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ABSTRACT OF THE DISSERTATION

Properties of Gamma factors for GSp(4) x GL(r) with r = 1, 2.

by

Nelson J. Townsend
Doctor of Philosophy in Mathematics
University of California, San Diego, 2013
Professor Nolan Wallach, Chair

Professor Wee Teck Gan, Co-Chair

We show several analytic and LLC functorial properties of the local Gamma
factors for non-generic representations of GSp(4) x GL(r) with » = 1,2. In both
cases the Gamma factors are obtained using the Rankin-Selberg integrals of [PS]
and [MOR]. We also include a discussion of Bessel models and the asymptotics

expansions of Bessel functions.
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1 Introduction

Let F be a non-archimedian local field of characteristic 0 and residue char-
acteristic p. Let W be the Weil group for F' and WDp = Wg x SLy(C) be the
Weil-Deligne group. The Langlands dual group of G = GSpy(F) is G¥ = GSp4(C).
We let I1(G) be the set of equivalence classes of irreducible smooth representations

of G and ®(G) be the set of equivalence classes of admissible homomorphisms
WDp — G.

Then the local Langlands correspondence asserts that there is a finite-to-one sur-
jection II(G)) — ®(G) which preserves certain invariants, including v factors. This
mapping was uniquely characterized by Gan-Takeda[GT], but without a complete
theory of local v, L and € factors for non-generic representations of G, a coarser
invariant known as the Plancherel measure was used.

The purpose of this paper is to expand the theory for local v factors for
representations of GSpy x GL, with r =1, 2.
Main Theorem

Given admissible irreducible representations 7 and o of GSpy(F') and GL,.(F')
respectively and a character 1 of F', we define a meromorphic function y(s, 7 xa, )
satisfying the following properties:
(1) Unramified Factors. When the representations 7 and ¢ are unramified and the
character 1 has conductor 0,
L(l1—s,mxo0)

L(s,m x o)

(ii) Unramified Twisting. Given so € C

7(84_8077‘— X 0-7¢) :7(8’7‘- X0 | ’ ‘SO7¢)'



(iii) Dependence on . Let a € F*, set 1,(x) = ¥(ax). Then

(s, m x 0,¢) = wi (a)wy(a)lal "y (s, m x 0,1)).

where w, and w, denote the central characters for II and o.

(iv) Functional Equation.

(s, x o,) - y(1 — 8,7 x 5,97 1) = 1.

where 7 and & are the contragredient representations of 7 and o.

(v) Global Property Let Il = ®/m, and ¥ = ®/ 0, be automorphic cuspidal rep-
resentations of GSpy(A) and GL,(A) respectively. Let S be a set containing all
archimedian and 2-adic places and those places where any of the data m,, o, and
¥, are ramified. Let Lg(s, 11 x X) = [,.g Ly(s, ™, x 0,,) be the partial L function,
then

LS<57H X E) = 1_['7’0(37771) X O-v;wv) ' LS(l - Svﬁ X ENJ)
veES

We follow the methodology of [TA] for defining the ~ factor as a constant of
proportionality for a zeta integral. We want to consider the general case where the
representation of G' may not be generic. Thus we use a Bessel model to capture
this and spend sometime elaborating on the asymptotics of Bessel functionals in
order to prove important analytic properties of the zeta integrals we will use.

We break up our analysis into the two cases, r = 1 and r = 2. In the first
case we extend the work of [PS] using a slightly modified version of his zeta integral
to define the v factor. This integral is of Rankin-Selberg type for an Eisenstien
series over a certain subgroup of GSpy.

In the second case we look at the zeta integral defined in [MOR]. This
again is of Rankin-Selberg type, but in this case makes use of an Eisenstien series
defined over the larger group GU(3,3) that contains a subgroup of GSps x G Lo
which we will integrate over.

In both cases, we first define the global Rankin Selberg type integral which
will have an integrand consisting of one or more cusp forms and an Eisenstien

series.

(s, f, ) = f Elg. f.5)6(g)dy.



Next we must produce a so called 'Basic Identity’ which will allow us to write this

global integral as a product over all places of local zeta integrals.
Z(s, f,¢) = | | Zo(s, fu, Bo)

where ¢ = ®,¢,, the restricted tensor product over all places v of F'.
At this point we do some local analysis of these local zeta integrals including

the definition of our gamma factor
Z(].-S,Mf,.é) :’7(87]:[ X 0-71/))2(57.](7‘8)

then we proceed to the "Main Theorem’ in both cases.

1.1 Notation

Let F' be a number field and let Ar or A denote the ring of adeles of F.
The completion of F' at a place v will be denoted F,.

For a non-Archimedian completion F, of F', let o, be the ring of integers,
pr, the unique maximal ideal with generator 7p, and set ¢ = qp, = |og, /pr,|. Let
E be a separable quadratic algebra over F. If F is a field, then for E, define og,,
pe,, e, and gg, analogusly. Let @ denote the action of Gal(E/F) for any a € E
and let ¢ be an element of E* such that 6 = —§ and A =§2e F. If E= F@F,
then we take og, = (0p,,05,) and 7g, = (7g,,1). Let ¢ : ' — C* be a non-trivial
additive character and set ¢g(a) = v o Trg/p(a).

If G is an algebraic group over F', we write G(F'), G(F),) and G(A) respec-
tively for the points of G over F', F, and A. Z; will denote the center of G. For a
representation 7w of GG, we denote the central character of m by w,.

Let n be a positive integer. The unitary similitude group G, = GU(n,n)
and the symplectic similitude group H, = GSps, are defined by

Gn =1{g9€ GLa(E) | 91u'g” = N9)Jn, \(g) € F*} (1.1)

and
H, ={h e GLy(F) | hJ,'h = X(h)J,, \(h) € F*} (1.2)



where

1.2 Preliminaries

1.2.1 Measure

Let 9, be an additive character of F,. To simplify the notation of this
section we will simply write 1. We choose our Haar measure dy, on the field F,

to be self-dual with respect to 1. By which we mean the Fourier transform

FTy(f)(z) = ; f)v(zy)dyy

satisfies the Fourier inversion formula

FTy(FTy(f) (@) = f(=2).

For a € F} we define ¢,(x) = ¢(az), we can define dy,, in terms of dy, so that it

is self-dual with respect to 1,. We consider the a-twisted Fourier transform

FTy,(f)(z) = i fW)va(zy)dyy,

- f(y)v(ary)dyy

On the one hand this is simply

f)(azy)dyy = FTy(f)(az)

Fy
= [ FTy(f)(x)
where [, denotes the action of left translation by a. At the same time we can make

the change of variables y — a~'y
Fy)e(azy)dyy = | fly/a)e(zy)|al~ dy,
Fv F’U

— Ja]! L () (ay)dyy

= |a| " FTy (151 f)(2)



Now we look at applying the a-twisted Frouier transform twice to see what

normailization will be needed.

FTy, (FTy, (f))(2) = FTy, (L FTy(f) ()
= |al " FTy (I3 15 FTy(f)) ()
= || FT,(FT,(f))(x)
= la| 7 f(~2)
Thus we set dyy, = |a|*?dy, to obtain a self-dual measure with respect to the

a-twisted character v¢,. Lastly, we note that the choice of measure dy, has the

benifit of giving volume 1 to the ring of integers op, when ¢ is unramified.

1.2.2 Subgoups

Let P denote the Siegal parabolic supgroup of Hs which consists of 2x2

*

*

block matrices of the form <* ) Let M - N be the Levi decomposition of P,

with M the reductive part and N the unipotent radical of P. Explicitly,

M = {m(A,a:) = <A :v-tA1> |a:eFX,A€GL2(F)}

N = {n(B) = (Iz f) 'B = B}

For n(B) € N and any symmetric matrix 5 we can define the linear form
n(B) — Tr(f - B), furthermore all linear maps N — F' are of this form. We

call such a form non-degenerate if det(5)# 0. Let us now fix a non-singular 2x2

. ( By 52/2>
62/2 63

and refer to the corresponding linear form as l3. M acts on N by conjugation and

symmetric matrix,

thus on any linear form on N. Identifying N =~ Sym,(F'), the set of symmetric 2x2

matrices over F', the action of M is

m(A,z)-B=2"'A-B-'A



Let Ny = {n € Nlig(n) = 0}. Denote by Tj the connected component of the
stabilizer of lg in M. Set d = —4det(S) and let [d] denote the square-class of d in

Vd

action of GLy(F), weset B = F@ F and A(x,y) = (x ) Similarly, if [d] # 1,
)

d
F*/F>**_ If [d] = 1, then we choose Dj = ( ) in the orbit of 4 under the

—d
then we may choose Dg = ( 1) and set E = F(v/d) and A(x + yVd) =

x yd
( Y ) Hence A : E* — GLy(F). Lastly we map £* — Tp, by
y x

t— (A(t) ) S TD
det(A(t))tA(t) ! .

Therefore £* = Tp, and since T and Tp, are conjugate we have:

Lemma 1.2.1. There exists a unique up to isomorphism quadratic F-algebra, F,

such that Tz =~ E*. If [d] # 1, then E is a field.
Definition 1.2.2. The subgroup Rg = T - N is called a Bessel subgroup of Hs.

If we compose our additive character ¢ : F' — C*, with our linear form g,
we get a character on N, we will denote this by ¢3. Now let v is a character on

Ts = E*. Since T stabilizes lg, it stabilizes 13, thus we can form a character on

R, t-n—v(t)Ys(n).

