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ABSTRACT OF THE DISSERTATION

On Convex Relaxations for Joint Transmit-Receive Design in Radar Systems

By

Sean Myles O’Rourke

Doctor of Philosophy in Electrical Engineering

University of California, Irvine, 2018

Professor A. Lee Swindlehurst, Chair

This dissertation investigates joint design of transmit and receive resources in radar sys-

tems, given prior knowledge of a signal-dependent clutter environment, based on simulta-

neous convex relaxation. Motivated by waveform-adaptive space-time adaptive processing

(WA-STAP), we first analyze traditional approaches to joint trans-receive design, which

alternate between optimal signal designs for fixed filters and vice versa to maximize signal-

to-interference-plus-noise ratio (SINR). First, we demonstrate that SINR & its variants are

non-convex bi-quadratic programs (BQP). Next, we provide perspectives on current alter-

nating methods used to solve BQPs in terms of linear semidefinite (SDP) & quadratically-

constrained quadratic (QCQP) programs. We then develop a novel method of performing this

joint design based on quadratic semidefinite programming (QSDP). Our proposed relaxation

scheme first analyzes the power-constrained problem, and is accompanied by exploration of

operator structures for signal-dependent clutter. This technique is then extended to more

challenging waveform constraints – in particular, constant modulus and similarity constrai-

ned designs. A refinement scheme is devised to improve recovery of vector solutions from the

relaxed matrix solution for the constant modulus problem. Finally, we apply the technique

to a system model other than WA-STAP; namely, the reverberant sonar/radar channel. Nu-

merical simulations are provided to show the superior performance of our method for SINR,

detection, & resolution across multiple environmental scenarios.
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Chapter 1

Introduction

As visions of autonomy dance in the minds of technologists across multiple industries, the

matter of how to implement and enable such system behavior is still very much an open

question. This is especially true in sensing systems like radar that can actively interrogate the

environment for information relevant to itself or another decision maker. This active role is

mostly unique among sensors and provides the system designer a variety of degrees of freedom

to vest extract relevant information about the observed scene. Historically, these designs

were done assuming minimal foreknowledge of what awaited the radar and, as such, much

attention was focused on the optimal way to observe scattering returns. Even signal design

has been traditionally focused on minimizing uncertainty and ambiguity upon reception,

assuming that the world in front of a transmitter was a generally uncontrollable wilderness

of electromagnetic scattering.

As such, the prospect of joint trans-receive design has historically been approached as a

specifically iterative process. A transmit signal is chosen, the optimal receive filter for that

signal is designed, the optimal transmit signal for that filter is designed, and so on and so

forth. Sometimes this design is based not on pulse shapes, but on transmit spectra from

1



which the transmitter resource is synthesized. This makes the design problem explicitly

multi-valued, since many transmit resources map to the same spectrum. This dissertation

operates from the assumption that the entire trans-receive process can be synthesized from

a given optimal spectrum or basis under given constraints in one simultaneous, rather than

relying on alternating synthesis.

1.1 An introduction to Radar

and Space-Time Adaptive Processing

In this work, we generally consider the following scenario: assume we have a side-looking

airborne radar that transmits a given discrete pulse that repeats a number of times and

is transmitted from a single antenna. We assume this array is calibrated through some

prior method (see, e.g. [1, 2]). The scattered returns of this signal from the environment are

received by a known calibrated antenna array. Typically, the goals of this system are twofold.

One, maximize the probability of detecting a target at a given location and two, minimize the

impact of noise, undesired interference, and non-target signal dependent scattering known

as clutter.

As with many other information bearing electromagnetic systems, most notably communi-

cations, we can characterize the scattering response from all sources of energy in a channel

model, one that can hopefully be linearized. The work of Guerci [3] provides a systema-

tic way to accomplish this modeling for generic MIMO radar systems, for example. With

a channel model in mind we can progress and consider means of processing the observed

data. The most popular of these in the radar community in the last 30 years is space-time

adaptive processing, or STAP. As the name implies, the data is processed by a space-time

filter learned from the received non-target data. Said filter is applied to each fast-time range

2



gate to determine the presence or absence of a target and potentially course estimation of

the location of said target, depending on which sample bin it lies within. This is what is

known as a post-matched filter process, since it obtains the returns in each range gate by

directly matching the temporal response of the environment with the known transmitted

signal. Hence, in this case, as can be found in common radar references like [4], the sta-

tistics of the clutter are independent of the pulse shape used to observe the environment.

Our initial motivating concept, and the primary application discussed in this dissertation, is

so-called “waveform-adaptive STAP” (WA-STAP) as proposed by Setlur and Rangaswamy

[5, 6, 7, 8]. This process considers the fast-time samples within a range gate. Therefore, the

observed data must be processed by a space-fast time-slow time adaptive filter instead of the

typical space-(slow) time filter, because the clutter response is now obviously dependent on

the signals pulse shape. We remark, however, that this signal dependence of the clutter is

not unique to WA-STAP. Other system models can and do exhibit signal dependent clutter

responses, which we will address later in the dissertation.

1.2 The general problem space

Here, we discuss the historical perspectives and methods used for optimal and adaptive

transmission and reception of radar signals. Our major guideposts will be what we term

Van Trees’ four design paradigms, adapted from [9, Chapter 10.5]. These design issues

are as follows: First, we have conventional reception. In this design paradigm, the system

designer assumes no knowledge of the clutter statistics and merely attempts to design a

signal that will match a known target spectrum the best. This could involve, for example,

operating frequency, pulse shape, or transmitted direction. An excellent example of this is

a traditional air traffic control tracking radar, which transmits pulses in bands meant to

3



excite large aircraft and does so in their anticipated direction as the transmitting antenna is

mechanically rotated.

The second paradigm is “optimum” reception. This paradigm assumes a competent sig-

nal designer has designed a good signal well-matched to the intended target and that the

anticipated clutter response to that signal is fully known and well-characterized. This charac-

terization is typically obtained by performing measurement campaigns using the candidate

signals, and results in statistical clutter models fitted from the observed data. Given this

prior knowledge of the clutter statistics, the optimal receive chain (or filter) is designed to

maximize the signal-to-noise ratio, if detection is the primary concern, or some other figure

of merit, like range or Doppler estimation error.

Matched transmission, the third paradigm, uses the conventional reception techniques of

Paradigm 1. However, prior knowledge of clutter statistics (as in Paradigm 2) is used to

design a signal that minimizes the clutter response, potentially at the cost of target gain.

This is historically where most signal design efforts have been focused, regardless of the

particular parameterization of the signal design. For example, minimizing ambiguity in

either delay or Doppler can be regarded as a clutter rejection design where the clutter

generating process is the uncertainty in the target process itself.

The final paradigm is that of “optimum” transmission. The most complicated of the four

paradigms, this method proposes that foreknowledge of the clutter and other interfering

processes is known or otherwise estimated. Then, an “optimum receiver is designed to

mitigate these processes as well as having a signal design that minimizes non-target returns.

This is the paradigm closest to our contribution. However, we note that Van Trees, and

hence nearly every author who followed, consider these two design processes as coupled but

separate. That is, a receive filter can only be designed for a given signal and vice versa, but

not simultaneously. As mentioned previously, our goal is to join their design together from

the outset.
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Along with the design issues, Van Trees also articulated three signal design difficulties that,

in our view, informed the development of future practical design algorithms. We list these

difficulties here, and then describe some modern responses to them.

The first difficulty described is that waveforms that are generated by any design process

can be exceedingly complicated. They may have large phase and amplitude changes, va-

rying frequency, and in general not follow canonically studied pulse shapes. Second, if the

environment changes, then the signal must also change. Third, all designs are inherently

sensitive to the detailed assumptions made about the environment in which the transmit-

ter is used. This can include clutter absorption spectra, nearby large scatterers, present

adversarial jammers, etc.

While the intent behind these difficulties remains as relevant as they were when first articula-

ted, advances in signal processing and computation have, in some sense, limited their scope.

In terms of complicated waveforms, we note significant advances have been made in digital

waveform synthesis, even for radar. For example, the explosion of software-defined radios

in the last decade for communications had the knock-on effect of making software-defined

radars possible [10]. Additionally, even arbitrary analog synthesis is possible within con-

straints and therefore complicated waveforms inaccessible for a previous age are now viable.

See, for example, the extensive work on fully-adaptive radar for tracking and target identi-

fication (see, e.g. [11, 12]), which can adaptively change baseline parameters (bandwidth,

pulse length, and carrier frequency) and transmit pulse shapes through the use of arbitrary

function generators.

Second, while a change in environment may indeed necessitate a change in transmission or

reception processes, that is the entire purpose of this area of research! Massive computing

power permits us to harness decades of prior mapping and collection to either anticipate

or identify fluctuations in the scattering environment, and then adaptively control both

transmission and reception in response. Therefore, changing a signal in response to a change
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in environment may be considered a feature, rather than a bug. Finally, we concede that,

like any other system or modeling process, the designs we obtain are only “optimal” as far

as our modeling assumptions remain valid. However, this again ties into the fully adaptive

radar paradigm, and even earlier concepts such as knowledge-aided processing [13]. That

is, while techniques like the one advanced in this dissertation rely on prior channel state

knowledge, this can be updated as we sense the environment, learn the environment, and

adapt to the environment.

1.3 Early History

As is typical in engineering and the sciences, the concepts we investigate in this document

have a significant prior history of other researchers who have come before. Optimal signal

design in the presence of dispersive channels historically has been the purview of research in

communications. An early example of this is the work of Chalk [14], who derived optimum

pulse shapes to mitigate co-channel interference. However, communication systems have a

distinct advantage over radar for both transmit and receive design because the monster at

the end of the book, so to speak, can talk back. That is, there is a distinct user to and from

whom a distinct message is conveyed. Alas, in radar, with the notable exception of air traffic

control or identification friend-or-foe (IFF) radars, we do not have the luxury of the targets

talking back beyond how they scatter the transmitted signals. Despite this, there exists a

wealth of literature on the application of information theory in radar. The earliest of these are

summarized in a monograph by P.M. Woodward [15], where he presciently noted that even

if an optimal scattering profile is identified, the best means of transmission and reception to

obtain that profile ”remains substantially unanswered.” Other works on information theory

followed, in particular the work of Mark Bell [16, 17], that we shall discuss later.
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Early applications of signal design and clutter, owing to the technology of the time, focused

heavily on analog spectra. For example, in a 1961 technical report, Manasse [18] designed a

coding technique for analog pulses in the presence of a clutter power spectral density that

is a scaled replica of the transmitted signal, which led to a simple solution: spectrally flat

pulses with large time-bandwidth products, like the common linear frequency modulated

(LFM) pulses. However, Manasse noted that “[t]his conclusion depends critically on the

clutter model” they assumed – a rather simple one, indeed – and in the process, echoed

the third design difficulty above. This concept carries forward through other seminal works

such as Van Trees’ reverberant signal design [19] and the work of Kooij [20] which designs

an optimal signal spectrum in the presence of white ambient noise. We will discuss [20] in a

further context below. Additional early research in clutter-mitigating signal designs can be

found in [21, 22, 23, 24].

In addition to pure signal design, early receiver design considered many of the same para-

digms. In a canonical example of adaptive receiver design, Applebaum [25] developed his

(later eponymous) array receive filter that maximizes SINR in the presence of disturban-

ces with a known covariance. This paradigm was also applied for detection and clutter by

Rihaczek [26], as well as in the work of Bernie Widrow.

The first authors to truly consider sampled signal design (a precursor to digital signal design)

to mitigate clutter were the pair of DeLong and Hofstetter [27, 28], and W.D. Rummler [29].

These researchers independently developed a technique that maximizes the SIR under either

the target matched filter or the optimum clutter filter. We note, however, that DeLong

and Hofstetter did not necessarily restrict themselves to coding a pulse train as Rummler

did, though as we will see below the mathematical representation of both is remarkably

similar. We will follow and describe DeLong and Hofstetter here since it is, in our opinion,

a clearer description of the design concepts we use today, despite being initially designed

for classical single input-single output (SISO) radar. Their derivation starts in the analog
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domain and focuses heavily on the ambiguity function of the transmitted signal which covers

both range and Doppler dependence. They also make the (now seemingly obvious) insight

that maximization of SINR, subject only to energy constraints, is operationally suboptimal.

Despite this, they recognize that such simplifications are often necessary in the design of the

transmit signal and/or receive filter for computational purposes. This is where they arrive

at the idea of designing a sampled signal, as the vectorized form permits the use of linear

algebra techniques. Their iterative technique for either matched or clutter filter relies on the

temporal symmetry property of a signals cross ambiguity function. That is, they exploit the

unique SISO property that interchanging the transmit signal and the receive filter to their

opposite roles does not change the SINR. In fact, these authors were also the first to identify

the quadratic dependence of the clutter covariance on the signal.

1.4 Previous Methods

The process of signal design or joint signal-filter design has historically followed one of two

main tracks. The first we term iteration. Here, given a figure of merit (usually SINR)

and a preferred detection scheme, these algorithms iterate on a sequence of signals alone.

They may employ either a target matched filter or the so-called optimum filter of Van Trees’

Second Paradigm. What follows are some notable examples of this process. First, the afo-

rementioned works of DeLong and Hofstetter iterate on a sequence of minimum whitened

eigenvectors of the clutter cross-ambiguity function and consider both target-matched and

optimum filters. Much later, the works of Pillai and others [30, 31, 32] considered an alter-

nating minimization of the Fredholm integral eigenfunction and the optimum filter for both

SISO and MIMO configurations. However, their signal sequence, as one might expect from

eigenfunction optimization, is in a purely functional continuous-time form. In a series of

papers from earlier this century, Friedlander [33, 34] considered alternating maximization of
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the target to clutter ratio, enabled by gradient descent of what he termed a non-linear SINR

cost function. He also made explicit comparisons with target matched signals, clutter mini-

mizing signals, and target maximizing signals. Chen and Vaidyanathan [35] considered the

sequential analysis based on minimizing eigenvectors in the context of MIMO radar detection

of extended and temporally-correlated spatial channels. Unlike the work of Friedlander [34],

these methods guarantee non-decreasing SINR at each subsequent iteration. We will revisit

some conclusions of this work in Chapter 2 in our discussion of biconvex optimization and

guarantee convergence of alternating minimization. Finally, the work of Stoica, He, and Li

[36] return to gradient descent as applied to reverberant channel environments (that is, mere

temporal shifts). This work also considers waveform constraints most notably, constant

modulus and peak-to-average power ratio (PAPR) which, in their view, requires the use of

gradient descent in their CREW(gra) algorithm. While they show monotonic convergence,

due to their technique, it is not guaranteed. These authors also investigate a relaxation-

then-synthesis technique, the design philosophy of which we will describe subsequently. A

more recent example of this design philosophy can be found in [37] and [38]. Both papers in-

vestigate constant-modulus and similarity-constrained colocated MIMO filter-signal design.

In [37], assuming an optimum filter, Aldayel, et al. solve, at each iteration, a quadratically-

constrained quadratic program (QCQP) that maximizes the target response. Within this

procedure, they employ a clever bisection refinement technique to successively enforce the

phase-only similarity constraint through a linear operator. While following the iterative

signal-only design philosophy, Cui, et al. [38] take a far different approach. These authors

employ fractional programming and a Dinklebach-type algorithm to minimize the clutter

response, generating a new signal at each step. They subsequently form the filter from the

maximum generalized eigenvector of the target and noise-clutter covariance matrices.

The second major design process can best be described as relax, then iterate. By this we

mean these works determine an optimal signal spectrum, either the power spectral density

or auto-correlation/ambiguity function, then synthesize a signal from that spectrum then
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designs a filter. The first notable example of this we have already seen in the work of

Kooij [20], which designs the optimum frequency spectrum in the presence of white noise

and scaled clutter for a classic monostatic radar. A more recent canonical example comes

from the work of Kay [39, 40], who generalizes the work of Pillai, Kooij, and Manasse to

general noise and interference spectra. In order to synthesize waveforms from the optimally

designed spectra, Kay uses Durbins method to interpolate samples onto a given train of

pulses. Furthermore, Kay was one of the first to demonstrate that the well known water

filling solution (transmission should occur preferentially in bands with low noise and/or

interference subject to their alignment with the desired target response) applies to radar as

much as communications. This portion of his result has been confirmed from an information

theoretical standpoint by Romero and Goodman [41] as well as Setlur, et al. [42]. As a

preview for Chapter 3, we note that our perspective confirms the water filling nature of

optimal trans receive design. The work of Aubry et al. [43, 44] is another contribution in

the relax, then iterate family of algorithms. These works design a SIMO transmit pulse code

through iterative relaxation of the auto correlation matrix, followed by a matched eigenfilter,

which is repeated until convergence. Further analysis of these works will follow in Chapter

2, where we will demonstrate that these techniques cannot be generalized to pulse shape

design, and have a critical flaw in their design assumptions. A more recent deployment

of this design strategy is that of Cui, Li, and Rangaswamy [45], which was employed for

colocated MIMO radars. The primary purpose of relaxation here is, as with [36], meant to

provide a simpler means of incorporating modulus and waveform similarity constraints. They

considered two related sequential algorithms which maximized different forms of the target

response as a function of the relaxed signal spectrum – one directly based on concentration of

the cost function given the optimum filter and one that depends on a sequentially-optimized

filter-signal pair. In both cases, the algorithms in [45] rely on randomization to generate

an optimal signal from the resulting spectrum at each step. This technique is also applied

in recent works that consider uncertainty in the prior knowledge of the target or clutter
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channel, like that in [46]. In these cases, the relaxation occurs not just in the signal design

step, but in the filter design step as well; hence, at both stages, a semidefinite relaxation

(and a potential randomization step) form the optimization and each signal and filter must

be synthesized therefrom.

1.5 Research Motivation and Inspiration

This dissertations research is an outgrowth of a third design process that considers the

waveform-filter design problem jointly; that is, the receive filter is intentionally designed

to be jointly optimal with the transmitted signal rather than a free design parameter or

merely a vector for further signal design. This process is embodied by two recent papers

which take their cues from the previous two design processes above. The first of these

is the work of Tang and Tang [47] who consider both alternating signal filter designs and

relaxed signal filter designs for MIMO STAP. Under the relaxation paradigm, their techniques

are very reminiscent of those of Aubry et al. [43, 44], and under the sequential concept,

they employ power-like iterations, including the SWORD algorithm of Li, Guerci, and Xu

[48]. The other is the work of Setlur and Rangaswamy [6, 8] which considers the waveform

adaptive STAP above. Primarily, their technique alternates between an optimal design

of the signal then beamformer and so on in the simplest case. This is also applied to a

constant modulus design where the signal is synthesized exactly without randomization and

relaxation. Additionally, they consider a more robust proximal method that can be used

when the signal independent noise and interference covariance matrix is rank-deficient. This

is unique in the literature, as many of the aforementioned authors do not consider the impact

of poor estimation of channel parameters. Finally, this work directly demonstrated the non-

convexity of the general problem computationally.
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In light of this work and the other previous literature we are left with the following questions:

First, is an alternating signal-then-filter algorithm the only way to obtain jointly optimal

trans-receive pairs? Second, is this problem provably non-convex, and if so, is there any

useful structure within the non-convexity that can be exploited? Third, does this problem,

either in its original or relaxed forms, resemble any known problem types in the optimization

literature? Finally, if this fits any known problem types, can convex optimization, possibly

enabled by relaxation, be useful beyond signal-only design? The rest of this work will answer

the final three questions in the affirmative, while demonstrating that the first question is

decidedly false.

1.6 The Joint Design Problem & Related Forms

Since our motivating example is STAP, we consider variations on the following optimiza-

tion problem throughout the rest of this dissertation: Minimize the overall variance of the

signals received undesired sources such as noise, jamming, and other interferers both signal

dependent and independent, such that the gain from a given direction within a particular

arranged bin is fixed, and the transmitted pulse has an upper bound on its power.

Owing to the “variance” aspect, this type of problem is typically associated with convex

quadratic optimization when either signal or filter is fixed and the other is chosen as the

design parameter. However, when the joint problem is considered, this becomes, naturally,

a biquadratic problem.

The biquadratic problem has been mildly investigated in the literature by, among others,

[49, 50, 51, 52, 53, 54, 55]. Naturally, this is a highly non-convex problem and so guarantees

about solutions are nearly nonexistent. However, as the problem is (convex) quadratic in

each variable, there is some hope for sensible bounds and approximations. This biconvex
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property has significant implications for any alternating minimization techniques, whether

or not a relaxation is used, the details of which will be explored in Chapter 2.

Another potential means of attack is considering a joint problem – that is, the signal and filter

are each considered projections of a single design parameter. Hence, the problem becomes

a quartic optimization, similar to the form seen in [36]. Again, this form is obviously non-

convex, but as we will show in Chapter 3 and beyond, it admits a convex matrix relaxation,

which can be solved with conventional interior-point methods. This relaxation is itself a

special type of optimization problem known as a quadratic semidefinite program (QSDP),

which has some recent theory that we can employ to understand the joint problem in further

detail; see, e.g. [56] and references therein. We will also show that due to the separability

of the constraints, we can solve some of the Karush-Kuhn-Tucker (KKT) conditions to gain

insight into the solutions obtained from the relaxation. It is here we note that the use of

QSDPs for radar systems design is not entirely novel – Stoica, Li, and Xie [57] used a far

simpler version of it for designing probing signals for MIMO radar over a decade ago – but

our application to joint trans-receive design is, to our knowledge, the first such instance

anywhere.

1.7 Organization of the Dissertation

With our motivations and the state of the prior art outlined, we now describe the organization

of the rest of the dissertation, as well as the contributions described within.

Chapter 2 investigates the most generic forms of the considered problem and the most

common design practice used to tackle them: alternating minimization. Our contribution

is the first systematic comparison of the multiple design philosophies that fall under this

13



paradigm, as well as introduce the notion that monotonic convergence is guaranteed so long

as the iterates contribute to the next step’s constraint set.

Chapter 3 introduces the use of quadratic semidefinite programming as a technique to avoid

explicitly iterative processes (like the ones explored in Chapter 2) and jointly optimize the

trans-receive chain as a single entity, given foreknowledge of the channel. We consider a

simplified power-inequality constraint and directly analyze the KKT conditions for further

insight. This is also supplemented by more general QSDP theorems that can be applied to

any other set of waveform constraints. Additionally, we can show that, in this case, there is

a direct connection to the “waterfilling” analysis by [40].

Chapter 4 extends the work of Chapter 3 by incorporating two common waveform constraints

– constant modulus and “similarity.” We find that these constraints are easily incorporated

into our relaxation framework and in many cases, we can obtain respectable approximate so-

lutions in the same way as in the previous chapter for both constraint sets. In the cases where

there is difficulty, we examine the need for further improvement in rank-one approximation,

enabled by a simple refinement strategy.

While most of the work in this dissertation is focused on application to the waveform-

adaptive STAP introduced by Setlur and Rangaswamy, Chapter 5 considers the extension

of the QSDP method to other active sensing models that consider reverberant channels or

signal-dependent interference and clutter. Thus, this chapter describes other relevant models

and relation to the work of Chapters 3 and 4, and demonstrates that techniques described in

the previous two chapters can be directly applied with minimal modification to great effect.

Chapter 6 will conclude the dissertation, providing summarizing thoughts and caveats, as

well as a prospectus for future expansion of this work.
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Chapter 2

Preliminaries and Iterative Designs

In the previous chapter, we provided an overview of the most common modern strategies

and algorithms for joint trans-receive adaptivity – namely, explicitly iterative techniques

that alternately optimize the signal and the beamformer/filter. These techniques have, for

the most part, limited convergence analyses and, in any case, often neglect to make signifi-

cant connections to the optimization literature. This chapter will provide that foundation,

examining the connection of the nominal problem to the so-called biquadratic program, as

well as additional mathematical rigor to show that any appropriately constructed alternating

algorithm does indeed converge.

We will also propose a useful equivalent reduction of the power-bounded problem, one re-

latively generalizable to the waveform-constrained extensions we will pursue in Chapter 4.

This reduction will provide critical insight necessary for the relaxation approaches in Chap-

ters 3 and 4, and also demonstrate why some competing algorithms can have significant

performance issues.

The rest of the chapter is organized as follows: Chapter 2.1 will discuss the general radar mo-

del that we will consider throughout the rest of the dissertation, as well as the overall design
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problem. Chapter 2.2 demonstrates the connection of the design problem to biconvex and

biquadratic programming, and discusses some of the geometrical aspects of the problem. In

Chapter 2.3, we will provide a more complete overview of the existing alternating paradigms

in light of this theory, including a brief discussion of the basics of linear semidefinite relaxa-

tion. Chapter 2.4 provides the aforementioned reduction and a general proof of convergence

for any alternating minimization technique where the sets vary at each iteration, as is the

case for the joint design problems existing in the literature. Finally, Chapter 2.5 provides

some simulation results to demonstrate the convergence properties of the previous section,

as well as demonstrate that the nominal alternating minimization of Setlur & Rangaswamy

[8], and our extensions thereof, is a good baseline.

2.1 Active Sensing Models and

Joint Trans-Receive Design

So far in this dissertation, we have discussed the differences between radar and other active

sensing systems qualitatively. As engineers, however, mere qualitative description and ana-

lysis is inherently unsatisfying, and thus we require a more mathematical treatment of the

systems under consideration. In this section, we shall outline first outline the radar model

for our primary motivating application, waveform-adaptive STAP (WA-STAP). We will also

briefly contrast the operation of WA-STAP with traditional STAP. Next, we will comment

on the connection to a general discrete-time channel model for radar signal processing and

how they may be generated by stochastic Green’s functions, after the work of Guerci [3].

Finally, we will motivate the primary problem in this work, that of joint signal-filter design,

by discussing the mechanics of detection in STAP and thus the necessary cost functions we

will examine throughout.
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2.1.1 Radar Fundamentals

We being by discussing the general contours of active RF sensing systems, and radar in

particular. All radar systems are predicated on the simple concept of transmitting an elec-

tromagnetic signal through a number of antennas into a given scattering environment, then

processing the scattered returns (or echoes) from said environment in response to the initial

excitation, as received by another number of antennas. Depending on the strength and loca-

lity of these scatterers, the time scales examined, and the available degrees of freedom used

to transmit and/or receive these echoes, we are then able to detect the presence or absence of

the scatterers and extract the familiar localizing parameters that characterize their existence

in a scene – range, Doppler shift/velocity, azimuth and elevation, etc.

In this work, we consider pulse-Doppler radar systems, which transmit a number of pulses

over a finite window of time to excite the environment. This pulse-and-wait process forms the

backbone of these systems’ ability to simultaneously measure both range-to-target and the

Doppler shift/target velocity. This is in contrast to continuous wave (CW) radars, which, as

the name implies, continually transmit some waveform and use modulation of that waveform

in some fashion to return both range and Doppler information. While CW systems are once

again in vogue for numerous short-range applications (see, e.g., the radars used in Major

League Baseball’s StatcastTMsystem [58]), we shall not examine them further here.

For now, let us describe the general radar model we will used throughout the rest of this

dissertation; for the most part, we follow the notation and practice of [8]. Consider a

radar that consists of a calibrated linear array of M identical sensor elements, where the

first element is the phase center and also acts as the transmitter. Hence, we notionally

consider what is known as a single-input multiple-output (SIMO) monostatic radar. We

will show later, however, that our proposed process is amenable to other transmit/receive

configurations, like colocated multiple-input multiple-output (MIMO) radars. As seen in
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Figure 2.1 [8], we assume that the array’s phase center is located at the physical location

xr = [xr yr zr]
T ∈ R

3 in the given Cartesian coordinate space at a particular time instant,

and moves with a velocity vector ẋr = [ẋr ẏr żr]
T ∈ R

3 (with velocity magnitude vr). We

leave the description of the target depicted for later.

x
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Figure 2.1: Simplified illustration of airborne radar scene considering ground target located
at azimuth θt and elevation φt relative to the platform. c©2016 IEEE. Reprinted, with
permission, from Setlur and Rangaswamy, IEEE Trans. Sig. Process., vol. 64, pp. 19–34
(2016) [8]

During the transmission period, the radar probes the environment with a number of pulses

s(t) of width T seconds and bandwidth B Hz at a carrier frequency fo. Within each burst,

we transmit L pulses at a rate of fp (i.e. the pulses are transmitted every Tp = 1/fp seconds)

and collect them in a coherent processing interval (CPI). Hence, the overall transmitted

signal at a given point in time t ∈ (0, T ] is given by

u(t) =
L−1∑

l=0

s(t− lTp)e
2πfo(t−lTp). (2.1)
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Observe that we do not directly impose any additional coding or shaping of the pulse; if it

does occur, i.e. for spectral control purposes, then it is encoded into s(t) directly.

As seen in Figure 2.1, we assume that the probed environment contains a non-fluctuating tar-

get located at the coordinate vector xt ∈ R
3, moving with a velocity vector ẋt = [ẋt ẏt żt]

T ∈

R
3 (with velocity magnitude vt). Let us define the relative position and velocity vectors

δx = xr − xt and δẋ = ẋr − ẋt, respectively. These positions correspond to the platform-

relative azimuth θt and elevation φt, which are related to the relative position vector by

δx = Rt[sin(φt) sin(θt) sin(φt) cos(θt) cos(φt)]
T , (2.2)

where ‖·‖ is the standard Euclidean norm, and Rt = ‖xr − xt‖ is the slant range to the

centroid of the target.

Considering only the target, the received signal at the mth array element for the lth pulse is

sml(t) = ρts(t− lTp − τm)e
2π(fo+fd,m)(t−lTp−τm) (2.3)

where τm is the round-trip time delay, fd,m is the observed Doppler shift induced by the

relative motion, and ρt is a complex scattering coefficient that is a function of physical

target characteristics. If, as in Figure 2.1, the array is located along the platform’s local x-

axis, the reflected signal returns to a location xr+md, where d = [d 0 0] when it impinges on

the mth element (m ∈ {0, 1, . . . ,M − 1})1 Hence, the position differential we must consider

for the return half of the target echo is xr+md−xt = δx+md. Then, the time delay τm is

τm =
Rt

c
+

‖δx+md‖
c

. (2.4)

1We define the phase center to be the so-called zeroth element. The fifth element we define to be Leeloo.
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In most practical radar cases [4], especially airborne radars, the interelement spacing (usually

fractions of a wavelength) is far smaller than the slant range, that is d ≪ Rt. Under this

assumption, we can approximate the delay as

τm ≈ τt +
mdTδx

c
= τt +

md sin(φt) sin(θt)

c
. (2.5)

where we have defined τt = 2Rt

c
as the bulk target delay. While the term dependent on m

in (2.5) can be significant in certain cases, it is rendered moot if the common narrowband

assumption is invoked – that is, if we assume the time it takes for the signal wavefront to

completely impinge upon the array is far smaller than the pulse length itself [4]. Hence, in

the narrowband case, τm ≈ τt for all m.

Using these assumptions, we can also approximate the Doppler shift fd,m as being indepen-

dent of the element index; that is, fd,m ≈ fd for all m where

fd = 2fo
(δẋ)Tδx

cRt

= 2fo
[sin(φt) sin(θt) sin(φt) cos(θt) cos(φt)](δẋ)

c
. (2.6)

Given the approximations in (2.5) and (2.6), once the target return signal is downmixed to

baseband, we have

sml(t) = ρts(t− lTp − τt)e
2π(fo+fd,m)(t−lTp−τm) (2.7)

where we have absorbed constant phase terms into ρt and have further assumed that the

Doppler phase is insignificant on a fast-time scale.

Let us now assume that we discretely sample the pulse s(t) into N samples, resulting in the

sample vector s = [s1, s2, · · · , sN ]T ∈ C
N , and the data is aligned to a common reference. At

the target range gate τt, the combined target response over the entire CPI can be represented
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by a vector yt ∈ C
NML given by

yt = ρtvt(fd)⊗ s⊗ at(θt, φt) (2.8)

where ρt is defined above, the vector vt(fd) = [1 e−2πfdTp · · · e−2πfd(L−1)Tp ]T ∈ C
L is the

Doppler steering vector, and the vector at(θt, φt) = [1 e−2πϑt · · · e−2π(M−1)ϑt ]T ∈ C
M is the

spatial steering vector where ϑt = d sin(θt) sin(φt)fo/c is the spatial frequency. We note that

this particular arrangement of the Kronecker products in (2.8) arises from stacking first the

array response at each time sample n, then the combined fast time-spatial response for each

pulse. One could consider other arrangements of the response, but they are functionally

identical up to a permutation matrix.

It is here we point out that the presence of fast-time samples s in yt is the heart of the

WA-STAP model, and differentiates it from the standard STAP scenario. Traditional STAP

operates on spatio-Doppler responses from the radar after matched filtering of the array

response with the pulse shape [59, 60]; that is, the modeled returns are constant within

a given range bin and the response vector depends only on the angle and Doppler. This

gives rise to the traditional response vector yt,STAP = ρtvt(fd)⊗ at(θt, φt). However, recent

advances in the literature have considered incorporating fast-time data for more accurate

clutter modeling, both transmitter- and jammer-induced [61, 62]. Furthermore, more recent

MIMO STAP papers (see, e.g. [47]) have also adopted the WA-STAP model to account

for pulse design choices. The net impact on the traditional STAP datacube is reflected in

Figure 2.2 [8]. Essentially, each range bin is now further subdivided into N sub-“bins” –

however, as we will soon see, we do not process these sub-bins individually, but as a collection.

The inclusion of fast-time information is mandatory for performing any realistic signal design

because, as mentioned in Chapter 1, the response of any scatterer is highly dependent on
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Figure 2.2: Waveform Adaptive STAP Datacube, prior to matched filtering/range compres-
sion. The dashed lines indicate the N subdivisions of the range gate under consideration.
c©2016 IEEE. Reprinted, with permission, from Setlur and Rangaswamy, IEEE Trans. Sig.
Process., vol. 64, pp. 19–34 (2016) [8]

the pulse shape and thus the pulse’s spectral content. This is especially true for monostatic

SIMO applications, whose sole degrees of transmit design freedom is that pulse shape.

While we would like the response from any target to return to the array as cleanly as possible,

in reality, yt is corrupted by a variety of undesired returns from the environment – noise,

signal-independent interference, and clutter:

ỹ = yt + yn + yi + yc = yt + yu, (2.9)

where the subscripts n, i, c, and u stand for noise, interference, clutter and undesired,

respectively. We assume that these undesired energy sources are statistically uncorrelated

from each other. We shall subsequently describe each of these sources, starting with the

noise.
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We assume the noise is zero mean and identically distributed across all sensors, pulses, and

fast time samples. The covariance matrix of yn is denoted Rn ∈ C
NML×NML. The simplest

model is the traditional white noise model, given by Rn = σ2
n
INML, where σ

2
n
is the assumed

noise variance. However, due to the pulse-shape dependence of the model, Rn may in fact

exhibit a more predictable structure; in particular, a Toeplitz or circulant form may be

appropriate to model the correlation of the noise on a pulse subsample-by-pulse subsample

basis.

The interference term consists of K known interference sources that correspond to a zero-

mean random process spread over all pulses and fast time samples. Assume that the kth

interferer is located at the azimuth-elevation pair (θk, φk). In the lth PRI, we assume that

the waveform is a complex continuous-time signal αkl(t) which, when sampled, yields the

vector αkl ∈ C
N , similar in form to s. Stacked across all PRIs, we obtain the random vector

αk = [αTk0α
T
k1 · · · αTk(L−1)]

T ∈ C
NL, whose covariance matrix we define as E{αkαHk } = Rα,k.

Then, the response from the kth interferer can be modeled as

yi,k = αk ⊗ ai(θk, φk) (2.10)

where, as with the target, ai(θk, φk) is the array response to the interferer. The covariance

of yi,k is then Rα,k ⊗ ai(θk, φk)ai(θk, φk)
H . As above, we may consider this covariance to

be white, i.e., Rα,k = σ2
i
INL, but due to the sampling structure employed for WA-STAP,

a temporal correlation model may be more appropriate. If we assume the interferers are

uncorrelated with each other, then the overall covariance of the combined signal-independent

interference yi is

Ri =
K∑

k=1

Rα,k ⊗ ai(θk, φk)ai(θk, φk)
H . (2.11)

In future sections, we will use the notation Rni = Rn + Ri to denote the combined noise

and interference covariance matrix.
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In airborne radar applications, the most significant clutter source is the ground, which pro-

duces returns persistent throughout all range gates up to the horizon. Though other clutter

sources exist, like large discrete objects, vegetation, and targets not currently being sur-

veilled, the specific stochastic model we apply here only concerns ground clutter. However,

we note that a later formulation may be amenable to considering those other sources in a

manner that recalls efforts in the literature on channel estimation (see, for example, [3]).

