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Abstract 

We study the Next-to-Minimal Supersymmetric Standard Model (NMSSM) as the sim
plest candidate solution to the ,u-problem in the context of the gauge mediation of super
symmetry breaking (GMSB). We first review various proposals to solve the ,u-problem in 
models with the GMSB. We find none of them entirely satisfactory and point out that many 
of the scenarios still lack quantitative studies, and motivate the NMSSM as the simplest 
possible solution. We then study the situation in the Minimal Supersymmetric Standard 
Model (MSSM) with the GMSB and find that an order 10% cancellation is necessary be
tween the ,u-parameter and the soft SUSY-breaking parameters to correctly reproduce Mz. 
Unfortunately, the NMSSM does not to give a phenomenologically viable solution to the 
,u-problem. We present quantitative arguments which apply both for the low-energy and 
high-energy GMSB and prove that the NMSSM does not work for either case. Possible 
modifications to th.e NMSSM are then discussed. The NMSSM with additional vector-like 
quarks works phenomenologically, but requires an order a few percent cancellation among 
parameters. We point out that this cancellation has the same origin as the cancellation 
required in the MSSM. 
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1 Introduction 

The primary motivation for supersymmetry (SUSY) is to stabilize the smallness of the elec
troweak scale against radiative corrections [1, 2, 3], which can be as large as the Planck scale 
if the Higgs bosons are truly elementary. Once the electroweak scale is set in the tree-level La
grangian, it only receives logarithmic radiative corrections, and hence its order of magnitude is 
not changed. Moreover, the electroweak symmetry remains unbroken in the Minimal Supersym
metric Standard Model (MSSM) in the absence of explicit SUSY-breaking parameters. Therefore, 
one can view the electroweak symmetry breaking as being triggered by the soft SUSY breaking. 
Indeed, the soft SUSY-breaking mass-squared of the Higgs boson can be driven negative due to 
the top quark loop [4] while all the other scalar bosons still have positive mass-squared. In this 
sense, there is nothing special about the Higgs boson. It is just one of many scalar bosons, which 
happens to acquire a negative mass-squared due to the top quark loop. This idea eliminates 
one of the least appealing features of the Standard Model. However, there are at least two open 
questions. First, SUSY by itself does not explain why the electroweak scale is small to begin 
with. Therefore, SUSY makes the smallness of the electroweak scale "technically natural," but 
not truly natural. Second, the MSSM contains one dimensionful parameter (the p-parameter), 
allowed by SUSY, in the superpotetial. The natural values of 11 are either the Planck mass 
(the only natural dimensionful parameter available) or zero, but recent experimental constraints 
imposed by LEP2 imply that a nonzero 11 ~ 50 Ge V is required [5]. 

SUSY, fortunately, can potentially explain the smallness of the electroweak scale if it is 
broken dynamically [2]. The perturbative non-renormalization theorem forbids the generation 
of a mass scale in the superpotential if it is absent at the tree-level. However, non-perturbative 
effects can violate the non-renormalization theorem, and a mass scale can be generated by a 
dimensional transmutation: AstfSY rv MPiancke-8

1!"
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lbo I' if an asymptotically free gauge theory 

is responsible for SUSY breaking. There has been major progress in building models of dynamical 
SUSY breaking [6, 7, 8, 9, 10, 11, 12], which became possible with the detailed understanding of 
the non-perturbative dynamics of SUSY gauge theories [13]. Furthermore, the so-called gauge 
mediation of SUSY breaking (GMSB) [3, 14] can generate soft SUSY-breaking parameters in 
the SUSY Standard Model in a phenomenologically desired form. Therefore, there is hope of 
understanding the smallness of the electroweak scale in a truly natural manner. 

However, the other question remains largely unanswered: how can the dimensionful param
eters in the superpotential naturally be of the order of the SUSY-breaking parameters? There 
have been extensive discussions on this subject in the literature which we briefly summarize in 
Section 2. Unfortunately, many of the proposed mechanisms rely on either small parameters, ac
cidental cancellations, or the absence of interactions allowed by symmetries. We find the current 
situation to be rather unsatisfactory. 

A natural direction to follow is to start with a superpotential which does not contain a di
mensionful parameter and hope that the electroweak scale is generated solely due to the soft 
SUSY-breaking parameters. The simplest model which can potentially work along this line is 
the Next-to-Minimal Supersymmetric Standard Model (NMSSM) [15], which replaces the p
parameter by the vacuum expectation value of an electroweak singlet superfield. We revisit 
this possibility with detailed quantitative studies in this paper. Unfortunately, our conclusion 
is negative. The NMSSM by itself does not produce a phenomenologically viable electroweak 
symmetry breaking even if we vary the messenger scale. The major experimental constraints 
include Higgs boson and slepton searches. Certain simple modifications can evade phenomena-
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logical constraints, but require a cancellation among parameters accurate to a few percent. We 
present all of these points quantitatively in this paper, and hope that our results prompt further 
investigations in understanding the origin of the p-parameter in models with the GMSB. 

The paper is organized as follows. In the next section, we review the situation of the p
problem in models with the GMSB, and discuss various proposals to explain the origin of the 
p-parameter. We, however, find none of them entirely satisfactory. Even if we accept one of the 
proposed models, it is still necessary to check whether the generated p-parameter is phenomeno
logically allowed. We address this question in Section 3, and find that the currently available 
experimental lower bounds on superparticle masses already require a cancellation of order 10% 
between the p-parameter and soft SUSY-breaking parameters to reproduce the observed Mz. 
Then, as the major part of our study, we present the quantitative results of the electroweak 
symmetry breaking in the NMSSM with the GMSB in Section 4 and find that there is no phe
nomenologically viable parameter set even if we vary the messenger scale from 105 to 1016 GeV. 
We study various simple modifications of the NMSSM in Section 5, and find that they either do 
not break electroweak symmetry in a phenomenologically viable manner or require a cancellation 
among parameters of order 1%. We finally conclude in Section 6. 

2 The J.L-problem in the GMSB 

In this section, we .review the p-problem in the supersymmetric Standard Model in general, and 
also various attempts to solve it in the context of the GMSB. 

The parameter J.l is the only dimensionful quantity present in the superpotential of the MSSM 

(2.1) 

Here, Qi, Li, ui, di, ei are the matter chiral superfields with the obvious notation, and Hu, Hd 
the Higgs doublets. Note that J.l is part of the supersymmetric Lagrangian, and hence its origin 
is, naively, unrelated to the origin of the soft SUSY-breaking terms 

v. m 2 IH 12 + m2 IH 12 soft = Hd d Hv. u 

.+m~jQ!Qj + m~ij L!Li + m~iju!uj + m~iiJ!Jj + m~ije!ej 
-m~HuHd + AijQidjHd + A~QiujHu + A;j LiejHd. (2.2). 

Phenomenology, on the other hand, dictates that the values of both J.l and the soft SUSY
breaking masses should be around the weak scale (100 GeV), if SUSY is to be responsible for 
stabilizing the Higgs mass. Therefore, the important question is how the mechanism of SUSY 
breaking can induce a p-parameter naturally, at the same order of magnitude as the other soft 
SUSY-breaking parameters in the Lagrangian. 

One popular scenario of SUSY breaking is the so-called "hidden sector" SUSY breaking in 
supergravity (SUGRA) [16]. In hidden sector models, SUSY is broken in the hidden sector by 
some mechanism, such as the Polonyi model [17], gaugino condensation [18], or the O'Rafeartaigh 
model [19], and the effects of SUSY breaking are mediated to the fields in the supersymmet
ric Standard Model only by interactions suppressed by the Planck scale. It therefore requires 
SUSY breaking at a scale A rv 1010 GeV if the soft SUSY-breaking masses are generated as 
A2 

/ MPtanck· This class of models is able to generate the appropriate soft SUSY-breaking masses 
and p-parameter given that the p-term is forbidden in the supersymmetric limit by appropriate 

2 



symmetries, and arises due to SUSY breaking (see, for example, the Giudice-Masiero mecha
nism [20]). Hidden sector models have, on the other hand, to face serious bounds imposed by 
flavor-changing neutral currents (FCNC) [21]. Low-energy constraints such as the smallness of 
I<0-I<0 mixing require the matrices m~\ m~ij to have eigenvalues degenerate to a few percent, 

or their eigenvectors to be strongly "aligned" with the eigenvectors of the Yukawa matrices >.fj 
(the same is true forAY). Within the SUGRA framework alone, there is no natural mechanism 
to guarantee the degeneracy or the alignment [22]. In this case, flavor symmetries are probably 
necessary to ensure either degeneracy [23] or alignment [22] and suppress FCNC, and some of the 
models presented are also capable of generating the {l-term through flavor symmetry breaking 
[24, 25]. There is also the possibility that string theory generates degenerate squark masses if, 
for instance, the dilaton field provides the dominant contribution to the soft SUSY-breaking 
masses [26]. 

The gauge mediation of supersymmetry breaking is an alternative mechanism which can 
naturally ensure the degeneracy of squarks masses and therefore suppress the dangerous FCNC 
effects. SUSY is somehow broken (hopefully dynamically via dimensional transmutation to gen
erate a large hierarchy), and SUSY-breaking effects are mediated to the fields in the supersym
metric Standard Model by the Standard Model gauge interactions. Mediating SUSY breaking 
via gauge interactions is not a novel idea [3, 14]. It allows for SUSY breaking at a lower scale 
(when compared to SUGRA inspired models) and, because all SUSY-breaking effects are trans
mitted by flavor blind interactions (the Standard Model gauge interactions), squarks of different 
families have the same mass. This scheme has attracted a lot of interest after the pioneering 
works by the authors of references [6, 7, 8], which showed that one can successfully mediate the 
SUSY-breaking effects via gauge interactions with the help of a so-called "messenger sector." 
Their scheme can easily incorporate dynamical SUSY breaking and can explain the origin of the 
large hierarchy between the Planck (string, grand unified (GUT)) scale and the weak scale. 

The GMSB itself, however, has nothing to say about the J.t-parameter unless one introduces 
extra fields which couple to the particle content of the MSSM. The J.t-problem in the GMSB is 
the primary interest of this paper. Many solutions to the J.t-problem have been suggested by 
different authors and all of them require the introduction of new fields and/ or interactions. Some 
of these solutions will be r.eviewed shortly. 

In the original models [6, 7, 8], SUSY is broken dynamically in a so-called SUSY-breaking 
sector and the breaking effects are transmitted to the supersymmetric Standard Model via a 
messenger sector. The energy scale of the messenger sector is given by A~ 104-105 GeV. There 
are, ·however, models which do not have a separate messenger sector so that the sector which 
breaks SUSY dynamically is directly coupled to the Standard Model gauge group [10, 11, 12]. In 
this case, the effective messenger scale tends to be much higher. For our purposes it is enough 
to employ a simple version of the messenger sector, as in the original models, and take the 
messenger scale A as a free parameter. 

