0
(2.25)

where the two relevant entropies are:

H(Cpred.)≡−
Npred.

C

∑
j=1

ppred.
j ln ppred.

j (2.26)

H(Cpred.
∣∣Cg.t.)≡−

Ng.t.
C

∑
i=1

Npred.
C

∑
j=1

pi j ln

(
pi j

pg.t.
i

)
(2.27)

The V-measure

The V-measure is then defined as the harmonic mean of the homogeneity and the com-

pleteness:

vmeasure ≡
2

1
h +

1
c

=
2hc

h+ c
(2.28)

The use of the harmonic mean has a few nice consequences:

• vmeasure ∈ [0,1]R

• If either the homogeneity or the completeness is zero, then the V-measure is also zero.

• The V-measure satisfies vmeasure ≤ 2min(h,c), so if either the homogeneity or the com-

pleteness is small, the V-measure must be, as well.

• vmeasure = 1 requires that h = 1 and c = 1, implying a perfect matching between the

predicted and ground-truth clusterings.
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2.5.4 The P4-metric

The P4-metric is a recently introduced binary classification metric (Sitarz 2023). It

evaluates the performance of a binary classifier, so it is only suited to provide a single number

to quantify the quality of a clustering algorithm when both the ground-truth and predicted

clusterings contain two clusters each. However, it can still be used to derive a per-cluster notion

of how good a predicted clustering is when we have a matched confusion matrix
=
Mmatched and its

associated normalized confusion matrix probability distribution
=
p ∈ RNC×NC . The P4-metric for

cluster n ∈ [1,NC]Z is the harmonic mean of four conditional probabilities for a data point d ∈ D

drawn uniformly from the entire data set:

• P(d ∈Cg.t.
n |d ∈Cpred.

n ) = pnn

ppred.
n

,

• P(d ∈Cpred.
n |d ∈Cg.t.

n ) = pnn

pg.t.
n

,

• P(d /∈Cg.t.
n |d /∈Cpred.

n ) = 1−ppred.
n −pg.t.

n +pnn

1−ppred.
n

, and

• P(d /∈Cpred.
n |d /∈Cg.t.

n ) = 1−ppred.
n −pg.t.

n +pnn

1−pg.t.
n

.

Then an NC class clustering will have NC P4-metrics, one for each cluster.
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2.6 Synthetic Benchmarks

2.6.1 Annulus with Disk anomalies

This class of synthetic distributions consists of a point cloud in two dimensions with

NC = 4 disjoint regions where points are drawn, as shown in figure (2.1). The number of points

drawn in each disjoint region of the distribution is fixed in order to avoid situations where random

sampling may lead to uninformative variations in the number of points in the smaller regions of

the distribution.

For all of the results on this “annulus with disk anomalies” point clouds that follow,

certain parameters defining the point clouds are fixed and do not change:

• The annulus has R = 1, w = 0.05, and is filled with 950 points drawn at random from a

uniform distribution in the interior of the annulus.

• The small disks have r = 0.05, and counterclockwise from the leftmost disk are filled

with 12, 24, 48 points drawn from a uniform distribution in the interior of the disk. These

correspond to the disks having point densities that are approximately half of, equal to, and

double the point densities in the annulus.

• The graphs are constructed with an adaptive bandwidth with k = 5 held fixed. The effective

score
¯
Seff. was computed with tmin = 0, keeping the 10% of the eigenvector/value pairs

with the slowest time evolution (i.e. the 10% of eigenpairs with the smallest values of

λ (L)).

The euclidean distance separating the region of support for the disk anomalies and the annulus is

uniform for all three disk anomalies for each realization of this point cloud, and is called d. This

distributional gap d is a parameter that we will vary in what follows to control how difficult this

data set is to cluster.
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Figure 2.1. The annulus with disk anomalies distribution (left), and an example
point cloud drawn from this distribution color coded by score

¯
Seff. (right). The use

of this class of test distributions was inspired by X. Cheng and Mishne 2020

51



Annulus Spectral k-means Results

The results of figures (2.2) and (2.3) show an obvious improvement over standard spectral

clustering with no boundary point pruning, providing good clustering performance down to

approximately two thirds of the distribution gap where standard spectral clustering breaks down.

We will first focus on figure (2.2)(a,c), which show the clustering performance on the volume

subgraph after removing the identified boundary vertices.

Figure (2.2)(a) shows the clustering performance as a function of both the distribution

gap d and the fraction of the data points that are pruned to produce the volume subgraph. The

standard spectral clustering result lies on the x-axis of this plot, and a clear improvement in the

V-measure is observed at low distribution gap values of d ≲ 0.1, as is evident in figure (2.2)(c).

Furthermore, improvement in the V-measure is stable for a wide range of amounts of pruning,

showing that our approach is stable and is not dependent on careful fine-tuning of the degree of

pruning.

If we look at a constant amount of pruning of approximately 2% or more in figure figure

(2.2)(a), we see a decrease in performance relative to the no-pruning case in the approximate

distribution gap range d ≈ 0.15, with higher V-measures both below and above these values

of the distribution gap. We attribute this behavior to the following: at large distribution gaps

d > 0.15, the disk anomalies and the annulus are nearly or completely disconnected, and the

score
¯
Seff. is primarily identifying widely-distributed points in the point cloud due to random

density fluctuations. In this regime, the clustering is robust against a large number of points

pruned. As the distribution gap enters the d ≈ 0.15 regime, however, the score identifies points

on the annulus near the disk anomalies. With a sufficient number of points pruned in this regime,

the annulus is cut into multiple segments, severely degrading clustering performance. When

d < 0.15, the vertices with the largest values of the score are a mixture between points on the

annulus due to random density fluctuations, and points near the anomalies, restoring robustness

to large amounts of point pruning and preventing the segmentation of the annulus.
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Figure (2.2)(b,d) show the clustering performance when we take the labels computed

by spectral clustering on the volume subgraph and use label diffusion to produce labels on the

full graph. The behavior is largely similar to the behavior on the volume subgraph shown in

(2.2)(a,c), showing that this method respects our intuition that there is an obvious label that

should be provided to every data point on this data set.

The per-cluster performance shown in figure (2.3) on the full graph (i.e. using label

diffusion to propagate labels from the volume subgraph to the full graph when pruning boundary

data points) validates that the per-cluster performance is quite good down to distribution gaps

approximately two thirds of those where standard spectral clustering begins to break down. The

half-density disk in figure (2.3)(d) is the most difficult to to cluster, and it is the breakdown in

clustering of this half density disk (which contains only 12 points) which dictates the initial drop

in performance in the annulus P4-metric as the distribution gap falls below 0.10.
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Figure 2.2. The global performance of classical spectral clustering (no pruning)
versus optimally pruned and backfilled spectral clustering (optimal pruning), as
measured by the V -measure. The constant-V-measure contour lines in (a) and (b) are
computed on a gaussian-filter-smoothed version of the underlying image in order
to produce comprehensible contours, with a standard deviation of approximately 1
image pixel. The optimal pruning lines in (c) and (d) show the maximum value of
the V-measure over all possible amounts of point pruned per distribution gap value,
while the no pruning lines correspond to directly applying spectral clustering with a
k-means backend on the full graph without identifying or removing any boundary
points first. Note that the volume subgraph used in (a) and (c) is variable, i.e. it
contains fewer vertices as the amount of points pruned increases.
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Figure 2.3. The per-cluster performance of standard spectral clustering with a
k-means backend (no pruning) versus optimally pruned and back-filled spectral
clustering (optimal pruning). Note that the amount of pruning as a function of the
distributional gap used to define the “optimal pruning” plots is the same for all
four graphs, and is determined by the amount of pruning that maximizes the global
V-measure on the volume subgraph, as in figure 2.2(a) and (c).
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Annulus Active Learning Results

Figure (2.4) shows the global clustering behavior for active learning on the annulus

dataset, where NQ = 4 groundtruth labels have been queried in all cases. Without pruning of

boundary vertices, the active learning algorithm shows markedly better V-measure performance

at low-distribution gaps than standard spectral clustering with a k-means backend shown in figure

(2.2). The optimal-pruning performance for the active learning results shows a similarly notable

improvement.

Where active clustering performs dramatically better than standard spectral clustering

with a k-means backend is in the large-amount-of-pruning limit, and in general in insensitivity to

the specific amount of pruning. The dramatic dips in performance by standard spectral clustering

for distributional gaps of d ≈ 0.15 that begin with as low as ∼1.5% of points pruned simply do

not appear. Recall that the failure mode of standard spectral clustering using a k-means backend

at large amounts of pruning is the annulus becoming severed by the boundary vertex pruning,

leading to the k-means backend preferring to target the large segmented pieces of the annulus for

clustering over the smaller disk anomalies.

However, the segmentation of the annulus does not matter to the active learning algorithm

so long as the segments of the annulus produced by pruning are still more tightly coupled to the

rest of the annulus than to the disk anomalies under label diffusion (algorithm (2)). This shows

the strong benefit of choosing an active learning point selection strategy that is intrinsically

compatible with our boundary identification, as algorithm (3) is.

The per-cluster active learning performance shown in figure (2.5) tells a similar story to

that of the standard spectral clustering per-cluster performance in figure (2.3).
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Figure 2.4. The performance of classical spectral clustering (no pruning) versus
optimally pruned and backfilled spectral clustering (optimal pruning), as measured
by the V -measure. The constant-V-measure contour lines in (a) and (b) are computed
on a gaussian-filter-smoothed version of the underlying image in order to produce
comprehensible contours, with a standard deviation of approximately one image
pixel. The optimal pruning lines in (c) and (d) show the maximum value of the
V-measure over all possible amounts of point pruned per distribution gap value,
while the no pruning lines correspond to directly applying spectral clustering with a
k-means backend on the full graph without identifying or removing any boundary
points first. The error bars in (c) and (d) are the standard errors of the estimate of
the mean from a bootstrap analysis of 20 independent simulations per pixel in (a)
and (c). Note that the volume subgraph used in (a) and (c) is variable, i.e. it contains
fewer vertices as the amount of points pruned increases.

