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Abstract

Brain imaging genetics studies the genetic basis of brain structures and functions via integrating 

both genotypic data such as single nucleotide polymorphism (SNP) and imaging quantitative traits 

(QTs). In this area, both multi-task learning (MTL) and sparse canonical correlation analysis 

(SCCA) methods are widely used since they are superior to those independent and pairwise 

univariate analyses. MTL methods generally incorporate a few of QTs and are not designed for 

feature selection from a large number of QTs; while existing SCCA methods typically employ 

only one modality of QTs to study its association with SNPs. Both MTL and SCCA encounter 

computational challenges as the number of SNPs increases. In this paper, combining the merits of 

MTL and SCCA, we propose a novel multi-task SCCA (MTSCCA) learning framework to identify 

bi-multivariate associations between SNPs and multi-modal imaging QTs. MTSCCA could make 

use of the complementary information carried by different imaging modalities. Using the G2,1-

norm regularization, MTSCCA treats all SNPs in the same group together to enforce sparsity at 

the group level. The 𝓁2, 1-norm penalty is used to jointly select features across multiple tasks for 

SNPs, and across multiple modalities for QTs. A fast optimization algorithm is proposed using the 

grouping information of SNPs. Compared with conventional SCCA methods, MTSCCA obtains 

improved performance regarding both correlation coefficients and canonical weights patterns. In 

addition, our method runs very fast and is easy-to-implement, and thus could provide a powerful 

tool for genome-wide brain-wide imaging genetic studies.
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I. Introduction

In brain science, imaging genetics is an emerging and important topic which integrates both 

the genetic factors and neuroimaging phenotypic measurements. This integration strategy of 

combining diverse imaging and omics data is expected to uncover the genetic basis of brain 

structures and functions [1]–[3]. Modern neuroimaging techniques, such as magnetic 

resonance imaging (MRI) and positron-emission tomography (PET), image the structure and 

metabolic processes of the brain based on different techniques. These multi-modal imaging 

data provide complementary information for a more comprehensive understandings of brain 

structure, function and abnormality [4]. In biomedical studies, we usually face a large 

number of genotyping biomarkers such as the single nucleotide polymorphisms (SNPs). 

Therefore, developing fast and efficient imaging genetics methods which integrates multi-

modal imaging data simultaneously is quite important.

The multivariate learning methods are very popular in brain imaging genetics since both 

imaging data and genetic data are multidimensional. The multi-task learning (MTL), 

especially MTL regression, are of this kind and widely used in brain imaging genetics [5], 

[6]. Generally, MTL methods treat a few important imaging QTs as dependent variables and 

SNPs as independent variables. Then joint effect of multi-locus genotype variables on a few 

phenotypes is studied. This paradigm can select SNPs that are simultaneously relevant to 

candidate brain phenotypes, but may ignore important information carried by cerebral 

components which are not included. Although a brain-wide MTL model can be used, they 

are still insufficient since they cannot select relevant phenotypes from multiple brain 

cerebral components. Therefore, bi-multivariate methods become more and more popular 

recently. Sparse canonical correlation analysis (SCCA) identifies the relationship between 

two views of data with sparse output induced by different penalties [7]–[12]. These SCCA 

methods have limited power since they only utilize QTs from one single imaging modality. 

Given multi-modal imaging data, incorporating them together would be beneficial to 

uncover interesting findings that using one modality cannot. Therefore, jointly analyzing the 

relationship between all the imaging phenotypes from different modalities and genetic 

factors via one single integral SCCA model is desirable and of great interest. This 

integration model would be helpful to elucidate the shared mechanism of genetic factors on 

the brain. Though the multi-view SCCA modelling could address this issue [12], it learns 

only one single canonical weight for genetic loci which is overstrict.