For elements in x € E write T for the Galois action((z1,x2) = (22, 21) in
the split case), then Trg/p(x) = « + T and we may write ' = F + F¢ for some
trace zero ¢ € E(e.g. Vd or (1,—1)). Let Vg = Ev; @ Evy and let <,>p be the

symplectic form on Vg with < vy,v, >= 1. Let
GSp(Ve,<,>g) ={9€ GL(Vg)| < zg9,yg >g= Ay < x,y >p for some \; € £}

and let G° denote the subgroup with A\, € F*. Now we can view Vg as 4-

dimensional F-vector space via the restriction of scalars map Resg/p. If we let



<,>=Trgp(<,>g), then
G° < GSp(VEv <, >E) - Gsp(‘/’ < >) = GSP4(F)

If we write V = X@®Y, X = Resg/p(ELv;) and Y = Resg/p(Ev,) isotypic subspaces,
then P =~ P(X) the stabilizer of X in GSp(V,<,>). Write P(X) = M(X) -
U(X) for the Levi decomposition and M(X) = GL(X) x F*. We can embed
i: B* «— M(X) via e — (e,Ng/p(e)) noting this is just the coordinate free version
of the mapping described in Lemma 1.2.1 above. Then the Bessel subgroup is
R =14(E*)- N(X). Now since R < P(X), G° n R is contained in the stabilizer of
FEv; so we must have G° n R = B°(v;) n R where B° = B°(v;) is the Borel. For

an element b € B° write

T t 1 n
b= _ reF* te E*,and ne FE.
1 t 1

and denote the corresponding subgroups as H°, T° and N° respectively. Noting
that N° = Ny we have B° n R = i(E*) - N°. Hence

G°AR=TN, =T°N®

We can be explicit with the embedding G° < GSp4(F') by writing down
a basis for V. Recall we have basis {v;, v} and E = F + F6 where ¢ is trace
0. We take basis {ej, €2, f1, fo} = {01,5711,%1)2,2—15112}, then < e;, fj >= d;5,1 < J
and < e;,e; >= 0 =< f;, f; >,1,7 = 1,2. With respect to this basis we get the
following embedding,

1 xad  Y1/2 ya/2 T Y1
(x ?J) »—> T2 T Y2/2 yi/2d or T2 Y2
z W 221 2z0d  wy Wa 21 w1
220d 2z1d wed  wy 29 Wa

if E' is a field or split respectively.
Here the groups and subgroups were algebraic over F', but the same con-

structions work equally well over F, or Ap.



2 Bessel Models

Let F be a quadratic extension of F' with associated Bessel subgroup 1.2.2
R~ E*-N c GSp(4). Let 7 be an irreducible smooth representation of GSp4(F).
For a character x = p® 1 of R, a Bessel functional of 7 with respect to (F, u) is
a linear functional

B:m—C

such that

We let Hompg(7, x) be the space of such Bessel functionals.

2.1 Uniqueness.

The following is a basic result of Novodrovsky in the p-adic case.

Theorem 2.1.1. One has:

dim Hompg(m, x) < 1.

2.2 Local existence.

We would like to show:

Proposition 2.2.1. Let w be an infinite-dimensional irreducible representation of

GSpy(F). Then m has nonzero Bessel functionals with respect to some (E, ).



Proof. By a result of Howe[?], one knows that there is a nondegenerate character
of N such that my, # 0. Such a v is associated to a quadratic étale F-algebra F,
and its stabilizer is isomorphic to £*. Thus we need to show that the £*-module

7N has an irreducible quotient.

Assume first that E is a field. Note that F'* < E* acts as w, on 7y .
Twisting 7y, by a character of £ whose restriction to F* is w,, one may assume
without loss of generality that F* acts trivially on 7wy, i.e. 7y, is @ nonzero
module for the compact group E*/F*. It follows that 7y, has an irreducible

quotient.

On the other hand, if 7y, = 0 for all ¥ associated to quadratic fields,
then 7 is a so-called distinguished representation in the sense of J.S. Li [?], in the
sense that 7y, is nonzero with respect to a unique M-orbit of nondegenerate 1
(associated to £ = F?). In this case, a result of J.S. Li implies that 7 is obtained
as a local theta lift from the split orthogonal group GSO,; =~ E*. In this case,
one can show that my, is finite -dimensional, and so has a nonzero irreducible

quotient. O

2.3 Global Bessel models.

We now consider the global analog of the above discussion. Thus let £ be
a number field with ring of adeles A. Let v : N(k)\N(A) — C* be a nonde-
generate automorphic character of N, whose stabiliser is isomorphic to Agx for
some quadratic étale k-algebra E. For a Hecke character u of Agx, one has the

automorphic character y = p® ¥ of R.

If Acusp(GSps) denotes the space of cusp forms of GSp, with central char-
acter p|upx, then the global Bessel integral with respect to (E,p) is the linear
functional on A.,s,(GSps) defined by

B(f) =

f £(r) - X dr.
R(k)Z(A)\R(A)

We say that m < A..s,(GSps) has nonzero global Bessel period with respect to

(E, ) if B is nonzero when restricted to .



10

2.4 Global existence.

We have the following global existence result:

Proposition 2.4.1. Let 7 be a cuspidal representation of GSpy. Then there exists
(E, p) with E a quadratic field and p|z = w, such that m has nonzero Bessel period
with respect to (E, ).

Proof. By Howe [H1] and J.S. Li [L3], one knows that m has nonzero Fourier
coefficient with respect to some nondegenerate character ¥ of N. Suppose that
corresponds to a quadratic field extension E of k. Then for some f € m, fn, is a
nonzero function on E*\A% on which A* acts by w,. It then follows that there is

a Hecke character p of Ay, with p|sx = w, such that
f In(t) - p(t)dt # 0.
EXAX\AY

Suppose that the only nondegenerate Fourier coefficient along N supported
by 7 is the one corresponding to the split algebra k2. Then by a result of J. S.
Li, m has nonzero global theta lift to the split orthogonal group GO; ;. There
is no cuspidal representation of GSp4 which could participate in the global theta
correspondence with GOy ;.

]

2.5 Asymptotics of Bessel functions

Let E be a quadratic extension of F' with associated Bessel subgroup R =~
E*-N < GSp(4). Let m be an irreducible smooth representation of GSp4(F’). For
a character y = pn® v of R, let

B e Hompg(7, x).

For fixed v € w, we would like to investigate the asymptotic behaviour of the

function on H° =~ F'* defined by

t— B(t-v).
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2.5.1 Non-archimedean case.

Assume first that F' is nonarchimedean. We have:
Lemma 2.5.1. The function B(tv) vanishes if |t|r is sufficiently large.

Proof. Since 7 is smooth, there is an open compact subgroup C' € N such that

n-v =wv for all n € C. Thus,
B(tv) = B(tn -v) = ¢(tnt™1) - B(tv).
Thus, if B(tv) # 0, we must have
Y(tnt ') =1 forallneC.

In other words, tCt~! < Ker(¢) if B(tv) # 0. Since Ker(¢) is a compact subgroup
of N, and tC't~! is unbounded as [t| — o0, we see that when [t| is sufficiently large,
B(tv) = 0. O

Now we want to examine the behaviour of B(tv) as [t| — 0. We shall see
that this behaviour is controlled by the Jacquet module 7y, which is a finite length
representation of the Levi subgroup M of the Siegel parabolic P = M N. Note
that F'* =~ H° is contained in the center of M. Regarded as a representation of

>, one has a finite decomposition

T~ = @y x]
into generalized eigenspaces for F'*. We first note:
Lemma 2.5.2. Ifv e n[N] = Ker(p: 7 — wy), then B(tv) vanishes near 0 € F*.

Proof. Note that 7[N] is spanned by elements of the form v = nw — w for n € N

and w € V. Then
B(t(nw —w)) = (Y(tnt™') — 1) - B(tw).

But ¢ (tnt~1) = 1 for ¢ sufficiently close to 0. This proves the lemma. O
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Next, suppose v € V' is such that the image of v is in 7y belongs to wy[x].
The space my[x] has an increasing filtration (7x[x],), with n = 0, and with 7x[x],

consisting of those w € my[x] such that

Tt~ x(t)]-w =0

i=1
for all t; € F*. The case n = 0 is interpreted to mean w € Ker(p). We shall
analyze the behaviour of B(tv) for v such that p(v) € wy[x].. More precisely, we

shall show:

Lemma 2.5.3. For v € w such that p(v) € wyx[x]|n, B(tv) = x(t) - f(log|t|) for
some polynomial f of degree < n — 1 when t is sufficiently close to 0. Here, for

n =0, f is interpreted to be 0, and log refers to log,.

Proof. The base case n = 0 is the previous lemma. Now we deal with the inductive

step. By the hypothesis on v,

n(ti — X(t:))v € Ker(p).

i=1

So the previous lemma implies that for all |a| < €... 4,

Bla- [ J(t: = x(t:)v) = 0.

)

Since 7 and x are smooth, the number ¢, ... ;. is locally constant in ¢y,--- ,¢,. In

particular, if the ¢;s vary over a compact set C', one can pick an € which works for
all choices of ¢; in C'. In particular, one picks an € which works for all g7 < |t;| < 1.
Then we claim that this same e works for all |¢;| < 1. To see this, let us replace ¢;
by tit with [t| = ¢!, so that [t1t| = ¢72. We want to show the vanishing of
B(a- (tit — x(tat)) - | [t = x(t:))v),  when |a| < e.
1>1

Then with w = [ [,_;(t; — x(t;))v), we see that for |a| <,
B(a - (t1t — x(t1t)) - w) = Blat - t; - w) — x(t1t) B(aw)

= x(t1) - Blatw) — x(t:1t) Blaw) = x(t1) - (B(a - (t — x(t)) -w)) =0
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as desired. Repeating this argument establishes our claim.

Thus we now have: whenever |a| < € and |t;] < 1,

D (—1)*x(ts) ™ - Blatsv) = 0 (2.1)

where the sum runs over all subset S of {1,,n} and tg = [ [, 4 t;. For fixed a with
la| < €, if we set

f(#) = x(t)"' B(atv) — B(av),
then f(1) = 0 and (2.1) can be rewritten as:

2(=1F - f(ts) = 0.

S
We claim that a function f satisfying this must be a polynomial in log || of degree

< n — 1 and constant term 0.

We shall proceed by induction on n. For ¢ fixed, consider

Fio(t) = f(t-to) = f(t) = f(to)-

Then Fy, satisfies F, (1) = 0 and

S=D)# f(tg) = 0

S/
as S’ ranges over all subsets of {1,...,n — 1}. By induction hypothesis, F (t) =
P,,(log |t|) for a polynomial P, of degree < n — 2. Moreover, the constant term of

P, is 0 since Fy,(1) = 0. So we have
[f(tto) = f(t) = f(to) + Py (log [t]).