57



Figure 2.5. The per-cluster performance of classical spectral clustering (no pruning)
versus optimally pruned and backfilled spectral clustering (optimal pruning). The
error bars are the standard errors of the estimate of the mean from a bootstrap
analysis.
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2.7 Salinas-A Hyperspectral Imagery

The corrected8 Salinas-A Scene Hyperspectral image (HSI) data set (Green et al. 1998) is

an 86×83 pixel hyperspectral image with the spectrum of each pixel having 204 bands, resulting

a point cloud of 7138 points in 204 dimensions. There are 6 ground-truth labels, as well as 1790

unlabeled points in the ground-truth, which were omitted in this analysis, leaving a 5348 point

labeled data set. The data was clustered using the active learning label diffusion algorithm. Note

that since the smallest ground-truth cluster (corresponding to the ‘Brocoli green weeds 1’ label)

constitutes over 7.3% of the data points, and many of the error rates under consideration are well

below this, the error rate is meaningful and will be reported in addition to the V-measure.

For the large-NQ (large number of ground truth labels queried) experiments of figures

(2.6-2.9), approximately half of the data points were used by deleting every other row of the

image to reduce computation time to gather sufficient statistics. The graph was constructed with

an adaptive bandwidth scheme with k = 3, and the score
¯
Seff. was computed with tmin = 10 and a

truncated eigendecomposition keeping the 10% of eigenpairs with the smallest values of λ (L).

The variable volume subgraph performance shown in figure (2.6) shows the error rate

dropping by a factor of two to four (depending on the number of labels queried) when comparing

the no-pruning case to the to the ≳ 250 points pruned cases, with approximately stable perfor-

mance from approximately 250 to 400 points pruned. This is a clear indication that the first

boundary points we are removing are precisely those that are difficult to cluster, and clustering

on the variable volume subgraph is easier than on the full graph. However, the full graph error

rate slightly increases as the number of vertices pruned increases. The V-measure plots of figure

(2.8) tell a similar story.

Figure 2.7 suggests an answer to this puzzling behavior. It shows the label error rate on

the fixed volume subgraph of the same 2677−400 = 2277 vertices from the maximally-pruned

case. The fixed volume subgraph plot of this figure makes clear that the pruning is not improving

8Corrected refers to the deletion of certain water absorption bands from the data.
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Figure 2.6. Active learning labeling in the large-NQ limit on a downsampling of
the Salinas-A scene as measured by the error rate on the variable (i.e. scaling with
the number of vertices pruned) volume subgraphs and the full graph. The error bars
show the standard error of a bootstrap estimate of the mean of repeated labeling
experiments.

Figure 2.7. The error rate of the same experiments used to generate figure (2.6),
with the volume subgraph error rate evaluated on the fixed volume subgraph from
the maximally pruned case (i.e. the 2677−400 = 2277 vertex) volume subgraph.
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Figure 2.8. Active learning labeling in the large-NQ limit on a downsampling of
the Salinas-A scene as measured by the V-measure on the variable (i.e. scaling with
the number of vertices pruned) volume subgraphs and the full graph. The error bars
show the standard error of a bootstrap estimate of the mean of repeated labeling
experiments.

Figure 2.9. The V-measure of the same experiments used to generate figure (2.8),
with the volume subgraph V-measure evaluated on the fixed volume subgraph from
the maximally pruned case (i.e. the 2677−400 = 2277 vertex) volume subgraph.
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the labeling error rate on the 2277 volume vertices of this fixed subgraph for 50 or 100 labels

queried, with complex behavior observed for 25 labels queried until more than 200 vertices have

been pruned. Again, the V-measure plots of figure (2.9) corroborate this.

We hypothesize that these seemingly conflicting performance trends as a function of

pruning can be reconciled by recognizing that the ground truth labels do not actually respect

the boundaries between clusters as defined by the diffusion process on our graph. Rather, along

the diffusion boundaries, the ground-truth labels have a complex structure. If we query a large

fraction of ground-truth labels on the full graph with no pruning, we can directly discover this

complex structure. However, removing the boundary points before querying for ground-truth

labels impedes discovery of this structure, thus leading to a drop in performance as a function of

increased pruning as measured by the full-graph error rate and V-measure.

This naturally suggests that this boundary-pruning active-learning algorithm should

perform best at low query numbers. For these low-NQ experiments, the full Salinas-A scene

data set was used with all 5348 data points. The graph was constructed with an adaptive

bandwidth scheme with k = 5, and the score
¯
Seff. was computed with tmin = 10 and a truncated

eigendecomposition keeping the 10% of eigenpairs with the smallest values of λ (L).

The performance story is shockingly good as the number of labels queried drops to

approximately twice the number of distinct ground-truth labels, as shown by the error rate and

V-measure in figures (2.10-2.13). In this low-NQ regime, both the variable and the fixed volume

subgraphs show clearly improved error rates and V-measures above approximately 850 vertices

pruned, the we see approximately 1% error rates in the vicinity of 1000 points pruned across

10, 12, and 14 labels queried. Even with only 12 labels queried, which is only twice the number

of distinct labels in the data set being analyzed, error rates of approximately 1-4% are seen

across a wide range of 850-1500 vertices pruned. Querying 14 labels further improves the

independence of the performance from any need to precisely tune the degree of pruning in this

regime. Depending on the points of comparison, this is a reduction in the error rate by up to an

order of magnitude.
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Figure 2.10. Active learning labeling in the small-NQ limit on the full Salinas-A
scene as measured by the error rate on the variable (i.e. scaling with the number
of vertices pruned) volume subgraphs and the full graph. The error bars show the
standard error of a bootstrap estimate of the mean of repeated labeling experiments.

Figure 2.11. The error rate of the same experiments used to generate figure (2.10),
with the volume subgraph error rate evaluated on the fixed volume subgraph from
the maximally pruned case (i.e. the 5348−1500 = 3848 vertex) volume subgraph.
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Figure 2.12. Active learning labeling in the small-NQ limit on the full Salinas-A
scene as measured by the V-measure on the variable (i.e. scaling with the number
of vertices pruned) volume subgraphs and the full graph. The error bars show the
standard error of a bootstrap estimate of the mean of repeated labeling experiments.

Figure 2.13. The V-measure of the same experiments used to generate figure (2.12),
with the volume subgraph V-measure evaluated on the fixed volume subgraph from
the maximally pruned case (i.e. the 5348−1500 = 3848 vertex) volume subgraph.
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The performance on the full graph shows a higher error rate and lower V-measure than

on the Volume subgraphs in the 850-1500 vertices pruned regime, but despite this still shows a

∼1.5- to 5-fold improvement in the error rate from the 0 pruning case, depending on the number

of labels queried.

All of these Salinas-A results were obtained on the raw hyperspectral image data, with

no pre-processing with any other method other than excluding the ‘0’ label (corresponding to no

cluster in the original dataset). This method compares favorably to methods relying on the point

cloud directly, such as A. Cloninger and Mhaskar 2021, where the data was pre-processed with

PCA and a spatial-density estimator was used to remove points from low-density regions prior to

label querying to achieve an approximately 4% error rate at 10 labels queried, only reaching an

approximately 2% error rate when ≳ 200 labels were queried.

This chapter, in part, is being prepared for submission for publication of the material. The

dissertation author was the primary investigator and author of this material. Professor Alexander

Cloninger is the sole co-author of the material being prepared for submission for publication.
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Chapter 3

Tensor Network Theory

3.1 Introduction

Tensor networks can be used to provide a low-dimensional parameterization of an ex-

tremely high dimensional vector space having a tensor product structure (Orús 2019). Prototypi-

cal tensor network examples include Tensor Train Networks/Matrix Product States (TTN/MPS)

and Projected Entangled Pair States (PEPS) (Orús 2014), and Multiscale Entanglement Renor-

malization Ansatz (MERA) (Evenbly and Vidal 2011). For a review of the basic concepts of

tensor networks, which we will not rehash here, see Biamonte and Bergholm 2017.

3.2 PEPS Patch Networks

In this work two dimensional PEPS network will form the basis of a generative image

model. While PEPS networks provide a memory-efficient way to store vectors in the total Hilbert

space, contractions of such networks are notoriously difficult, in general exhibiting exponential

complexity in the size of the network (Pang et al. 2020). Indeed, it is precisely this difficulty

which explains the popularity of tree tensor networks (S. Cheng et al. 2019) and matrix product

states (Stoudenmire and Schwab 2016) on image data, despite their inability to respect the

two-dimensional nature of the correlations in a natural fashion.

To address this, we propose slicing a PEPS network into patches as shown in figure (3.1)

and using these patches to perform local computations using only information in spatially local
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portions of the image and network. For N×M pixel greyscale images, denote by x ∈ RN×M

the N ×M element matrix encoding the brightness of each pixel (where xi j ∈ [0,1], with 0

corresponding to black and 1 corresponding to white). Next, define vector spaces corresponding

to the pixels, patches, and images as:

Pixel Hnm is the local Hilbert space associated with the pixel at row n and column m, with

dimension dnm ≡ dim(Hnm)

Patch H
(p)

nm ≡
⊗n+p

n′=n−p
⊗m+p

m′=m−p Hnm is the patch Hilbert space consisting of the tensor prod-

uct of all local Hilbert spaces within p ∈ Z++ of (n,m) in ∞-norm. It is understood

that if the indices n′,m′ in these tensor products runs out of the valid range n ∈ [1,N]Z,

m ∈ [1,M]Z, that those terms are omitted.