In this paper, we propose a Multi-Task learning based SCCA (MTSCCA) framework which 

can study bi-multivariate associations between phenotypes of multiple modalities and 

genotypes simultaneously. MTSCCA treats each SNP or QT as a feature, and then models 

the association between each imaging modality and SNPs as a learning task. Different from 

those conventional SCCA, MTSCCA learns one canonical weight matrix for SNPs, in which 

each column vector corresponds to one canonical weight of one SCCA task. In contrast, 

only one canonical weight vector is associated with each imaging modality. We take into 

consideration the group structure such as the linkage disequilibrium (LD) [13] in human 

genome via the group 𝓁2, 1-norm (G2,1-norm) [6]. The jointly individual feature selection is 

also taken into consideration via a 𝓁2, 1-norm. In addition, we propose a fast and efficient 
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optimization algorithm to solve the MTSCCA problem. We apply MTSCCA to a large real 

neuroimaging genetic data set of the Alzheimer’s disease neuroimaging initiative (ADNI) 

[14] cohort with SNPs from chromosome 19 and three different modalities of imaging QTs 

included. Experimental results show that, compared with conventional SCCA methods, 

MTSCCA yields both better canonical correlation coefficients and canonical weights. It also 

reports a compact set of SNPs and imaging QTs known to be associated with AD. Moreover, 

MTSCCA runs very fast and could be a powerful tool to genome-wide brain-wide bi-

multivariate association analysis.

II. The Multi-Task SCCA Learning Method

We denote scalars as italic letters, column vectors as boldface lowercase letters, and matrices 

as boldface capitals. For X = (xij), its i-th row is denoted as xi and j-th column is xj, and Xi 

denotes the i-th matrix ||x||2 denotes the Euclidean norm, ‖X‖F = ∑i ∑ j xi j
2  denotes the 

Frobenius norm.

A. The MTSCCA Method

We use X ∈ ℝn × p to represent the genetic data with n participants and p SNPs, and 

Y j ∈ ℝn × q( j = 1, ⋯, c) to represent the phenotype data with q imaging measurements, where 

c is the number of imaging modalities (tasks). Let U ∈ ℝp × c be the canonical weight matrix 

associated with X and V ∈ ℝq × c be that associated with imaging QTs with each vj 

corresponding to Yj, we propose the novel multi-task based SCCA (MTSCCA) model as 

follows

min
u j, v j

∑
j

−u j
⊤X⊤Y jv j (1)

s . t . Xu j 2
2 = 1, Y jv j 2

2 = 1, Ω(U) ≤ b1, Ω(V) ≤ b2, ∀ j .

where U = [u1 u2 ⋯ uc], V = [v1 v2 ⋯ vc].

Obviously, our model is distinct from those mCCA models. First, MTSCCA employs the 

multi-task framework which learns a series of related SCCA tasks together. This 

simultaneous learning has been shown to improve performance dramatically compared with 

learning each task independently [15], [16]. Second, our model learns a canonical weight 

matrix U for SNPs, in which each column uj corresponds to an individual SCCA task. This 

is helpful since it does not require a unique canonical weight of SNPs to be associated with 

all modalities of imaging QTs at the same time. Third, MTSCCA learns one canonical 

weight corresponding to each imaging modality separately, indicating that we do not need to 

calculate multiple canonical weights for a specific imaging modality. This helps the model 

focus on the identification of markers from the genetic data, indicating it is quite suitable for 

imaging genetics analysis. Finally, our model is well scalable in terms of both modeling and 
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computation. According to Eqs. (1), the number of tasks of MTSCCA is equal to the number 

of imaging modalities, which means the computation burden increases linearly.

1) Group-sparsity for Genetic Association and Joint Individual Feature 
Selection for SNPs: It is known that numerous SNPs inherently exhibit group structure in 

the genome. Thus we use the G2,1-norm function [6] for regularization. Suppose the SNPs 

are partitioned into K non-overlapping groups 𝒢 = gk k = 1
K , where mg is the number of 

SNPs in group g, then the G2,1-norm function is formulated as

‖U‖G2, 1
= ∑

k = 1

K
‖Uk‖F = ∑

k = 1

K
∑

i ∈ gk

∑
j = 1

c
ui j

2 . (2)

Uk is a submatrix of U with rows in U indexed by gk. This regularization penalizes the SNPs 

in the same group, i.e. ui
i ∈ gk

, as a whole and expects to estimate equal or similar 

coefficients for them.

