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ABSTRACT OF THE DISSERTATION

Properties of Gamma factors for GSpp4q ˆGLprq with r “ 1, 2.

by

Nelson J. Townsend

Doctor of Philosophy in Mathematics

University of California, San Diego, 2013

Professor Nolan Wallach, Chair
Professor Wee Teck Gan, Co-Chair

We show several analytic and LLC functorial properties of the local Gamma

factors for non-generic representations of GSpp4q ˆ GLprq with r “ 1, 2. In both

cases the Gamma factors are obtained using the Rankin-Selberg integrals of [PS]

and [MOR]. We also include a discussion of Bessel models and the asymptotics

expansions of Bessel functions.
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1 Introduction

Let F be a non-archimedian local field of characteristic 0 and residue char-

acteristic p. Let WF be the Weil group for F and WDF “ WF ˆ SL2pCq be the

Weil-Deligne group. The Langlands dual group of G “ GSp4pF q is G_ “ GSp4pCq.
We let ΠpGq be the set of equivalence classes of irreducible smooth representations

of G and ΦpGq be the set of equivalence classes of admissible homomorphisms

WDF Ñ G_.

Then the local Langlands correspondence asserts that there is a finite-to-one sur-

jection ΠpGq Ñ ΦpGq which preserves certain invariants, including γ factors. This

mapping was uniquely characterized by Gan-Takeda[GT], but without a complete

theory of local γ, L and ε factors for non-generic representations of G, a coarser

invariant known as the Plancherel measure was used.

The purpose of this paper is to expand the theory for local γ factors for

representations of GSp4 ˆGLr with r “ 1, 2.

Main Theorem

Given admissible irreducible representations π and σ ofGSp4pF q andGLrpF q

respectively and a character ψ of F , we define a meromorphic function γps, πˆσ, ψq

satisfying the following properties:

(i) Unramified Factors. When the representations π and σ are unramified and the

character ψ has conductor 0,

γps, π ˆ σ, ψq “
Lp1´ s, π ˆ σq

Lps, π ˆ σq
.

(ii) Unramified Twisting. Given s0 P C

γps` s0, π ˆ σ, ψq “ γps, π ˆ σ ¨ | ¨ |s0 , ψq.

1
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(iii) Dependence on ψ. Let a P Fˆ, set ψapxq “ ψpaxq. Then

γps, π ˆ σ, ψaq “ ω2r
π paqω

4
σpaq|a|

4rsγps, π ˆ σ, ψq.

where ωπ and ωσ denote the central characters for Π and σ.

(iv) Functional Equation.

γps, π ˆ σ, ψq ¨ γp1´ s, π̃ ˆ σ̃, ψ´1
q “ 1.

where π̃ and σ̃ are the contragredient representations of π and σ.

(v) Global Property Let Π “ b1vπv and Σ “ b1vσv be automorphic cuspidal rep-

resentations of GSp4pAq and GLrpAq respectively. Let S be a set containing all

archimedian and 2-adic places and those places where any of the data πv, σv and

ψv are ramified. Let LSps,ΠˆΣq “
ś

vRS Lvps, πv ˆ σvq be the partial L function,

then

LSps,Πˆ Σq “
ź

vPS

γvps, πv ˆ σv, ψvq ¨ LSp1´ s, Π̃ˆ Σ̃q.

We follow the methodology of [TA] for defining the γ factor as a constant of

proportionality for a zeta integral. We want to consider the general case where the

representation of G may not be generic. Thus we use a Bessel model to capture

this and spend sometime elaborating on the asymptotics of Bessel functionals in

order to prove important analytic properties of the zeta integrals we will use.

We break up our analysis into the two cases, r “ 1 and r “ 2. In the first

case we extend the work of [PS] using a slightly modified version of his zeta integral

to define the γ factor. This integral is of Rankin-Selberg type for an Eisenstien

series over a certain subgroup of GSp4.

In the second case we look at the zeta integral defined in [MOR]. This

again is of Rankin-Selberg type, but in this case makes use of an Eisenstien series

defined over the larger group GUp3, 3q that contains a subgroup of GSp4 ˆ GL2

which we will integrate over.

In both cases, we first define the global Rankin Selberg type integral which

will have an integrand consisting of one or more cusp forms and an Eisenstien

series.

Zps, f, φq “

ż

Epg, f, sqφpgqdg.
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Next we must produce a so called ’Basic Identity’ which will allow us to write this

global integral as a product over all places of local zeta integrals.

Zps, f, φq “
ź

v

Zvps, fv, Bvq

where φ “ bvφv, the restricted tensor product over all places v of F .

At this point we do some local analysis of these local zeta integrals including

the definition of our gamma factor

Zp1´ s,Mf, B̃q “ γps,Πˆ σ, ψqZps, f, Bq

then we proceed to the ’Main Theorem’ in both cases.

1.1 Notation

Let F be a number field and let AF or A denote the ring of adeles of F .

The completion of F at a place v will be denoted Fv.

For a non-Archimedian completion Fv of F , let oFv be the ring of integers,

pFv the unique maximal ideal with generator πFv and set q “ qFv “ |oFv{pFv |. Let

E be a separable quadratic algebra over F . If E is a field, then for Ev define oEv ,

pEv , πEv and qEv analogusly. Let a denote the action of GalpE{F q for any a P E

and let δ be an element of Eˆ such that δ “ ´δ and ∆ “ δ2 P F . If E “ F ‘ F ,

then we take oEv “ poFv , oFvq and πEv “ pπFv , 1q. Let ψ : F Ñ Cˆ be a non-trivial

additive character and set ψEpaq “ ψ ˝ TrE{F paq.

If G is an algebraic group over F , we write GpF q, GpFvq and GpAq respec-

tively for the points of G over F , Fv and A. ZG will denote the center of G. For a

representation π of G, we denote the central character of π by ωπ.

Let n be a positive integer. The unitary similitude group Gn “ GUpn, nq

and the symplectic similitude group Hn “ GSp2n are defined by

Gn “ tg P GL2npEq | gJn
tgσ “ λpgqJn, λpgq P F

ˆ
u (1.1)

and

Hn “ th P GL2npF q | hJn
th “ λphqJn, λphq P F

ˆ
u (1.2)
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where

Jn “

˜

0 In

´In 0

¸

1.2 Preliminaries

1.2.1 Measure

Let ψv be an additive character of Fv. To simplify the notation of this

section we will simply write ψ. We choose our Haar measure dyψ on the field Fv

to be self-dual with respect to ψ. By which we mean the Fourier transform

FTψpfqpxq “

ż

Fv

fpyqψpxyqdyψ

satisfies the Fourier inversion formula

FTψpFTψpfqqpxq “ fp´xq.

For a P Fˆv we define ψapxq “ ψpaxq, we can define dyψa in terms of dyψ so that it

is self-dual with respect to ψa. We consider the a-twisted Fourier transform

FTψapfqpxq “

ż

Fv

fpyqψapxyqdyψa

“

ż

Fv

fpyqψpaxyqdyψ

On the one hand this is simply
ż

Fv

fpyqψpaxyqdyψ “ FTψpfqpaxq

“ l˚aFTψpfqpxq

where la denotes the action of left translation by a. At the same time we can make

the change of variables y ÞÑ a´1y
ż

Fv

fpyqψpaxyqdyψ “

ż

Fv

fpy{aqψpxyq|a|´1dyψ

“ |a|´1

ż

Fv

l˚a´1fpyqψpxyqdyψ

“ |a|´1FTψpl
˚
a´1fqpxq
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Now we look at applying the a-twisted Frouier transform twice to see what

normailization will be needed.

FTψapFTψapfqqpxq “ FTψapl
˚
aFTψpfqqpxq

“ |a|´1FTψpl
˚
a´1l˚aFTψpfqqpxq

“ |a|´1FTψpFTψpfqqpxq

“ |a|´1fp´xq

Thus we set dyψa “ |a|1{2dyψ to obtain a self-dual measure with respect to the

a-twisted character ψa. Lastly, we note that the choice of measure dyψ has the

benifit of giving volume 1 to the ring of integers oFv when ψ is unramified.

1.2.2 Subgoups

Let P denote the Siegal parabolic supgroup of H2 which consists of 2x2

block matrices of the form

˜

˚ ˚

˚

¸

. Let M ¨ N be the Levi decomposition of P ,

with M the reductive part and N the unipotent radical of P . Explicitly,

M “

#

mpA, xq “

˜

A

x ¨ tA´1

¸

|x P Fˆ, A P GL2pF q

+

N “

#

npBq “

˜

I2 B

I2

¸

|
tB “ B

+

For npBq P N and any symmetric matrix β we can define the linear form

npBq ÞÑ Trpβ ¨ Bq, furthermore all linear maps N Ñ F are of this form. We

call such a form non-degenerate if det(β)‰ 0. Let us now fix a non-singular 2x2

symmetric matrix,

β “

˜

β1 β2{2

β2{2 β3

¸

and refer to the corresponding linear form as lβ. M acts on N by conjugation and

thus on any linear form on N . Identifying N – Sym2pF q, the set of symmetric 2x2

matrices over F , the action of M is

mpA, xq ¨B “ x´1A ¨B ¨ tA
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Let N0 “ tn P N |lβpnq “ 0u. Denote by Tβ the connected component of the

stabilizer of lβ in M . Set d “ ´4detpβq and let rds denote the square-class of d in

Fˆ{Fˆ
2
. If rds “ 1, then we choose Dβ “

˜ ?
d

?
d

¸

in the orbit of β under the

action of GL2pF q, we set E “ F ‘ F and Apx, yq “

˜

x

y

¸

. Similarly, if rds ‰ 1,

then we may choose Dβ “

˜

´d

1

¸

and set E “ F p
?
dq and Apx ` y

?
dq “

˜

x yd

y x

¸

. Hence A : Eˆ Ñ GL2pF q. Lastly we map Eˆ Ñ TDβ by

t ÞÑ

˜

Aptq

detpAptqqtAptq´1

¸

P TDβ .

Therefore Eˆ – TDβ and since Tβ and TDβ are conjugate we have:

Lemma 1.2.1. There exists a unique up to isomorphism quadratic F -algebra, E,

such that Tβ – Eˆ. If rds ‰ 1, then E is a field.

Definition 1.2.2. The subgroup Rβ “ Tβ ¨N is called a Bessel subgroup of H2.

If we compose our additive character ψ : F Ñ Cˆ, with our linear form lβ,

we get a character on N , we will denote this by ψβ. Now let ν is a character on

Tβ – Eˆ. Since T stabilizes lβ, it stabilizes ψβ, thus we can form a character on

R, t ¨ n ÞÑ νptqψβpnq.

For elements in x P E write x for the Galois action(px1, x2q “ px2, x1q in

the split case), then TrE{F pxq “ x ` x and we may write E “ F ` Fδ for some

trace zero δ P E(e.g.
?
d or p1,´1q). Let VE “ Ev1 ‘ Ev2 and let ă,ąE be the

symplectic form on VE with ă v1, v2 ą“ 1. Let

GSppVE,ă,ąEq “ tg P GLpVEq| ă xg, yg ąE“ λg ă x, y ąE for some λg P E
ˆ
u

and let G˝ denote the subgroup with λg P Fˆ. Now we can view VE as 4-

dimensional F -vector space via the restriction of scalars map ResE{F . If we let
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ă,ą“ TrE{F pă,ąEq, then

G˝ Ă GSppVE,ă,ąEq ãÑ GSppV,ă,ąq – GSp4pF q

If we write V “ X‘Y , X “ ResE{F pEv1q and Y “ ResE{F pEv2q isotypic subspaces,

then P – P pXq the stabilizer of X in GSppV,ă,ąq. Write P pXq “ MpXq ¨

UpXq for the Levi decomposition and MpXq “ GLpXq ˆ Fˆ. We can embed

i : Eˆ ãÑMpXq via e ÞÑ pe,NE{F peqq noting this is just the coordinate free version

of the mapping described in Lemma 1.2.1 above. Then the Bessel subgroup is

R “ ipEˆq ¨NpXq. Now since R Ă P pXq, G˝ XR is contained in the stabilizer of

Ev1 so we must have G˝ X R “ B˝pv1q X R where B˝ “ B˝pv1q is the Borel. For

an element b P B˝ write

b “

˜

x

1

¸˜

t

t

¸˜

1 n

1

¸

x P Fˆ, t P Eˆ, and n P E.

and denote the corresponding subgroups as H˝, T ˝ and N˝ respectively. Noting

that N˝ “ N0 we have B˝ XR “ ipEˆq ¨N˝. Hence

G˝ XR “ TN0 “ T ˝N˝

We can be explicit with the embedding G˝ ãÑ GSp4pF q by writing down

a basis for V . Recall we have basis tv1, v2u and E “ F ` Fδ where δ is trace

0. We take basis te1, e2, f1, f2u “ tv1, δv1,
1
2
v2,

1
2δ
v2u, then ă ei, fj ą“ δij, i ď j

and ă ei, ej ą“ 0 “ă fi, fj ą, i, j “ 1, 2. With respect to this basis we get the

following embedding,

˜

x y

z w

¸

ÞÑ

¨

˚

˚

˚

˚

˚

˝

x1 x2d y1{2 y2{2

x2 x1 y2{2 y1{2d

2z1 2z2d w1 w2

2z2d 2z1d w2d w1

˛

‹

‹

‹

‹

‹

‚

or

¨

˚

˚

˚

˚

˚

˝

x1 y1

x2 y2

z1 w1

z2 w2

˛

‹

‹

‹

‹

‹

‚

if E is a field or split respectively.

