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Molecular mechanisms of flavonoids in melanin
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and treatment of melanoma
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Flavonoids are becoming popular nutraceuticals. Different flavonoids show similar or distinct
biological effects on different tissues or cell types, which may limit or define their useful-
ness in cancer prevention and/or treatment application. This review focuses on a few selected
flavonoids and discusses their functions in normal and transformed pigment cells, including
cyanidin, apigenin, genistein, fisetin, EGCG, luteolin, baicalein, quercetin and kaempferol.
Flavonoids exhibit melanogenic or anti-melanogenic effects mainly via transcriptional factor
MiTF and/or the melanogenesis enzymes tyrosinase, DCT or TYRP-1. To identify a direct
target has been a challenge as most studies were not able to discriminate whether the effect(s)
of the flavonoid were from direct targeting or represented indirect effects. Flavonoids exhibit
an anti-melanoma effect via inhibiting cell proliferation and invasion and inducing apopto-
sis. The mechanisms are also multi-fold, via ROS-scavenging, immune-modulation, cell cycle
regulation and epigenetic modification including DNA methylation and histone deacetylation.
In summary, although many flavonoid compounds are extremely promising nutraceuticals,
their detailed molecular mechanism and their multi-target (simultaneously targeting multiple
molecules) nature warrant further investigation before advancement to translational studies or
clinical trials.
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available nutrients in regular diets and as they have exhib-

Flavonoids are a large group of polyphenolic compounds
found in a wide range of vegetables and medicinal herbs;
so far more than 5000 compounds have been identified
[1]. These compounds exhibit a broad range of anti-tumor,
anti-allergic, anti-inflammation, anti-fungal and anti-viral
functions and have attracted much attention in the chemopre-
vention and cancer treatment fields. Because they are easily
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Abbreviations: cAMP-PKA, cyclic AMP-protein kinase A; DTC,
dopachrome tautomerase; TYRP-1, tyrosine-related protein 1;
EGCG, epigallocatechin gallate; MiTF, microphthalmia transcrip-
tion factor; NRF2, nuclear factor erythroid 2 [NF-E2]-related
factor 2; ROS, reactive oxygen species; DNMT, DNA methyl
transferases; NO, nitric oxide
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ited high pharmaceutic potential in preclinical studies, many
of these compounds have become popular as nutraceuticals.
There have been many publications on flavonoids and their
potential roles in the management of cancer; however, infor-
mation about these compounds vis-a-vis the pathogenesis of
melanoma have been limited [2]. As flavonoids show dramatic
cell line and tissue specificities [3, 4], it is incumbent that we
examine what has been done to date both mechanistically
and preclinically before proceeding to translational studies of
melanoma.

Flavonoids include several major groups of compounds
with the shared core backbone structure of flavan: flavones,
flavonols (3-hydroxyflavone), flavanols, isoflavones and
anthocyanidins (Fig. 1A), all with different side group

*Additional corresponding author: Frank L. Meyskens,
E-mail: flmeyske@uci.edu

www.mnf-journal.com



Mol. Nutr. Food Res. 2016, 60, 1264-1274

0 ¢

Flavone

apigenin

luteolin

modifications [5, 6]. The main structure of flavan is com-
prised of three rings: A, B and C rings (Fig. 1A). The above
major groups of flavonoids differ on their modification of side
groups on these rings. These side groups play crucial roles in
the function of these compounds as the side modification can
produce very different activities. Table 1 lists the most com-
monly used flavonoids that have been tested in melanoma
models and their major dietary sources. The most informa-
tive data have been derived from these compounds therefore
this review will focus on these listed compounds and their
possible molecular mechanisms of action in the pathogene-
sis of melanoma. However this is a limited list as there are
many more flavonoids that have been studied in melanocytic
cell lineage, including rutin, robinetin, rhamnetin, naringin,
chrysin, ipriflavone, tangeritin and more, and some deriva-
tives of these compounds [7-9].

