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SUMMARY

An adjoint-based conjugate gradient algorithm provides an efficient means for imag-
ing sources of deformation within the Earth, such as volume stresses associated with
fluid flow in aquifers and reservoirs. For time intervals over which the overburden de-
forms elastically, one can calculate the gradient elements for a single model update
using just two numerical simulations. The first is a forward run that is used to compute
the residuals associated with the given iteration. The second simulation is to evaluate
the application of the adjoint operator to the residuals. In this adjoint calculation, the
residual displacements are applied as sources at the measurement locations, driving the
deformation in the simulation. The volume stress on the source grid blocks, in response
to the residual displacements, provide the gradient components. We apply this tech-
nique to satellite-based interferometric synthetic aperture radar (InSAR) line-of-sight
displacements that were observed over an oil reservoir in California’s Central Valley.
We find that the adjoint-based gradient estimates, requiring 18 CPU seconds, agree
with conventional numerical calculations that take over 3700 CPU seconds to compute.
Conjugate gradient algorithms utilizing the conventional approach and adjoint-based
gradient computations give roughly the same reductions in misfit and similar final es-
timates of reservoir volume change.

Key words: Geomechanics, Radar interferometry, Inverse theory.

1 INTRODUCTION

In the past several decades, we have seen the development of
techniques for obtaining large-scale and spatially-dense data
sets that can be acquired repeatedly to monitor deformation-
inducing processes, such as fluid flow. These include air-
borne and satellite-based methods such as interferometric
synthetic aperture radar (InSAR) data (Ferretti 2014) and
light detection and ranging (LiDAR) observations (Eitel
et al. 2016), as well as time strains from repeated time-
lapse seismic surveys (Hatchell & Bourne 2005; Tura et al.
2005; Staples et al. 2007; Hodgson et al. 2007). Correspond-
ingly, advances in the numerical modeling of deformation in
elastic, poroelastic, and general media have led to coupled
simulators that include fluid flow, thermal processes, chem-
istry, along with geomechanics (Rutqvist et al. 2002; Kim
et al. 2012). Such large data sets and advanced modeling
tools require efficient methods for imaging sub-surface pro-

cesses using available high-density data and realistic Earth
models.

Currently there are few examples of full-scale inversions
for high-resolution aquifer or reservoir models. There are
several reasons for the current shortage of successful inver-
sions. First, large-scale coupled models can take days or even
weeks for a single forward run, meaning that any inversion
algorithm must be extremely efficient. Second, fully coupled
models require a large number of parameters for their com-
plete description. Parameters, such as the sub-surface me-
chanical and flow properties, typically vary spatially and
are often poorly known and can trade-off. Third, the ad-
joint equations for fully coupled finite-element formulations
of the forward problem can be complicated and difficult to
program successfully. Here we take a more limited approach
to imaging changes in an aquifer or reservoir due processes
such as fluid injection and withdrawal, and simply determine
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the effective volumetric stresses. That is, rather than taking
the additional step of inferring the source of the volume
change, which may be fluid pressure changes, temperature
changes, chemical changes, or failure processes, we solve for
the effect of the source volume on the surrounding medium.
As indicated below, with these assumptions and the proper
formulation, we can utilize an easily implemented adjoint
expression for the calculation of the gradient and for model
updating. In particular, the gradient may be obtained by two
forward runs of a simulator, one to calculate the residuals,
and a second one to evaluate the adjoint operator applied
to the residuals. In this reciprocal calculation the residual
displacements, applied at the measurement locations, drive
the simulated deformation and the resulting changes in the
volume stresses within the source grid blocks provide the
gradient components. We illustrate this approach with an
application to a set of interferometric synthetic aperture
range change observations from a reservoir in the Central
Valley of California.

Other approaches utilizing adjoints for inverse problems
include early work in the inversion of fluid pressure obser-
vations (Jacquard & Jain 1965) and more closely related
work in seismic imaging presented (Tarantola 1984; Taran-
tola 1988). Applications to inverse problems in static elas-
ticity (Oberai et al. 2003) and poroelasticity (Lecampion
& Constantinescu 2005; Iglesias & McLaughlin 2012; Hesse
& Stadler 2014), have focused on the nonlinear problem of
estimating model constitutive parameters such as perme-
ability. In this work we shall deal with the determination of
the source of deformation, which is a linear problem. Previ-
ous studies have addressed the problem of source estimation
(Kaderli et al. 2018), but the vast majority of that work
involves the dynamic problem associated with the propaga-
tion of elastic waves, adding the additional complication of
temporal variation. Typically, such studies also include the
source location as an unknown, again leading to a nonlinear
inverse problem. Because we are limiting our scope to the es-
timation of an effective source using static or quasi-static de-
formation data, the approach described here is simpler than
these earlier methods. Furthermore, the technique is easy to
implement, even for large geologically complex models, and
in many cases it does not require extensive re-coding.

