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Robust Statistical Modeling Using the f Distribution

KENNETH L. LANGE, RODERICK J. A. LITTLE, and JEREMY M. G. TAYLOR*

The ¢ distribution provides a useful extension of the normal for statistical modeling of data sets involving errors with longer-
than-normal tails. An analytical strategy based on maximum likelihood for a general model with multivariate ¢ errors is suggested
and applied to a variety of problems, including linear and nonlinear regression, robust estimation of the mean and covariance
matrix with missing data, unbalanced multivariate repeated-measures data, multivariate modeling of pedigree data, and multi-
variate nonlinear regression. The degrees of freedom parameter of the ¢ distribution provides a convenient dimension for
achieving robust statistical inference, with moderate increases in computational complexity for many models. Estimation of
precision from asymptotic theory and the bootstrap is discussed, and graphical methods for checking the appropriateness of

the ¢ distribution are presented.

KEY WORDS: Bootstrap; Elliptical distributions; EM algorithm; Maximum likelihood; Nonlinear regression; Outliers; Pedigree

analysis; Regression; Repeated-measures data.

1. INTRODUCTION

Statistical inference based on the normal distribution
(univariate or multivariate) is known to be vulnerable to
outliers. Despite this fact and the considerable interest in
robust procedures in the mathematical statistical litera-
ture, most applied statistical analysis continues to be based
on the normal model. Even in linear regression, where
robustness concerns have penetrated statistical software
widely available to practitioners, procedures are mainly
directed at detecting outliers. For example, see the regres-
sion diagnostic procedures in BMDP (Dixon 1983), SAS
(1982), or SPSS (1983). After editing outliers, subsequent
analysis is often still restricted to least squares based on
the normal linear model. A serious problem with this ap-
proach is that resulting inferences fail to reflect uncertainty
in the exclusion process; in particular, standard errors tend
to be too small.

Reasons for the slow adoption of robust estimation pro-
cedures by practitioners may include the bewildering choice
of alternative procedures, and a lack of published appli-
cations to real complicated data. Rather than comparing
many alternative methods in a relatively simple data set-
ting, in this article we apply a single method to robust
inference on a variety of real data sets. Our approach is
to replace the normal distribution by the ¢ distribution in
statistical models. Specifically, suppose that sample data
y: (1 =i = n) are recorded for n units. Typically, one
assumes that the y; are independent normal random vec-
tors. If N,(u, 2) denotes the k-variate normal distribution
with mean y and covariance matrix 3, then

Yig N,{uil0), (o)} 1)

where v; is the number of components of y;, which may
vary from unit to unit in some applications, y; is a (v; X
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1) vector mean function of known form indexed by a set
of unknown parameters 6, and %, is a (v; X v;) covariance
matrix of known form indexed by a set of unknown pa-
rameters ¢. The functions y; and 3; may involve known
fixed covariates x;, recorded for each unit i. We propose
to replace (1) with the model

Vi a toli(9), Wilp), v}, 2

where t,{u, ¥, v} denotes the k-variate ¢ distribution (Cor-

nish 1954; Dunnett and Sobel 1954) with location vector
U, scale matrix ¥, v df, and density
_wmv{(v + k)/2}
PO w00 = AT

_ T -1 _ -(v+k)/2

><<1+(y u)‘I:(y u)) .

Inferences about 6 and ¢ in the multivariate ¢ setting can
proceed by likelihood methods analogous to those for the
normal model (1).

The following known facts about the multivariate ¢ are
instructive and used later. Suppose that y | u ~ N,(u, ¥/
u) for scalar u ~ y?/v, where v is positive and may be a
noninteger. We then have the following properties.

Property 1. 'y ~ ti(u, ¥, v).

Property 2. E(y) = u(v>1)and cov(y) =3 = v¥/
v=-2)(v>2).

Property 3. u |y ~ 2. /{v + 6%, where 6* = (y —
Wy = w.

Property 4. */k ~ F,, (Box and Tiao 1973, eq. 2.7.21).

Note that the multivariate ¢ distribution approaches the
normal distribution with covariance matrix ¥ as v — .
When v < o, maximum likelihood (ML) estimation of 0
and certain functions of ¢ are robust in the sense that
outlying cases with large Mahalanobis distances 67 = (y;
— w)™W Y (y; — u;) are downweighted. In particular, ML
estimates of @ (with ¢ components, say) for the normal
model (1) satisfy the likelihood equation 8//80 = i, A;
27 (y; — m) = 0, where [ denotes the log-likelihood and
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A; is the (g X v;) matrix of partial derivatives of y; with
respect to 6. ML estimates of 6 under the ¢ model (2)
satisfy 27, w,A;¥; (y; — p) = 0, where

wi = (v + v)/(v + %)

©)

is the weight assigned to case i; w; clearly decreases with
increasing 6?. (See Prop. 1 in App. B.)

Note that the degree of downweighting of outliers in (3)
increases with decreasing v. If v is fixed a priori at some
reasonable value, it is a robustness tuning parameter. ML
estimation of # based on (2) is a form of M estimation
(Huber 1981), yielding robust estimates of location with
a redescending influence function. With sufficient data, v
may be estimated from the data by ML, yielding an adap-
tive robust procedure in the sense used by Hogg (1974);
see Yuh and Hogg (1988). This approach follows Box and
Tiao (1973) and Box (1980) in embedding the normal model
in a larger model with a parameter (here v) that affords
protection against nonnormality. A different approach
modifies normal-theory estimators and/or their standard
errors to allow for nonnormal errors. In particular, Zell-
ner’s (1976) linear regression model leads to least squares
estimates of the regression coefficients, but with inflated
standard errors (see Sec. 2.1). Tyler (1983), Browne (1984),
and Shapiro and Browne (1987) studied modifications of
normal covariance-structure tests under elliptically dis-
tributed errors.

Hampel, Ronchetti, Rousseeuw, and Stahel (1986) noted
that the use of the ¢ distribution for describing a single
sample dates back at least to Jeffreys (1939), who fitted
it to series of astronomical data. Fraser (1976, 1979) dis-
cussed one-sample and general linear models with ¢ errors,
using structural inference to estimate the parameters. A
related approach to the one-sample problem appears in
the article by Relles and Rogers (1977), who obtained
good results from a Bayesian analysis using the ¢ model
with a uniform prior on v. West (1984) extended this ap-
proach to regression. Maronna (1976) discussed ML es-
timation of the mean and covariance matrix under ¢ errors.
Rubin (1983) and Sutradhar and Ali (1986) considered
ML for multivariate regression with multivariate ¢ errors,
and Little (1988a) extends this work to handle incomplete
data. Pendergast and Broffitt (1985) mentioned the multi-
variate ¢ in connection with M estimation for growth-curve
models, and Masreliez and Martin (1977) applied the ¢
distribution to Kalman filtering in time series. We include
novel applications of the ¢ approach to nonlinear regres-
sion, unbalanced repeated-measures data, and pedigree
analysis.

By Property 1 the ¢ model (2) can be derived by mixing
a multivariate normal deviate y; with a scaling variable u;:

Vi | U ~ Nu,-(:ui(g)’ \I,i((p)/ui),

Other models with errors having longer-than-normal tails
are obtained by choosing other distributions for u. In par-
ticular, for univariate y Rogers and Tukey (1962) argued
that u should have finite support, and they proposed
modeling u with cdf u'*! (0 < u < 1). Whenv = 0, u is
uniform, and y has the so-called slash distribution. This

w; ~ x3.
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model may have better properties than the ¢ for data sets
with gross outliers, but in some respects it is less conve-
nient than the ¢ computationally. Specifically, the likeli-
hood involves the computation of incomplete gamma func-
tions for each observation, and the weighting function (3)
and expected information are more complicated than for
the ¢ model. The distribution of the Mahalanobis distance
is no longer F as in Property 4, which complicates the
computation of residual plots (discussed in Sec. 4).

