
Lawrence Berkeley National Laboratory
LBL Publications

Title
An open-source data storage and visualization platform for collaborative qubit control

Permalink
https://escholarship.org/uc/item/27d538tg

Journal
Scientific Reports, 14(1)

ISSN
2045-2322

Authors
Brahmbhatt, Devanshu
Xu, Yilun
Vora, Neel
et al.

Publication Date
2024

DOI
10.1038/s41598-024-72584-9

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/27d538tg
https://escholarship.org/uc/item/27d538tg#author
https://escholarship.org
http://www.cdlib.org/

1

Vol.:(0123456789)

Scientific Reports | (2024) 14:22703 | https://doi.org/10.1038/s41598-024-72584-9

www.nature.com/scientificreports

An open‑source data storage
and visualization platform
for collaborative qubit control
Devanshu Brahmbhatt 1,2,3, Yilun Xu 1*, Neel Vora 1,2,3, Larry Chen 4, Neelay Fruitwala 1,
Gang Huang 1, Qing Ji 1 & Phuc Nguyen 2*

Developing collaborative research platforms for quantum bit control is crucial for driving innovation in
the field, as they enable the exchange of ideas, data, and implementation to achieve more impactful
outcomes. Furthermore, considering the high costs associated with quantum experimental setups,
collaborative environments are vital for maximizing resource utilization efficiently. However, the lack
of dedicated data management platforms presents a significant obstacle to progress, highlighting
the necessity for essential assistive tools tailored for this purpose. Current qubit control systems
are unable to handle complicated management of extensive calibration data and do not support
effectively visualizing intricate quantum experiment outcomes. In this paper, we introduce Qubit
Control Storage and Visualization (QubiCSV), a platform specifically designed to meet the demands of
quantum computing research, focusing on the storage and analysis of calibration and characterization
data in qubit control systems. As an open‑source tool, QubiCSV facilitates efficient data management
of quantum computing, providing data versioning capabilities for data storage and allowing
researchers and programmers to interact with qubits in real time. The insightful visualization are
developed to interpret complex quantum experiments and optimize qubit performance. QubiCSV not
only streamlines the handling of qubit control system data but also improves the user experience with
intuitive visualization features, making it a valuable asset for researchers in the quantum computing
domain.

Keywords Quantum computing, Quantum control, Qubit visualization, Human-qubit interactions

Quantum computing, a significant leap from classical computing, utilizes the principles of quantum mechanics to
potentially solve problems that are challenging for traditional computers1. At its core, the quantum bit or qubit2,
serves as the fundamental unit of quantum information, differing from classical bits3 in its ability to exist in
multiple states simultaneously due to quantum superposition4. This unique property enables quantum comput-
ers to process information in ways that classical systems cannot, making them particularly effective for solving
certain complex problems5. In order to unlock the complete capabilities of quantum computing, mastering a
pivotal concept known as qubit control6 is imperative. Qubit control encompasses the meticulous manipulation
of qubits for executing quantum operations, a task that demands exceptional precision due to qubits’ susceptibil-
ity to noise7,8 and decoherence9.

In current quantum computing, especially superconducting qubit research, readout plays a fundamental role
by translating quantum information into classical information, which is then represented within the computa-
tional framework as binary digits. Qubit readout stands out as one of the most challenging and time-consuming
tasks on superconducting quantum processors due to its susceptibility to errors and slow execution. Field-Pro-
grammable Gate Arrays (FPGAs) offer a promising solution for qubit readout due to their adaptability and ability
to process multiple signals simultaneously in parallel. This capability enables FPGAs to manage the complexities
of qubit readout effectively, reducing errors and enhancing efficiency. The FPGA-based solution has been used
to generate radio frequency (RF) pulses that alter the qubit state in qubit control systems7, and subsequently
measured for output10. State-of-the-art qubit control systems include Zurich Instruments11, Quantum Machines12,
 Keysight13, Qblox14, and QICK15. Among these, the QubiC (Qubit Control)16,17 system, developed at Lawrence
Berkeley National Laboratory (LBNL), represents a notable open-source advancement enabling mid-circuit

OPEN

1Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. 2College of Information and Computer
Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA. 3Computer Science and Engineering,
The University of Texas at Arlington, Arlington, TX 76010, USA. 4Department of Physics, University of California,
Berkeley, Berkeley, CA 94720, USA. *email: yilunxu@lbl.gov; vp.nguyen@cs.umass.edu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-72584-9&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2024) 14:22703 | https://doi.org/10.1038/s41598-024-72584-9

www.nature.com/scientificreports/

measurement and feed-forward18. QubiC’s open-source nature, high performance, and modular design align
it closely with the needs of quantum research, positioning it as a valuable tool for scientists in navigating the
evolving quantum computing domain.

Figure 1 depicts an actual configuration of a quantum computer at the Quantum Nanoelectronics Laboratory19,
University of California, Berkeley, which includes a dilution fridge, a critical component in quantum computing
where superconducting qubits are housed and operated at extremely low temperatures. Accompanying the fridge
are multiple qubit control systems, each meticulously crafted to manage and manipulate the qubits.

Quantum information processors require frequent calibration and characterization to mitigate drifts and
 errors20,21 arising from environmental fluctuations and hardware imperfections, thus ensuring reliable and
accurate computation22. Calibration23 and characterization data storage are critical components in quantum
experimentation. Hence, characterization data storage provides a repository for experimental results, enabling
scientists to track the performance and stability of quantum systems over time. This data are indispensable for
ongoing research, allowing for the analysis of trends, the identification of anomalies, and the refinement of
quantum models and algorithms.

Maintaining and updating these calibration files, which encompass settings for numerous gates and qubits,
poses a formidable challenge for scientists. Each team member (researchers, engineers, students), focusing on
different aspects of the quantum system, generates their unique calibration files, which need to be accurately
tracked and updated. This task becomes increasingly challenging as the frequency of calibration increases. Fur-
thermore, the need for collaboration among scientists adds another layer of complexity. Sharing these extensive
files and ensuring that all team members have access to the latest versions is a logistical hurdle, slowing efficient
collaboration and progress as sharing and syncing these extensive files without a reliable versioning system can
restrict efficient teamwork and slow down progress. Furthermore, during post-experimentation, the qubit control
system generates an experimental result file, for example, chip_name.data. json in QubiC16,17, which holds big
potential for providing insights into the experiment’s outcomes. However, the absence of a dedicated storage
solution and a method to save this file directly from the hardware limits its utility. Scientists are left with a wealth
of data but lack the means to store, manage, and analyze it effectively.

Visualization plays an important role in enhancing the understanding and monitoring of quantum experi-
ments. It allows researchers to observe and analyze complex Quantum calibration and characterization data
in an intuitive manner. Through visualization, patterns, and insights that might otherwise remain obscured
in raw data can be brought to light, facilitating a deeper understanding of quantum phenomena. Initiatives
such as VACSEN24 and QVis25 focused on the visualization of quantum errors and noise. These tools have laid
a foundational framework for understanding quantum system behaviors, which our platform builds upon and
expands. Additionally, IBM ’s26 work with the IBMQ calibration database represents another pivotal contribu-
tion, offering a comprehensive approach to managing and visualizing calibration data in quantum computing
systems. These developments27,28 collectively inform and inspire our approach. However, they only support noise
and error visualization, which, while crucial, does not encompass the entire scope of data visualization needs
in quantum computing research.