The messenger sector can be described by the superpotential 

(2.3) 

where S is a singlet superfield, <I>± are charged under a U(1) associated with the SUSY-breaking 
sector and are singlets under the Standard Model SU(3) x SU(2) x U(1) gauge group. The 
superfield q (q) transforms as a (3(3), 1, ±1/3) under the Standard Model, while l (f) transforms 
as (1, 2, =F1/2). 
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We assume that the scalar components of <P± acquire negative SUSY-breaking masses-squared 
due to its interaction with the SUSY-breaking sector (usually accomplished by the so-called "mes
senger U(l)" gauge interaction [7, 8]), and the potential associated with the scalar component 
of S reads 

neglecting terms containing l or q. It is easy to see that the scalar and the F components 
of S acquire vacuum expectation values (VEVs) (S) and (Fs) and therefore q and l acquire 
supersymmetric masses proportional to (S) and SUSY-breaking masses-squared proportional to 
(Fs).t This effect feeds down to the MSSM through loop corrections. Gauginos acquire Majorana 
masses at one loop, while sfermions acquire SUSY-breaking masses-squared at two loops. The 
calculation of these soft SUSY-breaking parameters was done long ago (see [3, 14]) and its result 
is well known. At the messenger scale: 

(2.5) 

(3 ( ) 2 ( ) 2 ( ) 2) 
2 2 2 al a2 a3 

m -. = 2nB - Y - + C2i - + C3i - . 
h 5 1 4rr 4rr 4rr 

(2.6) 

Here and below, all ai = g?f4rr are in the SU(5) normalization, B = (Fs)/(S) in the messenger 
sector discussed above, and n determines the number of messenger sector superfields responsible 
for mediating SUSY breaking; In the example we described above, which will be referred to as 
the model with the minimal GMSB, n = 1. Y is the hypercharge of the particle, C2 = 3/4 for 
weak SU(2) doublets (zero for singlets) and C3 = 4/3 for color triplets (zero for color singlets). 
Eq. (2.6) guarantees that squarks of different families are degenerate at the messenger scale and 
therefore FCNC effects are safely suppressed. It is interesting to note that, for small n, gaugino 
masses and sfermion masses are comparable. For very large n, on the other hand, sfermion 
masses can be significantly smaller than gaugino masses (by a factor y'n). 

In the mechanism described above, trilinear couplings are not generated at the same order 
(in loop expansion) at the messenger scale. This is not the case in general, and some models can 
generate trilinear couplings with values comparable to the other soft SUSY-breaking parameters 
even at the messenger scale [11 J. We will, for most of our discussions, consider 

(2.7) 

unless otherwise noted. 
The GMSB does not generate a 11-term because of the non-renormalization theorem. There

fore f1 is an input of the model, and, because it has dimensions of mass, its only nonzero natural 
value is MPlanck (Mstring, Maur). This is clearly not allowed phenomenologically. The 11-term 
must, therefore, be forbidden at the Planck scale (by, say, a Z3 symmetry) and generated dynam
ically. Below, we review various attempts to generate the 11-term in the context of the GMSB. 
The following list is not meant to be exhaustive and our descriptions of the various attempts are 
by no means complete. The review beloy.r only intends to show that many attempts have been 
made while none of them appears to be entirely satisfactory. 

tThere is a run-away direction q = ij, l = [in this potential [27]. This problem can be avoided by introducing 
moreS fields to the messenger sector. Such details are, however, irrelevant for the rest of our discussion. 

4 



The simplest solution would be to introduce a term in the superpotential [7] 

(2.8) 

. where Sis the singlet superfield in Eq. (2.3). In such a scenario I" = k(S) and m~ = k(Fs). m~ 
is the SUSY-breaking Higgs mixing mass-squared in Eq. (2.2). 

Phenomenology imposes that both I" and .;;;J are of the order of the weak scale, unless 
one is willing to accept a drastic cancellation among parameters to reproduce the observed Mz. 
Therefore, 

and 

(k(S)? "'k(Fs) "'(100 GeV)2
, 

(Fs) rv k(S) rv 100 GeV 
(S) 

(2.9) 

(2.10) 

(2.11) 

This situation is already excluded experimentally. Eq. (2.5) states that the gluino mass is 
given by (a3 /47r)(Fs)/(S), and if Eq. (2.10) is satisfied one would arrive at M9 ~ 1 GeV, which 
is unacceptable. The same is true for all the other soft SUSY-breaking masses. This is a general 

consequence of Eq. (2.11). It implies that .;;;J »I" if all experimental bounds on the SUSY 
spectrum are to be satisfied, while SU(2) x U(1) breaking requires Eq. (2.9). Some authors refer 
to this puzzle as the f.-l-problem in the ,GMSB [28]. 

Another simple solution that does not require the introduction of any extra ·superfields into 
the theory couples the Higgs superfields to the q superfields present in Eq. (2.3) [28]. In the 
minimal messenger sector [7, 8], one may have, instead of q and l, a complete 5 + 5 multiplet of 
SU(5) to preserve the gauge coupling unification~ One can also use a 10 + 10 for this purpose, 
and generate gaugino masses and scalar masses-squared with n = 3. In this case, one can couple 
the components Q in 10 that have the same quantum numbers as left-handed quark doublets 
and the components u that have the same quantum numbers as right-handed up quarks (or their 
corresponding components in 10) to the Higgs doublets. Explicitly, W :J >-.1HdQu + )..2HuQu. 
This will induce, in the Lagrangian, a one-loop term proportional to 

>-.1>-.2 jd4()HdHustst 
161r2 sts 

(2.12) 

Th F t t . 1 fS "11 t ,___~(Fs} d 2 rv~((Fs}) 2 A · e vacuum expec a 1on va ue o WI genera e fl _ 16n 2 (S} an m3 - 161r2 (S} . gam 
one runs into Eq. (2.11) and must hunt for other solutions. 

All of the models described above couple the MSSM Higgs superfields to those in themes
senger sector. Not only did we encounter the problem of Eq. (2.11), but some of the coupling 
constants introduced had to be made fairly small because of the magnitude of (S) and (Fs). 
Another class of solutions tries to get around this issue by introducing another singlet superfield, 
whose vacuum expectation value would generate the I"-term. 

One motivation for such models is to utilize the extr-a singlet to solve the doublet-triplet Higgs 
splitting in SU(5) grand unified theories via a sliding singlet mechanism [29]. This mechanism 
is known to be unstable against radiative corrections if the soft SUSY.:breaking parameters are 
generated at a scale higher than the GUT scale, but can be stable for the low-energy GMSB 
[30]. Ciafaloni and Pomarol [31] claim that such a solution would generate a viable f.-l-term. We 
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believe, however, that the conditions that they impose on the soft SUSY-breaking parameters 
can never be satisfied in the context of the GMSB, where all soft SUSY-breaking masses are 
tightly related. We will comment on this in Section 5. 

The simplest model with the addition of an extra singlet one can imagine, referred to as the 
NMSSM [15], involves substituting the J.L-term in the MSSM superpotential by 

(2.13) 

The minimization of the scalar potential for Ha, Hu and N at the weak scale should produce 
VEVs va and Vu for both Higgs bosons, thus breaking SU(2) x U(1), and x for the singlet. J.l 
would be equal to Ax. The m~ term would arise due to renormalization group (RG) running 
of the A-term AA;..HaHuN from the messenger scale to the weak scale. m~ would be equal to 
AA;..x. 

Dine and Nelson [6] claim that this model does not work for the low-energy GMSB. A detailed 
analysis was not presented in their paper, and we will explain the problem in Section 4. They 
suggest the introduction of an extra light pair of q' + ij' and l' + l' as a means to produce a 
viable spectrum. They did not, however, publish a quantitative analysis of the model, and say 
nothing about its naturalness. Agashe and Graesser [32] study this scenario and show that there 
is indeed a solution, but it is fine-tuned. They present a possibility to ease the fine-tuning by 
employing many lepton-like messengers while keeping the number of quark-like messengers small. 
In Sections 4 and 5, we analyze in great' detail the case for both the high- and low-energy GMSB. 

There are ways of giving N a VEV which are not related to electroweak symmetry breaking. 
In Ref. [7] two mechanisms are introduced, neither of them very appealing, where the N VEV 
is generated at the messenger scale. Namely, 

or 

1 2 
W ~ --ksN S 

2 
(2.14) 

(2.15) 

in addition to the NMSSM. S, q and l are the messenger sector superfields present in Eq. (2.3). 
In the case of Eq. (2.14), a potential 

VN = lkN2 + ks(S)NI2 - ksN2 (Fs) (2.16) 

is generated for N in the presence of (S) and (Fs) VEVs. If one assumes ks to be small, 

N develops a VEV x = Jksy;s}, and J.l = ~Jks(Fs) assuming all other couplings to be of 
order one. It is easy to see, a posteriori, that ks must indeed be small if one is to generate 
a phenomenologically viable J.l· Unfortunately this case requires that the soft SUSY-breaking 
masses-squared rv (ai/47r)2((Fs)/(S))2 and J.L2 

rv ks(Fs) are accidentally of the same order of 
magnitude. t 

The superpotential coupling Eq. (2.15) would lead to a potential 

Vi ::) lkN212- k N-1_(Kq(Fs))2- (l f-t q). 
N. 'q 327r2 Kq(S) 

(2.17) 

tAlthough ks has to be small, its smallness,is natural in the sense of 't Hooft. It can be interpreted as being 
generated due to the breaking of some global symmetry, such as N --t e2Tri/3 N and H 1,2 --t e21ri/3 H 1,2 , whileS is 
invariant. This type of symmetry would also explain the suppression of a term N S 2 in the superpotential, which 
would be of order (ks) 2

• 
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The linear terms inN arise via tadpole one-loop diagrams involving q's and l's. This would lead 
to x3 = ~ 3211r2 ~9 ~~})2 + (l ++ q). Again kq and kz would have to be small. This solution still 
faces the problem of explaining why a term NS2 is not present in the superpotential. Note that 
the presence of such a term would lead to an unacceptably large VEV for N. One may argue, 
however, that this is "technically natural" because the absence of a term in the superpotential 
is preserved by radiative corrections. An even more serious problem is the need to suppress the 
kinetic mixing f d4()St N + h.c. to ensure FN « F8 ; an unacceptably large m~ = A.FN would 
be generated otherwise. An order unity kinetic mixing can be induced via radiative corrections 
between the ultraviolet cutoff, say the Planck scale, and the messenger scale, and the bare 
parameter has to be chosen very carefully so that the unwanted mixing term can be canceled 
at the messenger scale. This kinetic mixing can be forbidden if there are two sets of messenger 
fields and if the field N couples off-diagonally, e.g., W = N q1ij_2 etc (33]. Then the tadpole term 
mentioned above is also forbidden, but a negative mass squared for the N field can be generated 
instead. This would lead to the NMSSM in a successful manner; again the parameters must be 
carefully chosen as in the NMSSM with extra light quark pairs (see Section 5). 

Another solution with extra singlets, which points an interesting way around Eq. (2.11), was 
suggested by Dvali, Giudice and Pomarol (28]. Their idea is to generate the p-term via the 
following one-loop effective term in the Lagrangian: 

J d4()HdHuDa Da(StS) 
' (5)3 ' (2.18) 

where Da is the supersymmetric covariant derivative. This works because D2 cancels () 2 in S, 
while leaving (j2 in st. Then the integral over d02 can be done and the p-term is generated, 
while m~ is not. Them~ term would arise at higher loops, or via some other mechanism. 