Regardless of the source, a major assumption in all works on signal-dependent interference

mitigation is that there is some prior knowledge of the clutter’s response to a given input

signal. While this can lead to a “chicken-or-egg” scenario, as mentioned by [8], such informa-

tion can be obtained in a variety of ways: physics-based scattering models, estimation from

topographical information and/or knowledge-aided databases (as in DARPA’s KASSPER

program [13]), or occasional direct probing and estimation of the environment with “known-

good” pilot signals (see, e.g., [3]). In this work, we will consider an idealized physics-based

approach, but note this does not limit our method’s applicability to more realistic scenarios.

For now, assume the presence of Q clutter patches, each comprising P distinct scatterers.

As with the target, the return from the pth scatterer in the qth patch, located spatially at

the azimuth-elevation pair (θpq, φpq), maintains a Kronecker structure given by

γpqv(fc,pq)⊗ s⊗ a(θpq, φpq)

where the returned complex reflectivity is γpq and the Doppler shift observed by the platform

is fc,pq. This Doppler shift is solely induced by the platform motion, characterized by the

aforementioned velocity vector ẋr, and is given by

fc,pq = 2fo
ẋTr [sin(φpq) sin(θpq) sin(φpq) cos(θpq) cos(φpq)]

c
. (2.12)
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Thus, the overall response from the qth clutter patch is

yc,q =
P∑

p=1

γpqv(fc,pq)⊗ s⊗ a(θpq, φpq). (2.13)

In order to define the covariance matrix of the clutter, we define the qth combining matrix

Bq ∈ C
NML×P as the matrix whose pth column is v(fc,pq)⊗ s⊗ a(θpq, φpq), i ∈ {1, . . . , P}

and the covariance of the reflectivity vector [γ1q γ2q · · · γPq]T given by Rpq
γ ∈ C

P×P . Then,

the overall covariance matrix for the patch is

Rq
γ = BqR

pq
γ B

H
q (2.14)

If we assume that the scatterers in one patch are uncorrelated with the scatterers in any

other patch, then the total clutter response is yc =
∑Q

q=1 yc,q and its covariance is given by

Rc =

Q∑

q=1

Rq
γ (2.15)

We will denote the overall undesired response covariance matrix as Ru(s) = Rni +Rc(s).

Since this is a rather cumbersome model, we can simplify our description of the clutter

as follows. Let us assume that our range resolution is large enough that we cannot resolve

individual scatterers in each patch – as mentioned in [8], this is typical in STAP applications.

Thus, we can regard each scatterer in the patch as lying within the same range gate and

having approximately equal Doppler shifts, hence fc,pq ≈ fc,q. Similarly, if we assume far-field

operation, the scatterers will lie in approximately the same angular resolution cell centered

at (θq, φq), which means θpq ≈ θq, φpq ≈ φq. Given this simplification, we can modify our

representation of the patch response and its covariance.

25



Under this assumption, the per-patch clutter response is

yc,q = γqv(fc,q)⊗ s⊗ a(θq, φq)

where γq =
∑P

p=1 γpq is the combined reflectivity of all scatterers within the patch. For the

covariance, the combining matrix for the q-th clutter patch is given by Bq = [v(fc,q) ⊗ s ⊗

a(θq, φq), . . . ,v(fc,q) ⊗ s ⊗ a(θq, φq)]. Since the deterministic patch response is repeated P

times, via standard Kronecker product properties, this is equivalent to

Bq = 1TP ⊗ v(fc,q)⊗ s⊗ a(θq, φq). (2.16)

More importantly, since Rq
γ = BqR

pq
γ B

H
q , we have

Rq
γ = R

q

γ(vq ⊗ s⊗ aq)(vq ⊗ s⊗ aq)
H (2.17)

where R
q

γ = 1TPR
pq
γ 1P can be viewed as the total variance of the clutter reflectivity within

the patch.

2.1.2 General Channel Models

In [63, 3], the authors consider a transfer function/matrix approach for simultaneous transmit

and receive resource design in MIMO radar, similar to the typical literature on control

theory and digital communications. These are predicated on identifying so-called stochastic

Green’s functions, which are signal-independent characterizations of the scattering properties

of objects in the environment, and can be reasonably precalculated. In general, let us assume

we have an active sensing system with MT transmit resources arranged in the vector s that

are transduced through the environment to MR receive resources into a received vector y,

where MR ≥ MT . If we assume that the transmit and receive resources are sufficiently
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“independent” degrees of freedom then, for a given scatterer, we can identify a matrix

HS ∈ C
MR×MT such that the response yS = HSs. We can think of this as a generalization of

traditional linear time-invariant (LTI) system theory, as each element of HS encodes a linear

mapping between each transmit resource and each receive resource. If there are a number of

scatterers, say Stotal, each with their own channel response Hs, the overall response to the

input to the environment is given by

ỹ =

Stotal∑

s=1

Hss+ yni, (2.18)

where yni ∈ C
MR is a signal-independent noise and interference term that operates similar

to the above. A key to identifiability in these models is having an effective characteriza-

tion or template for distinguishing “target”-like channel matrices from “clutter”-like channel

matrices, a distinction that can vary depending on the application.

Using general properties of Kronecker products, we can reframe our model above to fit the

channel model, as in [3]. For example, we can write the ideal response of the qth clutter

patch as

v(fc,q)⊗ s⊗ a(θq, φq) = (v(fc,q)⊗ IN ⊗ a(θq, φq))s

= Γqs

where the clutter channel matrix Γq is implicitly defined. By the same token, the target

response is equivalent to Ts where T = vt(fd)⊗ IN ⊗ at(θt, φt) is the target channel matrix.

With these forms, the overall received vector (2.9) in the range gate of interest is

ỹ = ρtTs+

Q∑

q=1

γqΓqs+ yn + yi, (2.19)
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where the random reflectivities ρt, γq are as above. This channel model description will,

in fact, form the basis of our understanding of the signal-independent clutter covariance in

Chapter 3.

2.1.3 Detection and Joint Filter-Signal Design

With our models now defined, we now come to the question of what to do with these returns.

Traditionally, STAP is focused on optimizing the detection of targets; that is, it would like to

discriminate between two hypotheses: is a target present in a given range-Doppler-angle bin

or not? At that point, a reasonable estimate of the target parameters may be obtained, or

the detections may be output to another processing level for kinematic parameter estimation

and tracking. We can formulate this process as a decision problem on the return sampled at

a given range bin:

H0 : ỹ = yu

H1 : ỹ = yt + yu

, (2.20)

where the null hypothesis H0 indicates “no target” and the alternative hypothesis H1 indi-

cates “target present.” In order to make a decision, we require a decision statistic that we

can threshold as appropriate. In general, this is facilitated by processing the return ỹ with

some form of filter2– say, w ∈ C
NML – the output of which is given by wH ỹ. (If the general

channel model is used, w ∈ C
MR .) It has been shown that, for a Gauss-Gauss problem,

maximizing the probability that H1 is chosen when H1 occurs (aka the probability of de-

tection PD) is equivalent to maximizing what we term the signal-to-interference-plus-noise

ratio (SINR)3.

2Also known as a weight vector or beamformer.
3More explicitly, we consider the signal-to-clutter -plus-interference-plus-noise ratio (SCINR), but for sim-

plicity, we will collapse the clutter into “interference” for this purpose.
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In our case, the SINR is given by the ratio of the expected energy from the target after

processing to the expected energy from the undesired emitters (both signal-dependent and

independent):

SINR =
E{|wHyt|2}
E{|wHyu|2}

, (2.21)

where the expectations are taken over whatever relevant random parameters are in yt,yu.

If we have prior knowledge of the channel characteristics as above, then this is

SINR =
|wHTs|2

wHRu(s)w
. (2.22)

Let there be a (potentially convex) set Ωs that describes properties we wish our signal s to

have, like a power bound, similarity to another waveform, etc. The joint design problem

most modern research considers is

max
w,s

SINR(w, s)

s.t. s ∈ Ωs.

(2.23)

Alternatively, we can consider what is known as the minimum-variance distortionless re-

sponse (MVDR) strategy, first devised by Capon [64]. As the name implies, the technique

designs a filter that aims to minimize the denominator in (2.23) while keeping the response

to the target fixed at some level, say, κ ∈ C. This results in the near-equivalent optimization

problem

min
w,s

wHRu(s)w

s.t. wHTs = κ, s ∈ Ωs.

(2.24)

Under this design strategy, SINR = |κ|2
wHRu(s)w

, always. We will soon see that, as κ varies,

the denominator wHRu(s)w scales to maintain the same “optimal” SINR.
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Both (2.23) and (2.24) are non-convex problems in general, and thus are hard to solve on

their own. We provided a proof of their non-convexity in [65], and [66, Lemma 1] states that

“convexity” is only attained if every stationary point of the objectives is orthogonal to every

clutter channel matrix Γq and the signal-independent covariance matrix Rni. We will soon

see a variety of ways to handle this non-convexity, as well as a better characterization of it,

in the sections below.

2.2 Biquadratic Programming and Nonconvexity

In this section, we discuss biconvex programming – that is, joint optimization of two multi-

dimensional variables with objectives and constraint sets that are convex in each variable –

and its application to our joint signal-filter design problem. In particular, we take a special

interest in a subclass of biconvex programs, biquadratic programs (BQP/BiQP), because

our primary objective function concerns optimization of a variance, which naturally leads to

a quadratic structure.

2.2.1 Biconvex Optimization

We begin by considering the generalities of biconvex optimization [67]. Let x ∈ F
n,y ∈ F

m

be two vector variables of the given dimensions, drawn from a field F. Nominally, this

field may be the real numbers (F = R) or the complex numbers (F = C), but throughout

this work, we will generally assume F = C. Assume we also have an objective function

f(x,y) : Fn × F
m → R and a constraint set Υ ⊆ F

n × F
m. Taken together, this describes
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the following optimization problem:

min
x,y

f(x,y)

subject to (x,y) ∈ Υ.

(2.25)

Let us further define the following two restrictions of Υ, which are defined for fixed values

x̂ ∈ F
n, ŷ ∈ F

m:

ΥX(x̂) = {y ∈ F
m : (x̂,y) ∈ Υ} (2.26)

ΥY (ŷ) = {x ∈ F
m : (x, ŷ) ∈ Υ}. (2.27)

Notice that the subscript for each set denotes the variable that is fixed. With all of these in

mind, we provide the following definition of a biconvex optimization problem:

Definition 2.1. The optimization problem (2.25) is biconvex if, for every fixed x̂ ∈ F
n and

ŷ ∈ F
m,

1. the sets ΥX(x̂) and ΥY (ŷ) are each convex, and,

2. the functions f(x, ŷ) and f(x̂,y) are each convex functions on ΥY (ŷ) and ΥX(x̂),

respectively.

It can be shown that, in general, biconvex problems are non-convex, which can make them

seem difficult to solve. However, because they are convex in each variable, a simple solution

strategy naturally arises – namely, alternating minimization.

The alternating minimization (AM) algorithm (also known as alternate convex search, or

ACS), as the name implies, alternates between optimization of each variable while holding

the other fixed, usually at the value of the previous iterate. More specifically, AM operates

by first choosing an initial point4 x0 ∈ X0 ⊆ F
n. Then, for each iteration k ∈ Z

+, AM solves

31



the reduced dimension optimizations

yk = arg min
y∈ΥX(xk)

f(xk,y) (2.28a)

xk+1 = arg min
x∈ΥY (yk)

f(x,yk) (2.28b)

until some convergence criterion is met, be it in the objective function f(·, ·) or the iterate

pair (xk,yk). Note that the order of this process could be swapped; that is, one could start

with an initializer y0 ∈ Y0 ⊆ F
m, solve for an optimal x0, and so on.

Before continuing, we make a few observations. First, how one chooses to optimize each

variable is left unstated in this definition. Indeed, the choice of optimization technique at

each step is the main differentiator between the classes of joint signal-filter design algorithms

we will explore in Chapter 2.3 below. Second, the concept of convergence is also left quite

open to interpretation. It is well known that, by construction, AM algorithms provide a

monotonic cost function decrease at each iteration [67, Lemma 4.6], i.e.

f(xk,yk−1) ≥ f(xk,yk) ≥ f(xk+1,yk).

Furthermore, it has been shown [68] that if the constraint sets, which change at each iteration,

“converge” in some sense to stationary sets and the objective function f retains certain

properties, AM is guaranteed to converge to a given optimal value on those stationary sets.

This is true even if the sets come from different metric spaces [69]. Later, we will show a

specialized proof of this convergence in the context of our optimization problem.

4Initializers are often chosen to be jointly feasible, i.e. x0 ∈ ΥY (ŷ) for any ŷ, or feasible only for the
parts of ΥY (ŷ) independent of ŷ, but this is not mandatory.
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2.2.2 Biquadratic Optimization

Next, we consider a specific case of biconvex optimization that will prove useful for our

characterization of SINR-focused joint designs and, later, identifying a simpler way to solve

them. Biquadratic optimization, or biquadratic programs (BQP), arise when the dominant

form of the objective function f is individually quadratic in each variable x,y.

As a standalone problem, specific coverage of the BQP in the literature, from the optimization

community or otherwise, can be charitably described as sparse. In fact, there are only seven

papers directly addressing the BQP, all of which have been released within the last decade

[49, 50, 51, 52, 53, 54, 55]. This is somewhat puzzling given the depth and breadth of

related problems both cited within these works and conceivable by an ordinary engineer –

applications range from economics to quantum physics to the fully-adaptive radar concept

we wish to pursue here. Nevertheless, this limitation allows a reasonable overview of the

state-of-the-art without too much difficulty.

The generic BQP, in terms of real variables, is first defined by Ling, et al. [49]. Consider the

vectors x ∈ R
n and y ∈ R

m. The standard biquadratic optimization problem is

min
x,y

b(x,y) =
∑

1≤i,k≤n,1≤j,l≤m
bijklxiyjxkyl

subject to ‖x‖2 = 1, ‖y‖2 = 1,

(2.29)

where bijkl is the (i, j, k, l)th element of the 4th-order tensor B ∈ R
n×m×n×m, the subscripted

x and y are the appropriate element of the corresponding vector, and ‖·‖2 is the standard

Euclidean norm. Before we continue, it is worth noting that the objective function b(x,y)

can be rewritten using a tensor operator and the matrix inner product, viz

b(x,y) = B(xxT ) • (yyT ) = B∗(yyT ) • (xxT )
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where X •Y = Tr(YTX) is the matrix inner product, B∗ is the adjoint operator of B, and

the tensor-operator matrices are B(xxT ) = ∑n
i,k=1 bijklxixk and B∗(yyT ) =

∑m
j,l=1 bijklyjyl.

If the operator B has a matricization (that is, a rearrangement of its elements into a matrix

compatible with the products xxT or yyT ) that is at least positive semidefinite, then (2.29)

is also biconvex.

In addition to defining the general framework of the BQP, [49] also provides some critical

insight into the solvability of such problems, even under a simple constraint like the unit

sphere. Specifically, they prove that both the BQP and its naive semidefinite relaxation are

NP-hard problems, and that the initial general problem does not even admit a polynomial

time approximation algorithm. This would seem to bode ill for any hope of reasonable so-

lutions, but the authors demonstrate that polynomial-time approximation algorithms exist

(with bounds approximately inversely proportional to the dimension of the variables) when

the objective is square-free or has squared terms in only one of the variables. Finally, they

demonstrate the creation of such algorithms, showing a tradeoff between speed and accu-

racy for sum-of-squares based solvers (better accuracy) versus convex semidefinite relaxation

solvers (faster).

The pair of papers [50, 52] extend concepts from [49], focusing on quadratically constrained

versions of the BQP, similar to most of the constraints our radar problem encounters. Both

papers develop probabilistic bounds for these BQP types, as solved through a similar (but

more complex and restricted) form of the semidefinite program considered previously. The

key difference between the two is that [50] considers a more general non-homogeneous ob-

jective function which includes a function that depends on only one of the variables, which

is homogenized by the addition of an arbitrary scaling. In either case, the solutions of the

relaxed SDP provide inputs to a randomization scheme that results in feasible approximate

solutions to the original BQP. Additionally, [52] makes the first claims about complex-valued
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BQPs (BQPs that are functions of complex variables); namely, that they are equivalent to a

relaxed linear semidefinite program so long as the number of constraints does not exceed 4.

Finally, [51] presents a familiar alternative optimization method to solve the standard BQP:

an alternating direction method (ADM), which is a close cousin of the AM described above.

This solver uses a modified form of the SDP relaxation to drive what is essentially an

iterative solver of the primal-dual problem. Analysis within the work demonstrates that

the ADM algorithm converges to a global solution (should one exist) almost surely, in a

computationally more efficient fashion than any of the methods considered in [49]. We will

see a general application of this concept applied later in Chapter 2.3. This work is related to

similar investigations on non-negative quartic forms; a good review of these topics, especially

in an optimization context, may be found in [70]5.

2.2.3 BQP for Fully Adaptive Radar

With the general mathematical concepts explained, we now turn to how they can be applied

to the joint design problem. Consider an expanded version of (2.24) in the pair (w, s):

min
w,s

wHRniw +wH

(
Q∑

q=1

R
q

γΓqss
HΓHq

)
w

s.t. wHTs = κ, s ∈ Ωs

. (2.30)

where, again, Ωs is a signal-only constraint set. Clearly, if the signal s is fixed, then the

objective function in (2.30) is a convex quadratic function in w, because the matrix Rni +
Q∑
q=1

R
q

γΓqss
HΓHq is positive semidefinite. If the filter w is fixed, we can rearrange the clutter

5Interestingly, the authors in [70] correctly identify [45] as a canonical example of applied quartic opti-
mization.
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covariance term and obtain the following additional form for the objective:

fu(s) = sHZc(w)s+wHRniw (2.31)

where the “filter covariance” Zc(w) given by Zc(w) =
Q∑
q=1

R
q

γΓ
H
q wwHΓq is also a positive

semidefinite matrix, by construction. This is also, obviously, a convex quadratic function in

s. We can also clearly define the total and restricted constraint sets for the variables w, s

and fixed values ŵ, ŝ as

Υ(w, s) = {(w, s) : wHTs = κ, s ∈ Ωs} (2.32)

Υs(ŝ) = {w : wHTŝ = κ} (2.33)

Υw(ŵ) = {s : ŵHTs = κ, s ∈ Ωs} (2.34)

Since the Capon constraint is affine for a fixed parameter, Υs(ŝ) is convex. So long as Ωs is

convex, Υs(ŝ) is convex, and consequently, Υ(w, s) is biconvex. Hence, (2.30) is a biconvex

program, by definition.

With these forms determined, we also can identify the tensor-operator that relates the bi-

quadratic form (2.29) to the general joint design problem (2.24). Let C ∈ C
NML×N×NML×N

denote the clutter tensor operator that is defined by the relationships C(ssH) = Rc(s) and

C∗(wwH) = Zc(w). For the baseline WA-STAP clutter model, this tensor is given element-

by-element as

cijkl =





∑Q
q=1 R̄

γ
qvdqv

∗
eqamqa

∗
nq j = m+M(i− 1) +NM(d− 1),

l = n+M(k − 1) +NM(e− 1)

0 otherwise
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where m,n are integers in {1, 2, . . .M} and d, e are integers in {1, 2, . . . , L} that satisfy

the conditions above, and the subscripted v·q, a·q are the respective elements of the Doppler

response vc,q and spatial response ac,q of the qth clutter patch.

We can also identify a joint form which will be useful later, and also demonstrates that the

problem can be considered as a quartic vector optimization. Let J = N(ML + 1) be the

total number of joint parameters. If we treat the signal and beamformer as a single stacked

variable, say b = [wT sT ]T ∈ C
J , we can find an equivalent form of the above optimization

problem in the new variable. Define the selection matrices ΨW = [INML 0NML×N ] and

ΨS = [0N×NML INML] such that w = ΨWb, s = ΨSb. Then, the joint quartic problem is

given by

min
b

bHR̃u(b)b

s.t. bHT̃b = κ,ΨSb ∈ Ωs,

(2.35)

where R̃u(b) = R̃ni +
Q∑
q=1

R
γ

q Γ̃qbb
HΓ̃

H

q , R̃ni = ΨT
WRniΨW , Γ̃q = ΨT

WΓqΨS, and T̃ =

ΨT
WTΨS are “expanded” versions of the matrices seen in the previous problem. In this case,

the clutter tensor expands to a tensor-operator C̃ ∈ C
J×J×J×J , whose matrix form is given

by R̃c(b) = ΨT
WRc(ΨSb)ΨW = C̃(bbH). In the WA-STAP case, its element-by-element

description is given by

c̃ijkl =





cijkl i, k ≤ NML and j, l ≤ N

0 otherwise

where cijkl is the element of the “smaller” tensor-operator defined above.

The tensors C and C̃ have properties that will be useful later, which mostly relate to the fact

that C preserves semidefiniteness. That is, given a PSD matrix X, C(X) is also positive-

semidefinite.
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2.3 Sequential Algorithms for Joint Designs

In this section, we analyze the two primary classes of optimization techniques used for joint

filter-signal design in the literature for signal-dependent clutter environments: signal-filter

AM and spectral AM. The two classes stand on either end of a speed-accuracy tradeoff,

mostly because of how they are employed. Both classes, however, will share a partial no-

menclature for operation that will be used throughout the rest of this paper. As mentioned

previously, AM alternates between the optimizations (2.28b) and (2.28a). In the filter-signal

design context, we will refer to these as the w-step and s-step, where the terminology indica-

tes which variable is being optimized. This will be true even when we discuss the optimization

of signal or filter spectra, which are technically different variables from the vector inputs.

2.3.1 Signal-Filter Alternating Minimization

We begin our analysis with signal-filter AM. Signal-filter AM operates on the vectors w, s

individually, as vectors, and uses particular concentrations of the given constraint sets to

inform the optimization technique used in each.

As mentioned above, there are multiple equivalent formulations of the same cost function.

Let us define the target gain response matrix due to a given signal ŝ as GS(ŝ) = TŝŝHTH

and the observable response for a given filter as GW (ŵ) = THŵŵHT. The most common

form of signal-filter AM is predicated on the fact that, at each step, the optimal w (s) are

a maximum (minimum) generalized eigenvector6of the target response GS(ŝ) (GW (ŵ)) and

the undesired source covariance Ru(ŝ) (Zc(ŵ)). Due to certain waveform constraints, some

algorithms execute a different signal optimization procedure in the s-step; for example, in

[38], the authors propose solving the fractional form (2.23) via a closed-form phase calcu-

lation under combined constant-modulus and infinity-norm similarity constraints. Another
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recent example is Algorithm 3 of [47], who use the power-method-like SWORD technique of

[48] to solve the fractional problem for separate constant modulus and two-norm similarity

constraints. Regardless, these algorithms can be considered generally to be of lower complex-

ity because, at each step, they operate on an MR- (MT -) dimensional problem. However, as

noted in [8], these techniques can often be ill-conditioned and can require many iterations to

converge, whatever the chosen criterion. Furthermore, the number of iterations needed for

convergence is either not investigated or otherwise treated as a problem-dependent curiosity.

Additionally, these require the prior knowledge of the components of Ru(ŝ) and/or Zc(ŵ) to

ensure that both matrices are positive definite. In a practical sense, this requires Rni (whet-

her estimated or exactly known) to be positive definite for the former case, and Q ≥ MT

(Q ≥ N for WA-STAP) in the latter case. If such a guarantee cannot be made, then one

must resort to more complicated methods, like the proximal alternating minimization of

[7, 8].

For now, let us consider an illustrative example of signal-filter optimization, as described by

[6, 8] for WA-STAP. Let the signal-only constraint set be a simple power constraint; i.e.,

Ωs = {s : ‖s‖22 ≤ Po}. When signal-filter AM is used to solve (2.30), at the k-th iteration,

we obtain the iterate pair

wk =
κ∗R−1

u
(sk−1)Tsk−1

sHk−1T
HR−1

u
(sk−1)Tsk−1

(2.36a)

sk =
κF−1(wk, λk)T

Hwk

wH
k TF−1(wk, λk)THwk

(2.36b)

where F(wk, λk) = Zc(wk)+λkIN and λk is a Lagrange parameter that relates to the power

constraint at the given iteration. The general solution of λk for a fixed wk is given by

6In the case of continuous-time optimization, it is the eigenfunction of a Fredholm integral, as noted by
countless aforementioned authors.
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λ = max[0, λ⋆], where λ⋆ is a real root of the equation

λ⋆
(
|κ|2wH

k TF−2
⋆ THwk − Po(w

H
k TF−1

⋆ THwk)
2
)
= 0. (2.37)

and F⋆ = F(wk, λ
⋆). This expression is obtained through simple algebraic manipulation

of the Lagrange function, and can be solved by any numerical rooting or unconstrained

optimization technique. We shall subsequently refer to this algorithm, when it may be

confused with a general AM procedure, as EigenAM.

As a practical matter, Po is often large since the radar experiences a power loss factor of

1/R4, requiring large power budgets to cover large range swaths. With this effect in mind,

the authors in [6, 8] demonstrated that λ⋆ → 0 when Po ≫ κ, regardless of the filter iterate

wk. If the power must equal Po, then the rooting solution (2.37) should be used.

Power Scaling: A Computational Compromise As a design compromise, the authors

of [8] note that it is possible to save computational cycles by always setting λ = 0, avoiding

the need to implement a difficult root finding routine to solve (2.37). This effectively makes

the power constraint inactive, however, and all subsequent signal iterates sk will be such

that ‖sk‖2 < Po. In cases where an exact solution is required – or, for example, when the

matrix Zc(wk) in the s-step is rank deficient – (2.37) may then be used if the resources are

available.

The consequence of this choice is that if an exactly power-bounded solution is required and

the computational resources for root-finding are not available, then the final iterate (say,

s⋆) must then be scaled back to meet the power constraint. The result of this scaling is as

follows: Let (w⋆, s⋆) be a solution of EigenAM where λ is forced to zero; that is, it is either

a limit point or a solution which satisfies the desired objective tolerance. Then consider the

following scaled solution, ( ||s
⋆||√
Po
w⋆,

√
Po

||s⋆||s
⋆). It is clear that this scaled solution now satisfies
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the power equality, and still satisfies the Capon constraint. Furthermore, this scaling does

not change the clutter objective, due to the structure; that is,

( ||s⋆||√
Po

w⋆

)H
Rc

(√
Po

||s⋆||s
⋆

)( ||s⋆||√
Po

w⋆

)
= w⋆HRc (s

⋆)w⋆ (2.38)

However, the scaling does increase the signal-independent disturbance response by a factor

of ||s∗||2/Po when compared to the original solution. Furthermore, while the scaled iterates

may produce a usable solution, there is no guarantee that they, in fact, satisfy the KKTs of

the original problem.

2.3.2 Spectral Alternating Minimization

We continue by discussing the next class of algorithms typically used for joint design that we

call spectral alternating minimization, or spectral AM. These techniques rely on relaxation of

one or both of the vector quadratic terms in the SINR cost function, producing a transmission

or observation spectrum/correlation matrix from which an optimal signal or filter must then

be synthesized, either at each iteration or after convergence. In some cases, relaxation is

considered only at one stage of the procedure; typically, this is the s-step, where constraints

are more complex and amenable to relaxation to linear constraints. In others, where a

constraint set might itself be biquadratic (say, if the Capon constraint is transformed into

a “minimum target gain for an uncertain target response” constraint), relaxation can be

performed at both steps.

Before we discuss the design concept, we provide a quick overview of relaxing quadratic

programs to semidefinite programs, and their concurrence. We follow some of the tutorial

results provided in [71]. Consider, for example, a general quadratically constrained quadratic
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problem in the variable x ∈ F
n:

min
x

xHA0x

s.t. xHAix E bi, i ∈ 1, 2, . . . , C

(2.39)

where the matrix A0 ∈ H
+
n , the constraint matrices Ai ∈ Hn (though they may merely be

complex valued), and the relationship E indicates one of =,≥,≤. Let X = xxH ∈ H
+
n .

Through the rules of the trace operator, it is clear that (2.39) can be rewritten as

min
X∈H+

n

tr(A0X)

s.t. tr(AiX) E bi, i ∈ 1, 2, . . . , C

rank(X) = 1.

(2.40)

Now, (2.40) is a non-convex problem, due to the rank constraint. If this is relaxed, we now

have the convex matrix problem

min
X∈H+

n

tr(A0X)

s.t. tr(AiX) E bi, i ∈ 1, 2, . . . , C,

(2.41)

which can be efficiently solved. The above process is often called semidefinite relaxation,

or SDR, regardless of the particular cost function or constraints being relaxed. The same

relaxation process can be applied to fractional programs (like the one considered in (2.23)),

and then transformed into a form like (2.41) through the use of the Charnes-Cooper trans-

formation. This transformation functionally sets the denominator equal to one, thus adding

one more trace constraint. Regardless of the relaxation, the purpose is to transform an NP-

hard problem into a more tractable one. However, this requires some guarantee on whether

or not the relaxation is tight – that is, if the solution X⋆ to (2.41) is rank one and therefore
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exactly solves (2.39). For a complex-valued QCQP/SDP relaxation, we have the following

theorem:

Theorem 2.1. Let the complex-valued linear SDP with affine constraints (2.41) and its dual

both be feasible and bounded (i.e., solvable). Then, (2.41) always has an optimal solution X⋆

such that

rank(X⋆) ≤
√
C.

This naturally leads to the following corollary about the tightness of the relaxed solution:

Corollary 2.1. The relaxation of the complex-valued QCQP (2.39) to the complex-valued

linear SDP (2.41) is guaranteed to be tight if the number of constraints C ≤ 3.

When the relaxation is not tight, the major question then becomes how to recover an accep-

table (i.e., close-to-optimal) rank-one solution xappx from X⋆. A common technique which

we will explore in more depth in Chapter 3 is merely choosing the eigenvector of X⋆ associa-

ted with the largest eigenvalue, as this is the best rank-one approximation in the Frobenius

norm sense. Depending on the number and type of affine constraints C, a geometrically-

based rank-reduction or equivalence process may be possible. For example, a rank reduction

process is examined for separable (i.e., multiple sets of variables) SDPs in [72]. The authors

in [72] also show (see Corollary 4.6) that if C ≤ 5 and two of Ai are positive semidefinite,

then a rank-one solution is also possible. In a similar vein, when C = 4, Ai, Huang and

Zhang [73] demonstrated a procedure to generate a decomposition of X⋆ such that each rank-

one component is feasible (i.e., satisfies the constraints). This latter technique is employed

across a variety of joint signal-filter design processes, one instance of which we will describe

below.
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Finally, a popular, if computationally expensive, means of finding approximate rank-one solu-

tions relies on the equivalence of (2.41) to a stochastic version of (2.39). This process, known

as randomization, assumes the following: let ξ ∈ F
n be a random vector drawn from a zero-

mean (complex) normal distribution with covariance X; mathematically, ξ ∼ CN (0n×1,X).

Then, consider the expectation of a quadratic form in ξ; say, Eξ{ξHA0ξ}. After rearranging

the expression by the rules of the trace operator and noting that Eξ{ξξH} = X, we have

Eξ{ξHA0ξ} = tr(A0X). Therefore, the objective and the constraints are all satisfied in ex-

pectation by the relaxed solution. With this in mind, the randomization procedure proceeds

as follows:

1. A number of random drawsD are made from the distribution CN (0n×1,X
⋆), producing

the vector collection {ξ1, . . . , ξD}.

2. If necessary, a problem dependent transformation is applied to {ξ1, . . . , ξD} to create

feasible points of the original problem, resulting in the transformed set {ξf1 , . . . , ξfD}.

3. The approximate solution xappx is given by the random feasible vector that minimizes

the original objective function; that is, xappx = arg mind∈{1,...,D} ξ
f H
d A0ξ

f
d .

Depending on the problem, D may need to be quite large to get an acceptable solution.

Further insights into the application of this technique for approximation bounds can be

found in [71] and references therein.

With the preliminaries in place, we now discuss the application of linear SDR to the joint

design problem. Depending on the constraints, there are multiple ways this can be realized.

First, we discuss methods that relax in the s-step only. In these cases, for each iteration, the

w-step generates a new filter wk in a manner similar to (2.36a) or from an eigendecomposi-

tion, as in the signal-filter AM procedure. We note that this process must correctly enforce

the Capon constraint (or its proxy) by constraining both the real and imaginary parts of the
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term wHTs (implicitly or explicitly), or else the returned iterate wk is not optimal for that

step and performance (convergence or otherwise) may be degraded. Then, for the s-step,

they consider either the clutter-minimizing QCQP

min
s

sHZc(wk)s

s.t. sHGW (wk)s = |κ|2 s ∈ Ωs

(2.42)

or the target-response-maximizing QCQP

max
s

sHGW (wk)s

s.t. sHF
(
(wH

k Rniwk),wk

)
s = 1 s ∈ Ωs.

(2.43)

These forms can then be relaxed to either

min
S∈HMT

+

tr(Zc(wk)S)

s.t. tr(GW (wk)S) = |κ|2 S ∈ TR(Ωs)

(2.44)

or

max
S∈HMT

+

tr(GW (wk)S)

s.t. tr(F
(
(wH

k Rniwk),wk

)
S) = 1 S ∈ TR(Ωs).

(2.45)

where S is the positive semidefinite arbitrary-rank relaxation of ssH . Here, TR(Ωs) ⊆ H
n

is a transformed version of Ωs where all dependences on ssH are now (typically affine)

dependences on S. For example, in a power-constrained case where Ωs = {s : ‖s‖22 ≤ Po},

TR(Ωs) = {S : tr(S) ≤ Po}. In the latter form (2.45), the transformation includes the need

for another variable to appropriately account for scaling. For example, if a constant modulus

constraint is enforced, i.e. Ωs = {s : |si| = ρ, i = 1, . . . ,MT}, then the transformed set is
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defined by a variable t such that

TR(Ωs) = {S : S = M/t, diag(M) = tρ1MT
,M ∈ H

MT
+ , t ≥ 0}

In these cases, the optimization is technically carried out over the unscaled matrix M and

the scaling parameter t. For the most part, any technique that uses the Charnes-Cooper

transformation like [45]’s SOA-2 algorithm, Algorithms 2 and 4 of [47] (henceforth TT-A2

and TT-A4), and Algorithm 2 of [44] (henceforth AA2) will optimize a form like (2.45). Then,

finally, a signal sk is synthesized from its relaxed spectrum S. This can be achieved through

rank-based decomposition [44] or randomization [45, 47]. Randomization is far more popular

when a constant modulus constraint is applied, since there are then at least MT constraints

and, typically, MT ≥ 4. If randomization is used, another design choice can be when to

synthesize a new signal, as this may lead to better convergence and lower computational

load. For example, SOA-2 performs a randomization step at every iteration to generate a

new signal sk, while TT-A2 & TT-A4 perform the randomization after convergence, forming

a new spectrum Sk at each iteration.

Relaxation for the w-step, as seen in works like [46], is carried out similarly to the above.

In these cases, wwH is replaced with an arbitrary-rank matrix W ∈ H
MR
+ in the relevant

filter-equivalents to (2.42) and (2.43). Filter synthesis from the relaxed observing spectrum

W may or may not happen at each iteration, and the same caveats from before still apply.

2.4 Perspectives on Solvability and Convergence

In this section, we provide two further examples of both signal-filter AM and spectral AM

that are functionally equivalent to the EigenAM method, but illustrate the behavior of the

algorithm as well as criteria for optimality and uniqueness of solutions. We also provide
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a general proof of convergence of any AM scheme for bi-convex optimization and discuss

the need to enforce constraints appropriately at every step, even if they necessarily seem

redundant. This analysis was originally presented in [74]. Throughout this section, we

assume the dimensions of the WA-STAP problem, though N and NML may be replaced by

MT and MR respectively if a more generic analysis is desired.