Cutaneous melanomas arise from skin melanocytes, a cell
type that is specialized in synthesizing melanin which con-
tributes to skin color and protection against solar UV (ultra-
violet) radiation. Skin color is an important part of beautifi-
cation [10]; for example, a tan color has become desirable for
white skinned individuals (Caucasians) while a lighter color
has become more desirable for darker-skinned Asian individ-
uals, especially women. Therefore the skin care industry has
been seeking various methods to safely manipulate skin color.
As a consequence, there are many studies using flavonoids
as skin-whitening agents [11], as listed in Table 1. This re-
view attempts to summarize the known effect of flavonoids
in melanogenesis and melanomagenesis and their potential

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Flavonol
0 Figure 1. Skeleton structures of ma-
jor flavonoids and luteolin, apigenin
OH and quercetin. (A) Six main classes of
flavonoids are listed, which are the fo-
cus of this review. Locations of three
Flavanol rings (A, B and C) are labelled on fla-

van which are the same for other com-
pounds. (B) Structure comparison of lute-
olin, apigenin and quercetin. The different
side groups are circled in luteolin struc-
ture. The boxed side groups in apigenin
show a typical structure that is able to bind
metal ions. Comparing these three popular
compounds which sometimes show oppo-
site effects on melanogenesis may provide
some hints on how each side group func-
tions biologically.

molecular mechanisms. As is revealed in this short review,
it is apparent that majority of the pigmentation and anti-
melanoma studies have been performed in vitro and/or in
B16 mouse melanoma cell lines, indicating that in vivo stud-
ies and studies with human cells are still needed to enable
clinic use of these compounds.

2 Flavonoids function in melanogenesis

As listed in Table 1, cyanidin, hesperetin, apigenin, genistein
and fisetin all exhibited melanogenic effect, i.e., stimulated
melanin synthesis. On the other hand, EGCG or other cate-
chins, hesperidin, luteolin, baicalein and kaempferol all in-
hibited melanin synthesis. For quercetin, two studies showed
stimulatory effect and one showed an inhibitory effect. We
have listed cell lines (mouse or human) used in each study be-
cause the regulation of melanin syntheses may be different in
human and mouse normal and malignant cells by these com-
pounds. Indeed, caution when evaluating these compounds
across species types needs to be the order of the day.
Pigmentation is a very complex biochemical process in-
volving more than 300 loci in mice, according to International
Federation of Pigment Research Society website (http://www.
espcr.org/micemut/). Most of these loci have corresponding
orthologues with human genes. Figure 2 lists the major
pathway showing a few key genes in this process. Mainly,
upon stimulation by the a-melanocytes stimulating hor-
mone (a-MSH), MC1R (Melanocortin Receptor 1) transmits

www.mnf-journal.com
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Figure 2. Molecular mechanisms of flavonoids on melanin syn-
thesis. The current understanding of melanin synthesis follows
the cAMP-PKA-MITF-tyrosinase scheme, in which MITF serves as
the master transcriptional factor activating tyrosinase, DCT and
TYRP-1, and receives signals from MC1R. Inhibitory or stimu-
latory effects of each compound are listed in the scheme with
references discussed in the text.

a signal to cAMP-PKA (cyclic AMP and Protein Kinase
A) [12], whose activation leads to enhanced expression of
the melanocytes master transcriptional factor MITF (Mi-
crophthalmia Transcription Factor) which in turn activates
expression of the major melanogenic enzymes tyrosinase,
dopachrome tautomerase (DTC, also known as tyrosine-
related protein 2, TYRP-2) and tyrosine-related protein 1
(TYRP-1) via binding to E boxes on their promoters [13-16].
Agouti signaling protein (ASIP) antagonizes the functions of
a-MSH and inhibits the melanin synthesis pathway (Fig. 2)
[17]. This schema is oversimplified as melanins exist as
two classes: eumelanin and pheomelanin and their syn-
thesis share some regulatory features but differ in others.
Most of melanogenesis effects of flavonoids have been tar-
geted to this simplified scheme. As shown in Fig. 2, hes-
peridin and catechins (including EGCG) inhibited MITF
protein accumulation [18, 19]; EGCG in addition inhibited
tyrosinase accumulation [19, 20]. Hesperetin which stimu-
lated melanogensis, on the other hand, enhanced MITF ac-
cumulation; the upstream signal was not investigated [21].
Baicalein, a depigmenting agent, inhibited MITF accumula-
tion via ERK1/2- phosphorylation mediated degradation [22].
Luteolin, genistein, kaempferol and quercetin all targeted ty-
rosinase directly or indirectly [23-26]. Apigenin did not target
tyrosinase, rather it targeted TYRP-2/DCT and TYRP-1, per-
haps via p38 mitogen activating protein kinase [27].