Now, if we assume that ¢ is a unit, then

f(tto) = f(t) + f(to),

and so the continuity of f thus implies that f(¢t) = 0 if [t| = 1 (else f(t"ty) =
n-f(t)+ f(to) — o0 asn — o). In other words, f is a function of ord(t) = — log |¢],
say f(t) = Q(—log|t|). Then, taking tq to be a uniformizer, we deduce that

Qr+1) = Qx) — Q1) = P(x),
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for x € Z, with P a polynomial of degree < n — 2. This implies that ) can be

taken to be a polynomial of degree < n — 1 (with constant term 0), as desired.

We have thus shown that there is an € > 0 such that for a fixed |a| < € and
Btav) = x(t) - gu(log |t])

for some polynomial g, of degree < n — 1. The lemma is proved.

2.5.2 Archimedean case.

Suppose now that F' is archimedean. In this case, 7 is a smooth Frechét
representation of moderate growth (a Casselman-Wallach representation) and the
Bessel funcitonal

B:m—C
is continuous, so that there is a semi-norm v on 7 with
B(v) < v(v) forall ver.

Thus
B(tv) < v(tv) < max([t], [t] )" - p(v)

for some k € N, and some seminorm g on 7 and for all v € . Thus, B(tv) grows

like a polynomial in |¢| as [t| — o0, and it grows like a polynomial in [¢t|™! as [t| — 0.
Lemma 2.5.4. As |t| — o0, B(tv) is rapidly decreasing.
Proof. By the Dixmier-Malliavin theorem, we can express v € 7 as

v=fxyy:= J f(n)m(n)vgdn

for some vy € 7 and some function f € CX(N). Then
B(tv) f f(n) - B(tnvg)dn = A(t) - B(two)

where ]? denotes the Fourier transform of f. Thus, f is rapidly decreasing as
|t| — oo, whereas B(tvg) is of polynomial-growth. Hence, B(tv) behaves like a

Schwarz function as [t| — 0. O
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The above lemma implies that the linear functional B is tame in the sense

of Wallach [Wa]. Then [Wa] gives an asymptotic expansion for B(tv) as |t| — 0.

Lemma 2.5.5. As |t| — 0, one has

B(tv) ~ > x(t)- Dt qu(loglt],v)

XEE(P;m) k=0

where
e FE(P,m) denotes the finite set of leading exponents of = along P

o ¢ rx(loglt],v) is a polynomial in log|t| for fixed v e m, and v — q, x(log |t|,v)

s a continuous functional of .

Moreover, the meaning of ~ is: for any n € N,

|[B(tv) — Z Z t* Gk (ogt],v)| < Cu(v) - £ A+

x k=0

for some constant A independent of n, and for |t| sufficiently small.



3 GSpy x GLq

This chapter develops the theory of local «y-factors in the case when r = 1.
Essentially a refinement and extension of the work [PS]. First we establish the
global zeta integral and show a ’Basic Identity’ which will allow us to factor into
local zeta integrals. After verifying analytic properties we define the ~-factor in
the usual way as the a constant of proportionality. Explicit calculations are given
for the unramified case and the 'Main Theorem’ in this case is stated and proved.
We conclude the chapter with a discussion of Multiplicativity, which we would like

to prove at a future time, and the immediate consequences of this property.

3.1 Global Integral

For the algebraic group Hs(A) = GSps(Ar) let the subgroups: My, Ty,
Ny, Ry, G, By, T, N; be the adelic analogues defined in the previous chapter.
Here we use F, E, F*, E* to denote the diagonal embeddings into Ap, Ag, Ay,
A7 repectively. Note that here Ty = I where Iy are the ideles of our quadratic
F-algebra E.

Let (m,V) be an automorphic cuspidal representation of GSpy(Ar) with
central character w, and let v, be a Hecke character of £* such that vy = w,. Let
1, a non-degenerate Hecke character on Ar/F and as before denote the extended

character on Uy by 9, 4. Let 114 be a character on Ir and define a character on By

by
() mms

16
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Let f be a flat section of the family of induced normalized representations
I(s,v ) = Ind$’
S, VA, HA) = BS Xs-

Hence, f is a smooth function on G° such that

f (( 1) (z t) (1 ’f) g) = ja (@) 23 (0 F(9)

from which we can form the Eisenstien series

E(s, g, f,va, pa) = Z flag).

aeBy\GS,
This series is known to be meromorphic function of s € C and satisfies a functional

equation

E(S,g, f> VA;,MA) = E(_Saga M(S,V,,U,w)f,ﬁA, V&;ﬂ&l)

where M (s, vy, pip, ¥a) @ 1(S, Va, tia) — I(—s,ﬁA,ulgluAKl) is the standard global
F

intertwining operator defined as

M(s,va, pa,¥a) f(g) = ff ((1 _1> (1 T) 9) dn

for Re(s) >> 0 and has meromorphic continuation to all of C.

We say that m has a non trivial Bessel model with respect to 1, and vy
if there exists a cusp form ¢ € V such that for the character x(r) = x(tn) =
va(t)ha(n) on Ry = Ty N, the following global Bessel period is nonzero,

J, . et )

By proposition 2.4.1 we know 7 has a non-trivial bessel model and we fix a

cusp form ¢ such that (*) does not vanish, we then define for each g € GSp(4)

B¥(g) = J o(rg)x " (r)dr
ZyRp\Ry
For r € Ry

B?(rg) = x(r)B*(g)
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We denote the space of such functions B, (E, va, 1, ) and via right translation gives
a representation of GSps(Ar) equivalent to m. The global Bessel model will factor
as a restricted tensor product of local Bessel models and uniqueness follows from
the uniqueness of the local models, Theorem 2.1.1.

We may now define our global zeta integral

Z(SugomfayA?/LA) :J <10(9)E(Sagaf7VA7,U/A)dg‘
ZyGE\G3

The convergence and meromorphic continuation of such an integral is well know.
The functional equation for the Eisenstien series gives us a functional equation for

the zeta integral for free

Z(Sa fa @, VA, PJA) = Z(_Sa M(Sa Vn, a4, ¢A)f7 P, VA, Vgllugl)' (31)

3.1.1 Basic Identity

Z(S?fa ¥, VANUA) = @(g)E(Smgmfa VA;MA)dg

—

ZyGE\G}

|
—
RS

(9) > flyg)dg

ZuGoNGS 1eBR\Gr

o(vg) D, flyg)dg

[
—

ZuGo\GS 1€Bp\Gy
_ f o(9)(9)dg
N:Ae

We have the Fourier expansion

d)= Y eulo) pulo) = j o(ngy (n)dn

YeNP\Na bl Nr\Na

Continuing to unfold
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Z(s, f,e,va, 1a) = f >, eu(9)f9)dg

ZyB3\GS wellgNA

B J J Y, ¢u(ng)f(ng)dn dg

ZyHRTRN\GE Ng\Ny weIIZ;}NA

Note that here since f is invariant under N} the integration will kill terms with
characters 1 which are non-trivial on N;. Thus we need only consider those
characters, which are nontrivial on Np\N, and trivial on Ng. Since Hj acts

simply transitive on this set of characters we reduce to

_ f S u(ho)(9)do

o
ZyHyToNg\Gg "<Mr

= f wy(9)f(g)dg

ZyTEN\GS,

_— J wy(tg) f(tg)dt | dg

J
TONO\GS \ZuTr\Ta

- J py(tg)v(t)dt | f(g)dg

J
TON\GS \ZuTp\Tg

- || ] fNF\NAso(tng)zw-l(n)v—l(t)dndt f(9)dg

TONN\GS \ZaTp\Tg

_ J j o(rg)agL(r)dr | f(g)dg

TONANGS \ZuRp\Ra
= f B*(g)f(9)dy,
TRN\GY
Thus now if we assume f = [[, f, then we get the desired Eulerian property,

Zooomm) = | BOred-T] | Biohods

v
TRN\GE T, Ni, \C,
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for Re(s)>> 0.

Definition 3.1.1. For a fixed place v of F', the local zeta integral is defined as

Zu(s, fu. BY) = f B¢ (9)/.(g)dg.

T3, N3, \C,
3.2 Local Integral

For this section we fix a place v of F' and by abuse of notation drop the
subscript and simply write F' for F,. We similarly drop the subscript v for pg ,
0p,, Tp, and pr,. We do the same for the F,-algebra E,. Our usual notion resumes

in the next section.

3.2.1 Preliminaries

Let s € C. For characters p : F* — C and v : E* — C define on B° the

quasicharacter

t 1
Xs ((93 _) ( n)) = pu(x)v ' (t)|z|h, xre F¥,te EX neE.
t 1

We consider the family of induced normalized representations
I(s,v, 1) = Ind$. x,

and we will always take f € I(s,v, u) to be a flat section of this family relative to
the standard compact K° = {k € GLs(og)|det(k) € F*} of G°.

We have the standard intertwining operator M (s, v, u,v) : I(s,v,pu) —
I(—s,7,vz' 1) defined as

M (s, v, 1,0) f(g) = j f ((1 ‘1> (1 i’) g) Qi

which we sometimes simply denote by M. Note that we are using the measure self

dual to g = ¢ otrg/p. Twisting by a is simple

M (s, v, 11, ) = |al > M(s, v, ).
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Lemma 3.2.1. /[BU, Proposition 4.5.10] Composing twice M(—s,v) o M(s, ) :
I(s,v,pu) — I(s,v, u) scales by

7(1 -5, (,U_l © NE/F) 'v_law_l) ’ 7(1 + s, (VF/LO NE/F) ’ V_l,¢)

Let (m,V) be an irreducible smooth representation of GSpy(F), p: F* —
C* a character and let 7 have Bessel model B(E,v,v). Let By, € B(E,v, ) and
let f be a flat section of Ind%.y,. Then define

Z(Sva’f&Vmu) = J B¢(g)fs(g)dg
ToN\G®

:[Lf By ((m 2) k) 1, ((I ?) k:) 5o () dudk

Proposition 3.2.2. The local zeta integral

Z(s,B. f.) = j Blgv) - fo(g) dg

NOTO\GO

converges absolutely when Re(s) » 0. Moreover, it admits a meromorphic contin-

wation to C.

The absolute convergence of Z(s) when Re(s) » 0 follows immediately from
the asymptotic behaviour of B(tv) discussed in 1.3. Now we consider the question
of meromorphic continuation of Z(s). When F' is nonarchimedean, Z(s) can be
expressed as an integral over |t| > ¢ (which converges for all s), and a finite linear

combination of integrals of the form
| Xt oge*
[t|<e

It is easy to see that such an integral is a rational function in ¢~* and this provides

the meromorphic continuation of Z(s) to C.