2.4.1 QCQP Formulation

We begin by demonstrating how one step can be transformed to a QCQP which reveals a

per-iterate constraint on the norm of wk. At the kth iteration, the s-step is

min
s

sHF(wk, λk)s

s.t. sHyw = κ∗ ‖s‖22 ≤ Po

(2.46)

where yw = THwk is the “response” of the given target channel matrix to observation

through filter wk and F(λk,wk) is as defined above. For simplicity of notation, let us define

Fk = F(wk, λk) for this section. To be optimal, the weight vector must span some of the

noise, interference, and/or clutter subspaces, and hence so must yw. Let us then consider the

orthogonal projections Pw = 1
‖yw‖22

ywy
H
w and P⊥

w = IN −Pw, which are onto and away from

the span of the observed target response, respectively. This corresponds to a decomposition

of CN that we can then apply to our signal variable; that is, any s can be decomposed as

s = Pws + P⊥
ws. Due to the Capon constraint and the form of Pw, it is clear that for any

feasible s

Pws =
1

‖yw‖22
ywy

H
ws =

κ

‖yw‖22
yw .
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Hence, any feasible s can be represented as

s =
κ

‖yw‖22
yw +P⊥

wq (2.47)

for some q ∈ C
N .

We can then substitute this form of a feasible solution into (2.46) and find an equivalent

problem to solve. After this substitution, and ignoring the effect of a constant term, we have

the new equivalent problem

min
q

qHP⊥
wFkP

⊥
wq+

2

‖yw‖22
Re{κ qHP⊥

wFkyw}

s.t.
∥∥P⊥

wq
∥∥2
2
≤ Po −

|κ|2
‖yw‖22

.

(2.48)

The optimal solution to (2.48), if it exists, is readily shown to be

q(γ) =
κ

||yw||2
A(γ)yw (2.49)

where A(γ) = P⊥
w(Fk + γP⊥

w)
†P⊥

wFk and γ is another Lagrange parameter dictated by the

power allocation to the orthogonal component P⊥
wq. The optimal value of γ is the solution

to another polynomial, given by

γ

(
|κ|2

‖yw‖24
yw

HAH(γ)P⊥
wA(γ)yw −

(
Po −

|κ|2
‖yw‖22

))
= 0

γ ≥ 0.

(2.50)

Finally, the waveform design solution at the kth iteration of this form of AM is given by

sk = κ
yw

||yw||2
+P⊥

wq(γ
⋆) (2.51)
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where γ⋆ is the solution of (2.50).

As with the Lagrange parameter λk, obtaining a solution for γ requires a root-finding process;

hence, a similar tradeoff between accuracy and speed may be made by setting γ = 0. Note

that this choice necessarily implies that, at each stage, the orthogonal power constraint is

inactive.

One might also ask when this constraint has meaning to begin with. Indeed, since it is the

only constraint in (2.48), if it is rendered impossible by the previous iterate wk, then there is

no optimal solution whatsoever. Since the left hand side of the constraint is a squared norm,

then the right hand side must be at least non-negative, or Po− |κ|2
‖yw‖22

≥ 0. After rearranging

and placing it in terms of the iterate wk, we have

|κ|2
Po

≤
∥∥THwk

∥∥2
2
. (2.52)

From this, we can identify when the constraint set has meaning – namely, when the power

in the signal “matched” to the kth filter iterate THwk is at least as much as the desired

normalized gain. When Po ≫ |κ|2, then the feasible set is easily non-empty. This also gives

us a good stopping criterion for the EigenAM problem, since if |κ|2
Po

=
∥∥THwk

∥∥2
2
, there is no

need for P⊥
wq. That is, there are no more resources available to transmit orthogonally to

what is already observed. One can think of this as a minor confirmation of the waterfilling

concept shown by [40, 17]. Incidentally, (2.52) also leads to a lower bound on the norm of

wk Since
∥∥THwk

∥∥2
2
≤ ‖T‖2F ‖wk‖22 by compatibility of norms, we have |κ|2

Po‖T‖2F
≤ ‖wk‖22.

This condition will recur in some sense when we discuss the Slater condition for our relaxed

problem in Chapter 3.
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2.4.2 SDP Formulations

Next, we consider two approaches to obtain semidefinite programs that are equivalent to the

projected QCQP in (2.48).

A Dual SDP

We can first use the dual formulation of (2.48) to obtain a simple SDP in two variables. Let

α ≥ 0 be a Lagrange parameter that takes the place of γ above. The Lagrangian function

of (2.48) is given by

L(q, α) = qHP⊥
w(Fk + αP⊥

w)P
⊥
wq+

2

‖yw‖22
Re{κ qHP⊥

wFkyw} − α

(
Po −

|κ|2
‖yw‖22

)
. (2.53)

Hence, the dual problem of (2.48) is given by

inf
q
L(q, α) =





− |κ|2
‖yw‖42

dHD†(α)dH − α
(
Po − |κ|2

‖yw‖22

)
D(α) � 0,d /∈ N (D(α))

−∞ otherwise

(2.54)

where D(α) = P⊥
w(Fk + αP⊥

w)P
⊥
w, d = P⊥

wFkyw. Defining another positive variable β and

using the approach of Shor [75], we can reformulate the dual as the following SDP:

max
α,β

β

s.t.




D(α) κ∗

‖yw‖22
d

κ
‖yw‖22

dH −α
(
Po − |κ|2

‖yw‖22

)
− β


 � 0, α ≥ 0

(2.55)
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A Primal SDP

We can also form a semidefinite relaxation of (2.48) by considering the matrix Q =
[
qqH q

qH 1

]
.

Given this variable, we can rewrite (2.48) as

min
q

tr


Q



P⊥

wFkP
⊥
w

κ∗

‖yw‖22
d

κ
‖yw‖22

dH 0







s.t. tr


Q



P⊥

w 0

0 0





 ≤ Po −

|κ|2
‖yw‖22

Q =



qqH q

qH 1


 � 0

(2.56)

Dropping the implicit rank-one constraint and ensuring the final diagonal component of Q

is fixed, we have the final relaxation

min
q

tr


Q



P⊥

wFkP
⊥
w

κ∗

‖yw‖22
d

κ
‖yw‖22

dH 0







s.t. tr


Q



P⊥

w 0

0 0





 ≤ Po −

|κ|2
‖yw‖22

Q � 0, QN,N = 1

(2.57)

where Qi,j is the (i, j)th element of Q.

With these in place, we can tie them together to demonstrate equivalence using strong

duality. It can be readily shown that, given an appropriate change of variables, (2.55) is also

the dual problem for (2.57). Thus, we can claim the following (see, e.g., [76, Appendix B] for

the real variable case): Since the primal SDP (2.57) is a relaxation of the QCQP (2.48), then

its optimal value is a lower bound on the QCQP’s optimal value; that is, νoQCQP ≥ νoSDP−P .
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Furthermore, as a dual problem for (2.57), the dual SDP (2.55)’s value is a lower bound on

the primal SDP, which thus implies νoQCQP ≥ νoSDP−P ≥ νoSDP−D.

Recall that a strictly feasible solution is a solution where all inequality constraints are inactive

and the solution lies in the relative interior of any other convex constraint set. Furthermore,

a strictly feasible solution for (2.48) exists only if (2.52) is a strict inequality. If there is

a strictly feasible solution for (2.48), then strong duality between (2.48) and (2.55) holds,

and νoSDP−D = νoQCQP . Clearly then, νoSDP−P = νoQCQP as well, which implies strong duality

holds between (2.48), (2.55), and (2.57). In fact, any rank-one optimal solution of (2.57)

is therefore optimal for (2.48). This, in a roundabout way, also proves the equivalences

mentioned above. Finally, due to this equivalence, an optimal solution q⋆ from either (2.55)

or synthesized from (2.57) may be substituted in (2.51) to obtain the optimal s⋆k.

2.4.3 Convergence of AM for Bi-convex Optimization

With these multiple perspectives on the EigenAM technique now defined, we now examine

the conditions and assumptions under which any AM algorithm converges for a biconvex

problem like (2.25).

Briefly, we will show that if limit points exist for a biconvex problem, then those limit points

are also stationary. Furthermore, it will be clear that if two algorithms that ostensibly solve

the same problem do not enforce the same alternating constraints, then the limit points

attained by each algorithm are not guaranteed to coincide. However, if they are somehow

equivalent when evaluated (for example, a matrix semidefinite constraint evaluated only on

a rank-one matrix), then the limit points will also generally coincide.
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Let xk,yk be the individual iterates generated by an AM optimization of the biconvex pro-

blem (2.25). We start by stating two properties of (2.25) that might be considered implicit

in Definition 2.1.

Property 2.1. A functional relationship exists between the iterates at the k-th and (k−1)-th

iteration.

More mathematically, we require functions f1 : F
M → F

N and f2 : F
N → F

M such that

xk = f1(yk−1) = f1(f2(xk−1)) = fy(xk−1)

yk = f2(xk−1) = fx(xk−1)

(2.58)

where fy = f1 ◦ f2, fx = f2, and we assume the initializers are x0 ∈ X0, y0 ∈ Y0. Note that

our dependence is predicated on the x iterate at iteration k − 1; this is not unique, and we

could redefine this to be in terms of yk−1.

Next, we consider the constraint sets involved:

Property 2.2. The constraint sets for the k-th iteration have an explicit functional depen-

dence on the (k − 1)-th iterates.

Mathematically, this is equivalent to saying that given the constraint sets Ak,Bk for xk,yk,

we can define them as

Ak(xk−1) = {x : (fy(xk−1),x) ∈ Υ}

Bk(xk−1) = {y : (y,xk−1) ∈ Υ}
(2.59)

From here on, we will omit the explicit dependence on the iterate xk−1 for the constraint

sets and denote them merely as Ak,Bk. In a well-defined biconvex problem, we can directly

identify the functions f1, f2 and the constraint sets Ak,Bk – they are the relationships given

by (2.28), so long as the sets are not dependent on the iterate index. As such, the problems
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we wish to solve should have these functional relationships, and therefore we have

xk = arg min
x∈Ak

f(x,yk−1), (2.60)

yk = arg min
y∈Bk

f(xk−1,y). (2.61)

For the rest of this section, let us assume that the sequences {xk} & {yk} and each of

their corresponding subsequences have a finite limit point. Furthermore, we assume that

the objective f is uniformly continuous everywhere and its domain includes the Cartesian

product of two metrizable supersets.

In order to continue, we require some definitions from topology & other general mathematical

disciplines. Recall that a metric space is a set (say, X ) equipped with a function d : X ×X →

R known as a metric (or distance) defined between two points in the set which, loosely,

outputs only non-negative arguments, is symmetric in its arguments, is subadditive, and, if

zero, indicates the points are identical. If the points are in a vector space (as it is in our

case), then a norm ‖·‖ is a typical choice of distance function; that is, for any two points a,b,

the distance d(a,b) = ‖a− b‖. Given this distance function, we can define the diameter of

a set as follows:

Definition 2.2 (Diameter of a set). The diameter DA of a set A is given by the maximum

distance between any two points in the set; that is, DA = sup
a,b∈A

d(a,b).

We can also define a metric that compares the “closeness” of two sets in the same metric

space. This metric, known as the Hausdorff distance, is defined by the following:

Definition 2.3 (Hausdorff distance). Let A,B be two sets in a metric space (X , d). The

Hausdorff distance between A and B is defined as

dH(A,B) = max

{
sup
a∈A

inf
b∈B

d(a,b), sup
b∈B

inf
a∈A

d(a,b)

}
. (2.62)
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Furthermore, let us denote the convex hull and the closure of a set A as Conv(A) and Cl(A),

respectively. We now define the sets of all possible iterates originating from a particular set

of initializers and operating versions thereof. First, given a set of initializers for x and y,

say, X0 and Y0, we define the iterate collections CX0 and DY0 as the union of all possible

iterate sequences that originate from every x0 ∈ X0, y0 ∈ Y0; mathematically, that is:

CX0 :=
⋃

x0∈X0

Cx0
, DY0 :=

⋃

y0∈Y0

Dy0

where

Cx0 = {x0} ∪
{
⋃

k∈Z+

{xk : xk = arg min
x∈Ak

f(x,yk−1)}
}

Dy0 = {y0} ∪
{
⋃

k∈Z+

{yk : yk = arg min
y∈Bk

f(xk−1,y)}
} (2.63)

are the iterate sets given a particular initializer x0,y0.

Since we are interested in convergence around these particular initializer sets, we define the

two convex closures C̊X0 , D̊Y0 as

C̊X0 = Cl(Conv(CX0)), D̊Y0 = Cl(Conv(DY0)) (2.64)

which are composed of every convex combination of these possible iterates. Furthermore, let

us endow the topology Tx to C̊X0 , and the topology Ty to D̊Y0 , both of which are induced

by the metric d(·, ·).

Let us now consider two arbitrary subsets of these closures, which may not be generated

in a particular instantiation of AM: C̄x ⊂ C̊X0 and D̄y ⊂ D̊Y0 . However, while the subsets

are arbitrary, we are not interested in arbitrary sequences of these subsets. Rather, we are

interested in sequences that are themselves capable of being generated by the AM procedure.
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That is, we consider the sequences {xck} and {ydk} such that

xck = arg min
x∈C̄x

f(x,ydk−1), y
d
k = arg min

y∈D̄y

f(xck−1,y). (2.65)

Given these sequences, we make a critical assumption:

Lemma 2.1. The sequences {xck} and {ydk} have limit points identical to the sequences {xk}

and {yk}, denoted as x⋆ and y⋆, respectively

We justify this assumption by considering convex closures of the grand iterate collections that

are small; that is, their diameters are bounded as DConv(CX0
)
≤ ǫ1 and DConv(DY0

)
≤ ǫ2,

where ǫ1, ǫ2 are small, but positive, values. Hence, both sets of sequences will never be

“far” from one another in this diameter sense. Furthermore, since both sets of sequences

are generated from the same overall constraint sets, we will not run into the difficulty of a

mismatch of limit points.

Given these preliminaries, we now prove, loosely, that if a limit point (x⋆,y⋆) exists, then

this limit point is also stationary.

Theorem 2.2 (Convergence of AM). Let the AM procedure, endowed with the above pro-

perties, run on (2.25) given initializers as mentioned above. Assume Lemma 2.1 is satisfied,

the minimizers at each stage k are unique, and the constraint sets are stationary, i.e.

lim
k→∞

dH(Ak,A) → 0

lim
k→∞

dH(Bk,B) → 0

for some fixed sets A,B. If a limit point (x⋆,y⋆) exists for any pair of iterate sequences {xk}

and {yk}, then it is also a stationary point.
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Proof. Since we assume Lemma 2.1 is satisfied, we consider only limit points that also

characterize sequences considered in said Lemma.

We first consider the necessity of Property 2.1, which ensures simultaneous convergence in

both the x and y iterates. If such a functional relationship did not exist, convergence in

one would not influence convergence in the other, which might lead to cycling & a failure to

converge entirely. Let us consider the following counterexample: Assume we have reached the

koth iteration of an algorithm without such a dependence, and that the sequence beginning

with the iterate yko converges to the limit point y⋆, i.e. yko+n → y∗ as n → ∞. If the

functional relationship did not exist, then the next x iterate, xko+1, is not guaranteed to

be in a convergent sequence to the limit point x∗. Furthermore, there will almost certainly

then exist a k > ko where a sequence starting with yk will not converge to y⋆, due to the

functional dependence, and we have reached our contradiction.

Next, we consider the interaction with Property 2.2. Together, these properties enforce the

dependency of the constraint sets Ak and Bk on the previous iterates; hence, they are not

arbitrary, and must generate iterates “cleanly”. Furthermore, if the iterates converge, the

stationarity of the constraint sets is enforced: lim
k→∞

Ak → A, and lim
k→∞

Bk → B7. Thus, if

these sets do not converge, then there is no guarantee that the iterates themselves converge,

and vice versa. This is also where the uniqueness of the solutions come into play – if the

solutions at each iteration are not unique, then the sets generated by them are also not unique

and may not converge to the stationary sets. However, we might relax this requirement if

the process sequentially generated the same constraint sets and the same optimal value at

different points.

7Indeed, these stable sets are likely functions of the limit points themselves!
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Finally, let us consider the following optimization problem over the grand iterate collections:

min
x∈C̊X0

,y∈D̊Y0

f(x,y) (2.66)

We state that the solution to (2.66) is also the desired limit point (x⋆,y⋆), and prove by

contradiction. Assume that this is not true, and there is another limit point generated by

this minimization; say, (x�,y�) = inf
x∈C̊X0

,y∈D̊Y0

f(x,y).

By construction, this limit point must be a member of the convex hull, which means there

exist weight sets αk and βk (where
∑

k αk = 1,
∑

k βk = 1)

f(x�,y�) = f

(
∑

k

αkxk,
∑

k

βkyk

)
.

for any given sequence of iterates {xk}, {yk}. Since the problem is biconvex, we have the

following inequality chain:

f(x�,y�) ≤
∑

k

αkf

(
xk,

∑

k

βkyk

)

≤ α inf
xk

f

(
xk,

∑

k

βkyk

)
+ (1− α) sup

xk

f

(
xk,

∑

k

βkyk

)

≤ inf
xk

f

(
xk,

∑

k

βkyk

)

where the second inequality follows from Carathéodory’s theorem on the real axis, and the

final inequality is a special case when α = 1. If we start with the final inequality and repeat

the procedure for the y iterates, we finally have

f(x�,y�) ≤ inf
xk,yk

f(xk,yk) = f(x⋆,y⋆).

58



By Lemma 2.1, this is a contradiction, because we have considered a different subset from

the same convex hull, but achieved a different (“better”) limit point. Therefore, (x�,y�) =

(x⋆,y⋆).

We can now apply the same technique as in [77, Prop. 2.7.1] to the problem in (2.66) by

using the AM algorithm on this modified optimization problem and demonstrate that limit

point is also a stationary point.

Note that this proof indirectly demonstrates that if the stationary sets that two AM algo-

rithms converge to are different, then not only are the limit points different, but since there

may be a mismatch between actual problem and “solved” problem, convergence may suffer.

We leave an illustration of this for the next section. Finally, we note that the final part of the

proof shows that even if Lemma 2.1 were not true, we would still have f(x�,y�) = f(x⋆,y⋆)

for (potentially non-equal) limit points (x�,y�) and (x⋆,y⋆), since they originate from the

same initializer sequence.

2.5 Numerical Analysis

In this section, we validate the concurrence of AM and its SDP formulation given in Section

3 through a simulated example. Additionally, we will show that any of these algorithms, if

appropriately rescaled to satisfy a power equality constraint, both can outperform a version

of the technique in [44] and asymptotically approaches the optimal value of the relaxed

problem that we will explain in Chapter 3, and was originally given in [65].

In both of these cases, we will let κ = Po = 1 for two reasons: first, to demonstrate the

inherent tradeoff in restricting λ = 0 when the aforementioned condition is not satisfied, and

second, to facilitate comparison with the algorithm in [44] where these particular values are

implicitly assumed.
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The scenario presented to the solvers is as follows: We assume the radar transmits L = 8

pulses of N = 8 samples each, and receives them with a uniform linear array of M = 5

elements on a moving platform. We assume that the signal independent noise covariance

matrix Rn is a Toeplitz matrix with the (i, j)th element equal to exp(−0.005|i−j|). A single

interferer is present at the azimuth elevation pair (0.3941, π/3) radians with a fast time-slow

time correlation given by exp(0.02n). The target is located at the azimuth-elevation pair

(0, π/3) radians, moving at a relative normalized Doppler of -0.1443 to the platform. The

clutter is described by 25 statistically independent patches whose nominal phase centers are

at azimuths linearly spaced in the interval [−π/2, π/2] radians and an elevation angle of 0.3

radians. Additional parameters are as in [8].

First, we compare the EigenAM procedure (henceforth, AM) with the theoretically equi-

valent QCQP in (2.48) and projected SDP in (2.57). Rank-one solutions, if they were not

immediately available, were obtained by the rank-equivalence procedure of [73]. All algo-

rithms were terminated after 20 iterations and the parameters λ, γ were directly determined

by a line search at each iteration. Results of an example convergence run are demonstrated

in Figure 2.3, where we compare them with the optimal value of the joint relaxed biqua-

dratic program (RBQP) proposed in [65], which we will describe more fully in Chapter 3.

Clearly, when fully implemented, AM, the QCQP method, and Projected SDP (the first set

of curves) coincide exactly and converge rather quickly to a certain limit point in a manner

reminiscent of Theorem 2.2. Additionally, there is an expected gap between the optimal

values of the original problem and its relaxation. We note that this gap occurs partially

because the sk iterates converge to strictly feasible points, as we expected. The second set of

curves shows the equivalent cost if the power constraint was always satisfied with equality,

which we enforce by rescaling the optimal (w, s) pairs at each iteration such that ||sk||2 = Po

and the Capon constraint is maintained. This is important because of the aforementioned

strict feasibility. That is, the iterative solvers we propose prefer to sequentially lower the

power until convergence, which makes comparison with techniques that enforce power limi-
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tations with equality difficult. As noted above, however, these rescaled iterates may not

be KKT points of the originally considered problem. Unsurprisingly, the three algorithms

again coincide; however, unlike the inequality constrained iterates, the rescaled iterates cle-

arly converge to an asymptote given by the optimal value of the relaxed problem, despite

not being guaranteed to satisfy the original problem’s KKTs. Hence, we have verified the

equivalence and convergence properties of the aforementioned problems.
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Figure 2.3: Convergence comparison of AM, QCQP, & projected SDP (unscaled and scaled).

Next, we compare the convergence properties of the equivalent methods above with two other

algorithms. The first algorithm is a suboptimal form of projected SDP where the Lagrange

multiplier λ is set to zero at each step. This solution is suboptimal since λ = 0 does not

necessarily satisfy the KKTs when Po = κ. Like the optimal version above, this version is

terminated after 20 iterations. The second algorithm is a modified version of the algorithm

in [44] (henceforth, AA2) where the similarity constraint is removed. While AA2 nominally
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maximizes SINR, we can make a reasonable comparison of the equivalent objective for the

other problems by examining the reciprocal.

In this case, we set the convergence parameter ǫ = 1 – as convergence tolerances go, this

may seem rather large, but it is our experience that even this can lead to extended runtimes

for the algorithm. For comparison, we examine the mean objective value ν̂ attained by

each algorithm (rescaled, if necessary) after 20 iterations or, in the case of AA2, when the

algorithm was deemed to have converged if it occurred before 20 iterations. This was achieved

by averaging the results of 50 Monte Carlo trials, with each algorithm initialized with a given

randomly-generated signal for each trial. The results are presented in Table 2.1, where we

express the resultant objective value in multiples of the optimal value of RBQP ν⋆RBQP (here,

4.21× 10−4), which we have previously established as an empirical convergence asymptote.

Table 2.1: Mean convergence comparison of algorithms.

Algorithm ν̂/ν⋆RBQP
AM/QCQP 2.12

SDP 2.06
SDP, λ = 0 1.33

AM/QCQP/SDP Rescaled 1.01
AA2 2.16

It is clear that AA2 converges to an effectively higher limit point than any of the generally

equivalent forms above or their more comparable rescaled counterparts. This is also true

for the suboptimal projected SDP; however, even this method outperforms AA2 in our

experiments. This is critical, because AA2 always enforces the power-constraint with equality

and hence does not have a per-iterate reduction in power to account for convergence issues.

Furthermore, suboptimal projected SDP requires minimal rescaling (that is, ||sk||2 ≈ Po for

all iterations). Hence, it may be a more viable option than suboptimal AM for times when

Po ≈ κ. This version of the algorithm frequently has iterates exceed the power constraint if

λ is forced to zero and, when these iterates are rescaled, can produce solutions with higher
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costs than any of the methods listed herein. See [78] for similar behavior after enforcing

feasibility constraints in waveform design.

Finally, AA2 has the critical flaw that it incorrectly enforces the Capon constraint – namely,

that it does not enforce it at all in the s-step. This effective switch between objective

functions and constraint sets destroys even the loose convergence properties described in

Theorem 2.2. We will see that this has further consequences for performance in Chapter 4.
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Chapter 3

Joint Relaxations for

Power-Constrained Designs

While the iterative/sequential techniques examined in Chapter 2 are fairly popular and

endlessly reinvestigated with new constraints, it is worthwhile to ask if the design process

can be accomplished in a truly joint fashion, with minimal “guessing” of an initializer.

In this chapter, we propose a convex relaxation technique for simultaneous design of both

transmit and receive resources. It is, at first blush, a very simple trick that can ostensibly

lead to very large solver complexities. Indeed, a version of this relaxation method has been

investigated in the biquadratic optimization literature; however, due to the special nature of

the considered problem, it manifests as a linear semidefinite program. Our method considers

the potentially more difficult quadratic semidefinite program (QSDP), which arises from the

clutter tensor mentioned in Chapter 2 in the context of BQP. Due to the convex structure

and unique separability properties of the objective and constraint functions, though, we

can efficiently and analytically characterize the solutions (and thus their resulting quality)

obtained through numerical solvers.
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We will show this analytical process results in problem-dependent guarantees on rank, so-

lution type, and other relevant quantities. Furthermore, it also results in multiple viable

solution paths and bounds on optimality, which we will also examine in detail. This pro-

cess can also provide simple conditions to ensure rank-one optimality in terms of the dual

variables.

The organization of the rest of this chapter is as follows. Chapter 3.1 will discuss our relax-

ation technique, which combines the notion of completely-positive operators and the theory

of QSDPs to transform the non-convex joint problem (2.35) into a convex problem. This

will leverage the signal-independent nature of the channel matrices. Chapter 3.2 will dis-

cuss constraint qualifications and an initial analysis of the Karush-Kuhn-Tucker conditions,

which are necessary and sufficient for solutions of the convex problem under consideration.

The KKT analysis will continue in more specific terms for the power-constrained problem

in Chapter 3.3 and include both power-bounded and non-power-bounded solution paths.

Chapter 3.4 will demonstrate how the KKTs naturally coincide with a waterfilling-like in-

terpretation of the design problem, providing a robust linkage to previous continuous-time

design methodologies for signal-dependent interference sources. Finally, this chapter will

conclude with Chapter 3.5, where the utility and superiority of our technique will be demon-

strated through representative simulations of nominal waveform-adaptive STAP scenarios.

3.1 Relaxations & Quadratic Semidefinite Programs

As mentioned above, while the signal-filter problem (2.30) is a non-convex biquadratic pro-

gram, it can at least be decoupled into quadratic programs that can then be relaxed to linear

SDPs or solved through other reduced means. However, it seems, in some sense, misguided

to completely rely on these alternating procedures because their convergence often depends

on selecting “good” initializers in one of the variables. Furthermore, choosing initializers ba-
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sed on pre-existing waveform or filter libraries can lead to the problem of producing merely

small perturbations of the initial point, which is hardly a design problem at all.

Our path to avoid this quagmire focuses on using semidefinite relaxation on the joint vector

problem (2.35). In this section, we describe the fundamentals of and the process behind our

relaxation concept, which will carry through the rest of the dissertation.

3.1.1 Completely Positive Clutter Operators

We begin first by discussing a particular part of the theory of linear operators which relate

to the characteristics of the signal-independent clutter tensor-operators C and C̃.

Let us consider a linear operator1Q : Cn×n → C
m×m; that is, given a matrix M ∈ C

n×n,

Q(M) ∈ C
m×m. Operators like Q are said to be preserving in some sense if, for every

input M in some subset of Cn×n, the output matrix Q(M) is in the equivalent subset of

C
m×m. We now define two important types of preserving operators: Hermitian-preserving

and (positive) semidefinite-preserving.

Definition 3.1 (Hermitian-preserving operators). A linear operator Q : Cn×n → C
m×m is

Hermitian-preserving if, for every matrix M ∈ H
n, Q(M) ∈ H

m.

Example 3.1. Let A be a 2× 2 Hermitian matrix, given by

A =



a11 a12

a∗12 a22


 .

The operator D : C2×2 → C
2×2 that zeroes out the diagonal, producing

D(A) =




0 a12

a∗12 0


 ,

1The reason behind this notation choice will become relevant in the next section.
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is a Hermitian-preserving operator.

The definition for semidefinite-preserving operators, which are naturally also Hermitian-

preserving, is functionally identical:

Definition 3.2 (Semidefinite-preserving operators). A linear operator Q : Cn×n → C
m×m

is semidefinite-preserving if, for every matrix M ∈ H
n
+, Q(M) ∈ H

m
+ . That is, if M � 0,

Q(M) � 0 as well.

Semidefinite-preserving operators are often also known as “positive operators” in the linear

algebra literature.

One might think that semidefinite-preserving operators are the operator analogs of PSD

matrices; however, Choi [79] proved that it is in fact a subset of these operators known as

completely positive operators that fill this role. Completely positive operators are, essentially,

operators that preserve semidefiniteness even when extended to block matrices whose blocks

are elements of Hn. Define the set Cp×p(Cn×n) ⊂ C
pn×pn to be the set of p×p block matrices

whose blocks are n × n matrices. A more technical definition of complete positivity then

follows as:

Definition 3.3. Let the block matrix sets be defined as above. A linear operator Q : Cn×n →

C
m×m is p-positive if the operator 1p ⊗Q : C

p×p(Cn×n) → C
p×p(Cm×m) is semidefinite-

preserving/positive. Q is completely positive if it is p-positive for all p ∈ Z
+.

While the definition above is compact, it can be hard to visualize how the repetition operator

1p ⊗Q works. We provide the following example:

Example 3.2 (The operator 1p ⊗Q & p-positivity). Assume the dimensions from Defini-

tion 3.3. Let p = 2, and assume we have the four matrices M11,M12,M21,M22 ∈ H
n
+. Then,
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the block matrix M̃ ∈ C
2×2(Cn×n) given by

M̃ =



M11 M12

M21 M22




is also PSD. Let P be the result of applying 12 ⊗Q to the above block matrix, or P =

[12 ⊗Q](M̃). Then, P is also representable as

P =



Q(M11) Q(M12)

Q(M21) Q(M22)


 .

If P is also PSD, then Q is 2-positive, by definition. Should this positivity extend to any

dimension of blocking, then Q is completely positive.

The definition provided above is quite cumbersome and is incredibly difficult to check for

any given operator. Thankfully, Choi also provided a theorem that allows for immediate

characterization of completely positive operators in terms of their defined forms:

Theorem 3.1 (Theorem 1, [79]). Let Q : Cn×n → C
m×m be a linear operator. Then, Q is

completely positive if and only if there exist m× n matrices Vi such that

Q(A) =
∑

i

ViAV
H
i (3.1)

for all A ∈ C
n×n.

Notice that the Vi do not necessarily need to form a linearly-independent set, though [79,

Remarks 4 and 6] note that linear independence ensures the representation in (3.1) is “cano-

nical,” if not unique, and that no more than nm such matrices are needed. It is immediately

clear by the form in Theorem 3.1 that any completely positive operator is also operator

convex by definition. As such, any affine composition with or quadratic form resulting from
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Q is also convex. There are multiple theorems in the literature that are essentially corollarys

of Theorem 3.1. The most useful of these rely on the matricization 〈Q〉 ∈ C
m2×n2

of an

operator Q, which is implicitly defined as vec(Q(A)) = 〈Q〉 vec(A). Given this definition,

Poluikis and Hill [80] provide the following corollary:

Corollary 3.1 (Theorem (1.2), [80]). Q is completely positive iff there exist V1, . . . ,Vs ∈

C
m×n such that there is a matricization 〈Q〉 =∑s

i=1 V
∗
i ⊗Vi.

The proof of this corollary can be directly obtained by applying the rules of vectorization to

(3.1). There are also two further matrices one can define, given the reshaping operators Ψ

and Γ [80], which map C
m2×n2

to C
mn×mn. For a completely positive operator Q, we have

the “vectorized” matrices (which are elements of Hnm
+ )

Ψ(〈Q〉) =
s∑

i=1

vec(Vi) vec(Vi)
H (3.2)

Γ(〈Q〉) =
s∑

i=1

vec(VH
i ) vec(V

H
i )

H . (3.3)

The positive semidefiniteness of these matrices is self-evident, as they are sums of positive

semidefinite rank-one matrices. Recall that for any m × n matrix, vec(VT ) = Km,n vec(V)

whereKm,n is the commutation matrix [81]. Then, the two matrix representations are related

by Γ(〈Q〉) = KNML,NΨ(〈Q〉)∗KT
NML,N .

The theory we have mentioned so far has significant connections to quantum physics and

computing, particularly in terms of defining observability of a quantum state. In this realm,

the matrices Vi are known as Kraus operators, and define a transfer function from the

excitation of a quantum state to its observed result. The matrices Ψ(〈Q〉),Γ(〈Q〉) are often

known in these contexts, appropriately, as the Choi matrices of the operator. Henceforth,

when we refer to the Choi matrix of a given operator Q, we will mean the matrix Ψ(〈Q〉).

69



In our case, however, we can immediately see the clear connection to the signal-independent

channel matrices, the clutter tensor C : CN×N → C
NML×NML and its expansion C̃ : CJ×J →

C
J×J . Recall that we originally defined these operators implicitly in terms of the clutter

covariances Rc(s), R̃c(b), which is their evaluation on rank-one matrices:

Rc(s) = C(ssH) (3.4)

R̃c(b) = ΨT
WRc(ΨSb)ΨW = C̃(bbH) (3.5)

Given arbitrary rank matrices S ∈ H
N
+ ,B ∈ H

J
+, though, we can explicitly define these

operators in a way that aligns them with Theorem 3.1:

C(S) =
Q∑

q=1

R̄γ
qΓqSΓ

H
q (3.6)

C̃(B) =

Q∑

q=1

R
γ

q Γ̃qBΓ̃
H

q (3.7)

This leads us to a theorem specific to the joint trans-receive design problem:

Theorem 3.2. The clutter operators C and C̃ are both completely positive operators.

Proof: If we set n = N, m = NML, i = q and let Vi =
√
R̄γ
qΓq, then C is a completely

positive operator by Theorem 3.1. Similarly, letting n = m = J and Vi =
√
R̄γ
q Γ̃q proves

the complete positivity of C̃.

Note that C̃(B) = ΨT
WC(ΨSBΨT

S )ΨW , but one must be careful with naively applying this

to a given optimization problem, because the correspondence to the covariances above noti-

onally applies only when rank(B) = 1. We will deal with this issue later in the section.
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Since C, C̃ are both completely positive, we can also identify their Choi matrices:

CV =

Q∑

q=1

R̄γ
q vec(Γq) vec(Γq)

H (3.8)

C̃V =

Q∑

q=1

R̄γ
q vec(Γ̃q) vec(Γ̃q)

H (3.9)

where we shall denote CV = Ψ(〈C〉) ∈ H
N2ML
+ , C̃V = Ψ(〈C̃〉) ∈ H

J2

+ , with the subscript V

emphasizing that they arise from vectorizing the clutter channel matrices. Recalling that

Γ̃q = ΨT
WΓqΨS, the rules of vec lead to a simpler equivalence between CV and C̃V :

C̃V = (ΨS ⊗ΨW )TCV (ΨS ⊗ΨW ) (3.10)

Since rank(ΨS ⊗ΨW ) = rank(ΨS) rank(ΨW ) = N2ML, ΨS ⊗ΨW is of full column rank,

and therefore rank(C̃V ) = rank(CV ). Furthermore, we can link Rc(s) to CV by obser-

ving that Rc(s) = (s∗ ⊗ INML)
H CV (s∗ ⊗ INML). Incidentally, if the channel matrices Γq

are random variables instead of deterministic, then CV serves as the covariance matrix for

vec(Γq).

One might ask if the given clutter channel matrices form the “minimal” or “canonical” re-

presentation, as mentioned in by Choi. Thankfully, matrix decompositions and the nature

of observability in apertures provide us with a simple solution. Recall that the rank of the

clutter “subspace” (i.e., the rank of Rc(s) and thus CV ) is limited by both the physical

extent and nature of non-target scatterers and our overall ability to observe this state of

nature. For side-looking airborne arrays, the well-known Brennan rule [82, 60] is a reaso-

nable approximation if certain conditions hold, but as [83] showed, a more robust result is

obtained by applying the Landau-Pollak theorem. In any case, let us assume that the “true”

rank of the clutter is Qeff ≤ Q ≤ N2ML (the subscript denoting the effective number of

clutter patches). Then, we can use the economy eigendecomposition to find two equivalent
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representations of CV , namely:

CV = ŬCDCŬ
H
C =

Qeff∑

i=1

σ2
c,iŭiŭ

H
i .

