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Abstract

Introduction—While atenolol is an effective antihypertensive agent, its use is also associated 

with adverse events including hyperglycemia and incident diabetes that may offset the benefits of 

blood pressure lowering. By combining metabolomic and genomic data acquired from 

hypertensive individuals treated with atenolol, it may be possible to better understand the 

pathways that most impact the development of an adverse glycemic state.
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Objective—To identify biomarkers that can help predict susceptibility to blood glucose 

excursions during exposure to atenolol.

Methods—Plasma samples acquired from 234 Caucasian participants treated with atenolol in the 

Pharmacogenomic Evaluation of Antihypertensive Responses trial were analyzed by gas 

chromatography Time-Of-Flight Mass Spectroscopy. Metabolomics and genomics data were 

integrated by first correlating participant’s metabolomic profiles to change in glucose after 

treatment with atenolol, and then incorporating genotype information from genes involved in 

metabolite pathways associated with glucose response.

Results—Our findings indicate that the baseline level of β-alanine was associated with glucose 

change after treatment with atenolol (Q = 0.007, β = 2.97 mg/dL). Analysis of genomic data 

revealed that carriers of the G allele for SNP rs2669429 in gene DPYS, which codes for 

dihydropyrimidinase, an enzyme involved in β-alanine formation, had significantly higher glucose 

levels after treatment with atenolol when compared with non-carriers (Q = 0.05, β = 2.76 mg/dL). 

This finding was replicated in participants who received atenolol as an add-on therapy (P = 0.04, β 
= 1.86 mg/dL).

Conclusion—These results suggest that β-alanine and rs2669429 may be predictors of atenolol-

induced hyperglycemia in Caucasian individuals and further investigation is warranted.

Keywords

Pharmacometabolomics; Pharmacogenomics; β-blockers; Atenolol; Hyperglycemia; β-alanine

1 Introduction

Hypertension is a global health concern that affects an increasingly high percentage of the 

worldwide population and is predicted to affect around 1.5 billion people by 2025 (Kearney 

et al. 2005). The use of β-blockers as a first-line treatment option for uncomplicated 

hypertension has decreased in part due to the association of this drug class with incidence of 

stroke and new-onset diabetes (Fathallah et al. 2015; Lindholm et al. 2005). Nonetheless, β-

blockers remain among the most prescribed drugs in the United States, surpassing 160 

million prescriptions per year (IMS Institute for Healthcare Informatics 2012), and are a 

preferred choice for hypertensive patients with ischemic heart disease and heart failure 

(Akbar and Alorainy 2014; O’Gara et al. 2013; Yancy et al. 2013).

The prodiabetic effect of some β-blockers is concerning since diabetes increases the risk of 

adverse cardiovascular outcomes in hypertensive patients (Heart Outcomes Prevention 

Evaluation (HOPE) Study Investigators 2001; UK Prospective Diabetes Study (UKPDS) 

Group 1998). Studies have shown that patients being treated with β-blockers have as much 

as 32 % higher risk of developing diabetes when compared with individuals taking no drugs 

(Gress et al. 2000; Messerli et al. 2008). Furthermore, results from the Heart Outcomes 

Prevention Evaluation (HOPE) study reported that diabetic hypertensive patients have a 

similar risk of cardiovascular outcomes as those patients with a prior myocardial infarction 

(Yusuf et al. 2000).
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Given the increased risk of adverse cardiovascular outcomes with diabetes, the development 

of methods to identify those individuals who are at risk of dysglycemia during β-blocker 

exposure would allow safer therapies to be recommended to the at-risk population before the 

onset of these adverse drug reactions.

Recent advances in biotechnology tools have allowed the acquisition of high-throughput 

biological data from patients, including metabolomic and genomic profile information. 

These data have the potential to be used to personalize medication prescribing. In this study, 

we utilized a metabolomic-genomic integrative approach to identify biomarkers associated 

with glucose change after treatment with the β-blocker atenolol.