Another variant of the mixture approach models u as a
binary variable, taking value 1 with probability 7 and 4 <
1 with probability 1 — z. The marginal distribution of y
is then a mixture of two normals. Choosing 7 close to 1
(say .95) and A small (say .1) yields a suitable model when
the data are contaminated with a small fraction of outliers.
This model is easy to work with computationally and can
be effective in the presence of extreme outliers. But the
multivariate ¢ compared favorably with this model in sim-
ulations in Little (1988a), and the contaminated normal
model requires two robustness parameters (z and 1) to be
specified or estimated, rather than just one for the  model.
Berkane and Bentler (1988) presented moment estimators
of = and A for the contaminated multivariate normal model
with constant v; and unstructured mean and covariance
matrix.

The mixing approach produces families of distributions
with longer-than-normal tails. The exponential power fam-
ily (Box and Tiao 1973) is an example of a class of distri-
butions with tails that are both longer and shorter than
the normal. Our limited experience with ML for this model
(Taylor 1989) indicates that it has more computational
problems than the t model because of a tendency of the
robustness parameter to approach one of its boundary
values. In addition, the uniform and double-exponential
distributions, which occur when the extra parameter at-
tains its boundary values, are not very .appealing for
modeling real data. Since the model is not obtainable by
mixing the normal with a scale variable, EM algorithms
that treat the scaling variable as missing are not available.
The penalty for estimating the robustness parameter in
terms of increased variance for estimates of location ap-
pears greater than the penalty for the ¢ model (Taylor
1989). The fact that the model includes distributions with
shorter tails than the normal is an advantage, but in ap-
plications departures from normality in this direction seem
to be less frequent, with less serious consequences.

We do not deny the value of these or other approaches
to robust inference (Hampel et al. 1986; Huber 1981).
Nevertheless, we think that inference based on a para-
metric model such as (2) combines conceptual simplicity
with generality, since it can be applied in a wide range of
settings. The model supplies a single parameter v for ro-
bustness, like Tukey’s (1949) single degree of freedom for
nonadditivity or Box and Cox’s (1964) single parameter
for power transformations. Given sufficient data, v can be
estimated from the data by likelihood methods, and the
improvement over the normal model can be tested using
standard methods such as the likelihood ratio test. For
small samples another option is to set v a priori at some
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sensible value; we have found that the value v = 4 has
worked well in many of our applications.

Asymptotic estimates of precision are readily available
from the information matrix, and they can incorporate
uncertainty in estimating v if v is treated as a parameter
to be estimated. In Appendix B we show that the expected
information matrix based on Model (2) (and other models
with elliptically symmetric error distributions) is block di-
agonal between the mean parameters  and the scale and
kurtosis parameters ¢ and v. Hence ML estimates of 8 and
(9, v) are asymptotically uncorrelated, and asymptotic
standard errors of estimates of # are unaffected by esti-
mating the scale matrix or the degrees of freedom.

In small samples, alternatives to ML such as profile
likelihood plots for particular parameters, the Bayesian
approach of Relles and Rogers (1977), or the related struc-
tural approach of Fraser (1976) may yield better tests and
interval estimates than methods based on asymptotic
theory. These approaches are more computationally de-
manding, however. .

Of course, t modeling is not a panacea for all robustness
problems. In particular, data with shorter-than-normal tails
or asymmetric error distributions, varying degrees of long-
tailedness among the variables, or extreme outliers are not
well modeled by (2). An advantage of the ¢ modeling ap-
proach, however, is that a clear statement of assumptions
is incorporated in the model specification, and a critical
assessment of them can yield modifications of the model
that deal with some of its limitations (e.g., by allowing
different degrees-of-freedom parameters for different
variables).

We now present some examples of (2). Section 3 con-
siders methods for computing standard errors, and Section
4 develops graphical diagnostic checks of the model. Sec-
tion 5 states conclusions. Alternative computational ap-
proaches to ML estimation are outlined in Appendix A,
and Appendix B derives the score and expected infor-
mation matrix for (2), including some results for the more
general elliptically symmetric family of distributions.

2. SPECIAL CASES OF THE GENERAL MODEL
21 Univariate Regression

Let v; = 1, and introduce a (k X 1) vector of covariates
x; for each unit i. An important case of (1) is the normal
regression model y; ~i.q Ni(u(6; x;), 6%/c;), where u; de-
pends on i only through x; and the residual variance is
inversely proportional to a known constant c;. The anal-
ogous ¢ model

i o3 t(u(0; x)), v ci, v) €]

can be used for robust regression. Model (4) is different
from that of Zellner (1976), who placed a multivariate ¢
distribution on the vector of errors {y; — u(6; x1), . . .,
(y» — 1(6; x,)}. Whereas £4) yields robust estimates of 6,
Zellner’s model yields the standard least squares estimates
of 6, but with estimated standard errors that are inflated
by the factor [v/(v — 2)]"2. Our first example of (4) is for
linear regression, where u(0; x;) = x76.
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Example 1: Stack-Loss Data. The stack-loss data set
presented by Brownlee (1965) has been subjected to ro-
bust methods by numerous authors, including Andrews
(1974) and Ruppert and Carroll (1980). Table 1 shows
slopes of the regression of ¥ = stack loss on X; = air
flow, X, = temperature, and X; = acid, calculated for
the linear regression model with ¢ errors and v ranging
from © (normal) to .5. A row is included for the ML
estimate of v, namely ¥ = 1.1. Four other sets of estimates
from Ruppert and Carroll (1980) are presented, two from
trimmed least squares (67,@ and 9PE) and M estimates pro-
posed by Huber and Andrews.

Maximized log-likelihoods from the ¢t models are given
in the second column of the table; they describe the profile
log-likelihood as a function of v. The difference in maxi-
mized log-likelihood between the best-fitting ¢ and the
normal model is 2.72. Doubling this number yields a like-
lihood ratio (LR) chi-squared statistic 5.44 on 1 df, an
apparently significant improvement in fit, although asymp-
totic theory cannot be trusted because the sample size is
small (21 cases). Estimates for the v = 1.1 model are
similar to those of Andrews (1974), which Ruppert and
Carroll (1980) favored based on closeness of fit to the bulk
of the observations. Estimation of standard errors of the
parameter estimates is a tricky issue, given the small sam-
ple size (see Sec. 3).

The ¢ fits were obtained by iteratively reweighted least
squares (as discussed in App. A, Sec. A.2). Cases with
particularly small final weights are outliers. The weights
from the Cauchy model ranged from .017 to 1.985. The
four observations with the smallest weights (.017, .023,
.047, .052) are cases 21, 4, 3, and 1, respectively, which
are also identified as outliers in the least squares analysis
of these data by Daniel and Wood (1971). Least squares
analysis with the four points removed yields similar esti-
mates to the Cauchy fit to all of the data, as can be seen
in Table 1.