Note that even though luteolin increased tyrosinase pro-
tein accumulation in B16 melanoma cells, this compound

www.mnf-journal.com
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in the end inhibited melanin synthesis and several stud-
ies suggest that it is a skin-whitening agent [23, 28]. This
may be because luteolin actually inhibited tyrosinase activ-
ity and the upstream o-MSH mediated cCAMP signaling [28].
Results from our lab have revealed that luteolin dramatically
up-regulated ASIP (Agouti-signaling protein) at mRNA level
(17.0 fold of increase as compared to untreated control cells)
in human A375 melanoma cells (data not shown). This ac-
tion may reflect a novel layer of regulation by luteolin for
the melanogenesis pathway, but will require extensive stud-
ies to validate. As shown in Fig. 2, ASIP binds to MC1R and
inhibits a-MSH-mediated cAMP/PKA activation and hence
inhibits downstream melanin synthesis [17], ASIP polymor-
phisms are associated with human pigmentation phenotypes
and melanoma risk [29,30]. To date, ASIP is not known to reg-
ulate pigmentation via an autocrine route; a previous study
showed ASIP expression at the mRNA and protein level in
melanoma cell lines [31], which is consistent with our unpub-
lished results, suggesting this protein may have the potential
to exhibit autocrine function.

Of importance is that although some compounds have
similar structures, they show drastic differences on melano-
genesis regulation. For example, in comparing apigenin and
luteolin, there is only one extra hydroxyl group in luteolin
(Fig. 1B), yet, apigenin stimulated, while luteolin inhibited,
melanin synthesis. It is speculated that the extra hydroxyl
group in luteolin played a crucial role in determining some
specificities of this compound. Also, compared to luteolin,
quercetin has an extra hydroxyl group on the C ring, which
apparently also results in different cellular functions (Fig. 1B
and Table 1). This differential function of structurally similar
flavonoids is not only observed in the melanogensis pathway,
ithas also been observed in cardiovascular and cancer-related
pathways as well [32].

3 Flavonoids function in melanoma
prevention, treatment and metastasis
prevention

Flavonoids have been widely used as experimental chemo-
prevention and chemotherapy agents in many different can-
cer types including breast, prostate, pancreas, bladder, lung
and colon cancer [33-35]. Epidemiological studies show that
estimated dietary intake of total flavonoids (most of the
time it is not specified) is usually (but not always) in-
versely correlated with cancer risk [36-38]. Carefully de-
signed cancer prevention trials (including melanoma) are
currently lacking. Below we summarize the potential molec-
ular mechanisms of flavonoids and their activities in anti-
oxidant, anti-inflammation and immune modulation, anti-
proliferation, anti-angiogenesis, apoptosis induction and po-
tential epigenetic modification, with most studies executed
in vitro, a few in mouse; and some were epidemiological
observations.

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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3.1 Flavonoids as reactive oxygen species (ROS)
scavenger for melanoma

Numerous studies have showed that many flavonoids are po-
tent antioxidants, therefore they may serve as effective scav-
engers of reactive oxygen species [39, 40]. Because excessive
ROS cause many problems including DNA, lipid and pro-
tein damage and aberrant cellular signaling, flavonoids are
apparently protective agents in such conditions.

A number of in vitro assays have been developed to
measure the radical scavenger activities in vitro, including
2,2-diphenyl-1-picrylhydrazyl radical (DPPH assay), ferric re-
ducing anti-oxidant power (FRAP assay), 2,2'-azinobis-(3-
ethylbenzothiazoline-6-sulphonate) radical cation (TEAC as-
say), 2,2"-azinobis-(3-ethylbenzothiazoline-6-sulphonate) rad-
ical (ABTS(-+) assay) (ABTS assay), Folin-Ciocalteu reducing
capacity (FC assay),electrochemical total reducing capacity
and hypoxanthine/xanthine oxidase system coupled with ni-
troblue tetrazolium (NBT) reduction (NBT/XO) [28,41,42]. All
flavonoids listed in Table 1 showed some degrees of free rad-
ical scavenger activities, with luteolin and quercetin among
the most potent antioxidants in the category [4,43]. For ex-
ample, luteolin showed dose-dependent anti-oxidant activity
in DPPH and NBT/XO assays in a cell-free system, as well
as in B16 cells by H2DCF-DA (dihydrodichlorofluorescein
diacetyl)-based intracellular ROS assays [28].