An explicit realization of this mechanism [28] is the following. Suppose a singlet field N 
acquires a linear term M 2 N in the superpotential due to its coupling to the messenger sector. 
Then the superpotential W = N(Y2 + HuHd - M 2

) leads to a minimum with (Y) = M, 
N = 0. However, by further coupling N to the messenger superfields, i.e. Nqij_ etc, a one-loop 
diagram of messenger fields generates the operator 16~2 f d4

() N st ( st S) I ( st S)' which contains 
V ""' 16

1
7r2 N(Fs) 2 /(S). Note that this is the same linear potential generated in the case of 

Eq. (2.15). This tadpole term induces a VEVfor N of order (N)""' 16~2 (Fs) 2 /(S)/(Y) 2 which 
is of the order of the weak scale if (Y)2 = M 2 ""' (F8 ). TheY field plays a crucial role: it slides 
to cancel the F -component VEV of N before the tadpole is added and, after SUSY is broken, 
its VEV is shifted and leads to (FN) = m~ ""'J-L2

, as required by phenomenology. Note that 
the J-L-parameter obtained here can be understood as a consequence of the effective Lagrangian 
Eq. (2.18), which is generated upon integrating out N and Y before substituting the effect of 
the VEVs of S. 

The necessary linear term (M2 N) in the superpotential for N can be easily generated by 
the kinetic mixing between N and S or also by other mechanisms, as pointed out in reference 
(34]. One apparent drawback of this realization is that one needs a set of new fields whose 
interactions are arranged in a rather special way. Furthermore one would expect the pres.ence 
of a term proportional to SHuHd in the superpotential. This happens because both S and N 
couple to the messengers, that is, W :) Sqij_ + N qij_, and have, therefore, the same quantum 
numbers. We have already argued that a coupling SHuHd has to vanish (see Eq. (2.8)). Finally 
we point out that this model also suffers from the cancellation problem present in the MSSM 
(see Section 3). 
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Dine, Nelson, Nir and Shirman [8] suggest yet another way of generating a 11-term with the 
introduction of an extra singlet. It was inspired by flavor symmetry models in [24], and resembles 
a modified version of the NMSSM + Eq. (2.14): 

Nn+ 1 Nm+3 N2+p 

W ::) An MJ>t HdHu + Am M?z + Ap M~1 S (2.19) 

where Mp1 is the .Planck mass. When m = 2, n = 1 and p = 2, it is easy to check that 
J-l rv An [{.FJ. We assume the other couplings to be of order 1. It is also easy to see that one 
would require a very small, carefully chosen coupling An in order to guarantee 11 rv 100 Ge V. It 
is worth noting that this mechanism does not generate an m~ term. 

At last we would like to mention another interesting possibility, pointed out by Yanagida 
[35] and Nilles and Polonsky [36]. Their models utilize the accidental equality (Aoss/M*) 113 

rv 

(a/47r)2, where 1\.osB rv 107 GeV is the scale of dynamical SUSY breaking (DSB) in models with 
the low-energy GMSB and M* = MpL/ V8if the reduced Planck mass. By introducing a new 
SUSY-preserving sector with strong gauge dynamics, Yanagida's model generates a VEV for 
the superpotential which cancels the cosmological constant from the DSB sector. The constant 
superpotential in turn generates a J-t-term of order Aoss(Aoss/M*) 113 

rv (a/47r)2AosB rv 1 TeV. 
The phenomenology of this modelis the same as the previous one (see Eq. (2.19)). The model by 
Nilles and Polonsky makes use oft he Planck-scale suppressed Kahler potential, f d40 N ( z* z) / M*, 
where z is a chiral superfield in the DSB sector with an F-component VEV. This operator may 
be present at the tree-level, but may also be generated by gravitational effects. It generates 
a tadpole for the singlet N: V = (A'tJ88 /M*)N. Together with the ~N3 superpotential of the 
NMSSM, it generates a VEV for N of order (N) rv (A'tJ88 /M*)) 113. Even though these models 
generate the correct 11-term of order the weak scale in the models with the low-energy GMSB, 
this would not work for the high-energy GMSB. 

We consider that none of the mechanisms outlined above are entirely satisfactory. Most 
of them require a very specific choice of parameters and the introduction of extra matter at 
or slightly above the weak scale. Furthermore, most of them have not been studied quantita
tively (see, however, Ref. [37]), and there is no guarantee that they indeed generate the correct 
electroweak symmetry breaking pattern and an experimentally viable spectrum. And last, but 
not least, there is no study of how natural such a solution is, given that a viable pattern of 
electroweak symmetry breaking can be generated. 

It is, therefore, part of our goal to study the simplest of the models mentioned above in detail. 
Before that, we would like to review the status of electroweak symmetry breaking in the.MSSM, 
where the 11-term is introduced "by hand." We will point out that, in the case of the GMSB, the 
current lower bounds on superparticle masses already require an order 10% cancellation between 
the J-t-parameter and the soft SUSY-breaking parameters. 

3 . The J-L-parameter in the MSSM 

We reviewed various proposals to generate the J-t-parameter in models with the GMSB. In this 
section, we review how electroweak symmetry breaking occurs in the MSSM, assuming that the 
J-t-parameter and m~ are somehow generated. In particular, we point out a need for an order 10% 
cancellation between J-t-parameter and soft SUSY-breaking parameters in models with the GMSB 
given the current experimental lower bounds on superparticle masses. Note that the case of the 
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NMSSM is different because the ,u-parameter is generated together with electroweak symmetry 
breaking and hence the two problems cannot be clearly separated. This will be discussed in the 
next two sections. 

The tree-level Higgs potential in the MSSM is given by 
2 n 

V = m~1Hdl 2 +m~IHul 2 - m~(HdHu +c.c.) + ~ (HjaHd +H!8Hu)2 + 9
8 

(1Hdl 2 -IHul 2?, (3.1) 

where the mass parameters involve both the supersymmetric ,u-term and the soft SUSY-breaking 
terms, 

(3.2) 

(3.3) 

In the MSSM, one can show that the vacuum can always be gauge rotated to the following 
configuration 

(3.4) 

The two expectation values need to satisfy v~ + v~ = v2 = (174 GeV? in order to reproduce 
the observed Mz, and it is conventional to parametrize t~em by vd = v cos /3, Vu = v sin (3. The 
minimization condition of the potential can be rewritten in the following form: 

M 2 m2 
- m2 tan2 f3 z , 2 + Hd Hu (3 5) 2 -,u tan2 f3- 1 ' · 

2m~ (2,u2 + m'td + m'tJ sin 2/3. (3.6) 

It has been claimed that electroweak symmetry breaking is natural in the MSSM because 
m'h-u is easily driven negative due to the presence the top Yukawa coupling in its RG evolution. 
In models with the minimal GMSB such as the original ones in [7, 8], the boundary condition 
for the supersymmetry breaking parameters are given by Eqs. (2.5, 2.6, 2.7), A simple one
loop approximation is valid in the case of the low-energy GMSB because of the small logarithm 
between the messenger scale A and the electroweak scale, and· one finds 

·2() 2() 6 2 2 A mH Mz ~ mH Mz - --2 ht2ml log M , 
u d 167f z (3.7) 

which is always negative. 
The need for a cancellation between the ,u-parameter and soft SUSY-breaking masses can 

be seen as follows. Experimental constraints bound the superparticle masses from below, which 
hence set a lower limit for the ratio B = (Fs)/(S). Therefore one finds that lm'tJ is bounded 
from below. On the other hand, in order for the observed M~ to be reproduced, the ,u-parameter 
is constrained by Eq. (3.5). For a moderately large tan f3 ,2: 2, m'h-d can be completely neglected 
and one finds 

(3.8) 

This equation requires a cancellation between ,u2 and (negative) m'h-u to reproduce M~/2 "' 
(70 GeV)2 correctly. The degree of cancellation is given by (M~/2)/ ,u2 _§ 

§The degree of cancellation is defined as foll~ws: it is a percentage quantity that measures how much a given 
input parameter (in this case J.L 2 ) is free to vary before a given output parameter (in this case M~) changes 
significantly. Explicitly, the degree of cancellation is (d(logM1)/d(logJ.L2))- 1 . This definition corresponds to the 
inverse of the Barbieri-Giudice function [38]. 
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To determine the lower limit on lmk I, we consider a number of experimental constraints 
(39]. One is that the gluino must be heavier than 190 GeV, which becomes stronger if the 
squarks have comparable masses. The second is that the right-handed selectron must be heavier 
than 80 GeV.1f For large tan (3, the right-handed stau may become rather light; we then require 
m:;- > 55 GeV if it decays into tau and a neutralino or gravitino, and m:;- > 73 GeV if it does 
not decay inside the detector. We also considered the lightest chargino to be heavier than 63 
Ge V. The most recent lower bound on the chargino mass (5] is mx+ ,<; 67 Ge V, which leaves our 
analysis virtually unchanged. 

Let us first discuss the case of the minimal low-energy GMSB with small tan (3 to make the 
argument clear. Here we consider A"" 105 GeV. The gluino mass constraint requires 

B > 23 TeV. (3.9) 

This bound itself is independent from the messenger scale. However, the gluino mass bound 
depends on the mass of the squarks, and it strengthens if the squark masses are comparable 
to the ·gluino mass. For the minimal low-energy GMSB, squarks are significantly heavier than 
the gluino and we can use the bound above. A more stringent constraint is derived from the 
requirement that the right-handed sleptons are heavier than 80 GeV. Including the one-loop 
renormalization group evolution and the D-term, we find 

m~ e 2~(a1 ) 2 
B2 + ~ ((a!(Mmess))

2 

-1) Mi(Mz) + M~sin2 Bwcos2(3 
5 4rr 11 a1 ( M z) . 

2.89 X 10-6 B 2
- 0.232M~ cos 2(3. (3.10) 

Therefore we find 
B > 39 TeV (3.11) 

for the most conservative case cos 2(3 = -1. With this lower bound we find 

mi > 2~ ( a,(~;"'l) 
2 

B2 > {430 GeV)2
. (3.12) 

Using the one-loop running of mk, we obtain 

m~,.(Mz) < -(260 GeV) 2 (3.13) 

and as a result of the minimization condition, 

f.l > 250 GeV. (3.14) 

This requires a cancellation of 7% in order to obtain the correct M~. Even though this level 
of cancellation is not of i:tpmediate concern, this analysis shows the need for a certain amount 
of cancellation which will become worse as experimental lower bounds on superparticle masses 
1m prove. 

1i"This bound depends on the mass of the nel!tralino into which the selectron decays. However, since p, turns 
out to be large, it is a posteriori justified to assume that the lightest neutralino is almost pure bino. Then the 
GMSB predicts the relation between selectron and the bino masses, and hence we have a fairly reliable lower 
bound. 
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Figure 1: Lower bounds on J-l in models with the GMSB subject to the constraint Mz = 91 GeV 
and to the lower bounds on superparticle masses (see text), (a) as a function of the messenger 

-scale, for tan,B = 2, 10, and 30, and (b) as a function of tan,B for a fixed messenger scale of 
108 GeV. 