QubiCSV
To overcome the aforementioned limitations, we designed QubiCSV, an end-to-end platform for real-time data
management and visualization for quantum computing. We tailor our parameters to align with the QubiC
 system16,17, although configurations can be adjusted at the software level to ensure compatibility with alternative
qubit control systems. QubiCSV’s unique approach to data storage—utilizing data versioning similar to Git29 but
implemented in a database-provides a novel way to manage Quantum calibration and characterization data. This
method allows for more effective tracking and reverting of changes over time, which is especially beneficial in a
field where experiments are frequently adjusted and iterated upon. As a holistic platform, QubiCSV enhances data
visualization in quantum computing research, providing dynamic and interactive tools for visualizing calibration

Fig. 1. An example setting of quantum control system research.

3

Vol.:(0123456789)

Scientific Reports | (2024) 14:22703 | https://doi.org/10.1038/s41598-024-72584-9

www.nature.com/scientificreports/

and experiment outcome data. These features aid not only in identifying optimal calibration but also improve
the understanding of qubit performance, thereby boosting productivity. In terms of performance, QubiCSV’s
design is both scalable and user-friendly. Its adaptability and open-source nature facilitate easy integration with
various quantum control systems, making it an efficient solution for the evolving needs of research.

In summary, this paper makes the following contributions. We identify data management and visualization
challenges in classical-quantum computer systems. Addressing these challenges enhances collaboration and
productivity in quantum research. We introduce real-time data management techniques, incorporating data
versioning for efficient interaction with qubit systems. This feature streamlines research processes and enables
dynamic data management. We present a visualization technique for on-the-fly analysis of calibration and experi-
ment results, facilitating the optimization of calibration configurations and enhancement of qubit performance.
We assess the platform at LBNL with a diverse team of researchers, demonstrating its benefits and identifying
limitations. This offers valuable insights for future improvements and broader applications.

Results
We implemented QubiCSV, which represents one of the first efforts in Quantum calibration and characterization
data management and visualization. By implementing a versioning database tailored for qubit control devices,
QubiCSV addresses the pressing need for improved collaboration and effective data management. This feature
is particularly crucial, given the complexity and dynamism of Quantum calibration and characterization data.
Moreover, QubiCSV’s real-time data visualization capabilities significantly enhance researchers’ ability to inter-
pret complex quantum experiments and optimize qubit performance as illustrated in Fig. 2. QubiCSV enables
seamless interaction between users to control the system in the physical world to manipulate/control the super-
conducting qubits in the quantum world.

QubiCSV data management
QubiCSV design is inspired by Model–View–Controller (MVC) architecture30,31, with the model managing data-
base queries and returning data as requested by the controller32. The view then renders this data, presenting it to
the users in an accessible format. This system is built on the team members’ daily routines, with a focus on their
utilization of the Jupyter Notebook for organizing code and data files, including calibration and characteriza-
tion data. The combination of Dolt for calibration data and MongoDB for characterization data emerged as the
best-fit solution in our design exploration. Our approach ensures a customized and effective solution tailored to
the team’s specific challenges. QubiCSV is designed to address both data management and visualization aspects
of quantum research, mainly focusing on calibration and characterization data.

The system is structured into three major components: (1) Application Programming Interface (API): It acts
as the communication bridge between the database and the user interfaces, overseeing the transfer and retrieval
of data to ensure smooth interaction among the system’s different components33. (2) Web Platform: A user-
friendly web application serves as the primary interface for users, facilitating various tasks and actions such as
data management and visualization. (3) Python Library: Recognizing the team’s reliance on Jupyter Notebook,

Fig. 2. QubiCSV’s concept: an overview of the data management and visualization for qubit control system
research. In the current superconducting qubit control design where the quantum algorithm is transformed into
a pulse-level program within the compiler, integrating the calibration configuration. Subsequently, the assembler
converts it into binaries, which are then loaded onto an FPGA. From there, the data is translated into RF signals
through a digital-to-analog converter (DAC) before being transmitted to a dilution refrigerator housing chips
(quantum processors) embedded with superconducting qubits. Once the experiment is completed, the results
are captured by an analog-to-digital converter (ADC) and post-processed, then stored in a MongoDB database
for visualization. If the calibration proves satisfactory for the experiments, researchers can then store the
calibration file in their desired branch on the Dolt database, making it accessible for further visualization and
analysis.

4

Vol:.(1234567890)

Scientific Reports | (2024) 14:22703 | https://doi.org/10.1038/s41598-024-72584-9

www.nature.com/scientificreports/

we incorporated a Python library interface for seamless data storage and retrieval directly within their existing
Jupyter Notebook workflows, as illustrated in Fig. 3.

Calibration data management
Calibration data versioning: motivations and approaches
Our platform leverages the data versioning database for calibration files, which is designed to address a few key
needs:

(1) Robust Tracking and Versioning Given the regular updates and numerous versions of calibration files used
in various experiments, there is a crucial need for robust tracking and versioning mechanisms. The decen-
tralized nature of the system also complicates collaboration and sharing, as it hinders the ability to track
changes or access different versions in a straightforward manner.

(2) Centralized and Collaborative Access Maintaining and updating calibration files is a daunting task, especially
as the frequency of calibration increases. Scientists, each focusing on different aspects of the quantum
system, generate their own calibration files which need to be accurately tracked and updated. The need for
collaboration among team members further adds to the complexity. Ensuring access to the latest versions
of these extensive files is a logistical challenge, impeding efficient collaboration.

QubiCSV provides a centralized storage solution with versioning capabilities, allowing each team member to
not only track their work but also access and contribute to others’ work seamlessly, as shown in Fig. 4. As an
example, we observe a scenario where multiple scientists (Scientist 1 to Scientist M) interact with the database.
Each scientist has the capability to create multiple branches and access branches created by others. This flex-
ibility in accessing and contributing to different branches fosters collaborative research and data sharing. Within
each branch, scientists can maintain their unique versions of the database. They have the freedom to perform

Fig. 3. QubiCSV’s system architecture.

Qubit Table

Gate Table

Calibration
Database

Scientist 1

Commit

Scientist M

View

Commit

Commit

View

Commit
View

View

Insert Update Delete

Merge Rename Delete

Calibration
DB V1

Calibration
DB V2

Calibration
DB V3

Data Diff Data Diff

Branch: 1

Calibration
DB Vn

Data Diff

Commit 1 Commit 2 Commit 3 Commit n
Operation

Features

Calibration
DB V1

Calibration
DB V2

Calibration
DB V3

Data Diff Data Diff

Branch: N

Calibration
DB Vn

Data Diff

Commit 1 Commit 2 Commit 3 Commit n

QubiCSV: Data Versioning

Fig. 4. QubiCSV’s data storage system with versioning capacity: This component of the system utilizes dolt,
a data versioning database, enabling users to create and manage their own versions of databases in branches,
similar to how git functions for source code. users can effortlessly create, access, and switch between different
branches.

5

Vol.:(0123456789)

Scientific Reports | (2024) 14:22703 | https://doi.org/10.1038/s41598-024-72584-9

www.nature.com/scientificreports/

various operations like inserting new data, updating existing data, and deleting data. Moreover, they can merge
two different branches, enabling the combination of data sets and collaborative developments. Branches can
also be renamed or deleted as per the evolving needs of the research, ensuring the database remains organized
and relevant. These data versioning capabilities are important for the management of calibration data in quan-
tum computing research. They allow scientists to track changes, revert to previous data states if necessary, and
collaborate effectively with peers. If a conflict occurs, users are notified and can choose between retaining the
modified or unmodified version, similar to Git, Dolt requires users to resolve cell-level conflicts when merging
data, offering strategies like ’ours’ or ’theirs,’ or allowing manual resolution. The system’s design, emphasizes not
just the technical capability of data versioning but also its practical application in a research environment, mak-
ing it an invaluable tool for scientists working with quantum systems.