Here the groups and subgroups were algebraic over F , but the same con-

structions work equally well over Fv or AF .



2 Bessel Models

Let E be a quadratic extension of F with associated Bessel subgroup 1.2.2

R – Eˆ ¨N Ă GSpp4q. Let π be an irreducible smooth representation of GSp4pF q.

For a character χ “ µ b ψ of R, a Bessel functional of π with respect to pE, µq is

a linear functional

B : π ÝÑ C

such that

Bpπprqvq “ χprq ¨Bpvq.

We let HomRpπ, χq be the space of such Bessel functionals.

2.1 Uniqueness.

The following is a basic result of Novodrovsky in the p-adic case.

Theorem 2.1.1. One has:

dim HomRpπ, χq ď 1.

2.2 Local existence.

We would like to show:

Proposition 2.2.1. Let π be an infinite-dimensional irreducible representation of

GSp4pF q. Then π has nonzero Bessel functionals with respect to some pE, µq.

8
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Proof. By a result of Howe[?], one knows that there is a nondegenerate character ψ

of N such that πN,ψ ‰ 0. Such a ψ is associated to a quadratic étale F -algebra E,

and its stabilizer is isomorphic to Eˆ. Thus we need to show that the Eˆ-module

πN,ψ has an irreducible quotient.

Assume first that E is a field. Note that Fˆ Ă Eˆ acts as ωπ on πN,ψ.

Twisting πN,ψ by a character of Eˆ whose restriction to Fˆ is ωπ, one may assume

without loss of generality that Fˆ acts trivially on πN,ψ, i.e. πN,ψ is a nonzero

module for the compact group Eˆ{Fˆ. It follows that πN,ψ has an irreducible

quotient.

On the other hand, if πN,ψ “ 0 for all ψ associated to quadratic fields,

then π is a so-called distinguished representation in the sense of J.S. Li [?], in the

sense that πN,ψ is nonzero with respect to a unique M -orbit of nondegenerate ψ

(associated to E “ F 2). In this case, a result of J.S. Li implies that π is obtained

as a local theta lift from the split orthogonal group GSO1,1 – Eˆ. In this case,

one can show that πN,ψ is finite -dimensional, and so has a nonzero irreducible

quotient.

2.3 Global Bessel models.

We now consider the global analog of the above discussion. Thus let k be

a number field with ring of adeles A. Let ψ : NpkqzNpAq ÝÑ Cˆ be a nonde-

generate automorphic character of N , whose stabiliser is isomorphic to AEˆ for

some quadratic étale k-algebra E. For a Hecke character µ of AEˆ , one has the

automorphic character χ “ µb ψ of R.

If AcusppGSp4q denotes the space of cusp forms of GSp4 with central char-

acter µ|Aˆ , then the global Bessel integral with respect to pE, µq is the linear

functional on AcusppGSp4q defined by

Bpfq “
ż

RpkqZpAqzRpAq
fprq ¨ χprq dr.

We say that π Ă AcusppGSp4q has nonzero global Bessel period with respect to

pE, µq if B is nonzero when restricted to π.
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2.4 Global existence.

We have the following global existence result:

Proposition 2.4.1. Let π be a cuspidal representation of GSp4. Then there exists

pE, µq with E a quadratic field and µ|Z “ ωπ such that π has nonzero Bessel period

with respect to pE, µq.

Proof. By Howe [H1] and J.S. Li [L3], one knows that π has nonzero Fourier

coefficient with respect to some nondegenerate character ψ of N . Suppose that ψ

corresponds to a quadratic field extension E of k. Then for some f P π, fN,ψ is a

nonzero function on EˆzAˆE on which Aˆ acts by ωπ. It then follows that there is

a Hecke character µ of AˆE with µ|Aˆ “ ωπ such that
ż

EˆAˆzAˆE

fN,ψptq ¨ µptq dt ‰ 0.

Suppose that the only nondegenerate Fourier coefficient along N supported

by π is the one corresponding to the split algebra k2. Then by a result of J. S.

Li, π has nonzero global theta lift to the split orthogonal group GO1,1. There

is no cuspidal representation of GSp4 which could participate in the global theta

correspondence with GO1,1.

2.5 Asymptotics of Bessel functions

Let E be a quadratic extension of F with associated Bessel subgroup R –

Eˆ ¨N Ă GSpp4q. Let π be an irreducible smooth representation of GSp4pF q. For

a character χ “ µb ψ of R, let

B P HomRpπ, χq.

For fixed v P π, we would like to investigate the asymptotic behaviour of the

function on H˝ – Fˆ defined by

t ÞÑ Bpt ¨ vq.
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2.5.1 Non-archimedean case.

Assume first that F is nonarchimedean. We have:

Lemma 2.5.1. The function Bptvq vanishes if |t|F is sufficiently large.

Proof. Since π is smooth, there is an open compact subgroup C Ă N such that

n ¨ v “ v for all n P C. Thus,

Bptvq “ Bptn ¨ vq “ ψptnt´1
q ¨Bptvq.

Thus, if Bptvq ‰ 0, we must have

ψptnt´1
q “ 1 for all n P C.

In other words, tCt´1 Ă Kerpψq if Bptvq ‰ 0. Since Kerpψq is a compact subgroup

of N , and tCt´1 is unbounded as |t| Ñ 8, we see that when |t| is sufficiently large,

Bptvq “ 0.

Now we want to examine the behaviour of Bptvq as |t| Ñ 0. We shall see

that this behaviour is controlled by the Jacquet module πN , which is a finite length

representation of the Levi subgroup M of the Siegel parabolic P “ MN . Note

that Fˆ – H˝ is contained in the center of M . Regarded as a representation of

Fˆ, one has a finite decomposition

πN “ ‘χπN rχs

into generalized eigenspaces for Fˆ. We first note:

Lemma 2.5.2. If v P πrN s “ Kerpp : π Ñ πNq, then Bptvq vanishes near 0 P Fˆ.

Proof. Note that πrN s is spanned by elements of the form v “ nw ´ w for n P N

and w P Vπ. Then

Bptpnw ´ wqq “ pψptnt´1
q ´ 1q ¨Bptwq.

But ψptnt´1q “ 1 for t sufficiently close to 0. This proves the lemma.
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Next, suppose v P V is such that the image of v is in πN belongs to πN rχs.

The space πN rχs has an increasing filtration pπN rχsnq, with n ě 0, and with πN rχsn

consisting of those w P πN rχs such that

r

n
ź

i“1

pti ´ χptiqqs ¨ w “ 0

for all ti P F
ˆ. The case n “ 0 is interpreted to mean w P Kerppq. We shall

analyze the behaviour of Bptvq for v such that ppvq P πN rχsn. More precisely, we

shall show:

Lemma 2.5.3. For v P π such that ppvq P πN rχsn, Bptvq “ χptq ¨ fplog |t|q for

some polynomial f of degree ď n ´ 1 when t is sufficiently close to 0. Here, for

n “ 0, f is interpreted to be 0, and log refers to logq.

Proof. The base case n “ 0 is the previous lemma. Now we deal with the inductive

step. By the hypothesis on v,

n
ź

i“1

pti ´ χptiqqv P Kerppq.

So the previous lemma implies that for all |a| ă εt1¨¨¨ ,tn ,

Bpa ¨
n
ź

i“1

pti ´ χptiqqvq “ 0.

Since π and χ are smooth, the number εt1,¨¨¨ ,tn is locally constant in t1, ¨ ¨ ¨ , tn. In

particular, if the tis vary over a compact set C, one can pick an ε which works for

all choices of ti in C. In particular, one picks an ε which works for all q´1 ď |ti| ď 1.

Then we claim that this same ε works for all |ti| ď 1. To see this, let us replace t1

by t1t with |t| “ q´1, so that |t1t| “ q´2. We want to show the vanishing of

Bpa ¨ pt1t´ χpt1tqq ¨
ź

ią1

pti ´ χptiqqvq, when |a| ă ε.

Then with w “
ś

ią1pti ´ χptiqqvq, we see that for |a| ă ε,

Bpa ¨ pt1t´ χpt1tqq ¨ wq “ Bpat ¨ t1 ¨ wq ´ χpt1tqBpawq

“ χpt1q ¨Bpatwq ´ χpt1tqBpawq “ χpt1q ¨ pBpa ¨ pt´ χptqq ¨ wqq “ 0
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as desired. Repeating this argument establishes our claim.

Thus we now have: whenever |a| ă ε and |ti| ď 1,

ÿ

S

p´1q#SχptSq
´1
¨BpatSvq “ 0 (2.1)

where the sum runs over all subset S of t1, , nu and tS “
ś

iPS ti. For fixed a with

|a| ă ε, if we set

fptq “ χptq´1Bpatvq ´Bpavq,

then fp1q “ 0 and (2.1) can be rewritten as:

ÿ

S

p´1q#S ¨ fptSq “ 0.

We claim that a function f satisfying this must be a polynomial in log |t| of degree

ď n´ 1 and constant term 0.

We shall proceed by induction on n. For t0 fixed, consider

Ft0ptq “ fpt ¨ t0q ´ fptq ´ fpt0q.

Then Ft0 satisfies Ft0p1q “ 0 and

ÿ

S1

p´1q#S
1

fptS1q “ 0

as S 1 ranges over all subsets of t1, ..., n ´ 1u. By induction hypothesis, Ft0ptq “

Pt0plog |t|q for a polynomial Pt0 of degree ď n´ 2. Moreover, the constant term of

Pt0 is 0 since Ft0p1q “ 0. So we have

fptt0q ´ fptq “ fpt0q ` Pt0plog |t|q.

Now, if we assume that t is a unit, then

fptt0q “ fptq ` fpt0q,

and so the continuity of f thus implies that fptq “ 0 if |t| “ 1 (else fptnt0q “

n¨fptq`fpt0q Ñ 8 as nÑ 8). In other words, f is a function of ordptq “ ´ log |t|,

say fptq “ Qp´ log |t|q. Then, taking t0 to be a uniformizer, we deduce that

Qpx` 1q ´Qpxq ´Qp1q “ P pxq,
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for x P Z, with P a polynomial of degree ď n ´ 2. This implies that Q can be

taken to be a polynomial of degree ď n´ 1 (with constant term 0), as desired.

We have thus shown that there is an ε ą 0 such that for a fixed |a| ď ε and

all |t| ď 1,

Bptavq “ χptq ¨ qaplog |t|q

for some polynomial qa of degree ď n´ 1. The lemma is proved.

2.5.2 Archimedean case.

Suppose now that F is archimedean. In this case, π is a smooth Frechét

representation of moderate growth (a Casselman-Wallach representation) and the

Bessel funcitonal

B : π ÝÑ C

is continuous, so that there is a semi-norm ν on π with

Bpvq ď νpvq for all v P π.

Thus

Bptvq ď νptvq ď maxp|t|, |t|´1
q
k
¨ µpvq

for some k P N, and some seminorm µ on π and for all v P π. Thus, Bptvq grows

like a polynomial in |t| as |t| Ñ 8, and it grows like a polynomial in |t|´1 as |t| Ñ 0.

Lemma 2.5.4. As |t| Ñ 8, Bptvq is rapidly decreasing.

Proof. By the Dixmier-Malliavin theorem, we can express v P π as

v “ f ˚ v0 :“

ż

N

fpnqπpnqv0 dn

for some v0 P π and some function f P C8c pNq. Then

Bptvq “

ż

N

fpnq ¨Bptnv0qdn “ pfptq ¨Bptv0q

where pf denotes the Fourier transform of f . Thus, pf is rapidly decreasing as

|t| Ñ 8, whereas Bptv0q is of polynomial-growth. Hence, Bptvq behaves like a

Schwarz function as |t| Ñ 8.
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The above lemma implies that the linear functional B is tame in the sense

of Wallach [Wa]. Then [Wa] gives an asymptotic expansion for Bptvq as |t| Ñ 0.

Lemma 2.5.5. As |t| Ñ 0, one has

Bptvq ∼
ÿ

χPEpP,πq

χptq ¨
ÿ

kě0

tk ¨ qχ,kplog |t|, vq

where

‚ EpP, πq denotes the finite set of leading exponents of π along P

‚ qχ,kplog |t|, vq is a polynomial in log |t| for fixed v P π, and v ÞÑ qχ,kplog |t|, vq

is a continuous functional of π.

Moreover, the meaning of ∼ is: for any n P N,

|Bptvq ´
ÿ

χ

n
ÿ

k“0

tk ¨ qχ,kplog |t|, vq| ď Cnpvq ¨ |t|
A`n

for some constant A independent of n, and for |t| sufficiently small.



3 GSp4 ˆGL1

This chapter develops the theory of local γ-factors in the case when r “ 1.

Essentially a refinement and extension of the work [PS]. First we establish the

global zeta integral and show a ’Basic Identity’ which will allow us to factor into

local zeta integrals. After verifying analytic properties we define the γ-factor in

the usual way as the a constant of proportionality. Explicit calculations are given

for the unramified case and the ’Main Theorem’ in this case is stated and proved.