As it is clear from the argument above, the actual lower bound on J-l depends on the messenger 
scale and tan ,8. We have studied this issue numerically using the experimental bounds quoted 
above and found the lowest possible value of J-l as a function of the messenger scale. In Fig. 1(a) 
we present bounds for three values of tan ,8. The lower bound on J-l comes from one of the various 
experimental constraints. For instance, the tan fJ = 2 case is dominated by the lower bound on 
meR up to a messenger scale of 1012 GeV, after which the gluino mass bound is more important.ll 
The case of tan ,8 = 10 has a similar behavior. The situation is more complex and interesting 
for tan fJ = 30. For a messenger scale of up to 1010 GeV, the stau is the lightest supersymmetric 
particle (except for the gravitino). It decays inside the detector to tau and gravitino for the 
lowest messenger scale, but leaves the detector without decaying for higher messenger scales. 
This stable stau provides the strongest constraint. From messenger scales above"' 1012 GeV the 
stau decays inside the detector to tau 

1
and neutralino. This bound dominates up to"' 1016 GeV, 

when the gluino bound dominates. The chargino bound is comparable to that of the gluino for 
the GUT scale (MauT = 1.86 x 1016 GeV). 

In Fig. 1 (b) we show the minimum value of J-l as a function of tan ,8 for a fixed messenger 
scale (A = 108 Ge V). The tan fJ dependence can be easily understood as follows. Starting from 

IIWe only analyzed the case for one messenger (n=l). For larger n the gluino bound becomes less important 
and the slepton bounds dominate up to the GUT scale. 
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low tan{J, increasing tan{J decreases thetop Yukawa coupling, and hence m'ku receives a less 
negative contribution from the top-stop loop. Therefore a lower value of 11 is allowed. This 
part is dominated by the eR bound. However beyond tan (3 rv 20, the bottom and tau Yukawa 
coupling become important. In fact, the scalar tau mass is pushed down both because of the loop 
effect and left-right mixing, and the experimental lower bound on B becomes stronger. Beyond 
tan (3 rv 30, the stau does not decay inside the detector for this choice of the messenger scale 
and the constraint is even more stringent. This in turn leads to a more negative m'ku and hence 
a larger 11· 

Combining both the messenger scale dependence and tan (3 dependence, we conclude that 
the most conservative current limit is 

11 > 160 GeV. (3.15) 

The required cancellation between 112 and soft SUSY-breaking parameters in order to reproduce 
the observed Mz is M'i /2112 = 16%. Note that this level of cancellation is the absolute minimum, 
and a more accurate cancellation is required for most of the parameter space. 

In the case of minimal supergravity models, where all scalars have the universal SUSY
breaking mass-squared m6, all gauginos have mass M112 and all A-terms are given by A1 = Ao>..'l 
for f = u, d, l, at the GUT scale, the situation appears to be much better. The renormalization 
group equations can be solved numerically for each choice of tan/3. As an example we take 
tan (3 = 2 and find 

m~ + 0.50M{12 , 

-0.32m6 - 2.49M{/2 - 0.05A6 - 0.20Ml/2Ao, 

m~ + 0.15M{12. 

(3.16) 

(3.17) 

(3.18) 

By requiring me > 80 Ge V and M 112 > 60 Ge V (this is a rough bound inferred from the gluino 
bound M9 _<: 190 GeV), we find 11 > 82 GeV. This basically does not require any cancellation, 
since M'i/2112 = 65%. 

The situation can be somewhat ameliorated in the MSSM if there is a Fayet-Illioupoulos 
D-term for the U(1)y gauge group. Such a D-term is known to arise in many ways, such as 
kinetic mixing of the U(1)y and U(1)mess gauge fields [40]. The running of all the parameters 
remains the same except that one adds another contribution from the Dy at the weak scale. If 
the sign is appropriate, it increases m~ ---+ m~ + Dy and m'ku ---+ m'ku + ~ Dy (less negative) while 
decreasing m'kd ---+ m'kd- ~Dy. All of these help push the parameters relevant for electroweak 
symmetry breaking in the right direction. Larger m~ reduces the lower bound on (Fs)/(S), and a 
less negative m'k" is also welcome. Therefore the sensitivity to 11 (required cancellation between 
11 and soft SUSY-breaking parameters) in the MSSM can be improved in the presence of a Dy 
with the appropriate sign. 

We will see in the next two sections that the situation in the NMSSM is much worse. There 
is no phenomenologically viable solution to· electroweak symmetry breaking. One can modify 
the model to generate a large negative mass-squared for the singlet field and then find a viable 
solution. This solution also requires a ca:p.cellation among parameters which has the same origin 
as the cancellation present in the MSSM. We will also see that the addition of the Fayet
Illiopoulos D-term does not improve the situation within the NMSSM. 
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4 The NMSSM with the GMSB 

In this section we study the feasibility of implementing the GMSB in the framework of the 
Next-to-Minimal Supersymmetric Standard Model (NMSSM). We begin our presentation by 
introducing the NMSSM: its particle content, superpotential, and soft SUSY-breaking terms. 
We briefly review the major steps in our analysis: the boundary conditions for the breaking 
terms, the RG evolution, and the minimization of the weak-scale one-loop effective potential. 
We then describe the results of a numerical scan of a large portion of the model's parameter 
space. We find that it is impossible to evade the present-day experimental constraints. We 
further strengthen this argument by providing a semi-analytical explanation for the inevitability 
of this conclusion. 

4.1 The NMSSM 

The NMSSM represents an attempt to solve the J.L-problem of the MSSM in the simplest and 
most direct way: the spectrum of the MSSM is augmented by a gauge singlet superfield N, which · 
couples to HdHu and plays the role of the j.l-term once it develops a nonzero vacuum expectation 
value [15]. The original j.l-term is banned from the theory so that there are no dimensionful 
parameters left in the superpotential. 

The VEV of the scalar component of N is determined by minimizing the scalar potential 
with respect to Hd, Hu, and N simultaneously. It is natural to expect the VEVs to be of the 
same order of magnitude for all three -fields, thus generating an effective J.L-parameter of order 
the weak scale, as required by phenomenology. 

The complex scalar N introduces two additional degrees of freedom to the Higgs sector. 
Therefore, the particle spectrum of the NMSSM contains three CP-even Higgs scalars, two CP
odd Higgs scalars, and one charged Higgs scalar. Immediately, there is a problem: one of the 
pseudoscalar Higgs bosons is massless. This happens because the superpotential W = A.N HdHu 
has a Peccei-Quinn symmetry N--+ Neicx, HdHu--+ HdHue-icx. This symmetry is spontaneously 
broken by the VEVs of the fields, making one ofthe pseudoscalars massless. 

The standard solution to this problem is to introduce a term cubic in N, which explicitly 
breaks the symmetry mentioned above. This term is allowed by the gauge symmetries of the 
model and does not contain a dimensionful coupling constant, so it is generically expected to be 
present in the superpotential. One, however, still has to worry about a light pseudoscalar Higgs 
boson. As we will show shortly, its mass can also be small because of the presence of a different 
(approximate) U ( 1) symmetry. 

Overall, the only change made to the MSSM superpotential is the following: 

k 3 
J.lHdHu--+ A.N HdHu- 3N , 

while the corresponding change to the soft SUSY-breaking part of the potential is: 

( 4.1) 

( 4.2) 

One can determine the VEVs of the Higgs fields Hd, Hu, and N by minimizing the scalar 
potential, which at the tree-level consists of the F-terms, D-terms, and soft SUSY-breaking 
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terms: 

Vfli~~s = Vp + Vv + Vsojt, 

Vp = iAHdHu- kN2 i2 + A2INI2(1Hdl 2 + 1Hul2), 
2 12 

Vv = g~ (HjiiHd + H!iiHu) 2 + 9
8 

(1Hdl 2 -1Hul2)2, 

Vsott = m~)Hdi 2 + m~.,IHul 2 + mfviNI 2
- (AA>.HdHuN + h.c.)- ( ~AkN3 + h.c.). (4.3) 

An important fact to notice is that both Vp and Vv remain unchanged when Hd, Hu, and N are 
all rotated by the same phase. In fact, only the soft SUSY-breaking A-terms are not invariant 
under this transformation. This can be potentially dangerous, because we, in general, consider 
the A-terms to be zero at the messenger scale, and their sizes at the weak scale are determined 
by the RG evolution. If the generated values of Ax and Ak are not large enough, our scalar 
potential has an approximate U ( 1) symmetry. This symmetry is spontaneously broken by the 
vacuum expectation values of the Higgs fields, and, as before, we have to worry about a light 
pseudoscalar Higgs boson. 

We denote the VEVs of the neutral components of the Higgs fields by Vd and vu, as in 
Section 3, and the VEV of the singlet field by x: 

(N) =X. 

As a function of these VEV s, the potential has the form 

vtree 
neutral = 

( 4.4) 

It is well known that some of the Higgs boson masses receive significant contributions from 
radiative corrections. In our numerical analysis we account for that by employing the one-loop 
effective potential 

V l-loop() .Vtree ( ) 1 STM4( )(l M
2
(vi) 3) 

neutral Vi = neutral Vi' f.L + 647r2 r Vi og f.L2 - 2 · (4.6) 

In this expression M 2( vi) is a field-dependent scalar mass-squared matrix, and f.L is the MS 
renormalization scale. As we have indicated explicitly, the values of the various parameters 
entering vtree depend on the choice of this scale. To the leading order this dependence is 
canceled when the second term on the right hand side of Eq. ( 4.6) is included, and the result 
of minimizing vl-loop is less sensitive to the choice of the scale where one stops running the 
RG equations. (Canceling out this dependence completely would require calculating radiative 
corrections to all orders.) 

The matrix M 2 depends on the field VEVs Vi through the Yukawa couplings of the Higgs 
fields to various other particles. What plays a crucial role here is not the absolute values of the 
masses, but rather the rate of their change as one changes Vi. Therefore, the most important 
contribution comes from the field-dependent masses of the top quark and squarks, which have 
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the largest Yukawa coupling. Denoting their mass eigenvalues by mt, mi
1 

and mi
2 

respectively, 
the contribution to vi-loop from radiative corrections due to these states is 

(4.7) 

4.2 Numerical Analysis 

In models with the GMSB the values of the soft SUSY-breaking terms are specified at the 
messenger scale by Eqs. (2.5), (2.6) and (2.7). Their values at the weak scale can be determined 
by solving the RG equations given in Appendix A. 

The model has five input parameters: ht, A, k, B, and n. (Note that the only dimensionful 
input parameter is B, and its magnitude will aetermine the overall scale of the VEVs and the soft 
SUSY-breaking masses.) There are, however, two constrains which must be satisfied at the weak 

scale: v = JvJ + v~ --: 174 GeV and htVu = 165 ± 5 GeV.** A common approach is to use the 
minimization conditions and RG equations to solve for the inputs, given a phenomenologically 
allowed set of weak-scale outputs. In the case of a high messenger scale, however, no easily 
invertible solution for the RG equations is available. Instead, we simply choose to tackle the 
problem numerically. After running da'wn the RG equations and minimizing the Higgs potential 
once, we iterate this procedure, each time adjusting the value of the parameter B to fix the overall 
scale of the VEV s and masses, while simultaneously changing the dimensionless couplings to 
correctly reproduce the top quark mass. This iteration process, in fact, converges fairly quickly. 