Here, ŬC ∈ C
N2ML×Qeff is the matrix that forms the basis for the Qeff-dimensional vectorized

clutter subspace, whose ith column is the eigenvector ŭi ∈ C
N2ML, i ∈ {1, . . . , Qeff}. DC ∈

C
Qeff×Qeff is a diagonal matrix whose (i, i)th element is the nonzero eigenvalue σ2

c,i. We

can also consider the full eigendecomposition CV = ŬDŬ. Here, the unitary matrix Ŭ =

[ŬC ŬN ], where ŬC is as above and ŬN collects the N2ML − Qeff eigenvectors in the

nullspace of CV , which we can regard as the vectors ŭi, i ∈ {Qeff +1, . . . , N2ML}. D is just

the direct sum ofDC and a N2ML−Qeff×N2ML−Qeff all-zeros matrix. This decomposition

also provides us with an alternative representation of the signal-dependent clutter covariance

matrix Rc(s). Let us assume that there is a set of N2ML matrices Ui ∈ C
NML×N whose

vectorizations are vec(Ui) = ŭi – that is, they correspond to the eigenvectors of CV . Then,

the signal-dependent clutter covariance can also be given by

Rc(s) =

Qeff∑

i=1

σ2
c,iUiss

HUH
i . (3.11)

We note that UH
i Ui =

1
N
IN for all i, not just those in the clutter indices. Thus,

√
NUi is a

rank-N partial isometry, and they form the the linearly independent matrix set we mentioned

generically above.

3.1.2 The Quadratic Semidefinite Program

Previously, we alluded to the fact that a biquadratic program, while NP-hard and non-

convex, could be efficiently relaxed to a convex problem, assuming certain structure. It

is here that we introduce this convex problem type, known as the quadratic semidefinite
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problem/program (QSDP) 2, which will form the basis of the rest of our contributions in

this dissertation. A QSDP is, in some sense, the “simplest” extension of the well-known and

studied linear semidefinite problem (SDP), which we saw previously as a signal or filter-only

relaxation in the iterative techniques of Chapter 2. As we will soon see, the QSDP shares

some properties with the standard SDP.3 However, the literature is sparser on general QSDP

theory and fewer guarantees made be made about the properties of their solutions, absent

any other preidentified structure.

Traditionally, QSDPs have been studied for real matrices only, but most of the theory pre-

sented here can be extended to Hermitian matrices with little effort. We will leave discussion

of this extension for later. For now, we follow the development of this theory as presented by

Li [56] in his dissertation; earlier examinations of this problem type can be found in [84, 85].

The general form of a QSDP is given by

min
X

1

2
X • Q(X) +C •X

s.t. AE(X) = bE AI(X) ≤ bI X ∈ S
n
+

(3.12)

where Q : Sn → S
n is a self-adjoint linear operator, and AE : Sn → R

mE and AI : S
n → R

mI

are linear maps to real equality and inequality constraints, respectively, given by bE ∈ R
mE

and bE ∈ R
mI . Here, ≤ is shorthand for an inequality that is true for every element in the

vector.

2More rarely, it is known as the semidefinite quadratic problem (SQP) (see, e.g.)
3Depending on the structure of a solution, the solution to a linear SDP and a QSDP may in fact coincide.

This observation will come into play later in this chapter.
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It can be shown that the dual of (3.12) is given by

max
W, Σ, yE , yI

− 1

2
W • Q(W) + bTEyE + bTI yI

s.t. −Q(W) +Σ+A∗
E(yE) +A∗

I(yI) = C

W ∈ S
n Σ ∈ Sn+ yI � 0

(3.13)

where W is a dual variable such that, at the optimum W,X, Q(W) = Q(X); Σ is the

dual variable for the semidefiniteness; and yE,yI and A∗
E,A∗

I are the dual variables and

adjoint operators for the equality and inequality constraints, respectively. Notice that the

dual itself contains a quadratic semidefinite term that, at the optimum, is equal to that of

the primal problem. While one might be tempted to believe this presents a serious challenge

to the solvability of such problems, there are often other structural arguments one can make,

particularly about the quadratic operator Q(·), that can simplify the process. In our case,

the operator relates to the clutter, and decouples things in a way that leads to a “nice”

conclusion.

More importantly, we should ask when (3.12) and (3.13) are convex, since this (at the very

least) permits the use of general convex optimization toolboxes like CVX [86, 87]. It turns

out that (3.12) is convex when Q is completely positive (or semidefinite, as is often said in

the optimization literature). It can be shown that, given an appropriate partitioning of X,

the inner product X • Q(X) is equivalent to the vector-quadratic form vec(X)HQ vec(X),

where Q = Ψ(〈Q〉) ∈ S
n2

+ is the Choi matrix of Q. We will commonly use the properties

of Q to stand in for those of Q, since there is a direct equivalence (isometric isomorphism)

between the two [88].

Toh [85] observed that the computational complexity of such a problem can depend primarily

on the number of linear constraints and the effective rank of the operator Q, which is

the same as the rank of Q, say rank(Q) = rQ ≤ n2. More specifically, if reformulated
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into a semidefinite-quadratic-linear program (SQLP), the computational complexity for an

interior-point solver is no more than O((rQ + mE + mI)
3). If rQ ≪ n2, then this can

represent a potentially significant speedup, but one must calculate the appropriate rank-

revealing decomposition of Q, which can be expensive if Q is dense. This is fundamentally

the approach of interior-point solvers like SDPT3 [89, 90] and SeDuMi [91], though they can

exploit the sparsity of Q,AE,AI if it exists. Let mT = mE +mI indicate the total number

of affine constraints. In [85], Toh also proposed an interior point solver with complexity

O(m3
Tn)+O(m2

Tn
2)+O(m3

T ), though there is currently no publicly-available implementation

of it. Currently, the most promising solver for these problems is QSDPNAL [56, 92], a solver

developed by X. D. Li in 2015 based on fast and compact solutions to the dual (3.13) . Recent

works [93, 94, 95, 96] have shown that methods like QSDPNAL have excellent convergence

properties, even if multiple solutions exist. This means that though they may be expensive,

even a poor initialization can result in a quick solution. Unfortunately, QSDPNAL is also

not currently publicly available for general use. We will see, however, that even the interior

point solvers SDPT3 and SeDuMi can demonstrate the power of appropriately considering

QSDPs.

Handling Complex Matrix Variables

As mentioned above, the primal (3.12) and dual (3.13) QSDP problems are technically

defined for real variables only. Since radar signal processing, due to the consideration of

electrical fields, deals mostly in complex variables, we require a notional mechanism to allow

“conversion” between Hermitian and symmetric matrices.
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Let X ∈ H
n
+ be the complex variable of interest. To make this a real QSDP, we need to

introduce a new variable X̂ ∈ S
2n
+ , defined as

X̂ =



Re(X) − Im(X)

Im(X) Re(X)


 , (3.14)

where we can obviously decompose X = Re(X) +  Im(X). Let us define the “real”-ization

matrix DR,n ∈ C
2n×n as DR,n = 1√

2
[In In], such that DH

R,nDR,n = In. Then, we can define a

matrix mapping between the complex and real representations as X = DR,nX̂DH
R,n. Finally,

we require “real” versions of complex linear mappings associated with a complex QSDP: a

quadratic operator QC and equality and inequality operators AE,C ,AI,C . While the latter

two can be easily defined by substitution of the first matrix mapping, the operator in the

quadratic term requires slightly more care to account for the inner product. Using the

properties of trace, we can identify the real quadratic operator Q as

Q(X̃) = DH
R,n

(
QC(DR,nX̆DH

R,n)
)
DR,n. (3.15)

In effect, this process means that any complex QSDP has double the variables, as expected.

3.1.3 Relaxing BQPs to QSDPs

With the preliminaries out of the way, we now turn to employing the theory of QSDPs to

find a more tractable means of solving the joint BQP (2.30), or, more correctly, the joint

quartic problem (2.35). The goal here is to use semidefinite relaxation (first mentioned

in Chapter 2.3.2) to relax the quartic problem (2.35) into a QSDP. At that point, we can

analytically characterize the set of solutions (and the potential tightness of the relaxation), as

well as solve the problem numerically using the interior point methods [89, 90, 91] discussed

above.
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Our first task is to massage (2.35) into a form that permits a relaxation into the standard

form of (3.12), but we will also identify a form that is more amenable to direct analysis.

First, we can recast the complex Capon constraint wHTs = κ as two real constraints that

depend on the joint parameter vector b:

Re{wHTs} = bHT̃Rb = κR

Im{wHTs} = bHT̃Ib = κI ,

where T̃R, T̃I ∈ H
J are the real and imaginary parts of T̃ uniquely determined as T̃R =

1
2
(T̃ + T̃H), T̃I = −

2
(T̃ − T̃H). Observe that both constraints are required in order to

correctly enforce the total Capon constraint.

Next, consider the objective function f(b) = bHRu(b)b = Ru(b) • bbH , where we have

used the properties of the trace and the matrix inner product to obtain the second form.

We could use the basic expansion of the undesired covariance Ru(b) = R̃ni + R̃c(b), but

recall that there is a completely-positive linear operator C̃ such that R̃c(b) = C̃(bbH) =
Q∑
q=1

R̄γ
q Γ̃qbb

HΓ̃
H

q . Thus, reformulating the objective to be amenable to semidefinite relaxation

can be achieved in two ways. First, we can naively use the inner product form, which gives

us

f(b) = R̃ni • bbH + bbH • C̃(bbH). (3.16)

Second, we can use the secondary definition of C̃(bbH) to examine the second term of the

inner product, that is, bbH • C̃(bbH). If we expand the inner product, we obtain

bbH • C̃(bbH) =
Q∑

q=1

R
γ

qb
HΓ̃qbb

HΓ̃
H

q b.
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Recognizing that bHΓ̃qb = vec(bbH)H vec(Γ̃q), we then have

bbH • C̃(bbH) = vec(bbH)H

(
Q∑

q=1

R̄γ
q vec(Γ̃q) vec(Γ̃q)

H

)
vec(bbH)

= vec(bbH)HC̃V vec(bbH). (3.17)

The second vectorized form of the objective is therefore given by

f(b) = R̃ni • bbH + vec(bbH)HC̃V vec(bbH), (3.18)

where again C̃V is the Choi matrix of C̃. Finally, we turn to the signal constraint s ∈ Ωs,

which is transformed to ΨSb ∈ Ωs.

Hence, we recast (2.35) into two equivalent forms: the inner product-operator form

min
b

R̃ni • bbH + C̃
(
bbH

)
• bbH

s.t. T̃R • bbH = κR T̃I • bbH = κI

ΨSb ∈ Ωs,

(3.19)

and the vectorized form

min
b

R̃ni • bbH + vec(bbH)HC̃V vec(bbH)

s.t. T̃R • bbH = κR T̃I • bbH = κI

ΨSb ∈ Ωs.

(3.20)

Following the same path to semidefinite relaxation we followed in Chapter 2, let us define

the matrix variable B = bbH ∈ H
J
+. It is clear that, as is, B is rank one, which imposes an

obviously non-convex constraint. Instead, we permit B to be of any rank, which results in a
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lifting of the problems (3.19) and (3.20) to the equivalent QSDPs in both operator form

min
B

R̃ni •B+
(
C̃(B)

)
•B

s.t. T̃R •B = κR T̃I •B = κI

ΨT
SBΨS ∈ T (Ωs)

B ∈ H
+
J ,

(3.21)

and vectorized form

min
B

R̃ni •B+ vec(B)HC̃V vec(B)

s.t. T̃R •B = κR T̃I •B = κI

ΨT
SBΨS ∈ T (Ωs)

B ∈ H
J
+

(3.22)

where T (·) is an appropriate transformation of the original constraint space to an equivalent

relaxed constraint space. Notice we did not, at any point, progress through a matrix bilinear

form in finding these semidefinite relaxations, as seen in [49], etc. This is because the

constraint set in this problem prevents such a representation – namely, the Capon constraint

is bilinear in the vector arguments already.

The problems in (3.21) and (3.22) can be shown to be convex if and only if the set T (Ωs)

is convex. In the case of the power-constrained problem we will consider for the rest of

this chapter, Ωs =
{
s : ‖s‖2 ≤ Po

}
and T (Ωs) =

{
B : tr(ΨSBΨT

S ) ≤ Po
}
for a given upper

power bound Po, both of which are convex in their respective variables. We will show later

that while Ωs may not be convex, an appropriate parameterization will make T (Ωs) convex

for the practical waveform constraints we consider in Chapter 4.
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Choosing a Relaxation & Notation

While both (3.21) and (3.22) are clearly QSDPs, they are exactly equivalent only if there

exists a rank-one optimal solution to both. In fact, (3.22) induces a different form of the

clutter operator C̃ that we call C̃V, given by

C̃V(B) =
1

2




0NML×NML

∑Q
i=1R

γ

i tr(Γ̃
H

i B)Γ̃i
∑Q

i=1R
γ

i tr(Γ̃iB)ΓHi 0N×N


 . (3.23)

This operator is clearly Hermitian-preserving, but due to the zero diagonal blocks, it cannot

be completely positive. However, this still produces a convex function in concert with the

inner product, because for any B, it can be shown that C̃V(B)•B = vec(B)HC̃V vec(B) ≥ 0.

Hence, it is regarded as a positive-semidefinite operator.

It is this relaxation that we will consider for the rest of this dissertation, because, as we will

show, we can easily obtain the Karush-Kuhn-Tucker conditions (which are necessary and

sufficient for optimality), guarantees on solution rank, and intuitive interpretations of this

relaxation’s behavior using this form. We will discuss potential directions for the other form

later in Chapter 6.

To facilitate more compact expressions for the vectorized relaxed problem, we introduce the

following notation: First, define the following partition of B: B1 = ΨWBΨT
W ∈ H

NML,B2 =

ΨWBΨT
S ∈ C

NML×N ,B3 = ΨSBΨT
S ∈ H

N . In matrix form, this is

B =



B1 B2

BH
2 B3


 .
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We can also define the vectorizations of each of these matrices, which require the definition

of the following composite projection matrices

PSS = ΨS ⊗ΨS PWW = ΨW ⊗ΨW

PSW = ΨS ⊗ΨW PWS = ΨW ⊗ΨS.

Note that PSW = KNML,NPWSK
T
NML,N , and that PxyP

T
vw is the appropriate identity matrix

when the pair xy is the same as the pair vw and zero otherwise. Then, if β = vec(B), we

have β1 = PT
WWβ,β2 = PT

WSβ,β3 = PT
SSβ. Additionally, we can define β2,H = PT

SWβ, but

then β2,H = vec(BH
2 ) = KNML,Nβ

∗
2.

With these in mind, we can then provide a “cleaner” form of the vectorized relaxed problem

(3.22) as applied to the simple power constraint on the signal:

min
B∈H+

J

vecH(R̃ni)β + βHC̃V β

s.t. vecH(T̃R)β = κR

vecH(T̃I)β = κI

vecH(ΨT
SΨS)β ≤ Po.

(3.24)

Synthesis of Rank-One Solutions

If we can obtain a solution to either relaxed problem (3.21), (3.22), a natural question is

how to apply this solution to the original problems (2.35) and (2.30). Obviously, when

rank(B) = 1, the relaxation is tight and we can directly recover the pair (w, s) from B. If

the rank is greater than one, we can use a rank-one approximation that still satisfies the

constraints. We will see in Chapter 3.5 below that for the power-constrained case, we can

obtain solutions that are nearly rank-one in a numerical sense. In any rank case, one simple

heuristic approximation of a rank-one solution is a weighted sum of the eigenvectors of B.
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We consider primarily the approximate sum of basis-length K, given by baK =
∑K

i=1

√
ηiui

where ηi is the ith non-zero eigenvalue of B in decreasing order, ui is its paired eigenvector,

and K ∈ {1, 2, . . . , rank(B)}. From this, we can recover the approximate pair (wa
K , s

a
K) =

(ΨWbaK ,ΨSb
a
K). If a solution is rank-one, or nearly so, then (wa

1, s
a
1) is usually feasible and

nearly optimal. If it is not feasible, then it can be made feasible – for the power-constrained

case, this amounts to the rescaling process used for EigenAM in Chapter 2.3.

3.2 Constraint Qualifications and KKT Conditions

With the general form of our relaxation now developed, we now turn to examining how best

to solve for the relaxed matrixB and its relation to an optimal beamformer-signal pair (w, s).

While numerical methods will be the primary driver of obtaining such solutions, we can use

some analytic techniques to sketch, at the very least, the notional contours of the relaxed

solution and its relation to the channel state parameters and signal-independent noise-and-

interference covariance. In this section, we begin the task of analyzing the optimal solutions

of (3.21) by discussing the conditions for optimality. We first consider some constraint

qualifications – namely, Slater’s condition for both the primal and dual problems, and the

potential degeneracy of the dual solution, inspired by [97] – that guarantee certain optimality

properties that are required for the Karush-Kuhn-Tucker conditions to be necessary and

sufficient. In this process, we demonstrate that there is no duality gap (and thus have a

quite strong convergence guarantee) under a very reasonable, physically-realizable restriction.

Finally, we summarize the necessary and sufficient conditions for optimality and provide

explicit linkage of these conditions to the power-constrained STAP problem.

Before we begin, we recall that we have vectorized our semidefinite variable β = vec(B). So

long as we use the appropriate rules of differentiation (see [98]) and remember that there is

an isomorphism between Hermitian matrices of size n and the real vector space of size n2
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(which manifests as a matrix operation on β), this is an appropriate representation for our

variable of interest. Additionally, all of our usual inner products, etc. are maintained, so

there is no mathematical conflict with this choice.

3.2.1 Constraint Qualifications

We begin with an analysis of constraint qualifications. To perform this analysis, we need

to first identify the equivalent of the QSDP dual problem (3.13) for the vectorized QSDP

(3.22), which amounts to defining the dual variables and identifying the operators involved.

Clearly, we can let Σ ∈ H
J
+ be the dual variable for the semidefiniteness constraint. Next, let

µR, µI ∈ R be the dual variables for the real and imaginary part of the Capon constraints,

respectively. Since we generally assume in this work that the set T (Ωs) represents an affine

constraint (usually a stacked trace), let λT ∈ R
|T (Ωs)| be the dual variable for the signal-

only constraints, where |T (Ωs)| indicates the cardinality of the set. Finally, let ∆ ∈ H
J

be the equivalent of the variable W in (3.13). That is, ∆ is a dual variable such that

C̃V(B) = C̃V(∆) or, if δ = vec(∆), C̃V β = C̃V δ.

Because Σ is of the same dimensions as B, let us define an identical partitioning for Σ which

will be useful:

Σ =



Σ1 Σ2

ΣH
2 Σ3


 ,

where the dimensions of each submatrix match those of the submatrices ofB with an identical

subscript. By solving the equality constraint in (3.13) for our case (and adding a factor of

2 to the quadratic component), we can see the optimal Σ is a function of the other dual
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variables as follows:

Σ = R̃ni + 2C̃V(∆)− (µRT̃R + µIT̃I) +ΨT
SΣ3(λT )ΨS. (3.25)

In fact, we can simplify this expression slightly by taking advantage of our reduction defini-

tions above. First, the two Capon constraint matrices can be reduced to

µRT̃R + µIT̃I = µ̃∗
CT̃+ µ̃CT̃

H =



0NML×NML µ̃∗

CT

µ̃CT 0N×N


 (3.26)

where we define the new Capon constraint dual variable µ̃C = µR+ µI
2

∈ C. Next, assuming

∆ is partitioned identically to B,Σ, we can show

2C̃V(∆) =




0NML×NML

∑Q
q=1R

γ

q tr(Γ
H
q ∆2)Γq

∑Q
q=1R

γ

q tr(∆
H
2 Γq)Γ

H
q 0N×N


 (3.27)

Hence, a final expression for the general optimal semidefinite dual variable is

Σ =




Rni

∑Q
q=1R

γ

q tr(Γ
H
q ∆2)Γq − µ̃∗

CT(∑Q
q=1R

γ

q tr(∆
H
2 Γq)Γq − µ̃∗

CT
)H

Σ3(λT )


 . (3.28)

If we consider just the power constrained problem (3.24), then λT collapses to one scalar,

λP ∈ R
+, and hence the dual semidefiniteness variable is

Σ =




Rni

∑Q
q=1R

γ

q tr(Γ
H
q ∆2)Γq − µ̃∗

CT(∑Q
q=1R

γ

q tr(∆
H
2 Γq)Γq − µ̃∗

CT
)H

λP IN


 . (3.29)
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Since ∆ is such that it identically matches the variable of interest B on the clutter operator,

we will subsequently ignore this variable in our analysis, as we can directly solve for the

necessary parts of B later.

Slater’s Condition

While there are many types of constraint qualifications for QSDP (see, e.g., [97]), the one

that has the most utility is also the one that can be the easiest to compute. Recall that

strong duality is said to hold for a given optimization problem if the primal problem is convex

and it satisfies Slater’s condition [76, pp. 240, 265] (i.e., the problem is strictly feasible).

We begin by defining this condition. Assume that we have a convex objective function fo(x).

Consider, then, the following general optimization problem:

min
x∈Ω

fo(x)

s.t. gi(x) ≤ 0 i = 1, . . . ,m

hj(x) = 0 j = 1, . . . , n

(3.30)

where Ω is a convex set, gi, hj are convex functions, and we define the set D = Ω∩ dom(fo) ∩

(∩mi=1 dom(gi)) to be the total feasible domain of the problem.

Definition 3.4 (Slater Condition). The optimization problem above satisfies the Slater con-

dition if there exists at least one point in the relative interior ( i.e., not on the boundary) of

the problem’s feasibility set that satisfies all of the equality constraints and strictly satisfies

any inequality constraints; that is, ∃ xs ∈ relint(Ω) such that hj(xs) = 0 j = 1, . . . , n and

gi(x) < 0 i = 1, . . . ,m.

For our semidefinite programs,the feasibility set is the positive semidefinite matrices H
J
+,

whose relative interior is the positive-definite matrices HJ
++.
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If the Slater condition is satisfied, then Bonnans and Shapiro [99] offer the following theorems

for convex semidefinite programs of any kind, one about the relationship between the primal

and dual problems and the other about the existence of Lagrange multipliers (which will

become necessary in the next section). For these purposes, let ν⋆ denote the optimal value

of a given optimization problem.

Theorem 3.3 (Theorem 5.81, [99]). Suppose the problem (3.30) is convex. If the Slater

condition for (3.30) holds, then there is no duality gap between the primal and dual problems

( i.e., ν⋆P = ν⋆P ). Moreover, if their common optimal value ν⋆ is finite, then the set of optimal

solutions of the dual problem is non-empty and bounded.

Theorem 3.4 (Theorem 5.83, [99]). Suppose that an SDP problem is convex and let X⋆ be

its optimal solution. If the Slater condition for this problem holds, then the set of Lagrange

multipliers for X⋆ is non-empty and bounded, and is the same for any optimal solution of

the SDP problem.

While we could consider a derivation of the Slater condition for the general primal problem

(3.22), it is actually quite straightforward:

Theorem 3.5 (General RBQP Slater Condition). The Slater condition for (3.22) is satisfied

if there exists a B ≻ 0 such that T̃ •B = κ and ΨT
SBΨS ∈ relint(T (Ωs)).

The relative interior of T (Ωs) is extremely problem dependent, and we will see in Chapter 4

it is not even needed in some cases. However, to start, let us consider the power-constrained

case (3.24). In this case, relint(T (Ωs)) = {B : tr(ΨT
SBΨS) < Po} We assert that the Slater

condition is satisfied for this relaxed BQP given an even simpler reasonable condition, which

we describe in the following theorem.

Theorem 3.6 (Power-constrained RBQP Primal Slater Condition). The relaxed joint trans-

receive design problem in (3.24) satisfies the Slater condition if ‖T‖2F > |κ|2
Po

.
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Proof: See Appendix A.

This is indeed a reasonable assumption, because it says that the Capon constraint, i.e. the

target-matching goal, cannot exceed the overall reflected power from the target.

In the side-looking STAP case, we can make a more precise relation to the dimensionality of

the problem, using the fact that the target matrix has a Kronecker structure – that is, T =

vt ⊗ IN ⊗ at. This means that THT = ‖vt‖2‖at‖2IN . If we assume that the spatial response

comes from a uniform linear array and that the Doppler response is similarly uniform, then

‖at‖2 = M and ‖vt‖2 = L. This further implies that THT = MLIN and ‖T‖2F = NML.

Hence, via the theorem, the Slater condition is satisfied so long as NML > |κ|2
Po

.

In either case, since most reasonable STAP problems (or, indeed, any joint trans-receive

problem in active sensing) satisfy this condition, we can be assured that almost any numerical

method used to solve (3.21) will converge to a solution that is both primally and dually

optimal (or nearly so) by Theorem 3.3.

It is here we note that the condition in Theorem 3.6 was essentially foreshadowed by the

Slater condition for the projected QCQP problem (2.48). Recall that the inequality in that

case required
∥∥P⊥

wq
∥∥2
2
≤ Po − |κ|2

‖yw‖22
. This is strictly satisfied by, for example, q = 0N×1

if and only if |κ|2
Po

<
∥∥THwk

∥∥2
2
, which is upper bounded by ‖T‖2F ‖wk‖22. If we assume the

norm of the filter iterate ‖wk‖22 ≤ 1, then we exactly recover the condition in Theorem 3.6!

3.2.2 Obtaining the KKTs

In the subsequent analysis, let us assume that Theorem 3.6 holds for our specific problem.

It is well-known that, for an optimization problem that satisfies the Slater condition, the

Karush-Kuhn-Tucker (KKT) conditions are necessary first-order conditions for the existence

and optimality of a set of primal and dual variables (see, e.g. [76, 99]). Furthermore, if
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such a problem is convex, then the KKTs become necessary and sufficient conditions, which

implies that solving them directly may provide insight into the solutions of the problem. In

this section, we summarize and analyze the KKTs for the problem (3.24); further details of

their derivation can be found in [65] and Appendix B.

Let H[·] indicate the Hessian of a given function and L(·) be the Lagrangian function for

(3.24). Then, using the notation above, the KKT conditions for the relaxed biquadratic

problem can be written as

1. ∇BL(Bo, µ̃oC , λ
o
P ,Σ

o) = 0J×J (Stationarity of Lagrangian)

2. λoP ≥ 0, Σo � 0 (Positivity of inequality/conic constraints)

3. λoP (tr(Ψ
T
SB

oΨS)− Po) = 0, BoΣo = 0J×J (Complementary slackness)

4. tr(ΨT
SB

oΨS)− Po ≤ 0, B � 0 (Inequality/conic constraint feasibility)

5. tr(BoT̃) = κ (Equality constraint feasibility)

6. H[L(Bo, µ̃oC , λ
o
P ,Σ

o)] � 0 (Positive semidefiniteness of the Hessian)

where the optimal value of a variable is denoted by a superscript o and ∇B indicates a

gradient on the manifold defined by the domain of the variable B. That is, for a matrix Bo

to be a regular minimizer of the related optimization problem, it is necessary that it satisfies

these conditions. If the problem is convex, these are necessary and sufficient conditions for

the optimal minimizer and associated Lagrange multipliers. For future notational simplicity,

we will drop the superscript o until absolutely necessary (i.e., a final statement of the optimal

solution). According to [98], the gradient in the first KKT condition is ∇B = ∂
∂B∗ or, in

other words, DB∗L = vecT ( ∂L
∂B∗ ). Thus, this vectorized derivative form can take the place of

the gradient, which we take advantage of in Appendix B.
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Since we have assumed the Slater condition is satisfied, the above KKTs are assured to have

meaning because, by Theorem 3.4, the set of Lagrange multipliers (µ̃C , λP ,Σ) is non-empty,

bounded, and identical for any primal solution B. Furthermore, Lagrange parameters and

dual variables coincide for any convex SDP problem [99, p. 484], which will become apparent

soon.

A brief summary of the salient elements of the KKTs follows. First, we note that the Hessian

of the Lagrangian H[L(B, µ̃C , λP ,Σ)] = C̃V � 0 for all possible KKT points (B, µ̃C , λP ,Σ)

by definition, and thus the relevant condition is always satisfied. Next, by rearranging and

solving for the gradient condition, we obtain an expression for the semidefiniteness multiplier

Σ (which itself is PSD):

Σ =



Rni Σ2

ΣH
2 λP IN


 , (3.31)

where Σ2 =
∑Q

q=1R
q

γ tr(Γ
H
q B2)Γq − µ̃∗

CT and, as above, we have dropped the explicit de-

pendence on the dual variable ∆. Observe that this is precisely the same as (3.29) due to

the coincidence of primal Lagrange and dual variables. If we vectorize Σ2, we obtain a more

obvious connection to the original cost function:

σ2 = CV β2 − µ̃∗
Cτ , (3.32)

where τ = vec(T). Hence, the magnitude of this dual variable can be regarded as a “re-

mainder” of sorts – that is, the difference between how much the optimal primal solution

must align with the clutter (the first term) and the target itself, scaled by the remaining

gain from the equality constraint (the second term).

Let PCV
= CVC

†
V be the orthogonal projection matrix onto R(CV ), and P⊥

CV
= IN2ML −

PCV
. In order for (3.32) to have a solution for β2 (which a non-trivial set of optimal variables

89



will have), we also require

P⊥
CV
σ2 = −µ̃∗

CP
⊥
CV
τ , (3.33)

that is, the portion of Σ2 with columns orthogonal to each clutter patch is a scaled version of

the portion of the target similarly situated. Furthermore, due to the positive semidefiniteness

of Σ, the clutter-target remainder Σ2 must be contained within signal-independent noise-

and-interference spectrum, i.e., R(Σ2) ⊆ R(Rni).

Next, we summarize some results from the application of the matrix complementarity con-

ditions in Appendix B. Namely, we can find two equivalent representations of the power

constraint multiplier λP :

λP =
tr(B1Rni)

Po
= −tr(BH

2 Σ2)

Po
, (3.34)

as well as a characterization of the objective function in terms of a dual variable,

µ̃∗
Cκ = βH2 CV β2 + tr(B1Rni). (3.35)

From (3.34), we have an interpretation of 1
λP

(when λP is positive) as an SINR of sorts; that

is, we can regard it as the ratio of the transmit power to the power received from non-signal

dependent sources after filtering. More interestingly, we can see from (3.35) that the optimal

rejection of undesired interference and noise is ultimately dependent on the Capon constraint

and its dual variable. Hence, we also have νoRBQP−PC = (µ̃oC)
∗κ! The left hand side of (3.35)

also tells us that the optimal phase of µ̃C is that of κ, since the right hand side is always

real and non-negative.

As it happens, the equivalence in (3.35) comes about irrespective of particular constraints

on the transmitted signal. In fact, many of the above conditions are generic to the general
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problem (3.22), which will be useful in the future analyses of more realistically-constrained

design problems in Chapter 4.

3.3 Implications of the KKT Conditions

The optimality conditions shown above and in Appendix B are, at first blush, a complicated

set of matrix equations to solve. Furthermore, to our knowledge, there are no generic condi-

tions in the literature that would allow us to immediately identify properties of the relaxed

solution to (3.24) or its relationship to high-quality solutions of the particular BQP (2.30).

Indeed, most authors investigating QSDPs (see [56] and citations within) have eschewed

such guarantees or only provide them for quadratic operators very much unlike the clutter

tensor C. However, we can derive some problem-specific insight by examining and solving

for certain KKT conditions that have physical meaning.

In this section, we will first prove a variety of generic properties for any solution Bo of (3.21)

and then relate these properties to the ability to directly recover high-quality solutions to

(2.30). In particular, we will show that if the signal-independent noise-and-interference

covariance matrix Rni is full rank, then the solution is both power-bounded and more likely

to have simple solution recovery.

3.3.1 General properties of the relaxed solution

Since, in our problem, the power constraint is an inequality, the first major question to ask

is: under what conditions the solution reaches that bound – that is, when does tr(Bo
3) = Po?

It turns out that this is a pivotal component of characterizing any solution of (3.21). Not

only does this allow us to anticipate the role of clutter whitening in the solution, but it also

allows us to predict a bound on the solution matrix’s rank.
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Before we begin, we note that due to the complementary slackness condition (KKT condition

3 above), the power bound is attained if and only if the dual variable λP > 0. Therefore,

this condition will be shorthand in our proofs for attaining the power bound.

First, we show that the solution does not reach the power bound Po iff the slackness matrix

Σ2 = 0NML×N by proving the following lemma.

Lemma 3.1. If it exists, a solution to (3.24) does not reach the power bound if and only if

the filter-signal dual slackness variable Σ2 is zero; that is, λP = 0 ⇐⇒ Σ2 = 0NML×N

Proof: First, we proceed in the forward direction. If λP = 0, then the slackness matrix

becomes

Σ =



Rni Σ2

ΣH
2 0N×N


 .

To be part of a feasible solution, this must be positive semidefinite, which is only possible if

Σ2 = Σ2(0N×N)
†(0N×N) = 0NML×N (see [100, Theorem Ia′′ ]). Hence, the forward direction

is proved.

In the reverse direction, we prove via contradiction. Assume that Σ2 = 0NML×N and λP >

0. The matrix slackness condition (B.8) dictates that λPB2 = −B1Σ2. Under our first

assumption, this becomes λPB2 = 0NML×N , which simplifies to B2 = 0NML×N under the

second assumption. However, any feasible solution must also satisfy the Capon constraint

tr(BH
2 T) = κ 6= 0. Clearly, B2 = 0NML×N violates this constraint, which leads to our

contradiction and completes the proof.

Observe that if Σ2 = 0NML×N , then, via (3.32), recovery of an optimal B2 would merely be

a whitening of the target with respect to the clutter matrix CV (since then CV β2 = µ̃∗
Cτ ).

However, as shown above, this is not possible in a power-bounded solution, which means that

additional resources in the joint spectrum must have been allocated to some other whitening

process.
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It turns out that this other whitening process is related to signal-independent interference

and noise, as we will show below. Indeed, every feasible solution reaches the power bound if

and only if the noise-and-interference correlation matrix Rni is full rank, the proof of which

makes use of Lemma 3.1.

Theorem 3.7. If it exists, a solution to (3.24) does reach the power bound if and only if

the signal-independent disturbance covariance is positive-definite/full-rank. In other words,

λP > 0 ⇐⇒ rank(Rni) = NML.

Proof of rank(Rni) = NML⇒ λP > 0: We will prove this by contradiction as well. Assume

that Rni is full rank and λP = 0. Given the second condition, Lemma 3.1 requires that

Σ2 = 0NML×N . If we apply this to the slackness condition (B.7), then B1Rni = 0NML×NML.

However, since Rni is full rank, this implies B1 = 0NML×NML. This violates our non-

triviality, but we will continue with the proof to show we reach a further contradiction.

Since the overall solution matrix must be PSD, B2 = 0NML×N as well. As in the proof of

Lemma 3.1, we have reached a contradiction because the Capon constraint is violated, which

completes the proof of sufficiency.

Proof of λP > 0 ⇒ rank(Rni) = NML: First, observe that for a non-trivial PSD solution

matrix, R(BH
2 ) ⊆ R(B3) by [101, Theorem 7.7.9(a,b)]. Next, we turn to slackness condition

(B.10), which states λPB3 = −BH
2 Σ2. If λP > 0, then clearly R(B3) ⊆ R(BH

2 ). By the

standard rules of subset inclusion, then, R(BH
2 ) = R(B3) and rank(BH

2 ) = rank(B3). This

fact will become useful later.

We will now use the results of [102] on another slackness condition (B.9) and use a substitu-

tion of (B.10) to get to our destination. Using [102, Theorem 2.2] on (B.9) to solve for Rni,

we have the following requirements for Rni to be at least PSD (which it is):

1. −B3Σ
H
2 B2 � 0: If we substitute (B.10) into this, we obtain λPB

2
3 � 0, which is

satisfied because λP > 0 and any square of a Hermitian matrix is PSD.
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2. R(B3Σ
H
2 ) ⊆ R(BH

2 ): This is satisfied because B3Σ
H
2 = − 1

λP
BH

2 Σ2Σ
H
2 via (B.10), and

the range inclusion follows directly.

3. rank(−B3Σ
H
2 B2) = rank(B3Σ

H
2 ): This is not immediately satisfied by the other con-

ditions, but it does imply that rank(B3) = rank(B3Σ
H
2 ).

The more interesting requirement comes from [103], which adds the following: Rni is positive

definite (and thus full rank) if and only if rank(−B3Σ
H
2 B2) = rank(BH

2 ). We know from the

third PSD requirement above that rank(−B3Σ
H
2 B2) = rank(B3), and thus Rni is full rank

if and only if rank(B3) = rank(BH
2 ). However, as seen from above, this condition is already

satisfied if λP > 0, and so our proof is complete.