We conclude the chapter with a discussion of Multiplicativity, which we would like

to prove at a future time, and the immediate consequences of this property.

3.1 Global Integral

For the algebraic group H2pAq “ GSp4pAF q let the subgroups: MA, TA,

NA, RA, G˝A, B˝A, T ˝A, N˝
A be the adelic analogues defined in the previous chapter.

Here we use F , E, Fˆ, Eˆ to denote the diagonal embeddings into AF , AE, AˆF ,

AˆE repectively. Note that here TA – IE where IE are the ideles of our quadratic

F -algebra E.

Let pπ, V q be an automorphic cuspidal representation of GSp4pAF q with

central character $π and let νA be a Hecke character of Eˆ such that νA “ $π. Let

ψA a non-degenerate Hecke character on AF {F and as before denote the extended

character on UA by ψl,A. Let µA be a character on IF and define a character on B˝A

by

χs

˜˜

x

1

¸˜

t

t

¸˜

1 n

1

¸¸

“ µApxq|x|
s
IF
ν´1
A ptq.

16



17

Let f be a flat section of the family of induced normalized representations

Ips, νA, µAq “ Ind
G˝A
B˝A
χs.

Hence, f is a smooth function on G˝ such that

f

˜˜

x

1

¸˜

t

t

¸˜

1 n

1

¸

g

¸

“ µApxq|x|
s`1
IF

ν´1
A ptqfpgq

from which we can form the Eisenstien series

Eps, g, f, νA, µAq “
ÿ

αPB˝F zG
˝
F

fpαgq.

This series is known to be meromorphic function of s P C and satisfies a functional

equation

Eps, g, f, νA, µAq “ Ep´s, g,Mps, ν, µ, ψqf, νA, ν
´1
AFµ

´1
A q

where Mps, νA, µA, ψAq : Ips, νA, µAq ÞÑ Ip´s, νA, µ
´1
A νA|

´1

AˆF
q is the standard global

intertwining operator defined as

Mps, νA, µA, ψAqfpgq “

ż

AE

f

˜˜

´1

1

¸˜

1 n

1

¸

g

¸

dn

for Re(s) ąą 0 and has meromorphic continuation to all of C.

We say that π has a non trivial Bessel model with respect to ψA and νA

if there exists a cusp form ϕ P V such that for the character χprq “ χptnq “

νAptqψApnq on RA “ TANA the following global Bessel period is nonzero,
ż

ZARF zRA

ϕprqχ´1
prqdr. (*)

By proposition 2.4.1 we know π has a non-trivial bessel model and we fix a

cusp form ϕ such that (*) does not vanish, we then define for each g P GSpp4q

Bϕ
pgq “

ż

ZARF zRA

ϕprgqχ´1
prqdr

For r P RA

Bϕ
prgq “ χprqBϕ

pgq
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We denote the space of such functions BπpE, νA, ψAq and via right translation gives

a representation of GSp4pAF q equivalent to π. The global Bessel model will factor

as a restricted tensor product of local Bessel models and uniqueness follows from

the uniqueness of the local models, Theorem 2.1.1.

We may now define our global zeta integral

Zps, ϕ, f, νA, µAq “

ż

ZAG˝F zG
˝
A

ϕpgqEps, g, f, νA, µAqdg.

The convergence and meromorphic continuation of such an integral is well know.

The functional equation for the Eisenstien series gives us a functional equation for

the zeta integral for free

Zps, f, ϕ, νA, µAq “ Zp´s,Mps, νA, µA, ψAqf, ϕ, νA, ν
´1
A µ´1

A q. (3.1)

3.1.1 Basic Identity

Zps, f, ϕ, νA, µAq “

ż

ZAG˝F zG
˝
A

ϕpgqEps, g, f, νA, µAqdg

“

ż

ZAG˝F zG
˝
A

ϕpgq
ÿ

γPB˝F zG
˝
F

fpγgqdg

“

ż

ZAG˝F zG
˝
A

ϕpγgq
ÿ

γPB˝F zG
˝
F

fpγgqdg

“

ż

ZAB˝F zG
˝
A

ϕpgqfpgqdg

We have the Fourier expansion

ϕpgq “
ÿ

ψP {NF zNA,ψı1

ϕψpgq, ϕψpgq “

ż

NF zNA

ϕpngqψ´1
pnqdn

Continuing to unfold
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Zps, f, ϕ, νA, µAq “

ż

ZAB˝F zG
˝
A

ÿ

ψP {NF zNA
ψı1

ϕψpgqfpgqdg

“

ż

ZAH˝FT
˝
FN

˝
AzG

˝
A

ż

N˝F zN
˝
A

ÿ

ψP {NF zNA
ψı1

ϕψpngqfpngqdn dg

Note that here since f is invariant under N˝
A the integration will kill terms with

characters ψ which are non-trivial on N˝
A. Thus we need only consider those

characters, which are nontrivial on NF zNA and trivial on N˝
A. Since H˝

F acts

simply transitive on this set of characters we reduce to

“

ż

ZAH˝FT
˝
FN

˝
AzG

˝
A

ÿ

hPH˝F

ϕψphgqfpgqdg

“

ż

ZAT ˝FN
˝
AzG

˝
A

ϕψpgqfpgqdg

“

ż

T ˝AN
˝
AzG

˝
A

¨

˚

˝

ż

ZATF zTA

ϕψptgqfptgqdt

˛

‹

‚

dg

“

ż

T ˝AN
˝
AzG

˝
A

¨

˚

˝

ż

ZAT ˝F zT
˝
A

ϕψptgqν
´1
ptqdt

˛

‹

‚

fpgqdg

“

ż

T ˝AN
˝
AzG

˝
A

¨

˚

˝

ż

ZAT ˝F zT
˝
A

ż

NF zNA

ϕptngqψ´1
pnqν´1

ptqdndt

˛

‹

‚

fpgqdg

“

ż

T ˝AN
˝
AzG

˝
A

¨

˚

˝

ż

ZARF zRA

ϕprgqα´1
ν,ψprqdr

˛

‹

‚

fpgqdg

“

ż

T ˝AN
˝
AzG

˝
A

Bϕ
pgqfpgqdg,

Thus now if we assume f “
ś

v fv then we get the desired Eulerian property,

Zps, f, ϕ, νA, µAq “

ż

T ˝AN
˝
AzG

˝
A

Bϕ
pgqfpgqdg “

ź

v

ż

T ˝FvN
˝
Fv
zG˝Fv

Bϕ
v pgqfvpgqdg.
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for Re(s)ąą 0.

Definition 3.1.1. For a fixed place v of F , the local zeta integral is defined as

Zvps, fv, B
ϕ
v q “

ż

T ˝FvN
˝
Fv
zG˝Fv

Bϕ
v pgqfvpgqdg.

3.2 Local Integral

For this section we fix a place v of F and by abuse of notation drop the

subscript and simply write F for Fv. We similarly drop the subscript v for pFv ,

oFv , πFv and pFv . We do the same for the Fv-algebra Ev. Our usual notion resumes

in the next section.

3.2.1 Preliminaries

Let s P C. For characters µ : Fˆ Ñ C and ν : Eˆ Ñ C define on B˝ the

quasicharacter

χs

˜˜

xt

t

¸˜

1 n

1

¸¸

“ µpxqν´1
ptq|x|sF , x P F

ˆ, t P Eˆ, n P E.

We consider the family of induced normalized representations

Ips, ν, µq “ IndG
˝

B˝χs

and we will always take f P Ips, ν, µq to be a flat section of this family relative to

the standard compact K˝ “ tk P GL2poEq|detpkq P Fˆu of G˝.

We have the standard intertwining operator Mps, ν, µ, ψq : Ips, ν, µq Ñ

Ip´s, ν, ν´1
F µ´1q defined as

Mps, ν, µ, ψqfpgq “

ż

E

f

˜˜

´1

1

¸˜

1 y

1

¸

g

¸

dyψE

which we sometimes simply denote by M . Note that we are using the measure self

dual to ψE “ ψ ˝ trE{F . Twisting by a is simple

Mps, ν, µ, ψaq “ |a|
1{2
E Mps, ν, µ, ψq.
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Lemma 3.2.1. [BU, Proposition 4.5.10] Composing twice Mp´s, ψq ˝Mps, ψq :

Ips, ν, µq Ñ Ips, ν, µq scales by

γp1´ s, pµ´1
˝NE{F q ¨ ν

´1, ψ´1
q ¨ γp1` s, pνFµ ˝NE{F q ¨ ν

´1, ψq

Let pπ, V q be an irreducible smooth representation of GSp4pF q, µ : Fˆ Ñ

Cˆ a character and let π have Bessel model BpE, ν, ψq. Let Bψ P BpE, ν, ψq and

let f be a flat section of IndG
˝

B˝χs. Then define

Zps, Bψ, fs, ν, µq “

ż

T ˝N˝zG˝

Bψpgqfspgqdg

“

ż

K

ż

Fˆ

Bψ

˜˜

x 0

1

¸

k

¸

fs

˜˜

x 0

1

¸

k

¸

δB˝pxq
´1dxdk

Proposition 3.2.2. The local zeta integral

Zps, B, fsq “

ż

N0T 0zG0

Bpgvq ¨ fspgq dg

converges absolutely when Repsq " 0. Moreover, it admits a meromorphic contin-

uation to C.

The absolute convergence of Zpsq when Repsq " 0 follows immediately from

the asymptotic behaviour of Bptvq discussed in 1.3. Now we consider the question

of meromorphic continuation of Zpsq. When F is nonarchimedean, Zpsq can be

expressed as an integral over |t| ą ε (which converges for all s), and a finite linear

combination of integrals of the form

ż

|t|ăε

χptq ¨ |t|s ¨ plog |t|qk dt

It is easy to see that such an integral is a rational function in q´s and this provides

the meromorphic continuation of Zpsq to C.

Suppose now that F is archimedean.

Zps, B, fq “

ż

T

ż

K

Bptkvq¨|t|s ¨fspkq¨δB0ptq´1 dk dk “

ż

T

Bpt¨pf ˚vqq¨|t|s ¨δBptq
´1 dt
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Again, we may split the integral into
ş

|t|ąε
`
ş

|t|ăε
. The former integral converges

since Bpt ¨ f ˚ vq behaves like a Schwarz function as |t| Ñ 8. For the second

integral, using the asymptotic expansion given in Lemma 2.5.5, we see that, for

any n P N,

Bpt ¨ pf ˚ vqq “

˜

ÿ

χ

χptq ¨
n
ÿ

k“0

tk ¨ qχ,kplog |t|, f ˚ vq

¸

` Enptq

where

|Enptq| ď Cnpf ˚ vq ¨ |t|
A`n

for some A independent of n. Now the integral
ż

|t|ăε

χptq ¨ tk`s ¨ log |t|r dt

is easily seen to have a meromorphic continuation to all of C. On the other hand,

the integral
ż

Fˆ
Enptq ¨ |t|

s dt

is convergent when Repsq ą ´A´n. Thus, we see that Zpsq admits a meromorphic

continuation to Repsq ą ´A ´ n. Since n is arbitrary, we deduce that Zpsq has a

meromorphic continuation to C, as desired.

Proposition 3.2.3. There is a meromorphic function ΓE,νps, π ˆ µ, ψq such that

Zp´s, Bψ,Mfs, ν, ν
´1µ´1

q “ ΓE,νps`
1

2
, π ˆ µ, ψqZps, Bψ, fs, ν, µq

Proof. To show the functional equation for the local zeta integral, we need to

consider the abstract Hom space

Vs “ HomHpπ b Ips, µ, νq,Cq “ HomHpπ, Ip´s, µ
´1, ν´1

q

where H “ GL2pEq
0.

Let us write

Ip´s, µ´1, ν´1
q “ IndHB0χs.

By Frobenius reciprocity, we see that

Vs “ HomT 0pπN0 , χsq.
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On the other hand, we have a short exact sequence of T 0-modules

0 ÝÝÝÑ indT
0

EˆpπN,ψq ÝÝÝÑ πN0 ÝÝÝÑ πN ÝÝÝÑ 0

For generic s,

HomT 0pπN , χsq “ 0,

so that

Vs “ HomT 0pindT
0

EˆpπN,ψq, χsq.

By Frobenius reciprocity, this is equal to

HomEˆpπN,ψ, χsq

which is the space of Bessel functionals of π with respect to µ´1| ´ |´s. Thus, we

have shown that, for generic s, V is isomorphic to a space of Bessel functionals on

π and Theorem 2.1.1 says that this space is 1-dimensional. This then implies the

local functional equaton for local zeta integrals, since both sides of the functional

equation defines elements of Vs.

3.2.2 Unramified Calculation

Let pπ, Vπq be an unramified smooth representation of GSp4pF q and µ an

unramified quasicharacter of Fˆ. Let π have Bessel model BpE, ν, ψq. Since π is

spherical, ν is unramified. Note that when E “ F ‘ F characters on E have the

form χpx, yq “ pχ1 ‘ χ2qpx, yq “ χ1pxqχ2pyq where χ1, χ2 are characters of F .

