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ABSTRACT

In assessing structural safety, the state of knowledge is imperfect when uncertainties
exist due to estimation and modeling errors. The nature of these uncertainties is funda-
mentally different from the uncertainties arising from inherent variabilities. A reliability

index defined under such conditions of uncertainty is a point estimator of safety.

Motivated by needs in structural code development, a set of fundamental require-
ments on the point-estimator reliability index are formulated. Existing reliability indices
are examined in light of these requirements and are found to be lacking with regard to one
or more of the requirements. Based on concepts in Bayesian statistical decision theory, a
new index is introduced which is shown to satisfy all the stipulated requirements. The
index recognizes the fundamental difference between the sources of uncertainty and pro-
vides a rational basis for the assessment of structural safety and for development of

reliability-based codes under arbitrary states of knowledge.

Methods are developed for quantifying the uncertainty in the measure of safety aris-
ing from the imperfect state of knowledge. It is shown that existing reliability methods can
be used to compute the probability distribution or variance of the safety measure. A sim-
ple example, showing the uncertainty in the reliability index as a function of the sample

size, is used to illustrate the main concepts of the paper.
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INTRODUCTION

In assessing structural safety, four broad sources of uncertainty are relevant: (1)
inherent variability, (2) estimation error, (3) model imperfection, and (4) human error. The
first kind of uncertainty (often called randomness) arises from inherent variability in the
characteristics of the structure itself, such as variability in its material properties and
member strengths, or inherent variability in the environment to which the structure is
exposed, such as variability in loads and support movements. The second source of uncer-
tainty, estimation error, arises from incompleteness of statistical data and our inability to
accurately predict probability laws governing the inherent variabilities. An example is the
error in predicting the parameters of a probability distribution due to the limited size of the
available sample. The third kind of uncertainty, model imperfection, arises from our use
of idealized mathematical models to describe complex phenomena. Model imperfection
has two components: one due to our lack of understanding of the phenomenon itself,
which may be denoted ignorance, and the other due our use of simplified models, which
may be denoted error of simplification. Imperfections in both mechanical models (e.g., a
model describing the flexural strength of a reinforced concrete beam) and probabilistic
models (e.g., the choice of a parameterized distribution model) give rise to this kind of
uncertainty. Finally, the human error uncertainty arises from errors made by engineers or
operators in the design, construction, or operation phases of a structure. Examples may
include calculational errors or omissions in the design phase, errors in the placement of
rebars in reinforced concrete construction, and errors in the operation of a structure which

result in its exposure to overloads.

There is a fundamental difference between the first and the next two sources of uncer-
tainty. Namely, whereas inherent variability is intrinsic to nature and beyond our control,
the uncertainties due to estimation error and model imperfection are extrinsic and to some
extent reducible. For example, a reliability analyst may choose to obtain additional infor-
mation to improve the accuracy of estimation, or use more refined models to reduce errors
of simplification. He/she may even choose to conduct experiments or analyses to gain a
better understanding of the relevant phenomena, and thereby reduce the model uncertainty
due to ignorance. Such improvements, however, usually entail an investment in time and
money which the analyst, or his/her client, may not be willing to undertake. Nevertheless,
the sheer possibility of influencing the uncertainties due to estimation error and model

imperfection signifies a fundamental difference between them and the uncertainty due to
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inherent variability. The uncertainty due to human error may also be reduced by imple-
menting rigorous quality control measures in the design, construction, and operation
phases of a structure. Such measures tend to reduce the rate of occurrence of human errors
and/or the magnitudes of their consequences. However, within a specified quality control

program, human errors tend to occur inherently randomly.

The available statistical information (objective and subjective) on relevant variables
and the set of mechanical and probabilistic models and their associated error estimates con-
stitute the srare of knowledge in a reliability problem. The state of knowledge is said to be
perfect when complete statistical information (i.e., probability laws governing inherent vari-
abilities) and perfect models are available, i.e., when there is no uncertainty due to estima-
tion error or model imperfection; otherwise, the state of knowledge is said to be imperfecr.

Most real engineering problems deal with imperfect states of knowledge.

In an ideal situation where the state of knowledge is perfect and uncertainties arise
only from inherent variabilities, a strict measure of structural safety is the probability of
failure, denoted Pr. An alternative measure is the reliability index, B, conventionally

defined by (Madsen et al. 1986)
B = @7l(1-Pp) W

where ®~1(.) is the inverse of the standard normal probability. This index, which is also a
strict measure of safety under a perfect state of knowledge, offers a more convenient range
for analysis: For problems of structural engineering interest P usually ranges from 107! to
1077, while B ranges from 1 to 5. It is important to note that P and B are intrinsic statist-
ical properties of the structure and its environment; these properties cannot be influenced

without physically changing either the structure or its environment.

When the state of knowledge is imperfect, i.e, when the statistical information is
incomplete and/or the employed models are imperfect, a strict assessment of structural
safety is impossible. Because of the uncertainties arising from estimation error and model
imperfection, Pr and B are themselves uncertain and can only be assessed in a probabilis-
tic sense, i.e., through probability distributions. The dispersions in these distributions may
be considered as measures of the quality of knowledge. In particular, one may expect that
when the state of knowledge is improved (by either increasing the amount of statistical
information, using more refined models, or both), the dispersions in the distributions of

Pr and B will decrease. Thus, the dispersions in the distributions of Pr and B are not
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intrinsic properties of the structure or its environment. Rather, they are due to our use of

incomplete statistical information or imperfect models.

Several measures of structural safety under imperfect states of knowledge have been
introduced in the past two decades. These include: (1) rule-based reliability indices; (2)
estimates of probability of failure or reliability index based on predictor models; (3) confi-

dence bounds on the probability of failure; and (4) fuzzy measures of safety.

Among the above measures, rule-based reliability indices have received the widest
attention and popularity. The word "rule-based” is used here, since these indices are based
on reasonable rules rather than derived from basic principles. These measures may be
regarded as point-estimators of B. A review of these indices is given later in this paper.
In particular, the first-order, second-moment reliability index, which employs only means
and variance/covariances of random variables (a case of incomplete statistical information),
has played a central role in the development of modern structural design codes (e.g., CEB
1976, Ravindra et al. 1978, Ellingwood et al. 1982). In such codes, partial factors (such as
load and resistance factors in AISC’s LRFD code, Ravindra et al. 1978) are determined in
terms of a target reliability index, which itself is determined by calibration to the accepted
practice. In this context, the role of the rule-based reliability index is a relative measure of

safety for comparison.