Generally, within a specific group, an individual SNP could be relevant to the QTs and those 

remaining ones could be irrelevant. Therefore, we model this via the 𝓁2, 1-norm 

regularization which is usually used in multi-task models,

‖U‖2, 1 = ∑
i = 1

p
‖ui‖2 = ∑

i = 1

p
∑
j = 1

c
ui j

2 . (3)

Using both G2,1-norm and 𝓁2, 1-norm regularization, MTSCCA can not only select features 

at the group level in accordance with the biological knowledge, but also jointly select 

features at the individual level across all SCCA tasks.

2) Joint Individual Feature Selection across Different Imaging 
Modalities: Identifying imaging biomarkers is also of great interest in out study. Since 

MTSCCA learns only one canonical weight for each imaging modality, the sparsity-

inducing term 𝓁2, 1-norm is imposed across different imaging modalities, viz

‖V‖2, 1 = ∑
i = 1

q
‖vi‖2 = ∑

i = 1

q
∑
j = 1

c
vi j

2 . (4)

This motivation of using this penalty is as follows. Despite collected based on different 

imaging technologies, all modalities of imaging data are measured from the same brain 

space and have been map onto the same brain atlas via the segmentation and registration. 
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Therefore, it is reasonable to estimate equal or similar coefficients for those imaging features 

associated with the same brain area but attributed to different modalities.

B. The Optimization Algorithm

Now we can write the MTSCCA with penalties explicitly exhibited, i.e.

min
u j ,v j

∑
j = 1

c
−u j

⊤x⊤Y jv j (5)

s . t . ‖Xu j‖2
2 = 1, ‖Y jv j‖2

2 = 1, ‖U‖G2, 1
≤ a, ‖U‖2, 1 ≤ b1, ‖v‖2, 1 ≤ b2, ∀ j .

To solve Eq. (5), we first modify the loss function to

min
u j ,v j

∑
j = 1

c
‖Xu j − Y jv j‖2

2 (6)

s . t . Xu j 2
2 = 1, Y jv j 2

2 = 1, U
G2, 1

≤ a, U 2, 1 ≤ b1, V 2, 1 ≤ b2, ∀ j,

which is equivalent to the original one since ∀j, ||Xuj ||2 = 1 and ||Yjvj||2 = 1. Then we write 

its Lagrangian

ℒ(U, V) = ∑
j = 1

c
Xu j − Y jv j 2

2 + β U G2, 1
− a + λ1 U 2, 1 − b1 + λ2 V 2, 1 − b2

+ γ1* Xu 2
2 − 1 + γ2* Yv 2

2 − 1 ,

(7)

where β, λ1, λ2, γ1* and γ2* are tuning parameters, and β, λ1 and λ2 are positive values which 

control the model sparsity.

This problem is difficult to solve since it is non-convex in loss function and non-smooth in 

penalty functions. Fortunately, it is convex in U with V fixed. Moreover, this objective is 

convex in vj with those remaining vk (k ≠ j) and U fixed. On this account, we can solve this 

problem via the alternative update rule which is widely used in optimization community.

1) Updating U: We first show solving U with V fixed. Since all uj ’s are associated with 

X, they can be jointly calculated via a multi-task framework. Taking the derivative of 

ℒ(U, V) with respect to U and letting the derivative be zero, we arrive at

Du et al. Page 5

Proceedings (IEEE Int Conf Bioinformatics Biomed). Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



−X⊤ Y1v1, ⋯, Ycvc + βDU + λ1D1U + γ1X⊤XU = 0, (8)

where 2DU is the subgradient of ‖U‖G2, 1
 and 2D1U is that of ‖U‖2, 1; D is a diagonal matrix 

with the k-th diagonal block being 1
2‖Uk‖F

Ik(k ∈ [1, K]), and Ik is an identity matrix of size 

equaling to the k-th group; D1 is also a diagonal matrix with the i-th entry being 
1

2‖ui‖2
i ∈ 1, p ); and γ1 = γ1* + 1. Then we can easily have

U = βD + λ1D1 + γ1X⊤X −1X⊤ Y1v1, ⋯, Ycvc . (9)

According to [6], this linear system in terms of U can be efficiently solved via an iterative 

algorithm by alternatively first updating D and D1 and then U.