2 METHODOLOGY

2.1 Governing Equations

Our starting point is the equation governing displacements
in a linear elastic medium due to sources of deformation
within the Earth. For an anisotropic elastic medium, char-
acterized by the 21 elastic parameters cijkl(x) and density
ρ(x), the components of the displacement vector u(x,ω) at
a point x and at frequency ω are governed by

ρω2ui −
∂

∂xj

(

cijkl
∂uk

∂xl

)

= Σi(ω) (1)

where Σi(ω) signifies the i-th component of the source func-
tion. In what follows we will consider quasi-static or static
deformation, where ω is assumed to be small or zero. An
alternative formulation, that has some advantages both nu-
merically and in specifying the boundary conditions, frames

the problem in terms of both the displacements, ui, and the
stresses, σij . In the time-domain the governing equations are

σij = cijkl
∂uk

∂xl
(2)

ρ
∂2ui

∂t2
=

∂σij

∂xj
+ Σi(t) (3)

along with appropriate boundary conditions which are typi-
cally zero normal stress at the Earth’s surface and vanishing
displacements on the interior boundaries. For a general het-
erogeneous medium the governing equation (1), or equations
(2) and (3), are solved numerically using an approach such as
finite-differences, finite-volume (Bailey & Cross 1995; Fallah
et al. 2000), or finite-elements (Igel 2017).

As shown in Appendix A, there is an alternative integral
formulation that relates the measurements at observation
point xi, d(xi), to changes in the source region Sσ. Because
we are interested in deformation due to fluid volume changes
at depth, we assume that the displacements are induced by
volumetric stress changes, leading to surface tractions, T,
at the reservoir boundaries. The integral expression relating
the magnitudes of changes in these surface tractions T (ξ) to
range change observed at the Earth’s surface, d(xk) is

d(x) =

∫

Sσ

T (ξ)K(x,ξ)dξ. (4)

where the kernel of the integral operator is defined in terms
of the components of the satellite look vector l and the nor-
mal to the surface, n(ξ)

K(x, ξ) = nilkGki(x, ξ) (5)

and Gki(x, ξ) is the Green’s function providing the response
of the medium to a point force (Aki and Richards 1980).
We can obtain a discrete inverse problem by sub-dividing
the source surface Sσ into a collection of M patches and
considering the effective normal traction on each patch, ml.
The integral then reduces to a sum

d(xk) =

M
∑

l=1

Aklml (6)

where the efficients are defined in terms of integrals over
each surface patch, Sl,

Akl =

∫

Sl

K(xk, ξ)dξ. (7)

A more comprehensive discussion on the discretization of
the forward problem is provided in Appendix A.

The differential and integral formulations are mathe-
matically equivalent as long as the boundary conditions and
source specifications are the same. Thus, if the numerical
methods for solving each class of equations is properly imple-
mented they should give the same results. In fact, numerical
methods for solving the governing differential equations are
often used to calculate the response of the elastic system to
volumetric stress changes in a single grid block or tractions
on a grid block’s surfaces, the impulse response integrated
over a grid block or a surface element.
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2.2 The Inverse Problem and a Conjugate

Gradient Solution

For the forward problem we simply compute the range
change at the Earth’s surface due to a given distribution
of normal stress changes acting upon the reservoir bound-
aries. The solution to the forward problem is obtained by
either solving the differential equation (1) or by evaluating
a set of integrals in the form of equation (4) or its discrete
equivalent (6). In the inverse problem we are given a col-
lection of N observed data, which we denote by the vector
d = [d(x1), d(x2), ..., d(xN ], from a particular area of inter-
est and seek to determine the volumetric stresses at depth
that best explain the observations. For linear inverse prob-
lems with observations subject to errors that are assumed to
follow an approximately Gaussian distribution, the well es-
tablished least squares approach is usually adopted (Menke
2018), whereby one minimizes the sum of the squares of the
residuals,

J(m) =
1
2
(d−Am)T (d−Am) , (8)

which we have written in vector-matrix notation. Due to the
smoothing nature of the integral expression (4), the mini-
mum of J(m) is sensitive to errors in the observations un-
less care is taken to stabilize or regularize the minimiza-
tion algorithm (Parker 1994; Aster 2013; Menke 2018). The
most common form of regularization for least squares-based
inversions involves the addition of quadratic terms penaliz-
ing some undesirable aspect of the solution, such as model
roughness or the norm of deviations from a prior model
(Menke 2018). There are a variety of penalty terms that may
be incorporated into an inversion algorithm. As an illustra-
tion that will prove useful in our application, we will adopt
a simple function that penalizes deviations from estimates
of pressure changes, p, based upon well observations,

P (m) =

M
∑

i=1

(mi − αpi)
2 , (9)

where α is a scaling factor relating pressure change to surface
traction on Sσ. Thus, the total misfit functional is given by

Q(m) = J(m) + wpP (m) (10)

where wp is a weighting factor that determines the impor-
tance of the regularization relative to the misfit functional.
As shown below, the simple quadratic forms of the terms
in equation (10) allows for an analytic expression for the
minimum of the penalized misfit functional (10). However,
to formulate the quadratic form Q(m) we need to calcu-
late the elements of the matrix A, the impulse responses or
sensitivities. The calculation of each column of A requires
one forward run of a numerical simulator, meaning that M
simulator runs will be required, where M is the number of
grid blocks representing the source. For the Central Valley
simulation described below, 900 simulations were required
in order to construct A. For large models, tens of thousands
to millions of simulations might be needed to construct A

explicitly.
The conjugate gradient algorithm offers an alternative

to an explicit solution. This iterative approach starts with
an initial model mo and successively updates the model,

using the gradient of the functional Q(m), that is the partial
derivatives with respect to model parameters

(∇Q)i =
∂Q

∂mi
, (11)

to determine the update at each step (Gill et al. 1982; Dorny
1983)

mn = mn−1 + αn−1∇Q(mn−1). (12)

The step length or magnitude of the update, αn−1, is de-
termined by a line search in the direction of the gradient.
It is certainly possible to forgo the line search and pick a
step length based upon properties of the gradient (Gill et al.
1982). Such techniques tend to have slower convergence that
may result in more iterations, negating the computational
savings in forward simulations at each iteration. The con-
jugate gradient algorithm is perhaps the simplest of a class
of iterative approaches, such as the limited memory quasi-
Newton method, (Byrd et al. 1995). However, for our pur-
poses it serves to illustrate how an approach based upon ad-
joints can provide an efficient means for inverting extensive
data sets for models containing a large number of parame-
ters.