Using the procedure above, we perform a numerical scan of a large portion of the parameter 
space. We study the low-energy particle spectrum for various messenger scales A, numbers of 
messengers n, and values of the couplings A and k. It is interesting to note that it is very easy 
to generate non-zero VEVs for Hd, Hu, and N, even when m'fv is a small positive number. This 
is because the terms IAvdvu- kx 2

1
2 and AxAvdvux, when AVdVu and k are of the same sign, both 

"push" the VEV of the real component of the singlet away from the origin. Unfortunately, 
we find that, for any choice of values of the input parameters, there are always particles with 
unacceptably small masses. To illustrate the situation, we preserit in Table 1 our numerical 
results for several representative points in different "corners" of the parameter space. The first 
two points represent the typical situation for the case of the low-energy GMSB, the next two 
are representative of the case of the high-energy GMSB, and the last one explores the extreme 
case of A = 1015 GeV. Points 1 and 3 have relatively large values of k, while points 2 and 4 
have k « 1. Notice that in the table we did not consider a similar limiting case for A. This is 
not a coincidence. It turns out that, for A .$ 0.2, the dominant term in the potential is Vv, and 
tan (J is forced to values very close to one. In this case, in order to correctly reproduce the top 
quark mass, one is forced to choose ht at the weak scale such that ht hits the Landau pole below 
the GUT scale. We have chosen to list only the cases where the couplings in the superpotential 
remain perturbative up to the GUT scale. We make, however, no such assumption in our analysis 
in the next subsection. 

**Notice that this number is not equal to the top quark pole mass, the experimentally measured quantity, 
because of QCD corrections. The relationship between the two is given, at 1-loop, by mpole = m(l + ~7 ). 
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Table 1: The numerically determined NMSSM parameters for five sample points in the parameter 
space. Here mh; and mA; refer to the eigenvalues of the scalar and pseudoscalar Higgs mass 
matrices respectively, and me denotes the mass of the right-handed selectron. The values of A, 
k, and ht are given at the weak scale. All the other quantities have been defined earlier in the 
text. 

Input Parameters 
point A (GeV) A k B (TeV) n ht 

1 5 X 104 0.25 0.1 6.4 1 1.12 
2 105 0.28 3 X 10-4 3.6 3 1.08 
3 1012 0.32 0.3 0.99 10 1.07 
4 1012 0.25 3 X 10 4 '6.0 1 1.11 
5 1015 0.28 0.3 6.9 1 1.07 

Soft SUSY-breaking Parameters at the Weak Scale 
point m'i.J .. (GeV2) m2 

H (GeV2) m'fv (GeV2
) A,x (GeV) Ak (GeV) 

1 -2.4 X 103 5.3 X 102 4.6 -1.5 -4.0 X 10-3 

2 -2.8 X 103 5.7 X 102 6.8 -2.6 -6.2 X 10-3 

3 -3.1 X 103 4.8 X 102 29 -11.4 -0.15 
4 -2.5 X 103 6.8 X 102 12 -8.0 -0.11 
5 -2.9 X 103 1.0 X 103 -8.1 -9.4 -6.0 X 10-3 

Field VEVs Particle Masses 
point tanf3 x (GeV) M3 (GeV) me (GeV) mh; (GeV) mA; (GeV) 

1 1.59 -3.7 61 32 85, 39, 35 51, 1.8 
2 1.84 ~3.7 103 35 87, 48, 38 48, 0.2 
3 1.97 -40 94 36 87, 53, 28 76, 25 
4 1.63 -14 57 34 85, 43, 37 44, 0.5 
5 1.88 -49 66 40 88, 50, 27 71, 24 
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It can be seen that, in all the cases presented in Table 1, there are particles with unacceptably 
small masses. The result for the low-energy GMSB is not new and has been known for several 
years [6]. On the other hand, the situation with a high messenger scale had not been quanti
tatively studied in the literature to date. One expected feature that we indeed see in points 3 
and 5 is the increase of the pseudoscalar Higgs boson mass with A. This happens because the 
magnitude of A.A, generated by running the RG equations, increases with the messenger scale, 
and it is A.A that breaks the U(1) symmetry of the potential, as discussed before. Another result 
that could have been anticipated is the smallness of the mass of the light pseudoscalar Higgs 
when k « 1 (points 2 and 4). This is due to the Peccei-Quinn symmetry, which is restored 
in this limit. What is surprising is that raising the messenger scale by 10 orders of magnitude 
does not bring any other significant changes to the particle spectrum. The masses of the gluino, 
right-handed selectron, and scalar Higgs boson still remain small. 

4.3 Analytical Considerations 

In this subsection we present a rather simple semi-analytical argument which explains why there 
can be no phenomenologically acceptable solution to the NMSSM with the GMSB. We show 
that if one assumes that such a solution exists, one arrives at a contradiction. We also explain 
some of the features of the numerical solutions presented in the previous subsection. 

Suppose that for some point in the parameter space an acceptable solution exists. The 
problem to be address~d is the smallness of the selectron, gluino, and Higgs masses. We choose 
to base our analysis on the right-handed selectron mass constraint. The magnitude of me is 
directly proportional to the size of the B-parameter. In our numerical procedure the value of B 
is chosen in such a way that v = 174 GeV. A typical value of B obtained in this way yields a very 
small selectron mass (me rv 35 GeV), gluino mass (M3 ;S 100 GeV), and soft SUSY-breaking 
masses for the Higgs bosons (m'ku rv -3000 GeV2

, m'kd rv 500 GeV2
). 

It is, therefore, obvious that the only chance of obtaining an acceptable value for the selectron 
mass is to raise B, by a factor of three or more, and try to arrange the other parameters in 
such a way that jv2 + v~ remains 174 GeV. Since B feeds into all soft SUSY-breaking masses, 
their absolute values will also increase. For example, imposing me > 80 GeV forces m'ku < 
-(215 GeV) 2 for a messenger scale of 1016 GeV. For different messenger scales the bound becomes 
even more stringent, as shown in Fig 2(a). 

To determine the consequences of raising the soft SUSY-breaking masses, we analyze the 
Higgs potential (Eq. ( 4.5) ). The extremization conditions at tree level are · 

£H7tree 
U vneutral 

0Vd 
;:)T /tree 
U vneutral 

OVu 
avtree 

neutral 

ax 

12 + 2 

2(-\vdVu- kx 2 )Avu + 2-\2x 2vd + 2m'1dvd- 2A_\AVuX + 9 

4 
92 2vd( v~- v~), ( 4.8) 

12 + 2 

2(-\vdVu- kx2)Avd + 2-\2x 2vu + 2m'1u Vu- 2A.AAVdX + 9 

4 
92 2vu( v~- v~), ( 4.9) 

( 4.10) 

The first two equations (Eqs. (4.8) and (4.9)) closely resemble the corresponding ones in the 
MSSM case. In fact, the only difference in the NMSSM is the presence of the first term on the 
right-hand side of Eq. (4.8) and Eq. ( 4.9). This term originates from 1 88~ 12 = 1-Xvdvu- kx2

1
2 and 

is, therefore, absent in the MSSM. Dividing Eq. ( 4.8) by vu, Eq. ( 4.9) by vd, and subtracting the 
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Figure- 2: (a) Lower bounds on lm7I~ 1112 and lm7I~ 1112 ·as a·function of the messenger scale A from 
the selectron mass constraint me > 80 GeV. Here n = 1, ht = 1.07, k = 0.3 and A = 0.29 at 
the weak scale. These bounds do not change for different values of k or -A. The other plots show 
typical values of (b) A>., (c) Ak, and (d) m'fv, for the same choice of parameters that yielded (a). 
The values of these parameters do not change significantly for different values of k or A. 
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two expressions, we can cancel out this term. As a result, we obtain 

M 2 1 1 2 2 M2 2 2 t 2 (3 
_A2x2 = -~- -(m2 m2 ) --mHd- mHu = -~ mHd- mHu an 

2 2 Hd+ Hu 2 cos2(3 2 + tan2 ,8-1 ( 4.11) 

Note that this equation is identical to Eq. (3.5) with 11 = .Ax. To obtain the NMSSM analog 
of Eq. (3.6) we divide Eq. (4.8) by vd, Eq. (4.9) by Vu and add the two. Solving for A>-AX 
(A>-.Ax m~) we find: 

2 2 2 2 sin 2(3 2 
A>-AX = (mHd + mH., + 2-A X )-

2
- + .A(.Avdvu- kx ) . ( 4.12) 

Eqs. (3.6) and (4.12) differ only by the contribution from J 88~J 2 • 
Eq. ( 4.11) states that the value of the effective 11-parameter generated in this model is subject 

to a rather stringent bound: .A2x 2 > -m'h"- M'i/2, which, if one imposes m'h" < -(212 GeV)2, 
translates into .Ax > 200 GeV. Notice that the origin of this bound is the same as of the bound 
on the size of the 11-parameter derived in Section 3, since the condition given by Eq. ( 4.11) is 
the same in both cases. In the present case, however, the bound is stronger because tan ,8 is no 
longer a free parameter but is determined by minimizing the Higgs potential. 

So far we have· only looked at the first two extremization conditions. We now turn our 
attention to Eq. ( 4.10). Solving for x 2 in Eq. ( 4.11 ), one can rewrite Eq. ( 4.10) as 

( 4.13) 

While we have shown that phenomenology requires the expression in parenthesis on the left-hand 
side to be larger than (200 GeV) 2

, the terms on the right-hand side are all much smaller, because 
m'Jv, A>-, and Ak are zero at the messenger scale and the effects of the RG running are relatively 
small (see Fig. 2). This means that the above equation can never be satisfied unless k « .A. 

An immediate consequence of the k ---+ 0 limit is that the mass of the lightest pseudoscalar 
Higgs goes to zero, as it becomes a Nambu-Goldstone boson. (It is for this reason that k was 
introduced in the first place.) Furthermore in the limit of large 11 and small k the determinant of 
the scalar Higgs mass-squared matrix becomes negative, which means that the extremum point 
given by Eqs. (4.8-4.10) ceases to be a minimum. To show this we first derive a relationship 
between k and sin 2(3. That relationship can be derived from Eq. ( 4.11) and Eq. ( 4.12). Neglecting 
M'i, A>-.Ax, and -A2v2 in comparison to mh-d and m'h.,, we find that 

(4.14) 

Here r = -(m'hd + mh-J/(m'i.Jd- m'i.JJ.tt Fork« .A, Eq. (4.14) reduces to 

(4.15) 

ttin deriving Eq. (4.14) it was necessary to assume that sin2,8 > kj>.. This translates into two requirements: 
r > 0 and k / >. < 1. We conclude that for large soft SUSY-breaking Higgs masses-squared it is necessary to have 
>. > k. 
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Equipped with the last result, we consider the determinant of the scalar Higgs mass-squared 
matrix. The full expression for it is given in .Appendix B; here we only need to identify the 
leading terms. We are interested in the case p, > >.v, and, as we have argued before, the soft 
trilinear couplings A,\ and Ak can be neglected. For this reason, the dominant terms will be the 
ones containing the highest power of f-l: 

2V2f-l4 
det M;calar ~ ).3 sin(2,B) ( -4k>.4 + k3g2 + k3 cos(4,B)g2 + 8k2 

).
3 sin(2,B)) . ( 4.16) 

That these are indeed the largest terms was checked numerically. 
Taking into account the fact that k and sin 2,8 are proportional to each other for small k, 

one can easily see that, in the limit k ---+ 0, the first term dominates and the determinant is 
negative.H 

This completes our argument, and we are now able to state that there can be no phenomeno
logically viable solution in the context of the NMSSM. We could have also based our argument 
on the gluino mass bound. The experimental constraint M 3 > 190 GeV translates into the 
requirement m'J.Iu < -(212 GeV)2 (assuming n = 1), and the rest of the argument follows un
changed. Notice, however, that the bound on m'J.Iu weakens if the number of messenger fields is 
taken to be very large. 