Example 2: Radioimmunoassay Data. Nonlinear least
squares fitting requires an iterative algorithm, so the ad-
ditional computational effort in incorporating ¢ errors is
less pronounced than in linear models. Tiede and Pagano
(1979) provided an application of robust nonlinear regres-
sion to radioimmunoassay. Their methods were illustrated
on TSH standards data with two measurements for each
dose, plotted in Figure 1. The continuous line shows the
least squares fit of the mean model u(6; x;) = 6, + 6,/(1
+ 6,x%) and is distorted by the clear outlier at x = 20.
The dotted line shows the ML fit of this mean function,
assuming constant variance and ¢ errors with 4 df. Final
weights [Eq. (3)] from this model are .01 for the outlier
and range from .59 to 1.25 for the other 13 points. (The
constant-variance assumption seems dubious for counted
data, but Tiede and Pagano stated that it is supported by
empirical evidence.) The ¢, fit is similar to that obtained
by Tiede and Pagano using the robust sine M estimator
(Andrews, Bickel, Hampel, Huber, Rogers, and Tukey
1972).

ML estimation of v for these data is not very satisfactory,
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Table 1. Regression of Stack-Loss Data: Estimates From 13 Methods

Intercept Air flow Temperature Acid
Method Log-likelihood (6s) (6,) (6,) (6;)
Normal -33.0 —-39.92 72 1.30 -.15
tbv=28 -32.7 -40.71 .81 .97 -.13
tLtv=4 -32.1 —40.07 .86 .75 -.12
t,tv=3 -31.8 -39.13 .85 .66 -.10
tbv=2 -31.0 -38.12 .85 .56 -.09
t,v=1.1 -30.3 —38.50 .85 .49 -.07
tv=1 -30.3 —38.62 .85 .49 -.07
ttv=.5 -31.2 —40.82 .84 .54 -.04
Normal minus
four outliers -37.65 .80 .58 -.07
ke —42.83 .93 .63 -.10
oE —-40.37 72 .96 -.07
Huber -41.00 .83 91 -.13
Andrews -37.20 .82 .52 -.07

reflecting the fact that the ¢t model is not well suited to
data with extreme outliers. The ML estimate is # = .29,
a very low value. Although the fit (the dashed line in Fig.
1) is similar to that for v = 4, the final weights are con-
centrated on a small number of data points: Four have
weights close to 3.4, one has a weight of .4, and the others
have weights of .1 or less. This overconcentrated distri-
bution of weights reflects the unappealing shape of the ¢
distribution when v is small, which has a spike at 0 and is
close to 0 elsewhere. The low value of v results from at-
tempting to accommodate the extreme outlier: When the
outlier is removed, ¥ increases to 1.2. In general, we agree
with Fraser (1979, p. 45) that ML estimation of v is not
advisable when ¥ goes much below 1.

Example 3: Nonlinear Calibration of Blood-Flow
Data. Estimation of v is more successfulvin our second

(X 1e00)

1e

- T FIT .29 DF

= T FIT 4 DF

NORMAL FIT

COUNTS (X 10ee)

20 40 se

DOSE (Micro-International Units/ml)

Figure 1. Example 2 Radioimmunoassay Data: Observed Values From
Three Models.

nonlinear regression example, which concerns calibration
of two measures of blood flow in the canine myocardium,
measured in milliliters per minute per 100 grams (ml/min/
100g). The first measurement (x) is regional myocardial
blood flow (RMBF), from a standard invasive measure-
ment procedure using radioactively labeled microspheres;
the second (y) is extraction times blood flow (EF), based
on noninvasive N-13 ammonia images from positron emis-
sion tomography (PET) (Schelbert et al. 1981). Figure 2
presents data on 251 determinations of x and two versions
of y, one (y;) from integrating the results of PET scans
taken up to 60 seconds, and the other (y,) from the results
of PET scans taken up to 510 seconds. The solid lines in
Figure 2 show nonlinear least squares regression fits based
on the univariate models UNj:

Yii ina N(u(x;; 6), 0, ui(xi; 0) = x{l — Oye'},
i=1,...,251,

for j = 1, 2. The form of z; is based on theory of Renkin
(1959) and Crone (1963). A model that fits the same curve
for y, and y, (i.e., 6;; = 6y, and 6y = 6,,) does not fit the
data. Note that in Figure 2 the residuals of y, are more
scattered than the residuals of y;, and display some evi-
dence of outliers.

Estimates from these univariate normal models (UN1,
UN2) are given in the first two rows of Table 2, with the
maximized log-likelihood and standard errors based on a
numerical approximation of the observed information ma-
trix (App. A). The third and fourth rows show results
from the corresponding univariate ¢ models y; ~ing £(4;(x;;
6), 2, v) (i = 1, ..., 251), with v estimated from the
data (UT1, UT2). For UT1, # = 10.3, and the increase
in log-likelihood over the normal model is marginal (LR
¥} = 5.2). For UT2, ¥ = 3.4, and the increase in log-
likelihood is highly significant (LR x = 59.9), confirming
the presence of nonnormal errors. The parameter esti-
mates of location from the normal and t models are similar,
but note the reduced standard errors for 0, and ,, that
result from switching from a normal to a ¢ model.

2.2 Robust Multivariate Regression

In Section 1 we noted earlier applications of the multi-
variate ¢t model to multivariate linear regression with bal-
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Figure 2. Examples 2 and 3 Blood-Flow Data, Observed and Fitted Data: (a) y,—Blood Flow From PET Scans up to 60 Seconds; (b) y,—

Blood Flow From PET Scans up to 510 Seconds.

anced data. Our first multivariate example extends the
nonlinear regression analysis of Example 3 to model cor-
relation between the responses.

Example 4: Multivariate Nonlinear Regression of Blood-
Flow Data (Ex. 3 continued). The analysis of Example
3 failed to consider that measurements of y, and y, were
based on the same PET study, and hence are correlated.
This correlation can be modeled using the bivariate normal
model (BN)

(yn) ~N, {(ﬂl(xi§ 90) ( vt p¢1¢z)}
Vi) ta(xi5 62)) ° \ppr192 93 ’

and the model obtained by replacing the bivariate normal
distribution by a bivariate ¢ (BT). Fitted values from BN
and BT are displayed as the broken lines in Figure 2, and
parameter estimates and maximized log-likelihood values
are shown in Table 2. Note that the correlation is clearly

significantly greater than 0. In addition, the ¢ model fits
much better than the normal model (LR x? = 162.9), with
smaller standard errors of the location parameters and
increased estimated correlation. A scatterplot of the re-
siduals from the BT model is given in Figure 3, and clearly
shows the outliers that are downweighted by the ¢ model.

2.3 Robust Analysis of Unbalanced
Multivariate Data

Many multivariate statistical analyses involve reduction
of the data to a sample mean and covariance matrix. These
statistics are sufficient under the multivariate normal model
¥i ~ia No{u, 2}, which is obtained from (1) by setting v;
= v, 0 equal to the set of unconstrained means {g;; 1 <
j = v}, and ¢ equal to the set of unconstrained variances
and covariances {0;; 1 =j =< k =< v}. Robust estimation
of the mean and covariance matrix can be achieved by ML

Table 2. Parameter Estimates and Standard Errors, Blood-Flow Data, Examples 3 and 4

Parameter estimates

Maximum
Model log-likelihood 0y, 0,, 0y, 0, v3 03 p v
UNA1 -908.69 .636 113.9 513
(.016) 9.1) (46)
UN2 -1,093.12 .782 306.0 2,231
(.054) (37.6) (199)
um —906.09 .629 106.2 412 10.3
(.014) (8.8) (56) (5.4)
uT2 -1,063.15 .746 274.7 943 3.4
(.035) (28.0) (151) (.8)
BN —-1,966.59 622 102.9 .758 287.8 516 2,233 .500
(.015) (8.5) (.050) (34.1) (46) (200) (.048)
BT -1.885.13 .598 74.2 701 241.4 320 896 739 3.2
(.011) (6.1) (.029) (21.6) (40) (113) (.036) (.5)

NOTE: Standard errors are in parentheses.
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Figure 3. Example 3 Blood-Flow Data: Scatterplot of Residuals of y,
and y, From the BT Model.

estimation under the multivariate ¢ model y; ~i,q t,{u, ¥,
v} (Maronna 1976; Rubin 1983). Little (1988a) extends
this approach to situations where the data matrix {y;} is
incomplete, with any pattern of missing values. ML esti-
mates for the multivariate £ and contaminated normal models
are calculated by the EM algorithm (see App. A) and
involve minor modifications of the EM algorithm for an
incomplete multivariate normal sample. Since ML esti-
mation for the normal model requires iterative fitting pro-
cedures, the mixture-modeling approach achieves robust
estimation with minor increments in cost.