2.3 Adjoint-Based Gradient Computation

Typically, the most computationally intensive step of the
conjugate gradient algorithm is the calculation of the com-
ponents of the gradient. If a direct perturbation approach is
adopted, whereby one perturbs each of the N parameters in
succession and computes a numerical derivative, then N +1
forward simulations are required. For models that must be
represented on a large mesh, N can range from hundreds
of thousands to millions of parameters. Here we describe a
different technique for calculating the gradient components
that relies on the solution of the adjoint equation. Employing
this methodology, coupled with the conjugate gradient algo-
rithm, two forward simulations are required for each gradi-
ent calculation and a handful more are required for the line
search, if one is employed. As noted by (Gill et al. 1982),
the conjugate gradient algorithm could require as many as
N iterations in order to reach a minimum, eliminating any
advantage of our approach. However, in practice the algo-
rithm converges rapidly to a minimum, particularly for the
quadratic function associated with our linear least squares
problem.

For a discrete problem, such as the one formulated using
a numerical simulation grid in equation (6), we can provide a
simple derivation of the model parameter gradient in terms
of the adjoint of the operator A that defines the forward
problem

d = Am, (13)

where d are the calculated displacements at points in the
model grid and m are the model parameters. Note that,
this is just equation (6) written in vector-matrix form. In our
case the model parameters specify the strength of the source
in the numerical simulation and may represent quantities
such as the normal tractions related to volume changes in
the source grid blocks or aperture changes on fault/fracture
patches. A more formal derivation of the gradient in terms
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of the adjoint operator is provided in Appendix B, based
upon the work of (Plessix 2006).

For the moment, let us consider the inverse problem
without the regularization penalty terms. Thus, the mis-
fit functional is given by the expression for the sum of the
squares of the residuals

J(m) =
1
2
(d−Am)T (d−Am) . (14)

Taking the gradient of J(m) with respect to the model pa-
rameters m results in an expression that is linear in the
model parameters

∇mJ(m) = −AT (d−Am) . (15)

In the direct approach, this linear equation is set equal to
zero, producing a necessary condition for the minimum of
J(m), and solved for m. That allows one to obtain the so-
lution without the iterative minimization necessary in the
conjugate gradient algorithm. Unfortunately, such an ap-
proach requires the calculation of the entries of the matrix
A which are dependent on the Green’s functions and the
repeated solution of the forward problem. However, noting
that, for a given model m, the quantity in brackets is the
residual vector

r = d−Am (16)

and the gradient is given by

∇mJ(m) = −A
T
r (17)

we can derive an alternative expression for the gradient. For
a linear matrix operator the transpose is equal to the adjoint
operator (Dorny 1983), defined as the matrix A∗ such that

⟨Ax,y⟩ = ⟨x,A∗

y⟩ (18)

where x and y are vectors and ⟨x,y⟩ denotes the inner or
scalar product that is also given as x · y and xTy. Given
the equivalence of the transpose, AT , and the adjoint, A∗,
we may write the gradient as the adjoint operator applied
to the residual vector

∇mJ(m) = −A
∗

r. (19)

A second formulation leading to equation (19) is provided
in Appendix B, following the approach of (Plessix 2006).
In that derivation we do not invoke the equivalent of the
adjoint and the transpose. Utilizing the adjoint of the kernel
in equation (4) we can write the components of the gradient
as

∂J(m)
∂mj

= −

∫

S

K∗(x, ξj)r(x)dx (20)

where ξj is the center of the j-th surface element, for exam-
ple the top surface of the j-th grid block representing the
reservoir, r(x) are the residuals distributed over the obser-
vation locations, which may be the Earth’s surface in the
case of InSAR data or a volume of overburden in the case of
time-lapse seismic strain (Tura et al. 2005). Equation (20)
states that the gradient can be obtained by applying the
adjoint operator to the residual vector.

While we can calculate the integrals (20) in a straight-
forward fashion when suitable Green’s functions are avail-
able, computing Green’s functions for a fully three-
dimensional elastic model can be time consuming. It is pos-
sible to evaluate the integral in equation (20) much more

efficiently from a single run of a numerical simulator, such
as a finite-difference code for solving equation (1). In par-
ticular, using equations (A16) and (A17) in Appendix A,
relating the Green’s function and its adjoint, one can shown
that the quantity on the right-hand-side of equation (20) is
equivalent to the forward problem with the residuals applied
as sources at the observation points. The resulting normal
stresses acting on the boundary of the grid block that co-
incides with a patch of the source surface Sσ, provides the
component of the gradient associated with that surface ele-
ment. An approach based upon a finite-difference simulation
is likely to be the most common technique for implement-
ing equation (19). For example, we have an implicit finite-
difference program for solving the static version of equation
(1) where ω is assumed to be zero. In addition, we have
a time-stepping code for solving equations (2) and (3) for
a slowly varying source that can be used to determine the
displacements and stresses due to specified sources. In the
applications section we use the latter code to calculate the
gradients using equation (20) and compare these estimates
with a conventional approach (Vasco & Ferretti 2005). As
noted in (Kaderli et al. 2018), the displacement-stress for-
mulation can be brought into a self-adjoint form through a
simple scaling of the dependent variables, leading to a scaled
source for the adjoint equation.