Image Htot ≡
⊗N

n=1
⊗M

m=1 Hnm is the hilbert space associated with the full-image embedding

of dimension D = ∏
N
n=1 ∏

M
m=1 dnm.

We can then define feature maps for pixels, patches, and whole images, where we lift

the description of an N×M pixel image to a high-dimensional vector space defined by a tensor

product structure:

Pixel φ : R→Hnm is a pixel feature map.
¯
φ(x) = [cos(πx/2),sin(πx/2)]† is one example of

such a map, which will be used throughout the rest of this work.

Patch
¯
Φ

(p)
nm (x) ≡

⊗n+p
n′=n−p

⊗m+p
m′=m−p ¯

φ(xnm) is the feature map of the patch centered at pixel

(n,m) of ∞-norm radius p. Note that
¯
Φ

(p)
nm (x) ∈H

(p)
nm .

Image
¯
Φ(x) =

⊗N
n=1

⊗M
m=1

¯
φ(xnm) is the feature map of the entire image. Clearly,

¯
Φ(x) ∈Htot

The model we propose for image generation is to define a set of positive semi-definite

(PSD) matrices
{

=
ρ
(p)
nm

∣∣∣∣ =ρ(p)
nm ∈H

(p)
nm ⊗H

(p)
nm

†
∀n ∈ [1,N]Z, m ∈ [1,M]Z

}
. These PSD matri-

ces are then used for image generation as detailed by algorithm (5).
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Algorithm 5. Image generation algorithm

∀ n ∈ {1, ...,N}, m ∈ {1, ...,M}, define a PSD matrix
=
ρ
(p)
nm ∈H

(p)
nm ⊗H

(p)
nm

†
from the training

data.

Initialize a random image
=
x ∈ [0,1]N×M

R

¯
φ (nm) ≡

¯
φ(xnm) ▷ per-pixel feature map

Require: η ∈ R+ ▷ image generation step size
repeat

for n=1 to N do
for m=1 to M do

∆xnm← η

(
∂

¯
φ nm

∂xnm

)(
∂

¯
φ nm ln

((
¯
Φ

(p)
nm (

=
x)
)†
·
=
ρ
(p)
nm · ¯

Φ
(p)
nm (

=
x)
))

end for
end for

for n=1 to N do
for m=1 to M do

xnm← xnm +∆xnm
end for

end for

until convergence of
=
x
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Figure 3.1. At left, a full PEPS network is shown, with the tensor corresponding
to pixel (n,m) highlighted in red. The dangling legs here are the physical legs
which correspond to the Hilbert spaces Hnm. For patch radius p = 1, we can cut
out the 3×3 sub-network shown. At right, the (unnormalized) patch density matrix

ρ(p)
nm
∈H

(p)
nm ⊗H

(p)
nm

†
is shown, where the cut internal legs along the edge of the

3×3 patch are joined to a second copy of the 3×3 sub-network, which represents
its adjoint.

3.3 Training PEPS Patch Networks

The choice of how to define
=
ρ
(p)
nm from the training data

Xtrain ≡
{

=
x(n)train

∣∣∣=x(n)train ∈ [0,1]N×M
R , n ∈ [1,Ntrain]

}
(3.1)

and which pixel feature map
¯
φ(x) is used to define Φ⃗

(p)
nm (

=
x) give different variations of this image

generation algorithm. The simplest construction is to take a linear combination of outer products

of the patch feature map vectors for each training image:

=
ρ
(p),naive
nm =

Ntrain

∑
n=1 ¯

Φ
(p)
nm

(
=
x(n)train

)(
¯
Φ

(p)
nm

(
=
x(n)train

))†
(3.2)

where the overall normalization of this sum is irrelevant because of the logarithm in the image

generation algorithm (5). This naive construction is tantamount to memorizing the training set,

however, and so is undesirable from a memory (and memory requirements, for large data sets)

perspective.
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Instead of this naive construction, we will define our patch density matrices by defining a

single PEPS network, and using overlapping patches of it to define our patch density matrices,

as shown in figure (3.1). This allows parameter sharing between the different patch density

matrices, dramatically reducing the size of the model, especially for larger patch radii p.

Our image generation algorithm (5) implies that
¯
Φ

(p)
nm (

=
x)

†
·
=
ρ
(p)
nm · ¯

Φ
(p)
nm (

=
x) ∈ [0,+∞)R

should be large if the image patch centered at pixel (n,m) in
=
x is similar to the training data, and

small otherwise. We propose algorithm (6) to achieve this. It features a loss function with two

notable features. The first is that the matrix elements
¯
Φ†

¯
ρ

¯
Φ only appear as their logs, which

allows the overall normalization of the patch density matrices
¯
ρ to be ignored in derivatives

of this quantity, as in the image generation algorithm (5). The second feature is that the loss

functions L try to push all matrix elements of images in the training set to a particular value,

ln(C), where C ∈ (0,+∞)R is a tunable training parameter. This ensures that features common

to many training examples do not wash out rarer features in the training set and end up producing

a trivial model.

3.3.1 Network Cuts and the R-Term Tensor Decomposition

The arbitrariness of the network cuts used to define the patch density matrices
=
ρ
(p)
nm seems

like a fatal flaw of this proposal. Each leg of every tensor is used in two distinct ways: it is

contracted with a leg of a neighboring tensor, but it is also contracted with the corresponding leg

of that same tensor adjoint when that leg is cut to define a (2p+1)× (2p+1) PEPS patch and

used to define the density matrix.

This arbitrariness can be lifted by enforcing specific behavior when any of a tensor’s

internal bond legs are contracted with its adjoint. We achieve this by writing each tensor as an

R-term decomposition. WOLOG we consider the case of two order-two tensors (i.e. matrices)1,

1See appendix C.1 for details on this.
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Algorithm 6. Model Training Algorithm with Explicitly Represented Tensors

Initialize a 2D N×M PEPS tensor network, with tensors
{

T(nm)
∣∣∣n ∈ [1,N]Z, m ∈ [1,M]Z

}
.

Require: C ∈ (0,+∞)R ▷ target value for matrix elements

L
(k)

nm ≡
(

ln
((

¯
Φ

(p)
nm (

=
x(k)train)

)†
·
=
ρ
(p)
nm(T(nm)) ·

¯
Φ

(p)
nm (

=
x(k)train)

)
− ln(C)

)2

▷ per-training image loss

L tot.
nm ≡ 1

Ntrain ∑
Ntrain
k=1 L

(k)
nm ▷ average loss over the training set

Require: η ∈ R++ ▷ tensor gradient descent step size

repeat
for n=1 to N do

for m=1 to M do
∆T(nm)←−η∂T(nm)L tot.

nm
end for

end for

for n=1 to N do
for m=1 to M do

T(nm)← T(nm)+∆T(nm)

end for
end for

until convergence of {T(nm)}
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where the outer product construction is used in place of the tensor product notation for clarity:

A =
RA

∑
rA=1

αrA û(rA)â(rA)
bond

†
(3.3)

B =
R

∑
rB=1

βrB b̂(rB)
bondv̂(rB)

†
(3.4)

where â(rA)
bond, b̂(rB) ∈Hbond. The original N×M PEPS network that A and B are tensors of

contracts to the same quantity so long as the value of A ·B is preserved. This contraction of A

with B is insensitive to the specific values of the unit bond vectors {â(∗)bond} and {b̂(∗)bond} so long

as their dot products are preserved:

â(rA)
†
· b̂(rB) = GAB

rArB
(3.5)

which is the manifestation of the so-called gauge invariance present in tensor networks (Evenbly

2022). This invariance to the specific values of the bond vectors in the R-term decomposition

can then be used to require

â(rA)
†
· â(r

′
A) = GA

rAr′A
= δrAr′A

b̂(rB)
†
· b̂(r

′
B) = GB

rBr′B
= δrBr′B

(3.6)

while keeping â(rA)
† · b̂(rB) = GAB

rArB
fixed.

With this condition on the bond vectors applied, the contractions on the internal legs of

every tensor in the network satisfy:

AA† =
RA

∑
rA=1
|αrA|

2û(rA)û(rA)
†

(3.7)

BB† =
RB

∑
rB=1
|βrB|

2v̂(rB)v̂(rB)
†

(3.8)

AB =
RA

∑
rA=1

RB

∑
rB=1

αrAβrB

(
â(rA)

bond

†
· b̂(rB)

bond

)
û(rA)v̂(rB)

†
. (3.9)
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It should be emphasized that this choice of gauge is largely motivated by computational

complexity. With this choice in place, contracting the outer ring of blue tensors in figure (3.1)

used to calculate the patch density matrix
=
ρ
(p)
nm prevents a quadratic increase in the number of

terms in the R-term representation of those contracted edge tensors.

3.3.2 Contracting Patch Density Matrices

The contraction order for computing
¯
Φ

(p)
nm (

=
x)

†

=
ρ
(p)
nm ¯

Φ
(p)
nm (

=
x) is shown in figure (3.2). The

computational complexity of this contraction is well controlled until the last step due to the

properties of the patch network. Following the computation step by step:

1. Because the pixel feature maps
¯
φ have only one term in an R-term decomposition, as they

are simple vectors, contracting the pixel feature maps (the small magenta diamonds) into

the outer ring of tensors in the patch (the blue circles) does not increase the number of

terms in their R-term decompositions, but rather only rescales the constant of each term.

2. Collapsing the two outer rings of tensors requires us to contract along the bonds that

were cut from the full network and rejoined to form the density matrix. These bonds are

precisely those discussed in section 3.3.1, and since the gram matrix of the vectors on

the bond in the R-term decomposition is orthogonal, this process does not increase R, but

rather only rescales the constants in the R-term decomposition.