An important extension is to model the mean and co-
variance matrix further. Jennrich and Schluchter (1986)
described ML estimation for the flexible normal model

Yigg N{X0, 2((0)}’ (5)

where X; is a known (v X ¢) design matrix for case i, 6
is a (g X 1) vector of unknown parameters, 3 is a known

Joumal of the American Statistical Association, December 1989

function of covariance-structure parameters ¢, and some
components of y; may be missing. Growth-curve models
and analysis of variance models with more than one error
term are special cases of (5). Robust modeling of the in-
complete data can be achieved by replacing (5) with

Vi a 0AXi0, ¥(p), v}, (6)

as suggested in Little (1988b). The next example is an
application of this idea.

Example 5: Repeated Lung-Function Measures With
Missing Values. LaVange and Helms (1983, table 1) re-
ported data from a longitudinal study of lung function
conducted on 72 children aged 3 to 12 years at the Frank
Porter Graham Child Development Center. The variables

“consist of race (black or white), gender, and log vmax;s,

for single-year ages from 3 to 12, where vmaxysq, is the
maximum expiratory flow rate after 75% of the forced
vital capacity has been exhaled. Of the 10 possible
measurements of vmaxysq, for each child, the number ac-
tually recorded range from 1 to 8, with an average of 4.3
per child; thus the amount of missing data was substantial.
Some combinations of early and late ages were never ob-
served together, so the covariance matrix was not esti-
mable without placing restrictions on the parameters.

The results in Table 3 show whether there are differ-
ences in the growth curves of vmaxysq, over time between
males and females. Let y; denote the value of vmax;sq, for
individual i at age j + 2, for 1 = j = 10. The first row of
the table shows the maximized log-likelihood 164.43 for
the following version of (6) (Model 1T): y; ~ina tio(1:(6),
W(p), v), where y,(0) has jth component

male

wy = 6y + Oiage; + O,age} if sex;

1

0; + O,age; + Osage? if sex; = female,

modeling separate quadratic curves relating lung function
to age among males and females. The quadratic terms
model nonlinearity, in the absence of any theory-based
functional form for the curves. The scale matrix ¥ = {wiut
is modeled as yy = gilp, + (1 — @)l (1 <j, k =<
10), where ¢, is the total dispersion, ¢, is a heritability
parameter, and ¢; is an environmental decay constant. See
Hopper and Mathews (1982) and Lange (1986) for moti-

Table 3. Models of Lung-Function Data, Example 5: Summary Fits for 12 Models

Multivariate t models

Model description Multivariate normal models
Constraints Model fit Model fit
No. of No. of
Model Means Cov  parameters Log-likelihood x?(df) Model parameters Log-likelihood  x? (df)
1T — — 10 187.1 0 (0) 1N 9 164.4 0(0)
2T 6,=6,=0 — 8 186.2 20 (2) 2N 7 164.1 72
3T 6.=6,=0,6,=20, — 7 184.8 47 (3) 3N 6 161.9 5.2 (3)
AT 0,=0:=10,0,=050,=0, — 6 184.2 5.9 (4) 4N 5 161.4 6.2 (4)
5T — 0 =0 9 183.1 8.1* (1) 5N 8 163.5 2.0 (1)
6T — 0 =0 9 181.5 9.2* (1) 6N 8 156.4 16.5* (1)

NOTE: Parameter constraints for the normal models are as for the t model in the same row.

* Significantly worse fit than Model 1N (normal models) or 1T (t models) at the 1% level (asymptotic LR chi-squared test).
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Table 4. Models of Lung-Function Data, Example 5: Parameter
Estimates and Standard Errors for Models 4N and 4T

Model 0, 0 01 (7] 03 v
4N —-.3650 .0637 .1671 .3618 1747 o
(.075) (.0102) (.0173) (.076) (.092) )
47 —.2858 .0608 .1087 4061 .3040 4.4
(.069) (.0090) (.0172) (.092) (.102) (1.2)

NOTE: Standard errors are in parentheses.

vation of this form for the scale matrix. Overall, the model
has 10 parameters: 6 for the mean function, 3 for the
covariance matrix, and 1 for the v df, which is estimated.

Rows 2T to 6T in Table 3 show results for parsimonious
versions of the first model, obtained by placing the con-
straints on the parameters indicated in the table. The models
are ranked by maximized log-likelihood. Models ST and
6T fit the full mean structure but simplify the covariance
structure. In particular, 6T sets the heritability parameter
@, to 0, yielding the autoregressive covariance structure
fitted by LaVange and Helms (1983). The LR chi-squared
statistic (> = 9.2 on 1 df) is significant, suggesting that
this covariance structure does not fit the data. Model 5T
sets the decay parameter ¢; to 0, yielding the compound
symmetry structure. This model also does not fit well (LR
2 = 8.1).

Models 2T to 4T retain ¢, and g; but progressively sim-
plify the mean structure, dropping the quadratic terms
(Model 2T), the slope times sex interaction, yielding a
model with common slope and separate intercepts for males
and females (Model 3T), and finally dropping the sex ef-
fect altogether (Model 4T). None of these simplifications
significantly worsens the fit as measured by LR tests, so
the simplest model (4T) seems a reasonable summary of
the data. That is, the lung-function curves appear linear,
with no differences between males and females.

The right side of Table 3 shows the fit of the same set
of models with normal rather than ¢ errors. The normal
models fit much worse than their ¢ counterparts (LR y2 >
40 on 1 df). Comparisons within the normal models again
lead to Model 4 as the best-fitting model, taking into ac-
count parsimony. One interesting difference between the
normal and ¢ analyses emerges: Unlike the ¢ analysis, set-
ting ;3 = 0 (Model 5N) does not significantly worsen the
fit of the normal model (1N). It appears that for the normal
model outliers are obscuring the (expected) decline in the
covariances as the time between measurements increases.
Parameter estimates from the best-fitting normal and ¢
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models (4N and 4T) are shown in Table 4, with asymptotic
standard errors based on a numerical approximation of
the observed information matrix (App. A). Note that the
best-fitting ¢ has between 4 and 5 df and increases the size
and statistical significance of the ¢, parameter, as expected
from the model comparisons. The slopes of the regression
lines are similar for the normal and ¢ fits, but the intercept
for the ¢ fit is noticeably smaller.

24

The models discussed in Section 2.3 concerned an un-
derlying rectangular data matrix, although particular en-
tries in the matrix might be missing. In other situations
the data are inherently nonrectangular, and it makes little
sense to refer to an underlying rectangular structure. One
such situation is pedigree analysis, where the units of ob-
servation are extended families or pedigrees and pedigree
sizes and complexity vary widely (Lange and Boehnke
1983). An example follows.