Calibration data schema design
Calibration data of qubit configuration are managed in a JavaScript Object Notation (JSON) format, which can
be either in a JSON file or as an individual object in a Jupyter Notebook. This quantum computing calibration
dataset details the parameters governing qubits and gates within the quantum processor. Key attributes include
the qubit drive frequency (freq) and qubit readout frequency (readfreq). Additionally, the file outlines gate con-
figurations. For instance, the X90 Gate for Q0, specifying frequency (freq), phase (phase), destination (dest), time
width (twidth), start time (t0), amplitude (amp), and an envelope function (env) like “cos_edge_square” with
a 25% ramp fraction for rising and falling edges. This comprehensive configuration extends to various qubits,
providing detailed settings for each in terms of their drive and read frequencies, gate operations, and associated
envelope functions.

The database schema of our platform is intricately designed to accommodate the specific needs of calibration

data. Utilizing Dolt, a data versioning system built upon a traditional SQL database structure, we have established
a schema that efficiently organizes calibration details for every chip. In this schema, the chip acts as a foreign key
in both the gate and qubit tables. The detailed structure of our database schema is illustrated in Fig. 5.

Fig. 5. The schema for calibration data consists of three primary tables: chip, qubit, and gate. In this schema,
each ‘chip’ is designated as a primary key (PK) and serves as a foreign key (FK) in both the qubit and gate tables.
This setup allows one chip to be associated with multiple qubits and gates.

6

Vol:.(1234567890)

Scientific Reports | (2024) 14:22703 | https://doi.org/10.1038/s41598-024-72584-9

www.nature.com/scientificreports/

Implementation of calibration data management
A dashboard resembling a traditional Git interface facilitates data management, as illustrated in Fig. 6. These
screenshots provide a depiction of how users interact with the system. The interface includes a home page that
serves as the entry point to the platform. From there, users can navigate to a dashboard specifically designed
for managing branches, exploring individual branches or viewing details of specific commits. Additionally, the
platform offers a feature to compare two commits, allowing users to easily identify differences and track changes
over time. This visual overview underscores the platform’s user-friendly design and functionality in managing
and visualizing calibration data in quantum computing research. The key functionalities are detailed in Table 1,
which outlines the comprehensive features and capabilities of the calibration data management system within the
QubiCSV platform. The table also includes code snippets for each functionality, providing users with practical
examples of how to utilize these features within the Python library.

Characterization data management
Characterization data is a critical output generated after the calibrated QubiC system measures qubits from
quantum computers. This data file contains various properties for each qubit, offering valuable insights into their
performance. The key properties include prep0read1, prep1read0, rb1qinfidelity, separation, t1, t2ramsey,
and t2spinecho. Format of characterization data file typically follows the naming convention Chip_name.data.
json. In our platform, the chip name is extracted directly from the filename, streamlining the process of data
identification and retrieval.

1. Readout Fidelity (prep0read1, prep1read0): The prep0read1 and prep1read0 metrics offer insights into
the fidelity of state preparation and measurement, which are crucial for ensuring the reliability of quantum
operations.

2. Randomized Benchmarking Infidelity (rb1qinfidelity): The rb1qinfidelity metric is a key indicator of the
infidelity of single-qubit gates. It plays a crucial role in assessing the quality and precision of quantum
operations, providing insights into how accurately these gates can manipulate the state of a qubit without
introducing significant errors.

3. Qubit readout Separation: Separation is the distance between qubit blobs, which shows how clearly different
qubit states can be identified from each other.

4. Coherence Times (t1, t2ramsey, t2spinecho): The coherence time refers to the duration during which a
qubit can retain its quantum state, essentially representing the lifespan of a qubit. The t1 measures the time
it takes for a qubit to relax to its ground state, while t2ramsey and t2spinecho gauge the qubit’s dephasing
time, reflecting how long it maintains its quantum state coherently.

For long-term monitoring data, specifically the characterization files crucial for understanding experiment out-
comes, we opted for a NoSQL MongoDB34 database. This decision was guided by the nature of the experimental
result files, which are stored in JSON format. MongoDB, being a NoSQL database, naturally supports JSON data,
making it an obvious choice for our requirements. Its flexible schema and powerful querying capabilities greatly
facilitate the utilization of these JSON files for visualization purposes. Furthermore, MongoDB’s scalability and
performance efficiency make it an ideal fit for handling the extensive datasets typical in quantum experiments.
This setup in MongoDB enables the efficient tracking of all experimental results for each qubit, thereby maintain-
ing a comprehensive record of research progress. MongoDB can also handle high volumes and can scale both
vertically or horizontally to accommodate large data loads, due to its scale-out architecture35.

QubiCSV data visualization
Visualization plays a crucial role in improving the comprehension and monitoring of quantum experiments. It
allows researchers to observe and analyze complex Quantum calibration and characterization data in an intui-
tive manner. Through visualization, patterns and insights that might otherwise remain obscured in raw data
can be brought to light, facilitating a deeper understanding of quantum phenomena. In the context of QubiC,
effective visualization tools can transform how scientists interact with and interpret Quantum calibration and
characterization data, leading to more efficient and insightful experiments. From our thorough analysis, Vuetify36
web framework is selected for its sleek design capabilities and ease of integration. Vuetify’s extensive component

7

Vol.:(0123456789)

Scientific Reports | (2024) 14:22703 | https://doi.org/10.1038/s41598-024-72584-9

www.nature.com/scientificreports/

library allowed us to create a user-friendly interface, which simplifies the complex process of analyzing and
interpreting calibration data, thereby enhancing the understanding of the quantum system’s performance.

For visualizing experiment results, the key requirement was a tool capable of rendering complex data plots
dynamically. Plotly.js37 emerged as the ideal choice for this purpose, due to its advanced graphical options and
interactivity. It enables users to delve deeply into the experiment outcomes, facilitating a detailed and nuanced
exploration of the data. To support this front-end capability, we needed a robust back-end solution. Here, Flask38
was chosen for its simplicity and efficiency as a Python web framework. Flask’s ability to handle data processing
and API management made it the perfect match for our system’s back-end requirements.

These decisions in our design process were driven by the need to balance functionality with user accessibility.
Vuetify’s user-centric design approach with automatic tree shaking, an easy-to-learn API, server-side render-
ing (SSR), progressive web app (PWA) support, and mobile app support, among other features. It also offers
internationalization support, right-to-left (RTL) text support, and a blazing-fast framework experience. These
features make Vuetify a versatile and efficient choice for building modern, high-performance web applications
and Plotly.js’s37 advanced plotting capabilities, it is a declarative charting library that offers over 40 chart types,
including sophisticated options like 3D charts, statistical graphs, and SVG maps. This flexibility makes it the
best choice for creating interactive, high-quality visualizations, combined with Flask’s back-end proficiency39,
culminating in a broad visualization system.

The database structure we adopt is designed to efficiently organize and store characterization data for each
qubit. The structure is as follows: each entry is identified by an id and is associated with a specific qubit. The
ExperimentData field is an array of objects, each representing a set of characterization data linked to a particular
chips. When a user uploads a new experiment.json file, the system is designed to add the new characterization
data to the respective qubits and append it to the ExperimentData object array. This approach ensures that all

Table 1. Comprehensive overview of QubiCSV data versioning features for calibration data management. It
includes feature descriptions and Python code examples for easy implementation in Jupyter Notebooks. This
design allows seamless database interactions from notebooks, mirrored on the platform’s dashboard.