Suppose now that F' is archimedean.

Z@Rﬂ=LLMWMwﬁW%WW%%=LMHﬁWMWWWﬁ
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Again, we may split the integral into §| fme T SI f<e The former integral converges
since B(t - f * v) behaves like a Schwarz function as |[t| — <. For the second
integral, using the asymptotic expansion given in Lemma 2.5.5, we see that, for
any n € N,

n

B(t-(f*v)):<zx Z qulog|t]f*v)>+En(t)

where

for some A independent of n. Now the integral
f x(t) - t* log |t|" dt
[t|<e

is easily seen to have a meromorphic continuation to all of C. On the other hand,

J Eo(t) - |t dt

is convergent when Re(s) > —A—mn. Thus, we see that Z(s) admits a meromorphic

the integral

continuation to Re(s) > —A — n. Since n is arbitrary, we deduce that Z(s) has a

meromorphic continuation to C, as desired.
Proposition 3.2.3. There is a meromorphic function I'®V (s, 7 x p,v) such that
_ 1
Z<_Sv BdJ? Mf87 v,v 1/“L71) = FE’V(S + 57 T X s w>Z(Su B’l/n fS7 v, M)

Proof. To show the functional equation for the local zeta integral, we need to

consider the abstract Hom space
V, = Homy (7 ® I(s, p,v),C) = Homp (7, [(—s, =, v71)

where H = GLy(E)°.
Let us write
I(_Snu_la ) IndBOXs

By Frobenius reciprocity, we see that

‘/s = HOInT0 (7TN07 Xs)'
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On the other hand, we have a short exact sequence of T°-modules

0 —— indig)x (TNy) — 7o TN 0

For generic s,

Homgo(my, xs) = 0,

so that
V, = HomTo(indgox (7TN,w>a Xs)-

By Frobenius reciprocity, this is equal to

I—IOIHE>< (7TN,¢a XS)

which is the space of Bessel functionals of 7 with respect to p~!| — |7*. Thus, we
have shown that, for generic s, V' is isomorphic to a space of Bessel functionals on
7 and Theorem 2.1.1 says that this space is 1-dimensional. This then implies the
local functional equaton for local zeta integrals, since both sides of the functional

equation defines elements of V. n

3.2.2 Unramified Calculation

Let (m,V;) be an unramified smooth representation of GSps(F') and p an
unramified quasicharacter of F*. Let m have Bessel model B(E, v, ). Since 7 is
spherical, v is unramified. Note that when E = F'@® F' characters on E have the
form x(x,y) = (x1 ® x2)(x,y) = x1(x)x2(y) where x1, x2 are characters of F.

Since the data: v and p are unramified, I(s, v, p) is unramified. Let K° =
{k € GLy(og) | det(k) € F*} and let ¢xo and ¢x. be the normalized K°-fixed
vectors for I(s,v, 1) and I(—s,7, v~ ) respectively, i.e. dxo(bk) = (512xs) (),

where dpo is the modular character for the Borel subgroup in G°.

Lemma 3.2.4. [BU] With ¢k defined above and our Haar measure chosen to give
volume 1 on o we have

_ Lu(s,(po Ngir) -v)
Lg(s+1,(uo Ngjr)-7)

M(s, ¥)dxe Do
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where L is the standard abelian L-factor over E, i.e. Lp(s,x) = (1—x(7mr)qg’) ™"
when E is a field and Lg(s,x) = Lr(s,x1® x2) = Lr(s,x1)Lr(s, x2) when E is
split.

We now evaluate our zeta integral

Zs.Bufori) = | Bulg)iila)ds
TN\G®

with unramified data and use the funtional equation
Z(_87 EU)) Mfsa v, V_llu_l) = FEW(Sa ™ X W, 1/])2(3’ sza f57 v, lu)

to compute the constant of proportionality.

k:) e ((x ?) k) 55 (x) " dudk
offz O _
¢f (( )) |I|F2dx
1

x 0
- ("] ) (o) al} ol
FX
no
n=0 1
7™ 0
=) By (( )) Yty = p(m)g—*
n=0 ]-

. ™ 0 s
Z(S,B¢,¢f,y,u)=23¢<< 1>>y?7 yl::u(ﬂ—)ql :

A simular calculation for the other side gives
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Z(=8,By, Mo o, v ™) =

S )

LE(S’(MONE/F)'W — 7 0 n 1 -1 s+1
LE(S+17<uoNE/F)-v)ZB<< 1>>y2vyz—(v p)(mg

n=0

In order to evaluate the remaining summation, we make use of a formula

due to Sugano[SU] which we restate here. Let

( A
g

)
My = < T1T3 = Taly
€3

v

xz
\ 4 ,

the Levi factor for the Borel subgroup of H,. Since 7, is spherical, there exists

a unramified character p, of My(F,) such that m, = I ndﬁz((ﬁ)). Define characters

pq(j)(z' =1,2,3,4) on F, as

x x
T 1
P (@) = py L P () = po
1 1
1 T
1 1
1 T
'01()3)<x) = P ) p£;4) (x) = P
x x
x T
It is clear that
P = pP ol = wn.
For v ¢ S, set
0, if 5E/F = ]_,
€y = V(T('E) if EE/F = ]_, .

v(rg) + v(np - (mp)~t) ifegpr = 1.
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€ Hy(F,)

1 0
0 7%

Co(z,y) = D Y By(hy(l,m))z™y'

1=0m=0

and define

Theorem 3.2.5. [SU] Forv ¢ S,

H,(z,y)

Clwy) = 5o’

where
Py(z) =(1 — pM pP () a, ) (1 — p o (7r) g, *2)

(2) ,(3) 3) ,(4)

(L= PP (wp) g, 2 x) (1= plP i (7 ), ),

Qu(y) = | [0 = p(7p)a,*2y),

-

i=1
Hy(z,y) =(1 + AyAszy®){ M (2)(1 + Ayz) + AyAs A ax?}
— Apwy{aM, (z) — AsMa(2)} — AsPy(2)y — A APy (2)y?,
My(z) =1—A7HAL + Ay) N A1 Asa + Ay — AL A2 — 241 AxAy)x + AT AR AL2?
My(z) =1+ A7Y (A1 Ay — Bz + AT Ag(AL Ay — B)a® + ASa?,

Q_QS/QZ:% (7F), Z p pj),

1<i<y<4

A =q)t Ay = ¢, v, (Tr), A3 = ¢, vy (1R),
Ay = _qv_25Ev/Fv; As = g, %€,

We now use the following special case of Sugano’s formula to evaluate the

sums.
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where H(y) is a polynomial in y described above. Our Zeta integrals becomes

o 1
Z(S,Bw,gbf ,y,u) :H(yl)'L(é—i_saﬂ-XM)

Lp(s, (no Ngjr) - D) H(ys) - L(% — s, T x )

Z— E MKO— -1, -1 =
(=s, By, Mo v, v i) Lp(s+1,(po Ngp) - 7)

Were H(y) depends on E/F and is described above. Combining this with our

functional equation gives

_ Lp(s,(poNpyp) - 7) H(yo) L(z — 5,7 x p™")
Lp(s+1,(po Ngr) - 7) H(yr) L(3 + s, % 1)

T2 (s,m % p1,1))

Next we compute H(y;) and H(ys2) in each case. What we show is that
H(y,) is the inverse of Lg(s + 1, (o Ngyp) - 7) and H(y,) is at least consistently

described in all cases.

Unramified Case

In this case H(y) = 1 — ¢x'v(7r)y? and we note that ¢z = ¢%. Thus we have

H(y) =1 — v(mp) i (mp)gp )
=1—-7(mg)(pno NE/F)(WE)QE(HS)
= Lp(s+1,(po Ngjr)  7)

and
H(ys) =1 —v (w2 (m)q 2

=1- ﬁ_l(ﬂE)(/fl o Ng/p)(TE)q™
= LE(]_ — S, (#—1 (@) NE/F) . ?_1)_1

(1-s)

Ramified Case

Here H(y) = 1 — ¢z*v(mg)y and since the residue fields are isomorphic we know

dE = (4F-
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H(yl) =1~ V(WE)H(WF)C]E(HS)
1 — v(mp) (1o Neje)(mp)ag'

=1 —v(ng) (o Ngr)(me)gs

= LE(S + 1, ([L o NE/F) . D)_l
where the last simplification follows form the fact that conjugates have the same

valuation and v is unramified, i.e. v|,, = 1. Hence
v(ﬂ'E) = l/(ﬁE) = l/(ﬂ'E : u) = V(ﬂ'E)
where u € oy, Simularly we have

H(y) = 1= w(mp)y™" (mp)p (mp)gp"

=1 o(mp)v  (mp) (" © Neye)(mp)ap" ™

= 1= D(rp)v " (ng7p) (™" o Neyr)(me)gp

=1 — v () (u o Ngsp) (mp) g5
= Lg(1—s, (/fl o NE/F) -71)*1
Split Case

In this final case H(y) = (1 — ¢ 2v(mr)y)(1 — ¢ 2v(rrg')y)

H(y) = [1 - V(WE)N(WF)QE(”S)] [1 - u(wmgl)u(m)qg(”ﬂ
= |1 = wme)nre)a" | [1 = va(mere) g+ |
= Lp(1+ 8,01 -p) ' Lp(l+s,05 - )"
=Lr(1+s,(n@vy) - p)?

= LE(l + S, (,u (@) NE/F) . ﬁ)_l
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S G G e | R GO G Pl
=Lp(1—s,v;t ) Lp(l — s,y o)™t
= Lp(1—s, (" o Ngjp) -7 1)

We end this section with a theorem summarizing the results of this calculation.