The second measure described above is based on predictor distributions of uncertain
variables, which combine the uncertainties due to inherent variability, estimation error,
and model imperfection. No distinction between the natures of these uncertainties is made

in this approach. This measure is examined later in this paper.

Methods for developing confidence intervals or probability distributions on the proba-
bility of failure have received limited attention in the theoretical reliability literature, but
have been used extensively in application, particularly in studies dealing with probabilistic
risk analysis of nuclear power plants. In the context of code development, such an
approach is not suitable as it does not provide a convenient means for calibration or deci-
sion making. Nevertheless, there are situations where an explicit measure of confidence in

computed probabilities is required. Methods for such analyses are described in this paper.

Finally, the fuzzy safety measure (Brown 1979) is based on fuzzy set theory, which
emphasizes the subjective nature of uncertainties. This paper will not address this

approach.
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The main focus of this paper is on the analysis and development of point-estimators
of B for use as measures of structural safety under imperfect states of knowledge.
Motivated by needs and requirements in structural code development, a set of fundamental
requirements on the point-estimator are formulated. These include requirements previ-
ously introduced by others (Hasofer and Lind 1974, Veneziano 1979, Ditlevsen 1979, Der
Kiureghian and Liu 1986), which are extended or modified here, as well as new require-
ments that together form a complete set that is relevant to a broad spectrum of reliability
problems. Existing definitions of rule-based reliability indices are reviewed and examined
in light of these requirements. Then, using elementary concepts from optimal statistical
decision theory (Ang and Tang, 1984), a new point-estimate reliability index is introduced.
It is shown that the new index is a generalization of some previously defined indices and
that it is superior to all previous indices in satisfying the stated requirements. Methods for
computing the distribution of B and its confidence intervals are also described. The paper
concludes with a numerical example that illustrates the main concepts of the paper. For
convenience, in the following the term “reliability index" is used to denote a point-

estimator of B, while B itself is denoted "the strict reliability index."”

The approach undertaken in this paper is consistent with the Bayesian thinking in its
treatment of objective and subjective information, and in using probability theory for the
modeling and analysis of all uncertainties. However, unlike previous works in structural
reliability that have employed the Bayesian method, the present work explicitly distin-
guishes the uncertainties arising from inherent variability from those arising from estima-
tion error or model imperfection, and thereby relates the measure of safety to the quality of

the state of knowledge.

FUNDAMENTAL REQUIREMENTS ON THE RELIABILITY INDEX

As stated in the introduction, under an imperfect state of knowledge, the strict relia-
bility index, B, is uncertain and is described in terms of a probability distribution. The
reliability index under such a condition is defined as a point estimator, é, of B. As the
state of knowledge improves, the dispersion in the distribution of B decreases. As a matter
of consistenc;l, we shall require that when the state of knowledge approaches the perfect
state and the dispersion in the distribution of B vanishes, § coincide with B defined by Eq.

1. We denote this as the consistency requirement.
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The second requirement that we impose on the reliability index is that it shall incor-
porate the entire information available for each reliability problem. Thus, for example, if
information on higher moments or distributions are available, the reliability index shall
incorporate such information and not be restricted to the second moments only. This also
requires that the reliability index fully account for the uncertainties arising from estimation
error and model imperfection. We denote this as the completeness requirement. It is
important to note that in real applications of structural reliability one is required to deal
with a broad spectrum of knowledge states. Therefore, the reliability index shall be capa-

ble of incorporating arbitrary states of knowledge.

The third requirement that we impose on the reliability index is that, for a given state
of knowledge, it shall be invariant with respect to mutually consistent formulations of the
reliability problem. In particular, the computed reliability index shall be the same for all
mutually consistent formulations of the safety criterion. This requirement, denoted invari-
ance, is well known for the second-moment reliability index (Ditlevsen 1973, Hasofer and
Lind 1974). However, here, it is stated in a broader sense for reliability problems under

arbitrary states of knowledge.

As stated earlier, the nature of uncertainties due to estimation error and model
imperfection is such that these uncertainties can be reduced by improving the state of
knowledge. The resulting reduction in the dispersion of B leads to a reliability index esti-
mate which is closer to a strict measure of safety and, therefore, is of improved quality.
However, improvements in the state of knowledge normally require an investment in time
and money which may not be undertaken if there is no clear incentive. Assuming that it
is desirable to have as strict a measure of safety as possible, we require that the reliability
index penalize poor states of knowledge and, thereby, provide an incentive for improving

the state of knowledge. We denote this as the remunerability requirement.

As described earlier, an important role of the reliability index is to serve as a relative
measure of safety. For this purpose, it is necessary that an ordering of reliability indices
for any group of structures be consistent with the corresponding ordering of their strict
safeties. However, under an imperfect state of knowledge, a strict measure of safety and,
therefore, an ordering thereof is not available. Thus, in lieu of a strict ordering of safeties,
we require that the ordering of the reliability indices be consistent with the ordering of the
corresponding safeties at a prescribed probability level. We denote this as the requirement

of orderability. This requirement is analogous to a comparativeness requirement previously
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defined for a second-moment reliability index (Ditlevsen 1979).

The sixth and last requirement that we impose on the reliability index is simplicity.
Since the reliability index is merely a rule-based, point estimate of safety, extensive compu-
tations for its determination are not justified. Therefore, the index shall be such that the

required effort for its computation is commensurate with its approximate nature.

In summary, the fundamental requirements on the reliability index are stated as fol-

lows:

1. Consistency: For a perfect state of knowledge the reliability index shall coincide with
the strict reliability index in Eq. 1

2. Completeness: The reliability index shall incorporate all available information and

account for all uncertainties.

3. Invariance: For a given state of knowledge, the reliability index shall be invariant for

mutually consistent formulations of the reliability problem.

4.  Remunerability: The reliability index shall provide an incentive for improving the

state of knowledge.

5. Orderability: Any ordering of reliability indices shall be consistent with the

corresponding ordering of the strict safeties at a prescribed probability level.

6. Simplicity: The required effort for computing the reliability index shall be commen-

surate with its approximate nature.

HISTORICAL BACKGROUND

The structural reliability problem is usually formulated in terms of a limit-state func-

tion g (X) of random variables X7 = (X;, - - - ,X,) defined such that

[ = 0 failure set

g(x) 1 = (0 limit—state surface 2
| >0  safe set
The failure probability is given by"
Pp = f Fx(x)dx 3
2(x)=<0

in which f x(x) denotes the joint probability density function (PDF) of X.
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From the earliest studies in structural reliability, the need to work with incomplete
statistical information was realized, as fx(x) is seldom completely known. Indeed, the
bulk of the early work assumed knowledge of only the first two moments of X, i.e., the
mean vector M = {u;} and the covariance matrix = = [p;;0,0,], where p;, o;, and p;
respectively denote the mean, standard deviation, and correlation coefficient values of the
elements of X. Reliability methods using only this information are known as second-

moment reliability methods.