The detailed molecular mechanisms of flavonoids remain
to be clarified but can be summarized into three major
categories:

(i) As chelators for redox-potent transition metal ions, which
include Cd** Fe?*, Co?**, Ni?*, Cu?t, Cr** and Zn?* [44,
45]. These metals cause an ROS increase via different
mechanisms and some are potent carcinogens. The metal
binding sites for flavonoids are usually adjacent hydroxyl
and/or ketone side groups. For example, the potential
metal binding site for apigenin is between the 5-OH group
of A ring and the ketone group on C ring (Fig. 1B, boxed).
Reacting directly with free radicals via their free hydroxyl
group(s) and quench these activities [42]. For example,
quercetin scavenges superoxide free radicals mainly func-
tion through 3'4’-dihydroxy groups on the B ring [46].
(iif) Modulating multiple cellular anti-oxidant systems which
re-establish redox balance in cells after oxidative
stress.

(ii

=

These functions are not mutually exclusive. In a previous
review we summarized the source of ROS in melanoma [47],
including mitochondria, NADPH oxidases, nitric oxidases,
lipoxygenase, cyclooxygenase 2 (COX-2) and melanosomes.
These ROS sources are regulated by major redox
transcriptional regulators NRF2 (nuclear factor erythroid
2 [NF-E2]-related factor 2), and the AP-1 family members
[48-50], among other factors [51]. NRF2 is an important tar-
get for flavonoids as it is also the master transcriptional factor
for redox regulation [52]. Luteolin was initially found to be a

www.mnf-journal.com
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NRF2 inhibitor in lung carcinoma A549 cells [53]; however,
in colorectal and prostate cancers and in neuronal cells lute-
olin activated NRF2 [54-56]. This compound also enhanced
NRF2 translocation into the nucleus where it functions as a
transcriptional activator in neuronal cells [57]. Furthermore,
luteolin inhibited Cr(VI)-induced malignant cell transforma-
tion of human lung epithelial cells by targeting multiple
ROS mediated cell signaling pathways [58]. Luteolin inhib-
ited NRF2 target glutathione S-transferase in SK-Mel-28 hu-
man melanoma cells [59]; we found that luteolin inhibited
NRF2 protein accumulation at 30 M but stimulated NRF2
accumulation at 8 uM in SK-Mel-28 cells (Liu-Smith et al., un-
published data). These studies suggest that luteolin exhibits
different effects on the same target gene in different cell lines,
or even opposite effects on the same target at different concen-
trations. On the other hand, apigenin showed more consistent
effects in different cell lines or in different studies: apigenin
stimulates NRF2 activities in prostate cancer, mouse skin epi-
dermal JB6 P+ cells, hepatocellular carcinoma HEPG2-C8
cells and primary hepatocytes [56, 60-63], via MAPK path-
way, epigenetic modification of NRF2 promoter, or PI3K
pathway. Quercetin shows similar NRF2-enhancing effect as
apigenin, with the end results of activating NRF2-regulated
anti-oxidant genes including heme-oxygenase 1, NAD(P)H
Dehydrogenase, Quinone 1(NQO1) and genes for glutathione
synthesis [64—67]. Genistein and EGCG also induced NRF2
in different cellular background for invoking a protective anti-
oxidant mechanism [68-70]. For other targets, baicalein en-
hanced Cox-2 expression [71], but luteolin, apigenin, genis-
tein suppressed its expression or function [72-75]. Luteolin,
quercetin and apigenin also exhibit AP-1 inhibitory effects
[76-78).

Mitochondria and ROS-generating enzymes can also be
targets for flavonoids; however, published data show that
flavonoids serve either as ROS scavengers or ROS stimu-
lators. In A375 cells apigenin directly targeted and compro-
mised the oxidative phosphorylation system in mitochondria
and induced ROS levels which led to cell death [79]. Simi-
larly, baicalein also induced ROS in B16 cells, possibly vial2-
lipoxygenase [48]; and quercetin increased ROS levels in DB-1
melanoma cells via inhibiting bio-reduction capacity, namely
the glutathione-S transferase and NQO1 levels [80]. On the
other hand, luteolin directly inhibited xanthine oxidase activ-
ity in a dose-dependent manner and reduced cellular ROS
levels in B16 cells [28]. As all antioxidants have the poten-
tial to be converted into pro-oxidants, it is not surprising to
see these conflicting results. Our own experiments with lu-
teolin showed dose-dependent differential stimulating and
inhibitory results on NRF2 (described above) accumulation
in the same cell line, we speculate that some of the flavonoids
may require a specific dose range to act as antioxidants, or else
they may stimulate ROS production. Despite much evidence
that flavonoids serve as ROS scavengers, the anti-oxidant
property is not the only mechanism for their protective roles
for human cells [81]. Next we will discuss their other cellular
roles.