Features Function description Code example

Create branch

Users can create a new branch by specifying the branch name,
owner’s name and email, and a description. After creating a branch,
they can select the appropriate chip and upload the calibration file.
Physicists have the flexibility to create multiple branches and access
any existing branches

Merge branch
Physicists can execute merges by specifying details such as
from_branch, to_branch, owner, and a message. Upon initiating the
merge, all the data from the from_branch is seamlessly integrated
into the to_branch, resulting in the creation of a new merge commit

Rename branch
This feature enables the modification of branch names as needed,
accessible both through the UI and the Python library. This flexibil-
ity allows physicists to change the branch name to suit their current
experiment or specific requirements

Copy branch
Mirroring the ’clone’ function found in Git, this feature enables
users to replicate an entire branch into a new branch. This capability
is particularly useful for preserving the original data state while
experimenting with variations in calibration.

Delete branch
This feature allows for the removal of unwanted data branches. This
action requires specifying the branch name for confirmation, ensur-
ing that branches are not deleted unintentionally or without proper
authorization

History of repository
This function provides a comprehensive log of all activities at the
database level. It meticulously tracks key actions such as the crea-
tion, deletion, or renaming of branches, as well as recent commits

Commit data
In our system, users upload a calibration file for a chosen chip, fol-
lowed by a commit operation where they enter author details and a
commit message. Successful uploads generate a SHA-256 hash as a
unique commit identifier.

View calibrated data
After committing a calibration file, users can instantly view it on
the interface and access a table of their data. In Jupyter notebooks, a
JSON file named after the commit hash (e.g., Commit_Hash.json) is
generated, containing the full commit data.

Data Diff
This tool allows physicists to compare commits within a branch,
visualizing calibration data differences. By using the Data Diff
function, they can closely inspect changes across commits, aiding in
identifying the best calibration combination

8

Vol:.(1234567890)

Scientific Reports | (2024) 14:22703 | https://doi.org/10.1038/s41598-024-72584-9

www.nature.com/scientificreports/

characterization data is systematically recorded and easily retrievable for each qubit, enabling comprehensive
tracking and analysis over time.

Visualization of calibration data
To visualize the calibration data, users first select the desired branch from the database. This step is crucial as our
system incorporates data versioning, allowing for a detailed historical perspective of the data. After selecting a
branch, users are presented with a list of all available chips, along with their respective properties40. From this
point, users can choose which aspects of the calibration data they wish to explore visually. Our visualization
feature offers two primary types of charts, each providing unique insights into the calibration data:

• Charts By Commit (Branch and Chip Specific): This type of chart allows users to visualize all qubits and gates
characteristics for individual commits within a selected branch and chip. It provides a snapshot of specific
calibration states over time, enabling users to track changes and identify trends or anomalies in the calibration
process. We visualize key qubit characteristics such as readout frequency, qubit drive frequency, and qubit
e-f transition frequency. Moreover, we showcase essential gate characteristics including phase, frequency,
amplitude, and time width. An example of these charts is shown in Fig. 7. For instance, the graph clearly
displays the amplitude values of all X90 gates for a particular commit, offering insight into the intensity of
the signal used in gate operations. Similarly, the chart includes values for readout and CR gates. Additionally,
the visualization extends to qubit frequency values, where the chart showcases the frequencies of all qubits
for the same commit. This comprehensive display of both gate and qubit values at a specific commit point is
important in understanding the calibration process’s intricacies and effectiveness:

 Considering the wide variety of gates, we’ve grouped them into categories based on similar characteristics.
This methodology not only enhances the organization of the data but also significantly improves the clarity
and effectiveness of our visual analysis. For example, we categorize all readout gates into the ReadGroup, all
90-degree rotation (along the X-axis) gates into the X90Group, and all two-qubit CR gates into the CRGroup.

• Charts By Properties (Commit Specific): For a given property, these charts display all the commit values
for individual gates and qubits. This approach is especially valuable for examining the evolution of specific
properties across different commits, providing a deeper insight into the dynamics of the calibration data.
Figure 8 shows an example of these charts, which provides a comprehensive view of how specific properties
change over time for each commit.

• Qubits: We have detailed property-specific visualizations for qubits. This visualization approach provides
individual property charts for each qubit, showcasing how properties like qubit drive, e-f transition, and
readout frequency have evolved over different commits.

Fig. 6. QubiCSV’s dashboard screenshots. This image presents a collection of screenshots showcasing the user
interface of the QubiCSV platform, providing a visual overview of the system’s features and user interactions.

9

Vol.:(0123456789)

Scientific Reports | (2024) 14:22703 | https://doi.org/10.1038/s41598-024-72584-9

www.nature.com/scientificreports/

• Gates: Similarly, for gates, these graphs offer a comprehensive view of the evolution of gate properties
such as phase, frequency, amplitude, and time width over time. Users can analyze these property-specific
charts for each gate, enabling them to closely monitor the behavior and performance of the gates across
various commits. This level of detailed visualization aids in identifying patterns, trends, and potential
areas for optimization in the gate operations.

 This approach demonstrates how we plot graphs for each gate, showcasing the dynamic nature of our
system. It is designed to seamlessly accommodate new gates and qubits as they are added to the calibration
file. With data versioning and visualization, QuiCSV provides the most effective monitoring and analysis
capabilities to scientists engaged in quantum research work. This feature enhances the flexibility and adapt-
ability of our platform, ensuring it remains a valuable tool in the ever-evolving field of quantum computing.

Visualization of characterization data
Characterization Data, generated after calibrated QubiC interacts with qubits, plays a pivotal role in compre-
hending the effectiveness of quantum experiments. It offers insights into how each qubit responds to calibration
and reveals patterns in experimental behaviors. Identifying these patterns is crucial for determining the optimal
calibration combinations that yield the best results. Our platform provides two distinct approaches to visualize
this characterization data, catering to different analytical needs. To begin visualization, users must first select
the specific chip whose characterization data they wish to analyze. This initial step ensures that the subsequent
data visualizations are tailored to the selected chip (Fig. 9).

• By Qubits: This method concentrates on a particular qubit, enabling users to monitor and analyze all proper-
ties associated with that qubit across various experiments. Researchers can scrutinize changes and trends in
properties such as prep0read1, rb1qinfidelity, t1, t2ramsey, and others, across different experiments. Fur-
thermore, researchers can pinpoint specific conditions under which the qubit operates optimally or displays
anomalous behavior.

• By Properties: Alternatively, users can choose to focus on a specific property and observe how all qubits
respond to this property across multiple experiments. This approach is particularly useful for analyzing how
a specific property, like coherence time or readout errors, varies across different qubits and for identifying
patterns or anomalies that are consistent or variable across the qubit array.

Fig. 7. Visualization of gate groups & qubits for a specific commit in QubiCSV. Detailed readings of amplitude
values for all read gates, X90 gates, and CR (cross resonance) gates are showcased for a selected commit. The
chart also displays the qubit drive frequency, qubit e–f transition frequency, and readout frequency for all qubits,
offering insights into their operational characteristics for the selected commit.

Fig. 8. Detailed frequency and amplitude visualization in QubiCSV. This figure illustrates the X90 gate
amplitude, and qubit drive frequency values for Q1 across all commits, offering a view of specific qubit and gate
behavior over time.