2 Materials and methods

2.1 Study cohort

Caucasian participants with HTN who were treated with atenolol in the Pharmacogenomic 

Evaluation of Antihypertensive Responses (PEAR) study are included in this analysis. 

PEAR was undertaken to evaluate the pharmacogenomic determinants of the 

antihypertensive and adverse metabolic responses to atenolol and hydrochlorothiazide in 

HTN participants without a history of heart disease or diabetes (Johnson et al. 2009). In 

PEAR, participants between the ages of 17–65 years, of any race or gender and with clinic 

measured diastolic blood pressure (BP) ≥90 mmHg, were recruited at the University of 

Florida (Gainesville, FL), Mayo Clinic (Rochester, MN), and Emory University (Atlanta, 

GA). If BP was very elevated (systolic BP > 180 mm Hg or diastolic BP > 110 mmHg), or 

there was a history of diabetes or documented cardiovascular disease (including history of 

angina pectoris, heart failure, cardiac pacemaker, myocardial infarction, stroke), or other 

complications were present (pregnancy, renal diseases, sleep apnea, etc.), participants were 

excluded. The Institutional Review Boards at each study site reviewed and approved the 

protocol and all participants provided written informed consent. Additionally, the PEAR 

study was conducted in accordance with the Declaration of Helsinki. Details regarding study 

design have been previously published (Johnson et al. 2009) and the PEAR study is 

registered at clinicaltrials.gov (NCT00246519). Briefly, after an initial 3–8 week washout 

period, participants were randomized to receive HCTZ 12.5 mg or atenolol 50 mg daily 

monotherapy for 9 weeks and doses were titrated to HCTZ 25 mg or atenolol 100 mg daily 

in individuals whose blood pressure remained over 120/70 mmHg. Following monotherapy 

response, participants had fasting blood plasma samples collected. After monotherapy 

response, participants with blood pressure >120/70 had the alternate drug added to their 

regimen for an additional 9 weeks and went through similar dose titration steps as well as 

biological sample collection procedures as described in the monotherapy phase. The current 

study focuses on the monotherapy response to atenolol. Participants who received atenolol 

as an add-on treatment to HCTZ were included in a replication analysis.

2.2 Glucose measurement

At baseline (before atenolol therapy) and after completion of 6–9 weeks atenolol therapy, 

fasting blood samples were collected for glucose analyses. Plasma glucose levels were 

measured on a Hitachi 911 Chemistry Analyzer (Roche Diagnostics, Indianapolis IN) at the 
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Central Laboratory at Mayo Clinic. Samples were measured in duplicate and the means of 

the duplicates were used in the analyses. Outliers were excluded if regression residual value 

exceeded four standard deviations of the mean. Change in glucose was defined as the 

difference between the post-atenolol level and the baseline level.

2.3 GC-TOF mass spectrometry

Compared with other chromatographic systems, gas chromatography (GC) offers better 

resolution, sensitivity and reproducibility when used with a thermal detector (David 2012), 

which makes GC–mass spectrometry (MS) a prominent method for analysis of biological 

samples, which are complex by nature (Schauer et al. 2005). Therefore, GC–MS was the 

platform utilized to identify metabolites in the PEAR study. Mass spectrometry data and 

metabolite identification procedures have been previously reported (Rotroff et al. 2015). 

Briefly, plasma samples were divided in aliquots and stored at −80 °C. At the time of 

analysis, 30 μL of plasma were thawed, extracted and derivatized; 30 μL aliquots were 

extracted with 1 mL of degassed acetonitrile:isopropanol:water (3:3:2) at −20 °C and then 

centrifuged, decanted and later evaporated. Extracts were cleaned with acetonitrile/water 

(1:1) to remove triglycerides and cell membrane lipids. The resulting supernatant was 

evaporated again. Internal standards C8–C30 FAMEs were added and sample was 

derivatized using methoxyamine hydrochloride and afterwards by N-methyl-N-

(trimethylsilyl) trifluoroacetamide (Sigma-Aldrich) for trimethylsilylation of acidic protons.