Theorem 3.2.6.
o 1
Z(S,B¢7¢§ 7V7M> = LE(S + ]-’(MONE/F> ’ﬁ>_1 ) L(é +8,m X M)

and

Z(=s, By, M(s,)¢L ,v,v ' u™") =

S Y

1 . _
Lip(s + 1, (o Ngyp) - 7) 7 (s, (o Nigp) - 7,90) - L(5 = 8,7 x i)

3.3 ~-factor

Definition 3.3.1.
YV (s+ 1/2,m x p, ) =T5¥(s,m x p, ) - (s, (wo Ngyp) - 7)  (3.2)

3.3.1 Main Theorem

Theorem

(1) Unramified factors:

VIV (s 4+ 1/2,m X p, ) =

(2) Dependence on v: Let a € F* and set ¢¥,(x) = ¢ (ax), then

V(s + 12,1 x pa) = p(a)wi(a)|alFy Y (s + 1/2,m % pu,9h)
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(8) Unramified Twisting: Let so € C be fized then,

E,l/(

Y s+ So, ™ X /’LJw) = ny’V(SJﬂ- X M8071/})

(4) Functional equation:
Y (s X )y (L= s, F oo = 1

(5) Global property: Let w be a cuspidal representation of G(A), u a Hecke
character of F*\Ir, and p = ®,¥r, a non-trivial character of F\Ap. Let S be a
finite set of places containing all the archimedean ones and the places where either
, e or Y is ramified. Then,

L% (s, mx, 1) Hv (8,7 X o, ) - L7(1 — 5,7 x p~b).
ves
Proof. (1) follows from immediately from Theorem 3.2.6 and Definition 3.2.
For (2) let a € F'* and set ¢, (z) = ¥ (ax), then

V(s + 1/2,m x ) = pt(a)wz(a)|aliEy ™ (s + 1/2,m %, )

To see this result we will demonstrate the effect of twisting ¢ by a on the

local zeta integrals
Z6s.Bufovn) = | Bulo)ida)dy
TN\G®

then take the ratio.
Since the only part of the integral that depends on 1 is the Bessel function
By, we must see how By, should be defined. That is, it should be defined in terms

of By. We let
a
By, (9) = By (( 1) g>

Now we consider the zeta integrals on both sides of the functional equation

then By, € B(E,v,,).

but with By, replaced with By, . The idea being that since B,, is defined in terms of
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By, we will be able to reduce back to the original zeta after pulling out some factors.

Recall our local functional equation
Z(_S7§1/J> M « fa va V_lﬂ_l) = FE’V(Sa ™ X W, ¢)Z(57 Biba f7 v, :u)
To simplify notation we will supress the domain of integration T'N\G°.

Z(S, B¢a7 f> v, :u) = r‘Btl)a(g)fs(g)dg

= JPBw ((a 1) g> fs(g)dg
= PBw(g)fs <<a_ 1) g) d(a™'g)

.
= | Bu(gp(a™)|a™ [7" fulg)la™ g

= p Na)lalp* - Z(s, By, f,v, 1)

[

Now consider,

Z(=5, By, M(s,%a) [, 7, v ™) - (s, (o Nesp) - 7, )

= (s, (o Ngyr) - 7, a)|al " - f ((a 1) g) M(s,¥) fs(9)dg

= [(uo Ngyr)(a)v(a)lalz] Jsz(g)(VElM_l)(a_l)Ia_llEs“M(S, V) fi(g)la™"[7dg
“(a) -vp(a)lalf -vp(a) - pla)lali - lalf - Z(=s, By, M(s,9) f,7,v7 )

(a) - wi(a) - |al# ™ - Z(=s, By, M(s, ) f, 7,07 ™)

™

= 0=

Now we take the ratio to see the effect of the a twist on our v**“-factor.

Z(_Saﬁwaa M*f, v, V_llu’_l) '7(37 (:U' © NE/F) e %)
Z<S Bwa?.ﬂ%u)
3s+1
R W
F

= pt(a)wr(a)laly -5 (s + 1/2,m x p1,0))

’YE’V(S + 1/2,7T X M,%) =
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(3) Let sp € C be fixed. We must show

P (

s+ So, T X Nﬂ/)) = ’yE’y(SJﬂ- X :usovw)'

We proceed by evaluating the effect of this shifting on both sides of the

local functional equation, then take the ratio of the two sides.

Z(s+ 50, By, f,v. 1) = j B(g)/.(9)dg

S el e
}J(Fx 1 1
=ffB<CIJk>M@M?WWMMM?M%

.
= JB <x . k) piso () |25 £ (K) |2 dwd

= Z(SaB¢7f7V7”so)
Note that I(s + so, p,v) = 1(8, sy, V) and M (s + sq, j1, v, 1) = M (S, psy, v, ). A

similar calculation for the other side of the functional equation gives
Z(_S - 807E1/17 M*<S =+ So, M, v, ¢)f7 va V_IM_I)
= Z(_‘S?EMM M*(S =+ So, u, v, ¢)f7 vv (V71M71>50).

Finally taking ratios we get (3).

(4)
We know previously that

M(—s,9)oM(s,9)) = y(1=s, (1™ oNpge) 7=, b~ )y(1+s, (vruoNgyp) v~ 97
Now we have our functional equation

Z(=s5, By, M(s,) f,v,vp' ') = TP"(s,m x u, ) Z(s, By, f,v, )
which we may apply again to get

Z(S7 BTZ” M(_87¢> © M(Saqu))fu v, VEI(VFLL>> =
IEv(—s,m x l/gl,u_l,w)FE’”(s,w X p, ) Z (8, By, f,v, 1)



33

Combining and simplifying we get

7(1 - S, (:U’_l o NE/F) : v_la ¢_1)7(1 + S, (VF/JJ © NE/F) : V_law_l)
= TP¥(=s, @ x =1, )T (s, x 1, 9))

By the definition of v%" 3.2 , we get

Y (s, ox )y (L= s, 7 x ) = 1

By the ’dependence on v’ result we may freely replace 1 (z) with

V@) = o(=1 @) = p(—1)'w(=1)| - ¥ (@) = d(@).

Thus,

Y (s, p )y (L= s oo pT YT = 1
(5) Let 7 be a cuspidal representation of G(A), u a Hecke character of F*\Ir, and
Yrp = ®,¥F, a non-trivial character of F\Ag. Let S be a finite set of places con-
taining all the archimedean ones and the places where either m,  or ¢ is ramified.

Then we would like to show:
LS(S,TFX,M) = H’YEW(S?Wv X mev) ’ Ls(l - 377} X :u_l)'
veS

By 2.4.1 we know 7 has a Bessel model with respect to some (£, v) and by

3.1.1 we may write
Z(s7-f’¢7y’/j’) = Z(S7B7f7l/’/j’)

Under the statement assumptions, for Re(s) >> 0 the global zeta integral

has an Euler product,

Z(s, B, f,v, 1) = | | Zu(s, Bu, fur v, 1)

= [12.(5. Bo. fuovos 1) - T] Zols. Bus fo v ).

v¢S veS

For v ¢ S by Theorem 3.2.6,

Lo(1/2 + 5,0 X jto)
Zv ,Bln vy Yoy o) = Vo)
(50 B o Voo o) = T G © Ny - 72)
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Therefore the following identity

L5(1/2 + s, x )
L(s+1,(po Ngp) -

Z(s, B, f,v, 1) = HZ S, By, fo, Vo, 1) (3.3)

veS

holds for all s and hence shows that the partial L-function L° is meromorphic.
We will need the following identity about the global intertwining operator. For

Re(s) >> 0 the intertwining operator has an Euler product,

M (s, v, p, ) f*) = HM $, Vs o) £
= [ T Mo, v 0, 00) £ | | Mo, v, s 000) £
v¢S veS

By Lemma 3.2.4, for v ¢ .S,

s LE,U(Sa (,uv o NEU Fv) 'vv)
Mv(S7VUan7¢v)fzg ) = /

_ (—s)
Toa(s + 1, Gty o Npyr) - 70)

We get the following identity which holds for all s,

L ( (,UONE/F s
(s) | | | | (s)
M(S, v, u, w>f LS (S I 1 ([L o NE/F f 11 Mv(S, Vyy Uy, wv)fv .

(3.4)
We now use 3.3 with —s, M (s, v, ,9) f®), 7 and w '~ while applying 3.4

Z(=s, M(s,v, p, ) [, B, v,w; ' pt) =

L3(1/2 — s,m x wtu™h) L(s, (o Ngjp) - D)
L5(1— s, (w;'p o Ngym) -v)  Li(s+1,(uo Ngjp) - 7)
HZ - BU7M (S VU?/Jvaqvb’U)fU ’Vv7w7rv luv )

veS

Now we make use of the global functional equation 3.1, the definition on ~,, the

fact that 7 = m @ w_ ! and the analogous statement for Hecke y-factors to get

veS

L3(1/2 + s, x ) {Hv 8, Ty xuv,wv)} L1 — s, x ph).
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3.4 Multiplicativity

In this section, we describe the property of “multipictivity” for the local
y-factor vE¥ (s, m x p, 1) defined using the local zeta integral. For more details,

see [Sh]. We then deduce some consequence of this property.

3.4.1 Multiplicativity.

Suppose that 7 is an irreducible subquotient of an induced representation
of GSpy. Since there are 3 conjugacy classes of parabolic subgroups of GSp,, we

have the following 3 cases:
e if B is the Borel subgroup of GSp4, then suppose that 7 is a subquotient of

Ig(x1,x2:X) = Ind§5™ v @ x2 ® x.

In this case, multiplicativity is the identity

B (s, p,ab) = (8, X ) - (85 X1 ) - (85 Xas XHs 1) - ¥(85 X1 X2 X[, ).

(3.5)

v

e suppose that P is the Siegel parabolic subgroup of GSp4, so that its Levi
factor is M =~ GLy x GL1, and 7 is a subquotient of

Ip(7,x) = Indp™* 7 & x,
where 7 [X] x is an irreducible representation of M. In this case, multiplica-
tivity is the identity

E,V(

Y (s, X ) = (s, Xas ¥) - y(8, T X X, Y) - (s, xwe i, ). (3.6)

e if () is the Heisenberg parabolic subgroup of G\Spy, so that its Levi factor is
L ~ GL; x GSpy =~ GL; x GL,, and 7 is a subquotient of

o(x:0) = 5™y @

In this case, multipicativity is the identity

E,Z/(

Y5, X ) = (s, xpa 0) - Y(8,0 X ) (s, X we - s ). (3.7)
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We would like to prove the identities (3.5), (3.6) and (3.7), but we are not able to

do so.