We now turn to the issue of interpreting the numerical results of the previous subsection. 
We would like to understand, for instance, why the values of the singlet VEV x in Table 1 are 
always smaller than the VEVs of the Higgs doublets and, furthermore, why x is only several 
Ge V for a low messenger scale. 

The answer comes from considering the extremization condition for x: 

k2 3 , (, k . (2/3)) 2 v
2 

>. sin(2,B)A-\ 2 X + A A - Slll V X - ~ 0 , 
2 

( 4.17) 

where we omitted the terms m'Jv and kAkx (lm'Jvl « >. 2v 2 for all the points in the table). For 
most of the parameter space the cubic term in x can also be neglected, giving 

( 4.18) 

Thus the smallness of x is related to the fact that A,\ is small. The above approximation holds 
as long as 

2 2 2 >. 2 2 ( 1 - ~ sin 2,8 r 
A-\ < >. v k2 sin2 2/3 ' ( 4.19) 

which is not satisfied only for point 5 in Table 1. For point 5 the value of x can be approximated 
by 

(A 2 >.sin 2,8) 
113 

X~ • ,\V 4k2 ( 4.20) 

Again x < v and therefore >.x « 175 GeV. 

HBecause sin 2,8 ex: k/)... there is no ambiguity with sign redefinitions of)... or k in Eq. (4.16). 
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Knowing that xis small in this model we can derive another interesting relation. Neglecting 
all the terms containing x in Eq. (4.12), we obtain: 

( 4.21) 

This explains why the values of the soft SUSY-breaking masses for the Higgs bosons are so 
similar for very different values of the messenger scale. 

Finally, we can say a few words about the scalar Higgs boson masses. In the limit of small 
x (and hence small f-l), the dominant term in the determinant of the scalar Higgs mass-squared 
matrix (see Appendix B) is 

2 3A>,v6 )..4[i 
detMscalar ~ 32f-Lsin(2,B). ( 4.22) 

Taking into account the fact that, for small x, f-l = >..x rv A>. (see Eq. (4.18)), the equation above 
gives: 

3v6 )..4g-2 
2 2 2 

mhl mh2mh3 rv 32 sin(2,B) . ( 4.23) 

This explains why changes in the messenger scale have almost no effect on the product of the 
scalar Higgs boson masses (see Table 1), as long as ).. is unchanged. For sin(2,B) rv 0.8- 0.9, 
which is what we typically find in this' case, Eq. ( 4.23) gives a "geometrical average" value of 
the scalar Higgs boson mass of only about 50 GeV. This means that, as long as xis small, the 
model necessarily yields phenomenologically unacceptable Higgs boson masses. 

5 Possible Modifications to the NMSSM 

In this section we reexamine the expressions derived in Section 4 and attempt to modify the 
NMSSM to make it phenomenologically viable. We study several possibilities and comment on 
the problems that arise. Overall, we find none of these possibilities entirely satisfactory. 

5.1 Extra Vector-like Quarks 

We want to modify the NMSSM in a way that allows one to avoid the conclusions of Section 4. 
Recall that the crucial step in our analysis there was the observation that Eq. ( 4.13) could 
not be satisfied: the left-hand side was always greater than the right-hand side. To obtain a 
consistent solution one has to somehow make both sides equal. One possibility is to make m'Jv 
of the same order of magnitude (and sign) as m'Jiu. That could be accomplished by coupling the 
singlet to some new fields and arranging the parameters in such a way that the SUSY-breaking 
mass-squared of the singlet is driven sufficiently negative. This idea was first proposed by Dine 
and Nelson in Ref. [6], who introduced new color-triplet fields q' and q' and coupled them to N. 
The corresponding superpotential is 

W = huQHuuc + hdQHddc +-heLHdec + >..NHdHu- ~kN3 + )..qNq'q'. (5.1) 

According to Eq. (2.6), the scalar components of q' and q' acquire large SUSY-breaking masses, 
which can drive m'Jv sufficiently negative. 
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Agashe and Graesser in Ref. [32] did a quantitative study of this scenario for the case of 
the low-energy GMSB. They showed that it is indeed possible to generate a _large negative 
mJv, in the range -(150 GeV)2 to -(200 GeV)2, and further demonstrated that, with mJv of 
this magnitude, one can choose the input parameters in such a way that v = 17 4 Ge V and 
all experimental constraints are evaded. They also pointed out that in this scenario the input 
parameters need to be fine-tuned in order to reproduce the above value of v. In what follows we 
give a set of input parameters thai; yields an acceptable particle spectrum, and then proceed to 
analyze the sensitivity of the Higgs boson VEVs to the NMSSM coupling constants. We clarify 
the origin of this sensitivity and also extend the analysis to the case of the high-energy GMSB. 

As an example of an allowed solution, we consider the case of the low-energy GMSB with 
B = 50 TeV, n = 1, and A = 100 TeV. For mJv = -(190 GeV?, to correctly reproduce 
Mz and mt we take ht=0.99, k = -0.045 and >.=0.11 at the weak scale. We find that tan f3 
equals -2.9 for this point. Because the magnitude of the product Bn is now quite large, the 
masses of the gluino and right-handed select ron are safe: M3 = 4 77 Ge V, me =93 Ge V. The 
vacuum expectation value of the singlet is also large, x=2.97 TeV, which, as was argued earlier, 
is required by Eq. ( 4.11). The eigenvalues of the scalar Higgs mass matrix are 404, 270, and 90 
GeV, and those of the pseudoscalar Higgs mass matrix are 400 and 6.7 GeV. The last number 
appears alarmingly small at first sight but, as shown in Ref. [32], has not been excluded. The 
reason is that the corresponding eigenstate a is almost a pure singlet: 

Ia) = 0.031IHd)- O.OlliHu)- 0.999IN) (5.2) 

The quantitative criterion given in Ref. [32], based on the constraint from theY -+ wy decay, is 

sin 2/3 tan f3 < 0.43, 

J C5o xGeV) 2 + sin2 2/3 
(5.3) 

and for the parameter set above the left-hand side equals 0.15. 
In this scheme it is, therefore, possible to find a point in the parameter space which leads to 

a phenomenologically viable solution. Unfortunately, as we already mentioned, this solution is 
very sensitive to the choice of the superpotential coupling constants >. and k. In the remainder 
of this subsection we discuss this issue in detail. 

The values of the parameters for the set that we have just described had to be chosen in such 
a way that the top quark and Z-boson masses were fixed at their known experimental values. 
It is interesting to investigate what values of Mz would be predicted for a generic choice of the 
parameters. In Fig. 3 we plot the magnitude of the quantity v. Jv~ + v~ as a function of>. 
and k. The figure shows that small changes in both >. and k lead to large changes in v. This is 
very similar to the situation in the MSSM which was considered in Section 3. There we showed 
that the value of the J.L-parameter had to be chosen very carefully in order to yield the correct 
value of v. In the present case, the points in the parameter space that correspond to values of v 
around 174 GeV lie in a very thin band on the >.- k plane. Also notice that, for this range of>. 
and k, the slope is the steepest. (See Appendix C for comments on this point.) 

It is possible to perform the same type of analysis for a higher messenger scale. The same 
problem is found in that case as well. In Fig. 4 we plot the dependence of v on >. for fixed values 
of k. For comparison, the curve for A= 1012 GeV is plotted next to the curve for A= 100 TeV. 
From the slopes of these curves one can determine the degree of sensitivity with respect to >., 
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Figure 3: The value of v = JvJ + v~ as a function of A and k. The inputs are n = 1, m'fv = 

-(190 GeV)2
, B =50 TeV, A= 100 TeV, ht = 0.99. 
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Figure 4: The dependence of von the va:lue of A for the high- and low-energy GMSB. The other 
input parameters are the same as in Fig. 3. 
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using the definition in Section 3. The degree of sensitivity, given by d(log v) / d(log ·A), is 2% for 
the low-energy curve and 1% for the high-energy curve. Our numerical results agree with those 
in Ref. [32] for the low-energy GMSB if the saine inputs parameters are used. 

In order to understand this behavior, we once again turn to the extremization conditions 
Eqs. ( 4.8-4.10). First, we present some qualitative observations. Recall that phenomenology 

requires lxl to be rather large (of the order yflmh-J/A;:::: 1 TeV), while v has to remain "small" 
(v = 174 GeV) to correctly reproduce Mz. As a result, the terms containing high powers of x 
and the terms containing mf (i = Hd, Hu, N) dominate, while the terms with Vu and Vd are not 
fixed, and have to absorb the residual difference between the dominant terms. Therefore, small 
percentile changes in the dominant terms can result in large percentile changes in the Higgs 
boson VEVs. This is to be contrasted with the situation in the previous section, where A2v 2 was 
tied to the value of the sum mh-d + mh-... (see Eq. (4.21)). 

Next, we try to identify the main source of this sensitivity. We first consider the dependence 
of von A for fixed B, k, and ht. One can use Eq. (4.11) to solve for v 2 and then isolate the 
largest contribution to av I OA. 

av2
- 4 [ \ 2 .2'2 ax f) (mh-d-mh-... tan

2
{J) 8tan{J - - - -2Ax - "' x- + ---

OA g2 aA 8tan{J tan2{J-1 · fJA 

+ Hd _ !-' ~ 1 8m2 tan2 a 8m2 l 
· tan2 {3- 1 fJA tan2 {3- 1 OA · 

(5.4) 

Using the data that led to Fig. 3, we numerically evaluate the derivative around the point 
A = 0.11, k = -0.045. The following are the results of evaluating each of the terms on the 
right-hand side, respectively: -1.4 x 107

, -2.4 x 106
, -3.9 x 106

, -1.2 x 103
, 1.9 x 101 (GeV2). 

The largest term is the first one, the next two terms combined provide a 45% correction, and 
the derivatives of the soft SUSY-breaking masses can be completely neglected. In Appendix D 
we show how these numbers can be understood by studying the minimization conditions. 