Inherently Nonrectangular Multivariate Data

Example 6: Gc Measured Genotype Data. The Gc lo-
cus is known to determine qualitative variation in the hu-
man group component (Gc) protein, a transport protein
for vitamin D. A question of interest is whether the geno-
types at the Gc locus also determine quantitative differ-
ences in plasma Gc concentrations. The data of Daiger,
Miller, and Chakraborty (1984) addressed this question.
The Gc concentration and Gc genotype (1/1, 1/2, or
2/2), age, and gender are measured on 133 individuals,
consisting of 31 monozygous twin pairs, 13 dizygous twin
pairs, and 45 unrelated controls. The mean structure is
specified by five parameters, three mean Gc concentra-
tions for each genotype, a regression coefficient on the
covariate age, and a main effect for sex. The covariance
structure is specified by a total dispersion ¢?, assumed the
same for all concentration measurements, and correlations
oy and ¢, between concentrations of monozygous and
dizygous twins, respectively.

Boerwinkle, Chakraborty, and Sing (1986) fitted normal
models to these data. Table 5 shows fits to four models,

fitted using both ¢ and normal error structures. Model 1

is the model just described; the mean structure is denoted
by [G, A, S] to signify additive effects of genotype, age,
and sex on concentration. The second model adds the
constraint ¢, = 2¢p for the correlations, with insignificant
deterioration in fit. In genetic terms, this suggests that a
simple model with only additive genetic variance and ran-

Table 5. Models of Gc Locus Data, Example 6: Summary Fits for Three Models

Multivariate t models

Muitivariate normal models

Model description Model fit Model fit
No. of No. of
Model Mean Cov parameters Log-likelihood x2(df) Model parameters Log-likelihood x2 (df)
1T G, AS om # 2¢p 9 -213.0 0 (0) 1N 8 -217.6 0(0)
2T G,A 'S om = 2¢p 8 -213.3 6(1) 2N 7 -217.7 2(1)
3T AS om # 20p 7 -229.2 32.4* (2) 3N 6 —-230.3 25.3* (2)
4T G o = 2¢p 6 -214.4 2.8 (3) 4N 5 -218.5 1.7 (3)

* Significantly worse fit than Model 1N (Normal models) or 1T (t models) at the 1% level (asymptotic LR chi-squared test).
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Table 6. Models of Gec Locus Data, Example 6: Parameter Estimates and Standard Errors for

Models 4N and 4T
Model 1/1 Mean 1/2 Mean 2/2 Mean 0? Om oo v
4N 31.74 29.47 26.00 12.76 .805 403 ©
(.47) (.62) (1.01) (1.76) (.056) (.028) =)
4T 31.80 28.96 26.26 7.78 .845 423 41
(.41) (.69) (.85) (1.95) (.057) (.028) (1.8)

NOTE: Standard errors are in parentheses.

dom environmental variance may adequately fit the data.
The third model sets the effects of genotype (G) to 0 and
is decisively rejected under both the ¢t and normal analyses
(LR x}3 = 32.4 and 25.3, respectively). The final model
includes genotype, constrains the correlations, and sets the
age and sex effects equal to 0. This model fits well relative
to the first model and is preferred on grounds of parsi-
mony. For the models that include the effects of genotype
(1, 2, 4), the ¢ fits are significantly better than the normal
fits (LR x? = 9.3, 8.8, and 8.2, respectively). Table 6 shows
parameter estimates and large-sample standard errots for
the normal and ¢ fits to Model 4. The ¢ fit yields an estimate
of 4.1 df. Apart from the scale estimates that are not
directly comparable, estimates of the other parameters are
similar for the normal and ¢t models, although the estimates
of gy and gp, are slightly larger for the ¢ fit.

3. ESTIMATING PRECISION OF
PARAMETER ESTIMATES

There is a variety of methods for estimating standard
errors after fitting a ~family model. The observed or ex-
pected information matrix could be used, or a bootstrap
resampling scheme could be employed. If v is estimated
from the data, the analyst can treat the v df as fixed or
(more appropriately) allow for its estimation. This second
issue is less important than it might first appear, since the
block-diagonal structure of the expected information ma-
trix, derived for a general elliptically symmetric family of
distribution in Appendix B, implies that the ML estimates
of 0 and v are asymptotically uncorrelated.

In our implementation the observed information matrix
is obtained by numerical differentiation of the score vector
and matrix inversion of the resulting Hessian. The ex-
pected information matrix can be written explicitly (App.
B). In particular, for the linear regression model y; ~i,q
t(x;0, y?, v), inverting the expected information matrix
yields cov(d) = (v + 3)/(v + 1)(X7X) 'y?, whether or
not v is estimated, where X is the design matrix.

For the bootstrap schemes one can resample whole cases
or resample residuals. For unbalanced multivariate prob-
lems such as Examples 5 and 6, resampling residuals is not
possible, although it is possible to resample within patterns
of the missing data as an alternative to equiprobable whole-
case resampling (Su 1988), thus preserving the missingness
structure of the data. Given large samples, all of these
methods should give similar standard errors. Nevertheless,
in small samples they can yield quite different answers, as
the following two regression examples illustrate.

Example 7 (Ex. 1 continued): Precision of Estimated
Regression Coefficients for Stack-Loss Data. Table 7
shows standard errors of the slopes and intercepts in Ex-
ample 1 from a variety of methods. For the bootstrap
standard errors 1,000 samples were generated, and v was
fixed at the ML estimate in estimating the parameters from
the bootstrap samples.

For the normal models, eliminating the outliers more
than halves the standard errors. The reduced standard
errors are appropriate if outliers are known not to belong
in the population, but are probably too optimistic, given
uncertainty in the outlier-detection process. The asymp-
totic standard errors for the estimates from the ¢ model
seem small compared with the normal models, and are
about 40% smaller than those obtained by bootstrapping
the residuals. An interesting finding is that bootstrapping
whole cases gives much larger standard errors than the
other schemes. We expect bootstrapping cases to give larger
standard errors than bootstrapping residuals because it
introduces variability in the design, on top of the usual
error variability (Wu 1986). The size of the discrepancy
between the two sets of standard errors is surprising, how-
ever; it reflects in part the fact that the bootstrap distri-
butions from bootstrapping cases had a high kurtosis. Su
(1988), in an extensive simulation comparison of ¢ and
normal fits to incomplete trivariate data, found a similar
pattern of results, with the information-based standard
errors slightly optimistic and the bootstrap standard errors

Table 7. Standard Errors of Three Sets of Estimated Slopes From Table 1

Method of estimation

Normal minus
Normal Lv=11 four outliers
Standard error method 0, 0, 0, 0; 0, 0, 0, 0, 0 0, 0, 0;
Asymptotic (observed information) 10.7 121 .331 A41 3.8 .051 134 .055 4.4 .059 145 .054
Asymptotic (expected information) 10.7 121 .331 141 47 .054 147 .063 4.4 .059 145 .054
Bootstrap (cases) 8.2 A7 477 116 11.0 .208 .506 .156 4.4 .090 .166 .065
Bootstrap (residuals) 12.4 A4 .384 .163 75 .083 223 .096 4.2 .059 146 .055
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Figure 4. Example 1 Stack-Loss Data: Profile Likelihood Plots of 6,—
Normal and t Models.

slightly conservative. On his simulated data sets the dif-
ferences between the methods were much smaller, and
dissipated with increasing sample size.