However, if the number of SNPs becomes larger and larger, this iterative algorithm is still 

computationally expensive. To accelerate the solution, we introduce the following theorem 

(proof is omitted and a similar proof can be found in [17]).

Theorem 1: If X⊤X is a block diagonal matrix, Eq. (10) can be solved by

U = ⊕k = 1
K Uk =

U1

⋮
UK

, (10)

Uk = βDgk
+ λ1D1gk

+ γ1Xgk
⊤ Xgk

−1
Xgk

⊤ Y1v1, ⋯, Ycvc ,

where Dgk is the k-th diagonal block of D; D1gk
 is the k-th diagonal block of D1; and ⊕ 

denotes the concatenate operator for matrices along rows.

The advantages of this theorem are three folds. (1) The time complexity of Eq. (10) is 

O nmk
2K  compared with that of Eq. (9) being O(np2), where mk is the size of the k-th group, 

and p = ∑k = 1
K mk. This is a significant improvement because that the LD block size is 

usually much smaller than the number of SNPs (mk ≪ p) in human genome [18]. (2) 

Benefiting from the computation effort reduction, the memory requirement is also saved a 

lot because storing X⊤X is very memory expensive than storing several xgk
⊤ xgk

. (3) Eq. (10) 

is easy to implement, demonstrating it is very promising in big imaging genetic analysis.
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2) Updating vj: Note that each vj is associated with each Yj respectively. This means that 

these vj ’s are not coupled (as compared to uj ’s) and should be tackled with separately. Next 

we will show how to solve vj with vk (k ≠ j) and U being fixed. Based on Eq. (7), we take the 

derivative with respect to vj and set it to zero

−Y j
⊤Xu j + λ2D2v j + γ2Y j

⊤Y jv j = 0, (11)

which yields

v j = λ2D2 + γ2Y j
⊤Y j

−1Y j
⊤Xu j, (12)

where D2 is a diagonal matrix which is loaded by 1
2‖vi‖2

(i ∈ [ 1 , q ] ) on the diagonal; and 

γ2 = γ2* + 1. Therefore, each vj can also be solved alternatively through an iteration 

algorithm.

Now that the building blocks regarding updating U and each individual vj are created, we 

present the pseudocode in Algorithm 1.

Algorithm 1

Algorithm to solve Eq. (7)

Require:

 X ∈ ℝn × p
, Y j ∈ ℝn × q

, j ∈ [1, c], β, λ1, λ2, γ1, γ2

Ensure:

 Canonical weights U and V.

1: Initialize U ∈ ℝp × c, V ∈ ℝq × c
;

2: while not convergence do

3:   Update Dgk and D1gk
;

4:   Solve U according to Eq. (9), and normalize uj to ‖Xu j‖2
2 = 1;

5:   Update D2;

6:   Solve vj (j = 1, ⋯, c) in turn according to Eq. (12), and normalize vj to ‖Y jv j‖2
2 = 1;

7: end while

III. Results

A. Experimental Setup

A nested 5-fold cross-validation strategy was used in this work. Specifically, those tuning 

parameters was determined in the inner loop where a group of them generating the highest 
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canonical coefficients will be chosen as the optimal parameters. Empirically, we fine tuned 

the β, λ1 and λ2 from {0.01, 0.1, 1, 10, 100} which usually yielded good results in this 

study. For the remaining γ1 and γ2, we simply set them to 1 as they have been shown to be 

insensitive to the learned results [8]. In the outer loop, the 5-fold training and testing results 

were calculated and presented.