3. The four corner tensors in the ring of eight tensors are order two, i.e. they are matrices.

They can be directly multiplied onto the vectors in the R-term decompositions of the order

four tensors in the ring without increasing R.

4. The final contraction of the four order-four tensors into a single order eight tensor unavoid-

ably results in a tensor with R4 terms in its R-term decomposition in general.

The complexity of the final step, which leads to a quartic increase in the number of terms

required to represent the intermediate tensor, leads us to consider a stochastic sampling scheme
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Figure 3.2. Evaluating the scalar
(
Φ

(p)
nm (x)

)†
ρ(p)

nm
Φ

(p)
nm (x) is performed by contract-

ing the tensor network shown, starting from the top left and proceeding clockwise.
The red circles represent T(nm), the tensors at the center of the patch, the blue circles
are the surrounding tensors, and the small magenta diamonds are the feature maps
φ(xi j) of individual pixels in the image. Note that, except for the last contraction
step, nothing here increases the number of terms in the R-term representation of the
intermediate tensors.

74



Figure 3.3. From the tensor network representation of the patch density matrix

element g(p)
nm ≡

(
Φ

(p)
nm (x)

)†
ρ(p)

nm
Φ

(p)
nm (x) (left), we can derive (up to an inessential

multiplicative factor of 2) the tensor network representations of the derivative needed
for the model training algorithm (6), ∂T(nm)g

(p)
nm (center tensor network), as well as

the derivative needed for the image generation algorithm (5), ∂φ
nm g(p)

nm (right tensor
network).

which is discussed in section 3.5.

3.4 Gradient Optimization of Tensor Decompositions

If we wish to make use of the convenient properties of the R-term decomposition in these

algorithms, our gradient-based optimization of the model tensors must be in the parameter space

of the R-term decomposition, not in the explicit representation of the tensor where every element

is stored. Assume an order N tensor has an R-term representation

T =
R

∑
r=1

αrv̂
(1)
r ⊗·· ·⊗ v̂(N)

r , (3.10)

where v̂(n)r is the unit vector on leg n from term r in the expansion, and not just one element of that

vector. Storing each parameter of this representation of T involves storing R
(
1+∑

N
n=1 dn

)
real

numbers. We refer to the the list of these numbers, stored as a R
(
1+∑

N
n=1 dn

)
element vector, as

serial(T), and will also use the shorthand
¯
p for these parameters. With this notation, the tensor

can also be written as a function of the serialized parameter vector T(
¯
p). Note that, since R-term
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decompositions are highly non-unique, “serial(·)” cannot be a function of the tensor T itself

at all. Nevertheless, the notation is useful and will be assumed to refer to a particular R-term

decomposition of the argument of “serial(·)”, which is typically clear from context. T(
¯
p), on the

other hand, is unambiguous, as each list of parameters maps to a single tensor with knowledge

of the dimensions of each leg and the order of serialization.

In the model training algorithm (6) the tensors T(nm) must be updated to approximate

another tensor Ttarget = T+∆ while, for complexity reasons, keeping the number of terms

in the decomposition of T fixed at R. We can do this by updating the parameters of the

R-term decomposition of T to approximate T+ ∆ in l2-norm. Computing the gradient of∣∣Ttarget−T(
¯
p+

¯
δ p)
∣∣
2 with respect to

¯
δ p is conceptually and computationally simple. The

problem comes at the update step, where we wish to update the parameter list using a classic

gradient descent correction:

¯
p′ =

¯
p−ηp ∂

¯
p
∣∣Ttarget−T(

¯
p+

¯
δ p)
∣∣2
2︸ ︷︷ ︸

≡
¯
g

=
¯
p−ηp

¯
g. (3.11)

Generically, as ηp → 0+, this results in a first order correction to T′ = T+ηp δT+O(η2
p).

However, for finite parameter space step sizes ηp, T′ is an (N +1)th order polynomial in ηp, and

for large ηp grows in norm as η
(N+1)
p . What value of ηp is large enough to transition from the

safe, linear correction regime to the poorly conditioned regime is specific to T, the ambient-space

correction ∆, and thus is dynamic over the course of training.

This presents a massive challenge, as this produces a poorly conditioned optimization

problem in the parameter space of the R-term decompositions of the tensors since most of

the tensors being optimized are order five in a 2D PEPS network. We resolve this problem

by augmenting the parameter-space gradient descent optimization with information from the

ambient space H ∋ T. Our approach is to assume a pre-computed ambient-space correction

∆ ∈H to T. Then do a numerical line-search to find the parameter-space step size ηp in the
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direction indicated by the gradient which minimizes the error E(ηp) between the target tensor

Ttarget and the corrected tensor T(
¯
p−ηp

¯
g). This process is detailed in algorithm (7).

Algorithm 7. Ambient-space-informed tensor parameter optimization step

∆ ∈H ,
¯
p ∈ R(1+d1+···+dN)R ▷ ∆ is the ambient space step computed elsewhere

Require: |∆|2 > 0

T(·) : R(1+d1+···+dN)R→H

Ttarget ≡ T(
¯
p)+∆

¯
g← ∂

¯
δ p
∣∣Ttarget−T(

¯
p+

¯
δ p)
∣∣2
2

∣∣∣
¯

δ p=0

E(ηp)≡
∣∣Ttarget−T(

¯
p−ηp

¯
g)
∣∣
2

ηmin
p ← argmin(E(ηp) |ηp ≥ 0)

¯
p←

¯
p−ηmin

p
¯
g

The argmin optimization over the error E(ηp) can be efficiently performed by a variety

of line search optimizers. E(ηp) can be written as a function of three inner products:

E(ηp) =

√
T†

target ·Ttarget−2
(

T†
target ·T(

¯
p−ηp

¯
g)
)
+T†(

¯
p−ηp

¯
g) ·T(

¯
p−ηp

¯
g). (3.12)

While the T†
target ·Ttarget term is high computational complexity since generally the update

∆ that is being approximated here has a large number of terms in its R-term representation,

this term need only be computed once at the beginning of the optimization process. While

T†
target ·T(

¯
p−ηp

¯
g) and T†(

¯
p−ηp

¯
g) ·T(

¯
p−ηp

¯
g) must be re-computed at every evaluation of

E(ηp) during the argmin optimization, they are comparatively cheap due to the low number of

terms in the R-term representation of T(
¯
p−η

¯
g).

3.5 Unbiased Sampling of MPS/MPO Networks

The quartic contraction complexity of the last contraction in used to construct the patch

quantities in figure 3.2 encourages exploration of statistical, unbiased estimates of the diamond
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of four tensors, and whether this can be done efficiently using the R-term decomposition2 of the

relevant tensors. To investigate this, use the tensor origami procedure outlined in appendix C.1 to

transform an arbitrary-order tensor A into a vector
¯
A = ∑⃗r α⃗r v̂⃗r. Then define a random variable˜̄A as follows: ˜̄A = ∑

r⃗
α̃⃗r v̂⃗r (3.13)

We wish to choose the properties of α̃⃗r such that E(˜̄A) =
¯
A. Exploiting the linearity of expected

values:

E(˜̄A−
¯
A) = E

(
∑
r⃗
(α̃⃗r− α⃗r)v̂⃗r

)
= ∑

r⃗
E(α̃⃗r− α⃗r)v̂⃗r = 0 (3.14)

A sufficient (though not necessary) condition to satisfy this equation is

E(α̃⃗r) = α⃗r (3.15)

3.6 Controlling the Sampling Variance

3.6.1 Fixing the Mean

When approximating a vector |B⟩= ∑
NB
i=1 bi |i⟩ as |B̃⟩= ∑

NB
i=1Yi |i⟩, where Yi are random

variables and ⟨i| j⟩= Gi j, the linearity of the expectation guarantees that E(|B̃⟩) = |B⟩ so long as

E(Yi) = bi. The variance will depend on more detailed properties of the random variables {Yi},
2The R-term decomposition, also called the CANDECOMP/PARFAC decomposition, and other tensor decompo-

sitions are reviewed in Grasedyck, Kressner, and Tobler 2013.
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however, as follows:

E
(∣∣|B⟩− |B̃⟩∣∣22)= E

(
⟨B|B⟩+ ⟨B̃|B̃⟩−⟨B̃|B⟩−⟨B|B̃⟩

)
= E

(
⟨B̃|B̃⟩

)
−⟨B|B⟩

= ∑
i, j

[
E
(
Y ∗i Y j

)
−b∗i b j

]
Gi j

= ∑
i, j

[
σi j +E(Y ∗i )E(Yj)−b∗i b j

]
Gi j

E
(∣∣|B⟩− |B̃⟩∣∣22)= ∑

i, j
σi jGi j

where σi j ≡ E
(
Y ∗i Y j

)
−E(Y ∗i )E(Yj) is the covariance matrix of the Yi random variables, and it

is assumed above that E(Yi) = bi.

If we define {Yi|i ∈ {1,2, . . .NB}} as

Yi ≡ ci

MB

∑
m=1

δ
i,Q(α)

m
(3.16)

where ci ∈ C, and {Q(α)
m |m ∈ {1,2, . . . ,M}} is a set of M i.i.d. integer-valued random variables

taking on values n ∈ {1,2, . . . ,N} with probabilities

pn(α)≡ |bn|α

∑
N
k=1 |bk|α

(3.17)

where α ∈ [0,∞) is a parameter allowing us to affect the sampling procedure by rescaling the

relative probability for sampling a given term in |B⟩ out of the N terms present.