3.4.2 Consequences.

In the following, we deduce some consequences of multipicativity. The first

obvious consequence is:

Proposition 3.4.1. Assuming multiplicativity, we have:

(i) If © is a non-supercuspidal representation of a p-adic field, then the local -
factor vE¥ (s, x p,v) is independent of the choice of the data (E,v) with respect
to which m has a (E,v)-Bessel model.
(ii) If F = R or C, and 7 has L-parameter ¢, then vE (s, 7 x p, 1)) is independent
of (E,v) and

V(s x ) = (5, bx ® p1, ).

3.5 Independence of (F,v)

In the previous section, we have seen that the local v-factor is independent
of the choice of the data (E, v) with respect to which 7 has a Bessel model, when 7
is non-supercuspidal. In this section, we address this issue of independence when

7 is supercuspidal.

Hence, suppose that 7 is a supercuspidal representation which supports
nonzero Bessel functionals with respect to (E,v). From [GT], we know that there

are two types of supercuspidal representations:
(a) m is the local theta lift of a supercuspidal representation 7 [X] 75 of
GSO4 = (B* x BX)/{(t,t ™' : t e Gy},

where B is a quaternion F-algebra (possibly split).
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(b) 7 is the local theta lift of a supercuipidal representation o [X] w, of

GSO@ = (GL4 X GLl)/{(t,t_z) i te GLl}
We shall treat the two cases in turn.

3.5.1 Case (a).

Since m = ©(7 [X] 72) has nonzero Bessel functional with respect to (E,v),

it follows by [PT] that
HOHlEx (7'1, I/) # 0 and HOmEX (7'2, 1/71> # O
Now choose

e a number field F which has 2 places v; and v, such that F, =F,, = F,

e a quaternion [F-algebra D such that D,, = D,, = B and which is split at all
other places of F.

e a quadratic field extension E of F such that E — D and E,, = E; = F;

e a Hecke character 1 of Ap such that 7, = T, = v.

By a result of Prasad-Schule-Pillot [PSP|, we may find a global cuspidal

representation T; and 5 such that
o Ty =%y, =T fori=1o0r2;
e T, is unramified at all finite places outside v; and v»;
e T, has nonzero global period with respect to (E, 7);
e T, has nonzero global period with respect to (E, 771)
Then by [PT], the global theta lift

II=0(% X %)
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of T4 XI %y to GSp, is an irreducible cuspidal representation which has nonzero

global Bessel period with respect to (E, ). Moreover, for i = 1 or 2,

Finally, one chooses a Hecke character pp of A* such that pp,, = p fori =1 or 2.
By the global functional equation, one has

Ls(l — s, 1Y x NIEl) = <H Yy, T (85 Iy X ptE o, \Ilv)> 'LS(3>H X ).

veS

and

vES

L5(1—8,%Y x ) = <H7(s,‘3i X MFAI@)) - L(s,%; x ur)
for I =1 or 2. Since
L5(s, 11 x pg) = L(s, Ty x pg) - L(s, Ty X ur),
and
L5(1 — 5,11V x pgt) = L5(1 — 5, %Y x ) - L¥(1 — 8, %Y x pupt),

we deduce that

[ [ree (s, T x s, W) = [ [ (905, %0 % pm, @) - y(s, Ty % pag, ©).)

vesS vesS

But by Proposition 3.4.1, one knows that for all v # v; or v,, one has

Ve, 7, (8 Iy X pw s, Wy) = (s, T x pw, Uy) - (s, T x pr, V). (3.8)
Thus, we conclude that

E,l/(

v S, T X M7¢)2 = 7(877—1 X M,Q/J)Q,

so that

E,l/(

v Svﬂxu7w):i7(s77—1 Xli,w)’

for some sign + which may a priori depend on (E, v).
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In fact, one can show that the sign is +. In the argument given above,
instead of globalising so that the local situations at v; and v, are the same, one

may globalize so that at vy, one has
‘Zl,vg = ‘ZUQ = T1.

One of course needs to adjust E and 7T at the place vpappropriately; we leave the
details to the reader. Then II,, will be a non-supercuspidal representation, so that
one has the equality (3.8) at all places outside v; by Proposition 3.4.1. Then one
deduces the desired identity

E,l/(

Y (s, X ) = (s, T X p, 1))

at the place v.

3.5.2 Case (b).

The argument in Case (b) is similar, so we shall be brief. Suppose that
m = O(0Xw,) for a supercuspidal representation o of GLy. As above, since 7 has

nonzero Bessel period with respect to (F,v), it follows by [PT] that
Homgr, g (o, v) # 0.

Now one globalises 7 to a cuspidal representation ¥ so that ¥,, = o for some place
Vg, and ¥, is unramified for all other finite places of v. Then the global theta lift
II = ©(%) is a nonzero cuspidal representation of GSpy such that II,, = 7 and II
has nonzero global Bessel period with respect to some (E, ) with E,, = E and
Ty, = v. Then using the global functional equations as we did above, and using
the fact that one understands the local gamma factors at all places out side vy (by

Proposition 3.4.1), we deduce that

E,V(

Y (s, T X ) = (s, T X ).

To summarise, we have shown:
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Proposition 3.5.1. Assume that multiplicativity holds. For an irreducible repre-
sentation ™ of GSpy with L-parameter ¢, Y2V (s, m x u, ) is independent of the

data (E,v) with respect to which ™ has nonzero Bessel functional. Moreover,

Y (s, X, 0) = (s, @ pu, ).



4 GSps x GLo

This chapter develops the theory for y-factors in the r = 2 case. We proceed
as we did in chapter 3 by first laying out the global zeta integral then passing to
the local Eulerian factors. Once we have the local functional equation and hence
the definition of v we proceed to the 'Main Theorem’ and conclude, as before, with

a discussion of the Multiplicativity property and it’s consequences.

4.1 Global Integral

Let G = G3 and G15 = {(g1,92) € G1 x G2 | A(92) = A(g2)} be thought of

as a subgroup of G via the injection

()

Let H be the supgroup of G o defined by

o o 9
Q o » o©
© a o <
S o & o

H = {(g1,h2) € Gy x Hy [ A(g1) = A(h2)}
and thus may be thought of as a subgroup of G as well.
Set AG,, = {(a-Ir,a) € GLy(F) x E* | a € G,,(F) = F*}. We have the
following exact sequence
1—>AGm—>GL2<F)><EX —>G1—>1
where the first map is clear from the definition of AG,, and the second map is

given by (g, z) — 271g.

41
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Zeta Integral

Let P = M N be the Siegal parabolic subgroup of G where

M = {m(g, ) = (Z \ .tog_g> | ge GLy(E), \ e F}

N = {n(X) = (103 f) | X € Hermg(E)}

Let v and 7 be characters of Ap/E* and Ap/F* respectively. We may regard v®t
as a character of P(Ap) by

J 0 s X = v(det g)7
V®Tl<0 Hg_g) (0 13)]— (det g)7(Y)

Let dp denote the modulus character of P(Ag) given by

0 1. X
oo | ¢ ’ — | Ng/p(det g) - A~
0 A 2 g—o 0 13

Let I(s,v ® 1) = Ind g((ﬁfj))y ® 7 - 0% where we take the induction to be
normalized. Thus I(s,v®7) is the space of locally constant functions f on H(Af)

such that
F(m(g, Mn(X)g) = v(det g)7(N)|Ngyr(det g)[PeH2) - A[706H2) £ (g).

Definition 4.1.1. For a section f*) € I(s, v®7) we define the standard Eisenstien

series:

E(f* h)y= Y f9ah),

aeP(F)\H(F)
which converges for Re(s) >> 0 and has meromorphic continuation to the whole

complex plane.

Let IT and o be cuspidal representations of GSps(Ar) and G Ly (Ar) respec-
tively with central characters wy and w,. Let x be a character of E*\A% such

that x|a, = ws. Let m = 0 ® x be the representation of G1(Ar) defined by the
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exact sequence above. That is, suppose g € Gy and (¢',z) — z7'¢' = g, then
7(g) = x(2)"to(g'). Let V; and Vi1 be the respective spaces of cusp forms. Finally
for ® € Vi; and ¢ € V. define the global zeta integral

2(f9,6,®) = f E(f“, 1)é(g1)B(ha)dh, (g1, ha) € H(Ar),

Z(Ap)H(F)\H(AF)
which makes sense if wyy - wy - 72+ (V3]4,) = 1.
We now define our intertwining operator. Let i) be a character on Ar then

we define the map
M(s,v@7,%) : I(s,v®T) = I(—5, VR T - 1)
where 7 = 177 and vy = v|p~ as follows. Given f) € I(s,v ® ) set

M(s,v @ 7,1) [ (g) = j £ (wng) dn

where the measure dn is self dual with respect to the form (z,y) — ¥ (Tr(xy)) for
x,y € N and

1

This integral converges for Re(s) >> 0 and has meromorphic continuation to the
complex plane. Furthermore, the well known functional equation for Eisenstien

series gives a functional equation for our global zeta integral,

Z(s,f®). ¢, ®) = Z(—s, M(s,v@7,0) ¥, ¢, D) (4.1)

4.1.1 Basic Identity

Recall from 1.2.2 the Bessel subgroup for Hy, R = T - N where R is the

stabilizer of a non-degenerate linear form [ in Levi component M of the Siegal
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parabolic P, R = stab,,[l. Further recall that this linear form corresponds to a non-

degenerate symmetric matrix J. Let us fix such a matrix and specify coordinates
g ( B 52/2)

Ba/2  Ps

such that —4det 8 = 32 — 453,83 = A. Also, fix the matrix
2
s ( e ﬁg) |
=261 =P
Let p be a character of Ay /E* defined as
p={xv*v’ (1o Ng/p)} .
We define the Bessel function Bg on Ha(Ap) of type (5, 1) associated to ® to be
Ba(h) = J D(tul )~ (£)5* (u)dtdu

Za(Ap)R(F)\R(AF)
The Whittaker function W, on G1(Ap) for ¢ is defined by

Wy(g) = J o (((1) f)) 7 (Baz)da.
FAp

Finally define a homomorphism ¢, : R — Gfy:

x-lyg+y- As 0 I, X
¥b
0 ZL"lQ*y'tA(; 0 12
[z +yo 0 1 ——tr(ggX)
0 x+yd) \O 1 '

Since ¢y preserves similitudes, we can define a subgroup S of H by

S = {(ps(r).7) | r € R).