To the best of our knowledge, this is the first multi-task SCCA method, and thus no previous 

work can be used to compare with. On this account, we choose the conventional SCCA, 

including both two-view SCCA and mSCCA [12] as benchmarks. This could help show the 

effectiveness of MTSCCA. Another issue is that these conventional methods suffer from 

heavy computational and memory requirement issues because they cannot handle the large 

covariance matrix calculation. To make the comparison feasible, based on Theorem 1, we 

implement the fast SCCA and the fast mSCCA. This yields the two benchmark methods in 

this study.

B. Data Sources

The genotying and brain imaging data used in this article were obtained from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). One 

primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), 

positron emission tomography (PET), other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of mild 

cognitive impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date 

information, see www.adni-info.org.

The neuroimaging data were from 755 non-Hispanic Caucasian subjects, including 281 AD, 

292 MCI and 182 healthy control (HC) participants. The data contained multiple modalities 

including 18-F florbetapir PET (AV45) scans, fluorodeoxyglucose PET (FDG) scans, and 

structural MRI scans. These data were downloaded from the ADNI database 

(adni.loni.usc.edu). These multi-modality imaging data were aligned to each other for each 

participant. The structural MRI scans were processed with voxel-based morphometry 

(VBM) via SPM [19]. Generally, all scans had been aligned to a T1-weighted template 

image, segmented into gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) 

maps, normalized to the standard Montreal Neurological Institute (MNI) space as 2×2×2 

mm3 voxels, and had been smoothed with an 8mm FWHM kernel. The FDG-PET and 

AV45-PET scans were also registered into the same MNI space by SPM. We then 

subsampled the whole brain and generated 116 regions of interest (ROI) level measurements 

based on the MarsBaR automated anatomical labeling (AAL) atlas. The studied measures 

include the mean gray matter densities for structural MRI, amyloid values for AV45 scans 

and glucose utilization for FDG scans. Using the regression weights derived from the 

healthy control participants, these imaging measures were pre-adjusted for removing the 

effects of the baseline age, gender, education, and handedness.

The genotyping data of the same population were also downloaded from the ADNI website. 

The data were generated using the Human 610-Quad or OmniExpress Array (Illumina, Inc., 

San Diego, CA, USA), and preprocessed using the standard quality control (QC) and 

imputation steps. Among all human chromosomes, chromosome 19 contains the largest 
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number of genes, in which the gene density is more than double the genome-wide average 

[20]. In addition, this chromosome also includes the well-known AD risk genes such as 

APOE, APOC1 and TOMM40. Therefore, a bi-multivariate association study between this 

chromosome and whole brain imaging markers could be of great interest, and has potential 

to yield interesting AD risk factors. As a result, all the SNPs from chromosome 19 were 

included, i.e., 152,787 SNPs were involved in this study. Among these SNPs, most of them 

might be irrelevant to AD, while only few of them could be relevant via influencing the 

intermediate brain imaging measurements. The aim of this study is to identify this small 

subset of SNPs in chromosome 19 that are related to brain imaging markers.

C. Experimental Results

We first use the canonical correlation coefficient (CCC) as an evaluation criteria. There will 

be three pairs of associations, and we denote them as SNP-AV45, SNP-FDG and SNP-VBM 

for the sake of description. For the three SCCA tasks, MTSCCA learns them together and 

generates a canonical weight matrix U for SNP data and one canonical weight vector vj for 

AV45, FDG and VBM data. We then calculate CCCs in terms of SNP-AV45, SNP-FDG and 

SNP-VBM separately. The two-view SCCA naturally yields three CCCs for these three 

tasks. Although the mSCCA only learns one canonical weight vector for SNP data, we use it 

three times to generate three CCCs with respect to the three tasks.