The fact that the dominant contribution to fJvjfJA comes from the first term in Eq. (5.4) 
has a very important implication. It means that the problems of cancellation in the NMSSM 
and the MSSM are not merely similar, but have exactly the same origin. Indeed, Eq. (4.11) 
is the same as Eq. (3.5), and, because in the NMSSM v depends on A mainly through the 
combination AX, which plays the role of the J.t-term, the two models require roughly the same 
degree of cancellation. The degree of cancellation quoted in Section 3 for the MSSM is most 
conservatively 16%, but this is so because one can choose tan {3 freely in the MSSM. On the other 
hand, tan {3 is determined by minimizing the potential for the NMSSM and cannot be chosen 
arbitrarily to ease the cancellation. For the value of tan {3 which we obtained in the NMSSM, 
the degree of cancellation is actually comparable (order a few percent) in the MSSM. The small 
difference between the two models is due to the dependence of x and tan {3 on A. 

We have discussed the A dependence of the Higgs boson VEV, and now turn to the k de:... 
pendence. Fig. 3 shows that the points that yield v = 17 4 Ge V form an almost straight line on 
the A- k plane. It can be shown (see Appendix D) that in order to keep v constant one has to 
change k and A according to !).kj k = /).A/ A. The sensitivity of v to k is, thus, related to the 
sensitivity of v to A, which, in turn, originates from the need to carefully choose the J.t-parameter 
in the MSSM as discussed in Section 3. 

To summarize, we have shown that this model requires a very particular choice of parameters 
to yield the correct Z-boson mass. Furthermore, we explained that the sensitivity of the Z-boson 
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mass to the NMSSM couplings has the same origin as the sensitivity of the Z-bosoii mass to the 
value of the ,u-parameter in the MSSM. We emphasize that the problem is present for both high 
and low messenger scales, simply because the bound on the ,u-parameter does not weaken as one 
raises the messenger scale. 

5.2 Hypercharge D-term 

Next, we investigate what happens if the D-term contributions described at the end of Section 3 
are included. First, we consider the case of the NMSSM with no extra particles added. We try 
to determine if, by introducing the D-terms, it is possible to make v smaller. If that happened, 
v could be rescaled back by increasing B, and that would raise all masses in the model, as 
desired. We find that this is not the case. Upon adding the D-terms both tan,B and (x) change, 
but VJ + v~, curiously enough, remains virtually constant. This happens because, in the limit 
x 2 « v 2

, v 2 is constrained by Eq. (4.21), and the change m1d--+ m'kd-~Dy, mk--+ m1u +~Dy 
preserves the quantity m1d + m1u. 

The next question to ask is whether the D-terms can decrease the degree of cancellation for 
the case with q' and ij_' added. The answer is again negative and the reason can be seen from 
Eq. ( 4.12). Recall that the degree of cancellation is controlled by the magnitude of x 2 • As long 
as A.x>.x and >.2vdvu can be neglected compared to m1d + mk, Eq. (4.12) yields 

' ( 2 2 ) 
2 rv mHd + mH, 

X - - 2).(). - -. k_) ' 
sm2{3 

(5.5) 

and the relevant quantity is again m1d + m1,. 

5.3 Large Trilinear Couplings 

At last, we consider the scenario proposed by Ciafaloni and Pomarol [31]. They consider a 
modified version of the NMSSM, where k = 0, >. « 1 and the value of A.\ is large at the 
messenger scale. Their model also contains, in the potential at the weak-scale, a linear term 
in N which is generated by tadpole diagrams and solves the problem of a light pseudoscalar. 
They find that the requirement of the positivity of the determinant of the scalar Higgs boson 
mass-squared matrix is very restrictive. We repeat part of their analysis to determine if their 
choice of parameters could indeed lead to a phenomenologically viable electroweak symmetry 
breaking spectrum. Note that, as far as the following is concerned, their model is identical to 
the NMSSM. 

The full expression for the determinant can be found in Appendix B. In the limit of k --+ 0 
and >. --+ 0 

(5.6) 

where we introduced a variable y = ?Pm~/(2Mfv) to conform to the notation used in Ref. 
[31]. From the extremization conditions for the potential, Eqs. (4.8-4.10), one can show that 
,u = A.\sin(2,B)/(2(1 + y)). There are two intervals of y over which the determinant is greater 
than zero. One interval is where both the expression in the brackets and the denominator are 
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positive. It is given approximately by the following bound on IYI: 

(

. A2 ). -i/2 

IYI < cos2{3 1 + M1 . (5.7) 

The other interval, not mentioned in [31], is approximately ( -(~ + 1), -1), where both the 

denominator and the bracketed expression are negative. 
The first interval, for A>. > Mz, corresponds to rather small values of m'fv and 

11 ~ ~A>. sin( 2{3) . (5.8) 

Using this equation together with Eq. (4.12), one can derive the following result: 

(5.9) 

The above equation is impossible to satisfy in models with the GMSB, because the combination 
( m'ku + m'kd) is always negative at the weak scale for the messenger-scale boundary conditions 
given by Eqs. (2.5) and (2.6). To satisfy Eq. (5.9), a drastic modification of the boundary 
conditions would be required. 

We now turn our attention to the second possibility. It requires a relatively large negative 
value of the singlet soft SUSY-breaking mass-squared: m'fv. < -2/([;2) x Mfv = -(132 GeV) 2

• 

This value is impossible to generate unless, as before, one introduces fields q' and q' and couples 
them to N. Even with the' introduction of these fields, if k = 0, X « 1, the extremization 
conditions cannot be simultaneously satisfied. This can be seen in the following way. For k = 0 
Eq. ( 4.13) takes on the form 

(5.10) 

which implies x-+ 0 as X -+ 0. This is incompatible with Eq. ( 4.11), which requires that x -+ oo 
as X-+ 0. 

6 Conclusion 

We studied the issue of electroweak. symmetry breaking in models with the gauge mediation 
of supersymmetry breaking (GMSB). We first reviewed various proposals in the literature to 
generate the p-parameter of the MSSM with the same order of magnitude as the soft SUSY
breaking parameters such as squark, slepton, and gaugino masses. We find that most of them 
require small parameters which are accidentally of the same magnitude as the loop factors, 
cancellation of the kinetic mixing terms at the level of 10-4

, omission of interactions allowed by 
symmetries, or many new degrees of freedom not motivated otherwise. 

Even if one could generate the p-parameter with the same order of magnitude as the soft 
SUSY-breaking parameters, it has to have particular values to reproduce Mz = 91 GeV. We 
studied this question numerically and found the following. The current experimental lower 
bounds on superparticle masses limit the overall scale of SUSY breaking from below, which in 
turn limits m'ku < 0 from above (i.e., lmkl from below). To reproduce Mz, p 2 needs to cancel 
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(too-negative) m'ku and is hence bounded from below. Therefore, there is some cancellation 
required between p 2 and m'k..,. Even with the most conservative set of parameters, we found 
that a cancellation of 16% is necessary. The situation is worse for most of the parameter space. 
This situation was contrasted to the supergravity scenario where the current experimental lower 
bounds on superparticle masses do not require a significant cancellation among parameters. 

The simplest mechanism to generate the p-parameter would be the NMSSM, the minimal 
extension of the MSSM without dimensionful parameters in the superpotential. The NMSSM 
is known not to work with the low-energy GMSB, but there was hope that it may work with -
higher rp.essenger scales. We have shown that this is unfortunately not the case. The current 
bounds on the superparticles masses are already strong enough to exclude the model completely. 
We presented a semi-analytic discussion to clarify why the NMSSM fails. 

We also discussed various possible modifications to the NMSSM and whether they could lead 
to a viable electroweak symmetry breaking. The introduction of extra vector-like quarks coupled 
to the NMSSM singlet produces a large negative mass-squared for the singlet, and leads to a 
viable electroweak symmetry breaking. One needs to adjust the parameters to a few percent, 
which is comparable to the MSSM case for the same tan {3 range. A Fayet-Illiopoulos D-term 
for U ( 1 )y does not improve the situation. 

The overall prospect of electroweak symmetry breaking with the GMSB remains unclear. We 
hope our detailed investigation prompts further studies on this issue. 
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Appendix A The Renormalization Group Equations of 
the NMSSM 

In this appendix we list all of the RG equations for the NMSSM, at 1-loop [41]. These are the 
equations used, in section 4, to determine the coupling constants and SUSY-breaking parameters 
of the NMSSM at the weak scale, given their values at the messenger scale. 
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(A.ll) 

(A.12) 

(A.13) 

(A.14) 



(6h2 + h2 + h2 + ,\2- ~g/2- 3g2- 16g2)h 
b t T 9 2 3 3 b, 

( 4h; + 3h~ + .\2 
- 3g'2 - 3gDhT, 

(A.15) 

(A.16) 

(A.l7) 

(A.l8) 

In the above equations g' is the U(l)y gauge coupling; explicitly g' = e/ cos Ow. g2 and g3 
are, respectively, the weak and strong coupling constants. One defines g1 to be the hypercharge 
coupling constant in the GUT normalization, i.e. g1 - Jig' and a 1 - ~a'. Gauge couplings at 
the messenger scale are defined in such a way that they match their experimental values at the 
Z-mass. We only consider the effect of third generation Yukawa couplings, namely, ht, hb and 
hT. 

6h;(l + 8a3)At + 2h~8a3Ab + 2.\2 AA 

13 12 3 2 8 2 
4(

18
g M1 + 2,g2M2 + 3g3M3), 

6h~(l + 8a3)Ab + 2h~8a3At + 2h;8a3AT + 2.\2 AA 

( 7 12 3 2 8 2 ) 
4 

18
g M1 + 2,g2M2 + 3g3M3 , 

2h;(l + 38a3)AT + 6h~Ab + 2.\2 AA 

6(g'2 M1 + g~M2), 
8.\2 AA- 4k2 Ak + 6h~At + 6h~Ab + 2h;AT 

2(g12Ml + 3g~M2), 
12(k2 Ak- .\2 A_\). 

(A.l9) 

(A.20) 

(A.21) 

(A.22) 

(A.23) 

Ai are the soft SUSY-breaking trilinear couplings, given in Sections 2 and 4. Note that we only 
consider third generation trilinear couplings, namely Atht = A~3 , Abhb =A~\ AThT = Ar3

. Mi 
(i=1,2,3) are the soft SUSY-breaking gaugino masses and they evolve, at one loop, identically 
to ai. Explicitly 

g[(Q) 
-2-, 

9x 
(A.24) 

where gx is the value of all 9i at the GUT scale, while M1 is the common gaugino mass at the 
2 

GUT scale. 

(A.25) 
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2 d 2 1671" -m
dt da 

2 d 2 1671" -m
dt La 

48a3h~(m¢3 + mir., + m~ +A~) 

S(~g'2 M2 + ~ 2M2)_ ~g'2c 9 1 3g3 3 3 <,, 

48a3h~(m¢3 + m1d + m~ +An 

S(~g'2 M2 + ~g2 M2) + ~g'2t: 9 1 3 3 3 3 <,, 

28a3h;(m't + m1d + m~ +A.;) 

8(~g'2 M; + ~g~M;)- g12e, 
48a3h;(mt + m1d + m~ +A;) 

sg'2 M; + 2g12e, 
6h2(m2.. + m2 + m} + A2) + 2h2 (m~ + m2 + m~ + A2) b Q3 Hd b b T £3 Hd T T 

2 '2( 2 2 2 A2) S(1 12M2 32M2) t2c + /\ m Hd + m Hu + m N + .x - 4 g 1 + 4 g2 2 - g <,' 

6h~(m¢3 + m1u + m~ +A~)+ 2.A2(m1d + m1u + mJv +AD 

8(~g'2 M; + ~g~Mi) + g12e, 
4.A2 (m1-d + m1-u + mJv +AD+ 4k2(3mJv +A%). 