10

Vol:.(1234567890)

Scientific Reports | (2024) 14:22703 | https://doi.org/10.1038/s41598-024-72584-9

www.nature.com/scientificreports/

Both these visualization methods are designed to provide in-depth insights into the experimental data, assisting
researchers in making informed decisions about future experiments and calibrations.

User accessibility interaction interface
In the context of QubiCSV, ‘User Accessibility Methods’ refers to the various ways in which users can interact
with and access the platform. The users interact with the platform to manage and visualize quantum comput-
ing data, specifically calibration and characterization data. The frequency of interaction varies, with some users
accessing the system daily for active experiments while others might use it less frequently for data review or
research purposes. The design of the QubiCSV user interface was a complex task, particularly given the diverse
needs and preferences within the scientific community. Initially, our primary focus was developing a Python
library, considering scientists’ widespread use of Jupyter Notebook for managing calibration files.

As we aimed to make QubiCSV an open-source platform accessible to a broader range of users including
other research facilities, educational institutions, and individual researchers, we recognized the need for a more
inclusive approach. A Python library, while efficient, might not cater to all potential users, especially those who
are not as familiar with coding or prefer a more interactive interface. This led us to consider the advantages of
a web-based platform, which could offer a more user-friendly and visually intuitive experience. A web-based
interface would not only be beneficial for new or less technically inclined staff but also for the wider research
community who might prefer a more graphical interface for data visualization and management.

Consequently, we opted for a dual-interface approach. We introduced a web-based platform to enhance
the user experience with advanced visualization capabilities and a more intuitive interface. Simultaneously, we
developed a Python library that seamlessly integrates with Jupyter Notebook. This library facilitates the same API
calls for storing and retrieving data from the database, ensuring that users comfortable with Jupyter Notebook
can continue to work within their preferred environment. This dual-interface approach ensures that our platform
accommodates the varying needs and preferences of the scientific community. This design decision, therefore,
not only caters to the immediate needs of LBNL scientists but also positions QubiCSV as a versatile tool for the
broader quantum computing research community.

Contribution and performance
Our platform offers sophisticated storage and visualization capabilities for each calibrated gate and qubit. For
every data insertion, we provide detailed and interactive charts. These plots feature built-in screenshot capabili-
ties, zoom-in-out, panning, and auto-scaling, catering to the diverse needs of data analysis.

The platform boasts an API response time of less than 500 ms. The adoption of the MVC architecture offers
flexibility, particularly in modifying the user interface. This architectural choice means that if someone wishes to
use our APIs to create their own visual board with modifications, they can easily do so, allowing for customiza-
tion and adaptability to individual research needs. Regarding the performance of database versioning, we base
our assessment on comparisons with MySQL using standard sysbench41 metrics. Dolt, being MySQL compatible,
provides a relevant benchmark for performance evaluation. Currently, Dolt’s performance is approximately 1.9X
slower than MySQL: 1.3X slower for write operations and 2.3X slower for read operations, as per the standard
suite of sysbench tests. Despite being slower than MySQL, with most MySQL queries returning in the 0-10ms
range, Dolt’s performance remains within a practical range for user applications, especially considering its ver-
sioning capabilities.

This Chrome Developer Tools Performance tab screenshot captures a detailed performance profile of a web
platform as shown in Fig. 10, especially under a 4x CPU slowdown simulation, which is often done to mimic

Fig. 9. Examples visualization of data by qubits and properties.

11

Vol.:(0123456789)

Scientific Reports | (2024) 14:22703 | https://doi.org/10.1038/s41598-024-72584-9

www.nature.com/scientificreports/

less powerful devices and ensure that the web application performs well even on lower-end hardware. The per-
formance analysis of our web application over a 30-second period reveals a timeline of color-coded activities,
each representing different browser tasks-scripting in yellow, rendering in purple, painting in green, and system
operations in gray-with red triangles highlighting long tasks that may impede responsiveness. A detailed flame
chart illustrates the JavaScript call stack, pinpointing performance bottlenecks, while network requests indicate
the timing of data transmission crucial for API performance assessment. The frame rate and rendering times
show the efficiency of style recalculations and screen drawings. The summary pie chart at the bottom details the
time allocation across operations, with the majority being idle time (21,090 ms), suggesting the system awaits
completion of tasks or user input. Notably, the scripting (5349 ms) and rendering (3442 ms) times remain low
compared to the idle time, which indicates that the web application is efficiently handling the heavy visualization
and chart plotting using Plotly, even with the increased load from a slower CPU.

Discussion
One of the standout features of our platform is its function as a comprehensive data management system tailored
for QubiC, one of the few open-source qubit control systems worldwide. QubiC, being an experimental tool,
produces a vast amount of data. Before our platform, there was a lack of a suitable system to store and efficiently
utilize this valuable data, which contains invaluable insights crucial for quantum research. QubiCSV addresses
the intricate challenges associated with managing calibration and characterization data, two critical components
in the realm of quantum computing. Our commitment to open-source development and ongoing user feedback
reinforces QubiCSV’s position as an invaluable tool in quantum research, meeting the dynamic demands of
QubiC team and enhancing data analysis and visualization capabilities.

Integration of QubiCSV with QubiC
The open-source nature of the QubiC system, combined with our initiative to make QubiCSV open-source as
well, provides a novel and effective solution for the community. This integration allows users not only to store
large-scale experimental data efficiently but also to engage in detailed data analysis and visualization. This
comprehensive approach enhances the understanding of quantum experiments and accelerates the research
process. Researchers using QubiC can now easily access and comprehend data and experimental progress through
QubiCSV, avoiding the time-consuming task of building their own tools or navigating through raw files.

Fig. 10. Over a 30-speriod under a 4x CPU slowdown, the platform demonstrates swift handling of complex
visualizations with Plotly, maintaining fast scripting (5129 ms) and rendering (3375 ms) amidst substantial idle
time, indicating a responsive system optimized for heavy data operations, it demonstrates the web platform’s
efficiency in managing complex visualizations and API data fetching, maintaining responsiveness and good
performance metrics obtained from Google Chrome.

12

Vol:.(1234567890)

Scientific Reports | (2024) 14:22703 | https://doi.org/10.1038/s41598-024-72584-9

www.nature.com/scientificreports/

Upgrading QubiCSV to work with other systems
QubiCSV’s open-source nature makes it a prime candidate for adaptation by others. The platform’s architecture,
which includes the Dolt database for calibration data and MongoDB for characterization data, is accessible via
our gitlab repository42. A notable aspect of the setup process is the inclusion of a Docker file, complete with
comprehensive setup guidelines. This Docker file simplifies the installation process, enabling users to quickly
host and run the entire project with just a few commands.

This setup, combined with the MVC architecture for API and user interface (UI) design, is clearly docu-
mented, allowing easy replication or modification. The tutorial for users to start the QubiCSV system has been
made available online43.

• Database Schemas: The schemas for both Dolt and MongoDB are provided in the code scripts, allowing easy
customization based on different calibration and characterization data needs.

• API Structure: Adjustments to the REST API may be needed to align with different data structures or user
requirements.

• User Interface Customization: Depending on the specific application, the user interface might require modi-
fications, which can be done within the MVC framework.

Our comprehensive documentation serves as a valuable resource for anyone looking to adapt QubiCSV. It pro-
vides detailed guidance on setup, architecture, and customization.