In cases where there is perfect state information (that is, full knowledge of the noise and

interference covariance a priori), the noise-and-interference covariance is always full-rank,

so Theorem 3.7 allows us to conclude that most theoretical solutions will achieve the power

bound. This would also be true if there is sufficient sample support to provide good estimates

of the non-clutter/non-target processes. However, computation or insufficient training data

might result in a rank-deficient estimate of Rni, which would mean the power bound is not

attained. The effects of such a scenario were initially examined in [65] and will be further

explored in Chapter 3.3.2. Furthermore, this means that if a rank-one solution is obtained,

then the relaxation will have provided us a solution that is directly comparable to power-

equality-constrained problems, like those in [44].

Since the proof of Theorem 3.7 provides us with the evidence to show that power-bounded

solutions occur only in non-singular noise-and-interference environments, we can also de-

monstrate an additional property of any power-bounded solution: namely, the rank of the

overall solution matrix. Recall that for B to be PSD, R(B2) ⊆ R(B1). However, the

slackness condition (B.7) provides that B1Rni = −B2Σ
H
2 . Since Rni is full rank, (B.7)

becomes B1 = −B2Σ
H
2 R

−1
ni , which implies R(B1) ⊆ R(B2). Thus, R(B1) = R(B2), and
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rank(B1) = rank(B2) = rank(B3) ≤ N , where the last equality is implied by Theorem 3.7’s

proof and the inequality is obvious.

In fact, we can strengthen this inequality with the following lemma, which relates the pseudo-

SINR λP to the optimal power-bounded rank.

Lemma 3.2. In a power-bounded solution, rank(B) ≤ N − rank(λP IN −ΣH
2 R

−1
ni Σ2).

Proof: Our above note on Theorem 3.7 is our starting point. Since the matrix product BΣ is

zero, so is its rank. This further implies rank(B) ≤ J− rank(Σ). In general, since Σ is PSD,

rank(Σ) = rank(Rni) + rank(λP IN −ΣH
2 R

†
niΣ2). Therefore, generally, rank(B) ≤ (NML−

rank(Rni))+(N−rank(λP IN−ΣH
2 R

†
niΣ2)). In a power bounded solution, rank(Rni) = NML

and the inverse exists, thus rank(B) ≤ N − rank(λP IN −ΣH
2 R

−1
ni Σ2).

Indeed, this is a specific version of the following theorem, which is generic for any of the

QSDPs we will consider in this dissertation:

Theorem 3.8. The rank of any optimal solution B of (3.22) is bounded by the inequality

rank(B) ≤ (NML− rank(Rni)) + (N − rank(Σ3(λT )−ΣH
2 R

†
niΣ2)).

As we will show in Chapter 3.3.3, the condition in Lemma 3.2 can be tightened even further,

though it requires a small trick of linear algebra. Hence, the only way to guarantee rank-one

solutions (and thus obtain an immediate solution to (2.30)) is for rank(λP IN−ΣH
2 R

−1
ni Σ2) =

N − 1. That said, as we will show below in Chapter 3.5, if there is a single dominant

eigenvalue, then the effective rank will be one, and a high quality power-bounded solution

may be obtained. This proof also implies that if the solution is not power-bounded, then

recovery of a high-quality approximation may be more difficult, as the relaxed solution

potentially spans a much larger space (up to NML− rank(Rni) more directions!).
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Finally, one might ask if the optimal solution produces non-physical SINR guarantees, since

the objective function is the undesired signal variance (and thus the denominator of SINR).

For power-bounded solutions, the following lemma confirms that this is impossible; for con-

text, recall from (3.35) that the optimal value of (3.24) νoRBQP−PC = (µ̃oC)
∗κ.

Lemma 3.3. Any optimal power-bounded solution to (3.24) has a non-zero optimal value;

that is, λP > 0 =⇒ (µ̃C 6= 0 ⇐⇒ νoRBQP−PC > 0).

Proof: We prove by contradiction. Assume µ̃C = 0. When applied to (3.32), we have

σ2 = CV β2. Premultiplying with βH2 , we have β
H
2 σ2 = β

H
2 CV β2 ≥ 0 as the quadratic form

of a PSD matrix. But we have already established that for λP > 0, βH2 σ2 < 0, which is a

contradiction and our proof is complete.

Hence, a power-bounded solution will necessarily allow some remaining noise and interference

energy, small as it might hopefully be. Further insights into possible “complete” nulling for

non-power bounded solutions will be characterized next.

3.3.2 Non-Power-Bounded Solutions

To continue our characterization of the solutions of (3.24) by examining the behavior of

non-power-bounded solutions. As mentioned above, there may be situations when rNI =

rank(Rni) < NML – for example, if we actually use an estimate R̂ni of the noise-and-

interference covariance, or if we consider a noise-free case for analysis. In these cases, we

know from Theorem 3.7 that λP = 0. This implies that the solution is not power bounded,

and tr(B3) < Po. Furthermore, due to Lemma 3.1, Σ2 = 0NML×N . With these in mind, we

can produce, at the very least, a flowchart of solution properties in the non-power-bounded

case.
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As a simple beginning, we note that the matrix complementary slackness conditions reduce

to two:

RniB1 = 0NML×NML (3.36)

RniB2 = 0NML×N . (3.37)

This implies that if the solution is not power-bounded, it must null the entire noise-and-

interference spectrum. Hence, we know that the matrices B1 and B2 have the general form:

B1 = P⊥
Rni

V1P
⊥
Rni

(3.38)

B2 = P⊥
Rni

V2 (3.39)

where V1 ∈ H
NML
++ and V2 ∈ C

NML×N are arbitrary matrices, and P⊥
Rni

= INML −RniRni
†

is the orthogonal projection matrix onto the nullspace of Rni. Additionally, because of the

first slackness condition, we know that rank(B1) ≤ NML− rNI.

This form of B2 has a feasibility consequence. Recall that a solution is feasible only if the

Capon constraint tr(BH
2 T) = κ 6= 0 is satisfied. If we substitute our new form of B2 into

the constraint, it becomes

tr(BH
2 T) = tr(VH

2 P
⊥
Rni

T) = κ. (3.40)

Since V2 is arbitrary, but not trivial, feasibility is violated when P⊥
Rni

T = 0NML×N , which

only occurs whenR(T) ⊆ R(Rni). If we let R̆ni = IN ⊗Rni, this condition can be vectorized

as τ ∈ R(R̆ni)). Hence, there is no feasible solution if the target is embedded in the noise

& interference spectrum. We state this directly in the following Lemma.
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Lemma 3.4. If λP = 0 is the only feasible dual variable and the target is embedded in the

signal-independent disturbances R(T) ⊆ R(Rni), there is no feasible solution to (3.24) or

its equivalent problems.

Continuing on, our Lagrangian minimization becomes

CV β2 = µ̃∗
Cτ (3.41)

or, given the form of B2 above,

CVP
⊥
R̆ni

v2 = µ̃∗
Cτ (3.42)

where P⊥
R̆ni

= IN ⊗P⊥
Rni

and v2 = vec(V2).

Let us momentarily consider the generally unrealistic case when CV is full rank (i.e., Qeff =

N2ML). Under the λP = 0 hypothesis, we can directly solve for β2:

β2 = µ̃∗
CC

−1
V τ . (3.43)

However, since β2 ∈ N (R̆ni), PR̆ni
β2 = 0N2ML×1, so we can also say that

µ̃∗
CPR̆ni

C−1
V τ = 0N2ML×1 (3.44)

If we want this to be a feasible result (i.e., µ̃C 6= 0), then the whitened targetC−1
V τ ∈ N (R̆ni)

(and by extension, τ ∈ N (R̆ni)). Hence, if the clutter is full rank, the target must be clear

of the noise and interference (and the dimensionality of the available resources must be such

that this is possible) for a feasible solution to exist. This is effectively a further restriction

of Lemma 3.4.
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Assuming CV is less than full rank, we can find another condition on the target response

for the Lagrange multipliers by premultiplying the above equation by the clutter nullspace

projection matrix P⊥
CV

, which becomes µ̃∗
CP

⊥
CV
τ = 0N2ML×1. This means that either µ̃C = 0

or τ ∈ R(CV ). Thus, if τ /∈ R(CV ) (that is, it has a non-zero component outside of

the clutter), then µ̃C = 0. The non-embedded scenario also simplifies things considerably,

because now:

CVP
⊥
R̆ni

v2 = 0N2ML×1 (3.45)

Hence, either v2 (and thus β2) lies in N (CVP
⊥
R̆ni

) or v2 = β2 = 0N2ML×1. The second

possibility violates the Capon constraint, therefore v2, β2 ∈ N (CVP
⊥
R̆ni

). However, if

(for whatever reason), the target does not lie in this space, then we have reached another

infeasiblity result via the Capon constraint. Furthermore, a non-embedded target implies

the following lemma:

Lemma 3.5. Assume the clutter is less than full rank (i.e., rank(CV ) < N2ML) and the

target is not fully embedded within it (i.e., τ /∈ R(CV )). Then, any non-power-bounded

solution has an optimal value νoRBQP−PC = 0.

This “complete nulling” scenario seems non-physical at first, because an optimal value of zero

implies the obtained SINR is infinity. However, recall that the inciting requirement for a non-

power-bounded solution is a singular signal-independent disturbance covariance matrix Rni.

This usually arises not from any particular physical characteristics of the observed scattering

environment, but from an incomplete estimation or specification of Rni. Application of

this solution to the “true” noise-and-interference situation will result in residual noise-and-

interference power emanating from the portion of the spectrum that is not canceled by the

solution described by Lemma 3.5. Hence, there are two possible paths a designer can take:

accept this uncanceled noise as a consequence of this design, or perform the optimization on

a diagonally-loaded equivalent R̂ni = ǫINML+Rni (where ǫ is some sufficiently small loading
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factor) guaranteed to be positive definite to compensate for the unestimated portion of the

spectrum.

If τ does lie entirely within the clutter, then there are a few complex scenarios. First,

consider a situation where N (R̆ni) ⊆ N (CV ), which means the clutter is subsumed entirely

into interference and noise (and thus R(CV ) ⊆ R(R̆ni) & Qeff ≤ NrNI). In this case,

CVP
⊥
R̆ni

= 0N2ML×N2ML. However, this also means that the target is now also embedded in

the noise and interference. By Lemma 3.4, there is no feasible solution! In any other case,

a solution exists if and only if µ̃∗
Cτ ∈ R(CVP

⊥
R̆ni

).

We conclude this portion of our analysis with Figure 3.1, which is a flowchart which sum-

marizes our developments on non-power-bounded solutions.

Start
Rni

Full
Rank?

λ = 0,
Below power bound

λ > 0
At power bound

R(T) ⊆
R(Rni)?

No Solution

CV

Full
Rank?

τ ∈
R(CV )?

R(T) ⊆
N (Rni)?

µ̃ = 0,
vec(B2) ∈
N (CV P

⊥

R̆ni

)

N (R̆ni)
⊆

N (CV )?

vec(B2) =
κ
∗

τ
HC

−1

V
τ

C−1

V
τ

No Solution

vec(B2) =
κ
∗

τ
HC

†
V
τ

C
†
V
τ +

P⊥
CV

v

rank(B) ≤ N

Numerical
optimization
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NO

NO

YES

NO

YES

YES

NO

Figure 3.1: Flowchart characterizing non-power-bounded solutions to the RBQP (3.24).
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3.3.3 Power-Bounded Solutions

Next, we dig deeper into characterizing power-bounded solutions, which we identified as

the most common/practical set of solutions to the relaxed problem (3.24). Hence, for the

rest of this section, assume that we have obtained a power-bounded solution to our power-

constrained QSDP and the conditions necessary for that to be true are satisfied.

We begin by demonstrating a method to further tighten the rank bound described in

Lemma 3.2. In this case, it is obvious that λP IN ≻ 0 and Rni ≻ 0. Furthermore, recall that

the matrix slackness multiplier Σ, defined in (3.31), is a positive-semidefinite matrix. Let

ηmax(A) indicate the maximum eigenvalue of a Hermitian matrix A. Using these facts about

the slackness matrix, we can identify a useful form of the optimal power slackness variable

λP :

Lemma 3.6. In a power-bounded solution, λoP = ηmax(Σ
oH
2 R−1

ni Σ
o
2).

Proof. We prove this directly. Since Σ � 0 and both λP IN ≻ 0 and Rni ≻ 0 are full rank,

then λP IN − ΣH
2 R

−1
ni Σ2 � 0 by [101, Theorem 7.7.9(e)]. Additionally, by [101, Theorem

7.7.9(c)], ηmax(
1
λP

ΣH
2 R

−1
ni Σ2) ≤ 1, or λP ≥ ηmax(Σ

H
2 R

−1
ni Σ2). Both of these are biconditional

statements.

The inequalities above are strict if and only if Σ is also positive definite. However, by

complementary slackness, we know that Σ ≻ 0 is part of an optimal KKT tuple if and only

if Bo = 0J×J . We know, based on the equality constraints, that such a primal solution will

never be feasible. Thus, based on feasibility, we know that these inequalities cannot be strict.

Hence, the only remaining possibility is λoP = ηmax(Σ
oH
2 R−1

ni Σ
o
2).

Next, consider the following well-known theorem about eigenvalues and their multiplicities:
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Theorem 3.9 (Theorem 1.2.18, [101]). Let A ∈ C
n×n and suppose one of its eigenvalues δ

has algebraic multiplicity k. Then rank(A− δIn) ≥ n− k with equality for k = 1.

We can see an immediate connection with our problem and with Lemma (3.2). Since λoP is

an eigenvalue of ΣoH
2 R−1

ni Σ
o
2, Theorem 3.9 tells us that rank(λoP IN −ΣoH

2 R−1
ni Σ

o
2) ≥ N −kλP ,

where kλP is the algebraic multiplicity of λoP . Combining this and the previous lemmas, we

arrive at a far tighter rank bound for power-bounded solutions:

Theorem 3.10. In a power-bounded solution, rank(B) ≤ kλP , with equality if kλP = 1.

Proof. By combining Lemmas (3.2) and (3.6) and Theorem 3.9, we have

rank(B) ≤ N − rank(λoP IN −ΣoH
2 R−1

ni Σ
o
2)

≤ N − (N − kλP ) = kλP .

Equality when kλP = 1 is, therefore, rather obvious.

This theorem provides us with a basis for examining two potential (semi-) closed form power-

bounded solutions to (3.24). We name and characterize these solutions primarily by their

action on the clutter, through the signal-independent representation CV .

Nulling-Only Solutions

First, we examine the “nulling-only” solution, which occurs when B ∈ N (C̃V) or, in terms

of the vectorized form, βo2 ∈ N (CV ). Such a solution is feasible only if the target is not

embedded in the clutter, i.e., τ /∈ R(CV ), and if the clutter does not span the entire product

space of degrees of freedom, i.e., rankCV < N2ML.
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Assuming this is true, we can find an immediate solution for the variable Σ2: Σ
o
2 = −µ̃o∗CT.

Additionally, since a nulling-only solution ensuresCV β2 = 0N2ML×1, (3.35) reduces to µ̃
∗
Cκ =

λPPo. These equivalences lead us to the following lemma, which provides an exact solution

of λP :

Lemma 3.7. In a power-bounded solution, if βo2 ∈ N (CV ), λ
o
P = |κ|2

Po
(Po ηmax(T

HR−1
ni T))−1

and µ̃oC = κ(Po ηmax(T
HR−1

ni T))−1.

Proof. The proof is fairly straightforward. Applying Σo
2 = −µ̃o∗CT to Lemma (3.6), λP =

ηmax(Σ
H
2 R

−1
ni Σ2) = |µ̃C |2ηmax(T

HR−1
ni T). Substituting this into the optimal value form

above then implies λoP is the solution of the quadratic equation:

λ2P
P 2
o ηmax(T

HR−1
ni T)

|κ|2 − λP = 0 (3.46)

The only roots of this equation are zero, which is infeasible, and |κ|2
P 2
o ηmax(THR−1

ni
T)
. The optimal

µ̃C is a direct consequence of λP .

The natural corollary to this is that the optimal value of a nulling-only solution, regardless

of the exact vector β2, is always

νonull =
|κ|2

Po ηmax(THR−1
ni T)

, (3.47)

implying the optimal relaxed SINR is

SINRo
null =

|κ|2
νoN

= Po ηmax(T
HR−1

ni T). (3.48)

This corresponds exactly with the SINR upper bound proposed by [35], augmented by a

factor of Po, and somewhat surprisingly, does not depend on the Capon gain κ whatsoever.

Hence, a nulling-only solution produces a generalized whiten-and-match joint “filtering” of

103



the scattering environment where the whitening operation corresponds entirely to the signal

independent sources.

So far, though, we have only demonstrated that the optimal value of a nulling-only solution

is fixed. What does the nulling-only solution Bnull look like? We originally derived this form

in [65], but we repeat it here for completeness: If we apply the above analysis to the KKT

condition (B.8), then B2 = Po

κ
B1T. In order for this to be completely orthogonal to the

clutter, CV vec(B1T) = CV (T
T ⊗ INML) vec(B1) = 0N2ML×1.

Returning to the KKTs ((B.8), in particular), we also have B3 = P 2
o

|κ|2T
HB1T. Since scalar

feasibility requires that tr(B3) = Po, this implies that tr(THB1T) = |κ|2
Po

, which also satisfies

the equality constraints. These results can also be shown to satisfy the conditions (B.8)

and (B.9), as well as all of the positive semidefiniteness conditions, so long as tr(B1Rni) ≤
|κ|2
‖T‖2F

tr(Rni)
Po

. This is necessarily satisfied if the Slater condition in Theorem 3.6 is satisfied.

Hence, we have as a possible incomplete solution

B =




B1
Po

κ
B1T

(Po

κ
B1T)H P 2

o

|κ|2T
HB1T


 (3.49)

where B1 minimizes tr(B1Rni) subject to the above requirements.

The eagle-eyed reader will note correctly that we can reframe the implicit matrix completion

in (3.49) as the solution to a linear SDP:

min
B1∈HNML

+

tr(B1Rni)

s.t. CV (T
T ⊗ INML) vec(B1) = 0N2ML×1

tr(TTHB1) =
|κ|2
Po

(3.50)
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or, perhaps, after collapsing the nullspace requirement into its necessary constituent parts,

min
B1∈HNML

+

tr(B1Rni)

s.t. tr(TΓHq B1) = 0 ∀q ∈ {1, . . . , Q}

tr(TTHB1) =
|κ|2
Po

. (3.51)

Since B1 is effectively a relaxation of wwH , it is now clear that the “responsibility” in a

nulling-only solution relies entirely on the receive spectrum. Ironically, the solution of this

linear SDP can be much harder to obtain numerically than a direct implementation of (3.24),

because Rni is often quite dense, and there are at least Qeff+1 equality constraints to satisfy,

also in dense matrices. Thus, we will not pursue this solution any further, but note that

efficient large-scale SDP solvers are becoming more popular as a topic of research.

Whiten-and-Null Solutions

Next, we consider a second class of power-bounded solutions we define as “whiten-and-null”

solutions, because the operation of β2 is to whiten the target w.r.t. the clutter and then also

null whatever is left over. As with the nulling-only solution, we require the target to not be

wholly embedded in the clutter; that is, τ /∈ N (CV )

We begin our construction of the whiten-and-null solution by assuming that the optimal

σ2 = −µ̃∗
Cτ

⊥, where τ⊥ = P⊥
CV
τ is the part of the target orthogonal to the clutter. This

assumption, when substituted into (3.32) leads to the following form for β2:

β2 = µ̃∗
CC

†
V τ + z⊥2 . (3.52)
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where z⊥2 ∈ N (CV ) ⊆ C
N2ML is an arbitrary clutter-nulling vector. This implicitly also

means that CV β2 = µ̃∗
Cτ

‖, where τ ‖ = PCV
τ is the part of the target embedded in the

clutter, which will become useful later.

Now, any feasible solution requires βH2 τ = κ. Expanding this equality constraint and solving

for µ̃C results in

µ̃C =
κ− z⊥H2 τ

τHC+
V τ

. (3.53)

An interim form of the resulting objective value for this potential solution is therefore

µ̃∗
Cκ =

κ(κ− z⊥H2 τ )∗

τHC+
V τ

. (3.54)

After substituting this and the other forms into (3.35), we therefore have

λPPo =
z⊥H2 τ (κ− z⊥H2 τ )∗

τHC+
V τ

. (3.55)

In order for this to mean anything, we require another expression for λP in terms of the

alignment factor z⊥H2 τ , which we have by combining the assumed form of σ2 and µ̃C with

Lemma 3.6:

λP =
|κ− z⊥H2 τ |2
(τHC+

V τ )
2
ηmax(T

⊥HR−1
ni T

⊥). (3.56)

After some algebra, we obtain a final expression for the nulling-target alignment z⊥H2 τ :

z⊥H2 τ = κ
Po ηmax(T

⊥HR−1
ni T

⊥)

τHC+
V τ + Po ηmax(T⊥HR−1

ni T
⊥)
. (3.57)
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We can then substitute this expression into every other form we showed above. The final

optimal value is, for example,

νoWN =
|κ|2

τHC+
V τ + Po ηmax(T⊥HR−1

ni T
⊥)
, (3.58)

which corresponds to an output SINRo
WN = τHC+

V τ +Po ηmax(T
⊥HR−1

ni T
⊥). Other optimal

KKT parameters are

µ̃C =
κ

τHC+
V τ + Po ηmax(T⊥HR−1

ni T
⊥)

(3.59)

λP =
ηmax(T

⊥HR−1
ni T

⊥)

(τHC+
V τ + Po ηmax(T⊥HR−1

ni T
⊥))2

(3.60)

Σ2 = − κ∗

τHC+
V τ + Po ηmax(T⊥HR−1

ni T
⊥)

T⊥ (3.61)

B2 =
κ∗

τHC+
V τ + Po ηmax(T⊥HR−1

ni T
⊥)

Tw + Z⊥
2 (3.62)

where Tw is the matrix equivalent of the whitened target vector C†
V τ . It is then possible to

further derive the rest of the solution from here, but we leave this for future investigations.

Without delving too deeply into the algebra, we note that this is essentially an eigenvector

solution of an equation that appears after significant manipulations of the KKTs.

It is possible that this is not optimal for a particular choice of τ , depending on how “embed-

ded” the target is in the clutter and the relative strength of the clutter-target components

with respect to the noise, etc. Since we have another power-bounded solution, it is worthw-

hile to compare when once is more “optimal” than the other in these terms. Clearly, if the

target is well-separated from the clutter (τ ∈ N (CV )), then the optimal values (and hence

the optimal solutions) must coincide, because there is no more target-in-clutter to whiten.

If τ has any components in the clutter, however, the nulling-only solution is “more optimal”
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than the whiten-and-null solution above if and only if

νoN < νoWN . (3.63)

This corresponds to the following data-dependent inequality

Po
(
ηmax(T

HR−1
ni T)− ηmax(T

⊥HR−1
ni T

⊥)
)
> τHC+

V τ (3.64)

where the inequality has flipped due to considering the denominators. It would seem that

ηmax(T
HR−1

ni T)−ηmax(T
⊥HR−1

ni T
⊥) should be non-negative, since T⊥ is “lesser” than T (in

a norm sense) if any of the target resides in the clutter. Thus, it seems reasonable to say

that a nulling-only solution is optimal if and only if

Po >
τHC+

V τ

ηmax(THR−1
ni T)− ηmax(T⊥HR−1

ni T
⊥)
. (3.65)

Hence, for a nulling-only solution to be more optimal than a whiten-and-null solution, the

power must exceed (essentially) the target-to-clutter ratio over the in-clutter target-to-noise-

and-interference ratio.

This can be more clearly seen if we assume that the signal-independent sources are statisti-

cally white; that is, let Rni = σ2
nINML. Then, the ratio in question is

τHC+
V τ

ηmax(THR−1
ni T)− ηmax(T⊥HR−1

ni T
⊥)

=

∑Qeff

i=1
| tr(THUi)|2

σ2
c,i

ηmax(THT)−ηmax(T⊥HT⊥)
σ2
n

=

Qeff∑

i=1

| tr(THUi)|2
σ2
max(T)− σ2

max(T
⊥)

σ2
n

σ2
c,i
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We can clearly see, then, that a nulling-only solution is “more optimal” if

Po
σ2
n

>

Qeff∑

i=1

| tr(THUi)|2
σ2
c,i(σ

2
max(T)− σ2

max(T
⊥))

. (3.66)

This would seem to make sense, because if the power is sufficiently large (or the expected

maximum SNR is, at least), then nulling is optimal, regardless of the relative alignment

of the target with the clutter. Conversely, if the target is sufficiently clutter aligned, then

merely nulling the clutter directions would provide unacceptable performance.

Finally, we note that these two power-bounded solutions are not the only ones that satisfy

the KKTs, but they are the most intuitively informative. Future research would do well to

continue this kind of characterization and the particulars of the degrees of freedom

3.4 Waterfilling-like Behaviors

Using some of these general results from above, we can show that the optimal solution to the

KKTs at the power bound satisfies equations that resemble the well-known “waterfilling”

concept, which is informed by the work of Bell [16, 17], Kay [40], and Setlur, et al. [42],

among others.

For the remainder of this section, we consider the “canonical” representation of CV as

examined in 3.1.1. Now, given this form of the clutter matrix, we can show a waterfilling-

like effect by combining the matrix slackness condition (B.9) and one of the Lagrangian

conditions. If we recast (3.32) in matrix form, and use the set of partial isometries, it

expands to

Σ2 =

Qeff∑

i=1

σ2
c,i tr(U

H
i B2)Ui − µ̃∗

CT. (3.67)
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Substituting this into (B.9) gives us

RniB2 = µ̃∗
CTB3 −

Qeff∑

i=1

σ2
c,i tr(U

H
i B2)UiB3. (3.68)

Let us assume that we are power-bounded and everything that implies from the lemmas

above. Thus, we can “directly” find B2 by applying R−1
ni above to obtain:

B2 = µ̃∗
CR

−1
ni TB3 −

Qeff∑

i=1

σ2
c,i tr(U

H
i B2)R

−1
ni UiB3 (3.69)

Premultiplying both sides with UH
j and taking the trace gives us

tr(UH
j B2) = µ̃∗

C tr(UH
j R

−1
ni TB3)

−
Qeff∑

i=1

σ2
c,i tr(U

H
i B2) tr(U

H
j R

−1
ni UiB3). (3.70)

We can extract the jth term from the sum and collect it on the left hand side to obtain

tr(UH
j B2)(1 + σ2

c,j tr(U
H
j R

−1
ni UjB3))

= µ̃∗
C tr(UH

j R
−1
ni TB3)

−
Qeff∑

i=1
i 6=j

σ2
c,i tr(U

H
i B2) tr(U

H
j R

−1
ni UiB3). (3.71)

Now, the second term on the left-hand side of the above equation could be divided out as

long as there was a guarantee it was always positive. First, if σ2
c,j = 0, this term is 1, which is

positive. Otherwise, σ2
c,j > 0 since they are the non-zero eigenvalues of a positive semidefinite

matrix. Next, we need to examine the trace statement. B3 is positive semidefinite by

construction, and UH
j R

−1
ni Uj is positive definite because each Uj is a full rank scaled partial

isometry and Rni is positive definite (see [101, Theorem 7.7.2]). Thus, the trace of this
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matrix product is always positive and real. With this in hand, we can now say

tr(UH
j B2) = µ̃∗

C

tr(UH
j R

−1
ni TB3)

1 + σ2
c,j tr(U

H
j R

−1
ni UjB3)

−
Qeff∑

i=1
i 6=j

σ2
c,i tr(U

H
j R

−1
ni UiB3)

1 + σ2
c,j tr(U

H
j R

−1
ni UjB3)

tr(UH
i B2). (3.72)

Since B3 is a relaxed version of ssH , we can regard the expression σ2
c,j tr(U

H
j R

−1
ni UjB3) to be

a relaxed form of σ2
c,j s

HUH
j R

−1
ni Ujs, which is (effectively) a clutter-to-noise-and-interference

ratio for the jth basis matrix. Similarly, tr(UH
j R

−1
ni TB3) is a joint target-and-clutter to

noise-and-interference ratio, and the cross term σ2
c,i tr(U

H
j R

−1
ni UiB3) captures the ratio of

patch-to-patch interaction and the noise-and-interference level. Thus, the first term on the

right hand side is effectively a normalized measure of the clutter-matched target spectrum

given a signal basis B3, and the right hand side is a normalized measure of the intraclutter

spectrum given that same basis.

Traditional waterfilling dictates that power is preferentially injected to bands where the

overall signal-to-noise ratio is high, proceeding to “worse”-off bands until the available power

is exhausted. This is somewhat inverted in (3.72) because the left-hand side is an unscaled

version of the subspace alignment between the solution B2 and the jth canonical clutter

transfer matrix Uj. Naively, we would like to minimize this alignment for j ∈ {1, . . . , Qeff},

since aligning with the clutter would nominally degrade our matching of the target. However,

the coupled nature of (3.72) requires more nuance than that. First, observe that for the non-

clutter directions, i.e., j ∈ {Qeff + 1, ..., N2ML}, σ2
c,j = 0 and (3.72) becomes

tr(UH
j B2) = µ̃∗

C tr(UH
j R

−1
ni TB3)

−
Qeff∑

i=1

σ2
c,i tr(U

H
j R

−1
ni UiB3) tr(U

H
i B2). (3.73)
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This means that the solution’s alignment in the non-clutter directions follows that of the

whitened target’s, less the combined crossover between non-clutter and clutter in the whi-

tened spectrum. If the target is strong in these directions, the solution will align towards

them. Otherwise, the solution must match the target in-spectrum as near as possible in

directions both where the whitened clutter power is the lowest and the alignment with other

directions is minimized. This corresponds to the findings in [42], which showed a similar

behavior in two-step mutual information waveform design over consecutive transmit epochs.

In this case, the “two steps” can be regarded as the trans-receive pair instead of sequential

temporal designs, and the “separation” is between target and clutter instead of different

targets.

But what of the value µ̃C? This clearly relates to the total available resources – in this case,

κ and Po – and provides us with the “water” in waterfilling. We can find a form of µ̃C by

reexamining (3.69) as follows. First, we premultiply by the target matrix TH and take the

trace of both sides. Recognizing that a feasible solution satisfies tr(THB2) = κ∗, we now

have

κ∗ = µ̃∗
C tr(THR−1

ni TB3)

−
Qeff∑

i=1

σ2
c,i tr(U

H
i B2) tr(T

HR−1
ni UiB3). (3.74)

This is where the traditional waterfilling appears, since we are saying that the gain across

the target (which we know in this case to be κ∗) is the upper bound on the available resources

(given by the first term) minus the overall impact of the clutter weighted by its alignment (the

second term). According to the above argument, tr(THR−1
ni TB3) is never zero. Therefore,

after rearrangement, a final form for µ̃∗
C is:

µ̃∗
C =

κ∗ +
∑Qeff

i=1 σ
2
c,i tr(U

H
i B2) tr(T

HR−1
ni UiB3)

tr(THR−1
ni TB3)

(3.75)
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Note that the second term in the numerator must have the same collective phase as κ∗,

because this is µ̃∗
C ’s phase as well. This may be inserted into (3.72) and then solved for a

matrix equation that we will leave for later study.

Furthermore, it implies that the optimal value of any solution to the KKTs is therefore

νoRBQP−PC = µ̃∗
Cκ =

|κ|2 + |κ||∑Qeff

i=1 σ
2
c,i tr(U

H
i B2) tr(T

HR−1
ni UiB3)|

tr(THR−1
ni TB3)

, (3.76)

and hence the optimal SINRRBQP−PC = |κ|2
νo
RBQP−PC

is

SINRo
RBQP−PC =

tr(THR−1
ni TB3)

1 + 1
|κ|

∥∥∥
∑Qeff

i=1 σ
2
c,i tr(U

H
i B2) tr(THR−1

ni UiB3)
∥∥∥
. (3.77)

Since tr(B3) ≤ Po and the denominator is greater than one, we also have the upper bound

SINRo
RBQP−PC ≤ Po tr(T

HR−1
ni T). These directly coincide with the expressions for the

power-bounded cases above, and can provide the basis for limiting arguments on the magni-

tude of |κ| which we will not discuss here. Thus, the optimal solution to the relaxed problem

(particularly when power-bounded) describes a generalized whiten-and-match trans-receive

filter process that exhibits waterfilling behavior, shaping the transmit process to match the

target’s response in clutter as much as possible while still minimizing the clutter response.

3.5 Numerical Analysis

In this section, we demonstrate the utility of our proposed relaxation scheme through compa-

rative numerical simulation. While we have preliminarily reduced solving the QSDP (3.24)

to a matrix completion problem, it is possible to solve the problem numerically with com-

mercial solvers. Most of the analysis presented here is enabled by the modeling toolbox CVX

[87, 86] and the solvers SDPT3 [89, 90] and SeDuMi [91]. Unless otherwise stated, the sce-
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narios presented to the solver were as follows: As noted in [65], our available computational

resources and current simulation environment constrain our overall problem size. Therefore,

in this case, we assume N = 5, M = 5, and L = 16. However, we do not believe that this is

an inherent limitation which precludes the applicability of our technique to larger problem

size – as we have discussed above, there lingers the possibility of using purpose-built QSDP

solvers like QSDPNAL to explore larger problem sizes.

The radar operates on a carrier frequency of fo = 1 GHz and transmits pulses at a pulse

repetition frequency fp = 20 KHz. The receive array has an interelement spacing of d =

λo/2. The noise covariance matrix was a scaled correlation matrix with correlation function

exp(−0.05|n|) for n ∈ {1, . . . , NML}. Interferers were placed at the azimuth-elevation

pairs (0.3941, 0.3) radians and (-0.4951, 0.3) radians, with correlation matrices given by the

Toeplitz matrix associated with the correlation function exp(0.2|l|) for l ∈ {1, . . . , NL}. The

clutter was modeled with Q = 25 patches of P = 5 scatterers each, equally spaced over the

azimuth interval (−π/2, π/2) at an elevation angle of π
4
radians. Adjacent scatterers within

each patch are correlated with coefficient -0.2. The target was placed at the angle coordinates

(θt, φt) = (0.3, π
3
) and travels at a relative normalized Doppler frequency of -0.255. In all

cases, we have made the Capon constraint real.

As mentioned in Chapter 3.1.3, we can obtain approximate rank-one solutions of (2.24)

from our relaxed problem by considering the approximate sum vector of basis-length K,

baK , generated by the K largest non-zero eigenvalues of B. From this, we can recover the

approximate pair (wa
K , s

a
K) = (ΨWbaK ,ΨSb

a
K), which is then rescaled as necessary to meet

the constraints. In practice, violations of the equality constraint are minimal and do not

affect the overall performance of our method. In most cases, we consider K = 1, though

K = N often reduces the need for rescaling.

Some of the following results involve comparisons with competing algorithms previously

described in Chapter 2, the details of which we recall below. First, we consider the signal-
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filter EigenAM (henceforth, AM) scheme of Setlur & Rangaswamy [8], which Tang and Tang

[47] later reported as their “Algorithm 1” despite operating on a different cost function.

This technique initializes the problem in (2.24) with a fixed signal sinit and solves for w

(the w-step), then uses that optimal w in (2.24) to solve for a new s (the s-step), and

so on until convergence. We also compare against a modified version of the spectral AM

scheme of Aubry, et al. [44] (AA2), which attempts to directly maximize the SINR through a

similar procedure to AM, but uses a linear SDP in the s-step. Our modification removes the

similarity constraint, which necessitates a small change in the rank-1 signal decomposition –

the similarity constraint matrix is replaced by the target gain matrix. It is here we note two

primary advantages of our method: it requires no problem-dependent initialization, other

than what the available solving method dictates, and it is not an explicitly iterative scheme.