3 APPLICATION

3.1 Monitoring Reservoir Production and

Injection using Interferometric Synthetic

Aperture Radar Observations

In this section, we apply the methodology to interferometric
synthetic aperture radar (InSAR) gathered over an active
oil field in the Central Valley of California. Due to the com-
pressible nature of the reservoir, there is significant surface
deformation associated with injection and production over
intervals of one month (Vasco et al. 2017). Our goal is to
determine the distribution of normal stresses on Sσ on the
reservoir upper boundary that can best explain the observed
range change. We adopt the conjugate gradient algorithm
(12) in order to successively update the source model of the
normal stresses generated by fluid volume changes in order
to produce predictions that better match the observations.
The misfit functional (10) contains the data misfit term
J(m) and the penalty term P (m). Before we discuss the
details of the inversion we compare the conventional pertur-
bation approach for gradient calculations with an approach
based upon the adjoint algorithm described above.

3.2 Examples of Gradient Calculations

Our initial gradient calculations were based upon an ap-
proach used in previous studies (Vasco & Ferretti 2005;
Rucci et al. 2010; Vasco et al. 2010; Vasco et al. 2017),
where each individual source grid block at the upper bound-
ary of the reservoir is used as a source of deformation. For
general three-dimensional elastic models we use a numerical
finite-difference code to solve for the static or quasi-static
displacements (Vasco et al. 2017) at each observation point
that results from successively treating each grid block as a
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source. Thus, one must run the forward problem for each of
these grid blocks in order to compute the gradient vector.
For most models with source representations involving many
hundreds to a few thousand grid blocks or fault patches, such
calculations take of the order of 1 to 10 hours.

For the reservoir model considered here, described by
variations on a 30 (x) by 30 (y) by 20(z) grid, there were a
total of 18,000 grid blocks with a grid block size of 100 m.
The grid covered the anticline that defines the field, shown
in Figure 1, but does not provide extensive coverage be-
yond the structure due to data limitations. Therefore, the
boundaries of our grid are somewhat closer to our estimate
locations than we would like, but that is a realistic limitation
in many areas. The source layer was composed of 900 blocks
defined by the reservoir upper boundary. Therefore 900 for-
ward simulations of the finite-difference code were required
for a complete set of sensitivity calculations, in order to de-
fine the matrix A in the term J(m) given by equation (8)
and AT in equation (17). The boundary conditions are zero
displacements at the edges of the model. It was necessary to
extend the model above the Earth’s surface by including an
overlying atmospheric layer in order to satisfy the boundary
condition at the top of the model.

Two distinct variations in properties were considered,
in order to capture the influence of spatial variations in the
elastic model on the gradient calculations. First, we averaged
all of the grid block properties of a three-dimensional elastic
model of the region, generating a uniform medium with a
bulk modulus of 1.35 GPa, a shear modulus of 1.14 GPa,
and a density of 1757.8 kg/m3. As a baseline, we computed
the components of the gradient vector using a conventional
perturbation approach, perturbing the normal stress on the
grid block at the reservoir upper boundary and calculating
the resulting range changes at the observation points on the
surface are calculated. Numerical differencing of the per-
turbed and unperturbed simulation results are then used to
compute each gradient component. The 901 forward simula-
tions for the conventional gradient calculation required 61.8
minutes, or 3710 seconds, of CPU time for the sensitivity
calculation. From equation (17) is is clear that the gradient
components are a linear mapping of the residuals. For ref-
erence, we include a plot of the residual vectors for the first
three iterations of the conjugate gradient algorithm (Figure
2). The resulting numerical gradient components for set of
source grid blocks comprising the reservoir upper bound-
ary are shown in the central panel in Figure 3, plotted in
their respective locations. As expected, the numerical gra-
dient clearly resembles a negative image of the residuals.

For comparison with the numerical result, we also com-
puted the gradient components using the adjoint approach,
based upon equation (20). Specifically, we averaged the line-
of-sight displacement residuals (Figure 2) over each grid el-
ement at the surface of the model and then applied the dis-
placement as a source at the grid block center. The compo-
nents of the gradient for this case were obtained after only 18
CPU seconds of computation. The resulting normal stress on
the grid block face corresponding to a patch of the reservoir
boundary, or the equivalent volumetric stress change within
the appropriate grid block, provides the gradient compo-
nents which are plotted in the center panel of Figure 3.
There is generally good agreement between these estimates
and the conventional numerical estimates. To quantify the

disagreement, we plot the differences between the calculated
numerical and adjoint gradients, at the same scale as these
estimates in the right-most panel of Figure 3. The pattern
of residuals changes with each update, as shown in Figure 2,
with a general reduction in the magnitude of the residuals as
the model evolves and the fit improves, leading to changes
in the gradient components (Figures 4 and 5). Again, there
is fairly good agreement between the conventional and the
adjoint-based gradient components and the differences are
much smaller than the gradient magnitudes.