Choosing the value of ci to enforce E(Yi) = bi as follows:

E(Yi) = ci

M

∑
m=1

E
(

δ
i,Q(α)

m

)
= ci

M

∑
m=1

pi(α) = ciMpi(α) = bi (3.18)

ci =
bi

Mpi(α)
=

bi

M
∑

N
j=1 |b j|α

|bi|α
(3.19)
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3.6.2 Computing the Variance

To get a handle on the variance, we first compute E(Y ∗i Y j):

E
(
Y ∗i Yj

)
= E

[(
ci

M

∑
m=1

δ
i,Q(α)

m

)∗(
c j

M

∑
m′=1

δ
j,Q(α)

m′

)]
(3.20)

= c∗i c j

 M

∑
m,m′=1
m ̸=m′

E
(

δ
i,Q(α)

m
δ

j,Q(α)

m′

)
+

M

∑
m=1

δ
i,Q(α)

m
δ

j,Q(α)
m

 (3.21)

For i = j, this reduces to (suppressing the α dependence on c and p for brevity):

E
(
Y ∗i Yj

)
|i= j = |ci|2

 M

∑
m,m′=1
m̸=m′

pi p j +
M

∑
m=1

pi

= |ci|2
[
(M2−M)p2

i +Mpi
]

(3.22)

and for i ̸= j:

E
(
Y ∗i Yj

)
|i ̸= j = c∗i c j

 M

∑
m,m′=1
m ̸=m′

pi p j +0

= c∗i c j
(
M2−M

)
pi p j (3.23)

More compactly, all cases are covered by:

E(Y ∗i Yj) = c∗i c j
[
(M2−M)pi p j +Mpiδi j

]
(3.24)
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The covariance σi j is then (liberally using the fact that bi = ciMpi(α) throughout):

σi j = E(Y ∗i Yj)−E(Y ∗i )E(Yj) (3.25)

= c∗i c j(M2−M)pi p j + c∗i c jMpiδi j− (c∗i Mpi)(c jMp j) (3.26)

= c∗i ciMpiδi j− c∗i c jMpi p j (3.27)

σi j =
1

Mpi(α)
|bi|2δi j−

1
M

bib j (3.28)

which gives us a variance of our estimate of |B⟩ of:

E
(∣∣|B⟩− |B̃⟩∣∣22)= ∑

i, j
σi jGi j (3.29)

=
1
M ∑

i j
Gi j

[
1

pi(α)
|bi|2δi j−b∗i b j

]
(3.30)

=
1
M ∑

i
Gii
|bi|2

pi(α)
− 1

M
⟨B|B⟩ (3.31)

WOLOG we may assume that the diagonal entries of
=
G are all 1 by a rescaling of the

associated vectors in the sum expression for |B⟩, yielding the following explicit form for the

variance as a function of α:

E
(∣∣|B⟩− |B̃⟩∣∣22)= 1

M

[(
∑

i
|bi|2−α

)(
∑

j
|b j|α

)
−

(
∑
i, j

b∗i Gi jb j

)]
(3.32)

Since a basic requirement of our sampling procedure is that the variance should not diverge due

to infinitesimal non-zero components of |B⟩, it is clear that we must avoid any negative powers

of |b...| in (3.32). Thus, α ∈ [0,2].

3.6.3 Minimizing the Variance

Since the variance of our estimate of |B⟩ depends on α as shown in (3.32), we can

optimize over α to minimize the variance. Noting that the α dependence is contained entirely in
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the first term, and assuming that Gii = 1 WOLOG, we find:

∂αE
(∣∣|B⟩− |B̃⟩∣∣22)= 1

M ∑
i
|bi|2

(
∂α

1
pi(α)

)
(3.33)

=
1
M ∑

i
|bi|2

[
∑k |bk|α ln |bk|
|bi|α

− ln |bi|∑k |bk|α

|bi|α

]
(3.34)

=
1
M ∑

k,i

[
|bk|α |bi|2−α ln |bk|− |bk|α |bi|2−α ln |bi|

]
(3.35)

= 0 =⇒ α = 1 (3.36)

The second derivative test verifies that α = 1 is a local minimum:

∂
2
αE
(∣∣|B⟩− |B̃⟩∣∣22)= 1

M ∑
i
|bi|2

(
∂

2
α

1
pi(α)

)
(3.37)

=
1
M ∑

i,k
|bi|2−α |bk|α (ln |bi|− ln |bk|)2 (3.38)

which is clearly positive for α ∈ [0,2], implying that α = 1 is the minimum in this interval.

Our variance for the sampling procedure corresponding to α = 1 is then:

E
(∣∣|B⟩− |B̃⟩∣∣22)

∣∣∣∣∣Gkk=1
α=1

=
1
M

(∑
i
|bi|

)2

−

(
∑
i, j

b∗i Gi jb j

) (3.39)

where the only assumption made is that the diagonal elements of
=
G are 1, i.e. the vectors |i⟩ in

the expression |B⟩= ∑
N
i=1 bi |i⟩ are normalized.

The relative error can then be defined as:√√√√E
(∣∣|B⟩− |B̃⟩∣∣2)
⟨B|B⟩

=
1√
M

√
(∑i |bi|)2

∑i, j b∗i Gi jb j
−1 (3.40)

In the case where the constituent vectors of |B⟩ are orthonormal, i.e. Gi j = δ i j, this simplifies to
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a function of the ratio of the L1 and L2 norms:

√√√√E
(∣∣|B⟩− |B̃⟩∣∣2)
⟨B|B⟩

∣∣∣∣∣Gi j=δi j
α=1

=
1√
M

√(
|
¯
b|1
|
¯
b|2

)2

−1 (3.41)

where |
¯
b|p is the p-norm of the column vector of the list of coefficients of the expansion of |B⟩

in the {|i⟩} frame.
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Chapter 4

Tensor Network Numerics

To validate the general approach, we turn to image inpainting (Elharrouss et al. 2020).

Using the naive density matrices constructed directly from the training set as in equation (3.2),

reproduced here:

=
ρ
(p),naive
nm =

Ntrain

∑
n=1 ¯

Φ
(p)
nm

(
=
x(n)train

)(
¯
Φ

(p)
nm

(
=
x(n)train

))†
. (4.1)

Image inpainting takes various forms, and here we use the following variety:

1. Draw a seed image
=
xseed from the validation set of one of the classes from the MNIST1

data set.

2. Create an initial image
=
x(0) for the inpainting algorithm by copying a fraction p ∈ (0,1)R

of the pixels of the seed image, and initializing the remaining pixels in the initial image to

a value of 1
2 . 2

3. Use the image generation algorithm (5) on the initial image
=
x(0) while holding the value

of the pixels drawn from
=
xseed fixed using the training set from the same MNIST class to

compute
=
ρ
(p), naive
nm .

1The MNIST data set is a common test bed for machine learning algorithms consisting of 28×28 pixel greyscale
images of handwritten digits with corresponding labels. See LeCun et al. 1998 for details.

2Pixels in greyscale images are assumed to have values in [0,1]R throughout this chapter, where 0 corresponds
to a black pixel, and 1 to a white pixel.
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Step 3 involves evaluating following matrix element and its derivative w.r.t. xnm:

(
¯
Φ

(p)
nm
(
=
x
))†

=
ρ
(p), naive
nm ¯

Φ
(p)
nm
(
=
x
)

(4.2)

This is prohibitive to perform at every gradient step if
=
ρ
(p), naive
nm is constructed from the

entire training set. Instead, this work uses a stochastic gradient optimization where at each

update, the gradient is computed from an approximate patch density matrix

=̃
ρ
(p), naive
nm ≡ ∑

=
x∈Xbatch

¯
Φ

(p)
nm
(
=
x
)(

¯
Φ

(p)
nm (

=
x)
)†

, Xbatch ⊂ Xtrain (4.3)

Using p = 2 (i.e. 5× 5 patches) on the 28× 28 pixel images from the ‘6’ MNIST

class, image inpainting was performed at mask percentages of 20%, 40%, 60%, and 80%, with

euclidean reconstruction errors and the pairwise distances between the images in the validation

set used for seed images reported in figure (4.1). The reconstruction errors are significantly below

the mean pairwise distances in the validation set, suggesting that the inpainting is performing

well.

With a validity check cleared, we turn to examining the behavior of patch PEPS networks

under training. Figure 4.2 compares the Shannon entropy of the normalized list of constants in

each tensor’s R-term decomposition to the standard deviation of the pixels in the ‘6’ class of the

MNIST training set. It is consistent with but not persuasive of the notion that the information

from the training set is directly informing information content of the tensors as training goes on.

4.1 Future Directions

The clear next step in this work is to do an exhaustive evaluation of the generative abilities

of a trained patch PEPS network, and comparing the performance of this compressive model

to the performance of the naive model. Because the lowest complexity contractions are only

available for p = 1, i.e. 3×3 pixel patches, it is likely that significant computational problems
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Figure 4.1. The reconstruction errors of the inpainted images relative to their seed
images are shown for four different fractions of fixed pixels from the seed image.
To produce these histograms a set of 100 images were inpainted at each fixed pixel
density. To provide a reference scale for the reconstruction errors, the distribution
of pairwise distances in the seed image set (i.e. the validation set of the MNIST ‘6’
class) is shown on every plot.
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Figure 4.2. A comparison of the standard deviation of the pixel values in the ‘6’
class in the MNIST training set (left), and the evolution over a small number of
optimization steps of the entropy of the constants in the R-term decomposition of the
PEPS tensor, (right three images).

may arise as the image size scales up and where larger patches that allow for incorporating

longer-distance correlations directly may be beneficial. Characterizing the properties of the full

tesor network trained in this patch fashion is also a potentially interesting direction of work.