(A.26) 

(A.27) 

(A.28) 

(A.29) 

(A.30) 

(A.31) 

(A.32) 

e is the hypercharge-weighted sum of all soft SUSY-breaking masses-squared 

(A.33) 

where i runs over all scalar particles. With the boundary conditions in Eqs. (2.5,2.6), e = 0 and 
remains zero throughout the RG evolution. All soft SUSY-breaking mass-squared terms were 
taken to be diagonal. Again, we only consider the running of third generation soft SUSY -breaking 
masses-squared. mJv- is d~fined in Section 4. 

Appendix B Scalar Higgs Mass-Squared Matrix 

In this appendix we explicitly show the 3 x 3 scalar Higgs mass-squared matrix of the NMSSM. 

4Af.LV1 - 2A.x.Av2 - 4kf.lV2 ) 

-2A.x.Av1 - 4kf.lv1 + 4Af.lV2 , 
-2Akkj..t + 8k2 j..t2 + 2A11.A2

v1 v2 
,\ ,\2 J.1 

(B.1) 
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where Vi for i = 1, 2, 3 corresponds, respectively, to vd, Vu and x. All other parameters were 
defined in previous sections. 

The determinant of the matrix above can be evaluated explicitly, and its full expression is 
given bellow. Various limits of this determinant are considered in the body of the paper. 

det M~ca/ar = 
2 

,).3 v_ ( (3) (-6A>.v4A9 -32A~A5p2 -64A>.v 2A7p2 -32AkA>.kA4p3 -160A~kA4p3-
32 p sm 2 

128kv2 A6 p 3 
- 32Akk2 A3 p4 

- 128A>.k2 A3 p4 
- 256A>.A5 p4 

- 256kA4 p 5 + 8A_xv4 A9 cos( 4(3) + 
32A1 A 5 p 2 cos( 4(3) + 64A>. v2 A 7 p 2 cos( 4(3.) + 32AkA>.kA 4 p 3 cos( 4(3) + 160A~kA 4 p 3 cos( 4(3) + 
128kv2 A6 p 3 cos(4(3) + 32Akk2A3p4 cos(4(3) + 128A>. eA3p4 cos(4(3)- 2A.xv4 A9 cos(8(3) + 
3A>.v4 A792 + 32A>.v2 A5p 2_q2 -16AkA.xkA2 p3 _q2 + 64kv2 A4 p392 -16Akk2 Ap492 + 
64A>.k2 Ap4 92 + 64k3 p 5 92 

- 4A_xv4 A 7 cos( 4(3)92 
- 32A>. v2 A 5 p2 cos( 4/3)92 

-

16AkA>.kA2 p 3 cos( 4/3)92 
- 64kv 2 A 4 p3 cos( 4(3)g2 - 16Akk2 Ap4 cos( 4(3)g2 + 

64A>.k2 Ap4 cos( 4(3)92 + 64k3l cos( 4/3)92 + A.xv4 A 7 cos(8f3)92 + 48A~ v2 A 7 p sin(2(3) + 
24Akkv2 A 6 p 2 sin(2f3) + 120A.xkv2 A6 p 2 sin(2(3) + 256A~A 5 p3 sin(2(3) + 96v2 A 7 p3 sin(2(3) + 
768A>.kA4p 4 sin(2(3) + 512k2A3p 5 sin(2f3) -12A~v2A5p92 sin(2(3) -12Akkv2A4p 292 sin(2(3)-

60A>.kv2 A 4 p 292 sin(2(3) - 16k2 v2 A 3 g392 sin(2(3) - 48v2 A 5 p392 sin(2(3) - 16A~ v2 A 7 p sin(6(3) -

8Akkv2 A 6 p2 sin(6(3) - 40A>.kv2 A 6 p 2 sin( 6(3) - 32v2 A 7 p3 sin(6(3) + 4A~v2 A 5 p92 sin( 6(3) + 
4Akkv2 A4 p2g2 sin(6(3) + 4A_xkv2 A4p 2g2 sin(6(3)- 16k2 v2 A3 p392 sin(6(3) + 16v2 A5 p392 sin(6(3)). 

(B.2) 

All parameters were defined previously. Recall that p = Ax. 

Appendix C Comments on Naturalness 

We have studied the NMSSM with extra vector-like quarks in Section 5.1 and discussed that 
the model requires a delicate cancellation among independent parameters. In this appendix, we 
make further comments on the naturalness of this model. 

From Fig. 4, one can easily note that not only does the experimentally allowed value of v lie 
on a .steep region of the parameter space, which requires a degree of cancellation of order 1%, 
but it lies on the steepest region of the parameter space. 

One may, therefore, try to address the following question: if all parameters are kept fixed (and 
this choice of parameters yields an experimentally allowed spectrum) except one (e.g. A), what 
is the likelihood of obtaining a certain value of v upon a random choice of the free parameter? 

In other words, what is the probability P( v) dv of finding the value of J v~ + vJ between v and 
v+dv given a random choice of A? This line of reasoning is related to the definition of fine-tuning 
introduced by Anderson and Castaiio [42]. It is easy to note that 

(
d )-l 

P(v) <X d~ (C. I) 

This "probability density" is plotted in Fig. 5. Note that we restrict A to lie on a range where the 
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0 o~---L--'-2"':-'o'-:-o .............. '--'-4-:-:o'-:-o .............. '--'-6-:-:o'-:-o-'---'--'-s-:-~o....,..o_,___,__._1-='oo=-=o~ 

(v~+v~)112 (GeV) 

Figure 5: The probability densities of finding specific values of v in the NMSSM with extra 
vector-like quarks upon random choices of A. All other parameters are the same as in Fig. 4. 
The probability densities are normalized so that P(v = 174 GeV) = 1. 

same "qualitative" physics is obtained, that is, electroweak symmetry is broken and tan(,6) > 1. 
The plot has been normalized in such a way that P( v = 17 4 Ge V) = 1. 

We note that, in some sense, the probability of living in our universe is smaller, if this model 
is to be taken seriously, than the probability of living in a universe where v ~ 600 GeV by a 
factor of three. One can turn this picture around and say that the NMSSM, with the above 
choice of parameters, "prefers" (or predicts) v ~ 600 GeV. 

This does not happen in the MSSM. The analog of Fig. 4 would be Eq. (3.5), which is 
a straight line ( Mi = Mi(f-l2

)) if all parameters except f-l2 are kept fixed. In the language 
introduced above, the MSSM does not "prefer" (or predict) any particular value of Mi, that is, 
the "probability density" of Mi upon random choices of f-L 2 is flat. 

Appendix D The Dependence of the Higgs VEV s on the 
couplings of the modified NMSSM 

In Subsection 5.1 we showed that the values of the Higgs boson VEVs were extremely sensitive 
to small variations of the superpotential couplings ). and k. These variations were evaluated 
numerically after Eq. (5.4) for one particular set of ). and k. In this appendix we study this 
issue analytically and show how one can estimate the effects of small variations ~). and ~k on 
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v, tanl1, and x. 
We will use the following three equations, derived in Section 4: 

->.2x2 + f' 
rv -m~ + >.(k sin 211- >.)v2' 

sin 211· 2~ [ ffik~r:k~kJ ' 
where 

1 1 2 2 2 2 t 2a 

f = --( 2 2 ) __ mHd- mHu = mHd- mHu an fJ 

- 2 mHd + mHv. 2 cos211 tan2 11-1 ' 

(D.1) 

(D.2) 

(D.3) 

(D.4) 

and we dropped the A-terms in Eq. (D.2). Notice that, because the term on the left-hand side 
of Eq. (D.1) is much smaller then each of the terms on the right-hand side, f ~ >. 2x2 • 

For the purpose of the following estimates we will keep only the largest terms in the variations. 
According to the numbers presented after Eq. (5.4), for a small variation of). the largest variation 
on the right-hand side of Eq. (D.1) is 2>.x2 .6.>.. We can therefore write 

(D.5) 

We will justify this approximation a posteriori. Also, in our analysis we will completely neglect 
the dependence of the soft-breaking masses-squared on >. and k. This dependence is very weak, 
as seen in the numbers presented after Eq. (5.4). 

A small change in >. results in a large change in v. Hence, to determine the corresponding 
change in x, one can use Eq. (D.2) and only consider the variation of v2 , which is approximately 
given by Eq. (D.5). We find 

so that 

4k2x.6.x ~ >.(ksin211- >.).6.(v2
) ~ >.(ksin211- >.)(-4

2
>.x:

2
.6,).), 

g 
(D.6) 

(D.7) 

For the point considered in the text (>. = 0.11, k = -.045, tan11 = -2.9) one finds (.6.x)jx ~ 
0.2(.6.>.)/ >.. 

Under a small change .6.k, again using Eqs. (D.2,D.5), 

. . 2>.2x.6.x 
4(k.6.kx2 + k2x.6.x) ~ >.(k sm 211- >.)( -4 _

2 
). 

g 
(D.8) 

Solving for .6.x / x. 

(D.9) 
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Numerically, (!:!..x)jx ~ -1.2(!:!..k)jk. 
Next, we consider the effect of !:!...X on f. The problem comes down to estimating!:!..( cos 2{3)-1 , 

which can be done with the aid of Eq. (D.3): 

l:!..(cos2{3)-1 =- sin2{3 l:!..(sin2,8) ~- sin2{3 (-2!5_ -m~"' ) !:!...X. 
cos3 2R cos3 2R .X 2 m 2 - m 2 

fJ fJ Hd Hv. 
(D.10) 

Thus, 
l:!..f ""' k ( -m'kJ sin 2{3 !:!...X 
T""' -~ Px2 cos3 2{3 T · (D.ll) 

Plugging in the numerical values of the parameters, we find that the right-hand side of Eq. (D.ll) 
equals -0.51:!..-Xj .X. Thus, a 1% change in .X results in a 0.5% change in the value of f. Since 
.X2 x2 changes .by 2% in this case, the contribution off to the variation of vis approximately one 
fourth of that of .X 2x2

, consistent with the numbers given in Subsection 5.1. 
The above argument can be repeated to find the effect of !:!..k on f. Notice that sin 2{3 depends 

on the ratio k/ .X (Eq. (D.3)), and hence changing k by +1% has the same effect on f as changing 
.X by -1%. 

Finally, we show that the condition for v to remain constant is !:!..kjk = 1:!..-Xj .X. We have 
already argued that sin 2{3, and therefore f, stays unchanged in this case and now show that the 
same is true for .X 2x 2

• Under .X--+ .X+ !:!...X the term .X 2x 2 changes by 2.X 2x 2 ((l:!...X/ .X)+ (!:!..xjx)) ..:._ 
2.X2x2(1+0.2)(!:!...X/ .X), while under k--+ k+l:!..k it changes by 2.X2 x2 (!:!..xjx) = 2.X2x 2

( -1.2)(l:!..k/k). 
These variations can be made to cancel by imposing !:!..k / k = I:!.. .X/ .X. 
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