Proposition 4.1.2. [MOR, Proposition 2.1]

2(, 6, 3) = j 9 (h)Wo(g1) B (ha)dh
S(Arp)\H(AF)



45

We take everything to be factorable here and we get the following local Zeta integral

Z0OW.E) = | )W ) Blka)dn (42)
S(F)\H(F)
where
00 000 -1
01 00O 0
10000 0 .
n:1a1000’:52536E
00 001 —a°
00010 -1

4.2 Local Integral

As in Chapter 1, we will define and establish technical properties of the local
zeta integral. For this section we fix a place v of F' and refer to the completion of F'
at this place as simply F'. We also similarly abuse notation for the 2—dimensional

F-algebra E.

4.2.1 Preliminaries

Proposition 4.2.1. The local zeta integral

Z(f19, W, B) = f £ ()W (g2) B(ha) dh
\H

S(E)\H(F)

converges absolutely when Re(s) » 0. Moreover, it admits a meromorphic contin-

uation to C.

Next we establish a local functional equation for the local zeta integral (4.2).

With respect to the intertwining operator,

Vs U, T Tl

If we let B be the corresponding Bessel function in B(f, 1), where
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~

i = 7 (7 v o Niggee] ™
=[x ()T 1 © Nigyr)]
= [0 7P P 0N

:ILL'

-1

-1

Therefore, B = B and we assert:

Proposition 4.2.2. There is a meromorphic function T'®V (s, m x p,v) such that

Z(M(s, ) f® W, B) =TE¥(3s +1/2, Tl x 0 x 12 x 7,)Z(f®,W,B)  (4.3)

4.2.2 Unramified Calculation

In this section we assume both Il and o are unramified representations of
Hy and G'L, respectively over a local non-archimedian field F'. We also assume the
characters v, 7 and y are unramified quasi-characters and our additive character
1 has conductor op.

Let eg/r be the quadratic character obtained via class field theory. Let &g

be the normalized spherical vector and vy = v|px.

Theorem 4.2.3. [MOR, Theorem 8.1]

3 . )
Z(s) = Z(s, 05, W, B) = | |L(63+z V- 63;/%) L(33+§,7r><a><yg><r).
i=1

4.3 Normalization

Recall the definition for the intertwing operator, for fs € I(s,v ® 7)

M(s,v®T,¢)f J e (wng) d

We need to know the result of this operator when applied to our spherical vector

®y. We have the following result

Lemma 4.3.1. [HKS, eq. 6.14]
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where
3

az(s,v) = HL(6S —i+ 1, 535“/?})
i=1
3 .
bs(s,v) = H L(6s + i, vy - EZEJF/?};)
i=1
Now applying (4.2.3) and (4.3.1) we can directly compute

Z(s, M(s, )@, W, B)

3 . .
= Zz(?i) HL <—63 + z’,yo 5@%) - L (_35 + 577} X & X ’/0_2 % 7__1>

L(6s—i+1,up- 53;/3;)

1
= L|{—-3s+
H L(6s + 1,1y - 5%7})[/(—68 +i, 05t 5ZE+/‘(}) ( 2

3

3 -1 .
= HL (68 +i,1- 6?&) Y(6s —i+ 1,15 55:}7¢)_1

=1
- L + =, TXO XYy XT
2’

We conclude that in the unramified context, the factor I'®¥(3s + 1/2, 11 x
o x 12 x 7,9) defined in (4.3) is exactly

L(—3s+%,7~rx5xy0_2><7*1)

2

4.4
L(3s+%,7r><axy0x7') (44

3
H’}/(GS -1+ 1, 6iE+/3F; ¥~

i=1
Let p,, denote the n-th roots of unity. For a character n of F' and a € F'*
let

W (1)
WF( ) € Uy,

where Wr(n) € ps denotes the Weil index of the character of second degree z —
n(z?). Note

WF(av 77)

WF(A, wa) = €E/F<G)WF(A> ¢)

and in the unramified context: the conductor of ¢ is 0, A is a unit and the residue

characteristic p is not 2,

We(AY) =1
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Let
2

Ii(S, v, 1/}) = WF(Aqub)g HV(GS — i, v 8jE/F7 ¢)

i=0
then

2

k(s v, 10) = WA, 1,)? Hy((ﬁs — 1,07 gig/F, Ya)
i=0
2

2
= ep/r(a) H [v°(a)elyplal® 2] We(A, ¢)? HV(E’S — 0,V Egyps V)
1=0 1=0

= v(a)*|a]"®* "k (s, v, ¥)

Lastly, note that M (s, v,) = |a|%*M(s, 1)

4.4 ~-factor

Definition 4.4.1.

VEV(354+1/2, 8, T x o xvg x7,1)) = k(s,v,1) - TE(354+1/2, T x o x 3 x7,7)) (4.5)

4.4.1 Main Theorem
Theorem
(1) Unramified factors:

L(1— 51 x &)
L(s, I x p)

(2) Dependence on : Let a € F* and set 1, () = (ax), then

FEV (5, T x 0 x V2 x T,9) =

VE”’(?)S +1/2,11 x 0 x Vg X T,1,) = wﬁ(a)wﬁ(a)u&G(a)Ts(a)|a|8(5_1/2)

AEV (35 +1/2,11 x 0 x 1 x T,)

(3) Unramified Twisting: Let sq € C be fized then,
7E7V<3(8+50) + 1/25 IIxox y’%X X T, w) = 7E7y(35+ 1/27 [Ixox (USSO‘FX )2 X T_9s05 w)
(4) Functional equation:

YEV(3s +1/2,T1 x 0 x 1§ x T,)y""(1/s — 38,7 x & x g2 x 7 L™ 1) =1
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(5) Global property: Let 11 and o be a cuspidal representation of Hy(A) and
G Ly respectively and assume I1 has a global bessel period with respect to (E, p). T
a Hecke character of F*\lr, and vp = ®,¥r, a non-trivial character of F\Ap.
Let S be a finite set of places containing all the archimedean, 2-adic and places

where any of m, u or v is ramified. Then,

1
L(38+§H><axy0x7' HV 3s+ HXUUXVOXTUM/W

vES

1 3
-LS(§*3S,H><5><1/0_2><7'_1)

proof.
(2) We must show

Ev(3s+1/2,11 x 0 x v§ x 7,1,) = vg(a)|al** v (3s + 1/2,11 x 0 x 13 x T,).

Since both the Whittaker and Bessel functions used in our zeta integral
depend on the character v, we must replace these with suitable functions in the

spaces W(1,) and B(E, i, ,).

By,(9) = By g

Now we check that this belongs to the proper space by calculating the action
of R.
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a 1
X
a 1
By, (tug) = By | t . X g
1 1
1 a
. aX
a
— u(t)B
() By . N
1 1
a
— ()" (u(aX)) By ! e
1
= pu(t)Y; (u(X)) By, (9)-

therefore By, € B(E, i1, ¥,).
Similarly we consider the following candidate for a twisted Whittaker func-

tion,

therefore Wy, € W(1,).
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As before, we evaluate both sides of the local functional equation then take

the ratio to see the effect on y*".

(5, f, By, W) = f F(nh ) By, (he) W (hy)dh

S\H
a
a a
_ J F(n(hs, hs), ) By (7))
S\H
1
a1
a! a!
hy — hy hy — ha
1 1
1
a1
a! a L
CL_l CL_l a_l
Let ha: , (SN
1 1 1
1 1
1
Z(s, f, By, Wy,) = j F(nhah, $) By (ha) Wiy (hy)d(hoh)
S\H
1
afl
1
a—l
nha = n=hpn Let A= | a~
1
a! a a”!




205 BuusWo) = | 10, 9)Bu(h)Wohi)d(hu)
S\H

= v(det A)r(a™") [|Ngyp(det A)|3‘a71’79]s+2

- f F(nh, ) By (ha) Wy (ha)d(hoh)
S\H

= wn(@) ?r(a) a5 [ 5) o) Wolha)dhah).
S\H

Now we perform a similar calculation on the other side:

Z(—s, M(s. )} By, Wy,) = f M (5,02) f(nh, ) By (ha) Wy () dh
S\H
— la]’”? f M (5,10) £ (Hnh, ) By (o)W (hn )l (hh)
S\H

= |a|9/2 7(det A)TVO )(5p(h’)

f M(s, ) f(nh, ) Bu(ha) W (h)d(hah)
S\H
= |a|*”?vp(a) " r(a) " fal> 2 f M(s, ) f(nh, s)By(ha)Wy(h1)d(hoh)
S\H
= vo(a) " '7(a) Hal>* J M((s,v) f(nh, s)By(ha)Wy(hy)d(hoh).
S\H

Therefore,

Z(=s,M f, By,,Wy,) - k(s,v,1,)
Z(S7 f7 B’l/h),? Wl/)a)
2 ~1],21s—3/2
= vo(a)"r(a) " |al 37E’”(S,H X 0 X yg X T,1)
w(a)=21(a)"a| > 2

= vy(a)|a** " (s, 1T x 0 x vg x 7,9)).

FEV (s, TT X 0 X V2 X T,1,) =

(3) Given a field k and a quasi-character 7 of k, let n, =7 - | - |L.. We will show

52

Y(3(s+80) + 1/2, 1T x 0 x v[Fx x T) = ¥(35 + 1/2, 11 x 0 X (35, px )% X T_gs,)-
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Again we proceed by computing both sides of the functional equation.