The earliest formal definition of a second-moment reliability index, introduced by
Cornell (1969) and further formalized by Ang and Cornell (1974), is the ratio of the mean,
Mg, to the standard deviation, o, of the limit-state function g(X). Since for nonlinear
g(X) a first-order, Taylor-series approximation around the mean point is used to compute
the mean and standard deviation, the index is known as the mean-value, first-order,
second-moment (mvfosm) reliability index:

K
Og

Bmvfosm = (4)

The motivation behind this definition is the fact that the probability of failure generally
can be written in the form Pr = Fy(—p,/0,), where Fy(.) is the cumulative distribution
function (CDF) of the standard variate U = (g(X) —p,)/o,. In the special case where the
variables are normal (a case of complete statistical information) and g(X) is linear, the
probability of failure is given exactly by Pr = ®@(—Bmyosm) and Bpypsm coincides with the
strict reliability index in Eq. 1.

A problem with By, that was soon realized (Ditlevsen 1973, Hasofer and Lind
1974) was that it depended on the formulation of the limit-state function. For example,
Bmyosm Vvalues computed for two equivalent limit-state functions g =X;-X, and
g = X{/X,—1 are different. This problem was resolved by Hasofer and Lind (1974), who
suggested expanding the Taylor series around a point on the limit-state surface with
minimum distance from the origin in a transformed standard space. The standard vari-
ates, U, having zero means and unit covariance matrix, are defined by a linear transforma-

tion of X, e.g.,

U=L1X-M) (5)
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where L is a decomposition of the covariance matrix such that = LLT. The correspond-

ing index, denoted first-order, second-moment (fosm) reliability index, is

Bfo.rm = Ggll)igﬂ lul (6)

where G (u) = g (x(u)) is the limit-state function in the transformed space. Bg,, is invari-
ant of the formulation of g(X) since the linearization point on the limit-state surface

remains invariant. For linear g (X), Bgm coincides with Bpypm -

A fundamental shortcoming of B, is that it lacks orderability. That is, an ordering
of Bym values for a group of structures may not be consistent with the ordering of the
corresponding safeties. This is obvious since all limit-state surfaces having equal minimum
distances from the origin in the standard space have identical By, values, regardless of
the shapes of the respective safe sets. To overcome this, Ditlevsen (1979) introduced the
generalized (second-moment) reliability index

Bgom = @'1[ I ¢,(u)d..] ()

G(u)>0 |

where ¢ ,(u) is a normalized weight function over the n-dimensional safe set. Based on
the rotational symmetry of the standard space and a requirement of simplicity, ¢ ,(u) was
taken to be the n-dimensional standard normal density, & ,(u) = (27) ™2 exp(—u’u/2).
In a second-moment context, this index is orderable since it accounts for the entire safe set.
However, B,,, does not satisfy the orderability requirement as defined in this paper, since
it lacks a precise relationship with the strict reliability index. For linear g (X), Bgom, B osm

and Bpsm coincide.

The preceding indices are strictly applicable when the available information is limited
to the first and second moments. Thus, they do not satisfy the completeness requirement
whenever information beyond the second moments is available. For the same reason they
fail to satisfy the consistency requirement. It can be shown that in the presence of infor-
mation beyond the second moments, the standard space defined by Eq. S loses its rota-
tional symmetry. To account for such information, therefore, Ditlevsen (1979) and Der
Kiureghian and Liu (1986) suggested using the beyond-the-second-moment information to
construct a nonlinear transformation which produces a rotationally symmetric standard
space. For example, when a variable is known to be positive, Ditlevsen (1979) suggests

using the logarithmic transformation. Der Kiureghian and Liu (1986) have formulated
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such transformations for different states of information, including the knowledge of margi-
nal distributions and covariances. An essentially similar approach has been suggested by
Winterstein and Bjerager (1987) to account for knowledge of higher than second moments.
The resulting reliability indices computed with these methods and Eq. 7, although satisfy-
ing the completeness requirement, cannot satisfy the requirements of remunerability and
orderability as defined in this paper. This is because Eq. 7 does not account for the extent
of completeness of the statistical information. For example, with these methods one would
obtain identical results for a case with only the second-moments known and a case with

known normal distributions having the same second moments.

To account for information beyond the second moments, Veneziano (1979) suggested

a definition of the reliability index in terms of the upper bound of failure probability,
Bpu = (PHY™ (®

where the upper bound Pg is computed as a generalized Tchebysheff bound, including the
information beyond the second moments. (This definition cbincides with B4, in the spe-
cial case of a single variable with known mean and variance, with the safe set defined sym-
metrically around the mean point.) Solutions of B, for some idealized limit-state func-
tions, assuming knowledge of various statistical moments, are reported by Veneziano
(1979). Theoretically, this index can incorporate any information on the random vari-
ables. However, in practice, the generalized Tchebysheff bound is extremely difficult or
impossible to compute for arbitrary statistical information and for general limit-state func-
tions. Hence, this index fails to satisfy the simplicity requirement. It also fails the con-
sistency requirement, since the definition adopted by Veneziano is not consistent with the
definition in Eq. 1. Furthermore, it is not clear how uncertainties due to model imperfec-
tion can be incorporated in this formulation. On the other hand, this is the only existing
reliability index that, at least theoretically, satisfies the remunerability and orderability
requirements. Specifically, it satisfies the remunerability requirement since B,, normally
increases with increasing statistical information, and it satisfies the orderability requirement
since B, may be regarded as the lower reliability bound at 100 percent probability level.
It is shown in the next section that the new reliability index to be proposed in a special

case reduces to an index analogous to B,, but consistent with the definition in Eq. 1.

Uncertainties due to estimation error and model imperfection have received little

attention in the definitions of the preceding reliability indices. The suggested second-
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moment methods by Ang and Cornell (1974) and by Ditlevsen (1982) essentially amount to
a modification of the second-moment statistics of the basic variables to account for these
uncertainties. Another suggestion has been to consider such uncertainties as additional
random variables and to incorporate them as a part of the vector of variables X (Hohen-
bichler and Rackwitz 1981). Both methods are based on the Bayesian thinking. However,
these methods do not differentiate between the uncertainties arising from inherent variabil-
ities from those arising from estimation errors and model imperfections. Further examina-
tion of this approach is given in the following section. An approach based on confidence
intervals analogoué to classical statistical estimation has also been suggested with, however,

no clear definition of a reliability index (Greimann 1984).