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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3.2 Flavonoids function in anti-inflammation
and immune-modulation in melanoma

There is strong evidence that inflammation and immune sup-
pression play important roles in melanoma etiology, progres-
sion, and even prognosis: (i) the major environmental risk
factor Ultra-Violet (UV) radiation causes skin immune sup-
pression [82], (ii) melanoma tumors contain large amount
of infiltrated immune cells [83] and (iii) BRAF inhibitor-
mediated immunosuppression is a reason for therapeutic fail-
ure [84]. Also inflammation exhibits an intrinsic correlation
with oxidative stress which is highly elevated in melanoma
[85].

For all these aspects, the anti-inflammatory properties
of flavonoids in preclinical have shown a potentially impor-
tant impact on melanoma etiology, prevention and treatment
outcomes. Briefly, flavonoids modulate inflammatory effects
through a few key mediators in melanoma and skin tissues:
AP-1 family transcriptional factors [86], NFkB [87], STAT3
[88] and nitric oxidases (mainly iNOS and nNOS) [89, 90].
AP-1 and NF«B are able to up-regulate cytokine expression
such as IL-8 [91,92]; as stated above, AP-1 can be inhibited by
luteolin, quercetin and apigenin [76-78]. Luteolin was shown
to promote proteasome-mediated degradation of STAT3 and
thus blocked the inflammatory signals from cytokines such
as IL6 and IL10 [93]. Quercetin, on the other hand impaired
STAT3 nuclear localization via altering its phosphorylation
[94]. EGCG prevents UV-induced immunosuppression via a
mechanism that involves production of IL-12. In IL-12 knock-
out mice or mice injected with anti-IL-12 antibodies, EGCG
lost its ability to inhibit UV-induced immune -suppression
[95]. Nitric oxide (NO) plays an important role in the
melanoma inflammatory microenvironment which promotes
tumor growth and metastasis; iNOS-expression in melanoma
is negatively correlated with patient survival [96]; and nNOS
is up-regulated in melanoma and is a potential target for
melanoma therapy [90]. Paracrine NO production led to de-
creased CXC chemokine ligand 10 (CXCL10) levels which
resulted in less inflammatory tumor microenvironment in
melanoma patients and WM1727A, A375 and SB2 melanoma
cell lines [96]. Flavonoids exhibit complex reactions with NO.
In cell free system flavonoids have NO-scavenger activity but
may generate superoxide at the same time [97]; under oxida-
tive stress flavonoids may play an anti-inflammation role via
inhibiting iNOS or inhibiting the NF«kB pathway [97]. Thus it
is likely that the impact of flavonoids on NO levels (perhaps
also ROS levels) is dependent on the flavonoid type, concen-
tration and cellular conditions such as expression levels of
iNOS.

3.3 Flavonoids anti-proliferative, apoptotic
induction and anti-metastatic activities

Flavonoids exhibit anti-proliferative and anti-apoptotic ef-
fects via HGF/SF-Met signaling, MAPK pathway, cell cycle

www.mnf-journal.com
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regulation, differentiation induction and PI3K-AKT pathway.
Like their function in melanogenesis, different flavonoids ex-
hibit different effects on their cellular targets-which are quite
diverse.

Flavonoids inhibited xenografted B16-BL6 mouse
melanoma growth in the decreasing order of effectiveness:
EGCG, apigenin, quercetin, with the latter two compounds
showing similar effects as tamoxifen [98]. EGCG inhibited
colony formation in soft-agar [99], possibly by inhibiting cy-
clin D1, CDK2 and PCNA (Proliferating Cell Nuclear Anti-
gen) while inducing p21%4/9P! and p275P!, and promoting
apoptosis [100]. EGCG reduced MITF protein accumulation
via ERK1/2-independent mechanism [19], which may also
contribute to its anti-proliferation effect because MITF is gen-
erally a melanoma survival gene [101]. Similarly, apigenin
induced G2/M cell cycle arrest via inhibiting CDK1 activ-
ity [102], which may contribute to its anti-melanoma activity
in vivo on xenografted B16 cells [98]. Cyanidin glucopyra-
noside induced B16 differentiation via up-regulating cAMP,
tyrosinase expression, and the differentiation marker MART-
1 [103]. Both EGCG and quercetin inhibited HGF/SF-Met
signaling, a key regulator of melanoma migration and inva-
sion [104, 105]. Fisetin inhibited 451Lu cell proliferation via
disrupting the B-catenin/MITF signaling pathway [106]; also
inhibited melanoma cell invasion and metastasis through in-
hibiting the epithelial to mesenchymal transition in a three-
dimensional skin model and in a xenografted mice model
[107,108]. Combination treatment of xenografted A375 and
SK-Mel-28 tumors with fisetin and RAF inhibitor Sorafenib
showed greater reduction in tumor growth than single com-
pounds or control mice due to multiple mechanisms, includ-
ing induction of apoptosis, inhibition of proliferation and an-
giogenesis, and inhibition of the MAPK and PI3K pathways
[109].