Asymptotic confidence intervals may be computed by
multiplying the standard error by the appropriate normal
percentile. Nevertheless, some adjustment for the small
sample size is advisable. An obvious strategy is to replace
the normal percentile with the ¢, with n — 4 = 17, yielding
the correct inference for the normal error model. A better
approach is to plot the profile likelihood and calculate the
interval corresponding to a fixed drop in the maximized
log-likelihood based on the y? approximation. Figure 4
shows the profile likelihood of 6, for the normal and best-
t models; 6, was selected because of the appreciable effect
of robust estimation on this parameter. For the normal
model the plot is very symmetric and yields a 95% profile
likelihood confidence interval very close to the standard
tinterval (1.30 = (2.1)(.331)) = (.60, 2.0). For the ¢ model
the plot is asymmetric and the 95% profile likelihood con-
fidence interval is (.21, .93), compared with ¢ intervals
(-49 = (2.1)(.134)) = (.21, .77) based on the observed
information and (.49 = (2.1)(.223)) = (.02, .96) based on
the residuals bootstrap. If the profile likelihood interval
is regarded as approximating the truth (admittedly a du-
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bious assumption), then the ¢ interval based on the ob-
served information is too narrow, and the interval based
on the residuals bootstrap is a bit too wide.

Example 8: Traffic-Accident Data. Our final illustra-
tion of uncertainty calculations is a simple linear regression
example with one explanatory variable, taken from Draper
and Smith (1981, p. 191). The dependent variable is
log,o(driving deaths in 1964) and the independent variable
is logyo(number of drivers in 1964), for each of the n =
50 states. A plot of the data indicates that a straight line
is appropriate with two possible outliers (Rhode Island
and Connecticut). The least squares estimates of the in-
tercept (6,) and the slope (0,) are —2.94 and .941, re-
spectively. For the ¢ model §, = —2.82, §, = .925, and
¥ = 4.6; a profile likelihood plot indicates a 95% confi-
dence interval for v of (1.6, «).

Standard errors of estimates of 6, and 6, are shown in
Table 8. The bootstrap and simulation results are based
on 600 replications. The last two rows of the table are
results from a simulation study in which 600 data sets are
generated according to the model y; ~inq t,(0 + 0,x;, §/%,
7), where parameter values are the ML estimates from the
t-model fit. Each simulated data set is then fit by the ¢
model with v either estimated or fixed at 4.6. The values
in the table indicate rough similarity between the results
based on the information matrices, bootstrapping resid-
uals, and the simulations. As in the previous example,
bootstrapping cases results in appreciably larger standard
errors than bootstrapping residuals. In both examples, the
standard errors based on the normal after deleting the
outliers appear too small. There is some indication that
the standard errors based on the expected information
matrix may be small. Standard errors are relatively un-
affected by whether v is estimated, supporting the result
that asymptotically there is no price to pay for estimating
v and then ignoring that it is estimated. In both simulations
the coverage of nominal 95% confidence intervals for 6,
and 6, based on the expected information matrix was as-
sessed. In all four cases the coverage was between 94%
and 96%.

The t-model standard errors for this example show less
variation between methods than those in Example 7. This
might be expected, because we have more cases (50 com-
pared to 21), fewer parameters (4 compared to 6), and ¥
is larger (4.6 compared to 1.1), all of which suggest that
the asymptotic theory is likely to be more accurate.

4. GOODNESS OF FIT AND OUTLIER ANALYSIS

Any statistical analysis should include a critical analysis
of model assumptions. In this section we consider diag-

Table 8. Standard Errors of Intercept and Slope for Traffic-Accident Data

Intercept Slope Intercept Slope

Method (60) (6,) Method (6s) (6,)
Normal .256 .0420 Bootstrap cases (v = 4.6, fixed) 311 .0505
Normal minus two outliers .206 .0338 Bootstrap residuals (v varying) .226 .0377
t (v = 4.6) (observed information) .266 .0429 Bootstrap residuals (v = 4.6, fixed) 223 .0373
t (v = 4.6) (expected information) 211 .0347 Simulation standard deviation (v estimated) .238 .0399
Bootstrap cases (v varying) 317 .0511 Simulation standard deviation (v = 4.6, fixed) 234 .0392
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nostics for checking the fit of the + models. We first con-
sider statistics defined for each case i, and then briefly
mention statistics defined for the values within each case.

For the normal model (1), a natural measure of close-
ness of the ith observation to the center of the distribution
is the Mahalanobis-like distance §?(6, ¢) = {y; — w(0)}”
27" (9){y: — wi(0)}, which under (1) has a chi-squared
distribution with v; df. Substituting ML estimates of § and
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o yields d? = 6%(0, ), which has asymptotically the same
chi-squared distribution as ?. A check on normality is
achieved by transforming each d? to an asymptotically
standard normal deviate and then plotting the ordered
values against expected normal order statistics; for the
special case of univariate least squares regression, this is
the familiar half-normal plot. Deviations from the 45-de-
gree line suggest lack of normality; in particular, larger-
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Figure 5. Plots of Transformed Distances for the Normal and Best-t Models: (a) Example 1 Stack-Loss Data; (b) Example 2 Radioimmunoassay
Data; (c) Example 3 Blood-Flow Data, y,; (d) Example 3 Blood-Flow Data, y,; () Example 4 Blood-Flow Data, y, and y; (f) Example 5 Lung-

Function Data; (g) Example 6 Genotype Data.
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than-expected values of d7 identify outlying cases (Gnan-
adesikan 1977; Hopper and Mathews 1982; Little 1988a;
Little and Smith 1987). We carried out the transformation
to normality by numerical integration. Alternatively, ap-
proximations good enough for plotting can be obtained by
transforming to approximate normality using a cube-root
or fourth-root transformation of d? (Hawkins and Wixley
1986).

l L B B I T 1 17 I T TT I T T lil T T T | L '7'
T -1
e

X NORMAL MODEL

O BEST T MODEL

—— EXPECTED

TRANSFORMED DISTANCE

oo b v by v oo b v by v by

-2.8 -1.8 -e.8 e.2 1.2 2.2 3.2

EXPECTED NORMAL DEVIATE

If this plot reveals outliers, one might fit the multivariate
t model (2). For this model define the distances

030, 9) = {yi — m(O}™¥ (oHy: — w(0)}  (7)
and d? = 6?(d, ¢). By Property 4, under this model 6?/v,
is F-distributed with v; and v df. In addition, d?/v; has the
same F distribution asymptotically. The latter F statistics
can be transformed to standard normal deviates and plot-
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Figure 5 (continued).
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ted against their expectations to assess the fit of the ¢
model. Approximate transformations from F to normality
are discussed in Little (in press).

Figure 5 shows these transformed distance plots for Ex-
amples 1-6 in Section 2. Plots for the best-fitting normal
and ¢ models are superimposed. Note that the larger trans-
formed distances from the normal models drift above the
45-degree line, indicating longer-than-normal tails, partic-
ularly for Examples 3, 4, and 5, where the normal model
fits poorly. The plots from the ¢ models all follow the 45-
degree line more closely, confirming the better fit.

In Section 2 we noted that the best ¢ fit for Example 2
had very low degrees of freedom (.29) and was unsatisfying
in that it placed nearly all of the weight on just four points.
This unsatisfactory property is reflected in the transformed
distance plot for this model, shown in Figure 5b: the points
with the four smallest transformed distances for the best
t-model line are markedly below the line, suggesting a
closer fit than expected. The plot with v = 1 (not shown)
looks better for this data set. Thus in this example visual
inspection of the transformed distance plot suggests a model
that does not maximize the likelihood, tempering our en-
thusiasm for a choice of degrees of freedom based exclu-
sively on the likelihood. In defense of such a strategy, we
note that it appears satisfactory in the other examples
discussed here. In addition, in problems with small sample
sizes such as Example 2 one might fix the degrees of free-
dom at some predetermined value (such as 4), rather than
attempting to estimate degrees of freedom simultaneously
with the other parameters. Integration over a prior for v
is another possibility (Relles and Rogers 1977).