Since image-local correlations were forced to be stored and resolved locally during the training

process, is there some sense in which this is reflected in the full PEPS network? Is it is more

amenable to approximate contraction if it arises in this fashion?
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Appendix A

Notation

A.1 Sets

Z {· · · ,−1,0,1, · · ·}

Z+ {0,1,2, · · ·}

Z++ {1,2, · · ·}

[n,m]Z {q ∈ Z|n≤ q≤ m} for n,m ∈ Z

(n,m)Z {q ∈ Z|n≤ q < m} for n,m ∈ Z

R The real numbers

R+ {x ∈ R|x≥ 0}

R++ {x ∈ R|x > 0}

[a,b]R {x ∈ R|a≤ x≤ b} for a,b ∈ R, a≤ b

(a,b)R {x ∈ R|a < x < b} for a,b ∈ R, a≤ b

C The complex numbers
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A.2 Arrays

An order N array is a finite grid of scalars, indexed by N integers (i1, i2, ..., iN). The nth

index takes on values in ∈ [1,dim(n)]Z, where dim(n) ∈ Z++ is the dimension of the nth index.

When representing an array as a whole rather than a particular indexed element of an array, we

will frequently (but not always, especially for high-order tensors) denote the order of the array

by the number of underlines beneath its symbol, i.e.
=
W is an order 2 array (a matrix),

¯
x is an

order 1 array (a column vector by convention), and
=
W

¯
x represents matrix multiplication.

The transpose of a column vector
¯
x is a row vector, denoted by

¯
x†. The transpose of a

matrix
=
M is also a matrix, and is similarly denoted by

=
M†.

Square matrices can be constructed from vectors by filling the main diagonal with the

entries of the vector, and setting all off-diagonal entries to 0. This is denoted by
=Av s.t. Avi j = δi jvi,

where the backwards slash is meant to be evocative of the main diagonal of a matrix.

Certain special matrices and vectors receive their own symbols. The (square) identity

matrix is denoted by
=
I. Arrays with every element set to 1 are denoted by 1, with the appropriate

number of underlines denoting the order of the array, i.e. the ones column vector
¯
1, the ones row

vector
¯
1

†, the ones matrix
=
1, etc. The ith one-hot (or standard basis) vector with all elements

zero except the ith element, which is one, is denoted by
¯
e(i).

Element-wise binary operations between arrays are common and are defined analogously

for all order arrays of identical dimensions. Using vectors to illustrate these operations:
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multiplication
¯
x⊙

¯
y =⇒

[
¯
x⊙

¯
y
]

i = xiyi

division
¯
x⊘

¯
y =⇒

[
¯
x⊘

¯
y
]

i = xi/yi

exponentiation q⊙¯
x =⇒ [q⊙¯

x]i = qxi

¯
x⊙q =⇒ [

¯
x⊙q]i = (xi)

q

¯
x⊙¯

y =⇒
[
¯
x⊙¯

y]
i = (xi)

yi

A.3 Graphs

A.3.1 General Scalar Weighted Graphs

A weighted graph is a tuple G = (V,E,w) consisting of the vertex set V , the edge set

E =V ×V , and a weight function w : E→ R+, where R+ ≡ {x ∈ R|x≥ 0}. By convention we

include all tuples of vertices in the edge set, and encode a missing edge by setting its weight to 0.

By choosing an ordering for the vertices we may refer to them as vi ∈ V , where i ∈

{1,2, ..., |V |}. Once this ordering is chosen, the structure of the graph’s connections and weights

can be represented by a single matrix with non-negative entries Wi j = w(vi,v j). Furthermore,

functions on the vertex set f : V → R can be written as a vector
¯
f ∈ R|V |, where the ith element

fi = f (vi).

A.3.2 Partitioned Weighted Graphs

We will frequently consider graphs with some ground truth partitioning of its vertex

set. The full graph is G = (V,E,w). Its vertices are assumed to have a natural partitioning

V =V1⊔·· ·⊔VNP , and an ordering (v1, · · · ,v|V |) that respects this partitioning so they may be

indexed with a natural number i ∈ {1, · · · , |V |}. This partitioning induces a block structure of the
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weight matrix:

=
W G =


=
W (1,1) · · ·

=
W (1,NP)

... . . . ...

=
W (NP,1) · · ·

=
W (NP,NP)

 (A.1)

This natural partitioning can be used to define NP induced subgraphs

{
Gn = (Vn,En,wn)

∣∣n ∈ {1, · · · ,NP}, En =Vn×Vn, wn = w|En

}
(A.2)

where w|En is the restriction of the weight function w : E → R+ to the domain En of edges

between vertices in Vn. The weight matrix of each induced subgraph from this partition of V is

then one of the diagonal blocks of
=
W G:

=
W Gn =

=
W (n,n) (A.3)

This vertex partitioning can be reflected in a vertex function fG : V → R by partition-

ing its values as
¯
f =

¯
f (1)⊕·· ·⊕

¯
f (NP), where

¯
f (n) ∈ R|Vn| and ∀n ∈ [1,NP], j ∈ [1, |Vn|], ∃v ∈

Vn s.t. f (n)j = f (v).
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Appendix B

Graph Clustering

B.1 Green’s Function Solution to Linear First-Order Time-
Independent Inhomogeneous ODEs

Consider the following first order differential equation for
¯
u†(x):

¯
u†(x)

[
←
∂x +

1
η =

M
]
=

¯
f †(x)+

¯
u†

0δ (x), (B.1)

where
=
M ∈ RN×N is a diagonalizable square matrix with non-negative eigenvalues, η ∈ (0,1],

¯
f †(x) is a known function—the so-called forcing function,

¯
u†(x) is subject to the initial condition

¯
u†(x < 0) =

¯
0†, and

¯
u†

0 is constant vector enconding the initial value of
¯
u†(x = 0+) =

¯
u†

0. Note

that we are not assuming
=
M is positive semi-definite, as we will need the asymmetric case.

This can be solved for
¯
u†(x≥ 0) with the Green’s function of the linear operator. Noting

that for any x-independent vector
¯
c,

¯
c†e−

1
η =

Mx
Θ(x)

[
←
∂x +

1
η =

M
]
=

¯
c†

δ (x) (B.2)

and taking advantage of the linearity of the operator
←
∂x +

1
η =

M, the formal solution to equation
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(B.1) is a convolution of the forcing term with the Green’s function:

¯
u†(x) =

¯
u†

0e−
1
η =

Mx +
∫

∞

0
dx′

¯
f †(x′)e−

1
η =

M(x−x′)
Θ(x− x′)︸ ︷︷ ︸

≡I

. (B.3)

We will henceforth refer to the integral in equation (B.3) as I .

Further analysis of this integral is facilitated by examining the eigendecomposition of
=
M

and splitting
¯
f †(x) into two parts accordingly. Write

=
M as:

=
M =

N

∑
n=1

λn ¯
wR

n ¯
wL

n
†

(B.4)

where requiring
¯
wL

n
†

¯
wR

m = δnm implies that
=
M

¯
xR

n = λn¯
xR

n and
¯
xL

n
†
=
M = λn¯

xL
n

†. Eigenvalues may be

repeated—or not—without affecting this construction. This implies the matrix exponential in the

Green’s function may be written as:

e−
1
η =

Mx =
N

∑
n=1

e−
1
η

λnx

¯
wR

n ¯
wL

n
†
= ∑

n∈{1,··· ,N}
λn=0

¯
wR

n ¯
wL

n
†
+ ∑

n∈{1,··· ,N}
λn>0

e−
1
η

λnx

¯
wR

n ¯
wL

n
†
. (B.5)

The fact that
¯
wL

n
†

¯
wR

m = δnm implies that the first term in equation (B.5) is a projector:

=
P0 ≡ ∑

n∈{1,··· ,N}
λn=0

¯
wR

n ¯
wL

n
†
=⇒

=
P2

0 =
=
P0 (B.6)

Using the identities
=
I=

=
P0+

(
=
I−

=
P0
)

and
=
P0
(
=
I−

=
P0
)
=

=
0, and noting that the second sum

in equation (B.5) is annihilated by
=
P0:

=
P0

 ∑
n∈{1,··· ,N}

λn>0

e−
1
η

λnx

¯
wR

n ¯
wL

n
†

=
=
0, (B.7)
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we can split the integrand of equation (B.3) into two parts according to the nature of the action

of the matrix exponential:

¯
f †(x′)e−

1
η =

M(x−x′) =
¯
f †(x′)

(
=
P0 +

(
=
I−

=
P0
))

e−
1
η =

M(x−x′)

=
¯
f †(x′)

=
P0︸ ︷︷ ︸

≡
¯
f †
λ=0(x

′)

+
¯
f †(x′)

(
=
I−

=
P0
)︸ ︷︷ ︸

≡
¯
f †
λ>0(x

′)

e−
1
η =

M(x−x′)

=
¯
f †
λ=0(x

′)+
¯
fλ>0(x

′)†e−
1
η =

M(x−x′)

(B.8)

where we are guaranteed that
¯
f †
λ>0(x

′)e−
1
η =

M(x−x′) −−−→
x→∞ ¯

0†. Thus:

I =
∫

∞

0−
dx′

¯
f †(x′)e−

1
η =

M(x−x′)
Θ(x− x′)

=
∫ x

0
dx′

¯
f †
λ=0(x

′)︸ ︷︷ ︸
≡Iλ=0

+
∫

∞

0
dx′

¯
f †
λ>0(x

′)e−
1
η =

M(x−x′)
Θ(x− x′)︸ ︷︷ ︸

≡Iλ>0

.
(B.9)

Our attention will henceforth be focused on the more interesting of these two terms, Iλ>0.

Analytic forcing function

For small η and suitable restrictions on the growth rate of the magnitude of
¯
f †
λ>0(x

′),

the value of Iλ>0(x) will be dominated by the value of the integrand where x′ ≈ x. Under the

assumption that
¯
f †
λ>0(x

′) is analytic in x′, we can Taylor expand it about x′ = x to capture this

behavior:

¯
f †
λ>0(x

′) =
∞

∑
r=0

1
r!