Since the data: ν and µ are unramified, Ips, ν, µq is unramified. Let K˝ “

tk P GL2poEq | detpkq P Fˆu and let φK˝ and φ1K˝ be the normalized K˝-fixed

vectors for Ips, ν, µq and Ip´s, ν, ν´1µ´1q respectively, i.e. φK˝pbkq “ pδ
1{2
B˝ χsqpbq,

where δB˝ is the modular character for the Borel subgroup in G˝.

Lemma 3.2.4. [BU] With φK˝ defined above and our Haar measure chosen to give

volume 1 on oE we have

Mps, ψqφK˝ “
LEps, pµ ˝NE{F q ¨ νq

LEps` 1, pµ ˝NE{F q ¨ νq
φ1K˝
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where LE is the standard abelian L-factor over E, i.e. LEps, χq “ p1´χpπEqq
´s
E q

´1

when E is a field and LEps, χq “ LF ps, χ1 ‘ χ2q “ LF ps, χ1qLF ps, χ2q when E is

split.

We now evaluate our zeta integral

Zps, Bψ, fs, ν, µq “

ż

TNzG˝

Bψpgqfspgqdg,

with unramified data and use the funtional equation

Zp´s, Bψ,Mfs, ν, ν
´1µ´1

q “ ΓE,νps, π ˆ µ, ψqZps, Bψ, fs, ν, µq

to compute the constant of proportionality.

ż

TNzG˝

Bψpgqφ
K˝

s pgqdg

“

ż

K

ż

Fˆ

Bψ

˜˜

x 0

1

¸

k

¸

φK
˝

s

˜˜

x 0

1

¸

k

¸

δBpxq
´1dxdk

“

ż

Fˆ

Bψ

˜˜

x 0

1

¸¸

φK
˝

s

˜˜

x 0

1

¸¸

|x|´2
F dx

“

ż

Fˆ

Bψ

˜˜

x 0

1

¸¸

µpxq|x|1`sF |x|´2
F dx

“
ÿ

ně0

Bψ

˜˜

πn 0

1

¸¸

µpπqnq´nps´1q

“
ÿ

ně0

Bψ

˜˜

πn 0

1

¸¸

yn1 , y1 “ µpπqq1´s

Thus we have,

Zps, Bψ, φ
K˝

s , ν, µq “
ÿ

ně0

Bψ

˜˜

πn 0

1

¸¸

yn1 , y1 “ µpπqq1´s.

A simular calculation for the other side gives
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Zp´s, Bψ,MφK
˝

s , ν, ν´1µ´1
q “

LEps, pµ ˝NE{F q ¨ νq

LEps` 1, pµ ˝NE{F q ¨ νq

ÿ

ně0

B

˜˜

πn 0

1

¸¸

yn2 , y2 “ pν
´1µ´1

qpπqqs`1

In order to evaluate the remaining summation, we make use of a formula

due to Sugano[SU] which we restate here. Let

M0 “

$

’

’

’

’

’

&

’

’

’

’

’

%

¨

˚

˚

˚

˚

˚

˝

x1

x2

x3

x4

˛

‹

‹

‹

‹

‹

‚

|x1x3 “ x2x4

,

/

/

/

/

/

.

/

/

/

/

/

-

,

the Levi factor for the Borel subgroup of H2. Since πv is spherical, there exists

a unramified character ρv of M0pFvq such that πv “ Ind
H2pFvq
M0pFvq

. Define characters

ρ
piq
v pi “ 1, 2, 3, 4q on Fv as

ρp1qv pxq “ ρv

¨

˚

˚

˚

˚

˚

˝

x

x

1

1

˛

‹

‹

‹

‹

‹

‚

, ρp2qv pxq “ ρv

¨

˚

˚

˚

˚

˚

˝

x

1

1

x

˛

‹

‹

‹

‹

‹

‚

ρp3qv pxq “ ρv

¨

˚

˚

˚

˚

˚

˝

1

1

x

x

˛

‹

‹

‹

‹

‹

‚

, ρp4qv pxq “ ρv

¨

˚

˚

˚

˚

˚

˝

1

x

x

x

˛

‹

‹

‹

‹

‹

‚

.

It is clear that

ρp1qv ρp3qv “ ρp2qv ρp4qv “ ωπ.

For v R S, set

εv “

$

’

’

’

’

&

’

’

’

’

%

0, if εE{F “ 1,

νpπEq if εE{F “ 1,

νpπEq ` νvpπF ¨ pπEq
´1q if εE{F “ 1.

.
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Let

hvpl,mq “

¨

˚

˚

˚

˚

˚

˝

πm`lF

˜

πmF 0

0 1

¸

˜

1 0

0 πmF

¸

˛

‹

‹

‹

‹

‹

‚

P H2pFvq

and define

Cvpx, yq “
ÿ

lě0

ÿ

mě0

Bvphvpl,mqqx
myl

Theorem 3.2.5. [SU] For v R S,

Cvpx, yq “
Hvpx, yq

PvpxqQvpyq
,

where
Pvpxq “p1´ ρ

p1q
v ρp2qv pπF qq

´2
v xqp1´ ρp1qv ρp4qv pπF qq

´2
v xq

¨ p1´ ρp2qv ρp3qv pπF qq
´2
v xqp1´ ρp3qv ρp4qv pπF qq

´2
v xq,

Qvpyq “
4
ź

i“1

p1´ ρpiqv pπF qq
´3{2
v yq,

Hvpx, yq “p1` A2A3xy
2
qtM1pxqp1` A2xq ` A2A5A

´1
1 αx2

u

´ A2xytαM1pxq ´ A5M2pxqu ´ A5Pvpxqy ´ A2A4Pvpxqy
2,

M1pxq “ 1´ A´1
1 pA1 ` A4q

´1
pA1A5α ` A4β ´ A1A

2
5 ´ 2A1A2A4qx` A

´1
1 A2

2A4x
2

M2pxq “ 1` A´1
1 pA1A2 ´ βqx` A

´1
1 A2pA1A2 ´ βqx

2
` A3

2x
3,

α “ q3{2
v

4
ÿ

i“1

ρpiqv pπF q, β “ q´3
v

ÿ

1ďiăjď4

ρpiqv ρ
pjq
v ,

A1 “ q´1
v , A2 “ q´2

v νvpπF q, A3 “ q´3
v νvpπF q,

A4 “ ´q
´2
v εEv{Fv , A5 “ q´2

v εv.

We now use the following special case of Sugano’s formula to evaluate the

sums.

ÿ

ně0

B

˜˜

πn 0

1

¸¸

yn “
Hpyq

ś4
i“1p1´ γ

piqpπqq´
3
2yq
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where Hpyq is a polynomial in y described above. Our Zeta integrals becomes

Zps, Bψ, φ
K˝

s , ν, µq “ Hpy1q ¨ Lp
1

2
` s, π ˆ µq

Zp´s, Bψ,MφK
˝

s , ν, ν´1µ´1
q “

LEps, pµ ˝NE{F q ¨ νq

LEps` 1, pµ ˝NE{F q ¨ νq
Hpy2q ¨ Lp

1

2
´ s, π̃ ˆ µ´1

q

Were Hpyq depends on E{F and is described above. Combining this with our

functional equation gives

ΓE,νps, π ˆ µ, ψq “
LEps, pµ ˝NE{F q ¨ νq

LEps` 1, pµ ˝NE{F q ¨ νq

Hpy2q

Hpy1q

Lp1
2
´ s, π̃ ˆ µ´1q

Lp1
2
` s, π ˆ µq

Next we compute Hpy1q and Hpy2q in each case. What we show is that

Hpy1q is the inverse of LEps` 1, pµ ˝NE{F q ¨ νq and Hpy2q is at least consistently

described in all cases.

Unramified Case

In this case Hpyq “ 1´ q´4
F νpπF qy

2 and we note that qE “ q2
F . Thus we have

Hpy1q “ 1´ νpπF qµ
2
pπF qq

´2p1`sq
F

“ 1´ νpπEqpµ ˝NE{F qpπEqq
´p1`sq
E

“ LEps` 1, pµ ˝NE{F q ¨ νq
´1

and
Hpy2q “ 1´ ν´1

pπqµ´2
pπqq´2p1´sq

“ 1´ ν´1
pπEqpµ

´1
˝NE{F qpπEqq

´p1´sq

“ LEp1´ s, pµ
´1
˝NE{F q ¨ ν

´1
q
´1

Ramified Case

Here Hpyq “ 1 ´ q´2
F νpπEqy and since the residue fields are isomorphic we know

qE “ qF .
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Hpy1q “ 1´ νpπEqµpπF qq
´p1`sq
F

“ 1´ νpπEqpµ ˝NE{F qpπEqq
´p1`sq
E

“ 1´ νpπEqpµ ˝NE{F qpπEqq
´p1`sq
E

“ LEps` 1, pµ ˝NE{F q ¨ νq
´1

where the last simplification follows form the fact that conjugates have the same

valuation and ν is unramified, i.e. ν|oE “ 1. Hence

νpπEq “ νpπEq “ νpπE ¨ uq “ νpπEq

where u P oˆE. Simularly we have

Hpy2q “ 1´ νpπEqν
´1
pπF qµ

´1
pπF qq

´p1´sq
F

“ 1´ νpπEqν
´1
pπF qpµ

´1
˝NE{F qpπEqq

´p1´sq
E

“ 1´ νpπEqν
´1
pπEπEqpµ

´1
˝NE{F qpπEqq

´p1´sq
E

“ 1´ ν´1
pπEqpµ

´1
˝NE{F qpπEqq

´p1´sq
E

“ LEp1´ s, pµ
´1
˝NE{F q ¨ ν

´1
q
´1

Split Case

In this final case Hpyq “ p1´ q´2νpπEqyqp1´ q
´2νpππ´1

E qyq

Hpy1q “

”

1´ νpπEqµpπF qq
´p1`sq
F

ı ”

1´ νpπFπ
´1
E qµpπF qq

´p1`sq
F

ı

“

”

1´ ν1pπF qµpπF qq
´p1`sq
F

ı ”

1´ ν2pπF qµpπF qq
´p1`sq
F

ı

“ LF p1` s, ν1 ¨ µq
´1LF p1` s, ν2 ¨ µq

´1

“ LF p1` s, pν1 ‘ ν2q ¨ µq
´1

“ LEp1` s, pµ ˝NE{F q ¨ νq
´1
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and

Hpy2q “

”

1´ νpπEqν
´1
pπF qµ

´1
pπF qq

´p1´sq
F

ı ”

1´ νpπFπ
´1
E qν

´1
pπF qµ

´1
pπF qq

´p1´sq
F

ı

“

”

1´ ν2pπF qν
´1
pπF qµ

´1
pπF qq

´p1´sq
F

ı ”

1´ ν1pπF qν
´1
pπF qµ

´1
pπF qq

´p1´sq
F

ı

“

”

1´ ν´1
1 pπF qµ

´1
pπF qq

´p1´sq
F

ı ”

1´ ν´1
2 pπF qµ

´1
pπF qq

´p1´sq
F

ı

“ LF p1´ s, ν
´1
1 ¨ µ´1

q
´1LF p1´ s, ν

´1
2 ¨ µ´1

q
´1

“ LEp1´ s, pµ
´1
˝NE{F q ¨ ν

´1
q
´1

We end this section with a theorem summarizing the results of this calculation.

Theorem 3.2.6.

Zps, Bψ, φ
K˝

s , ν, µq “ LEps` 1, pµ ˝NE{F q ¨ νq
´1
¨ Lp

1

2
` s, π ˆ µq

and

Zp´s, Bψ,Mps, ψqφ
K˝

s , ν, ν´1µ´1
q “

LEps` 1, pµ ˝NE{F q ¨ νq
´1
¨ γps, pµ ˝NE{F q ¨ ν, ψq

´1
¨ Lp

1

2
´ s, π̃ ˆ µ´1

q

3.3 γ-factor

Definition 3.3.1.

γE,νps` 1{2, π ˆ µ, ψq “ ΓE,νps, π ˆ µ, ψq ¨ γps, pµ ˝NE{F q ¨ νq (3.2)

3.3.1 Main Theorem

Theorem

(1) Unramified factors:

γE,νps` 1{2, π ˆ µ, ψq “
Lp1

2
´ s, π̃ ˆ µ´1q

Lp1
2
` s, π ˆ µq

(2) Dependence on ψ: Let a P Fˆ and set ψapxq “ ψpaxq, then

γE,νps` 1{2, π ˆ µ, ψaq “ µ4
paqω2

πpaq|a|
4s
F γ

E,ν
ps` 1{2, π ˆ µ, ψq
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(3) Unramified Twisting: Let s0 P C be fixed then,

γE,νps` s0, π ˆ µ, ψq “ γE,νps, π ˆ µs0 , ψq

(4) Functional equation:

γE,νps, π ˆ µ, ψqγE,νp1´ s, π̃ ˆ µ´1, ψ´1
q “ 1

(5) Global property: Let π be a cuspidal representation of GpAq, µ a Hecke

character of FˆzIF , and ψF “ bvψFv a non-trivial character of F zAF . Let S be a

finite set of places containing all the archimedean ones and the places where either

π, µ or ψ is ramified. Then,

LSps, πˆ, µq “
ź

vPS

γE,νv ps, πv ˆ µv, ψvq ¨ L
S
p1´ s, π̃ ˆ µ´1

q.