Fig. 1 shows the CCCs of the SNP data with each type of imaging QT data, where CCCs of 

SNP-AV45, SNP-FDG and SNP-VBM are separately shown. In this figure, both the training 

CCCs and testing CCCs, as well as their standard deviations (SDs) are presented. By 

changing the number of selected features (10, 20, ⋯, 100 in this work) for both SNP and 

imaging QT data, the CCCs can be generated and then these curves are plotted. It is clear 

that the proposed MTSCCA obtains higher CCCs on both training and testing sets across all 

imaging modalities except for training results of SNP-VBM. After investigation, this could 

be attributed to that the two-view SCCA runs into overfitting since it holds high training 

CCCs and quite low CCCs simultaneously. We also observe that mSCCA always obtains the 

lowest CCCs on both training and testing sets across three tasks in this data. This is very 

interesting because it seems counter-intuitive because more data (three different imaging 

modalities here) ought to provide more information. The reason might attribute to the 

modelling strategy of mSCCA. Demanding one set of features (SNPs) being associated with 

three sets of features (imaging QTs) simultaneously could be overstrict and thus harm the 

performance. In addition, we calculate the p-values between MTSCCA and two competing 

methods and show them in Table I. The p-values all reach the significance level which 

means that our method is significantly better than both competing methods. These results in 

terms of CCCs indicate that the proposed joint bi-multivariate learning method indeed has 

better association identification capability than those SCCA methods, including both two-

view and multiple-view ones.

Apart from the CCCs, the selected features in terms of SNPs are a major concern. We show 

the top ten selected SNPs according to the canonical weight values of each individual 

method in Table II. In order to make the selection results stable, we average the canonical 

weight matrix into a vector and then choose the top ten SNPs based on their absolute values 
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for MTSCCA. The top ten markers of two-view SCCA method are calculated via averaging 

the three separate canonical weights. Owning to the joint learning paradigm, MTSCCA 

yields a surprisingly meaningful result with respect to selected features (SNPs). As 

expected, the notable AD risk markers rs429358 gains the highest weight value, and all of 

the remaining nine SNPs of MTSCCA, i.e. rs429358 (APOE), rs56131196 (APOC1), 

rs12721051 (APOC1), rs4420638 (APOC1), rs111789331 (4.5 kb of APOC1), rs66626994 

(5.6 kb of APOC1), rs146275714 (PVRL2), rs147711004 (71 kb of APOE) and rs10119 

(TOM-M40), have been reported to show increasing risk of AD in previous studies. This 

indicates the ability of MTSCCA in identifying meaningful SNPs from massive genetic 

markers. The two-view SCCA identifies rs429358 and five other AD related SNPs 

(rs10414043, rs147711004, rs7256200, rs73052335 and rs66626994). But it identifies four 

SNPs that are not reported by now and thus further investigation is warranted. The mSCCA 

performs inadequately since it does not find out the most important locus rs429358. 

Moreover, except the marker rs623264, the remaining nine identified SNPs of mSCCA have 

not been reported yet. This reveals that MTSCCA could be a suitable tool in discovering 

meaningful genetic markers in a very large scenario.

Fig. 2 presents the canonical weights on each imaging modality (AV45, FDG and VBM) 

across the five trials. We observe that those imaging markers with nonzero coefficients 

generated by MTSCCA are all associated with AD. We also show the top ten selected QTs 

of each imaging modal data of MTSCCA in Table III. There are five markers (the right 

angular gyrus, the left posterior cingulum cortex, the left hippocampus, the left olfactory 

cortex and the vermis 8) reported in all three modalities owning to the joint feature selection. 

Most importantly, these markers are all have been documented to be related to AD or MCI 

[21]–[25]. These results indicate that MTSCCA could identify meaningful imaging markers 

that are associated with the status of dementia. The mSCCA also identifies a few of AD 

related markers such as the hippocampus. The two-view method is rambling and thus is not 

a good option in this scenario. To summarize, the top ten selected SNPs and imaging QTs 

are highly correlated with each other, and with AD, demonstrating that MTSCCA could be a 

very promising method in brain imaging genetics.

IV. Conclusion

In this paper, we have proposed a novel multi-task based SCCA (MTSCCA) method and 

applied it to imaging genetic problem with multi-modal brain imaging QTs. Different from 

existing SCCA methods, MTSCCA incorporates multiple sets of imaging modalities into a 

single integral model. MTSCCA has better modeling capability than both conventional 

SCCA and MTL regression. A fast optimization algorithm is proposed which avoids 

calculating the large covariance during solution.