(
∂x

r

¯
f †
λ>0(x)

)
(x′− x)r. (B.10)

Inserting this into the integral for Iλ>0, using the fact that
¯
f †
λ>0 = ¯

f †
λ>0

(
=
I−

=
P0
)
, and interchang-

ing the sum and integral yields:

Iλ>0(x) =
∞

∑
r=0

1
r!

(
∂x

r

¯
f †
λ>0(x)

)∫ ∞

0−
dx′(x′− x)r (

=
I−

=
P0
)

e−
1
η =

M(x−x′)
Θ(x− x′). (B.11)
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The remaining integral can be evaluated exactly by using the eigen-decomposition of the argu-

ment of the integral:

∫
∞

0−
dx′(x′− x)r(

=
I−

=
P0)e

1
η =

M(x−x′)
Θ(x− x′) (B.12)

=
∫ x

0−
dx′(x′− x)r

∑
n∈{1,··· ,N}

λn>0

e−
1
η

λn(x−x′)

¯
wR

n ¯
wL

n
†

(B.13)

= ∑
n∈{1,··· ,N}

λn>0

¯
wR

n ¯
wL

n
†
∫ x

0−
dx′(x′− x)re−

1
η

λn(x−x′) (B.14)

= (−1)r(r!)ηr+1
∑

n∈{1,··· ,N}
λn>0

¯
wR

n ¯
wL

n
†
(

1
λn

)r+1
[

1−

(
r

∑
k=0

1
k!

(
λn

η
x
)k
)

e−
λn
η

x

]
.

(B.15)

Defining the rth order truncation of the power series of the exponential function as:

exp⌈r⌉ (z)≡ ez
⌈r⌉ ≡

r

∑
k=0

zk

k!
, (B.16)

we can write this cleanly as:

∫
∞

0−
dx′(x′− x)r(

=
I−

=
P0)e

1
η =

M(x−x′)
Θ(x− x′)

= (−1)r(r!)ηr+1 (
=
M+
)r+1

[
=
I− e

+ 1
η =

Mx
⌈r⌉ e−

1
η =

Mx
]

(B.17)

where
=
M+ is the Moore-Penrose inverse, which eliminates the need to include an explicit factor

of
(
=
I−

=
P0
)
. This notation makes it clear that for small x/η , the term in square brackets goes to

=
0

due to the two exponentials multiplying to approximately
=
I since the order-r approximation to

the exponential is good in this region, while for large x/η , the term in square brackets tends to
=
I

since e
+ 1

η =
Mx

⌈r⌉ e−
1
η =

Mx ∼
(

1
η =

Mx
)r

e−
1
η =

Mx −−−−→
x/η→∞

=
0.
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This allows us to eliminate the integral from equation (B.11), yielding:

Iλ>0(x) =
∞

∑
r=0

1
r!

(
∂x

r

¯
f †
λ>0(x)

)∫ ∞

0−
dx′(x′− x)r (

=
I−

=
P0
)

e−
1
η =

M(x−x′)
Θ(x− x′) (B.18)

=
¯
f †
λ>0(x) η

=
M+

∞

∑
r=0

(
−η

←
∂x =

M+
)r
[
=
I− e

+ 1
η =

Mx
⌈r⌉ e−

1
η =

Mx
]

(B.19)

=
¯
f †
λ>0(x)

 η
=
M+

=
I+η

←
∂x =

M+︸ ︷︷ ︸
large x/η limit

− η
=
M+

∞

∑
r=0

(
−η

←
∂x =

M+
)r

e
+ 1

η =
Mx

⌈r⌉ e−
1
η =

Mx

︸ ︷︷ ︸
small x/η correction

 . (B.20)

The “small x/η correction” term can be dramatically simplified by grouping terms by powers of

η :

∞

∑
r=0

(
−η

←
∂x =

M+
)r

e
+ 1

η =
Mx

⌈r⌉ (B.21)

=
∞

∑
r=0

(
−η

←
∂x =

M+
)r
(

r

∑
k=0

1
k!

(
1
η =

Mx
)k
)

(B.22)

=
∞

∑
r=0

1
r!

←
∂x

r
(−x)r

︸ ︷︷ ︸
k=r

+
(
−η

←
∂x =

M+
) ∞

∑
r=1

1
(r−1)!

←
∂x

r−1
(−x)r−1

︸ ︷︷ ︸
k=r−1

+ · · · (B.23)

=
∞

∑
m=0

(
−η

←
∂x =

M+
)m

︸ ︷︷ ︸
=
[
=
I+η

←
∂x=M

+
]−1

∞

∑
r=0

1
r!

←
∂x

r
(−x)r

︸ ︷︷ ︸
≡
←

T0

(B.24)

= =
I

=
I+η

←
∂x =

M+

←
T0 (B.25)

where
←

T0 applied to an arbitrary analytic function of g(x) on the right gives the value of that

function at x = 0, assuming an adequate radius of convergence for the Taylor series of g(x)

centered at x:

g(x)
←

T0 =
∞

∑
m=0

1
r!
(∂ m

x g(x))(−x)m = g(0). (B.26)
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So the “small x/η correction” term applied to
¯
f †
λ>0 gives:

¯
f †
λ>0(x)η

=
M+

∞

∑
r=0

(
−η

←
∂x =

M+
)r

e
+ 1

η =
Mx

⌈r⌉ e−
1
η =

Mx

=
¯
f †
λ>0(x)

η
=
M+

=
I+η

←
∂x =

M+

←
T0 e−

1
η =

Mx

=

(
¯
f †
λ>0(x)

η
=
M+

=
I+η

←
∂x =

M+

)∣∣∣∣∣
x=0

e−
1
η =

Mx.

(B.27)

With this result in hand, the value of Iλ>0 can be written cleanly as:

Iλ>0 =
¯
f †
λ>0(x)

η
=
M+

=
I+η

←
∂x =

M+
−

(
¯
f †
λ>0(x)

η
=
M+

=
I+η

←
∂x =

M+

)∣∣∣∣∣
x=0

e−
1
η =

Mx (B.28)

and the overall solution for
¯
u†(x) is:

¯
u†(x) =

¯
ui.c.

λ=0
†
+
∫ x

0
dx′

¯
f †
λ=0(x

′)+
¯
f †
λ>0(x)

η
=
M+

=
I+η

←
∂x =

M+︸ ︷︷ ︸
long-time behavior

+

[
¯
ui.c.

λ>0
†−

(
¯
f †
λ>0(x)

η
=
M+

=
I+η

←
∂x =

M+

)∣∣∣∣∣
x=0

]
e−

1
η =

Mx

︸ ︷︷ ︸
initial transient

(B.29)

B.2 Graph Laplacians

For any undirected weighted graph G = (V,E,w), a random-walk-normalized transition

matrix can be formed from a symmetric weight matrix
=
W ∈ R|V |×|V |,

=
W † =

=
W, Wi j ≥ 0 with

degrees di = ∑
|V |
j=1Wi j > 0 as:

=
Pr.w. ≡:

=SSd
−1

=
W. (B.30)

=
Pr.w. is guaranteed to be diagonalizble with real eigenvalues as it is similar to the real symmetric

transition matrix
=
Psym ≡ =SSd

1
2
=
Pr.w.=SSd

− 1
2 . As similar matrices, the eigenvalues of

=
Pr.w. and

=
Psym are

identical and lie in the interval [−1,+1] ∈ R due to a simple application of the Gershgorin circle
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theorem and exploiting the fact that [
=
Pr.w.]i j ≥ 0 and ∑

|V |
j=1[=Pr.w.]i j = 1:

λ
Pr.w.
n ∈

|V |⋃
i=1

[Pii− (1−Pii),Pii +(1−Pii)] =

|V |⋃
i=1

[2Pii−1,1] ∈ [−1,1] (B.31)

Furthermore, if Pii > 0 ∀ i ∈ {1, · · · , |V |} and the undirected graph G is connected, there is a

single non-degenerate eigenvalue satisfying |λ |= 1 corresponding to the equilibrium left- and

right-eigenvectors:

=
Pr.w. ¯

1=
¯
1

¯
π

†
=
Pr.w. = ¯

π
†

πi ≡
di

∑
|V |
j=1 d j

lim
q→+∞

(
=
Pr.w.

)q
=

¯
1

¯
π

† (B.32)

The Laplacian matrix can be defined from the transition matrix as:

=
Lr.w. ≡ =

I−
=
Pr.w. = =

I−
=SSd
−1

=
W. (B.33)

By construction,
=
Lr.w. has identical left- and right-eigenvectors as

=
Pr.w. with shifted eigenvalues:

=
Pr.w.¯

xR
n = λ P

n ¯
xR

n =
Lr.w.¯

xR
n = (1−λ P

n )¯
xR

n

(
¯
xL

n
)†

=
Pr.w. =

(
¯
xL

n
)†

λ P
n

(
¯
xL

n
)†

=
Lr.w. =

(
¯
xL

n
)†
(1−λ P

n )

=⇒ λ
L
n = 1−λ

P
n (B.34)

Since
=
Pr.w. has a complete basis of left- and right-eigenvectors, so does

=
Lr.w.. The diagonalizabil-

ity of
=
Lr.w. is also guaranteed by a similarity relation to the so-called symmetric Laplacian:

=
Lsym ≡ =SSd

+ 1
2
=
Lr.w. =SSd

− 1
2 =

=
I−

=SSd
− 1

2
=
W

=SSd
− 1

2 . (B.35)

A well-known theorem of spectral graph theory guarantees that the multiplicity of 0 as an

eigenvalue of both
=
Lr.w. and

=
Lsym is equal to the number of connected components in the

undirected graph G with weight matrix
=
W (Chung 1997).
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Lossy Laplacians

Define a random-walk-normalized lossy Laplacian as:

=̃
Lr.w. ≡ =

Lr.w.+
=
SSρ=

Pr.w. = (
=
I−

=
Pr.w.)+

=
SSρ=

Pr.w. = =
I− (

=
I−

=
SSρ)=Pr.w. = =

I− (
=
I−

=
SSρ)=SSd

−1
=
W (B.36)

where
=
SSρ = diag

(
¯
ρ

)
, and ρi ∈ [0,1). In the case where

¯
ρ =

¯
0, this reduces to the ordinary

Laplacian. However, when
¯
ρ ̸=

¯
0, the properties of

=̃
Lr.w. diverge from those of

=
Lr.w..