To understand the influence of laterally-varying mate-
rial properties, we considered a full three-dimensional model.
The depth to the top boundary of the reservoir and a hor-
izontal section through the model are plotted in Figure 1.
There are significant variations in the bulk modulus with
depth, from less than 0.2 GPa to over 1.7 GPa at a depth of
more than 0.8 km. In Figure 6 the conventional and adjoint
gradient components for the initial iteration of the conjugate
gradient algorithm are plotted for this heterogeneous exam-
ple. There is large-scale agreement between the two sets of
calculated values and their magnitudes are similar, and sig-
nificantly larger those associated with the uniform model
shown in Figure 3. As is evident in Figure 1, the model con-
tains abrupt variations in material properties which may be
responsible for the small-scale differences between the two
gradient estimates. The difference between the two gradi-
ent estimates is larger than in the case of the homogeneous
medium (Figure 3) and the pattern of discrepancies is some-
what more variable in space.

3.3 Application of the Conjugate Gradient

Algorithm

In this sub-section we apply the conjugate gradient algo-
rithm (12) to minimize the penalized misfit functional Q(m)
given by equation (10). The weight wp was set at 3.0×10−5,
based upon a combination of trial and error inversions and a
trade-off curve calculation. For the adjoint-based approach
the gradient is calculated using the expression

∇mQ(m) = −A
∗

r+ 2wp (m− αp) , (21)

requiring two simulations per iteration of the algorithm,
while 901 simulations were used in the conventional numer-
ical calculations. The total misfit reduction for both inver-
sions levels off after a total of 10 iterations (Figure 7) and
the final error reduction and the fit to the observations are
quite similar for both techniques (Figure 8). The line search
added around 2-8 forward runs per iteration, so that the
adjoint-based algorithm required at most 105 total simu-
lations, almost an order of magnitude fewer than the con-
ventional approach. It is possible to dispense with the line
search and to approximate the step size using other means,
further reducing the number of simulations required (Press
et al. 1992). However, that could increase the number of con-
jugate gradient updating iterations needed to fit the data.
The final models for the two approaches, shown in Figure 9,
are very similar and indicate the most significant volumetric
stress changes beneath the peak of range change in Figure 2
but shifted to the east, likely due to the look angle of the In-
SAR data. The differences, obtained by a direct subtraction
of the adjoint-based conjugate gradient solution from the
numerical conjugate gradient solution are relatively small in



6 D. W. Vasco and Gwyn Mali

comparison with the estimates. Though the approach works
best for a dense data set, such as InSAR range changes,
it can also be used for a sparse set of measurements. For
example, we decimated the range change data shown in Fig-
ure 2, re-interpolating onto a 20 by 20 grid of values, many
fewer observations than the 2986 values considered above.
An adjoint-based inversion with this sparse data set still
produces a solution that resembles the solution produced
by the conjugate gradient algorithm utilizing the numerical
gradient (Figure 10). Note that the overall amplitude of the
solutions are reduced in size in comparison to the inversion
of the denser set of values. This is likely due to the fixed
penalty weighting factor and a data misfit function that is
much smaller due to the many fewer observations used in
the inversion. This effect can be mitigated by re-weighting
the penalty function based upon data size.

4 DISCUSSION AND CONCLUSIONS

The adjoint-based inversion methodology appears to be a
promising approach for imaging sources of quasi-static defor-
mation within the Earth, such as aquifer/reservoir volume
changes due to fluid injection and withdrawal. The tech-
nique, as presented in this paper, only requires numerical so-
lutions of the equations governing elastic deformation during
a time-interval of interest. Because we treat the reservoir as
a source of deformation and solve for the effective properties
of the source, such as the surface traction due to volumetric
stress changes within the reservoir, we make no assumptions
regarding the internal processes with the source grid blocks.
Using such an effective source is both a strength and a lim-
itation of our approach. One advantage of this formulation
is that we need to make very few assumptions about the
behavior of the medium and only require the elastic prop-
erties of the overburden to invert for the areas of volume
change within the source region. In this approach one does
not have to model processes such as fluid pressure changes,
thermal effects, the mechanical breakdown of the medium,
or chemical effects, Thus, we do not need the coupling coef-
ficients such as poroelastic parameters in order to estimate
the source strain. Such coefficients are likely to vary spa-
tially and can trade-off with quantities of interest, such as
the magnitude of fluid pressure change (Rucci et al. 2010).

The philosophy that we adopt is to use the geophysical
monitoring data to estimate temporal and spatial variations
in the source volumetric stress changes and to use these
changes to try and understand the controlling features in an
aquifer or reservoir, such as a permeable fracture zone or a
barrier to flow. If we have a number of temporal snapshots
of the changes in the source volume and we can relate the
changes to a specific cause, such as fluid pressure changes,
one may estimate reservoir/aquifer permeability using an
onset time technique that is not very sensitive to the inter-
vening rock physics model (Rucci et al. 2010). The onset
time methodology is general and may be applied to gen-
eral time-lapse geophysical data sets for which the temporal
variations are controlled by fluid flow (Vasco et al. 2014).