The plots shown here provide a means for identifying
outlying cases from the normal model and assessing the
success of the  models in dampening their influence. For
identifying outlying values within cases, Little and Smith
(1987) propose a stepwise procedure, where values are
identified that yield successively the greatest reduction in
d? when removed.

5. CONCLUSION

This article illustrates the ability of models based on the
t distribution to handle outliers in a wide range of settings.
The incorporation of this approach in existing statistical
software appears feasible and should enhance the ability
to address robustness concerns fairly routinely when con-
ducting multivariate analyses of quantitative outcomes.
We conclude with some remarks on the limitations of the
approach, and mention some areas that seem to us to
require further study.

1. Our basic model (2) is parametric. A referee noted
that extensions to nonparametric and semiparametric
models, where the mean structure is an unspecified or
partially specified smooth function of covariates, seem
possible in principle. For example, the robust locally
weighted regression algorithms of Cleveland (1979) could
be modified to model ¢ errors by changing the robustness
weights (J; in Cleveland’s. article) to the form (3) (with v;
= 1) appropriate for univariate ¢ errors. Properties of such
procedures remain to be considered.
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2. As noted in Section 1, models other than (2) also
yield robust estimates, such as the contaminated normal,
the generalization of the slash distribution of Rogers and
Tukey (1962), or the exponential power family (Box and
Tiao 1973); we chose the ¢ mainly on grounds of familiarity
and computational simplicity. Studies comparing these al-
ternative models might be useful, particularly in multivari-
ate settings where previous work appears limited.

3. Like most robust methods, the ¢ family still works
within a symmetric class of distributions. Sometimes a
transformation to symmetry is available. If not, the ap-
propriate analysis of location when the distribution is
skewed is an issue that needs careful attention.

4. In multivariate applications, the same parameter v
models nonnormality in all of the variables. A useful gen-
eralization allows v to vary across the variables to model
differing degrees of nonnormality. For example, for the
data in Examples 3 and 4 a model with a different value
of v for y; and y, might improve the fit slightly. Little
(1988a) discusses such extensions for the multivariate ¢
model with unconstrained location vector and scale matrix.

5. Although ML estimation provides the machinery for
computing large-sample standard errors that take into ac-
count the presence of outliers, exactly when the data set
is large enough for asymptotic theory to apply, and what
to do when asymptotic theory does not apply, require
further attention.

6. When should v be fixed a priori at some sensible
value, and when should it be estimated from the data?
General principles of parsimony suggest that v should be
fixed for small data sets and estimated for large ones. Our
regression examples and theory suggest surprisingly little
added variance from estimating v rather than treating it
as known. But Example 2 suggests that estimated values
of v below 1 should be regarded with suspicion. And in-
ferences about v itself might be improved by transforming
to 1/v or log(v).

7. Although we found few numerical problems in the
data sets we studied, widely distributed software should
recognize and deal with the possibility of multiple maxima
of the likelihood, particularly with sparse data sets and
small values of v.

APPENDIX A: LIKELIHOOD FITTING

A1 Maximum Likelihood Algorithms

The log-likelihood for Model (2) is, ignoring constants, /(6, ¢,
v) = 2, 1(6, p, v), where

16,9, = 31 - S+ i (1 +

- -;-viln(v) + In [F (v ; v')] - InT (%) ;

I" denotes the gamma function and 6%(6, ¢) is given by (7).

We have experience in three iterative methods for maximizing
the log-likelihood: a quasi-Newton (QN) algorithm, a scoring
algorithm with variable step length, and an EM algorithm; the
QN algorithm is implemented in a FORTRAN program named
Fisher (Lange, Boehnke, and Weeks 1987). Given estimates y®
= (89, ¢, v®) at iteration ¢, the QN and scoring algorithms
compute y©D = y® + 2,0-Y(y9)S(y¥) where (a) S(y) is the

&wmv




Lange, Little, and Taylor: Robust Statistical Modeling Using the t Distribution

score vector of I(y), given in Proposition 1 in Appendix B; (b)
for the scoring algorithm Q(y) is the expected information, given
in Proposition 4 in Appendix B; (c) for the QN algorithm Q(y)
is an approximation to the observed information matrix, based
on the successive rank-two modifications of Broyden, Fletcher,
Goldfarb, and Shanno, as explained by Powell (1978). The term
Q' (y“)S(y¥) furnishes the direction of the current increment,
and 4, > 0 determines its length. Both algorithms are ascent
algorithms in the sense that taking 4, sufficiently small forces an
increase in /(y). The QN algorithm handles parameter bounds
and linear constraints using the method sketched by Jennrich
and Sampson (1978).

The EM algorithm (Dempster, Laird, and Rubin 1977; Little
and Rubin 1987) augments the data Y = (y, . . . , y,) by ad-
ditional hypothetical data Z = (z;, z,, . . . , z,) such that ML
estimates of y, given Y* = (Y, Z), are easy to compute. Given
estimates y® at iteration ¢, the (¢ + 1)st iteration of EM consists
of an expectation (E) step and a maximization (M) step. The E
step computes the expected value of the complete-data log-like-
lihood I(y | Y, Z) with respect to the conditional distribution of
Z, given Y and y®. The M step maximizes the resulting function
with respect to y, yielding new estimates y“*, Under mild con-
ditions each iteration of EM increases the log-likelihood I(y | Y).

EM is particularly useful when the M step is noniterative, since
then the algorithm does not require inversion of an information
matrix at each iteration, which is burdensome when the number
of parameters is large. When the M step is iterative, EM may
still be useful if the maximization of the complete-data likelihood
is available using existing software. Sections A.2 and A.3 discuss
two special cases of (2) where EM is useful.

Starting values for § and ¢ were obtained by fitting a normal
model by least squares, with covariances in the multivariate models
set to 0. In univariate models the starting value for v can be
determined from the kurtosis of residuals from the normal fit;
alternatively, a grid search over values of v can be used. Multiple
maxima of the likelihood seem possible, particularly when v is
small; however, we did not find any for our problems.

A2 EM for a General Univariate Regression Model
With t Errors

Let y; denote a scalar outcome. By Property 1, the model
yil w5 N{u(8; x), w*/ (cu}, (A1)

yields the ¢ regression model (4) for y,, where u( ) is aregression
function with covariates x; and a (p X 1) vector of regression
coefficients 8, ¢, is a known constant, and 2 is an unknown scale
parameter. ML estimation for Model (3) can be achieved by
applying the EM algorithm with missing data {u,: i = 1, ...,
n}.

If v is assumed known, EM is iteratively reweighted least
squares. The E step computes the weight

U g X3V

v+1

v + 6309, y0)’
where 52(0, w) = ¢y, — u(0, x)*/y?, by Property 3. [Compare
(3) with v; = 1.] The M step finds 6¢*V to minimize the weighted
sum of squares ,c,w{y; — u(6, x)¥, and y @ = Z.cw?{y, —
w0y, x)P/n. Since the M step is weighted least squares, it is
noniterative if the regression is linear (Dempster et al. 1977) and
otherwise can be carried out by any nonlinear regression program
that handles weights for the cases.

If v is treated as a parameter, it can be estimated by repeating
the aforementioned algorithm over a grid of values of v. Alter-
natively, EM can be applied to estimate v simultaneously with
0 and w. Given current estimates y© = (69, y®, v©), the E step

w® = B | y;, 60, y©) = (A2)
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computes w using (A.2) with v = v®, and in addition
q” = E(lnu |y, y©)

2

where DG(x) = d/dxInI'(x), the digamma function [from Prop-
erty 3 in Sec. 1]. The M step computes §¢*Y and y“*V by
weighted least squares with weights w® and finds v¢+" that max-
imizes
L(v)
ny v v v - V<
—— - — - + = - 0 - — @)
2 1 (2) ”‘“{F@} (2 1) Zal =32
using a one-dimensional search such as Newton’s method.