Lemma 2. Any random-walk-normalized lossy Laplacian
=̃
Lr.w. is similar to a real symmetric

matrix, and is thus diagonalizable with real eigenvalues. Furthermore, its eigenvalues are

non-negative.

Proof.

A similarity transform with
=
S = (

=
I−

=
SSρ)=SSd

+ 1
2 reveals:

=̃
Lsym ≡ (

=
I−

=
SSρ)
− 1

2
=SSd
+ 1

2︸ ︷︷ ︸
=
S

=̃
Lr.w. =SSd

− 1
2 (

=
I−

=
SSρ)

+ 1
2︸ ︷︷ ︸

=
S−1

= (
=
I−

=
SSρ)

+ 1
2
=
Lsym(=I− =

SSρ)
+ 1

2 +
=
SSρ. (B.37)

Since
=̃
Lsym is the sum of two real matrices, each manifestly symmetric,

=̃
Lsym is itself a real

symmetric matrix. Thus
=̃
Lsym and (by similarity)

=̃
L are both diagonalizable with real eigenvalues.

Moreover, the eigenvalues of
=̃
L are guaranteed to lie in the interval [0,2] by the Gershgorin circle

theorem:

λn

(
=̃
L
)
∈
|V |⋃
i=1

[ρi, 1− (1−ρi)(2Pii−1)] ∈ [0,2] (B.38)

This Gershgorin circle theorem result guarantees that λn > min
(

¯
ρ

)
∀ n ∈ {1, · · · , |V |}.

If min
(

¯
ρ

)
> 0, this ensures the eigenvalues of

=̃
Lr.w. are strictly positive, which implies that

limx→+∞ e−=̃Lr.w.x =
=
0, among other useful corollaries. We will now establish generalizations of
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this result showing that, given suitable conditions on
¯
ρ , all eigenvalues of

=̃
Lr.w. are bounded away

from 0 even if
¯
ρ has some zero entries.

Theorem 2. Any connected undirected weighted graph G = (V,E,w) with weight matrix
=
W ∈

R|V |×|V |, Wi j ≥ 0, degree vector
¯
d ∈R|V |, di = ∑

|V |
j=1Wi j > 0, and loss vector

¯
ρ ∈R|V |, ρi ∈ [0,1)

has an associated random-walk-normalized lossy Laplacian matrix
=̃
Lr.w.≡ =

I−(
=
I−

=
SSρ)=Pr.w. (where

=
Pr.w. ≡ =SSd

−1
=
W) which is diagonalizable, has non-negative eigenvalues, and whose eigenvalues

are strictly greater than 0 as long as
¯
ρ ̸=

¯
0.

Proof.

Lemma (2) guarantees the diagonalizability and non-negative eigenvalues of
=̃
Lr.w.. To prove all

eigenvalues of
=̃
Lr.w. are strictly positive, examine

=̃
Lsym since it shares identical eigenvalues. The

Rayleigh quotient is:

R(
=̃
Lsym, ¯

v ̸=
¯
0)≡ ¯

v†
=̃
Lsym¯

v

¯
v†

¯
v

=
1

¯
v†

¯
v

(
¯
v†(

=
I−

=
SSρ)

+ 1
2
=
Lsym(=I− =

SSρ)
+ 1

2

¯
v+

¯
v†

=
SSρ ¯

v
)

(B.39)

It is well known that the set of eigenvalues of a self-adjoint matrix is contained in the range of

R, so proving R > 0 implies λn > 0 ∀ n. Since both (
=
I−

=
SSρ)

+ 1
2
=
Lsym(=I− =

SSρ)
+ 1

2 and
=
SSρ are positive

semi-definite, we must only show that they cannot simultaneously be zero.

Because
=
Lsym is the symmetric Laplacian of a connected graph, it has a single non-degenerate

zero eigenvalue. A simple computation shows that the corresponding eigenvector must be

proportional to
¯
d⊙+

1
2 :

=
Lsym¯

d⊙+
1
2 =

=SSd
+ 1

2
=
Lr.w. =SSd

− 1
2︸ ︷︷ ︸

=
=
Lsym

=SSd
+ 1

2
¯
1︸ ︷︷ ︸

=
¯
d⊙+

1
2

=
=SSd
+ 1

2
=
Lr.w. ¯

1=
¯
0 (B.40)

where the last equality follows from the fact that the row sums of
=
L are zero by construction of

the random-walk-normalized Laplacian. Since all other eigenvalues of
=
Lsym are strictly greater
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than 0, we know that

¯
v†(

=
I−

=
SSρ)

+ 1
2
=
Lsym(=I− =

SSρ)
+ 1

2

¯
v = 0 =⇒

¯
v ∝ (

=
I−

=
SSρ)
− 1

2

¯
d⊙+

1
2 . (B.41)

But since we require dn > 0 ∀ n ∈ {1, · · · , |V |}, this gives a non-zero contribution from
¯
v†

=
SSρ ¯

v as

long as
¯
ρ ̸=

¯
0 since every element of (

=
I−

=
SSρ)
− 1

2
¯
d⊙+

1
2 is strictly positive:

(
¯
d)⊙+

1
2 (

=
I−

=
SSρ)
− 1

2
=
SSρ (

=
I−

=
SSρ)
− 1

2

¯
d⊙+

1
2 =

|V |

∑
n=1

ρn

1−ρn
dn > 0 (B.42)

thus since the Rayleigh quotient is the sum of two non-negative terms, and since at least one of

these two terms is always positive, R(
=̃
Lsym, ¯

v ̸=
¯
0)> 0 =⇒ λn > 0 ∀ n ∈ {1, · · · , |V |}.

This can be generalized to the case of a graph made up of multiple connected components.

Theorem 3. Any undirected weighted graph G = (V,E,w) with weight matrix
=
W ∈ R|V |×|V |,

Wi j ≥ 0, degree vector
¯
d ∈ R|V |, di = ∑

|V |
j=1Wi j > 0, and loss vector

¯
ρ ∈ R|V |, ρi ∈ [0,1) has

an associated random-walk-normalized lossy Laplacian matrix
=̃
Lr.w. ≡ =

I− (
=
I−

=
SSρ)=Pr.w. (where

=
Pr.w. ≡ =SSd

−1
=
W) satisfying:

•
=̃
Lr.w. is diagonalizable with real, non-negative eigenvalues; and

• as long as
¯
ρ has at least one non-zero element on each of the connected components of G,

then the eigenvalues of
=̃
Lr.w. are strictly positive.

Proof.

We can always choose an ordering of the standard basis vectors so that the weight matrix has a

block diagonal structure with M blocks, each block corresponding to the weight matrix of one of
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the M connected components of G. Writing
=
W ,

¯
d, and

¯
ρ in this basis:

=
W =


=
W (1) 0

=
W (2)

. . .

0
=
W (M)

 ¯
d =


¯
d(1)

¯
d(2)

...

¯
d(M)

 ¯
ρ =


¯
ρ(1)

¯
ρ(2)

...

¯
ρ(M)


(B.43)

Forming the Lossy Laplacian
=̃
L≡

=
I− (

=
I−

=
SSρ)=SSd

−1
=
W preserves this block structure:

=̃
L =


=̃
L(1) 0

=̃
L(2)

. . .

0
=̃
L(M)

 =̃
L(m) ≡

=
I(m)− (

=
I(m)−

=
SSρ
(m))

(
=SSd
(m)
)−1

=
W (m) (B.44)

The set of eigenvalues of a block diagonal matrix is the union of the set of eigenvalues of each

diagonal block. But each block of
=̃
L is the lossy laplacian of a connected component of G, so

theorem (2) guarantees that as long as
¯
ρ(m) ̸=

¯
0 ∀ m ∈ {1, · · · ,M}, then the eigenvalues of every

block are strictly positive, and thus the eigenvalues of
=̃
L are strictly positive, as well.
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Appendix C

Tensor Networks

C.1 Tensor Origami

When H ∋ A is composed of a tensor product of more than one Hilbert space, we

can unfold or fold A into a vector or various different matrices as we see fit. To see this,

let U = {H1,H2, ...HN} be the set of all the component Hilbert spaces that together form

H ≡HU =
⊗

h∈U h. Now define a bipartition U = X ⊔Y . This defines a natural split of HU

into two parts such that HU = HX ⊗HY , where HX and HY are defined analogously to HU

from the sets X ,Y . This suggests array representations of A as both a vector and a matrix, as:

¯
A = ∑

r⃗
α⃗r v̂⃗r ←→

=
A = ∑

r⃗x

∑
r⃗y

α(⃗rx ,⃗ry)x̂⃗rx ŷ
†
r⃗y

(C.1)

where r⃗x and r⃗y are vectorized indices of the subset of the components of r⃗ corresponding to

HX and HY , x̂⃗rx ∈HX , and ŷ⃗ry ∈HY . The single and double underlines on
¯
A and

=
A visually

differentiate between the vector and matrix forms of A. The same process can be used to join

legs on tensors of arbitrary order, or split a leg whenever the corresponding vector space has a

tensor product structure that may be exploited.
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