Proof. (1) follows from immediately from Theorem 3.2.6 and Definition 3.2.

For (2) let a P Fˆ and set ψapxq “ ψpaxq, then

γE,νps` 1{2, π ˆ µ, ψaq “ µ4
paqω2

πpaq|a|
4s
F γ

E,ν
ps` 1{2, π ˆ µ, ψq

To see this result we will demonstrate the effect of twisting ψ by a on the

local zeta integrals

Zps, Bψ, f, ν, µq “

ż

TNzG˝

Bψpgqfspgqdg

then take the ratio.

Since the only part of the integral that depends on ψ is the Bessel function

Bψ, we must see how Bψa should be defined. That is, it should be defined in terms

of Bψ. We let

Bψapgq “ Bψ

˜˜

a

1

¸

g

¸

then Bψa P BpE, ν, ψaq.

Now we consider the zeta integrals on both sides of the functional equation

but with Bψ replaced with Bψa . The idea being that since Bψa is defined in terms of
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Bψ we will be able to reduce back to the original zeta after pulling out some factors.

Recall our local functional equation

Zp´s, Bψ,M ˚ f, ν, ν´1µ´1
q “ ΓE,νps, π ˆ µ, ψqZps, Bψ, f, ν, µq

To simplify notation we will supress the domain of integration TNzG˝.

Zps, Bψa , f, ν, µq “

ż

Bψapgqfspgqdg

“

ż

Bψ

˜˜

a

1

¸

g

¸

fspgqdg

“

ż

Bψpgqfs

˜˜

a´1

1

¸

g

¸

dpa´1gq

“

ż

Bψpgqµpa
´1
q|a´1

|
s`1
F fspgq|a

´1
|
´2
F dg

“ µ´1
paq|a|1´sF ¨ Zps, Bψ, f, ν, µq

Now consider,

Zp´s, Bψa ,Mps, ψaqf, ν, ν
´1µ´1

q ¨ γps, pµ ˝NE{F q ¨ ν, ψaq

“ γps, pµ ˝NE{F q ¨ ν, ψaq|a|
1{2
E ¨

ż

Bψ

˜˜

a

1

¸

g

¸

Mps, ψqfspgqdg

“ rpµ ˝NE{F qpaqνpaq|a|
s
Es

ż

Bψpgqpν
´1
F µ´1

qpa´1
q|a´1

|
´s`1
F Mps, ψqfspgq|a

´1
|
´2
F dg

“ µ2
paq ¨ νF paq|a|

2s
F ¨ νF paq ¨ µpaq|a|

s´1
F ¨ |a|2F ¨ Zp´s, Bψ,Mps, ψqf, ν, ν

´1µ´1
q

“ µ3
paq ¨ ω2

πpaq ¨ |a|
3s`1
F ¨ Zp´s, Bψ,Mps, ψqf, ν, ν

´1µ´1
q

Now we take the ratio to see the effect of the a twist on our γE,ν-factor.

γE,νps` 1{2, π ˆ µ, ψaq “
Zp´s, Bψa ,M

˚f, ν, ν´1µ´1q ¨ γps, pµ ˝NE{F q ¨ ν, ψaq

Zps, Bψa , f, ν, µq

“
µ3paq ¨ ω2

πpaq ¨ |a|
3s`1
F

µ´1paq|a|1´sF

¨ γE,νps` 1{2, π ˆ µ, ψq

“ µ4
paqω2

πpaq|a|
4s
F ¨ γ

E,ν
ps` 1{2, π ˆ µ, ψq
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(3) Let s0 P C be fixed. We must show

γE,νps` s0, π ˆ µ, ψq “ γE,νps, π ˆ µs0 , ψq.

We proceed by evaluating the effect of this shifting on both sides of the

local functional equation, then take the ratio of the two sides.

Zps` s0, Bψ, f, ν, µq “

ż

TNzG˝

Bpgqfspgqdg

“

ż

K

ż

Fˆ

B

˜˜

x

1

¸

k

¸

fs`s0

˜˜

x

1

¸

k

¸

|x|´2
F dxdk

“

ż

K

ż

Fˆ

B

˜˜

x

1

¸

k

¸

µpxq|x|s`s0`1
F fs pkq |x|

´2
F dxdk

“

ż

K

ż

Fˆ

B

˜˜

x

1

¸

k

¸

µs0pxq|x|
s`1
F fs pkq |x|

´2
F dxdk

“ Zps, Bψ, f, ν, µs0q

Note that Ips ` s0, µ, νq “ Ips, µs0 , νq and Mps ` s0, µ, ν, ψq “ Mps, µs0 , ν, ψq. A

similar calculation for the other side of the functional equation gives

Zp´s´ s0, Bψ,M
˚
ps` s0, µ, ν, ψqf, ν, ν

´1µ´1
q

“ Zp´s, Bψ,M
˚
ps` s0, µ, ν, ψqf, ν, pν

´1µ´1
qs0q.

Finally taking ratios we get (3).

(4)

We know previously that

Mp´s, ψq˝Mps, ψq “ γp1´s, pµ´1
˝NE{F q¨ν

´1, ψ´1
qγp1`s, pνFµ˝NE{F q¨ν

´1, ψ´1
q

Now we have our functional equation

Zp´s, Bψ,Mps, ψqf, ν, ν
´1
F µ´1

q “ ΓE,νps, π ˆ µ, ψqZps, Bψ, f, ν, µq

which we may apply again to get

Zps, Bψ,Mp´s, ψq ˝Mps, ψqf, ν, ν
´1
F pνFµqq “

ΓE,νp´s, π ˆ ν´1
F µ´1, ψqΓE,νps, π ˆ µ, ψqZps, Bψ, f, ν, µq
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Combining and simplifying we get

γp1´ s, pµ´1
˝NE{F q ¨ ν

´1, ψ´1
qγp1` s, pνFµ ˝NE{F q ¨ ν

´1, ψ´1
q

“ ΓE,νp´s, π̃ ˆ µ´1, ψqΓE,νps, π ˆ µ, ψq

By the definition of γE,ν 3.2 , we get

γE,νps, π ˆ µ, ψqγE,νp1´ s, π̃ ˆ µ´1, ψq “ 1

By the ’dependence on ψ’ result we may freely replace ψpxq with

ψ´1
pxq “ ψp´1 ¨ xq “ µp´1q4ωp´1q2| ´ 1|4sψpxq “ ψpxq.

Thus,

γE,νps, π ˆ µ, ψqγE,νp1´ s, π̃ ˆ µ´1, ψ´1
q “ 1

(5) Let π be a cuspidal representation of GpAq, µ a Hecke character of FˆzIF , and

ψF “ bvψFv a non-trivial character of F zAF . Let S be a finite set of places con-

taining all the archimedean ones and the places where either π, µ or ψ is ramified.

Then we would like to show:

LSps, πˆ, µq “
ź

vPS

γE,νv ps, πv ˆ µv, ψvq ¨ L
S
p1´ s, π̃ ˆ µ´1

q.

By 2.4.1 we know π has a Bessel model with respect to some pE, νq and by

3.1.1 we may write

Zps, f, φ, ν, µq “ Zps, B, f, ν, µq

Under the statement assumptions, for Re(s) ąą 0 the global zeta integral

has an Euler product,

Zps, B, f, ν, µq “
ź

v

Zvps, Bv, fv, νv, µvq

“
ź

vRS

Zvps, Bv, fv, νv, µvq ¨
ź

vPS

Zvps, Bv, fv, νv, µvq.

For v R S by Theorem 3.2.6,

Zvps, Bv, fv, νv, µvq “
Lvp1{2` s, πv ˆ µvq

LE,vps` 1, pµv ˝NEv{Fvq ¨ νvq
.
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Therefore the following identity

Zps, B, f, ν, µq “
LSp1{2` s, π ˆ µq

LSEps` 1, pµ ˝NE{F q ¨ νq
¨
ź

vPS

Zvps, Bv, fv, νv, µvq (3.3)

holds for all s and hence shows that the partial L-function LS is meromorphic.

We will need the following identity about the global intertwining operator. For

Re(s) ąą 0 the intertwining operator has an Euler product,

Mps, ν, µ, ψqf psq “
ź

v

Mvps, νv, µv, ψvqf
psq
v

“
ź

vRS

Mvps, νv, µv, ψvqf
psq
v ¨

ź

vPS

Mvps, νv, µv, ψvqf
psq
v .

By Lemma 3.2.4, for v R S,

Mvps, νv, µv, ψvqf
psq
v “

LE,vps, pµv ˝NEv{Fvq ¨ νvq

LE,vps` 1, pµv ˝NEv{Fvq ¨ νvq
f p´sqv

We get the following identity which holds for all s,

Mps, ν, µ, ψqf psq “
LSEps, pµ ˝NE{F q ¨ νq

LSEps` 1, pµ ˝NE{F q ¨ νq

ź

vRS

f p´sqv

ź

vPS

Mvps, νv, µv, ψvqf
psq
v .

(3.4)

We now use 3.3 with ´s,Mps, ν, µ, ψqf psq, ν and ω´1
π µ´1 while applying 3.4

Zp´s,Mps, ν, µ, ψqf psq, B, ν, ω´1
π µ´1

q “

LSp1{2´ s, π ˆ ω´1
π µ´1q

LSEp1´ s, pω
´1
π µ´1 ˝NE{F q ¨ νq

¨
LSEps, pµ ˝NE{F q ¨ νq

LSEps` 1, pµ ˝NE{F q ¨ νq

¨
ź

vPS

Zvp´s, Bv,Mvps, νv, µv, ψvqf
psq
v , νv, ω

´1
πv µ

´1
v q.

Now we make use of the global functional equation 3.1, the definition on γv, the

fact that π̃ “ π b ω´1
π and the analogous statement for Hecke γ-factors to get

LSp1{2` s, π ˆ µq “

#

ź

vPS

γE,νv ps, πv ˆ µv, ψvq

+

¨ LSp1´ s, π̃ ˆ µ´1
q.
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3.4 Multiplicativity

In this section, we describe the property of “multipictivity” for the local

γ-factor γE,νps, π ˆ µ, ψq defined using the local zeta integral. For more details,

see [Sh]. We then deduce some consequence of this property.

3.4.1 Multiplicativity.

Suppose that π is an irreducible subquotient of an induced representation

of GSp4. Since there are 3 conjugacy classes of parabolic subgroups of GSp4, we

have the following 3 cases:

‚ if B is the Borel subgroup of GSp4, then suppose that π is a subquotient of

IBpχ1, χ2;χq “ IndGSp4B χ1 b χ2 b χ.

In this case, multiplicativity is the identity

γE,νps, πˆµ, ψq “ γps, χµ, ψq ¨γps, χ1χµ, ψq ¨γps, χ2, χµ, ψq ¨γps, χ1χ2χµ, ψq.

(3.5)

‚ suppose that P is the Siegel parabolic subgroup of GSp4, so that its Levi

factor is M – GL2 ˆGL1, and π is a subquotient of

IP pτ, χq “ IndGSp4P τ b χ,

where τ b χ is an irreducible representation of M . In this case, multiplica-

tivity is the identity

γE,νps, π ˆ µ, ψq “ γps, χµ, ψq ¨ γps, τ ˆ χµ, ψq ¨ γps, χωτµ, ψq. (3.6)

‚ if Q is the Heisenberg parabolic subgroup of GSp4, so that its Levi factor is

L – GL1 ˆGSp2 – GL1 ˆGL2, and π is a subquotient of

IQpχ, σq “ IndGSp4Q χ b σ,

In this case, multipicativity is the identity

γE,νps, π ˆ µ, ψq “ γps, χµ, ψq ¨ γps, σ ˆ µ, ψq ¨ γps, χ´1ωσ ¨ µ, ψq. (3.7)



36

We would like to prove the identities (3.5), (3.6) and (3.7), but we are not able to

do so.

3.4.2 Consequences.

In the following, we deduce some consequences of multipicativity. The first

obvious consequence is:

Proposition 3.4.1. Assuming multiplicativity, we have:

(i) If π is a non-supercuspidal representation of a p-adic field, then the local γ-

factor γE,νps, π ˆ µ, ψq is independent of the choice of the data pE, νq with respect

to which π has a pE, νq-Bessel model.

(ii) If F “ R or C, and π has L-parameter φπ, then γE,νps, πˆµ, ψq is independent

of pE, νq and

γE,νps, π ˆ µ, ψq “ γps, φπ b µ, ψq.

3.5 Independence of pE, νq

In the previous section, we have seen that the local γ-factor is independent

of the choice of the data pE, νq with respect to which π has a Bessel model, when π

is non-supercuspidal. In this section, we address this issue of independence when

π is supercuspidal.

Hence, suppose that π is a supercuspidal representation which supports

nonzero Bessel functionals with respect to pE, νq. From [GT], we know that there

are two types of supercuspidal representations:

(a) π is the local theta lift of a supercuspidal representation τ1 b τ2 of

GSO4 – pB
ˆ
ˆBˆq{tpt, t´1 : t P G1u,

where B is a quaternion F -algebra (possibly split).
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(b) π is the local theta lift of a supercuipidal representation σ b ωπ of

GSO6 “ pGL4 ˆGL1q{tpt, t
´2
q : t P GL1u.