As is clear from the above review, the prevailing notion in the reliability literature
regarding incomplete statistical information is the exclusive knowledge of a number of
lower statistical moments (e.g., the first two, in second-moment methods) and nothing else.
This notion, however, is far from reality. In actual practice, one usually deals with
observed samples of random variables, from which statistical moments of arbitrary order
may be estimated, with decreasing accuracy for higher moments. Techniques are available
for examining the relative fitness of various theoretical distribution models to such data.
Furthermore, the Bayesian statistical method offers a valuable framework for incorporating
subjective information, such as an expert’s opinion regarding the parameters of a distribu-
tion, which is an indispensable source of information in many engineering applications.
Second-moment reliability methods are ill-suited to make use of these techniques. The for-
mulation presented in the following section provides a framework for reliability analysis

which is consistent with this more realistic and practical viewpoint.

BASIC FORMULATION

As defined in the introduction, two types of uncertainties enter into a reliability prob-
lem: uncertainties which are irreducible, such as those arising from inherent variabilities,
and uncertainties which are reducible, such as those arising from estimation error and
model imperfection. Let the vector of random variables X describe the first set of uncer-
tainties and trhe vector of random variables @ describe the second set of uncertainties. ©
includes the set of parameters that define the probability model of X and the limit-state
function g (X). To explicitly delineate this dependence, we express the distribution of X as
a conditional distribution, f x|e(x,8), and the limit-state function as g (X,0). It should be
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clear that the elements of ® which represent estimation errors only appear in the distribu-
tion function, whereas the elements which represent modeling imperfections may appear in
both functions. When the state of knowledge is perfect, complete statistical information
and perfect models are available and @ is deterministically known. Otherwise, the state of
knowledge is imperfect and its degree of imperfection is characterized by the distribution of
0, denoted f g(0).

The Bayesian statistical method provides a rational framework for constructing the
distribution of ® based on both objective and subjective information, through the updating

rule
fe(8) =cL(0)f e(8) 9

where f 'g(0) is the prior distribution, which is usually based on subjective information
such as the opinion of an expert, L(8) is the likelihood function of the observed data
(objective information), ¢ is a normalizing factor, and f g(8) is the posterior distribution
which incorporates both sets of information (Ang and Tang 1975). The likelihood func-

tion is given by

L(0) = I xo(x:,6) (10)

where x; is the i-th observation of X and the product is over the observed population.

* Furthermore, the predictor distribution of X, which combines the inherent variability of X

with the uncertainty in @ by the total probability rule, is given by
Fx(x) = [rx|e(x,8)f o(6)d8 an

Dlustrative examples later in this paper will make use of the preceding three formulas.

For a given © = 0, the conditional probability of failure is

Pre®) = [ fxje(x.8)dx (12)
£g(x,0)=0

Using this value, a conditional reliability index consistent with the definition in Eq. 1 is

introduced:
Ble(8) = @71 -Pr g(6)] (13)

For uncertain ®, Pf|g(®) and Bg(®) are also uncertain. Distributions expressing these

uncertainties may be obtained, at least theoretically, by using well known techniques for
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functions of random variables. For convenience, let B = B |g(®) and denote fz(B) and

Fg(B) as its PDF and CDF.

The distribution fz(B) expresses our uncertainty with respect to the strict reliability
index, as arisen from the uncertainties due to estimation error and model imperfection.
The dispersion indicated by this distribution, as measured for example by its standard devi-
ation o, is a measure of the quality of the state of knowledge. As more information is
gathered and refined models are used, this dispersion decreases. In the limit, when the
state of knowledge approaches the perfect state, @ becomes deterministic and the probabil-
ity mass under fg(B) coalesces at a point B, which coincides with the strict reliability index
in Eq. 1.

The reliability index under an imperfect state of knowledge is defined as a- point-

estimator of B. In particular, the following point estimators may be considered:

Mean-Value Estimator:
Ba.s
ng = IB Bfa(B)dB (14)

Median-Value Estimator:

B: Fz(B) = 0.5 (15)
Maximum-Likelihood Estimator:

Bm: mélea(B) = fa(Bm) (16)

Lower-Bound Estimator:

Bmin = o P (17)
Predictor Estimator:

B = (1-Ff) | (182)

Pr = [Pri6(0)fo(6)d0 = E[PF 6(©)] (18b)

where E[.] denotes the expectation. The first three estimators are central measures of
safety and disregard the dispersion in the distribution of B. The lower-bound estimator,
Bmin» defines the reliability index as the lower bound of the distribution of B. This is

analogous to the definition by Veneziano in Eq. 8. This estimator clearly accounts for the
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dispersion in the distribution of B. The predictor estimator, B, is defined in terms of the
predictor failure probability, Pr, which is obtained by the total probability rule and is
identical to the expected value of the conditional failure probability. This estimator makes
no distinction between the uncertainty in X, which is due to the inherent variabilities, and
the uncertainty in ©, which is due to estimation errors and model imperfections. As indi-
cated earlier, this approach has been suggested by Hohenbichler and Rackwitz (1981) and
is often employed in practice (Madsen et al. 1986). Using a first-order approximation of

Eq. 13a, pg= 8. Thus, the predictor reliability index is nearly equal to the mean of B .

The preceding point-estimator reliability indices satisfy the consistency, completeness
and invariance requirements. However, pg, B and B clearly violate the requirement of
remunerability, as they are independent of the dispersion in the distribution of B and,
hence, of the quality of the state of knowledge. Furthermore, the estimators pg and B,y
may not satisfy the orderability requirement, as they do not represent consistent probability
levels of B. The same shortcomings can be stated for §, since § = Mg, as just mentioned.
Thus, the point-estimators pg, 5 s Bmi» and B are not satisfactory candidates for the relia-
bility index. The estimator B, , on the other hand, satisfies the remunerability and order-
ability requirements in the same manner as Veneziano’s index, B, , does. Therefore, B,
is a better choice for the reliability index than all the other indices introduced this far. It
will be shown shortly that this definition of the reliability index is a special case of the new

reliability index introduced below.