3.5.1 Characterization of the Relaxed Solution

We begin by briefly examining the resulting solution matrix Bo of the relaxed design problem

in (3.24) and related formulations for the common scenario. Despite QSDPs lacking the

solution rank guarantees of linear SDPs, we have found that, depending on the parameter

scaling, the given solver produces solutions of rank no greater than N , as predicted by

Lemma 3.2. This rank property of Bo is demonstrated in Figure 3.2, which displays the

solution’s first 2N eigenvalues on a logarithmic scale over variation in κ and Po for the

common scenario above. First, we examine variation in κ. Here, κ ranges from 10−2 to

NML × 104 while Po = 107. This range is dictated by the Slater condition (Theorem 3.6),

and hence choosing |κ|2 < NMLPo = 4 × 109. Figure 3.2(a) demonstrates that generally,

as κ decreases for a fixed power level (here, Po = 107), the effective numerical rank of Bo

approachesN . This indicates a transition region must exist where the desired gain falls below

some threshold dictated by the noise, interference, and clutter characteristics. In contrast,

as shown in Figure 3.2(b), varying the power Po for a fixed κ (here, κ = 100) only affects the
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Figure 3.2: First 2N eigenvalues of power-constrained relaxed solution for varying (a) Capon
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overall size of the eigenvalues, not the rank. We note again that our variation in Po meets

the Slater condition, as the lower bound for power is |κ|2/NML = 25. As demonstrated

in [65], this also has implications for the utility of constructed rank one approximations.

Additionally, we note that even if rank(B) ≥ 1, the individual eigenvectors themselves are

often not feasible, which strengthens the validity of choosing the approximate vector baK . In

summary, we have demonstrated that across most parameter choices, the relaxed solution is

effectively rank one, which validates our choice of approximate retrieval scheme.

3.5.2 Interference Effects

In this subsection, we consider the impact of interference on the relaxed solution only. Our

goal here is to determine if the relaxation produces some unknown or unexpected bias or

inability to null or mitigate the impact of interference due to the relaxation itself.

To examine this effect, we consider the traditional adapted pattern for STAP, which plots

the following function

P(fd, θ; φ) = |wH
o (v(fd)⊗ so ⊗ a(θ, φ)|2. (3.78)

That is, the adapted pattern for a given beamformer-signal pair (wo, so) is a function of

the Doppler frequency fd and the azimuth θ at a given elevation φ. We consider the same

simulation parameters as above, with and without interference, and provide the overall

adapted pattern at an elevation cut matched to the target.

With no interference, the naive implementation performs relatively well, as illustrated in

Figure 3.3. The target is well localized, with the peak of the pattern at its location, and a

deep null is steered along the clutter ridge (represented by an X at each patch’s angle-doppler

phase center).
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Figure 3.3: Adapted Pattern (dB relative to peak), RBQP Solver. Target at ©, Clutter
phase centers at ×. No Interference. c©2018 IEEE

Further evidence of the excellent localization of the target can be seen in cuts of the adapted

pattern along the target azimuth and Doppler frequency, shown in Figures 3.4 and 3.5

below. In each case, the target position (shown by the dashed line) aligns with the peak

of the adapted pattern cut. The broad mainlobe width and high sidelobe peaks evident in

Figure 3.4 are a function of the relatively small number of antennas considered. Performance

could be improved by a multiplicative spatial taper or adding more antennas. We also see in

Figure 3.5 that the clutter suppression extends beyond the deep null along the primary clutter

ridge, eliminating additional sidelobes “behind” the ridge at higher Doppler frequencies.

Now suppose we inject a broadband interferer “close” to the target – as a reminder, the

target is at (θt, φt) = (0.3, π
3
) radians and the interferer is at (θI , φI) = (0.3941, 0.3) radians.

Figure 3.6 shows the adapted pattern under these conditions. Note that a clear bias is

introduced by the interferer, since in this case we lack the spatial receive resources necessary

to null it exactly and resolve the target simultaneously. Observe, however, that an aliased null
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Figure 3.4: Adapted Pattern (dB scale), cut at target Doppler, RBQP Solver. Target
azimuth at dashed line.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−80

−70

−60

−50

−40

−30

−20

−10

0
Adapted Pattern Cut at Target Azimuth

ν - normalized frequency

A
d
a
p
te
d
P
a
tt
er
n
M
a
g
n
it
u
d
e
(d
B
)

Figure 3.5: Adapted Pattern (dB scale), cut at target azimuth, RBQP Solver. Target
Doppler at dashed line.

119



is present in the spectrum at approximately θ = arcsin(0.2) = 2θI sin(φI) sin(φt), indicating

that it is merely a sampling issue and not a failure of the scheme to identify the interference.

Furthermore, we have found that if the elevation cut of the adapted pattern is taken at the

elevation of the interferer, a clear null at the appropriate azimuth appears.
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Figure 3.6: Adapted Pattern (dB relative to peak), RBQP Solver. Target at ©, Clutter
phase centers at ×, Interferer (dashed line) at (θ, φ) = (0.3941, 0.3) radians

For completeness, we also show the adapted pattern cuts under the interference scenario as

well. Again, in all figures, the dashed line represents the target location. Figure 3.7 show

the cut along the target Doppler. The significant bias seen above is more clear here, which

would result in a rather large angle estimation error. This also, indirectly, demonstrates a

disconnect between signal-filter design intended for position estimation versus detection.

The cut along the target azimuth, shown in Figure 3.8, still appropriately localizes the target

in some sense. However,the peak gain at the target Doppler has dropped about 5 dB from the

gain in Figure 3.5. Thus, there is a clear loss in both dimensions due to the close interferer.
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Figure 3.7: Adapted Pattern (dB scale), cut at target Doppler, RBQP Solver. Interference
scenario.

We also observe more clearly the additional suppression of the “behind” clutter sidelobes,

which relate to the nulling of the aliased location of the interferer.

We note that this interference impact (in all cases) is mitigated by increasing M in our

simulations. This is not surprising, since more antenna elements over the same aperture

increases the degrees of freedom available to null interference and localize the target. It is

also entirely eliminated if the interference is well-separated from the target in space.

3.5.3 Comparison with Alternating Minimization Schemes

In this subsection, we compare the performance of our approximate relaxed BQP (RBQP)

solution to the existing methodologies in the literature described above.
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Figure 3.8: Adapted Pattern (dB scale), cut at target azimuth, RBQP Solver. Interference
scenario.

SINR Comparisons

One means of comparison between these algorithms is the robustness of the output SINR

for each scheme to variations in the target Doppler frequency fd. For ease of comparison,

we presented the two iterative solvers with parameters we found to assist their convergence:

each was initialized with the same chirp waveform having a time-bandwidth product of 50,

but the waveform used to initialize AA2 was scaled to have Po = 1, and the resulting SINR

was then rescaled to match the actual power constraint Po = 107. This is because the

authors in [44] claim the algorithm is invariant to scaling4. To further facilitate equal

comparison, we set κ =
√
Po, which is what AA2 natively produces after rescaling. The

convergence threshold for AA2 is set to ǫ = 10−3, and AM is terminated after 20 iterations

(which provided a comparable convergence factor). Fig. 3.9 shows this metric for each of the

4As we will see, however, this is not true for the formulation in [44], which neglects the power entirely.
The authors of [47] corrected this mistake, but as we will see in Chapter 4, this does not change the overall
contours of our findings.
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considered algorithms – our scheme (labeled RBQP), AM, and AA2 – when applied to the

common scenario mentioned previously.
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Figure 3.9: Comparison of SINR as a function of target Doppler frequency for multiple
power-constrained algorithms. c©2018 IEEE

First, it is clear that the solutions produced by RBQP and AM are extremely robust to

changes in target Doppler at scale, while AA2 has significant variation. Furthermore, in this

scenario, our method generally outperforms both competing algorithms in terms of overall

SINR and minimum detectable velocity. The relative gap between RBQP and AM at larger

Doppler shifts makes sense, given that our method is a relaxation of that in [8] and that AM

is terminated rather quickly.

We note here that additional simulations have shown AA2 can outperform both the RBQP

procedure and AM, but this requires a number of highly controlled and generally unrealistic

assumptions. Namely, the convergence threshold must be fairly high (say, ǫ = 1, if not

higher) and Po = 1. Even under these conditions, AA2 often merely produces a permuted
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version of the initializing waveform, which does not significantly change the initial objective

value.

Adapted Pattern Comparisons

The performance benefits provided by RBQP can also be observed in the adapted patterns

mentioned in the subsection above. Consider a case where only the second interferer, located

at the azimuth-elevation pair (-0.4951, 0.3) radians, is active. Furthermore, assume that the

clutter and target are both at the same elevation angle as the interferer. The target remains

at an azimuth of 0.3 radians but, due to the elevation change, the target relative Doppler

is now -0.087. We note that the only major difference from the previous scenarios is the

change in elevation angle for the clutter patches and target.

Figure 3.10 shows the adapted pattern at the target elevation cut for each algorithm, with

the 0 dB reference set at the notional peak for each algorithm – by construction, this is

|κ|2 = Po. However, as we showed in Figure 3.9, this does not mean that the algorithms

have no difference in detection properties, since the SINR obtained by RBQP is superior

to the other two algorithms. Therefore, the adapted patterns shown should not be viewed

as directly comparable in terms of SINR, but in terms of relative features and cancellation

near the interference, clutter, and target. In all patterns, we can see that the target is

well-resolved, deep nulls are placed along the clutter ridge, and a null is placed near the

azimuth of the interferer. We can see, though, that both our method (Figure 3.10(a)) and

AM (Figure 3.10(b)) further shape the spectrum by shifting the phase centers of the target

response’s Doppler sidelobes away from that of the known target (demarcated by the ©)

and reducing other sidelobes nearer to the ridge. The relative similarity between these two

adapted patterns is generally unsurprising, given the similar SINR performance shown above.
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In contrast, AA2 (Figure 3.10(c)) retains a more typical grating lobe structure, with no

additional nulling or shaping beyond the clutter ridge and interference null. This, in turn,

corresponds to the lower SINR seen in Figure 3.9. There are a variety of possible explanations

for this behavior, the specifics of which are the subject of ongoing research that will be

reported in the future.

Detection Performance Comparisons

Next, we demonstrate more specifically the impact of the obtained SINR seen in Figure 3.9 on

overall detection performance, which has been recently adapted by Setlur and Rangaswamy

[104]. For a Gauss-Gauss problem, the general performance of the detection problem (2.20)

can be defined by the relationship between the probability of detection (deciding H1 with a

target present) Pd, the probability of false alarm (deciding H1 with no target present) Pfa,

and the deflection coefficient d2, which is dependent on the SINR. Mathematically, we have

[105]:

Pd = Q(Q−1(Pfa)−
√
d2) (3.79)

where Q(x) is the complementary cumulative distribution function (CCDF) of the standard

normal distribution, and Q−1(p) is its inverse error function. In this case, the deflection

coefficient is given by the SINR in linear terms as evaluated at a particular filter-signal

combination; that is, given a (hopefully optimal) pair (w⋆, s⋆), the deflection coefficient is

d2(w⋆, s⋆) = 2|ρt|2
|w⋆HTs⋆|2

w⋆HRu(s⋆)w⋆
. (3.80)

We now consider the deflection coefficients generated by each algorithm – d2RBQP , d
2
AM , d

2
AA2

– and examine their resulting behavior under different levels of target scaling. Let d2base

be the baseline deflection coefficient. If the target’s amplitude is at a gain of G relative
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to the baseline deflection coefficient (corresponding to a particular SINR), then the target

amplitude is |ρt|2 = G/d2base. We consider the most challenging scenario for every algorithm:

a target at zero Doppler. Furthermore, we vary G to be 0, 3, and 6 dB above the baseline

deflection, which we assume to be d2RBQP .

Our findings are presented in Figure 3.11 below. To put it lightly, there is no contest, as

AA2’s scaling issue results in detection performance that is functionally identical to chance

at scale. Due to the smaller gap in SINR at zero Doppler between AM and RBQP, the

performance hit is not as drastic, but the gain of RBQP is readily apparent. As expected, in

all cases, detection performance improves as the target gain increases, even for AA2. We note

that if Po is smaller, e.g., Po = 1, this advantage can collapse, because the scaling error in

AA2 is no longer an issue. However, this is also dependent on the other factors (convergence

criterion, relative scaling of the signal-independent disturbances, etc.) we mentioned above

and, as such, we feel confident that our method’s performance is legitimate.

Runtime Comparisons

Not only is a performance improvement obtained, but the RBQP algorithm has a reduced

computational load compared with AA2 in [44], as shown in Table 3.1, which lists the

median runtime and standard deviation for each algorithm across the Doppler frequency

sweep above. While our algorithm is slower than AM (for a fixed number of iterations),

Table 3.1: Runtime Comparison of Power-Constrained Algorithms c©2018 IEEE

Alg. Med. runtime (sec) St. Dev. (sec)

RBQP 93.09 4.394

AM 30.95 N/A

AA2 286.53 793.17

AA2 is inconsistent and slower than either RBQP or AM. In fact, AA2’s execution time
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varied significantly with the target Doppler’s relative alignment to the clutter. Again, the

restrictive cases mentioned above can improve the runtime of AA2, but at the cost of the

aforementioned caveats.
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Figure 3.10: Adapted Patterns (dB rel. to peak) for (a) RBQP, (b) AM, (c) AA2. Target
at ©, Clutter phase centers at ×, Interferer (dashed line) at (θ, φ) = (−0.4951, 0.3) radians.
c©2018 IEEE
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Chapter 4

Joint Relaxation Design under

Realistic Waveform Constraints

As noted in Chapter 1, optimal signal-filter pairs generated under simple power constraints

often have excellent SINR/SCINR performance, but are also typically unsuitable for realistic

implementation. This is for a variety of reasons, including significant variation in amplitude

and phase, poor ambiguity properties, and transmission in undesired frequency bands. In

short, both hardware constraints and target separability concerns drive the need for further

design constraints, particularly on the transmitted waveform.

In this chapter, we will investigate the feasibility of extending our joint convex relaxation

technique to two particularly salient and relevant waveform constraints: constant modu-

lus/envelope (CM/CE) and the “similarity” constraint (SC). Each of these has specific mo-

tivations for their application and utility. The constant modulus constraint is employed to

ensure the waveform is suitable for efficient generation by linear amplifiers and balanced

RF chains, while the “similarity” constraint was initially motivated by so-called “ambiguity

inheritance” properties. We will see that while both constraint sets can be individually
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(and jointly) accommodated by by our relaxation, the ability of existing numerical solvers to

directly recover good solutions can be somewhat limited, particularly in constant modulus

scenarios. Thankfully, we will also propose a refinement technique that employs gradient

descent to mitigate this shortcoming, though any one of the signal-filter iterative techni-

ques of Chapter 2 would provide the same results. Indeed, this refinement process may be

applied to any such joint relaxation process, but we demonstrate its utility first with the

CM-constrained problem.

Many of the solution paths and processes we will investigate in this chapter are directly

translatable from those generically described in Chapter 3. Therefore, we will only replicate

what is absolutely necessary for clarity’s sake.

The rest of the chapter is organized as follows. To introduce further the peculiarities of adding

these constraints, Chapter 4.1 will discuss both types of constraints and their motivations

in further detail than previous chapters. The rest of the chapter will be generally split

along constraint lines. The CM problem, its KKTs, and the refinement strategies will form

the basis of Chapter 4.2. Similarly, the elements of the SC problem will be considered in

Chapter 4.3. Simulations for both CM and SC scenarios as applied to WA-STAP will be

explored in Chapter 4.4, where we will definitively show the extensive gain that can come

from our technique. We note that portions of this chapter constitute the recently-submitted

work [106].

4.1 Applying Realistic Waveform Constraints

Regardless of the specific radar model under consideration, many initial attempts at wa-

veform design (by itself or jointly with a receiver) neglect practical constraints to simplify

the analysis, as we have above. Unfortunately, neglecting realistic constraints in the design
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process can limit both realizability and performance of the designed waveform-filter pair

when deployed in an actual system. Several design constraints have been considered in the

literature to address these issues, each with a particular impact or goal that affects realistic

usage.

First, we consider the constant modulus/constant envelope constraint (henceforth CM), also

known as a phase-only design. A constant modulus constraint limits the complex envelope

of each signal chip to a certain value ρ; for the vector s, this amounts to

|si| = ρ

for every element si. This is a feature of a variety of well-studied waveform classes, like

frequency-modulated chirps, phase-coded pulse trains, and the venerable rectangular pulse,

primarily because it has favorable ambiguity function properties. This constraint is obviously

non-convex, but as we will show below, it can easily be accommodated into our framework

with a small modification.

A related constraint is the peak-to-average power ratio (PAPR/PAR). For the aforementio-

ned signal s, it manifests mathematically as

maxi |si|2
‖s‖2

≤ ς

where ς ∈ [1, N ], and ensures that amplitude modulation (intentional or otherwise) does

not induce extreme spikes in instantaneous power that might strain the transmit amplifier’s

dynamic range and lead to clipping. The relationship between PAPR and CM is fairly simple,

as any CM pulse has a PAPR of 1, regardless of the given modulus parameter ρ. In that

sense, a PAPR constraint is a looser constraint than CM, and is used if the implementing

hardware on either end of the processing chain can permit mild deviations. While it has

been used elsewhere in the literature (see, e.g. [36]), we will not discuss it further here.
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Second, we consider what is popularly known as the “similarity” constraint (SC), which

limits the deviation between the designed waveform s and some known waveform sg to a

(usually small) upper bound in a norm sense. This constraint has manifested itself in a

variety of ways in the literature (see above), but it is usually applied through a p-norm, i.e.,

‖s− sg‖2p ≤ ǫ

Typically, p = 2 or ∞.

The usual justification for this constraint is exemplified by [45], whose authors state that the

known signal sg acts “as a benchmark, which allows the designed waveform to share some

of the good ambiguity properties of the known waveform.” A further example of this meme

is circularly defined in [44], who use it for pulse code design: “[I]mposing [the constraint], it

is possible to indirectly control the ambiguity function of the considered coded pulse train:

the smaller [ǫ], the higher the degree of similarity between the ambiguity functions of the

desired radar code and [sg].” However, a precise description of the properties inherited by

the perturbed signal is, to our knowledge, not available in the literature. At most, as Patton

[78] notes in his dissertation, the work of Sussman in [107] demonstrates that a least-squares

approximation of ambiguity functions leads to a least-squares approximation of signal vectors

under an energy constraint.

Even with this in mind, it is entirely possible for a “small” perturbation to lead to a significant

deviation from a “known good” ambiguity property. We address this contradiction with a

small continuous-time example. Assume we wish to design a complex signal function s(t)

to minimize a cost functional similar to (2.24). Furthermore, let us assume that s(t) is

“similarly” constrained in the L2-norm sense by a goal signal function sg(t), i.e.

∫ ∞

−∞
|s(t)− sg(t)|2 dt ≤ ǫ. (4.1)
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It is reasonable to assume that an optimal s(t) will take the form so(t) = sg(t) + p(t), where

p(t) is some perturbation function orthogonal to sg(t). Clearly,
∫∞
−∞ |p(t)|2 dt ≤ ǫ for so(t)

to be optimal (or even feasible). Now, consider the ambiguity function [108] χo(τ, ν) of the

optimal signal at delay τ and frequency ν, defined as

χo(τ, ν) =

∫ ∞

−∞
so(t)s

∗
o(t+ τ)e2πνt dt (4.2)

and let χg(τ, ν) and χp(τ, ν) be the similarly-formed ambiguity functions of sg(t) and p(t),

respectively. By expanding so(t) in its ambiguity function and collecting terms, we see that

χo(τ, ν) is also equal to

χo(τ, ν) = χg(τ, ν) + χp(τ, ν)

+ ψ(τ, ν; p, sg) + ψ(τ, ν; sg, p) (4.3)

where ψ(ν, τ ; sg, p) is the cross-ambiguity function defined by ψ(ν, τ ; sg, p) =
∫∞
−∞ sg(t)p

∗(t+

τ)e2πνt dt, and vice versa for ψ(ν, τ ; p, sg) . Now, it is well known [108] that the maximum

of any ambiguity function occurs at the pair (τ, ν) = (0, 0). Based on the “similarity”

constraint, we know that χp(0, 0) ≤ ǫ, and the cross-term ψ(0, 0; sg, p) = 0 due to the

orthogonality. While the peak of the ambiguity function is not significantly perturbed, at

any (τ, ν) pair, we have

|χo(τ, ν)| ≤ |χg(τ, ν)|+ |χp(τ, ν)|

+ |ψ(τ, ν; p, sg)|+ |ψ(τ, ν; sg, p)| (4.4)

≤ |χg(τ, ν)|+ ǫ+ |ψ(τ, ν; p, sg)|+ |ψ(τ, ν; sg, p)|. (4.5)

Then, due to the Cauchy-Schwartz inequality,

|ψ(τ, ν; sg, p)|2 ≤ ‖sg(t)‖2‖p(t)‖2 = ‖sg(t)‖2ǫ, (4.6)
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which is also true for ψ(τ, ν; p, sg). Hence, at any (τ, ν) pair, we have

|χo(τ, ν)| − |χg(τ, ν)| ≤ ǫ+ 2
√
ǫ‖sg(t)‖2 (4.7)

where equality is possible for certain poor choices of p(t), τ , and ν. Under appropriate

scaling, both |χo(τ, ν)| and |χg(τ, ν)| are less than one, but the right hand side of (4.7) could

approach one, e.g., for ǫ = 0.1. Furthermore, even this bound does not guarantee where such

variations will occur in the time-frequency domain. This example supports the view in [78],

which determined that unless ǫ is exceedingly small, the two-norm similarity constraint’s

overall control of the ambiguity function is, at best, tenuous. While many authors who

consider the similarity constraint use the infinity norm (rather than the two-norm) to impose

phase-only control [45, 38, 37], the functional interpretation does not change much, if at all.

With this in mind, we propose a more realistic characterization of the motivation for using

a “similarity” constraint. Namely, it is a “proximal” constraint, whereby the designed wa-

veform is kept within some radius of the “goal” waveform for regularization purposes. To

motivate this proximal interpretation, consider that all signal-dependent clutter mitigation

schemes require accurate prior knowledge of the non-target scattering phenomena to be ob-

served. One way to obtain this information is by probing the environment with pilot signals

– for example, the strategy proposed in [3]. It is reasonable to assume that the validity of

the estimated channel information for subsequent adaptation periods depends, in the small

sample regime, upon the proximality of a newly-designed waveform-filter pair to the original

pilot signals. That is, the signal we design must span a similar portion of the clutter “space”.

This is more reasonable than “ambiguity inheritance” since, as we will show, the 2-norm and

its relaxed counterparts admit a subspace interpretation. Another possible interpretation

of the proximal constraint comes from a control theory perspective. Consider a realistic

radar system with actuation lag, i.e. the desired rate of adaptation/control is faster than

the hardware is able to adapt. Such a rate limitation imposes an upper bound on, say, the
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transmit energy that can be changed from one adaptation period to another. This naturally

translates to a proximal operator between the current adaptation period k and the previous

period k − 1. Whatever the interpretation, we will show later that even existing methods

that purport to use this constraint appropriately can violate this constraint quite severely.

4.2 Constant Modulus Joint Design

In this section, we analyze the application of the QSDP relaxation technique to the constant-

modulus constrained joint design problem. First, we describe the initial problem and then

explain how it can be relaxed into a convex QSDP. Then, the conditions for strong dua-

lity and the KKTs are examined for insights into the solvability and the tightness of the

relaxation to the original problem. We then consider multiple methods to obtain good rank-

one approximate solutions from the QSDP, inspired by common practice in linear SDP, via

eigendecomposition and refinement.

4.2.1 Relaxation Paths

Under a constant modulus constraint, where we keep each chip in the pulse at a constant

amplitude ρ, the unrelaxed problem is:

min
w,s

wHRu(s)w

s.t. wHTs = κ

|si| = ρ ∀i = 1, . . . , N

. (4.8)
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or, alternatively, in vectorized form:

min
w,s

wHRu(s)w

s.t. wHTs = κ

s⊙ s∗ = ρ21N

. (4.9)

Using the notation from (2.24), we can see that the signal constraint set Ωs is given by

Ωs = {s|s⊙ s∗ = ρ21N}.

In order to get to the appropriate relaxation of the biquadratic problem (4.9) in the form of

the QSDP (3.22), we must identify the transform TCM(·) that maps the modulus constraint

to its matrix equivalent. We can achieve this by first defining the diagonal selection matrix

Ld,p ∈ Z
p2×p as Ld,p = [vec(E11) vec(E22) · · · vec(Epp)] where Ekk is the N ×N single-entry

matrix with a one on the kth element of its diagonal and zero elsewhere. It can be shown

[109] that this matrix has the following property in regards to the Hadamard product:

Property 4.1. LTd,p(A⊗B)Ld,q = A⊙B, for any p× q matrices A,B..

Noting that the Kronecker product s⊗ s∗ is equivalent to vec(ssH), we can apply the property

to the modulus constraint and obtain LTd,N vec(ssH) = ρ21N . As we have shown previously in

Chapter 3, ssH relaxes to ΨSBΨT
S , and therefore our relaxed mapping for constant modulus

signals is

TCM(Ωs) =
{
B : LTd,N vec(ΨSBΨT

S ) = ρ21N
}
. (4.10)

Alternatively, one might consider this set to be the collection of trace constraints

TCM(Ωs) =
{
B : tr(EkkΨSBΨT

S ) = ρ2, ∀k ∈ {1, 2, . . . , N}
}

(4.11)
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with Ekk defined as above. We note that [47] showed a similar mapping for constant-modulus

relaxation in the signal-design step of an alternating-minimization type algorithm for “joint”

design. In any case, this is a set of N affine equality constraints, which is a convex polytope

– hence, our relaxation is convex. In terms of the generic QSDP (3.12), we can define the

affine equality-constraint operator ACM : HJ → R
N as

ACM(B) =




tr(ΨT
SE11ΨSB)

tr(ΨT
SE22ΨSB)

...

tr(ΨT
SENNΨSB)




. (4.12)

4.2.2 The Slater Condition for Constant Modulus

While we have shown that the constant modulus constraint set under a joint relaxation is

convex, we would also like to guarantee reasonable conditions for optimal solutions. As in

Chapter 3.2, we look to the Slater condition as an easily computable/identifiable constraint

qualification that ensures there is no duality gap and that the Lagrange multipliers/dual

variables we rely on for the analysis below exist and are bounded. In the constant modulus

case, this amounts to finding a B ≻ 0 such that

LTd,Nβ3 = ρ21N (4.13a)

βH2 τ = κ (4.13b)

where τ , β2, and β3 are defined in Chapter 3 above.

While there are many possible solutions that satisfy this condition, as in Chapter 3 and

Appendix B, we wish to find a simpler necessary condition that would be satisfied by a
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reasonably implemented radar design. This lead us to the following theorem for the primal

constant-modulus Slater condition:

Theorem 4.1 (Primal CM Slater’s Condition). The constant modulus QSDP satisfies the

Slater condition if Nρ2 > |κ|2
‖T‖2F

.

Proof: Details can be found in Appendix C.

This mirrors Theorem 3.6, which states that so long as the Capon constraint does not exceed

the maximum gain from the target, there will always be at least one interior point and no

duality gap for a finite primal objective. Again, since violating the Slater condition implies

violating the principle of conservation of energy, we will assume from here on that it is

satisfied and therefore can characterize primal solutions exactly through the dual variables.

4.2.3 KKT Conditions

Since we have assumed that the Slater condition holds for all cases of note, we now turn to

investigating the KKTs of the constant modulus QSDP, which are necessary and sufficient

for any optimal solution Bo.

Recall that the Lagrange multiplier associated with the Capon constraint is µ̃C . Further-

more, define a vector µ̃M ∈ R
N to be the Lagrange multiplier associated with the modulus

constraint – replacing the generic set inclusion dual variable λT . This also means that the

semidefiniteness slackness variable Σ from (3.28) becomes

Σ =




Rni Σ2(µ̃C)

Σ2(µ̃C)
H diag(µ̃M)




where the operator diag(·) places the elements of a length-N vector down the diagonal of an

N ×N matrix. This slackness variable must be positive semidefinite to be part of a feasible
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solution, which requires:

R(ΣH
2 ) ⊆ R(diag(µ̃M)) (4.14a)

diag(µ̃M) � ΣH
2 R

†
niΣ2 (4.14b)

where we have dropped the explicit dependence on µ̃C for the cross-slackness variable Σ2 =
∑Qeff

i=1 νi tr(U
H
i B2)Ui − µ̃∗

CT. The first semidefiniteness condition provides us with our first

feasibility lemma. Define the l0 “norm” as the number of nonzero components of a real

vector, denoted by ‖·‖0.

Lemma 4.1. For an optimal primal-dual set of variables, rank(Σ2) ≤ ‖µ̃M‖0

The proof is immediate due to the range inclusion. One corollary stemming from this lemma

and the range inclusion is that for a feasible solution, the ith column of Σ2 is zero if and

only if the corresponding multiplier µ̃M,i = 0. Carrying this further, this implies an overall

feasibility theorem for the dual variables Σ2 and µ̃M :

Theorem 4.2. µ̃M = 0N×1 is a feasible dual variable if and only if Σ2 = 0NML×N .

This is similar to Lemma 3.1, since the modulus dual variable µ̃M plays a similar role to the

power dual variable λP in the power constrained case. When this theorem’s conditions are

satisfied, the only “action” of the cross-spectrum B2 is to whiten the target in clutter, since

it implies that CV β2 = µ̃∗
Cτ .

But when and how do these dual variables impact the primal solution in other ways? We

can simplify the necessary and sufficient matrix complementarity condition (BΣ = 0J×J)
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into four joint conditions:

B1Rni = −B2Σ
H
2 (4.15)

B1Σ2 = −B2 diag(µ̃M) (4.16)

BH
2 Rni = −B3Σ

H
2 (4.17)

BH
2 Σ2 = −B3 diag(µ̃M) (4.18)

These mirror the conditions (B.7)–(B.10), with an appropriate change of signal constraint

dual variables. It is here we recall the idea of non-trivial solutions; that is, solutions where no

component of B is zero. When combined with Theorem 4.2, the condition (4.15) indicates

that the dual variable tuple (µ̃M ,Σ2) = (0N×1,0NML×N) is characteristic of non-trivial

primal solutions only if Rni is less than full rank, which mirrors the converse of Theorem 3.7.

If this is so, then the solution takes on the “complete clutter nulling” character seen in

Chapter 3.3.2, which we will not discuss further here. Thus, in all subsequent analyses, we

assume that Rni is indeed full-rank.

Along a similar line, we can use the conditions (4.16) and (4.18) to generate an optimal

solution for µ̃M , which conforms with the lemma and theorem above. If we premultiply

(4.18) by diag(µ̃M) and satisfy (4.16), then we have

diag(µ̃M)B3 diag(µ̃M) = ΣH
2 B1Σ2. (4.19)

It is clear that any feasible B3 can be represented as B3 = ρ2IN+Z3, where Z3 is a Hermitian

matrix with an all-zero diagonal. Due to this construct, diag(µ̃M)Z3 diag(µ̃M) also has an

all-zero diagonal, which implies

ρ2 diag(µ̃M)2 = diagM(ΣH
2 B1Σ2), (4.20)
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where the operator diagM(·) extracts the diagonal elements of the argument matrix. Let
√
x

denote the elementwise square root of the vector x. Then, the optimal form of µ̃M is

µ̃M =
1

ρ

√
vec(diagM(ΣH

2 B1Σ2)). (4.21)

In turn, this means that the overall rank of the solution is mostly dependent on the interaction

of the relaxed beamformer matrix B1 with the dual clutter-target variable Σ2.

4.2.4 Recovering Rank-1 Solutions

Given that the rank of the solution is, at best, upper-bounded by N in full-rank Rni cases, it

is important to discuss methods of recovering an effective rank-one solution from the solution

matrix B. As we will soon see in Chapter 4.4 below, there are many situations where the

relaxed solution to the CM problem does not admit even a numerically rank-one solution.

Recall the approximate sum vector of basis-length K given by baK , and the resulting filter-

signal pair (wa
K , s

a
K) = (ΨWbaK ,ΨSb

a
K). This method’s construction was discussed initially

in Chapter 3.1.3, and it was shown there to be highly effective if there was a clear dominant

eigenvalue. If this pair is not feasible, we can make it so for the CM problem by generating

the pair (ŵa
K , ŝ

a
K) as follows:

ŝaK = ρe∠s
a
K (4.22)

ŵa
K =

κ

(saK)
HTHwa

K

wa
K (4.23)

where ∠saK is the vector of phases of the elements of saK and the exponentiation is element-

wise. As we will soon show, if the rank of the solution is greater than one and subsequent

eigenvalues are close or equal to the “dominant” eigenvalue, then this approximation can sig-

nificantly degrade the quality of the solution, feasible or not. In these cases, which we term
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“rank-inflated” solutions, we can obtain a refined solution by initializing an existing itera-

tive solver (i.e., gradient descent or the alternating minimization of [8]) with either (wa
K , s

a
K)

or (ŵa
K , ŝ

a
K). We will see below that even one step of refinement can provide significant

improvement over the approximate sum when rank-inflation occurs.

Another possibility is randomization. This idea is inspired by a similar approach used for

linear semidefinite programs that are relaxations of QCQPs [71], the process of which was

indirectly discussed in Chapter 2.3. We showed there that a stochastic version of this QCQP

(where objective and constraints are satisfied in expectation) is exactly equivalent to the

LSDP, provided the solution to the QCQP is drawn from a zero-mean Gaussian distribution

whose covariance is given by the solution to the LSDP. In the case of biquadratic or quartic

problems, such an equivalence will not be exact. Consider the constant-modulus problem

with one clutter patch; that is,

g(w, s) = wHRniw +wHΓssHΓHw, (4.24)

or, in the joint variable,

g̃(b) = bHR̃nib+ bHΓ̃bbHΓ̃
H
b. (4.25)

Obviously, if b ∼ CN (0,B), then the linear first term of the relaxed problem is, of course,

equivalent. However, the quartic term requires more nuance. It can be shown that given our

random variable assumption

E{bHΓ̃bbHΓ̃Hb} = tr(BΓ̃BΓ̃
H
) + | tr(BΓ̃)|2 (4.26)

which contains, but is not solely composed of, the relaxed cost | tr(BΓ̃)|2. Thus, there is

not an exact one-to-one mapping between a stochastic biquadratic program and its QSDP

relaxation. However, it stands to reason that since the relaxed cost function is embedded in
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the expectation above and our constraint sets are exactly satisfied in expectation, a feasible

random vector that minimized this cost might be useful.

In the case of the constant modulus constraint, we follow a version of the procedure described

in [47]: first, draw nrand samples from the aforementioned distribution. Next, construct a

feasible pair for each sample – create a waveform that follows the phase of each sample, but

meeting the constant modulus constraint, and then construct a filter from the sample scaled

so that the Capon constraint is met. This is similar to the process mentioned above for

the approximate-basis solution. Then, the reported pair from the method is the one which

minimizes the original cost function. We will see in Chapter 4.4, however, that this method

has severe limitations because of the aforementioned additional cost.

4.3 Similarity-Constrained Joint Design

As mentioned previously, the “similarity” constraint has been typically considered in the

literature as a means to mitigate undesirable properties of the waveform in a jointly optimal

pair designed under power-only constraints or the constant-modulus constraint considered

in the previous section. While we have shown in Chapter 4.1 that it is inappropriate to view

this mitigation under the lens of the memetic “ambiguity inheritance” concept, the potential

performance and system-limitation interpretations still provide sufficient technical reason to

explore such a constraint. In addition, we will demonstrate through the KKT conditions for

the relaxed problem that a subspace alignment interpretation of the similarity constraint is

warranted.
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Let sg be the reference waveform under consideration to be modified. Under the simila-

rity/proximal constraint, the waveform constraint set Ωs in (2.24) is

Ωs =
{
s : ‖s‖2 ≤ Po, ‖s− sg‖2 ≤ ε

}
, (4.27)

where Po is the previously considered power constraint and ε is a constant used to control

how similar the designer wishes the new waveform to be to the reference. For simplicity,

we set the power of the reference waveform to the overall power constraint, i.e. ‖sg‖2 = Po.

This means that ε ∈ [0, 2Po].

With this in place, we can write the joint optimization problem under consideration as

min
w,s

wHRu(s)w

s.t. wHTs = κ

‖s‖2 ≤ Po

‖s− sg‖2 ≤ ǫ.

(4.28)

Notice that unlike in a power-equality-constrained problem, there is the potential for the

upper bound on ε to vary with ‖s‖2 if the power constraint is not on the boundary. However,

we will show that at least the solution to the relaxation will achieve this bound under most

physically realizable conditions, and so we shall defer resolving this issue for later research.

The following subsections will describe the method to cast the joint similarity problem in

the form of a QSDP (including an additional step previously described in the literature), as

well as the KKT conditions of the QSDP and necessary conclusions that can be formed from

them.
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4.3.1 Relaxation Paths

The problem described in (4.28) does not immediately lend itself to a semidefinite relaxation,

but, as shown in [110], there is a means to make the similarity constraint amenable to it.