Overall, whether flavonoids directly target the affected
genes is not clear; what is clear is that all these com-
pounds, more or less, show an anti-proliferation and/or anti-
metastatic effect against melanoma (Table 1). Recent devel-
opment in nanotechnology have made flavonoids much more
effective in targeting melanoma cells both in vitro and in vivo
[110-112]; therefore in the near future we may witness clin-
ical use of these promising natural compounds. However,
whether individual compounds delivered by nanoparticles
needs to be assessed as drugs first is an issue that has not yet
been addressed by regulatory bodies.

3.4 Flavonoids in epigenetic modification: histone
acetylation and DNA methylation

The diverse targets of flavonoids may be directly related to
their diverse structures [113]. However, there may be a sub-
stantial contribution for the epigenetic modification func-
tion of flavonoids. Increasing evidence suggests that many
flavonoids are able to regulate gene expression via epigenetic
approaches including histone modification, DNA methyla-
tion and miRNA/IncRNA (microRNA and long non-coding

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Table 2. Known functions of flavonoids in epigenetics

Flavonoids Targets Reference

EGCG/Epicatechin DNMT, HDAC3, HAT [137-139]

Hesperetin DNMT [140]

Apigenin DNMT, HDAC [140,141]
Luteolin DNMT [140]

Baicalein DNMT [142]

Quercetin DNMT1, HDAC, HAT [143,144]
Kaempferol HDAC [145]

Daidzein DNMT [140,146]
Genistein DNMT [118,140,146,147]

DNMT, DNA methyl Transferase; HDAC, Histone Deacetylase; HAT,
Histone acetyl transferase.

RNA) [114]. These epigenetic modifications may affect much
diversified target genes. Histones can be modified by acetyla-
tion and methylation via histone acetyl transferase (HAT), hi-
stone deacetylase (HDAC), histone methyl transferase (HMT)
and histone demethylase (HDM) [115]. DNA can be modified
by methylation via DNA methyl transferases [114]; how DNA
is de-methylated is still not clear and is under intensive inves-
tigation [116]. The epigenetic modification functions of most
flavonoids from Table 1 are listed in Table 2, with most data
obtained from cell types other than melanoma. Only limited
studies were performed in melanoma cell lines. DNA methyl
transferases (DNMTs), HDACs and HAT are common tar-
gets of flavonoids in melanoma, and these enzymes affect
the expression of tumor suppressors such as p21°! and
pl6™K4A 117, 118]. In several human melanoma cell lines,
green tea polyphenols (mixture of epicatechin monomers)
showed significant inhibitory effect on HDAC activities and
class I HDAC proteins, and promoted HAT activity, result-
ing in proliferation inhibition and cell killing [117,119]. This
mechanism may explain a previous observation that EGCG
up-regulated p16™X*A  p27XIP1 and p21°™P! protein levels in
A375 and Hs294t melanoma cells [100], as it was well known
that these tumor suppressor genes were subjected to epige-
netic silencing in melanoma cells [120-122].

4 Conclusions

Flavonoids are widely available from food and herbs, and
have the potential to become therapeutic agents with mini-
mum toxicity. However, not many (if any) clinical trials have
been done to establish the profile of flavonoids and the toxi-
city curve at the doses required to prevent or treat cancer in
humans, more in vivo studies and human trials are needed
to explore their clinical activities. Although it is difficult to
pinpoint each compound’s intracellular target, their overall
effectiveness should be noted. Lack of specificity may be be-
cause they are able to simultaneously target many different
genes, but that may be the exact reason for their functional
versatility. Also, like other chemical compounds, flavonoids
are subjected to metabolism and the metabolites may also
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be active components in vivo, rendering it even more diffi-
cult to identify a single target. Investigators and the public
should respect this diversity of action and not to be limited
by the “targeted therapy” mantra in the exploration of clinical
usefulness of nutraceuticals.
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