We shall treat the two cases in turn.

3.5.1 Case (a).

Since π “ Θpτ1 b τ2q has nonzero Bessel functional with respect to pE, νq,

it follows by [PT] that

HomEˆpτ1, νq ‰ 0 and HomEˆpτ2, ν
´1
q ‰ 0.

Now choose

‚ a number field F which has 2 places v1 and v2 such that Fv1 “ Fv2 “ F ,

‚ a quaternion F-algebra D such that Dv1 – Dv2 – B and which is split at all

other places of F.

‚ a quadratic field extension E of F such that E ãÑ D and Ev1 “ E2 “ E;

‚ a Hecke character k of AˆE such that kv1 “ kv2 “ ν.

By a result of Prasad-Schule-Pillot [PSP], we may find a global cuspidal

representation T1 and T2 such that

‚ Ti,v1 “ Ti,v2 “ τi for i “ 1 or 2;

‚ Ti is unramified at all finite places outside v1 and v2;

‚ T1 has nonzero global period with respect to pE,kq;

‚ T2 has nonzero global period with respect to pE,k´1q

Then by [PT], the global theta lift

Π “ ΘpT1 b T2q
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of T1 b T2 to GSp4 is an irreducible cuspidal representation which has nonzero

global Bessel period with respect to pE,kq. Moreover, for i “ 1 or 2,

Πvi “ π.

Finally, one chooses a Hecke character µF of Aˆ such that µF,vi “ µ for i “ 1 or 2.

By the global functional equation, one has

LSp1´ s,Π_ ˆ µ´1
F q “

˜

ź

vPS

γEv ,kvps,Πv ˆ µF,v,Ψvq

¸

¨ LSps,Πˆ µFq.

and

LSp1´ s,T_i ˆ µ
_
F q “

˜

ź

vPS

γps,Ti ˆ µF,Ψvq

¸

¨ Lps,Ti ˆ µFq

for I “ 1 or 2. Since

LSps,Πˆ µFq “ Lps,T1 ˆ µFq ¨ Lps,T2 ˆ µFq,

and

LSp1´ s,Π_ ˆ µ´1
F q “ LSp1´ s,T_1 ˆ µ

_
F q ¨ L

S
p1´ s,T_1 ˆ µ

_
F q,

we deduce that

ź

vPS

γEv ,kvps,Πv ˆ µF,v,Ψvq “
ź

vPS

pγps,T1 ˆ µF,Ψvq ¨ γps,T2 ˆ µF,Ψq.q

But by Proposition 3.4.1, one knows that for all v ‰ v1 or v2, one has

γEv ,kvps,Πv ˆ µF,v,Ψvq “ γps,T1 ˆ µF,Ψvq ¨ γps,T2 ˆ µF,Ψvq. (3.8)

Thus, we conclude that

γE,νps, π ˆ µ, ψq2 “ γps, τ1 ˆ µ, ψq
2,

so that

γE,νps, π ˆ µ, ψq “ ˘γps, τ1 ˆ µ, ψq,

for some sign ˘ which may a priori depend on pE, νq.
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In fact, one can show that the sign is `. In the argument given above,

instead of globalising so that the local situations at v1 and v2 are the same, one

may globalize so that at v2, one has

T1,v2 “ Tv2 “ τ1.

One of course needs to adjust E and k at the place v2appropriately; we leave the

details to the reader. Then Πv2 will be a non-supercuspidal representation, so that

one has the equality (3.8) at all places outside v1 by Proposition 3.4.1. Then one

deduces the desired identity

γE,νps, π ˆ µ, ψq “ γps, τ1 ˆ µ, ψq

at the place v1.

3.5.2 Case (b).

The argument in Case (b) is similar, so we shall be brief. Suppose that

π “ Θpσbωπq for a supercuspidal representation σ of GL4. As above, since π has

nonzero Bessel period with respect to pE, νq, it follows by [PT] that

HomGL2pEqpσ, νq ‰ 0.

Now one globalises τ to a cuspidal representation T so that Tv0 “ σ for some place

v0, and Tv is unramified for all other finite places of v. Then the global theta lift

Π “ ΘpTq is a nonzero cuspidal representation of GSp4 such that Πv0 “ π and Π

has nonzero global Bessel period with respect to some pE,kq with Ev0 “ E and

kv0 “ ν. Then using the global functional equations as we did above, and using

the fact that one understands the local gamma factors at all places out side v0 (by

Proposition 3.4.1), we deduce that

γE,νps, π ˆ µ, ψq “ γps, τ ˆ µ, ψq.

To summarise, we have shown:
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Proposition 3.5.1. Assume that multiplicativity holds. For an irreducible repre-

sentation π of GSp4 with L-parameter φ, γE,νps, π ˆ µ, ψq is independent of the

data pE, νq with respect to which π has nonzero Bessel functional. Moreover,

γE,νps, πχµ, ψq “ γps, φb µ, ψq.



4 GSp4 ˆGL2

This chapter develops the theory for γ-factors in the r “ 2 case. We proceed

as we did in chapter 3 by first laying out the global zeta integral then passing to

the local Eulerian factors. Once we have the local functional equation and hence

the definition of γ we proceed to the ’Main Theorem’ and conclude, as before, with

a discussion of the Multiplicativity property and it’s consequences.

4.1 Global Integral

Let G “ G3 and G1,2 “ tpg1, g2q P G1 ˆ G2 | λpg2q “ λpg2qu be thought of

as a subgroup of G via the injection

˜˜

a b

c d

¸

,

˜

A B

C D

¸¸

ãÑ

¨

˚

˚

˚

˚

˚

˝

a 0 b 0

0 A 0 B

c 0 d 0

0 C 0 D

˛

‹

‹

‹

‹

‹

‚

Let H be the supgroup of G1,2 defined by

H “ tpg1, h2q P G1 ˆH2 | λpg1q “ λph2qu

and thus may be thought of as a subgroup of G as well.

Set ∆Gm “ tpa ¨ I2, aq P GL2pF q ˆ Eˆ | a P GmpF q “ Fˆu. We have the

following exact sequence

1 Ñ ∆Gm Ñ GL2pF q ˆ E
ˆ
Ñ G1 Ñ 1

where the first map is clear from the definition of ∆Gm and the second map is

given by pg, zq ÞÑ z´1g.

41
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Zeta Integral

Let P “MN be the Siegal parabolic subgroup of G where

M “

#

mpg, λq “

˜

g 0

0 λ ¨t g´σ

¸

| g P GL3pEq, λ P F
ˆ

+

N “

#

npXq “

˜

13 X

0 13

¸

| X P Herm3pEq

+

Let ν and τ be characters of AE{E
ˆ and AF {F

ˆ respectively. We may regard νbτ

as a character of P pAF q by

ν b τ

«˜

g 0

0 λ ¨t g´σ

¸˜

13 X

0 13

¸ff

“ νpdet gqτpλq

Let δP denote the modulus character of P pAF q given by

δP

«˜

g 0

0 λ ¨t g´σ

¸˜

13 X

0 13

¸ff

“ |NE{F pdet gq|3 ¨ |λ|´9

Let Ips, ν b τq “ Ind
HpAF q
P pAF qν b τ ¨ δsP where we take the induction to be

normalized. Thus Ips, νb τq is the space of locally constant functions f on HpAF q

such that

fpmpg, λqnpXqgq “ νpdet gqτpλq|NE{F pdet gq|3ps`1{2q
¨ |λ|´9ps`1{2qfpgq.

Definition 4.1.1. For a section f psq P Ips, νbτq we define the standard Eisenstien

series:

Epf psq, hq “
ÿ

αPP pF qzHpF q

f psqpαhq,

which converges for Re(s) ąą 0 and has meromorphic continuation to the whole

complex plane.

Let Π and σ be cuspidal representations of GSp4pAF q and GL2pAF q respec-

tively with central characters ωΠ and ωσ. Let χ be a character of EˆzAˆE such

that χ|AF “ ωσ. Let π “ σ b χ be the representation of G1pAF q defined by the
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exact sequence above. That is, suppose g P G1 and pg1, zq ÞÑ z´1g1 “ g, then

πpgq “ χpzq´1σpg1q. Let Vπ and VΠ be the respective spaces of cusp forms. Finally

for Φ P VΠ and φ P Vπ define the global zeta integral

Zpf psq, φ,Φq “

ż

ZpAF qHpF qzHpAF q

Epf psq, hqφpg1qΦph2qdh, pg1, h2q P HpAF q,

which makes sense if ωΠ ¨ ωσ ¨ τ
2 ¨ pν3|AF q “ 1.

We now define our intertwining operator. Let ψ be a character on AF then

we define the map

Mps, ν b τ, ψq : Ips, ν b τq Ñ Ip´s, qν b τ ¨ ν3
0q

where qν “ ν´σ and ν0 “ ν|Fˆ as follows. Given f psq P Ips, ν b τq set

Mps, ν b τ, ψqf psqpgq “

ż

N

f psqpwngq dn

where the measure dn is self dual with respect to the form px, yq ÞÑ ψpTrpxyqq for

x, y P N and

w “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1

1

1

1

1

1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

This integral converges for Re(s) ąą 0 and has meromorphic continuation to the

complex plane. Furthermore, the well known functional equation for Eisenstien

series gives a functional equation for our global zeta integral,

Zps, f psq, φ,Φq “ Zp´s,Mps, ν b τ, ψqf psq, φ,Φq (4.1)

4.1.1 Basic Identity

Recall from 1.2.2 the Bessel subgroup for H2, R “ T ¨ N where R is the

stabilizer of a non-degenerate linear form l in Levi component M of the Siegal



44

parabolic P , R “ stabM l. Further recall that this linear form corresponds to a non-

degenerate symmetric matrix β. Let us fix such a matrix and specify coordinates

β “

˜

β1 β2{2

β2{2 β3

¸

such that ´4det β “ β2
2 ´ 4β1β3 “ ∆. Also, fix the matrix

Aδ “

˜

β2 2β3

´2β1 ´β2

¸

.

Let µ be a character of AˆE{Eˆ defined as

µ “ tχν2νσpτ ˝NE{F qu
´1.

We define the Bessel function BΦ on H2pAF q of type pβ, µq associated to Φ to be

BΦph
1
q “

ż

Z2pAF qRpF qzRpAF q

Φptuh1qµ´1
ptqψ´1

β puqdtdu

The Whittaker function Wφ on G1pAF q for φ is defined by

Wφpgq “

ż

F zAF

φ

˜˜

1 x

0 1

¸¸

ψ´1
pβ3xqdx.

Finally define a homomorphism ϕb : RÑ G1:

ϕb

«˜

x ¨ 12 ` y ¨ Aδ 0

0 x ¨ 12 ´ y ¨
t Aδ

¸˜

12 X

0 12

¸ff

“

˜

x` yδ 0

0 x` yδ

¸˜

1 ´
trpβXq
β3

0 1

¸

.

Since ϕb preserves similitudes, we can define a subgroup S of H by

S “ tpϕbprq, rq | r P Ru.

Proposition 4.1.2. [MOR, Proposition 2.1]

Zpf psq, φ,Φq “

ż

SpAF qzHpAF q

f psqpηhqWφpg1qBΦph2qdh
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We take everything to be factorable here and we get the following local Zeta integral

Zpf psq,W,Bq “

ż

SpF qzHpF q

f psqpηhqW pg1qBph2qdh (4.2)

where

η “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0 0 0 0 ´1

0 1 0 0 0 0

1 0 0 0 0 0

1 α 1 0 0 0

0 0 0 0 1 ´ασ

0 0 0 1 0 ´1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, α “
β2 ` δ

2β3

P Eˆ

4.2 Local Integral

As in Chapter 1, we will define and establish technical properties of the local

zeta integral. For this section we fix a place v of F and refer to the completion of F

at this place as simply F . We also similarly abuse notation for the 2´dimensional

F -algebra E.

4.2.1 Preliminaries

Proposition 4.2.1. The local zeta integral

Zpf psq,W,Bq “

ż

SpF qzHpF q

f psqpηhqW pg1qBph2qdh

converges absolutely when Repsq " 0. Moreover, it admits a meromorphic contin-

uation to C.

Next we establish a local functional equation for the local zeta integral (4.2).

With respect to the intertwining operator,

ν ÞÑ qν, τ ÞÑ τ ¨ ν3
0

If we let qB be the corresponding Bessel function in Bpqµ, ψq, where
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qµ “
“

χqν2
qνσpτ ¨ ν3

0 ˝NE{F

‰´1

“
“

χ ¨ pν´σq2ν´1
pτ ¨ ν3

0 ˝NE{F q
‰´1

“
“

χ ¨ pν´σq2ν´1ν3
pνσq3pτ ¨ ˝NE{F q

‰´1

“ µ.

Therefore, qB “ B and we assert:

Proposition 4.2.2. There is a meromorphic function ΓE,νps, π ˆ µ, ψq such that

ZpMps, ψqf psq,W,Bq “ ΓE,νp3s` 1{2,Πˆ σ ˆ ν2
0 ˆ τ, ψqZpf

psq,W,Bq (4.3)

4.2.2 Unramified Calculation

In this section we assume both Π and σ are unramified representations of

H2 and GL2 respectively over a local non-archimedian field F . We also assume the

characters ν, τ and χ are unramified quasi-characters and our additive character

ψ has conductor oF .