First, note that the similarity constraint is effectively equivalent to ℜ{sHsg} ≥ Po − ε/2.

Now, consider the following variant of (4.28), which we term the “alignment form”:

min
w,s

wHRu(s)w

s.t. wHTs = κ

‖s‖2 ≤ Po

|sHsg|2 ≥ δ

(4.29)

where δ = (Po − ε/2)2.

For a fixed w, it has been shown [110, 47] that, given an optimal solution ŝ to a problem

similar to (4.29) and the angle ψ = arctan(ℑ{sHsg}/ℜ{sHsg}), s = ŝeψ is an optimal

solution to similar to (4.28). Since our aim is to jointly optimize w, s in one step, we

show how to harness the above observation for the joint problem. Let w̆, s̆ be optimal for

(4.29). Then, consider the constructed potential point s? = s̆eψ, where ψ is now the angle

between s̆ and sg. It is clear that, as in the fixed beamformer problem, s? is a feasible

point in both waveform constraint sets. To satisfy the Capon constraint, we need to find

a potential w?. By inspection, a feasible choice is w? = w̆eψ. Finally, since the phases

necessarily cancel in the objective function, the objective is the same when evaluated at

either pair for both problems. This therefore proves that if (w̆, s̆) is optimal for (4.29), then

(w?, s?) = (w̆eψ, s̆eψ) is optimal for (4.28), and we can continue our relaxation process by

considering the alignment form only.
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Once again using the selection matrices ΨS,ΨW , we can clearly recast the new optimization

problem in a relaxed form by moving to the joint variable b and its relaxation B. The

relaxed equivalent constraint set is now

TSC(Ωs) =
{
B : sHg ΨSBΨT

Ssg ≥ δ
}
. (4.30)

In vectorized form, this problem is

min
B∈HN(ML+1)

+

βH2 CV β2 + β
H
1 rni

s.t. βH2 τ = κ

βH3 vec(IN) ≤ Po

βH3 (s
∗
g ⊗ sg) ≥ δ

. (4.31)

If the optimal solution to this problem is rank 1, then we can perform the correction above

and obtain an optimal result to (4.28). Otherwise, the decomposition techniques of Chap-

ter 3.1.3 and Chapter 4.2.4 can be used to obtain a feasible but suboptimal pair that is then

phase corrected. We will demonstrate below that the KKTs and additional information lead

us to believe that most achievable solutions are rank one.

4.3.2 The Slater Condition

We can attack the Slater condition for this class of problem much the same way we have for

the original problem and its constant modulus variation. In this case, the relative interior

of the constraint set is all positive definite matrices B where tr(B3) < Po and sHg B3sg > δ

that satisfy the equality constraint.
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An achievable version of the Slater condition is given in the theorem below, followed by a

simple proof.

Theorem 4.3 (Primal SC Slater’s Condition). The similarity-constrained QSDP (4.31)

satisfies Slater’s condition if both of these inequalities hold:

‖T‖2F >
|κ|2
Po

(4.32)

δ < P 2
o (4.33)

Proof: The first inequality is proven in Appendix A, since the effect of the power constraint

is identical to the lesser constrained problem (3.24).

The second inequality comes from a simple observation about the trace operation. Recall that

for two positive semidefinite matrices C,D, tr(CD) ≤ tr(C) tr(D). Obviously, sHg B3sg =

tr(B3sgs
H
g ) ≤ Po tr(B3). However, since tr(B3) < Po, we have s

H
g B3sg < P 2

o . This is possible

if and only if δ < P 2
o , and so we have the final necessary aspect to fulfill Slater’s condition.

Observe that if δ = P 2
o , then not only is there effectively no design problem, the Slater

condition can never be satisfied. Hence, we assume that these conditions are satisfied for all

practical problems below.

4.3.3 KKT Conditions & Implications

In this subsection, we examine the KKTs of the relaxed problem (4.31) above to analytically

determine properties of the relaxed solution, as well as any additional implications for a

potential rank-one solution.
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From above, let us retain the Lagrange multipliers µ̃C ∈ C for the Capon constraint and Σ

for the semidefiniteness, and define the Lagrange multipliers λP , λS ∈ R
+ for the power and

similiarity constraints, respectively, in lieu of λT .

By differentiating the Lagrangian of (4.31), we find the optimal slackness variable has the

form

Σ =




Rni Σ2(µ̃C)

Σ2(µ̃C)
H λP IN − λSsgs

H
g


 (4.34)

where the definition of Σ2(µ̃C) is identical to the constant modulus case. Defining the

projection matrix onto sg as Psg =
sgs

H
g

Po
, an equivalent definition of the lower diagonal block

of Σ is Σ3 = λP IN−λSPoPsg . Since the similarity constraint effectively enforces a minimum

alignment of the transmitted signal basis with the goal signal, the appearance of a rank-one

projection is unsurprising.

Due to the inequality constraints, there are two scalar complementary slackness conditions:

λP tr(B3) = λPPo, λP ≥ 0 (4.35)

λSs
H
g B3sg = λSδ, λS ≥ 0 (4.36)

As with the power-bounded problem in Chapter 3, a critical task will be to determine when

solutions are explicitly power-bounded (λP > 0), as this determines when KKT points of our

relaxation coincide with relaxations of equality-constrained problems considered elsewhere.

It is also important to determine when a solution is alignment-bounded (λS > 0), since it

has important implications for its analytical structure.
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In the SC case, the matrix complementarity condition BΣ = 0J×J devolves, as before, into

four conditions: (4.15), (4.17), and the “new” conditions

B1Σ2 = −B2(λP IN − λSPoPsg) (4.37)

BH
2 Σ2 = −B3(λP IN − λSPoPsg) (4.38)

The semidefiniteness conditions for Σ are

R(ΣH
2 ) ⊆ R(λP IN − λSPoPsg) (4.39)

λP IN − λSPoPsg � ΣH
2 R

†
niΣ2 (4.40)

This final condition leads us to our first major theorem, which we present with minimal

proof:

Theorem 4.4. For a similarity-constrained relaxed joint design problem, any non-power-

bounded optimal solution will also be non-alignment-bounded; that is, λP = 0 =⇒ λS = 0.

Proof. Assume λP = 0 is part of a feasible, optimal solution. This would require (4.40) to

have the sum of two PSD matrices be negative semidefinite, which means no feasible solution

could also have λS > 0.

This theorem inspires us to find a more expressive representation of part of the primal

solution; namely, B3. Since sg spans a particular subspace of CN , then we can subdivide B3

through the projections onto and away from sg, or

B3 = (Psg +P⊥
sg
)B3(Psg +P⊥

sg
)

= (B3)
⊥
sg
+B3,CT + αsgs

H
g , (4.41)
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where (B3)
⊥
sg

= P⊥
sg
B3P

⊥
sg
, B3,CT = PsgB3P

⊥
sg
+ P⊥

sg
B3Psg are the crossterms, and α is the

fractional alignment of the solution such that sHg B3sg = αP 2
o . Notice that B3,CT has zero

trace, due to the projections.

Given this form, we can find, among other things, a relevant interval for the parameter

α, and a specific refinement given the theorem above. First, recall a feasible solution has

tr(B3) ≤ Po. Direct manipulation of this inequality tells us that

tr((B3)
⊥
sg
) ≤ (1− α)Po (4.42)

which, to be feasible, requires α ≤ 1. Furthermore, since a feasible solution also requires

sHg B3sg ≥ δ, we have α ≥ δ
P 2
o
. Thus, overall,

α ∈ [δf , 1] (4.43)

where we have defined the fractional alignment δf =
δ
P 2
o
. Notice that this is a valid interval

iff Theorem 4.3 is true and the Slater condition is satisfied. If the conditions for Theorem 4.4

hold, then this interval becomes open on both sides.

In fact, this generic form for B3 results in a simpler form of (4.36) as well. Since λSs
H
g B3sg =

λSδ, then, clearly

λS (α− δf) = 0. (4.44)

This means that in alignment-bounded solutions (i.e. λS > 0), αAB = δf . Furthermore, since

all alignment-bounded solutions are necessarily power-bounded, tr((B3)
⊥
sg
) = (1− δf)Po.

Observe that at no time did we involve Σ2 in our assumptions; that said, the PSD requi-

rement for Σ requires Σ2 = 0NML×N in a non-power bounded scenario. As in the power-
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constrained problem of Chapter 3, a necessary condition for a non-power bounded optimal

solution is rank(Rni) < NML. Continuing from there, we have the following lemma:

Lemma 4.2. If rank(Rni) < NML, then the tuple (λP , λS,Σ2) = (0, 0,0NML×N) is a

feasible set of dual variables.

The proof of this lemma is implicit in the proof of Theorem 4.4. If we assume instead that

Σ2 = 0NML×N , we again come to the conclusion that Rni must be singular for this to repre-

sent a feasible solution, as before. This time, we look to (4.38) for additional information.

Since B3 = 0N×N is not a feasible solution, the only way our assumption is part of a fea-

sible solution is if either a) λP IN − λSsgs
H
g = 0N×N or b) 0 < rank(λP IN − λSsgs

H
g ) < N .

Condition a) only occurs, as established above, if λP = λS = 0. Thus condition b) implies

λP > 0.

The rest of condition b) requires a little more work. We do this by investigating the possible

ranks that Σ3 could take, using some intuition about semidefiniteness.

Lemma 4.3. The rank of Σo
3 is either zero, N − 1, or N .

Proof. The aforementioned rank conditions correspond to λP = 0 (and the consequences of

Theorem 4.4); λP = λSPo > 0, which makes Σ3 = λPP
⊥
sg
; and λP > λSPo, respectively.

Now we can proceed to our analysis of Condition b). Recall that Condition b) requires

rank(Σ3) < N and λP > 0, but the only scenario from Lemma 4.3 that satisfies these

requirements is Σ3 = λPP
⊥
sg
, λS = λP

Po
.

Condition b) also has a few consequences on the solution. Under this assumption, (4.38)

becomes

Σ3B3 = λPP
⊥
sg
B3 = 0N×N . (4.45)
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Since λP > 0, this is equivalent to saying R(B3) ⊆ R(Psg), or B3 = αsgs
H
g for some α > 0.

In fact, we can find the exact value of α. Since λP > 0, tr(B3) = αPo = Po, and thus α = 1.

However, since λS > 0, we also know that sHg B3sg = δ. Hence, a necessary condition for

this scenario to be possible is δ = P 2
o . This is a fairly restrictive condition, because it means

there is no signal design problem, as we are asking the signal to be exactly aligned to the

original signal. Given the above, we have effectively proved the following lemma:

Lemma 4.4. If rank(Rni) < NML, then Σ2 = 0NML×N implies one of two mutually

exclusive alternatives for a feasible solution. Either:

1. δ = P 2
o , and therefore λP > 0, λS = 0, and B3 = sgs

H
g , or,

2. λP = λS = 0, and the optimal solutions are those of the original power-constrained

problem (3.24).

By contrapositive, we also therefore have a result analogous to Theorem 3.7 for the similarity-

constrained problem:

Lemma 4.5. A full rank noise-and-interference covariance matrix implies a power bounded

solution; that is, rank(Rni) = NML =⇒ λP > 0 and Σ2 6= 0NML×N

This equivalence is unsurprising, since this problem adds only a hyperplane constraint to the

original power-constrained problem.

Since we now realize that full rank signal-independent interference again leads to a power-

bounded solution, let us focus solely on these solutions for now. First, we can identify

an exact value of the alignment parameter α in this case under a certain condition. By

combining (4.37) and (4.38), we have ΣH
2 B1Σ2 = Σ3B3Σ3. By premultiplying both sides
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with P⊥
sg

and performing some algebra, we find the optimal α is therefore

α = 1−
tr(P⊥

sg
ΣH

2 B1Σ2)

λ2PPo
. (4.46)

Clearly, α = 1 is optimal (and thus our goal signal is the optimal signal) iff P⊥
sg
ΣH

2 B1Σ2 =

0N×N . Equivalently, sg must be an eigenvector of ΣH
2 B1Σ2 associated with the eigenvalue

√
Po.

We can additionally find appropriate expressions for λP and λS in each alignment scenario.

If we take the trace of (4.15) and (4.38) and equate them, we have

tr(B1Rni) = λP tr(B3)− λS tr(B3sgs
H
g ). (4.47)

Furthermore, by applying (4.36) and (4.35) and simplifying for λP :

λP =
tr(B1Rni) + λSδ

Po
. (4.48)

To wit, then, if λS is ever zero, then at the very least, the power constraint multiplier follows

the original power-constrained problem. If we substitute this expression into the alignment

expression above, we have

α = 1− Po
tr(P⊥

sg
ΣH

2 B1Σ2)

(tr(B1Rni) + λSδ)2
. (4.49)

When not alignment-bounded (λS = 0), then we have a “simple” expression for the alignment

fraction as a function of the other variables, suitable for a purpose-built solver, like the

augmented Lagrangian methods employed by [56]. When the solution is alignment-bounded,
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we can directly solve for λS, since here α = δf . After some tedious algebra, we find

λS = δ−1

(√
Po

1− δf
tr(P⊥

sg
ΣH

2 B1Σ2)− tr(B1Rni)

)
. (4.50)

Therefore, in alignment-bounded cases, λP is given by

λP =

√
tr(P⊥

sg
ΣH

2 B1Σ2)

Po(1− δf)
. (4.51)

We conclude this section with a theorem that encapsulates most of the derivations so far,

and directly connects the power-constrained problem with the similarity-constrained one:

Theorem 4.5. Let Bo
SC be an optimal solution to (4.31), and Bo

PC be an optimal solution

to the power-constrained problem (3.24). Then, when the solution is non-alignment-bounded

(λS = 0), Bo
SC = Bo

PC, i.e. the similarity-constrained solution is identical to the power-

constrained solution. Furthermore, this equivalence occurs for all δ such that

sHg ΨSB
o
PCΨ

T
Ssg ≥ δ,

that is, Bo
PC is an alignment-bounded solution only when sHg ΨSB

o
PCΨ

T
Ssg meets the bound.

Equivalently, this is true when ǫ ≥ 2
(
Po −

√
sHg ΨSBo

PCΨ
T
Ssg

)
.

Proof: There are two major cases to consider in this theorem – non-power-bounded (λP = 0)

and power-bounded (λP > 0) – but they are both motivated by the same principle. Namely,

if the alignment constraint is inactive, the KKTs obtained are exactly identical to those of

the power-constrained problem of (3.24). Since this is a convex problem, KKTs are necessary

and sufficient conditions for any solution – hence, identical KKTs imply equivalent solutions

in this case.
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The second element of the theorem is a natural consequence of our assumption that the

solution is not alignment-bounded, and therefore the alignment constraint must be inactive.

Since we have established above that Bo
PC is a solution, then the constraint is inactive when

sHg ΨSB
o
PCΨ

T
Ssg > δ. The alignment-bounded equivalence is trivial, since if Bo

PC is a solution

and sHg ΨSB
o
PCΨ

T
Ssg = δ, then Bo

PC is therefore alignment-bounded.

4.4 Numerical Analysis

In this section, we present numerical results to verify the KKT assertions made above and

to compare the performance of our proposed methods with the existing state of the art. We

subdivide this section as above, with an analysis of the constant-modulus problem followed

by one of the similarity-constrained problem.

In many of the simulations presented here, we consider a common set of parameters for

ease of comparison. Specifically, unless otherwise specified, the radar under consideration

transmits L = 8 pulses of N = 8 samples each, and receives the scattered energy with a

uniform linear array of M = 5 antennas at a half-wavelength per-element spacing. Each

pulse is modulated to a carrier frequency fo = 1 GHz and the time between each pulse is

Tp = 50µs. If there is a target under consideration, it is located at the azimuth-elevation pair

(θ, φ) = (0.3, 0.3), and moves with a relative Doppler of −0.2545 relative to the platform if

the Doppler is not otherwise mentioned. Clutter patches are modeled as above, each at an

elevation of 0.3 radians and with an azimuth uniformly spaced across the interval [−π
2
, π
2
]

dictated by the number of clutter patches. “Light” clutter denotes a scenario with Qc = 25

clutter patches, while “heavy” clutter denotes Qc = 180 patches. In any case, the rank of

the clutter covariance in the (w, s) product space is less thanML = 40, due to the structure.
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The simulations presented below, and our methods in particular, are again enabled by the

convex optimization toolbox CVX [87, 86] and its interfaces to the solvers SDPT3 [89, 90]

and SeDuMi [91]. In each implementation of our algorithms, the performance shown is from

the solver that performed the “best” in a given metric.

4.4.1 Constant-modulus Evaluations

We begin by analyzing the sensitivity of the rank to the modulus parameter in a heavy clutter

scenario, set κ = 1, and consider a noise-only Toeplitz matrix for Rni. In Figure 4.1, we can

see that for low values of ρ, we obtain rank-N solutions with one dominant eigenvalue (as with

the power-constrained problem). However, as ρ increases, the spectrum “fills out,” resulting

in rank-N solutions with nearly equal non-zero eigenvalues. This behavior, when it happens,

can have a significant effect on the ability to recover quality approximate solutions, as we

will soon see below. We also note that if the noise is white, then the high-ρ rank scenario

will play out even at low modulus values, but this is not detrimental as the approximate

sum mentioned above produces feasible and near-optimal solutions!

Next, we consider the performance of our methods across variations in target Doppler, first

in comparison with each other, and then with other algorithms in the literature. We be-

gin by comparing the performance of our relaxed constant modulus method under the two

naive rank-one recovery strategies: the SVD-based approximate sum (henceforth, RBQP-

CM-SVD) and the randomization-based procedure (henceforth, RBQP-CM-Rand) where we

evaluate nrand = 1000 random vectors. For RBQP-CM-SVD, we choose the maximum ei-

genvalue vector, and hence K = 1. We also consider the SINR predicted by the optimal

value obtained from the solution of the QSDP, to see how much the approximation schemes

deviate from the optimal point. Our findings are presented in Figure 4.2. It is immediately

clear that the randomization technique RBQP-CM-Rand produces beyond suboptimal re-
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Figure 4.1: First 2N eigenvalues of relaxed con.-mod. solution BCM as a function of ρ.
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Figure 4.2: Comparison in SINR w.r.t. normalized Doppler of SVD- and randomization-
based rank-one recovery techniques for QSDP-based con.-mod. algorithms
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sults, even at high Doppler frequencies where the target should be well-separated from the

clutter. This is due to the aforementioned mismatch between the expectation in (4.26) and

the cost function in (3.22). Additionally, increasing nrand further (we considered 5000 and

10000 random points, as well) provides no noticeable gain, pointing again to the cost-function

mismatch as the culprit. It may be possible to refine these randomized points further, similar

to what we will investigate below, but given the difficulties at higher Dopplers, we believe

this is a mostly fruitless endeavor.

In contrast, at high Doppler frequencies, the naive recovery technique RBQP-CM-SVD per-

forms well, and even generally approximates the power-bounded performance. However, it

is clear that, for a range of lower Dopplers, this performance suffers significantly and does

not come anywhere close to the expected bound. This is due to the aforementioned rank in-

flation – at these Dopplers, rank(Bopt
CM) ≈ 2 with each direction having approximately equal

strength, and hence the naive approximation is insufficient, even if made feasible. Additional

simulations have shown that the value of K (i.e., how many eigenvectors of B we add) does

not change the overall performance in the low-Doppler regime much, which indicates that

additional directions do not add further target matching or clutter/noise suppression – they

often merely define feasibility in the constraint set.

Since RBQP-CM-SVD showed significant promise at higher Dopplers, we now examine the

impact of refining those approximate solutions in some fashion. In particular, we consider

a feasible refinement of RBQP-CM-SVD solutions by using them to initialize a signal-only

gradient descent of (4.9) enabled by MATLAB’s fminunc (henceforth, RBQP-CM-FR), and

then obtain a filter from (2.36a). The cost function used in the gradient descent is similar to

[36, Eq. (18)], with appropriate modifications similar to that in [34, Appendix B]. As seen

in Figure 4.5, under feasible refinement, the gain lost by the initial approximation is imme-

diately recovered for very little computational penalty (indeed, the gradient descent never

needs more than 5 iterations), and our overall performance exactly matches the expected

159



gain. Of course, the procedure could be reversed, with a filter-only gradient descent and
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Figure 4.3: Comparison in SINR w.r.t. normalized Doppler of SVD- and feasible refinement
(FR)-based rank-one recovery techniques from QSDP-based con.-mod. algorithms

obtaining a signal via (2.36b). We note that the overall variation in the refined filter-signal

pairs mostly comes from the filter, with the largest variation occurring at zero Doppler –

this can be attributed to the magnitudes of the two dominant eigenvalues getting closer as

the target moves into the clutter ridge.

The performance hit experienced by RBQP-CM-SVD can be somewhat predicted by compa-

rison of the optimal values of the QSDPs for the constant modulus problem (RBQP-CM) and

that of the power-constrained problem (RBQP-PC) from [66]. This result is documented in

Figure 4.4, which depicts the log ratio of RBQP-CM’s optimal value to RBQP-PC’s optimal

value. Obviously, there is some loss at all Dopplers between the more constrained and less

constrained problem, but never more than about 0.65 dB. However, what is noticeable are

significant changes around the points where performance degradation of the SVD approach

appeared in Figure 4.3. This would indicate that the target-clutter environment is produ-

cing some sort of significant change to the structure of the constant-modulus solution that
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necessitates a higher rank. We leave speculation as to the exact mechanics of this behavior

for future research.
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Figure 4.4: Ratio of RBQP-CM to RBQP-PC objective values vs. Doppler

Next, we consider comparison of the superior RBQP algorithm, RBQP-CM-FR, with exis-

ting algorithms from the literature. The algorithms considered are Algorithms 2 and 3 of

[47] (denoted T&T-A2 and T&T-A3, respectively), our previous technique from [66] (de-

noted RBQP-PC-SVD), and the constant modulus alternating minimization of [8] (denoted

CMAM), each initialized by feasible signals of random phase. Algorithms T&T-A2, T&T-

A3, and CMAM all sequentially optimize w, s pairs in alternating steps and choose the

minimum eigenvector of a given matrix for their w-step. What distinguishes them is the

s-step: T&T-A2 solves a linear SDP similar to the relaxation and randomization process we

discussed above, T&T-A3 uses the power method-like iterations of [48] to solve a fractional

program, and CMAM forms a Capon-like “temporal” beamformer. As seen in Figure 4.5,

the feasible refinement of the RBQP solution outperforms every other technique by at le-

ast 2 dB across most Doppler values, though TT-A2 approaches RBQP-CM-FR at certain
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points. Finer detail of low Doppler performance can be seen in Figure 4.6, which shows the

continued improved performance of RBQP-CM-FR over all others.
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Figure 4.5: Constant modulus algorithm variation in SINR w.r.t. normalized Doppler
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similarity parameter δ.

4.4.2 Similarity-constrained Evaluations

Our analysis continues with the similarity constrained problem. Again, we begin with an

examination of the expected rank of the solution matrix B, to deterimine the viability of a

simple decomposition for obtaining approximate solutions. In Figure 4.7, we examine the

variation in rank over the alignment parameter δ, for a light clutter scenario with Po = κ = 1.

Clearly, when δ = P 2
o , we must have a rank-one solution. For all other δ, we have what

appear to be nominally rank-N , but effectively rank-1 scenarios, as the dominant eigenvalue

far exceeds the other N − 1 nonzero values. Furthermore, it seems that as δ → 0, the overall

spectrum lifts and then recedes to some degree. This does not change the practical result of

the relaxation or its approximate decomposition, however.

Since we now know that we can obtain representative approximate rank-1 solutions, we can

examine, for example, how these solutions satisfy the constraints. Typically, these solutions
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exactly satisfy the power and Capon constraints regardless of the choice of the similarity

parameter ε/alignment parameter δ. However, depending on the choice of ε, the similarity

of the approximate waveform solution sopt to the reference waveform can vary significantly.

This is demonstrated in Figure 4.8, which shows that for most values of ε, the evaluated

difference ‖sopt − sg‖2 ≈ ε. As ε approaches its maximum value, however, ‖sopt − sg‖2

saturates to some maximum difference which, as predicted in Theorem 4.5 above, is when

the solution is exactly identical to the power-bounded solution. This can be regarded in the

context of the alignment formulation, in that any further deviations from sg would lead to

worse alignment with either the target or the clutter responses.

Next, we consider the comparative performance of our joint approximate solution to other

similar algorithms in an operationally relevant context for STAP, Doppler variation. This

result is obtained for Po = κ = 1 in a heavy clutter scenario, where ǫ = 0.1. For comparison,

we also examined Algorithms 4 and 5 of [47] (denoted T&T-A4 and T&T-A5, respectively)

and Algorithm 2 of [44] (denoted AA2). T&T-A4 and -A5 follow their constant modulus
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Figure 4.9: Similarity constraint algorithm variation in SINR w.r.t. normalized Doppler

counterparts in design intent, with A4 using a SDP relaxation in the s-step, and A5 relying

on the power method-like iterations. AA2 also uses an SDP relaxation in the s-step, but

enforces the similarity constraint in a more complex fashion than T&T-A4. The algorithm

we explored in Chapter 4.3 is termed RBQP-SC. As can be seen in Figure 4.9, our method

significantly outperforms the known-good waveform & its matched filter, AA2, and T&T-

A5. This is true in both high Doppler and low Doppler instances, as RBQP-SC has a

much larger minimum detectable velocity at any threshold. Additionally, while there are

cases where [47]’s Algorithm 4 approaches RBQP-SC’s performance, this is evidence that

our relaxation does, in fact, act as a limiting asymptote of performance for any possible

algorithm, as we have proposed in [74].

Finally, we conclude our analysis by directly demonstrating the proposition made in Chap-

ter 4.1 in regards to ambiguity functions. Figures 4.10, 4.11, and 4.12 show the ambiguity

function of the reference chirp function, the zero-Doppler solution waveform of RBQP-SC,

and the zero-Doppler solution waveform of T&T-A4, respectively. These solutions are obtai-
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Figure 4.10: Ambiguity function of sg

ned from the simulation above, where performance at this particular Doppler is, in general,

equally poor for all algorithms. Clearly, despite “only” varying from the reference waveform

by ε = 0.1Po, the solution ambiguity functions are significantly different from both the refe-

rence and each other. This is to be expected, since two-norm similarity, as theorized above,

does not guarantee ambiguity inheritance.
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Figure 4.11: Ambiguity function of optimal s from RBQP-SC at zero Doppler frequency
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Figure 4.12: Ambiguity function of optimal s from T&T-A4 at zero Doppler frequency
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Chapter 5

Applications to Other Sensing

Modalities

So far, our work in the previous chapters has been primarily motivated by the waveform

adaptive SIMO STAP application advanced by Setlur and Rangaswamy [8]. However, the

majority of our findings are not restricted to this application alone. Indeed, the QSDP techni-

ques are applicable to any active sensing problem with a plurality of (nominally orthogonal)

inputs and outputs, as well as some known or estimated characterization of a desired target

response, non-target input-dependent responses, and input-independent disturbances.

Many of these scenarios are, as the title of this dissertation implies, characteristic of radar

systems. In this chapter, we shall demonstrate the applicability of our technique to alter-

native channel and system models. A generalized overview of the channel concept will be

provided in Chapter 5.1. In Chapter 5.2, we will consider a challenging, if not necessarily

realistic, alternative model: the simplified reverberant channel model of Stoica, He, and Li

[36], which is nominally intended for sonar systems, but also describes a radar channel where

the primary clutter returns considered are from range bins other than that of the target.
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We will conclude with comparative simulations between our approach and that of [36] in

Chapter 5.3.

5.1 Channel Models for Other Modalities

As noted in Chapter 2.1.2, Guerci and others [63, 3] have advocated for a matrix transfer

function approach to modeling active sensing systems. Assuming a sensing system with MT

transmit degrees of freedom andMR receive degrees of freedom, the model in (2.18) describes

a vector of received complex amplitudes y ∈ C
MR in terms of the transmit resources s ∈ C

MT

and channel matrices Hs ∈ C
MR×MT which act on those resources. The (i, j)th element of

Hs describes the coupling between the jth transmit resource and the ith receive resource,

induced by the resolvable scatterer(s) and described by transmit-independent stochastic

Green’s functions. Since the examples we consider below follow the illustrative single-target

scenario in the previous chapters, we will repurpose the notation for the target channel

matrix T and the clutter channel matrix Γq seen in (2.19) for the different models we will

subsequently consider.

In order to resolve or appropriately process the return y, the number of receive resources

typically equals or exceeds that of the transmit resources; that is, MR ≥ MT . For the WA-

STAP scenario, this was absolutely satisfied, since the filter w ∈ C
NML processes the fast

time samples as well as the slow-time and spatial samples. In the scenario we consider in

Chapter 5.2 below, however, the purely fast-time nature of the channel forcesMT =MR = N .

This may lead to identifiability concerns, which we will see below.
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5.2 Reverberant Channel Joint Design

In this section, we consider the reverberant channel model of Stoica, He, and Li [36], a

simpler SISO radar/sonar model that accounts only for the fast-time response of the channel

and ignores Doppler shifts. We will demonstrate the connection to our joint optimization

approach and compare the relaxed solution to the trio of techniques considered in [36]

5.2.1 The Reverberant Channel & Mismatched Filters

We begin by describing the reverberant channel, which can be understood as the simplest

discrete-time instantiation of a signal-dependent clutter model. For the most part, we follow

the details and notation of [36] and references therein, but where necessary, we retain our

own notation for consistency. Let MT = MR = N . Then, the transmit resource vector

s ∈ C
N is a vector of N complex weights that modulate a series of subpulses transmitted

into the scattering environment. A basic power constraint is enforced on this signal; namely,

‖s‖2 = N . The authors in [36] consider two additional constraints on s previously discussed

in Chapter 4.1, constant modulus and PAPR. For simplicity of future comparison, we will

only consider the constant modulus constraint |si| = 1, which will permit us to employ the

techniques seen in Chapter 4.2.

When aligned to the target range delay of interest, the received vector y ∈ C
N is

y = α0s+
N−1∑

i=−(N−1)
i 6=0

αiJis+ yni (5.1)

where α0 is the target reflectivity in the given bin, the other αi are the reflectivities of

the scatterers in the adjacent range bins, and yni is a zero-mean random vector of signal-

independent disturbances, including noise and jamming, with a covariance of Rni. Due
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to the sampling structure inherent in this channel model, the authors in [36] assume Rni

is Toeplitz, which will come into play later. Here, the clutter channel matrices are the

2(N − 1) shift matrices Ji, which shift the elements of s down for positive values of i and up

for negative values of i, replacing the shifted elements with zeros as necessary. Furthermore,

transposition of the matrix reverses the sign of the shift index; that is, J−i = JTi . The target

channel matrix, clearly, is the identity matrix IN .

We assume that the clutter reflectivities αi are statistically independent of each other, the

target reflectivity α0 and the signal-independent disturbance yni; and that they have equal

variance σ2
c
. As with the WA-STAP problem, we assume that σ2

c
and Rni are known a priori.

Unlike the detection problem considered for WA-STAP, the primary goal in this problem

is to obtain a minimum mean square error (MSE) estimate of the target reflectivity α0.

Assuming that y is linearly processed by a filter w ∈ C
N , the estimate α̂0 is given by

α̂0 =
wHy

wHs
. (5.2)

If the filter used is the signal itself, w = s, we have a matched filter estimate. However, this

choice of filter is only optimal if there is no clutter/reverberation, since the signal (obviously)

correlates with itself under time shifts, which inflates the error. If any other filter w is used,

it is what is known as a mismatched filter (MMF), which constitutes additional degrees of

freedom to cancel the clutter, interference, and noise.

If we wish to find an optimal pair (w, s), then we must define the cost function of interest.

The MSE of the estimate α̂0 is given by

MSE(α̂0) = E
α0

|α̂0 − α0| =
wHRu(s)w

|wHs|2 , (5.3)

171



where Ru(s) is the signal-dependent covariance defined as

Ru(s) = Rni + σ2
c

N−1∑

i=−(N−1)
i 6=0

Jiss
HJTi . (5.4)

This is identical to our previous definitions of Ru(s), just with the clutter channel substi-

tution noted above. Notice that this is the reciprocal of the SINR form (2.23), and clearly,

minimizing the MSE is equivalent to maximizing the SINR. With the cost function defined,

we can now describe the general optimization problem we consider in this section:

min
w,s

wHRu(s)w

|wHs|2

s.t. ‖s‖2 = N

|sk| = 1, k = 1, . . . , N.

(5.5)

5.2.2 The CREW Approaches

With the optimization problem now defined, we describe the three general techniques advan-

ced by [36] to find an optimal (w, s) pair. These techniques, which they denote as Cognitive

Receiver and Waveform design (CREW), are examples of the signal-filter AM paradigm des-

cribed in Chapter 2.3.1. Two of these techniques use a form similar to EigenAM’s – namely,

(2.36a) – in the w-step to generate the mismatched filter, while the other relies on the ma-

tched filter and a different design of s to minimize the undesired responses. We describe

the general contours of their design below and refer the interested reader to [36] for further

details of their implementation.
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The first algorithm, CREW(gra), starts by assuming the minimum eigenvector in the w-step,

producing the filter

w = R−1
u
(s). (5.6)

Then, the MSE at the s-step is MSE = (sHR−1
u
(s)s)−1. Minimizing this is equivalent to

maximizing the denominator, and hence we have the optimization problem

max
s

sHR−1
u
(s)s

s.t. ‖s‖2 = N

|sk| = 1, k = 1, . . . , N.

(5.7)

Any feasible signal will have the form s = exp(φ), where φ ∈ R
N is a vector of phases.

Hence, they obtain an unconstrained maximization problem, which they solve via gradient

descent, giving the algorithm its name. To improve performance, they manually supply the

optimization technique (MATLAB’s fminunc) with the phase-dependent gradients.

The next technique, CREW(fre), also uses the w-step form w = R−1
u
s, but it does not

come into play until the signal portion of the algorithm has converged. The signal portion

takes advantage of the assumed Toeplitz structure of Rni to identify the optimal spectral

allocation of the signal s, and then attempts to synthesize a signal with that spectrum by

sequentially updating an initialized sequence of signals. The frequency allocation process

is performed with a bisection algorithm and is waterfilling-like, preferentially placing power

in bands where the signal-independent interference is low. The frequency bands used are

determined by the 2N −1 point discrete Fourier transform of the distinct elements (first row

and column) of Rni.

Finally, the last technique, CREW(mat), is similar to CREW(fre), but assumes that the

matched filter w = s is used after the signal synthesis process. This necessitates the use of

173



a slightly different frequency allocation process (and a different bisection algorithm), but it

ultimately is waterfilling-like as well.

5.2.3 Applying the Relaxed BQP

With the competing techniques described, we now discuss how we might employ the relaxed

BQP process for constant-modulus constrained problems to attack this problem, as well as

note some specific results that are implied by the theorems in Chapter 4.2. Much of this

analysis is nearly identical to that of Chapters 3 and 4, so we will be economical in our

explanations.

First, we must massage the original problem (5.5) into a form similar to (2.30), so we

can perform the relaxation. As noted above, we have the following relationships between

the various parameters in the constant modulus problem. The total number of (complex)

parameters is 2N , the target channel matrix T = IN , the modulus constraint is ρ = 1, and

the clutter channel matrices Γq are given by

Γq =





J−q q ∈ {1, . . . , N − 1}

Jq−N+1 q ∈ {N, . . . , 2(N − 1)}
. (5.8)

However, the original problem in does not explicitly specify an “optimal” denominator wHs

and thus does not directly provide us with a particular Capon constraint κ.

At the very least, we can use the Slater condition of Theorem 4.1 to identify bounds for κ

where the duality gap is guaranteed to be zero and the Lagrange parameters are guaranteed

to exist. Recall that the theorem states the Slater condition is satisfied if Nρ2 > |κ|2
‖T‖2F

. When
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applied to this problem, and after some algebra, this condition becomes

|κ| < N. (5.9)

This is a sensible constraint, since the matched filter implies |κ| = N , and an optimal

mismatched filter would likely have a smaller alignment than the matched filter itself. With

that in mind, we also note that since the target matrix is the identity, the relaxed version of

the Capon constraint becomes

tr(BH
2 ) = κ (5.10)

tr(B2) = κ∗. (5.11)

Thus, if κ ∈ R, we can assume thatB2 is a Hermitian matrix. This is the limit of what we can

do theoretically; thus, we will investigate the implications of changing κ in the simulations

below.