One disadvantage of the limited interpretation of
changes within the source region is that we cannot take full
advantage of additional observations such as well pressure
data. That is, we cannot use the physics of coupled flow to

relate utilize well pressure changes and reservoir deforma-
tion in a direct fashion. Rather, we have to constrain the
estimates using a less direct approach such as distance con-
straints from wells (Vasco et al. 2019) or volume constraints
from injection and production data (Vasco et al. 2017), such
as the penalty term P (m) in equation (10). It is possible to
use this formulation in coupled simulators, such as those
employing finite-elements to solve the set of equations gov-
erning coupled fluid flow and geomechanics. However, the
adjoint problem is more involved when the equations devi-
ate from linear elasticity. Solving these more involved prob-
lems will be the subject of future research. In addition, we
will consider significantly larger problems, such as those in-
volving hydrological basins tens to hundreds of kilometers
in extent (Vasco et al. 2019).
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5 APPENDIX A: GREEN’S FUNCTIONS, A

SOURCE REPRESENTATION, AND THE

DISCRETE INVERSE PROBLEM

5.1 Green’s functions and their adjoints

Here we derive an explicit expression for the range change
at the free surface in terms of volumetric stress changes in
a source region at depth. For brevity we denote i-th compo-
nent of the linear vector differential operator given by the
left-hand-side of equation (1) as

Li(u) = ρω2ui −
∂

∂xj

(

cijkl
∂uk

∂xl

)

, (A1)

for i = 1, 2, 3. The Green’s function, or impulse response for
a source in the direction of the positive n axis at the position
ξ, Gn(x, ξ) satisfies the equation (Aki and Richards 1980)

Li(Gn) = δinδ (x− ξ)) (A2)

where δin is the Kronecker delta function that equals 1 if
i = n and is zero otherwise. The impulse or delta function
δ (x− ξ) equals 1 when x = ξ and vanishes everywhere else.
The differential equation is also subject to boundary condi-
tions which can be written in the abbreviated form

B(u) = 0 (A3)

where B is the boundary operator.
In what follows we shall need the adjoint of the differen-

tial operator L, denoted by L
∗ and defined by the condition

⟨L(u),v⟩ = ⟨u,L∗(v)⟩ (A4)

(Stakgold 1979), where the angle brackets signify the inner
product

⟨u,v⟩ =

∫

V

u(ξ) · v(ξ)dV (A5)

(Roach 1970). Adjoint boundary conditions typically accom-
pany the formal adjoint differential operator. We shall de-
note such boundary conditions as the vanishing of the ad-
joint boundary operator B

∗(u). We can define an adjoint
Green’s function as the solution to the differential equation

L
∗

i (G
∗

n) = δinδ (x− ξ)) . (A6)

A discussion of Green’s functions and adjoints associated
with second order differential operators is given in (Stakgold
1979). The Green’s function and its adjoint for the linear
vector differential operator Li are related by

G∗

in(x,ξ) = Gni(ξ,x). (A7)

Note that this relationship holds in general, even if the op-
erator Li is not self-adjoint. That is, it holds even if the
adjoint operator does not equal the original operator. If
the operators are self-adjoint, as the operator for displace-
ment formulation of linear elasticity is, and satisfy homo-
geneous boundary conditions, then one arrives at the prin-
ciple of reciprocity (Aki and Richards 1980). Other numer-
ical formulations may not be self-adjoint. For example, an
approach based upon velocity and stress variables (Kaderli
et al. 2018) is not self-adjoint unless a transformation devel-
oped by (Castellanos et al. 2011) is applied. From equation
(A7) we conclude that one only has to solve the forward
problem for (Gn)i (x,ξ) and then interchange x and ξ and
the indices i and n in order to obtain the adjoint Green’s

function. Thus, the observation locations become the source
locations and the components contributing to the observa-
tions now contribute to the source. Conversely, the compo-
nents contributing to the source are now used to define the
observed values.

5.2 A representation of the source

Consider deformation-inducing processes acting throughout
a source volume Vσ, such as an aquifer or a reservoir. These
activities may involve fluid volume changes, thermal and
chemical effects, and may even be characterized by inelas-
tic and nonlinear behavior. However, as noted by (Aki and
Richards 1980), if one surrounds the source volume by a sur-
face Sσ that is sufficiently far from the non-elastic behavior
so that the deformation is elastic, one can represent the ef-
fect of the possible non-linear processes by a distribution of
displacements u and tractions τ over the surface

uk(x) = −

∫

S+Sσ

cijpquinj
∂Gkp

∂ξq
dξ+

∫

S+Sσ

τiGkidξ, (A8)

where nj(ξ) are the components of the normal to the surface
and we have included the external surface, S, because it can
also come into play. As is discussed in Ichihara et al. (2016),
it is possible to rewrite the representation (A8) solely in
terms of a distribution of tractions over the surfaces

uk(x) =

∫

S+Sσ

TiGkidξ, (A9)

where T is an effective traction that includes both the actual
traction and the effects of the displacement term in (A8)
mapped into a traction. Taking T in the form

Ti = δτijnj (A10)

with components defined in terms of the stress glut δτij
of Backus and Mulcahy (1976), one arrives at an expres-
sion (A9) that is equivalent to equation (3.26) in Aki and
Richards (1980, p. 58). We can use the representation (A9)
to compute the range change determined from interferomet-
ric synthetic aperture radar (InSAR) data, where the look
vector is given by l = (l1, l2, l3). The range change, d(x), is
the projection of the three-dimensional displacement along
the look vector (Ferretti 2014) which is given in terms of a
summation over the integrals in (A9),

d(x) = u · l = lk

∫

S+Sσ

Ti(ξ)Gki(x,ξ)dξ. (A11)

For a traction vector resulting from forces produced by
fluid-induced volume change the primary traction will be a
force normal to the local surface denoting the boundary of
the reservoir, so that

T = Tn (A12)

where T is the magnitude of the traction vector. Hence, we
can write (A11) as

d(x) = lk

∫

S+Sσ

T (ξ)niGki(x,ξ)dξ. (A13)

Defining the kernel

K(x, ξ) = nilkGki(x, ξ) (A14)
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the integral (A13) can be written as

d(x) =

∫

S+Sσ

T (ξ)K(x,ξ)dξ. (A15)

The forward problem, in which tractions on the source sur-
face Sσ are specified and the displacements or range change
at the observation points d(x) are calculated, may be solved
by evaluating the integral (A15) explicitly. However, that ap-
proach requires a complete specification of the Green’s func-
tion Gki(x, ξ) which can be a difficult task. Alternatively, we
can compute the range change at the Earth’s surface using
a purely numerical solution of the governing partial differ-
ential equations, such as equation (1) or equations (2) and
(3). Specifically, one specifies the tractions over the source
surface Sσ and uses them to drive the deformation of the
numerical simulation.