THE MINIMUM-PENALTY RELIABILITY INDEX

The new reliability index is based on elementary concepts from statistical decision
theory (Ang and Tang 1984). Consider a penalty function p (B — B) in terms of the devia-
tion of the point-estimator reliability index, B, from the uncertain reliability index B. The

expected penalty for a choice of B is

Baes
E[pB-B)]= [ p(B-B)fz(B)dB (19)

The new reliability index, denoted B, (subscript mp for minimum penalty), is defined as

the value of the estimator that minimizes the expected penalty, i.e.,

B | mgnE[p(B —B)l = E[p(B —Bmp)] (20)
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To make the formulation manageable, we consider simple forms of the penalty function.
The penalty function clearly should be zero when B = and it should increase with
increasing |B —f|. In general, one may expect different penalty values for positive and
negative deviations of equal magnitude, i.e., the penalty function may lack symmetry with
respect to the point B = . In particular, for a fixed |B —p |, normal engineering practice
would dictate a greater penalty for B < B, i.e., for an overestimation of safety, than for
B > B, i.e., for an underestimation of safety. This is because an overestimation of safety
normally entails tangible or intangible consequences which are far greater in value than the
purely economic consequences of underestimating the safety. With these in mind, the fol-

lowing two forms of the penalty function are considered:

Linear Penalty Function:

2 a (B - é)v é =B
Quadratic Penalty Function:
.. fa(B-BY?, PB=B

where a and k are deterministic coefficients. The parameter k represents a measure of the
asymmetry in the penalty function, with k > 1 indicating a higher penalty for overestima-
tion than for underestimation of safety. Qualitative plots of these functions are shown in

Fig. 1.

Minimizing the expected penalty for the above functions results in the following solu-

tions for the minimum-penalty reliability index:

Brp = F5! { : i k} (22a)
B,
e+ (k—1DE  [B]
B2 = P (22b)

" 1+ (k-1)Fp(BS)

in which the superscripts L and Q respectively denote solutions based on the linear and

quadratic penalty functions, and

B, B,
E [B1=J Bf5(®)dp (220)
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is the incomplete expectation of B. Note that the scale factor a does not appear in the
solutions and that in Eq. 22b B,% appears on both sides and the solution is in a transcen-

dental form. The derivation of Eqgs. 22 is given in Appendix I.

Before proceeding further, it is useful to examine the preceding results for the limiting
values of k. For k = 1, it is easy to see that B,’,;p = E and B,,Q,p = pg. Thus, 6 and pg are
appropriate reliability indices only when the penalty function is symmetric, i.e., when there
is no difference in the penalty for underestimating or overestimating the safety. One could
easily show that the maximum likelihood estimator, B,,;, results when the penalty function
is a constant for all deviations of  from B. Such a penalty function is unreasonable and,
therefore, B, is not an appropriate choice for the reliability index. For k& = =, i.e., when
there is no penalty for underestimating the safety, it is easy to verify that both solutions in
Eqgs. 22 reduce to the lower-bound estimator, i.e., B,{‘,p = Bpp = Bmin- Thus, the reliability
index introduced by Veneziano (Eq. 8) is appropriate when there is a penalty for overes-

timating the safety, but not for underestimating it.

The above results for the limiting values of k are independent of the distribution of
B. More generally, the solutions for B,f;p and ng depend on the form of this distribution.
Herein, we first examine the case where B has the normal distribution, as this assumption

leads to simple results. The effect of the distribution is examined next.

It is shown in Appendix I that for a normal distribution of B the solutions in Egs. 22

both reduce to the form
Bmp = Hp(l-sp") (23)

where 8g = ag/jg is the coefficient of variation of B and u = u (k) is a function of k which

depends on the choice of the penalty function. For the linear penalty function,

k
k+1

u= ¢! |( (24a)
\

and for the quadratic penalty function u is obtained as the solution to the transcendental
equation
ku =k —Dud@)+dm)}=0 (24b)

in which ®(.) and ¢ (.) are the standard normal CDF and PDF, respectively. Plots of
u (k) for the two penalty functions are shown in Fig. 2. Note that u = 0 for k£ = 1 for both
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cases, and that « >0 for k > 1. Plots of B,,/pg as a function of 8g and k for the two
penalty functions are shown in Fig. 3. Observe that B,,,/pug decreases with increasing 85
(i.e., decreasing quality of the state of knowledge) and with increasing k (i.e., increasing

asymmetry of the penalty function).

The formula for the minimum-penalty reliability index in Eq. 23 has three com-
ponents, pg, dg, and u (k). The first term provides a central measure of safety, the second
term accounts for the uncertainty in estimation of safety, and the third term accounts for
the asymmetry in the penalty function. When the state of knowledge is perfect and @ is
deterministic, 8g is zero and B,,, coincides with the strict reliability index in Eq. 1. Thus,
Bmp satisfies the consistency requirement. When the state of knowledge is imperfect, 8 is
non-zero and B,, deviates from the central measure of safety by u units of the standard
deviation og. As the state of knowledge improves, 8g decreases and B,,,/pg increases for
k >1. Thus, for k > 1, B, satisfies the remunerability requirement. The requirement of
orderability is also satisfied for a fixed u, since B,, is then a fixed number of standard
deviations from the mean, which corresponds to a fixed probability level for the assumed

normal distribution.

The significance of the assumed distribution of B can be readily examined in Eq. 22a
for the linear penalty function. This equation defines the minimum-penalty reliability
index as the 1/(1 + k) cumulative probability level of B. Obviously this value will be sen-
sitive to the choice of the distribution when £ is large. Figure 4 examines this sensitivity as
a function of k for three selected distributions with 8g = 0.3. Observe that for values of &
less than around 10 the choice of the distribution is not essential. Thus, for such values of
k, Eq. 23, which requires only the mean and standard deviation of B, provides a good
approximation of the minimum-penalty reliability index regardless of the actual distribu-
tion of B. For larger values of k, the distribution of B and the minimization in Eq. 20 are
required to make an accurate estimate of the minimum-penalty reliability index. Methods

for computing f5(B), rg, and o are presented in the following section.

COMPUTATIONAL METHODS

Probability integrals of the type in Egs. 3 or 12 have been of interest to structural reli-
ability analysts for a long time. In the past decade a number of approximate techniques
for their evaluation have been developed. These include first and second-order reliability
methods (FORM and SORM) (Hohenbichler and Rackwitz 1981, Madsen et al. 1986, Der
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Kiureghian et al. 1987), various simulation techniques (e.g., Shinozuka 1983, Ang and
Tang 1984, Schueller et al. 1987, Bjerager 1988), and hybrid methods which combine
FORM/SORM with simulation (e.g., Schueller et al. 1987, Fujita et al. 1987, Bjerager
1988). In addition to providing an estimate of the failure probability and the associated
reliability index, methods based on FORM (Madsen et al. 1986) and the directional simu-
lation method (Ditlevsen and Bjerager 1987) also readily provide the sensitivities (i.e., the
partial derivatives) of the failure probability or the reliability index with respect to any
parameter of the probability distribution or the limit-state function. For the conditional
probability of failure and reliability index in Eqs. 12 and 13, these sensitivities are the par-
tial derivatives 8/80; [Pr |g(6)] and 8/36;[Bg(0)]. The reader is referred to the cited
literature for a review of these methods. It is shown in this section that these same
methods can be used to compute the distribution f5(B), or approximations to pg and og

which define the reliability index in Eq. 23.