Let εE{F be the quadratic character obtained via class field theory. Let Φ0

be the normalized spherical vector and ν0 “ ν|Fˆ .

Theorem 4.2.3. [MOR, Theorem 8.1]

Zpsq “ Zps,Φ
psq
0 ,W,Bq “

3
ź

i“1

L
´

6s` i, ν0 ¨ ε
i`3
E{F

¯´1

¨L

ˆ

3s`
1

2
, π ˆ σ ˆ ν2

0 ˆ τ

˙

.

4.3 Normalization

Recall the definition for the intertwing operator, for fs P Ips, ν b τq

Mps, ν b τ, ψqf psqpgq “

ż

N

f psqpwngq dn

We need to know the result of this operator when applied to our spherical vector

Φ0. We have the following result

Lemma 4.3.1. [HKS, eq. 6.14]

Mps, νqΦs
0 “

a3ps, νq

b3ps, νq
Φ
p´sq
0
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where

a3ps, νq “
3
ź

i“1

Lp6s´ i` 1, ν0 ¨ ε
i`3
E{F q

b3ps, νq “
3
ź

i“1

Lp6s` i, ν0 ¨ ε
i`3
E{F q

Now applying (4.2.3) and (4.3.1) we can directly compute

Zps,Mps, νqΦ
psq
0 ,W,Bq

“
a3ps, νq

b3ps, νq

3
ź

i“1

L
´

´6s` i, ν´1
0 ¨ εi`3

E{F

¯´1

¨ L

ˆ

´3s`
1

2
, π̃ ˆ σ̃ ˆ ν´2

0 ˆ τ´1

˙

“

3
ź

i“1

Lp6s´ i` 1, ν0 ¨ ε
i`3
E{F q

Lp6s` i, ν0 ¨ ε
i`3
E{F qLp´6s` i, ν´1

0 ¨ εi`3
E{F q

L

ˆ

´3s`
1

2
, π̃ ˆ σ̃ ˆ ν´2

0 ˆ τ´1

˙

“

3
ź

i“1

L
´

6s` i, ν0 ¨ ε
i`3
E{F

¯´1

γp6s´ i` 1, ν0 ¨ ε
i`3
E{F , ψq

´1

¨ L

ˆ

´3s`
1

2
, π̃ ˆ σ̃ ˆ ν´2

0 ˆ τ´1

˙

We conclude that in the unramified context, the factor ΓE,νp3s ` 1{2,Π ˆ

σ ˆ ν2
0 ˆ τ, ψq defined in (4.3) is exactly

3
ź

i“1

γp6s´ i` 1, ν0 ¨ ε
i`3
E{F , ψq

´1
¨
L
`

´3s` 1
2
, π̃ ˆ σ̃ ˆ ν´2

0 ˆ τ´1
˘

L
`

3s` 1
2
, π ˆ σ ˆ ν2

0 ˆ τ
˘ . (4.4)

Let µn denote the n-th roots of unity. For a character η of F and a P Fˆ

let

WF pa, ηq “
WF pηaq

WF pηq
P µ4,

where WF pηq P µ8 denotes the Weil index of the character of second degree x ÞÑ

ηpx2q. Note

WF p∆, ψaq “ εE{F paqWF p∆, ψq

and in the unramified context: the conductor of ψ is oF , ∆ is a unit and the residue

characteristic p is not 2,

WF p∆, ψq “ 1
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Let

κps, ν, ψq “ WF p∆, ψq
3

2
ź

i“0

γp6s´ i, νo ¨ εiE{F , ψq

then

κps, ν, ψaq “ WF p∆, ψaq
3

2
ź

i“0

γp6s´ i, νo ¨ εiE{F , ψaq

“ εE{F paq
2
ź

i“0

“

νopaqεiE{F |a|
6s´i´1{2

‰

WF p∆, ψq
3

2
ź

i“0

γp6s´ i, νo ¨ εiE{F , ψq

“ νpaq3|a|18s´9{2κps, ν, ψq

Lastly, note that Mps, ψaq “ |a|
9{2
F Mps, ψq

4.4 γ-factor

Definition 4.4.1.

γE,νp3s`1{2, s,Πˆσˆν2
0ˆτ, ψq “ κps, ν, ψq¨ΓE,νp3s`1{2,Πˆσˆν2

0ˆτ, ψq (4.5)

4.4.1 Main Theorem

Theorem

(1) Unramified factors:

γE,νps,Πˆ σ ˆ ν2
0 ˆ τ, ψq “

Lp1´ s, Π̃ˆ σ̃q

Lps,Πˆ µq

(2) Dependence on ψ: Let a P Fˆ and set ψapxq “ ψpaxq, then

γE,νp3s` 1{2,Πˆ σ ˆ ν2
0 ˆ τ, ψaq “ ω4

Πpaqω
4
σpaqν

16
0 paqτ

8
paq|a|8ps´1{2q

¨ γE,νp3s` 1{2,Πˆ σ ˆ ν2
0 ˆ τ, ψq

(3) Unramified Twisting: Let s0 P C be fixed then,

γE,νp3ps`s0q`1{2,Πˆσˆν|2Fˆˆτ, ψq “ γE,νp3s`1{2,Πˆσˆpν3s0 |Fˆq
2
ˆτ´9s0 , ψq

(4) Functional equation:

γE,νp3s` 1{2,Πˆ σ ˆ ν2
0 ˆ τ, ψqγ

E,ν
p1{s´ 3s, π̃ ˆ σ̃ ˆ ν´2

0 ˆ τ´1, ψ´1
q “ 1
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(5) Global property: Let Π and σ be a cuspidal representation of H2pAq and

GL2 respectively and assume Π has a global bessel period with respect to pE, µq. τ

a Hecke character of FˆzIF , and ψF “ bvψFv a non-trivial character of F zAF .

Let S be a finite set of places containing all the archimedean, 2-adic and places

where any of π, µ or ψ is ramified. Then,

LSp3s`
1

2
,Πˆ σ ˆ ν2

0 ˆ τq “
ź

vPS

γE,νv p3s`
1

2
,Πv ˆ σv ˆ ν

2
v,0 ˆ τv, ψvq

¨ LSp
1

2
´ 3s, Π̃ˆ σ̃ ˆ ν´2

0 ˆ τ´1
q

proof.

(2) We must show

γE,νp3s` 1{2,Πˆ σ ˆ ν2
0 ˆ τ, ψaq “ ν4

0paq|a|
24sγE,νp3s` 1{2,Πˆ σ ˆ ν2

0 ˆ τ, ψq.

Since both the Whittaker and Bessel functions used in our zeta integral

depend on the character ψ, we must replace these with suitable functions in the

spaces Wpψaq and BpE, µ, ψaq.

Bψapgq “ Bψ

¨

˚

˚

˚

˚

˚

˝

¨

˚

˚

˚

˚

˚

˝

a

a

1

1

˛

‹

‹

‹

‹

‹

‚

g

˛

‹

‹

‹

‹

‹

‚

Now we check that this belongs to the proper space by calculating the action

of R.
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Bψaptugq “ Bψ

¨

˚

˚

˚

˚

˚

˝

t

¨

˚

˚

˚

˚

˚

˝

a

a

1

1

˛

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˝

1

1
X

1

1

˛

‹

‹

‹

‹

‹

‚

g

˛

‹

‹

‹

‹

‹

‚

“ µptqBψ

¨

˚

˚

˚

˚

˚

˝

¨

˚

˚

˚

˚

˚

˝

1

1
aX

1

1

˛

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˝

a

a

1

1

˛

‹

‹

‹

‹

‹

‚

g

˛

‹

‹

‹

‹

‹

‚

“ µptqψ˚pupaXqqBψ

¨

˚

˚

˚

˚

˚

˝

¨

˚

˚

˚

˚

˚

˝

a

a

1

1

˛

‹

‹

‹

‹

‹

‚

g

˛

‹

‹

‹

‹

‹

‚

“ µptqψ˚apupXqqBψapgq.

therefore Bψa P BpE, µ, ψaq.
Similarly we consider the following candidate for a twisted Whittaker func-

tion,

Wψapgq “ Wψ

˜˜

a

1

¸

g

¸

.

We then observe that

Wψa

˜˜

1 x

1

¸

g

¸

“ Wψ

˜˜

a

1

¸˜

1 x

1

¸

g

¸

“ Wψ

˜˜

1 ax

1

¸˜

a

1

¸

g

¸

“ ψpaxqWψ

˜˜

a

1

¸

g

¸

“ ψapxqWψapgq,

therefore Wψa PWpψaq.



51

As before, we evaluate both sides of the local functional equation then take

the ratio to see the effect on γE,ν .

Zps, f, Bψa ,Wψaq “

ż

SzH

fpηh, sqBψaph2qWψaph1qdh

“

ż

SzH

fpηph1, h2q, sqBψ

¨

˚

˚

˚

˚

˚

˝

¨

˚

˚

˚

˚

˚

˝

a

a

1

1

˛

‹

‹

‹

‹

‹

‚

h2

˛

‹

‹

‹

‹

‹

‚

Wψ

˜˜

a

1

¸

h1

¸

dh

h1 ÞÑ

˜

a´1

1

¸

h1 h2 ÞÑ

¨

˚

˚

˚

˚

˚

˝

a´1

a´1

1

1

˛

‹

‹

‹

‹

‹

‚

h2

Let ha “

¨

˚

˚

˚

˚

˚

˝

˜

a´1

1

¸

,

¨

˚

˚

˚

˚

˚

˝

a´1

a´1

1

1

˛

‹

‹

‹

‹

‹

‚

˛

‹

‹

‹

‹

‹

‚

ãÑ

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

a´1

a´1

a´1

1

1

1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

Zps, f, Bψa ,Wψaq “

ż

SzH

fpηhah, sqBψph2qWψph1qdphahq

ηha “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

¨

˚

˚

˝

1

a´1

a´1

˛

‹

‹

‚

a´1

¨

˚

˚

˝

1

a

a

˛

‹

‹

‚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

η “ h1aη, Let A “

¨

˚

˚

˝

1

a´1

a´1

˛

‹

‹

‚
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Zps, f, Bψa ,Wψaq “

ż

SzH

fph1aηh, sqBψph2qWψph1qdphahq

“ νpdet Aqτpa´1
q
“

|NE{F pdet Aq|3|a´1
|
´9
‰s` 1

2

¨

ż

SzH

fpηh, sqBψph2qWψph1qdphahq

“ ν0paq
´2τpaq´1

|a|´3s´ 3
2

ż

SzH

fpηh, sqBψph2qWψph1qdphahq.

Now we perform a similar calculation on the other side:

Zp´s,Mps, ψaqf,Bψa ,Wψaq “

ż

SzH

Mps, ψaqfpηh, sqBψaph2qWψaph1qdh

“ |a|9{2
ż

SzH

Mps, ψqfph1aηh, sqBψph2qWψph1qdphahq

“ |a|9{2ν´σpdet Aqτν3
0pa

´1
qδP ph

1
aq
´s` 1

2

¨

ż

SzH

Mps, ψqfpηh, sqBψph2qWψph1qdphahq

“ |a|9{2ν0paq
´1τpaq´1

|a|3s´
3
2

ż

SzH

Mps, ψqfpηh, sqBψph2qWψph1qdphahq

“ ν0paq
´1τpaq´1

|a|3s`3

ż

SzH

Mps, ψqfpηh, sqBψph2qWψph1qdphahq.

Therefore,

γE,νps,Πˆ σ ˆ ν2
0 ˆ τ, ψaq “

Zp´s,Mf,Bψa ,Wψaq ¨ κps, ν, ψaq

Zps, f, Bψa ,Wψaq

“
ν0paq

2τpaq´1|a|21s´3{2

ν0paq´2τpaq´1|a|´3s´ 3
2

γE,νps,Πˆ σ ˆ ν2
0 ˆ τ, ψq

“ ν4
0paq|a|

24sγE,νps,Πˆ σ ˆ ν2
0 ˆ τ, ψq.

(3) Given a field k and a quasi-character η of k, let ηt “ η ¨ | ¨ |tk. We will show

γp3ps` s0q ` 1{2,Πˆ σ ˆ ν|2Fˆ ˆ τq “ γp3s` 1{2,Πˆ σ ˆ pν3s0 |Fˆq
2
ˆ τ´9s0q.
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Again we proceed by computing both sides of the functional equation.

Zps` s0, f, B,W, ν b τq “

ż

SzH

fpηh, s` s0qBph2qW ph1qdh

“

ż

SzH

fpphk, s` s0qBph2qW ph1qdh, where ph “ mpa, λqn P PG3 and k P KG3

“

ż

SzH

νpdet aq|pdet aq|
3ps`s0q
E τpλq|λ|´9ps`s0qfpk, s` s0qBph2qW ph1qdh

“

ż

SzH

ν3s0pdet aqτ´9s0pλq|pdet aq|3sE |λ|
´9sfpk, sqBph2qW ph1qdh

“ Zps, f, B,W, ν3s0 b τ´9s0q

For the other side:

Zp´s´ s0,M
˚
ps` s0qf,B,W, qν b τν

3
0q

“

ż

M˚
ps` s0qfpηh, s` s0qBph2qW ph1qdh

“

ż

SzH

qνpdet aq ¨ pτν3
0qpλq|pdet aq|

3p´s´s0q
E |λ|´9p´s´s0q

¨M˚
ps` s0qfpk, s` s0qBph2qW ph1qdh.