Z(s+ so, [,BBW,v®T) = f f(nh, s+ so)B(ha)W (hy)dh

S\H

= J f(prk, s + so)B(h2)W (hy)dh, where p, = m(a, \)n € Pg, and k € K¢,

S\H

= J v(det a)|(det a)[2ET )7 (A)|A| 7260 f(k, s + so) B(he)W (hy)dh
S\H

= | tnldet @), (V] (et @) EIA 4, ) Bha) W ()
S\H

= Z(S,f,B,W, V3sg ®7—7950)
For the other side:
Z(—s— s0, M*(s + s0)f, B,W, D@TVS’)
_ JM*@ + 50)f(nh, s + s0) B(ho)W (hn)dh
- f P(det a) - (714} (V)| (det a) " A 7o)

S\H

: M*(S + 80)f(]{7, S+ So)B(hg)W(hl)dh

We can absorb the powers containing sy as follows. ¥(det a)|det a|;**° = (¥ -
|- [570)(det a) = (;;Z)(det a). Since we replaced v with vss,, we need to re-
place vy = v|px With vag|px. Now T_gg s[5 (A) = T(A) [ Ap| 72003, (V) A0 =

T(A)vg(A)|A]?% which is exactly what we need to absorb the |A|?*¢ term. Therefore,
Z(—s — 59, M*(s + s0) f, B, W,V @ 11/}

= f Vaso (det @) (T-gsoV3s, [0 ) (V)| (det @) [ A1
S\H

: M*(S + So)f(k, S + So)B(hz)W(h1>dh
= Z<_S>M*f>Ba W>V\35/0 ®7_7980V380‘3F><)

(4) We must show:

YEV(3s +1/2,TT x 0 x v x T,0)y""(1/2 = 38,7 x 6 x vy 2 x 77 L) =1



54

We start with the local functional equation for 2
Z(—s, M(s,v@7,0)f®, B,W) = TE¥(3s+1/2,TT x 0 x 2 x 7,9) Z (s, f®), B, W)

and apply it twice.

Z(s,M(—s,0Q@TUg,¢) o M(s, v ®@7,)f*), B,IW)

=TEY(1/2 =38, 7 x 6 x vy 2 x 7L, 0) Z (=5, M(s5,v @T,¢)f*, B,W)

=TEY(1/2 35,7 x 6 x g2 x 7 L)Y (3s + 1/2, 11 x 0 x 13 x 7,1)
- Z(s, ¥, B,W)

By a result of [HKS]

M(s,v@T,0)M(—s,7QTv3, %) = k(—s, 7@ TU5,%) k(s v @7,1) "
Putting this all together we have

ﬁ(—S,ﬁ@TVS’,@/})/{(S,V@T, )
TEY(1)2 =38, x 6 x g2 x 7 L) TP (3s + 1/2, I x 0 x v x 7,9) = 1

(5) We must now show that:

1
L5(3s+§ HxaxySXT)

1 .
=] [ 3s+ L, X 0y X v X Ty, ) - 8(5—38,HX5><I/0_2><T_1)

ves

By (2.4.1), II has a Bessel model with respect to some Hecke character v
of A}, and some character ¢ of F\Ap. Furthermore, by well known results, ¢ has
a Whittaker model with respect to ¢. Let W and B be the corresponding vectors
for @ and ¢. Recall the 'Basic Identity’ (4.1.2)

Z(Saf(8)7¢> (D) = Z(Saf(S)aB>W)

We assume that f, B,and W factor into restricted products over all places

v, then for Re(s)>> 0 we have an Euler product,
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Z(s, f¥,B,W) = HZ 19 B, W,)

—HZ £, By, W) - [ ] Zu(s. £, By, W).

veS v¢S
For v ¢ S by Theorem 4.2.3,

Zy(s. 1\, Bu, W)
3 A . 1
=|1|L, <68 + 0y Uy - 5’52%) - L, (33 + §’H” X 0y X yio X Tv) .
i=1
We end up with the following identity which is valid for all s € C,

L% (3 + 3 1T x o x 12 x
(35 7 X1 x7) T 25 £O. B W) (46)
[T, LS (63+z v - 5E/F> ves

Next we need another identity for our global intertwining operator. For

Z(s, f¥ B,W) =

Re(s)>> 0 the operator factors over all places,

M(s,v@T,0)f HM (5,0 @ T, Uu) 1V

= [ [ Mu(s, 00 @70, ) £ - | | M5, 10 @ 70, 000) £

veS vgS
By Lemma (4.3.1)

3 . i+3
o Ly(6s—i+ 11,0
M’u(37 Vv®7—v7¢v)f1§8) = H = ( EU/FU)

: 4 F.
Hle L,(6s+ 1,10 - sgﬁFv)

Therefore, for all s € C,

3 L%(6s—i+4 1,1y 53
M(s,v@7,9) [ =] ( 0 “jr)

1 LS(6s+d,1p- ag/})

[T/ [Mo(s e @70, 000) £

v¢S veS
(4.7)
Now we evaluate (4.6) at —s, M(s,v®7,¢)f®), v+ ¥ and 7 +— 71 while making

use of (4.7)
Z(—s,M(s,v®T, w)f(s) B,W) =
LS( 33+ I x o x 1/0 ><7'I/0) HZ 1LS(65—2—1—1 v - gg/‘})
[Ty 28 (_68 T 525/%’) [Ty LS (65 +i,v0 - €3%)

J2(=s. M(s,v@7,0) ), B, W,)

vES
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Since 713 = T(tau 2 = 7 lwilw; L T = T @wy!, and 6 = 0 @ w; !, we see

that
S 1 2 s(1 Ty & -2 —1
L —33+§,H><a><1/0 xTUy | =L §—SS,H><0><1/0 X T .

By now using the global functional equation (4.1), (4.6), the definition of v¥* and
the analogous ’global property’ for Hecke L-functions, we get

1
LS(35+§ HXO‘X]JSXT)

1 .
—Hv 33—|— 1T, xavxyoxn,%)- 3(5—35,Hx5xy0’2><7-’1).

veS

4.5 Multiplicativity

Suppose that 11 is an irreducible subquotient of an induced representation of
GSpy and o is an irreducible representation of GLy(F'). Since there are 3 conjugacy

classes of parabolic subgroups of GSp,, we have the following 3 cases:
e if B is the Borel subgroup of GSpy4, then suppose that II is a subquotient of
Tp(x1, X2 %) = Ind5™x1 @ x2 ® X
In this case, multiplicativity is the identity

Tous.7 X 0,6) = (5.0 % X, 0) 75,0 % X1 ) s

'7(570 X X2X7¢) ’ 7(870 X XlXZXaw)'

e suppose that P is the Siegel parabolic subgroup of GSpy, so that its Levi
factor is M =~ GLy x GLq, and II is a subquotient of

]P(Ta X) = IndICjSIMTXa

where 7 [X] x is an irreducible representation of M. In this case, multiplica-

tivity is the identity

’YE,V(Saﬂ X 07¢) = 7(870 X X7¢) "7(3’0- X T Xa,[vb) ’ ’Y(S,O‘ X XWT>¢)~ (49)

Here, the gamma factors on the RHS are the Rankin-Selberg gamma factors

for GL(2) x GL(1) or GL(2) x GL(2).
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e if () is the Heisenberg parabolic subgroup of GSp4, so that its Levi factor is
L ~ GL; x GSpy = GL; x GLy, and II is a subquotient of

Io(x.7) = Indg™'x & T,

In this case, multipicativity is the identity

Ve (8,11 x 0,0) = (s, 7 x 0,9) - y(s,7Xx X 7,0). (4.10)

Here the gamma factors on the RHS are GL(2) x GL(2) gamma factors.

In addition, suppose that o is a constituent of a principal series represen-

tation m(x1, x2) of GLa(F). In this case, multiplicativity says that

V(SaH x 3, %U) = 7(871_[ B Xla,lvz)) ’ ’7(3’1—[ x X27¢)a (411)

where the gamma factors on the RHS are the GSp, x GL; gamma factors defined
in (4.3).

4.5.1 Consequences of multiplicativity.

If we assume that we have the identities (4.8), (4.9), (4.10) and (4.11), the

the consequences are similar to those for the GSp, x GL; case. We first have:

Proposition 4.5.1. Assuming multiplicativity for both GSp, x GLy and GSp, x

GL; context, we have:

(i) If m or o is a non-supercuspidal representation of a p-adic field, then the local
v-factor vg (s, ™ x p, ) is independent of the choice of the data (E,v) with respect
to which 7 has a (E,v)-Bessel model.

(i) If F = R or C, and w has L-parameter ¢, then vg,, (s, ™% 11,1) is independent
of (E,v) and
fYE,I/(Sv ™ X U, ¢) = 7(57 ¢7T & M, w)
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4.5.2 Independence of (F,v).

In the previous subsection, we have seen that the local y-factor is inde-
pendent of the choice of the data (F,v) with respect to which 7= has a Bessel
model, when 7 or ¢ is non-supercuspidal. In this section, we address this issue of

independence when 7 and o are both supercuspidal.

Hence, suppose that 7w is a supercuspidal representation which supports
nonzero Bessel functionals with respect to (E,r). As we noted in §3.5, there are

two cases to consider:
(a)  is the local theta lift of a supercuspidal representation 71 [X] 75 of
GSO4 = (B* x BX)/{(t,t7' : t e GL;},
where B is a quaternion F-algebra (possibly split).
(b)  is the local theta lift of a supercuipidal representation 7 [X] w, of

GSOg = (GLy x GLy)/{(t,t7%) : t € GLy}.

We shall treat the two cases in turn.

For Case (a), we shall use the global cuspidal representation II constructed
in 3.5.1, together with all the auxiliary data there (i.e. E/F, 7, ur. Let X be a
cuspidal representation of GLg(Ag) such that ¥, is unramified for all v # v; and
Yy, = 0. Then the same argument as in 3.5.1, using the global functional equation,
shows that
VEL (S, T X 0,) = (s, 71 X 0,9) - Y(s, T2 X 0,9).
In particular, the RHS is independent of (F,v) and hence so is the LHS.

For Case (b), we use the global cuspidal representation I constructed in
3.5.2 and the cuspidal representation ¥ of GL, as in the previous paragraph. Then
the global fictional equation , together with the fact that we understand the local
gamma factor at all places v # vy (as a consequence of multipicativity), implies

that
’VE,V(Saﬂ- X O-aqu)) = 7(877- X 0, ¢)
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Hence the LHS is independent of (E,v).

To summarise, we have shown:

Proposition 4.5.2. Assume that multiplicativity holds for GSpy x GL, with r = 1
or 2. For an irreducible representation w of GSpy with L-parameter ¢, and an
irreducible representation o of GLy with L-parameter ¢,, the local gamma factor

Yeu(S,m % 0,9) is independent of the data (E,v) with respect to which 7 has

nonzero Bessel functional. Moreover,

’YE,V(S; T ® g, 1/}) = ’7(8a ¢ ® ¢U7 1/})
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