To compute the distribution of B, we write the CDF of B as

FgB)=PB-B=0= [ fg(6)de (25)
Ba(6)-B=0
The probability integral on the right-hand side is in the same form as the integrals in Eqgs.
3 and 12. This suggests that the same techniques can be used to compute this integral.
One should note, however, that the dependence of B g(6) on 6 is itself in terms of the
integral in .Eq. 12. Thus, the computation of the integral in Eq. 25 requires a nested
application of the reliability methods described above.

As an example, consider the computation of the integral in Eq. 25 using the FORM.
This would require finding the minimum-distance point from the origin to the surface
Ble(6) —B =0 in a transformed standard normal space of the random variables 0O, and the
linearization of the surface at that point. Standard optimization algorithms for solving this
problem are available (Liu and Der Kiureghian, 1986). These algorithms typically require
repeated computations of the function B|e(8) —p and its gradient with respect to 6, for
values of § selected in accordance to a search rule. For the present case, for each value of
6, the function and its gradient (i.e., the sensitivities) are computed through an application
of FORM to Egs. 12 and 13. (Note that for this FORM, the random variables are X and
© = 0 is fixed.) Thus, the complete solution requires repeated FORM solutions of Egs. 12

and 13 for selected 6 until convergence in the computation of Eq. 25 is achieved. This
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approach also readily provides the PDF of B, as fg(B) = d/dB[Fg(B)] is the sensitivity of
the computed probability with respect to the parameter .

Similarly, the solution of Eq. 25 by a simulation method requires solution of the
integral in Eq. 12 (by simulation or other means) for each single simulation of ®. One
may also consider various combinations of hybrid methods where two different techniques
are used to compute the inner (Eq. 12) and outer (Eq. 25) integrals. These computations
of course need to be repeated for a range of values of B to provide a sufficient description

of f5(B) to be used in computing B,,, from Egs. 19 and 20.

It is clear that the computation of f5(B) and the minimum-penalty reliability index
from Eq. 20, although theoretically possible, can be cumbersome and inconsistent with the
simplicity requirement. After all, B, is merely a point estimator of safety and may not
justify extensive computations, particularly when it is used in the context of code calibra-
tion. With this in mind, it is proposed to use the reliability index in Eq. 23 for all distri-
butions of B. As discussed earlier, this would be entirely appropriate as long as k is not

much larger than 10.

The definition of B, in Eq. 23 requires knowledge of the mean and standard devia-
tion of B, which are also difficult to compute exactly. However, if in the spirit of simpli-

city first-order approximations are used, these values are easily computed from

rg = B|e(Me) (26a)

o3 = VeB ZgaVeB” (26b)

in which Mg and Zgg are the mean vector and covariance matrix of ©, and Vgp is the row
vector of partial derivatives 8/86;[B o(8)] evaluated at the mean point. Note that one solu-
tion of Egs. 12 and 13 with 8 = Mg, together with the partial derivatives with respect to 6
(which are readily available in FORM and directional simulation) provide the necessary

information to compute the above approximations of pg and og.

Computation of the minimum-penalty reliability index from Eq. 23 also requires
knowledge of the parameter u, which depends on the form of the penalty function and the
parameter k. For a given class of structures, these may be selected by examining the
appropriate penalties for underestimating or overestimating the safety. This task may not
be simple. Alternatively, the proper value for ¥ may be selected by calibration to the

accepted practice, i.e., by adjusting # such that structures having different states of
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knowledge and perceived to be equally "safe” have the same B,, values. For now, purely
on intuitive grounds, the use of ¥ =1 in Eq. 23 is suggested. This value, which con-
veniently defines the minimum-penalty reliability index as the mean minus one standard
deviation of the conditional reliability index, Bg(®), corresponds to k around 5 to 10, as

can be seen in Fig. 2.

The computed distribution fz(B) or the mean and standard deviation, pg and oy,
can be used to compute confidence intervals on the strict reliability index or the probability

of failure. This and other concepts are illustrated in the following section.

ILLUSTRATIVE EXAMPLE

The example presented in this section illustrates the various notions of the reliability
index that were described in the preceding section. The emphasis is on investigating the
effect of uncertainties due to estimation error and model imperfection on the reliability
index. For the sake of clarity, therefore, a simple limit-state function and only two ran-
dom variables are considered; the extension to more elaborate problems is straightforward.
Initially, two simple cases are considered for which closed form solutions are derived. For
a more elaborate case, numerical solutions such as those suggested in the preceding section

are employed.

Consider the limit-state function
g =X1-X;, (27)

where X;, i = 1,2, are independent random variables, respectively representing the resis-
tance of and the applied load on a structure. First assume X; are both normal with known
standard deviations, ¢;, and unknown means p;, the latter to be estimated from existing
objective and subjective information. Thus, this example represents a case where perfect

models are available, but uncertainty may arise from errors in the estimation of p;.

It is well known that if the prior distribution of the unknown mean, p., of a normal
random variable X with known variance o2 is taken to be normal with mean p'y and stan-
dard deviation o', the posterior distribution obtained from Eq. 9 will also be normal with

the mean and variance given by (Ang and Tang 1975)

By = 3 (28a)



-20 -

¢'2 9
! 2 * n
; o, = 3 (28b)
: s, O
g's4 =
¥ on

where n denotes the sample size and x denotes the sample mean. It is also known (Ang
and Tang 1975) that the predictor distribution of X from Eq. 11, which combines the

i inherent variability in X with the uncertainty in the estimation of w, is also normal with

2

mean p, and variance ‘72."' o. These results are used in the following to derive closed-

form expressions for the reliability index.

{L’[ The conditional reliability index (Eq. 13) given the unknown parameters pq and p is
|

N o S T (29)

Since p; are normal, it follows that B is also normal with the mean and variance

Bp, ~ Py,
pg = — 2 _ (30a)
B (0'12 + 022)1/2
2 2
o- +0o
2 ¥, [ 7]
g = —5———s— 30b
B 012 + 022 ( )

The variance ag is clearly a measure of the influence of the estimation error on the relia-
bility index. In particular, with a noninformative prior (i.e., with ¢’, =) and with

equal sample size n; = ny= n, one obtains

ﬂu £~ (31a)
" = e ——————— a
8T e+ o)

1
of= < (31b)

TR

which shows a simple relation between the variance of the reliability index and the size of

the observed sample.