We can absorb the powers containing s0 as follows. qνpdet a)|det a|´3s0
E “ pqν ¨

| ¨ |
´3s0
E qpdet aq “ ~pν3s0qpdet aq. Since we replaced ν with ν3s0 , we need to re-

place ν0 “ ν|Fˆ with ν3s0 |Fˆ . Now τ´9s0ν3s0 |
3
Fˆpλq “ τpλq|λF |

´9s0ν|3Fˆpλq|λ|
9s0
E “

τpλqν3
0pλq|λ|

9s0 which is exactly what we need to absorb the |λ|9s0 term. Therefore,

Zp´s´ s0,M
˚
ps` s0qf,B,W, qν b τν

3
0q

“

ż

SzH

}ν3s0pdet aqpτ´9s0ν3s0 |
3
Fˆqpλq|pdet aq|´3s

E |λ|9s

¨M˚
ps` s0qfpk, s` s0qBph2qW ph1qdh

“ Zp´s,M˚f,B,W,}ν3s0 b τ´9s0ν3s0 |
3
Fˆq

(4) We must show:

γE,νp3s` 1{2,Πˆ σ ˆ ν2
0 ˆ τ, ψqγ

E,ν
p1{2´ 3s, π̃ ˆ σ̃ ˆ ν´2

0 ˆ τ´1, ψ´1
q “ 1
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We start with the local functional equation for Z

Zp´s,Mps, ν b τ, ψqf psq, B,W q “ ΓE,νp3s` 1{2,Πˆ σˆ ν2
0 ˆ τ, ψqZps, f

psq, B,W q

and apply it twice.

Zps,Mp´s, qν b τν3
0 , ψq ˝Mps, ν b τ, ψqf

psq, B,W q

“ ΓE,νp1{2´ 3s, π̃ ˆ σ̃ ˆ ν´2
0 ˆ τ´1, ψqZp´s,Mps, ν b τ, ψqf psq, B,W q

“ ΓE,νp1{2´ 3s, π̃ ˆ σ̃ ˆ ν´2
0 ˆ τ´1, ψqΓE,νp3s` 1{2,Πˆ σ ˆ ν2

0 ˆ τ, ψq

¨ Zps, f psq, B,W q

By a result of [HKS]

Mps, ν b τ, ψqMp´s, qν b τν3
0 , ψq “ κp´s, qν b τν3

0 , ψq
´1κps, ν b τ, ψq´1.

Putting this all together we have

κp´s, qν b τν3
0 , ψqκps, ν b τ, ψq

¨ ΓE,νp1{2´ 3s, π̃ ˆ σ̃ ˆ ν´2
0 ˆ τ´1, ψqΓE,νp3s` 1{2,Πˆ σ ˆ ν2

0 ˆ τ, ψq “ 1

(5) We must now show that:

LSp3s`
1

2
,Πˆ σ ˆ ν2

0 ˆ τq

“
ź

vPS

γE,νv p3s`
1

2
,Πv ˆ σv ˆ ν

2
v,0 ˆ τv, ψvq ¨ Lsp

1

2
´ 3s, Π̃ˆ σ̃ ˆ ν´2

0 ˆ τ´1
q

By (2.4.1), Π has a Bessel model with respect to some Hecke character ν

of AˆE and some character ψ of F zAF . Furthermore, by well known results, σ has

a Whittaker model with respect to ψ. Let W and B be the corresponding vectors

for Φ and φ. Recall the ’Basic Identity’ (4.1.2)

Zps, f psq, φ,Φq “ Zps, f psq, B,W q

We assume that f,B,and W factor into restricted products over all places

v, then for Re(s)ąą 0 we have an Euler product,
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Zps, f psq, B,W q “
ź

v

Zvps, f
psq
v , Bv,Wvq

“
ź

vPS

Zvps, f
psq
v , Bv,Wvq ¨

ź

vRS

Zvps, f
psq
v , Bv,Wvq.

For v R S by Theorem 4.2.3,

Zvps, f
psq
v , Bv,Wvq

“

3
ź

i“1

Lv

´

6s` i, νv,0 ¨ ε
i`3
Ev{Fv

¯´1

¨ Lv

ˆ

3s`
1

2
,Πv ˆ σv ˆ ν

2
v,0 ˆ τv

˙

.

We end up with the following identity which is valid for all s P C,

Zps, f psq, B,W q “
LS

`

3s` 1
2
,Πˆ σ ˆ ν2

0 ˆ τ
˘

ś3
i“1 L

S
´

6s` i, ν0 ¨ ε
i`3
E{F

¯ ¨
ź

vPS

Zvps, f
psq
v , Bv,Wvq. (4.6)

Next we need another identity for our global intertwining operator. For

Re(s)ąą 0 the operator factors over all places,

Mps, ν b τ, ψqf psq “
ź

v

Mvps, νv b τv, ψvqf
psq
v

“
ź

vPS

Mvps, νv b τv, ψvqf
psq
v ¨

ź

vRS

Mvps, νv b τv, ψvqf
psq
v .

By Lemma (4.3.1)

Mvps, νv b τv, ψvqf
psq
v “

ś3
i“1 Lvp6s´ i` 1, νv,0 ¨ ε

i`3
Ev{Fv

q
ś3

i“1 Lvp6s` i, νv,0 ¨ ε
i`3
Ev{Fv

q
f p´sqv .

Therefore, for all s P C,

Mps, ν b τ, ψqf psq “
3
ź

i“1

LSp6s´ i` 1, ν0 ¨ ε
i`3
E{F q

LSp6s` i, ν0 ¨ ε
i`3
E{F q

ź

vRS

f p´sqv

ź

vPS

Mvps, νv b τv, ψvqf
psq
v .

(4.7)

Now we evaluate (4.6) at ´s,Mps, ν b τ, ψqf psq, ν ÞÑ qν and τ ÞÑ τν3
0 while making

use of (4.7)

Zp´s,Mps, ν b τ, ψqf psq, B,W q “

LS
`

´3s` 1
2
,Πˆ σ ˆ ν´2

0 ˆ τν3
0

˘

ś3
i“1 L

S
´

´6s` i, ν´1
0 ¨ εi`3

E{F

¯

ś3
i“1 L

Sp6s´ i` 1, ν0 ¨ ε
i`3
E{F q

ś3
i“1 L

Sp6s` i, ν0 ¨ ε
i`3
E{F q

¨
ź

vPS

Zvp´s,Mps, ν b τ, ψqf
psq
v , Bv,Wvq
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Since τν3
0 “ τptau´2τ 2qν3

0 “ τ´1ω´1
Π ω´1

σ , Π̃ “ Π b ω´1
Π , and σ̃ “ σ b ω´1

σ , we see

that

LS
ˆ

´3s`
1

2
,Πˆ σ ˆ ν´2

0 ˆ τν3
0

˙

“ LS
ˆ

1

2
´ 3s, Π̃ˆ σ̃ ˆ ν´2

0 ˆ τ´1

˙

.

By now using the global functional equation (4.1), (4.6), the definition of γE,νv and

the analogous ’global property’ for Hecke L-functions, we get

LSp3s`
1

2
,Πˆ σ ˆ ν2

0 ˆ τq

“
ź

vPS

γE,νv p3s`
1

2
,Πv ˆ σv ˆ ν

2
v,0 ˆ τv, ψvq ¨ Lsp

1

2
´ 3s, Π̃ˆ σ̃ ˆ ν´2

0 ˆ τ´1
q.

4.5 Multiplicativity

Suppose that Π is an irreducible subquotient of an induced representation of

GSp4 and σ is an irreducible representation of GL2pF q. Since there are 3 conjugacy

classes of parabolic subgroups of GSp4, we have the following 3 cases:

‚ if B is the Borel subgroup of GSp4, then suppose that Π is a subquotient of

IBpχ1, χ2;χq “ IndGSp4B χ1 b χ2 b χ.

In this case, multiplicativity is the identity

γE,νps, π ˆ σ, ψq “ γps, σ ˆ χ, ψq ¨ γps, σ ˆ χ1χ, ψq

¨ γps, σ ˆ χ2χ, ψq ¨ γps, σ ˆ χ1χ2χ, ψq.
(4.8)

‚ suppose that P is the Siegel parabolic subgroup of GSp4, so that its Levi

factor is M – GL2 ˆGL1, and Π is a subquotient of

IP pτ, χq “ IndGSp4P τ b χ,

where τ b χ is an irreducible representation of M . In this case, multiplica-

tivity is the identity

γE,νps,Πˆ σ, ψq “ γps, σ ˆ χ, ψq ¨ γps, σ ˆ τ ¨ χ, ψq ¨ γps, σ ˆ χωτ , ψq. (4.9)

Here, the gamma factors on the RHS are the Rankin-Selberg gamma factors

for GLp2q ˆGLp1q or GLp2q ˆGLp2q.
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‚ if Q is the Heisenberg parabolic subgroup of GSp4, so that its Levi factor is

L – GL1 ˆGSp2 – GL1 ˆGL2, and Π is a subquotient of

IQpχ, τq “ IndGSp4Q χ b τ,

In this case, multipicativity is the identity

γE,νps,Πˆ σ, ψq “ γps, τ ˆ σ, ψq ¨ γps, τχˆ σ, ψq. (4.10)

Here the gamma factors on the RHS are GLp2q ˆGLp2q gamma factors.

In addition, suppose that σ is a constituent of a principal series represen-

tation πpχ1, χ2q of GL2pF q. In this case, multiplicativity says that

γps,Πˆ σ, ψq “ γps,Πˆ χ1, ψq ¨ γps,Πˆ χ2, ψq, (4.11)

where the gamma factors on the RHS are the GSp4 ˆGL1 gamma factors defined

in (4.3).

4.5.1 Consequences of multiplicativity.

If we assume that we have the identities (4.8), (4.9), (4.10) and (4.11), the

the consequences are similar to those for the GSp4 ˆGL1 case. We first have:

Proposition 4.5.1. Assuming multiplicativity for both GSp4 ˆ GL2 and GSp4 ˆ

GL1 context, we have:

(i) If π or σ is a non-supercuspidal representation of a p-adic field, then the local

γ-factor γE,νps, πˆµ, ψq is independent of the choice of the data pE, νq with respect

to which π has a pE, νq-Bessel model.

(ii) If F “ R or C, and π has L-parameter φπ, then γE,νps, πˆµ, ψq is independent

of pE, νq and

γE,νps, π ˆ µ, ψq “ γps, φπ b µ, ψq.
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4.5.2 Independence of pE, νq.

In the previous subsection, we have seen that the local γ-factor is inde-

pendent of the choice of the data pE, νq with respect to which π has a Bessel

model, when π or σ is non-supercuspidal. In this section, we address this issue of

independence when π and σ are both supercuspidal.

Hence, suppose that π is a supercuspidal representation which supports

nonzero Bessel functionals with respect to pE, νq. As we noted in §3.5, there are

two cases to consider:

(a) π is the local theta lift of a supercuspidal representation τ1 b τ2 of

GSO4 – pB
ˆ
ˆBˆq{tpt, t´1 : t P GL1u,

where B is a quaternion F -algebra (possibly split).

(b) π is the local theta lift of a supercuipidal representation τ b ωπ of

GSO6 “ pGL4 ˆGL1q{tpt, t
´2
q : t P GL1u.

We shall treat the two cases in turn.

For Case (a), we shall use the global cuspidal representation Π constructed

in 3.5.1, together with all the auxiliary data there (i.e. E{F, k, µF. Let Σ be a

cuspidal representation of GL2pAEq such that Σv is unramified for all v ‰ v1 and

Σv1 “ σ. Then the same argument as in 3.5.1, using the global functional equation,

shows that

γE,νps, π ˆ σ, ψq “ γps, τ1 ˆ σ, ψq ¨ γps, τ2 ˆ σ, ψq.

In particular, the RHS is independent of pE, νq and hence so is the LHS.

For Case (b), we use the global cuspidal representation Π constructed in

3.5.2 and the cuspidal representation Σ of GL2 as in the previous paragraph. Then

the global fictional equation , together with the fact that we understand the local

gamma factor at all places v ‰ v1 (as a consequence of multipicativity), implies

that

γE,νps, π ˆ σ, ψq “ γps, τ ˆ σ, ψq.
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Hence the LHS is independent of pE, νq.

To summarise, we have shown:

Proposition 4.5.2. Assume that multiplicativity holds for GSp4ˆGLr with r “ 1

or 2. For an irreducible representation π of GSp4 with L-parameter φ, and an

irreducible representation σ of GL2 with L-parameter φσ, the local gamma factor

γE,νps, π ˆ σ, ψq is independent of the data pE, νq with respect to which π has

nonzero Bessel functional. Moreover,

γE,νps, π b σ, ψq “ γps, φb φσ, ψq.
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