Additionally, since we can reasonably assume that rank(Rni) = N , we can assume that

the dual variable µ̃M 6= 0N×1 and any solution will take on the spectrum-filling character

we saw previously. We can also find an explicit form of Σ2 as well. Recall that Σ2 =

σ2
c

∑Q
q=1 tr(Γ

H
q B2)Γq − µ̃C∗T. Applying this to the reverberant channel parameters, we see
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that Σ2 actually becomes Toeplitz itself, with the form

Σ2 =




µ̃∗
C tr(J−1B2) tr(J−2B2) . . . . . . tr(J−(N−1)B2)

tr(J1B2) µ̃∗
C tr(J−1B2)

. . .
...

tr(J2B2) tr(J1B2)
. . . . . . . . .

...

...
. . . . . . . . . tr(J−1B2) tr(J−2B2)

...
. . . tr(J1B2) µ̃∗

C tr(J−1B2)

tr(J(N−1)B2) . . . . . . tr(J2B2) tr(J1B2) µ̃∗
C




.

(5.12)

Clearly, if κ is real, then µ̃C is real and Σ2 is also Hermitian. We could, potentially, use this

structure to more efficiently solve the relaxed problem, but we leave this for a later time.

Next, we turn to a discussion of the clutter matrix CV and its properties in this application.

We begin by observing that for any two shift matrices, we have

tr(JTi Jj) = vec(Ji))
T vec(Jj) = (N − |i|)δij (5.13)

where it is assumed that i and j share the same sign. If i and j do not share the same sign,

then the trace above is also zero. These facts imply the vector set
{

1
N−|i| vec(Ji)

}N−1

i=−(N−1),i 6=0

is orthonormal, and spans a 2(N − 1) subset of CN2
. Since the clutter matrix is given by

CV = σ2
c

N−1∑

i=−(N−1)
i 6=0

vec(Ji) vec(Ji)
T , (5.14)

we can surmise that the spanning subset above is, in fact, the range R(CV )! Hence, for

the reverberant channel, rank(CV ) = 2(N − 1), which takes up a mere fraction of its total

dimension. We might imagine that this means an optimal solution has many degrees of

freedom to choose from in nulling the clutter, but it also limits the possibility of unique
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solutions. However, this does not guarantee that a given solver will be able to attain such

nulling under the constraints.

5.3 Simulations

With the general theory described, we now turn to comparative simulations to determine

if the RBQP approach is viable for the reverberant channel, or at least comparable to the

techniques demonstrated in [36]. In this section, we will consider varying the total length

of the signal and the type of signal-independent jamming encountered to demonstrate some

potential gains and challenges of blindly applying our technique to other models.

5.3.1 Common Simulation Parameters & Methods

In these simulations, we use most of the common parameters from [36]. In particular, we

assume that the signal-independent covariance matrix Rni has the following form

Rni = σ2
n
IN + σ2

i
Ri, (5.15)

where σ2
n
, σ2

i
are the noise and jammer powers, respectively, and Ri is the normalized cor-

relation matrix of the interference/jamming, which is also assumed Toeplitz. Assume that

the discrete frequency spectrum of the jammer is given by the coefficients {ηp}2N−1
p=1 , each
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evaluated at the frequency fp =
p−1
2N−1

. Then, the jammer correlation matrix is given by

Ri =




1
q∗1
q0

. . .
q∗N−1

q0

q1
q0

1
q∗N−2

q0

...
. . .

...

qN−1

q0

qN−2

q0
. . . 1




(5.16)

where the coefficients qi are the elements of the inverse DFT of η = [η1 . . . η2N−1], given

by IDFT(η = [q0 q1 . . . qN−1 q
∗
N−1 . . . q1], and we have normalized the matrix to have an

all-ones diagonal.

For consistency with [36], we choose σ2
n
= 0.1, σ2

i
= 100, and σ2

c
= 1 throughout all simulati-

ons. We consider a large variety of signal lengths, namelyN = [5, 8, 10, 20, 25, 50, 75, 100, 150, 200].

While CREW(fre) and CREW(mat) have been shown to efficiently compute signal lengths

in the thousands, we limit the maximum problem size to 200 because CREW(gra) (owing to

the need for first-order derivatives) and RBQP (owing to the limitations of certain interior-

point solvers) can require significant amounts of memory to operate. As before, to enable

computation of the RBQP method, we implement the problem in CVX [87, 86] and use its

interfaces to the solvers SDPT3 [89, 90] and SeDuMi [91]. In all cases, if we compare RBQP

with CREW in terms of MSE, we use the CREW algorithm with the lowest MSE value for a

given signal length. All CREW solvers were initialized with the Golomb polyphase sequence

of length N (see [108, p. 128]), as they were in [36].

5.3.2 Spot Jamming

We begin by considering the behavior of these algorithms in response to a spot jammer

placing power at a single frequency f0 = 0.2 Hz. The power spectrum of such a jammer is
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given by

ηp =





1 p = ⌊(2N − 1)f0⌋

0 otherwise

(5.17)

where the range of p is defined above.

First, we consider if the “optimal” value of |κ| obtained through any of the CREW algorithms

indeed satisfies the Slater condition (5.9). Figure 5.1 shows the obtained value of |κ| from

CREW(fre) in the spot jamming scenario as a function of the signal lengthN , with the dotted

line denoting the Slater condition boundary. We see that, indeed, the iterative technique

satisfies the relaxed Capon constraint – we observed similar behavior from both CREW(mat)

and CREW(gra), so we will not consider them here. With this in mind, we now note that
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Figure 5.1: Obtained Capon constraint |κ| as a function of associated signal length N for
CREW(fre), under spot jamming.

we set the Capon constraint κ = 1 for all instantiations of the RBQP, because, as noted
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previously, so long as the Slater condition is satisfied, the relaxed cost function scales with

κ to keep the resultant SINR/MSE consistent.

With this in mind, we now attempt to compare the CREW methods and the RBQP process.

In Figure 5.2, we compare the best MSE obtained from the CREW algorithms (denoted

CREW(best)), the optimal value of the QSDP (QSDP Opt. Val.), and the best MSE obtai-

ned from the approximate-sum solution baK made feasible (denoted RBQP-Feas). It is clear
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Figure 5.2: MSE comparison of CREW algorithms, the QSDP bound, and two versions of
RBQP-Feas. under spot jamming.

that while our QSDP relaxation does provide a lower bound on the MSE obtained by the

CREW methods, RBQP-Feas. appears to struggle with approaching either the bound or

the CREW-obtained MSE. Interestingly, however, if RBQP-Feas.’s MSE is scaled by N − 1

(shown as Scaled RBQP-Feas.), then RBQP-Feas.’s performance is quite close to (and in

some cases, bests) that of CREW. This is our first clue that the primary cause of the per-

formance loss may lie in a scaling issue in either the synthesis or the relaxed solver itself.
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A natural question, as it was in Chapter 4, is if refinement of the feasible solution can improve

performance. The results of multiple refinement processes are shown in Figure 5.3 below,

where we refine the RBQP-Feas. signal/filter pair with one-step alternating minimization

(AM) or one of the CREW techniques (RBQP-(fre)-R, RBQP-(gra)-R, RBQP-(mat)-R).

While all of the refinement techniques certainly improve upon the unrefined RBQP-Feas.,
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Figure 5.3: MSE comparison of refinement of RBQP techniques and baselines under spot
jamming.

refinement through CREW(fre) (RBQP-(fre)-R) shows the most promise, though for longer

signals, the performance gains taper off. This gives us further reason to believe that while

the current solver techniques for QSDP determine the actual optimal value for the original

program, they may not be able to obtain good-quality solutions for larger problem sizes,

which in turn affects the capacity for refinement.

We can diagnose this performance issue in multiple ways, but the most instructive is deter-

mining if the conditions for the rank bound given by Theorem 3.8 are satisfied. Since our

simulations assume a signal-independent covarianceRni that is full rank, the theorem tells us
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that the rank of the optimal relaxed solution rank(B) is bounded above by N−rank(Σ/Rni)

where the matrix Σ/Rni is the Schur complement of the upper diagonal block of the op-

timal dual variable Σ. A comparison of rank(B), the rank of the dual Schur complement

rank(Σ/Rni) and the expected rank bound above for the spot jamming scenario is shown

in Figure 5.4. We have estimated the ranks by determining the point at which the singular

values of the respective matrices drops below 1e-12. If the relevant solvers were obtaining
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Figure 5.4: Estimated rank comparison of QSDP optimal solution, optimal dual Schur com-
plement, and rank bound of Theorem 3.8 under spot jamming.

exact KKT-satisfying solutions to the relaxed problem, then the actual rank curve would

either be below or along the expected rank curve. However, past N = 50, this is not the case,

indicating that the interior point solvers of SDPT3/SeDuMi do not produce exact solutions

to the desired QSDP, which certainly can lead to the recovery problems noted above. Note

that while the curves for rank(B) and rank(Σ/Rni) appear to coincide past N = 50, they are

actually separated by a constant factor of one. This correspondence is further evidence of the

limitations of the current interior-point solvers, since ideally rank(B) + rank(Σ/Rni) ≤ N .
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We therefore conclude that, for this particular problem, increasing the problem size past a

certain point can lead to issues in recovering an acceptable rank-one approximate solution

from our relaxation. As we will see below, however, this is not necessarily true across all

environmental scenarios.

5.3.3 Barrage Jamming

We now repeat the above analysis for the case of a barrage jammer emitting in the frequency

band [f1, f2] = [0.2, 0.3] Hz, which corresponds to a power spectrum of

ηp =





1 p ∈ [⌊(2N − 1)f1⌋, ⌊(2N − 1)f2⌋]

0 otherwise

. (5.18)

First, we return to the comparison of CREW(best) with the QSDP optimal value and the

feasible recovery RBQP-Feas, which is shown in Figure 5.5. As expected, the increase in

jamming has raised the MSE for all of the techniques, and RBQP-Feas. still struggles as the

signal length N increases. While we were unable to determine an exact scaling to “return”

RBQP-Feas. to a respectable value, we do believe that it a function of the jammer frequency

interval and N .

As before, we then examined if refinement of RBQP-Feas. could restore performance, if

not to the bound, then at least to the level attained by the CREW techniques. Figure 5.6

demonstrates clearly that all of the refinement techniques are able to restore performance to

a far higher degree than in the spot jamming scenario. In particular, RBQP-CREW(fre)-

R refinement mostly coincides with the CREW (best) performance, with RBQP-(mat)-R

coming in a close second for larger signal lengths. The relatively poorer performance of

RBQP-AM-R and RBQP-(gra)-R can be attributed to how ill-conditioned these procedures
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Figure 5.5: MSE comparison of CREW algorithms, the QSDP bound, and two versions of
RBQP-Feas. under barrage jamming.

can become for large variable sizes. Similar to the constant-modulus problem in Chapter 4,
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we attribute the performance gain in this “more-interference” case to the additional known

structure in the problem that allows the initial refinement solution to be “closer” to the

optimal than in the spot jamming scenario.

We can confirm this by once again examining the ranks of the optimal solution B, the dual

Schur complement (Σ/Rni), and the expected rank bound, which is shown in Figure 5.7

below. Again, the rank is estimated to be the point where each matrix’s singular values drop

below 1e-12. Here, the rank of B coincides with the predicted rank bound up to N = 100
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Figure 5.7: Estimated rank comparison of QSDP optimal solution, optimal dual Schur com-
plement, and rank bound of Theorem 3.8 under barrage jamming.

(which is never more than 11). This indicates again that the additional known structure in

Rni permits the solver to more accurately identify the optimal relaxed solution, but only

up to a point. Hence, we believe that our technique is, in fact, still valid even for this very

challenging (but nominally simpler) model, and the limiting process is the solver. We leave

the more detailed work necessary to complete such an analysis for future research.
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Chapter 6

Conclusions & Future Work

In this dissertation, we examined the utility of a variety of convex relaxations for joint

signal-beamformer design for radar systems. We demonstrated both the limitations and

potential for various iterative methods, as well as developed quadratic semidefinite program-

ming techniques to directly solve for both parameters simultaneously across a number of

constraints and radar paradigms. This chapter summarizes the most salient aspects of our

contributions and provides directions and questions for future research.

6.1 Conclusions

First, in Chapter 2, we demonstrated that under most typical design paradigms, the joint

problem is a complex biquadratic program (BQP) with, at minimum, coupled bilinear con-

straints. Since the BQP is known to be NP-hard and non-convex, historical methods focused

on either explicitly quartic procedures in the signal variable or an iterative tradeoff between

signal and beamformer. We showed that a variety of new methods may be employed in the

latter case – in particular, ones that consider simple projection of the eigenspace of the previ-
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ous iterate onto the cost function and other constraints. These methods were further shown

to typically have superior convergence properties to other methods extant in the literature

and, as a preview for later chapters, converged to the optimal value of the relaxed BQP in

Chapter 3. Furthermore, we proved that monotonic convergence for any bi-convex program

with per-iteration dependence on the constraint sets is guaranteed, with certain conditions

ensuring superlinear convergence. This proof also demonstrated that, for our particular pro-

blem, appropriately considering the Capon constraint at each iteration guarantees identical

limit points are reached, regardless of implementation. Therefore, our contributions showed

potential simultaneous optimization would provide both theoretical and practical benefits.

Next, in Chapter 3, we outlined the theory of quadrative semidefinite programs in relation

to the joint design problem, both in general and for the the least restrictive power-only

constraint. By using the primal KKTs, we were able to completely characterize all feasible

solutions to the relaxation. We first demonstrated an immediate linkage between the se-

quential feasibility of the projected QCQP methods of Chapter 2 and the Slater condition

of the relaxed problem, which is fundamentally achievable in a practical radar system.

Furthermore, we showed that a solution to the relaxed problem is always power-bounded if

the rank of the covariance matrix of the signal-independent sources is full. In these cases,

the rank of the relaxed problem is guaranteed to be no greater than the length of the

signal, N , which bodes well for potential recovery of a high-quality rank-one solution for

the initial problem. In fact, we also showed that the rank of the relaxed solution is at most

the multiplicity of the maximum eigenvalue of the dual matrix, which elegantly links the

target, the clutter operator, and the noise-interference covariance matrix elegantly. While

most theoretical cases assume a full rank covariance, it is possible that in a realistic scenario

to have an incomplete estimate that is less than full rank. In these cases, all solutions are

not power-bounded, and attempt to encroach on this assumed nullspace. Hence, the rank
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bound is inflated by the size of the nullspace of the covariance. We additionally showed a

comprehensive characterization of all solutions in this non-power-bounded scenario.

Regardless of the rank of the signal-independent sources, our theoretical discoveries were

confirmed through computational experiments. These showed that, in fact, most parameter

cases lead to an effectively rank-one solution, particularly in the power-bounded solutions.

Hence, optimal recovery of a good filter-signal pair is more than possible; it is probable.

Further numerical analysis revealed that across both angle and Doppler variation of the

target, the QSDP/RBQP method can outperform all of the alternating methods discussed

in Chapter 2. This performance gain typically occurs when the power Po is large, since

overall convergence depends on appropriate parameter scaling. This boost in SINR also

leads to performance increases in detection, which is a boon for our motivating waveform

adaptive STAP paradigm. We also saw that the adapted patterns seen in traditional STAP

are functionally preserved, subject to the availability of degrees of freedom to obtain the

desired amount of resolution and source separability.

In Chapter 4, we extended the QSDP formulation to account for more restrictive waveform

constraints: constant modulus and similarity. To begin, however, we demonstrated that

the common interpretation of the similarity constraint is mostly fallacious through a simple

counterexample. Rather than interpreting this constraint as permitting inheritance of “good”

waveform properties, the similarity constraint should instead be regarded as “merely” a

proximal term induced by other systemic constraints, like estimation validity or transmitter

actuation. With this in hand, we then reapplied our methods of Chapter 3 to the newly

constrained versions of the design problem.

First, we considered the constant modulus formulation, where there are historically many

approaches to casting the design problem. Since our relaxation approach essentially requires

design of both amplitude and phase components of the signal (due to the spectral nature

of the relaxation), we did not attempt an explicitly phase only design. Again using the
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KKTs, we showed the general observations on rank and feasibility observed in the power-

constrained problem of Chapter 3 still mostly hold, with rank guarantees dependent on the

environment’s capacity to meet the modulus constraint. As before, in full-rank noise-and-

interference scenarios, the rank of the optimal relaxed solution is no more than N . Unlike in

the power constrained case, however, we did not find that conventional convex solvers were

able to recover numerically rank-one feasible solutions across all scenarios. As we showed, in

medium-to-low Doppler frequencies (or indeed anywhere where the effective alignment of the

target with the clutter was high), the effective rank of the constant modulus relaxed solution

inflates to at least two. Furthermore, the magnitude of the secondary eigenvalue can be a

significant fraction of the overall spectral power, which meant that not only were maximum

eigenvector synthesis solutions suboptimal, they were often non-feasible! Attempting to

use the approximate basis sum procedure to synthesize solutions performed no better, even

when forced into feasibility. Introducing signal-independent interference led to the seemingly

paradoxical reduction of the region over which the rank-inflation occurred, which we attribute

mostly to introducing additional known structure into the signal-independent portion of the

received signal covariance matrix, as well as possibly ”smoothing out” difficult regions of

clutter. We anticipate that if the interference is more significantly aligned with the target

regions, we anticipate that some of this supposed gain will, in fact, be lost.

Regardless of the environmental conditions that may mitigate the impact of this rank-

inflation, this loss of performance is not insignificant. This difficulty prompted our investi-

gation into other methods of solution synthesis from the relaxed solution spectrum. First,

we considered a randomization strategy, inspired by the literature for linear semidefinite

programs and its use in some of the iterative techniques of Chapter 2. However, at least in

our QSDP case, the variance of the cost function under consideration actually has an excess

term that is effectively non-convex. Therefore, any approximation arising from this method

minimized this new total cost, which may not minimize the particular cost function that we

desire. This inconsistency’s impact was borne out in our simulations, which showed that
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randomization provided very poor solutions, even when compared to the aforementioned

extremely suboptimal approximations above.

Our second strategy considered applying one of the alternating techniques from Chapter 2

to refine the approximate basis solutions after they had been made feasible. In principle,

either the signal or the filter obtained from an approximate basis solution can be used to

initialize any of the algorithms discussed previously. For fairness, we chose to use a common

gradient descent technique to perform the refinement process.

Even with very few iterations, this refinement technique restored all gain lost from the “ex-

pected” relaxed optimal value by the approximate basis solutions in rank-inflated scenarios.

There are possible cases where additional refinement iterations would be valuable, among

other variations that might be considered, but we will leave such speculation to the next

section. Furthermore, not only did this refinement process provide a rank-one “solution”

to the relaxed problem, it also outperformed the competing techniques currently in the li-

terature by a wide margin (up to 3 dB at certain angle-Doppler locations). Additionally,

the overall variation of the refined waveform-filter pair from the initializer is quite small,

indicating both that the initial approximation is quite close to the optimal point (and the

cost function can vary significantly even slightly away from the minima) and that a different

QSDP solver could produce this solution on its own. On this latter point, we note that this is

possible because the general version of the rank prediction described in Lemma 3.2 is merely

an upper bound! Ultimately, we are convinced that, with the addition of the refinement

step, our design philosophy fares well for constant-modulus problems.

Far more immediately successful was the application of the joint relaxation to similarity-

constrained problems. Due to the added structure of the goal signal, we were able to propose

a nearly-closed-form solution in power-bounded cases, and also identified succinctly when

solutions are alignment-bounded. In particular, solutions are alignment-bounded if and

only if the signal-independent disturbance covariance is full rank and the goal signal is not
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already sufficiently aligned with the power-constrained solutions detailed in Chapter 3. This

was provided in Theorem 4.5 and shown numerically to hold generically. Hence, we propose

the concept of performing the less-constrained optimization prior to the more constrained

optimization, identify when the power-constrained solution’s alignment exceeds that of the

goal signal’s, and only perform the similarity-constrained optimization when this exceedance

does not occur.

We showed that in most cases, the rank of the relaxed solution is again upper-bounded

by the signal length N and numerically produces nearly rank-one optimal solutions. This

enabled us to eschew any further refinement of the approximate basis recovery technique,

as explored for the constant modulus case. Additionally, we showed that, once again, our

relaxation technique outperforms those available in the literature by several dB across mul-

tiple scenarios. This is true even when solver tolerances for the competing techniques are

set to rather low values. We also directly demonstrated, through multiple proofs, our asser-

tion that the ambiguity “inheritance” interpretation of the similarity constraint is, in fact,

severely misguided.

In Chapter 5, we intended to show that our general technique has utility beyond the

waveform-adaptive STAP applications considered in Chapters 3 and 4, though there is

need for further investigation To do this, we discussed another sensing model that admits

the vector-matrix channel representation: the basic reverberant channel as investigated by

Stoica, He, and Li [36]. In this case, the channel model advanced in Chapter 2 applies di-

rectly, and so our techniques would nominally be a one-to-one map. While we found that the

QSDP process did produce an effective lower bound for the optimal value of the mean square

error, recovery of good rank-one solutions was challenging, even with refinement through the

CREW techniques. This was especially for the less-difficult spot jamming case. However,

the performance recovery attained by refinement in the barrage jamming case, as well as

our speculative investigation of the ranks of the obtained primal and dual relaxed soluti-
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ons, indicated that numerical difficulties encountered by the interior-point solvers used to

obtain the relaxed solution were the primary driver of the performance loss. Additionally,

we note that CREW(fre) and CREW(mat) take advantage of additional structure inherent

in the problem to both speed up calculation (through the use of FFTs) and provide better

numerical stability. We believe that a purpose-built QSDP solver could mitigate some of

these losses and attain better overall performance. Finally, we note that this channel model

has limitations of its own, which contributes to the numerical issues we encountered in the

QSDP solver. Namely, the reverberant channel in [36] is a SISO model and therefore does

not have any other degrees of freedom to separate the multipath scattering from the direct

scattering, other than the given time shifts. Additional degrees of freedom in either space

or time would radically change the complexion of the channel matrices, as in the WA-STAP

case, and can lead to far better performance in general. Furthermore, we believe that the

model itself incorrectly states the overall resolvability of the multipath components – it is

hard to believe that any reverberant channel would have resolvable fluctuations up to the

signal length within a short overall pulse length. Ultimately, a joint signal-filter design pro-

cess is only as good as the structure of the model with which it is presented. In that regard,

irrespective of the signal model, we believe our technique does quite well indeed.

6.2 Limitations and Future Work

While, in a selfish way, we would love to assume that this work is the final word on all things

QSDP for active sensing optimization, it is inescapable fact that there are both limitations

to what we have presented here, as well as significant room for future growth and research

along these lines. Since we are our own harshest critic, we start with the shortcomings.

First, we recognize that the bulk of our work hinges on the ability of the system designer to

create a linear channel model that sufficiently captures the interaction between independent
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transmit and receive degrees of freedom. Thus, more complex parameter choices, like field

polarization or carrier frequency, are functionally not supported by our technique, at least

not directly. It is our belief, however, that some of these design choices – automated or not

– might be better addressed by higher levels of control and information tracking, see, e.g.

feedback control in target tracking [11, 12]. This also extends to the choice of constraints

considered; we did not consider spectral co-existence, limited transmission alphabets, or

direct ambiguity control, though our technique may reasonably be extended to include them.

Continuing on the modeling limitations, all of our developments were predicated on complete

prior knowledge of the signal-independent source covariance and the channel responses of

the clutter and target. There are two possible directions that are worth investigating. First,

ironically, due to the form of our relaxation, uncertainty in the clutter can be handled exactly.

Our reasoning is thus: as with any modeling, we can assume the clutter patches Γq come

from some expected distribution. Assuming the vectors vec(Γq) come from a zero-mean

distribution, we might consider a design where ECV = E{vec(Γq) vec(Γq)H} is used instead

of the random variable CV . Therefore, so long as we assumed a known target channel matrix,

the optimization techniques shown in this dissertation functionally do not change, though a

certain loss of performance should be expected from using the clutter covariance information

E{CV } instead of the clairvoyantly known CV .

Next, we might consider uncertainty in the target channel matrix as well; that is the tar-

get channel matrix comes from some distribution vec(T) ∼ CN (0N2ML×1,Rτ ), where the

covariance matrix Rτ is known a priori. Some earlier work in this vein was performed by

[35], but it (obviously) has yet to be explored in the RBQP framework. However, we note

that this would essentially result in biquadratic constraint, due to the structure of Rτ . If

relaxed, this becomes a quadratically-constrained QSDP (QC-QSDP), which some of the

solvers discussed above cannot handle and others handle poorly. Fortunately, there has been
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some research into purpose-built QC-QSDP solvers which could be employed for this task

[111].

Finally, we note that, throughout this dissertation, we used traditional interior-point solvers,

which functionally limited the overall size of the problems we could reasonably consider with

our available computing power. We believe strongly that employing purpose-built QSDP

solvers like QSDPNAL [56, 92] would lead to significant solver speedup and also permit the

investigation into realistic problem sizes (tens-to-hundreds of spatial, Doppler, and temporal

samples). A purpose-built augmented Lagrangian solver would also be extremely useful in

our specific case, because the block separability and “obvious” optimal dual values allow for

extreme simplification of the process. However, we did not attack this specifically in this

dissertation – our goal was to investigate the technique, not directly create the optimization

tools.

In summary, what we have shown in this dissertation is merely the potential of joint re-

laxation procedures for simultaneous design of transmission and reception in active sensing

systems. We recognize that there is far more work yet to be done, and we hope that this

work can be an effective starting point.
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Appendix A

Proof of Theorem 3.6

In this appendix, we provide an abbreviated proof of Theorem 3.6. In order to prove that

the Slater Condition is satisfied, we first find the generic matrix that satisfies the equality

constraints, then ensure the resulting matrix is both positive definite and strictly satisfies the

power inequality. As a combined matrix-vector equation, the complex equality constraints

are given by



τ̃ TKJ,J

τ̃H


β = Eβ =



κ

κ∗


 (A.1)

where E is implicitly defined.

We first demonstrate that a generic matrix solution exists to this equation and provide its

form. Since E is a fat matrix, its pseudoinverse is E† = EH(EEH)†. It can be shown that

the Gramian matrix above is



τ̃ TKJ,J

τ̃H






τ̃ TKJ,J

τ̃H




H

= ‖T‖2F I2.
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So long as we have a non-zero target matrix, this is always invertible. Furthermore, this

implies that PE = EE† = I2 and hence a solution to (A.1) always exists. Therefore, a

general solution to the equality constraints is the matrix

B = Z+
1

‖T‖2F




0NML×NML (κ∗ − tr(THZ2))T

(κ− tr(ZH2 T))TH 0N×N


 .

where Z is a Hermitian matrix of identical dimension and partitioning to B. This additional

matrix is necessary because the min-norm solution obtained by setting Z = 0J×J ,

Bmin =
1

‖T‖2F



0NML×NML κ∗T

κTH 0N×N


 ,

is an indefinite matrix, and hence not a Slater point. Hence, it is now sufficient to prove

there exists a Z such that B ≻ 0 and tr(Z3) < Po. We make the judicious choice that

Z2 = 0NML×N . Under this assumption, our solution matrix is

B =




Z1
κ∗

‖T‖2F
T

κ
‖T‖2F

TH Z3


 .

The positive definiteness requirement can then be expressed as the matrix inequalities

Z1 ≻ 0, Z3 −
|κ|2
‖T‖4F

THZ−1
1 T ≻ 0

Here, we rely on another judicious choice, setting Z1 = INML, which is clearly positive

definite.1Now, it is merely sufficient to prove there exists Z3 such that Z3 ≻ |κ|2
‖T‖4F

THT and

tr(Z3) < Po. Let us assume that such a matrix exists. Following [101, Corollary 7.7.4(d)],

since Z3 ≻ |κ|2
‖T‖2F

THT, then tr(Z3) >
|κ|2
‖T‖4F

tr(THT) = |κ|2
‖T‖2F

. But we already know that

1We can make this choice because NML > N . If, for whatever reason, the number of transmit resources
were greater than the number of receive resources, then we could start with Z3 and continue from there.
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tr(Z3) < Po. Hence, we have the chained inequality

Po > tr(Z3) >
|κ|2
‖T‖2F

.

It therefore follows that there will exist such a matrix Z3 if and only if Po >
|κ|2
‖T‖2F

. Hence,

we have found the sufficent condition of Theorem 3.6 directly and the proof is complete. We

note that a sufficently good choice is Z3 =
α
N
IN , with α in the aforementioned interval.
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Appendix B

Further Details of the Primal KKTs

of the Power-Constrained RBQP

In this appendix, we summmarize the derivation of the KKT conditions alluded to in Chap-

ter 3.2.2. Much of this material has been reproduced from [65, 66].

B.1 KKT Condition 1: Stationarity of Lagrangian

Let Σ be the slackness variable associated with the PSD condition on B, and let σ be its

vectorization. Furthermore, let ρ = vec(R̃ni) and ψS = vec(ΨT
SΨS). When vectorized, the

Lagrangian of (3.24) under complex constraints is

L(B,Σ, µ̃C , λP ) = βH(C̃V β + ρ− µ̃∗
C τ̃ + λPψS − σ) + µ̃∗

Cκ− λPPo. (B.1)
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After taking the appropriate derivative, KKT Condition 1 is

(C̃V +KJ,JC̃
∗
VKJ,J)β = σ − (ρ+ µ̃∗

C τ̃ + µ̃C τ̃H + λPψS). (B.2)

where τ̃H = vec(T̃H). Given the four disjoint projection matrices PWW ,PSW ,PWS,PSS

defined in Chapter 3.1.1, we can decompose the vectorizations of B and Σ into sums of

vectorizations of each partition. For example,

β = PT
WWβ1 +PT

SWβ2 +PT
WSβ2,H +PT

SSβ3

where the subscript indicates which submatrix is vectorized, and β2,H = vec(BH
2 ). It can be

shown [65], then, that (B.2) implies (3.31) so long as

CV β2 = σ2 + µ̃∗
Cτ (B.3)

whose solution exists if and only if P⊥
CV
σ2 = −µ̃∗

CP
⊥
CV
τ where P⊥

CV
= IN2ML − CVC

†
V is

the orthogonal projector onto the nullspace of CV . Additionally, the matrices B1 and B3

are “free” parameters under (B.2), but they are constrained by later conditions.

B.2 KKT Conditions 2-4: The Inequality Constraints

With the gradient condition exhausted, we turn to the inequality constraints (power bound,

positive-semidefiniteness of the solution) and their related conditions. For convenience, we

shall attack these somewhat independently in separate subsections, though they will interact.
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B.2.1 The power constraint

Using the partition mentioned above, the conditions related to the power constraint are:

λP ≥ 0 (B.4)

Tr(B3)− Po ≤ 0 (B.5)

λP (Tr(B3)− Po) = 0. (B.6)

A nice result of the slackness condition is λP Tr(B3) = λPPo, which we will use later. The

other “result” is that λP = 0 when the solution does not reach the power bound, and λP > 0

when it does. This fact will inform interpretations of the solution found in Section 3.3.

B.2.2 Positive semidefiniteness of B

The conditions for semidefiniteness of the relaxed beamformer-signal basis are slightly more

complex, but reveal a significant amount of structure to the solution. First, the direct form

of these conditions are

Σ � 0, B � 0, ΣB = 0J×J .

Of course, in this form, they are not especially useful. However, given (3.31), we know the

structure of Σ somewhat. The most useful characterization of semidefiniteness here is that Σ

is PSD iff a contraction X ∈ C
NML×N exists such that Σ2 =

√
λPR

1/2
ni X (see [101, Theorem

7.7.9(a,b)]).
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The matrix complementary slackness condition reduces to the following 4 equalities:

B1Rni = −B2Σ
H
2 (B.7)

B1Σ2 = −λPB2 (B.8)

BH
2 Rni = −B3Σ

H
2 (B.9)

BH
2 Σ2 = −λPB3. (B.10)

These conditions have significant consequences in Section 3.3, but they also result in equiva-

lent forms for λP
1. First, taking the trace of (B.10) and substituting in (B.6) on the right

hand side, we have

λP = −tr(BH
2 Σ2)

Po
.

Since λP is both real and nonnegative, this means that tr(BH
2 Σ2) is real and nonpositive.

We can apply this to the trace of (B.7) to obtain another form, λP = tr(B1Rni)
Po

.

We can also apply this logic to (B.3) to reveal an interesting consequence about the cost

function. If premultiplied by β2 and rearranged,

βH2 σ2 = β
H
2 CV β2 − µ̃∗

Cβ
H
2 τ

Applying the equality constraint, this is equivalent to

βH2 σ2 = β
H
2 CV β2 − µ̃∗

Cκ.

Incidentally, this implies µ̃∗
Cκ is real, and hence the optimal phase of µ̃C is that of κ.

1As we see in Chapter 4, conditions (B.7) and (B.9) are in fact general for any set of signal constraints.
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From the above, however, we can see that −βH2 σ2 = λPPo = tr(B1Rni), and so

µ̃∗
Cκ = βH2 CV β2 + tr(B1Rni). (B.11)

The right hand side of (B.11) is immediately recognizable as our objective function, which

implies a potential future analysis on the dual problem that is equivalent to our findings

here. This is where we obtain that the optimal value of the RBQP (3.24) is wholly described

by the dual variable µ̃C .

B.3 KKT Condition 5: Equality Constraints

This is the final major KKT condition left to examine, because KKT Condition 6 is trivi-

ally satisfied by CV being positive semidefinite. Here, our primary concern is the equality

constraint βH2 τ = κ. According to the first KKT condition, we know that

β2 = C†
V (σ2 + µ̃∗

Cτ ) +P⊥
CV

z2. (B.12)

for some vector z2 ∈ C
N2ML. Substituting this into the equality constraint gives us

σH2 C
†
V τ + µ̃Cτ

HC†
V τ + zH2 P

⊥
CV
τ = κ. (B.13)

More importantly, we recognize that the columns of B2 and T must align for there to be a

non-trivial feasible solution.
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Appendix C

Proof of Theorem 4.1

In this Appendix, we provide an abbreviated proof of Theorem 4.1.

We recognize that we must first solve the simultaneous equalities in (4.13). If we put them

in terms of the joint vectorized matrix β and vectorized target matrix τ̃ = vec(T̃), then the

set of equations is

Yβ =

[
ρ21TN κ κ∗

]T
(C.1)

where Y =

[
PT
SSLd,N KJ,J τ̃ τ̃ ∗

]T
. So long as there is a target constraint, the pseudoin-

verse Y† = YH(YYH)−1 is given by

Y† =

[
PT
SSLd,N

1
‖T‖2F

KJ,J τ̃
∗ 1

‖T‖2F
τ̃

]
(C.2)

Clearly, the projector onto the columns of Y is the identity and there is always a general

solution to the equality constraints.
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The ”min norm” part of the solution, when reshaped into a matrix, is given by:

Bmin =



0NML×NML

κ∗

‖T‖2F
T

κ
‖T‖2F

TH ρ2IN


 (C.3)

Clearly, this can never be positive definite, so we need the “nullspace” element of the general

solution to achieve our interior point. With this component added, it can be shown that the

full general Hermitian solution to the equality constraints is therefore

B =




Z1 Z2 +
κ∗−tr(THZ2)

‖T‖2F
T

(Z2 +
κ∗−tr(THZ2)

‖T‖2F
T)H ρ2IN + Z3


 (C.4)

where Z3 has an all-zero diagonal. In order to find a positive definite solution, we could

make a judicious guess and set Z2 = 0NML×N and Z3 = 0N×N . This means the potential

solution Bguess is

Bguess =




Z1
κ∗

‖T‖2F
T

κ
‖T‖2F

TH ρ2IN


 . (C.5)

As in our proof of Theorem 1 of [66], we can again judiciously guess Z1 = INML. This

ensures that the only necessary condition for an interior point to exist is

ρ2IN − |κ|2
‖T‖2F

THT ≻ 0. (C.6)

This condition is satisfied if and only if the above matrix is a strict contraction, which implies

|κ|2
‖T‖2F

< ρ2
‖T‖2F
‖T‖22

(C.7)

where ‖T‖2 is the spectral norm, or largest singular value, of T. It is well-known (see, e.g.,

[101]) that ‖T‖2F ≤ N ‖T‖22. Applying this to (C.7), a necessary condition for the existence
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of an interior point is therefore

|κ|2
‖T‖2F

< Nρ2 (C.8)

which completes the proof.
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