For the present example, owing to the normal distribution of B , the median and most

likely reliability indices, B and B respectively, are identical to the mean reliability index,

]

pg. These indices are influenced by the quality of the information (as measured by the

sample size and the prior variance a'&‘) only through the posterior means p, , which in

the case of noninformative priors are the sample means x;. This influence generally will be



5

p———

-21 -

insignificant. The lower bound reliability index, B,;,, is —= because of the unbounded
nature of the normal distribution. Therefore, this index is an inappropriate measure for
the present example. The minimum-penalty reliability index is given exactly by Eq. 23,
which for the case of noninformative priors and equal sample size reduces to

X1—X2 u

P Gt eV,

(32)

Thus, the uncertainty arising from the estimation of p; influences the minimum-penalty
reliability index in terms of a subtractive factor inversely proportional to the square root of
the sample size. For the present case a closed form expression for the predictor reliability

index, B, is also possible. Since the predictor distributions of X; are normal, it follows that

é = “'P-n = “'F': (33)
(012 + o&l + 022 + c&z)m
In particular, with noninformative priors and equal sample size
fi-i (. )"
3 = 34
erap () .

The predictor reliability index is also influenced by the sample size and the quality of the
prior information. However, from Eq. 34, it is clear that unless n is very small the influ-

ence will be insignificant.

Now assume the standard deviations o; are also unknown and are to be estimated
from the available information. The conditional reliability index given the unknown
parameters i, 01, p, 05 is the same as in Eq. 29. However, its distribution is no longer

normal.

The joint distribution of the unknown mean, p, and variance, o2, of a normal ran-
dom variable X can be obtained by use of Egs. 9 and 10. In particular, for a noninforma-
tive prior (which should be taken proportional to o), see Box and Tiao 1973), the joint
distribution is such that p. is conditionally normal with mean X and variance o%n, and
1/6? is gamma distributed with parameters (n —1)/2 and s2(n —1)/2, where n is the sam-
ple size and s2 = 1/(n-1) Ek(xk —x)? is the sample variance. Based on these, the second

2

moments of w and o are: p,=rx, 0§=p.o,/n, Ry = s%(n —1)/(n -3), 002; =

2 pozg/(n —5), and Puo» = 0. Using these results and the partial derivatives from Eq. 29 in
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Egs. 26, the first order approximations of pg and crg for the case of equal sample size are

hy = X1 —X3 n—3 (35a)
B (s +s53)2 ln -1
4 4
2.1 2 1 sy + 5
= =+ 35b
787w T BB Z5) (52 +52) (355)

The first term on the right-hand side of Eq. 35b is the same as that in Eq. 31b and is due
to the uncertainty in p;. The second term, which includes the factor p.é, therefore,
represents the influence of the uncertainty in o;. In fact, one could show that when p.; are
known and only o; are to be estimated, pg remains the same as in Eq. 35a with only the
term n —3 replaced by n —2, and ag equals the second term on the right-hand side of Eq.
35b with the term n —5 replaced by n —4. It is interesting to see that the influences of the
uncertainties in the estimation of p; and o; on the reliability index are distinctly different
in form; namely, the former is independent of the magnitude of the reliability index, while
the latter is not. It is also worthwhile to note that the term involving the sample size in the
expression for pg is a consequence of the definition of the sample variance. Specifically, if
the sample variance is defined by s2 = 1/(n —3) zk(xk —x)?, then B = s2 and the term
in Eq. 35a involving n drops.

It can be shown that the predictor distribution of X derived from Eq. 11 is such that
[n/(n + 1)]Y2(X —x)/s has the t-distribution with n —1 degrees of freedom. Based on
this, the mean and variance of the limit-state function (Eq. 27) for the case of equal sam-
ple size are: p, = x;—x; and 082 = (s2+s52) [(n =1)(n + 1)/[n(n —=3)]. An approxi-
mation to the predictor reliability index is obtained as the ratio p /o, (which is the exact

result for normal distributions),

5~ -5 [ (5. —~3) ]1’2 6

(-"12 + .922)1’2 (n+1)(n-1)

This approximation is expected to be accurate because of the proximity of the + and nor-
mal distributions. Comparing the expressions in Egs. 34 and 36, the influence of the
uncertainty iii o; on the predictor reliability index is the factor [(n —3)/(n —-1)]2. This
factor is a consequence of the definition of the sample variance and drops when the alter-
native definition mentioned above is used. Thus, in reality, § is not influenced by the

uncertainty in the estimation of the variances o'?.



r
1

=93 -

The preceding results are summarized in Fig. 5. The results in this figure are for
noninformative priors, equal sample sizes (n; = ny=n), and the following mean values of

the parameters: p, = 100, P2 =400, p, =40, and Pgz = 100. (Note that it is more
appropriate to fix p . than s when the sample size is varied. This assumption is con-

sistent with the alternative definition of the sample variance mentioned above.) Shown in
the figure are the mean reliability index, pg, the predictor reliability index, B, and the one
standard deviation intervals, pg* og, for the cases with unknown p; (dashed lines) and
unknown w; and o; (solid lines), all plotted against the common sample size n. Note that,
with the mean values of the parameters fixed, the mean and predictor reliability indices for
the two cases are identical. Also note that the ng —opg values are the same as the
minimum-penalty reliability index B, for u = 1. Other results presented in Fig. 5 will be

discussed shortly.

Several interesting observations can be made in Fig. 5. We first note that the = op
band gradually narrows as the sample size increases and the estimation uncertainty
decreases. For the selected mean parameters, the influence of the uncertainty arising from
the estimation of the variances appears to be more significant than that from the estimation
of the means. Second, we observe that B virtually coincides with pg and is independent of
the sample size, except for very small sample sizes. This index is also independent of the
uncertainty in the estimation of the variances, as mentioned earlier. These results, and the
fact that § is entirely independent of any penalty function, show that the predictor reliabil-
ity index is a poor choice as a measure of safety. On the other hand, the minimum-
penalty reliability index (for 4 = 1) steadily increases with n and only asymptotically coin-
cides with pg as n approaches infinity, i.e., when the statistical information becomes com-
plete. This index clearly accounts for the cumulative influence of the uncertainties in the

estimation of the means and variances.

As a further item of interest, Fig. 6 shows plots of the PDF f(8) for different sample
sizes for the case where both p; and o; are unknown. These results, which were obtained
by repeated FORM analyses, clearly show the decreasing dispersion in the reliability index
as the quality of information (i.e., the sample size) is increased. Mean and one standard
deviation bands numerically computed from these PDF’s are shown in Fig. 5 as open cir-
cles. The discrepancy between the circles and the solid lines, which is more pronounced at

small values of n, is due to the approximations employed both in Egs. 26 and in
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in computation of the PDF’s.