Limitations and future work
While QubiCSV offers valuable functionalities, there are certain limitations that need to be addressed for its fur-
ther enhancement. The current visualization capabilities require improvement to provide users with more intui-
tive and insightful data representation. Looking ahead, collaboration with other researchers is seen as a promising
avenue for expanding QubiCSV’s capabilities and ensuring its adaptability across diverse platforms. Moreover,
there is a keen interest in integrating machine learning tools into the database for long-term characterization
data analysis, with a focus on providing feedback and mitigating qubit drift caused by environmental factors.
These advancements are expected to significantly contribute to the robustness and effectiveness of QubiCSV in
supporting quantum computing research endeavors.

Methods
We studied the limitations of existing quantum control design, one of the most important research topics in the
current state of quantum superconducting qubit research. We then come up with new design goals and techni-
cal challenges to bridge the gaps. We implemented novel data versioning and visualization techniques, allowing
multiple researchers to interact and collaborate on the same qubit hardware.

Design goals
We identified a few key requirements of QubiCSV design as follows:

• Collaborative Platform There is a strong need for a platform that enables collaborative efforts, allowing physi-
cists to work together and contribute to each other’s work seamlessly from the user study that we conducted
with LBNL team. This quantum research team is characterized by its rich diversity, encompassing interns,
postdocs, control engineers, and staff physicists, each bringing unique perspectives and requirements to the
table.

• Tracking and Versioning Frequent updates and multiple versions of calibration for various experiments high-
lighted the necessity for robust tracking and versioning capabilities. For example, when team members, such
as interns or postdocs, require a specific calibration file, they must request it directly from the physicists
responsible for its creation. This process can be time-consuming and inefficient, as physicists typically main-
tain their calibration files locally without a centralized storage system. Consequently, there is no effective
way to track these files’ evolution or individual experiments’ progress. Moreover, the lack of a centralized
system makes sharing and collaborating on these files difficult, as there is no straightforward method to track
changes or access different versions. This inefficiency in the current practice not only delays experimentation
but also hampers the collaborative potential of the team.

• Visualization of Calibration and Experiment Outcomes The team’s objective is to achieve optimal qubit per-
formance through the best possible calibration configurations for their experiments. To facilitate this, they
required detailed visualization plots for both calibration data and the outcomes of experiments conducted
with that calibrated data. By analyzing the visualized data, the team aims to identify the most effective cali-
bration configurations, focusing on parameters such as the frequency and amplitude settings for gates and
qubits. This process of visualization and analysis is crucial for fine-tuning the calibration settings, ultimately
leading to enhanced performance and efficiency in quantum experiments.

• Dual Interface Design We observed that quantum research team members primarily use Python Jupyter
 Notebook44 for managing JSON calibration and characterization data, as well as for coding. This established
practice highlighted the need for a dual interface design in our new system. While there was a clear prefer-
ence for continuing with the familiar Jupyter Notebook interface, there was also a strong desire for a more
intuitive, dashboard-like interface to enhance the overall user experience.

13

Vol.:(0123456789)

Scientific Reports | (2024) 14:22703 | https://doi.org/10.1038/s41598-024-72584-9

www.nature.com/scientificreports/

Technical challenges
Developing QubiCSV platform faces many challenges.

• Complex Data Management Quantum research groups, such as the QubiC team at LBNL, working on various
system components, generate substantial calibration data that is both extensive and constantly evolving. The
management and updating of these calibration files, integral to the functionality of quantum systems, pose
a daunting task for researchers.

• Collaboration Hurdles Sharing extensive calibration files and ensuring access to their latest versions adds
complexity, hindering efficient collaboration among team members.

• Lack of Effective Data Storage and Analysis Post experimentation, systems like QubiC produce valuable
experiment result files (e.g., chip_name.data.json), which contain configurations obtained through multiple
time-consuming iterations, but the absence of a dedicated storage and direct saving method from the hard-
ware limits their utility.

• Time-Intensive Calibration Setting There is limited data analysis or visualization in the existing quantum
research interface. Without data analysis, much time is spent on setting the best values for each calibration
property. Visualization tools can significantly streamline this process, helping to achieve optimal calibration
with reduced error and decoherence.

• Scalability and User-Friendly Design QubiCSV is designed to be scalable and loosely coupled. As the number
of qubits and gates increases, our system can effortlessly adapt to these changes. We have also provided a
well-documented user manual, accessible at QubiCSV Documentation43, which guides users on how to set
up and utilize the platform effectively.

Designing and implementing data management and versioning
Initially, we considered using a MySQL database with versioning implemented through timestamps and tags.
However, the need for a more dynamic system capable of handling frequent updates and multiple versions of
calibration data steered us away from this path. The SQL model’s rigidity in versioning and the complexity
involved in implementing custom versioning solutions were significant drawbacks. Our exploration then led
us to the innovative data versioning database called “Dolt”. Dolt, operating similarly to Git but for data, offers
functionalities to fork, clone, branch, merge, push, and pull a SQL database as if it were a Git repository. This
choice addressed our need for a flexible and user-friendly version control system, allowing users to manage
calibration data with the same ease as source code. This capability of Dolt perfectly aligned with our require-
ments. Additionally, Dolt has demonstrated its performance45 through standard tests like sysbench46, where it
competes closely with MySQL in terms of latency. Though Dolt is approximately 2X slower than MySQL, with
1.5X on writes and 2.5X on reads, it still offers competitive performance, especially for our requirement of ver-
sioning large calibration datasets. This benchmark, reflecting industry-standard online transaction processing
(OLTP) oriented tests, justifies our choice of Dolt. It offers a balance of familiarity in operations akin to Git with
a performance level that, while slightly slower, is adequately suited for the complex data management needs of
quantum computing research.

Designing and implementing data visualization
In addition to offering chart plotting for individual commits, our platform provides detailed visualizations for
each property within a commit, such as frequency, phase, amplitude, and time width. This feature allows users
to closely examine the changes and trends in specific properties over time. Additionally, we offer charts that
compile data across all commits for individual properties, providing a broader view of data evolution. This dual
approach to visualization-both at the individual commit level and across multiple commits-ensures that users
gain a deeper and more nuanced understanding of the calibration data, facilitating more informed decision-
making and analysis.

Conclusion
We have thoroughly examined the constraints of existing Quantum calibration and characterization data man-
agement practices and successfully developed and implemented a comprehensive data storage and visualization
system known as QubiCSV. Our platform not only facilitates data storage but also empowers users to generate
various plots and visualizations, aiding scientists in deriving meaningful insights from their experiments. A key
feature of QubiCSV is its data versioning capability, which enhances collaborative research by enabling multiple
versions of calibration and characterization data to be managed effectively using the Dolt and MongoDB data-
bases for qubit control. Furthermore, QubiCSV has been deployed on a server and seamlessly integrated into
QubiC, demonstrating an exemplary showcase of a more accessible and collaborative research platform in the
field of quantum computing.