We compared MTSCCA with the conventional two-view and multi-view SCCA on an ADNI 

cohort. Our method obtained better performance than the benchmarks with higher 

correlation coefficients and clearer canonical weight patterns. MTSCCA succeeded in 

identifying a small set of SNPs from a large number of genetic markers from chromosome 

19. It is worth noting that all top ten selected SNPs of MTSCCA were known AD risk 

factors. In addition, the canonical weight patterns of imaging QTs were also of great 
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importance. The identified imaging QTs were highly correlated to AD or MCI. These results 

demonstrated that the proposed multi-task SCCA could be a powerful tool in big data 

mining in brain imaging genetics. We plan to extend MTSCCA to genome-wide brain-wide 

imaging analysis in the future work.
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Fig. 1. 
The mean and standard deviation (SD) of the canonical correlation coefficients (CCCs) 

obtained from 5-fold cross-validation trials, where each error bar indicates ±SD. The subtitle 

SNP-AV45 means the CCCs are calculated between the SNPs data and the AV45-PET data.
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Fig. 2. 
Comparison of canonical weights in terms of each imaging modality across five trials. Each 

row corresponds to a SCCA method: (1) Two-view SCCA; (2) mSCCA; (3) MTSCCA. 

Within each panel, there are three rows corresponding to three type of imaging QTs, i.e. 

AV45, FDG and VBM.
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TABLE I

The p-values of t-tests for CCCs comparison between MTSCCA and benchmarks. The ’-’ in parenthesis 

means that MTSCCA loses on this trial.

SNP-AV45 SNP-FDG SNP-VBM

Training

Two-view SCCA 5.46E-24 3.39E-25 6.00E-15 (−)

mSCCA 7.98E-27 1.51E-27 4.77E-18

Testing

Two-view SCCA 1.46E-23 8.60E-43 4.99E-24

mSCCA 3.71E-27 3.91E-31 4.80E-22
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TABLE II

Top ten SNPs selected by integrated canonical weights.

Two-view SCCA mSCCA MTSCCA

rs429358 rs138339429 rs429358

rs10414043 rs141300647 rs56131196

rs147711004 rs58501143 rs12721051

rs146291812 rs17363184 rs4420638

rs623264 rs623264 rs111789331

rs7256200 rs11881833 rs66626994

rs186235601 rs7253576 rs146275714

rs73052335 rs1749316 rs41289512

rs66626994 rs139402102 rs147711004

rs415966 rs4605289 rs10119
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TABLE III

Top ten imaging QTs selected by canonical weights of each imaging modality of MTSCCA.

AV45 FDG VBM

Frontal-Med-Orb-Left Cingulum-Post-Left Postcentral-Left

Angular-Right Angular-Right Precentral-Left

Cingulum-Post-Left Hippocampus-Left Angular-Right

Hippocampus-Left Vermis-8 Cingulum-Post-Left

Olfactory-Left Angular-Left Vermis-8

Frontal-Mid-Right Amygdala-Left Thalamus-Right

Cingulum-Ant-Left Olfactory-Left Rolandic-Oper-Right

Rolandic-Oper-Right Temporal-Mid-Right Frontal-Med-Orb-Left

Temporal-Mid-Right Precentral-Left Hippocampus-Left

Vermis-8 Temporal-Mid-Left Olfactory-Left

Proceedings (IEEE Int Conf Bioinformatics Biomed). Author manuscript; available in PMC 2019 December 01.


	Abstract
	Introduction
	The Multi-Task SCCA Learning Method
	The MTSCCA Method
	Group-sparsity for Genetic Association and Joint Individual Feature Selection for SNPs:
	Joint Individual Feature Selection across Different Imaging Modalities:

	The Optimization Algorithm
	Updating U:
	Updating vj:


	Algorithm 1
	Results
	Experimental Setup
	Data Sources
	Experimental Results

	Conclusion
	References
	Fig. 1.
	Fig. 2.
	TABLE I
	TABLE II
	TABLE III