In the preceding analysis, the distribution of each X; was known to be normal, so that
uncertainty arose only from the estimation of parameters. Now suppose that there is also
uncertainty in the distribution model itself. One way to account for the distribution model
uncertainty is to choose a parametrized family of distributions and allow the the parameter
to be estimated through the Bayesian updating formula, Eq. 9. For the present example,
an appropriate choice is the family of exponential power distributions (Box and Tiao
1973):

p() Iy r@ |
fX|p.,o,'y(x’P"Us'Y) = o —exp _q('Y) :_0'&: I , 0<o, -1=y=1 (37a)

with

o2 _rrem _lren]”
P ram? ® {r(w)} (370)

Of the three parameters of this distribution, p denotes the mean, o denotes the standard
deviation, and <y is a measure of flatness of the distribution. For vy = 0 the distribution

reduces to the normal distribution, for y = -1 it reduces to the uniform distribution in the

interval p = \/;c, and for y = 1 it reduces to the double exponential distribution. Thus,
the model in Eq. 37 with a variable y represents a large family of distributions. It is
important to note, however, that all these distributions are symmetric. Therefore, the
choice of this family is appropriate when it is known with certainty that X is symmetrically

distributed. When this is not the case, other families suggested below can be used.

The likelihood function for the above distribution involves the r-th absolute moment
of the observed sample, which cannot be expressed simply in terms of the sample statistics.
Therefore, a rigorous comparison with the previous results is not possible without having
the entire sample of observations for each X;. For the sake of a reasonable comparison, it
is assumed here that p; and o? have the same moments as in the preceding case (see the

paragraph preceding Eqgs. 35), and that v; is uncorrelated of p; and o; and has a zero

2=

mean and variance oy

1/n;. (This last assumption implies that with increasing sample
size there is increasing evidence that the distribution is normal.) A FORM analysis with
the mean values of the distribution parameters yields pg = B g(Mg) = 2.683 and the sensi-

tivities 3B/dp; = —oP/opy = 0.0447, aB/dc? = aB/dc? = —0.00268, 3B/dy; = —0.558,
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and 9B/3y, = 0.0665. These sensitivity estimates together with the parameter variances
are used in Eq. 26b to compute approximations of o as a function of n. The results are
plotted in Fig. 5 as dash-dotted lines. With the assumed statistics of v;, the added effect

of the distribution model uncertainty appears not to be significant for the present problem.

As mentioned earlier, the choice of the family of distributions in Eq. 37 assumes
knowledge of the symmetry of the unknown distribution. This, in fact, might be the rea-
son for the relative insignificance of the uncertainty in the distribution model. If this
assumption is not valid, then one should select a family which includes member distribu-
tions with skewed shapes. Many such families can be constructed. One possible example

is the family of mixed distributions

0;
fx(x) = ; %_91: fi(x) (38)

where 6; are positive-valued parameters and f;(x) are member distributions with skewed
or symmetric shapes. For any observed sample, the joint distribution of 8; and the param-

eters defining each member distribution can be obtained from Egs. 9 and 10.

Finally, imperfections in the mechanical model can be analyzed by introducing uncer-
tainty parameters in the limit-state function. For example, if X represents the capacity of a
structural member, then it may be represented as X, where X is the predictive model of
X and represents the inherent variability in X, and 6 represents the uncertainty in the
predictive model. The statistics of 8 are usually obtained by comparing predictions by the
model with measured results in carefully controlled experiments. Examples for such

analysis are widely available in the literature (e.g., see Ang and Tang 1984).

SUMMARY AND CONCLUSIONS

The nature of uncertainties in structural reliability is examined and two fundamen-
tally distinct sources are identified: uncertainties due to inherent variabilities, which are
irriducible, and uncertainties due to estimation error and model imperfection, which are
reducible. The reliability index under such conditions of uncertainty is defined as a point
estimator of safety. Motivated by needs in probabilistic structural code development, a set
of fundamental requirements on the reliability index are formulated. These include the
requirements of consistency, completeness, invariance, remunerability, orderability, and

simplicity. The existing reliability indices are examined in this light and are invariably
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found to be deficient in satisfying several of the requirements. More specifically, second-
moment reliability indices fail to satisfy at least the consistency and completeness require-
ments; Veneziano’s reliability index fails to satisfy the consistency and simplicity require-
ments; and the mean, median, maximum likelihood, and predictor reliability indices fail to
satisfy the remunerability and (with the exception of the median) orderability require-

ments.

A new index of reliability based on minimizing a penalty function is introduced. The
index, denoted minimum-penalty reliability index B, , is shown to satisfy all the stipulated
requirements. This new index recognizes the fundamental difference between the two
sources of uncertainty and provides a rational basis for reliability analysis and code

development under arbitrary states of knowledge.

Methods for computing the distribution or variance of the safety measure for uncer-
tainties arising from estimation error and model imperfection are developed in this paper.
The existing first and second-order reliability methods, or various simulation and hybrid
methods can be used for this purpose. In particular, a simple approximation to the vari-
ance of the reliability index is obtained with a single FORM analysis. An example is used

to illustrate the main concepts of the paper.
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APPENDIX I -- DERIVATION OF EQUATIONS 22 - 24

The minimum-penalty reliability index is the solution to the equation
B

d maz a
— = dB =10 39
28 J, p®-B)fs®)ap (39)

For an m-th order penalty function of the form in Eqgs. 21, this gives

a | B . . B.ur e ]

il b J, @G-Byrsa@dp+af (B~ fr®)48 | =

B . B... .
~kam [ " (B~B)" 2 (B)dB+am [ (B ~B)"15(B)dB = 0 (40)
For m = 1, the preceding equation reduces to

—kFg(B)+[1-Fg(R)] =0 (41)

which has the solution given in Eq. 22a. For m = 2, Eq. 40 reduces to

a

N . B B " &
—k {BFB(B) —EB [B]}+ P'B—EB | [B]-B[1-Fz(B)] =0 (42)

in which the incomplete expectation is as defined in Eq. 22c. Equation 22b is obtained by

rearranging the terms in the preceding equation.

For a normal distribution of B with mean pg and standard deviation o, one has
. (B -
Fp(B) = @ l———“— (43)
B (B—p B—pp)
E [B]= p.BCI)l— —L | -0g6 |—F (44)

Denoting u = (p,B—é)/ch and substituting Egs. 43 and 44 in Eqgs. 22, after rearranging

the terms solutions in Eqs. 24 are obtained.
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