Based upon equation (A7) we can also define the ad-
joint operators associated with static and quasi-static defor-
mation. That is, using the linearity of adjoints (Dorny 1983,
p. 293) and property (A7), we can express the adjoint of
K(x, ξ) given in (A14) as

K∗(x,ξ) = nilkGik(ξ,x). (A16)

The adjoint integral operator maps range change on S to
normal traction on Sσ and is given by

T (ξ) =

∫

S

D(x)K∗(x,ξ)dx. (A17)

As with the forward problem, we can evaluate the expression
(A17) using a numerical code such as finite-differences. In
this case, the simulation computes the normal tensile force
at point ξ on the surface of the source region Sσ, due to a
distribution of range change over the surface S.

5.3 A discrete formulation

Given that one has a limited set of observations, it is only
possible to determine a finite set of parameters or an aver-
age of a continuous set. We can formulate a discrete inverse
problem directly from the integral expression for the range
change, equation (A15) given above. First, consider a set of
N observations at discrete points, xk, in the case of InSAR
gathered at the Earth’s surface. Next, partition the surface
of integration, Sσ, into a set of sub-patches, thus converting
the integration into a summation of integrals over each sub-
patch. If desired, the grids used in the numerical solution of
the forward problem may be used to define the boundary
patches. For example, in our application we will use our fi-
nite difference grid to divide the upper surface of the layer of
blocks representing the aquifer or reservoir into a set of M
rectangular surface patches, with each patch denoted as Sl.
Then the integral (A15) for the range at location xk, may
be written as

d(xk) =

M
∑

l=1

Aklml (A18)

where

Akl =

∫

Sl

K(xk, ξ)dξ (A19)

and ml is the average normal traction acting on the surface
of the l-th grid block.

Because the source acts over a volume, particularly for
an aquifer or reservoir model, it is typically defined by an
upper and lower surface. Other models, such as vertical
or dipping fracture sources, may be bounded by tilted or
curved surfaces. In order to reduce the non-uniqueness that
is associated with trade-offs between the tractions on paired
surface patches, we can assume that the tractions on the
two patches are equal. For example, surface elements on the
left and right sides of a vertical fracture will be assumed to
be subject to equal and opposite tractions. This appears to
be a good approximation for fractures and reservoirs where
fluid pressures are equalized over their widths. For larger
reservoirs, perhaps many grid blocks in thickness, it may be
possible to neglect the effect of the lower reservoir/aquifer
boundary if is significantly deeper than the upper bound-
ary. That is the size of the surface deformation due to the
traction on the lower boundary may be much smaller than
that due to the upper boundary. Numerical testing may be
required in order to determine if this is a reasonable approx-
imation.

For a reservoir defined by an upper and lower boundary
we can pair up the surface patches for a particular location,
defining columns through the reservoir with upper and lower
boundaries. We will assume that the reservoir boundaries
extend to the edges of the model and that the tractions on
the vertical boundaries, at the edge of the model domain,
are zero. Assuming that the tractions on the top and bottom
boundaries of each column are equal but acting on opposing
surface patches, we can still write an expression for the range
change at xk as the sum

d(xk) =

M
∑

l=1

Aklml. (A20)

But now the sum is over all of the M columns defining the
reservoir volume and the coefficients contain two contribu-
tions

Akl =

∫

Ul

K(xk, ξ)dξ +

∫

Ll

K(xk, ξ)dξ (A21)

from the upper, Ul, and lower, Ll boundary patches of each
column. As a related alternative, we could formulate the
source in terms of the volumetric component of the stress
tensor or as an equivalent pressure change as noted in (Aki
and Richards 1980) and (Ichihara et al. 2016).
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6 APPENDIX B: AN EXPRESSION FOR THE

GRADIENT IN TERMS THE ADJOINT

In this Appendix we develop an expression for the gradient
of the misfit functional, following the approach of (Plessix
2006) but only considering the linear forward and inverse
problems. This more formal approach complements and sup-
ports our Green’s function-based discussion in Appendix A.