A3 EM for Multivariate t Models
Suppose that y, is now (k X 1), and

yo 1
DG (- + 5] = (G0 + 6100, y)/2),

yi ‘ u; ;;E Nk(u,(ﬁ), ‘I’((p)/u,), u, ;:;5 X%/V, (A3)
yielding the multivariate ¢ model
yx :,T& tk(ﬂl(a)a \If(qo), V)a (A4)

a special case of (2) where y, has the same dimension and the
same scale matrix for all i. Given data {y;;i = 1, ..., n} and
Model (A.4), ML estimates of the parameters can be found by
EM, treating {u,} as missing data. Furthermore, EM can be ex-
tended to handle missing values in the {y} by treating both {u;}
and the missing components of {y;} as missing data. Details for
the case where v is known (g; = 67x;) and ¥ unconstrained (i.e.,
multivariate regression with ¢ errors and missing y data) are given
in Little (1988a). The algorithm can be extended to handle si-
multaneous estimation of v by a simple generalization of the
univariate case in Section A.2.

For other choices of mean and covariance structures, the E
step remains essentially the same, and the M step becomes equiv-
alent to ML for the complete-data model (A.3). Again, for EM
to be useful the M step should be noniterative, or available using
existing software. For example, suppose that the mean and co-
variance matrix have the linear structure u(0) = ¢ = X0 and
Y(p) = 2;.; 9,G,, where X is a known (k X g) matrix, 6 is
(@ X 1), Gy, ..., G, are known linearly independent (k X k)
matrices, and ¢, . . . , ¢, are covariance-structure parameters.
Szatrowski (1980a) gave necessary and sufficient conditions on
Xand G,, . . ., G, for the existence of explicit ML estimates of
0 and ¢. Szatrowski (1980b) applied these conditions to provide
explicit estimates for balanced data in mixed-model analyses of
variance.

APPENDIX B: DERIVATION OF THE SCORE AND
EXPECTED INFORMATION

It is not difficult to carry through most of the computations
for an arbitrary elliptically symmetric family of densities (Chmie-
lewski 1981) of the form p(y | u, ¥, v) = |¥|""%8((y — w)™¥"!
(y — ), v), where y and p = u(0) are (k x 1), ¥ = ¥(p) is
(k x k), and v is a scalar parameter modeling kurtosis. For the
k-variate ¢,

_ (v + k)2 s\70 e
869 = ri ez Pty :
Another example is afforded by the generalized power-expo-

nential family with g(s, v) = c(v)e™"? (Box and Tiao 1973).

Proposition 1. Let (0, 9) = In p(y | u(6), ¥(p), v) be the
contribution of a typical observation to the log-likelihood. The
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contribution to the score has components

—] 1 —
%0, (y - m,
ﬂ j— _l 1 a‘I’ 51. — -1 ﬂ -1 —_
o0 T <‘I’ 6¢,) g (y - o, Yy — p),
and
I _&
v g’

where g; and g, denote partial derivatives with respect to the first
and second entries of g, respectively.

Proof. These expressions are straightforward to compute us-
ing the rules

d
—[(y - (y -pl = —2— Ty -,
30;
d _ oY
o In|Y| = (‘If a@)
and
WY,
6¢i a(ﬂ,

To exploit symmetry we change variables to z = ¥~¥(y —
). Clearly, given ||z|| = r, z is uniformly distributed on the sphere

lzll = (Zk, 22 = r. In addition,
al 28 9u”
A Y12,
a0, g 96,
and
.a_l = .._.1 tr ’\II 1 a‘P & ZT'\I]‘-—I/Z (_9! '\II‘-]/ZZ.
a9, 2 a9, g o9,

Now, let J denote the contribution of the current observation to
the expected information.

Proposition 2. ] is block diagonal with the mean components
0 in one block and the scale components ¢ and v in another
block.

Proof.  Jy, = E((31/36)(3l/3¢;)) = 0, since for ||z|| fixed
0l/96; is an odd function of z and 8//d¢;, is an even function of
z. Similarly, J,, = 0.

Lemma 1 [after Graybill (1983, p. 366) and Huber (1981, pp.

231, 232)]. For any k X k matrices A and B,
ZT
E (,,z” T Nzu) Z () (B.1)
and
zT z z
¢ <Il_z||A o1 2 | 2 ”)
= k(k1+ 3 [2(4B) + u(A)(B)]. (B.2)

Proof. Consider (B.2). It suffices to replace z by w ~ N,(0,
I). Then, by direct computation, E(wTAww’Bw) = 2 tr(AB) +
tr(A)tr(B). When A = B = I, E(|w||) = 2k + k2. Since

E(wTAwwTBw)
Iwll = 1)

WW

wll “ Twil {IWI{ wl II
(B.2) follows immediately upon division by E(||w]}*).

= E(IwIE (
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Proposition 3.

- 2 (81 16/“ —1_6_/'£
Joy = 4E (n I ( )) AT (B.3)
- C _C: 2 gl
NN
1 L 4
TRk +2) [C tou (“' a0 aq»,)]
2
x E [Nzn“ @ ] , (B.4)
where C = tr(¥~! 9¥/ag)tr(¥ ! 9V¥/dp),
d (g v
— 2 - |8l 1
A T
and
J,=E(-2(& (B.6)
w av g . .

Proof. We prove (B.3) as a typical example. Using (B.1),
al ol
Jog = E (ao ao)
(_ L&)
4
v 1 T

81
[“z" (g) (nzn %96 T
g — 172 . aﬂ a/l 1/2
- an [ (&) J e (e v )
1 a,u g1 O au

-oe (1 (8)) ;50 5

In effect, Proposition 3 reduces the computation of J to the
evaluation of one-dimensional integrals, since for any well-be-
haved function f(r), E(f(|z])) = [ f(r)g(r, v)r*-'c, dr, where
¢ is the surface area of the unit sphere in R*. We now specialize
to the ¢ distribution.

dp ou” ]
T‘\I]‘ 172 2 ‘\I/‘ 12
a6, a6;

llz Il)]

Proposition 4.  For the t distribution,

Y
Ty 4k + 2 96, a6,’
_ vtk 1 Ad
J”‘“”_v+k+22t (\P a(p,w 6(0,)
1 29 LA
20+ k+2) " (q' a:p,-) (q' %,
_ 1 v
Jor = (v+k+2)(v+k) (‘P 8(0,)’
and
111 v+ k 1 v
el
+ k B 1 v+ 2 ]
v+ k) v+k vv+k+2)]°

where TG(x) = d*/d* In I'(x) is the trigamma function.
Proof. For the ¢ distribution,
g _ 1 v+k
g 2vHEF

(&)z_l 1,1 _v+k

g 2v+ 2P 2 (v + llzP)?’

9
av
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and

oy s el

1 Jz> 1 + Y + k
vy + izt v+ lzlP vl
(v/2)

(O + 0)2)°

B (S (o)) g - (1 1)) - e

(Ilznz [ uznz] ) vk
v+k+2)(v+k)’
and
] k(k + 2)

E (["znz]z [ et ) YT}

The proposition follows by applying these facts to the expressions
in Proposition 3.

Integration yields

«(-1)-

and in particular

W2+ m-—1)--
v+ k)2 +m-—1)--

Notes. Summing expressions over observations gives the ex-
pected information matrix. As v — , one recovers the expected
information matrix for the corresponding normal distribution.

[Received December 1987. Revised May 1989.]
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