Data availability
The main codebase of our project is hosted at our GitLab repository. This public repository includes the func-
tionality for database connection, data versioning, and contains the frontend code: https:// gitlab. com/ Devan
shuBr ahmbh att/ qubic- data- stora ge. For code access and deployment, we utilize Docker. The deployment scripts,
designed for local setup, can be found at our deployment’s repository. The platform operates locally on port
5000, and the deployment script will deploy the project in your local environment: https:// gitlab. com/ Devan
shuBr ahmbh att/ qubic- deplo yments. Additionally, for users who prefer to interact with our platform via Jupy-
ter notebooks, we have a dedicated repository which can be found here: QubiCSV Jupyter notebook reposi-
tory: https:// gitlab. com/ Devan shuBr ahmbh att/ qubic- jupyt er. To assist new users with getting started, we have a

https://gitlab.com/DevanshuBrahmbhatt/qubic-data-storage
https://gitlab.com/DevanshuBrahmbhatt/qubic-data-storage
https://gitlab.com/DevanshuBrahmbhatt/qubic-deployments
https://gitlab.com/DevanshuBrahmbhatt/qubic-deployments
https://gitlab.com/DevanshuBrahmbhatt/qubic-jupyter

14

Vol:.(1234567890)

Scientific Reports | (2024) 14:22703 | https://doi.org/10.1038/s41598-024-72584-9

www.nature.com/scientificreports/

comprehensive user manual available at this GitBook URL. This guide details the steps for accessing and utilizing
the QubiCSV platform effectively: https:// devan shus- organ izati on. gitbo ok. io/ qubic- docs. Please note that our
platform is specifically tailored for the storage and visualization of calibration and characterization data. We do
not use external datasets; instead, we focus on visualizing the data that we store. The links to the calibration and
characterization files which are stored in the database that we are sharing. We are not using any existing dataset,
but we are sharing the original data (calibration.json and characterization.json) that we are storing in our data-
base. The calibration.json and characterization.json are included in the related files. The datasets used and/or
analyzed during the current study are available from the corresponding author on reasonable request. All data
generated or analyzed during this study are included in this published article and its supplementary information
files. The datasets generated and/or analyzed during the current study are not publicly available because these
calibration and characterization data changes by qubit chips but are available from the corresponding author on
reasonable request. Sample data are made publically available: Calibration file47 and Characterization file48. There
is no data from a third party. Our study does not involve the use of hospital or health-related data. Therefore,
the requirements mentioned regarding institutional and/or licensing committee approval, as well as informed
consent from subjects or their legal guardians, are not applicable to our study.

Received: 15 March 2024; Accepted: 9 September 2024

References
 1. Gyongyosi, L. & Imre, S. A survey on quantum computing technology. Comput. Sci. Rev. 31, 51–71 (2019).
 2. Pittenger, A. O. An Introduction to Quantum Computing Algorithms (Springer, 2012).
 3. Pandey, R., Maurya, P., Singh, G. D. & Faiyaz, M. S. Evolutionary analysis: Classical bits to quantum qubits. In Quantum Comput-

ing: A Shift from Bits to Qubits (eds Pandey, R. et al.) 115–129 (Springer, 2023). https:// doi. org/ 10. 1007/ 978- 981- 19- 9530-9_7.
 4. Bellac, M. L. A Short Introduction to Quantum Information and Quantum Computation (Cambridge University Press, 2006).
 5. Rieffel, E. G. & Polak, W. H. Quantum Computing: A Gentle Introduction (MIT Press, 2011).
 6. Reilly, D. J. Challenges in scaling-up the control interface of a quantum computer. In 2019 IEEE International Electron Devices

Meeting (IEDM) 31.7.1–31.7.6. https:// doi. org/ 10. 1109/ IEDM1 9573. 2019. 89934 97 (2019). ISSN: 2156-017X.
 7. Dong, D. & Petersen, I. R. Introduction to Quantum Mechanics and Quantum Control. In Learning and Robust Control in Quantum

Technology (eds Dong, D. & Petersen, I. R.) 7–33 (Springer, 2023).
 8. Siddiqi, I. Engineering high-coherence superconducting qubits. Nat. Rev. Mater. 6, 875–891. https:// doi. org/ 10. 1038/ s41578- 021-

00370-4 (2021).
 9. Corcoles, A. D. et al. Challenges and opportunities of near-term quantum computing systems. Proc. IEEE 108, 1338–1352. https://

doi. org/ 10. 1109/ JPROC. 2019. 29540 05 (2020) arXiv: 1910. 02894 [quant-ph].
 10. Yang, Y. et al. FPGA-based electronic system for the control and readout of superconducting quantum processors. Rev. Sci. Instrum.

93, 074701. https:// doi. org/ 10. 1063/5. 00854 67 (2022).
 11. Zurich Instruments. Accessed 05 March 2024; https:// www. zhinst. com/ ameri cas/ en.
 12. Quantum Machines. Accessed 05 March 2024; https:// www. quant um- machi nes. co/.
 13. Keysight. Accessed 05 March 2024; https:// www. keysi ght. com/ us/ en/ produ cts/ modul ar/ pxi- produ cts/ quant um- contr ol- system. html.
 14. Qblox. Accessed 05 March 2024; https:// www. qblox. com/.
 15. Stefanazzi, L. et al. The QICK (quantum instrumentation control kit): Readout and control for qubits and detectors. Rev. Sci.

Instrum. 93(4), 044709 (2022).
 16. Xu, Y. et al. QubiC: An open source FPGA-based control and measurement system for superconducting quantum information

processors. IEEE Trans. Quantum Eng. 2, 1–11. https:// doi. org/ 10. 1109/ TQE. 2021. 31165 40 (2021) arXiv: 2101. 00071 [quant-ph].
 17. Xu, Y., et al. QubiC 2.0: An extensible open-source qubit control system capable of mid-circuit measurement and feed-forward

(2023). arXiv: 2309. 10333 [physics, physics:quant-ph].
 18. Hashim, A. et al. Quasi-probabilistic readout correction of mid-circuit measurements for adaptive feedback via measurement

randomized compiling (2023). arXiv preprint arXiv: 2312. 14139.
 19. Quantum Nanoelectronics Laboratory. Accessed 23 February 2024; https:// qnl. berke ley. edu/.
 20. Maurya, S., Mude, C. N., Oliver, W. D., Lienhard, B. & Tannu, S. Scaling qubit readout with hardware efficient machine learning

architectures. In Proceedings of the 50th Annual International Symposium on Computer Architecture 1–13 (2023). https:// doi. org/
10. 1145/ 35793 71. 35890 42. arXiv: 2212. 03895 [quant-ph].

 21. Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79. https:// doi. org/ 10. 22331/q- 2018- 08- 06- 79 (2018)
arXiv: 1801. 00862 [cond-mat, physics:quant-ph].

 22. Brandt, H. E. Qubit devices and the issue of quantum decoherence. Progress Quantum Electron. 22, 257–370. https:// doi. org/ 10.
1016/ S0079- 6727(99) 00003-8 (1999).

 23. Wittler, N. Integrated tool set for control, calibration, and characterization of quantum devices applied to superconducting qubits.
Phys. Rev. Appl. 15, 034080. https:// doi. org/ 10. 1103/ PhysR evApp lied. 15. 034080 (2021).

 24. Ruan, S., Wang, Y., Jiang, W., Mao, Y., & Guan, Q. A visualization approach for noise awareness in quantum computing (VACSEN,
2022). arXiv: 2207. 14135 [quant-ph].

 25. Steed, C., Chae, J., Dasgupta, S. & Humble, T. QVis: A visual analytics tool for exploring noise and errors in quantum computing
systems. Tech. Rep. (Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States), 2023).

 26. Administration. Accessed 04 February 2024; https:// quant um. ibm. com/ admin/ hubs.
 27. Miller, M., & Miller, D. GraphStateVis: Interactive visual analysis of qubit graph states and their stabilizer groups. In 2021 IEEE

International Conference on Quantum Computing and Engineering (QCE) 378–384 (2021). https:// doi. org/ 10. 1109/ QCE52 317.
2021. 00057.

 28. Bley, J., et al. Visualizing entanglement in multi-qubit systems (2023).
 29. Git. Accessed 23 February 2024; https:// git- scm. com/.
 30. Model-View-Controller Pattern. In Learn Objective-C for Java Developers (eds Bucanek, J.) 353–402 (Apress, 2009). https:// doi.

org/ 10. 1007/ 978-1- 4302- 2370-2_ 20.
 31. Sengupta, A., Sengupta, S. & Bhattacharya, S. A framework for component design using MVC design pattern. INFOCOMP J.