For the linear forward problem the observable quanti-
ties, u(m), calculated for a specified set of model parame-
ters, with m satisfy the forward problem F(u(m),m) given
by

F(u,m) = u−Am = 0. (B1)

The misfit functional J(m) is the quadratic least-squares
functional

J(m) = h(u(m),m) =
1
2
(d− u)T (d− u) (B2)

describing the sum of the squares of the differences between
the calculated values u(m) and the vector of observations
d. We consider a perturbation of the model

m̃ = m+ δm, (B3)

leading to a perturbation in the values predicted by the for-
ward model

ũ = u+ δu (B4)

with the pair m̃ and ũ satisfying (B1)

F(ũ, m̃) = F(u,m) +∇uF · δu+∇mF · δm = 0. (B5)

Since the unperturbed model also satisfies the forward prob-
lem, the first term on the right-hand-side of equation (B5)
vanishes and we can use the expression to derive a relation-
ship between perturbations in u and m

∇uF · δu = −∇mF · δm (B6)

which takes the form

δu = Aδm (B7)

for our linear forward problem (B1).
Similarly, consider the misfit functional associated with

the perturbed model

J(m+ δm) = J(m) +∇uh · δu+∇mh · δm (B8)

or

δJ = ∇uh · δu+∇mh · δm. (B9)

For the quadratic misfit functional (B2) the gradients are
given by

∇uh = −
(

d̃− u
)

(B10)

and

∇mh = 0 (B11)

and equation (B9) takes the form

δJ = −
(

d̃− u
)

· δu. (B12)

Solving equation (B6) for δu and substituting the expression
into (B9) gives

δJ = −⟨∇uh, (∇uF)
−1 ∇mFδm⟩+∇uh · δm (B13)

where we have written the second scalar product in (B9)
using the angle bracket notation used in equation (18). Us-
ing the definition (18) of the adjoint we can produce an
alternative expression for the quantity in angular brackets
in equation (B13)

δJ = −⟨
[

(∇uF)
−1
]

∗

∇uh,∇mFδm⟩+∇mh · δm (B14)

For the linear forward problem (B1) we have that

∇uF = I (B15)

where I is the identity matrix, leading to

[(∇uF)
−1]∗ = I, (B16)

in addition to

∇mF = A. (B17)

While the quadratic misfit function (B2) gives

∇uh = d− u (B18)

and

∇mh = 0 (B19)

leading to the vanishing of the second term on the right-
hand-side of equation (B14). The final expression for δJ for
the linear inverse problem with the quadratic misfit func-
tional is

δJ = −⟨r,Aδm⟩. (B20)

where r = d−u is the residual vector introduced in equation
(16). Using the definition of the adjoint [see equation (18]
we can write this equation as

δJ = −⟨A∗r, δm⟩. (B21)
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Figure Captions

Figure 1. (Left panel) Upper structural boundary of the reservoir, which is defined by a northwest

trending anticline. The depths are relative to the top of the anticline. (Right panel) Variations in bulk

modulus for a horizontal slice through the model representing the elastic properties of the field.
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Figure 2. Results for the initial gradients, computed using a homogeneous elastic model. (Top panel)

Initial line-of-sight residuals at the start of the conjugate gradient algorithm, for a reservoir model

with no active sources. (Center panel) Results for the gradients after the first model update, computed

using a homogeneous elastic model. (Bottom panel) Results for the gradients after the second model

update, computed using a homogeneous elastic model.
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Figure 3. Results for the initial gradients, computed using a homogeneous elastic model. (Left panel)

Gradient components obtained using numerical differencing to compute the elements of A and then

using equation (16) to compute∇mJ . (Center panel) Components of the gradient∇mJ computed using

the adjoint approach described by equation (18), in which the residuals are used in the simulation to

drive the deformation from the observation locations and the gradient estimates are the volumetric

stress changes associated with the source grid blocks. (Right panel) Difference between the numerical

gradient estimates and the adjoint-based estimates.

Figure 4. Results for the gradients after the first model update, computed using a homogeneous

elastic model. (Left panel) Gradient components calculated using conventional approach based upon

equation (16). (Center panel) Adjoint-based gradient estimates corresponding the the residuals in the

Left panel. (Right panel) Differences obtained by subtracting the adjoint-based gradient estimates from

the numerical gradient estimates.
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Figure 5. Second iteration of the conjugate gradient model update. (Left panel) Gradient components

estimated using the numerical differencing approach. (Center panel) Gradient component derived using

the adjoint approach. (Right panel) Differences between the two sets of gradient estimates.

Figure 6. Gradient calculations based upon the three-dimensional model for the Central Valley oil

field. The elements of the gradient are associated with the starting or initial model of the conjugate

gradient algorithm. (Left panel) Gradient components computed using the conventional numerical

approach. (Center panel) Adjoint-based estimates of the components of the gradient vector. (Right

panel) Gradient difference between the two sets of estimates.
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Numerical

Adjoint

Figure 7. Reduction in square root of the total sum of the squares of the residuals as a function of the

iterations of the conjugate gradient algorithm. Both the error reduction associated with the numerical

and adjoint approaches are plotted.
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1st iteration
15th iteration

1st iteration
15th iteration

Figure 8. Calculated line-of-sight displacements plotted against observed values for (Left panel) the

conjugate gradient algorithm utilizing numerical gradient components and (Right panel) a conjugate

gradient algorithm based upon gradient components calculated using adjoints. Estimates calculated at

the first (open circles) and final (filled black squares) iterations are plotted in each panel.
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Figure 9. Final models of reservoir boundary normal stresses from the conjugate gradient algorithms.

(Left panel) Model produced by the conjugate gradient scheme with conventional numerical gradient

estimates. (Center panel) Final model from the adjoint-based conjugate gradient inversion. (Right

panel) Difference between the two models resulting from subtracting the adjoint solution from the

numerical solution.

Figure 10.Models resulting from an inversion of a sparse data set obtained by re-interpolating the 2986

observed values onto a 20 by 20 grid of range changes. (Left panel) Model produced by the conjugate

gradient scheme with conventional numerical gradient estimates. (Center panel) Final model from the

adjoint-based conjugate gradient inversion. (Right panel) Difference between the two models resulting

from subtracting the adjoint solution from the numerical solution.