Comput. Sci. 7, 60–69 (2008).
 32. Dey, T. A comparative analysis on modeling and implementing with MVC architecture. Int. J. Comput. Appl. 1, 44–49 (2011).
 33. Surwase, V. Rest API modeling languages—A developer’s perspective. Int. J. Sci. Technol. Eng. 2, 634–637 (2016).
 34. MongoDB: The Developer Data Platform | MongoDB. Accessed 04 February 2024; https:// www. mongo db. com/.
 35. Database Scaling. Accessed 04 February 2024; https:// www. mongo db. com/ basics/ scali ng.
 36. Vuetify—A Vue Component Framework. Accessed 04 February 2024; https:// vueti fyjs. com/ en/.

https://devanshus-organization.gitbook.io/qubic-docs
https://doi.org/10.1007/978-981-19-9530-9_7
https://doi.org/10.1109/IEDM19573.2019.8993497
https://doi.org/10.1038/s41578-021-00370-4
https://doi.org/10.1038/s41578-021-00370-4
https://doi.org/10.1109/JPROC.2019.2954005
https://doi.org/10.1109/JPROC.2019.2954005
http://arxiv.org/abs/1910.02894
https://doi.org/10.1063/5.0085467
https://www.zhinst.com/americas/en
https://www.quantum-machines.co/
https://www.keysight.com/us/en/products/modular/pxi-products/quantum-control-system.html
https://www.qblox.com/
https://doi.org/10.1109/TQE.2021.3116540
http://arxiv.org/abs/2101.00071
http://arxiv.org/abs/2309.10333
http://arxiv.org/abs/2312.14139
https://qnl.berkeley.edu/
https://doi.org/10.1145/3579371.3589042
https://doi.org/10.1145/3579371.3589042
http://arxiv.org/abs/2212.03895
https://doi.org/10.22331/q-2018-08-06-79
http://arxiv.org/abs/1801.00862
https://doi.org/10.1016/S0079-6727(99)00003-8
https://doi.org/10.1016/S0079-6727(99)00003-8
https://doi.org/10.1103/PhysRevApplied.15.034080
http://arxiv.org/abs/2207.14135
https://quantum.ibm.com/admin/hubs
https://doi.org/10.1109/QCE52317.2021.00057
https://doi.org/10.1109/QCE52317.2021.00057
https://git-scm.com/
https://doi.org/10.1007/978-1-4302-2370-2_20
https://doi.org/10.1007/978-1-4302-2370-2_20
https://www.mongodb.com/
https://www.mongodb.com/basics/scaling
https://vuetifyjs.com/en/

15

Vol.:(0123456789)

Scientific Reports | (2024) 14:22703 | https://doi.org/10.1038/s41598-024-72584-9

www.nature.com/scientificreports/

 37. Plotly javascript graphing library in JavaScript. Accessed 04 February 2024; https:// plotly. com/ javas cript/.
 38. Welcome to Flask - Flask Documentation (3.0.x). Accessed 04 February 2024; https:// flask. palle tspro jects. com/ en/3. 0.x/.
 39. The Ultimate Guide to Improving Flask Performance | Scout APM Blog. Accessed 04 February 2024; https:// scout apm. com/ blog/

impro ving- flask- perfo rmance.
 40. Chatterjee, R., Arun, G., Agarwal, S., Speckhard, B. & Vasudevan, R. Using data versioning in database application development.

In Proceedings. 26th International Conference on Software Engineering 315–325. https:// doi. org/ 10. 1109/ ICSE. 2004. 13174 54 (2004).
ISSN: 0270-5257.

 41. Sysbench. Accessed 06 February 2024; https:// en. wikip edia. org/ wiki/ Sysbe nch.
 42. QubiCSV. Accessed 06 March 2024; https:// gitlab. com/ Devan shuBr ahmbh att/ qubic- data- stora ge.
 43. LBNL. QubiCSV Tutorial. Accessed 04 February 2024; https:// devan shus- organ izati on. gitbo ok. io/ qubic- docs/.
 44. Project Jupyter. Accessed 04 February 2024; https:// jupyt er. org.
 45. Latency. Accessed 04 February 2024; https:// docs. dolth ub. com/ sql- refer ence/ bench marks/ laten cy.
 46. Ahmed, M., Uddin, M. M., Azad, M. S. & Haseeb, S. MySQL performance analysis on a limited resource server: Fedora vs. Ubuntu

Linux. In Proceedings of the 2010 Spring Simulation Multiconference 1–7 (Society for Computer Simulation International, Orlando
Florida, 2010). Doi: https:// doi. org/ 10. 1145/ 18785 37. 18786 41.

 47. QubiCSV sample calibration file. Accessed 03 April 2024; http:// wsslab. org/ QubiC SV/ sample_ data/ Calib ration_ file_ qubit cfg. json.
 48. QubiCSV sample characterization file. Accessed 03 April 2024; https:// wsslab. org/ QubiC SV/ sample_ data/ Chara cteri zation_ file_

X4Y2. data. json.

Acknowledgements
This work was supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics, and
the National Quantum Information Science Research Centers Quantum Systems Accelerator under Contract
No. DE-AC02-05CH11231.

Author contributions
D.B., Y.X., N.V., L.C., N.F., G.H., Q.J., and P.N. conceived and design the research and conceptualize QuiCSV; D.B.
implemented the platform; Y.X., N.V., L.C., N.F., G.H., Q.J., and P.N. provided scientific and technical feedback
on this work. D.B., Y.X., N.V., L.C., N.F., G.H., Q.J. and P.N. wrote the paper. All authors reviewed the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to Y.X. or P.N.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have
permission under this licence to share adapted material derived from this article or parts of it. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and
your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/
licen ses/ by- nc- nd/4. 0/.

© The Author(s) 2024

https://plotly.com/javascript/
https://flask.palletsprojects.com/en/3.0.x/
https://scoutapm.com/blog/improving-flask-performance
https://scoutapm.com/blog/improving-flask-performance
https://doi.org/10.1109/ICSE.2004.1317454
https://en.wikipedia.org/wiki/Sysbench
https://gitlab.com/DevanshuBrahmbhatt/qubic-data-storage
https://devanshus-organization.gitbook.io/qubic-docs/
https://jupyter.org
https://docs.dolthub.com/sql-reference/benchmarks/latency
https://doi.org/10.1145/1878537.1878641.
http://wsslab.org/QubiCSV/sample_data/Calibration_file_qubitcfg.json
https://wsslab.org/QubiCSV/sample_data/Characterization_file_X4Y2.data.json
https://wsslab.org/QubiCSV/sample_data/Characterization_file_X4Y2.data.json
www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

	An open-source data storage and visualization platform for collaborative qubit control
	QubiCSV
	Results
	QubiCSV data management
	Calibration data management
	Calibration data versioning: motivations and approaches
	Calibration data schema design
	Implementation of calibration data management

	Characterization data management
	QubiCSV data visualization
	Visualization of calibration data
	Visualization of characterization data
	User accessibility interaction interface

	Contribution and performance

	Discussion
	Integration of QubiCSV with QubiC
	Upgrading QubiCSV to work with other systems
	Limitations and future work

	Methods
	Design goals
	Technical challenges
	Designing and implementing data management and versioning
	Designing and implementing data visualization

	Conclusion
	References
	Acknowledgements