Mass spectrometry was performed using an Agilent gas chromatograph and a Leco Pegasus 

IV Time-Of-Flight (TOF) spectrometer with 280 °C transfer line temperature, electron 

ionization at −70 V and an ion source temperature of 250 °C. Mass spectra were acquired 

from m/z 85 to 500 at 20 spectra/s and 1750 V detector voltage. Results files were processed 

by the metabolomics BinBase database. Database entries were matched against the Fiehn 

mass spectral library using retention index and mass spectrum information or the 05 

commercial library. Quantitative data were normalized to the sum intensities of all known 

metabolites. For statistical analyses the metabolite peak height ratios were standardized to a 

mean of 0 and standard deviation of 1.

2.4 Genotyping and quality control

Single nucleotide polymorphism (SNP) genotyping was done on the Illumina Omni1 M 

Quad GWAS Beadchip (Illumina, San Diego, CA) using the company’s Infinium II Assay. 

Genotypes were called using BeadStudio software and GenTrain2 calling algorithm, also 

from Illumina. Participants with sample genotype call rates below 95 % were excluded and 

SNPs were excluded if genotype call rates were below 95 %. Sex/gender mismatches were 

assessed from X chromosome genotype data. Cryptic relatedness was estimated by pairwise 

identity-by-descent analysis using PLINK (http://pngu.mgh.harvard.edu/purcell/plink/). 

Genotypes were imputed from HapMap III utilizing MaCH software (Minor Allele 

Frequency >3 % and r2 > 0.3). Hardy–Weinberg Equilibrium was determined in PLINK 

using an exact test. SNPs out of Hardy–Weinberg Equilibrium or with Minor Allele 

Frequency <3 % were excluded from analyses. After quality control procedures, the total 

SNP call rate of the remaining individuals was 99.86 %. Principal Component Analysis 
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(PCA) was performed using GWAS data to assess the individuals’ ancestral backgrounds 

and self-identified race information was confirmed with PCA of data for genetic ancestry.

2.5 Statistical analysis

The primary outcome of interest is change in glucose during treatment with atenolol. We 

have previously reported that participants with lower baseline glucose measures exhibited 

the largest variation in glucose after antihypertensive drug exposure (Moore et al. 2014). 

Therefore, participants with impaired fasting glucose (IFG), defined as baseline fasting 

glucose levels ≥100 mg/dL, were excluded from our metabolomics analysis in order to 

observe the maximum effect of antihypertensive treatment on glucose level. Association 

between baseline levels of 212 identified metabolites and glucose change after treatment 

with atenolol was assessed by multivariable linear regression adjusted for age, gender, 

baseline glucose and waist circumference. Analyses were conducted in SAS version 9.3 

(SAS Institute Inc., Cary, NC). False discovery rate (FDR) procedure was utilized to account 

for multiple comparisons, with a significance threshold of Q < 0.05.

A targeted genomics analysis approach was utilized based on those genes involved in the 

pathway of metabolites identified in the metabolomics step which also had published 

evidence that supported involvement in glucose dysregulation. For this, a search in literature 

databases was conducted to identify metabolites that had been previously associated with 

glucose imbalance. This step was conducted to establish a candidate gene approach based on 

genes likely to be involved with glucose metabolism. The metabolic pathway of identified 

metabolites was assessed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) 

and genes directly involved in the breakdown or production (up to two reactions from the 

metabolite being analyzed) were selected to be included in this analysis. SNPs within gene 

transcripts ±2 kb were extracted using PLINK (Purcell et al. 2007). Linkage Disequilibrium-

based pruning was conducted in PLINK, using a window size of 50 SNPs, a window shift 

parameter of five SNPs and a VIF threshold of two. Remaining SNPs had their association 

with glucose response tested through linear regression adjusted for age, gender, baseline 

glucose, waist circumference and principal components 1 and 2 using PLINK. The genomics 

analyses included all 234 PEAR atenolol participants. Statistical significance of SNP 

associations with glucose change was determined after FDR adjustment for multiple 

comparisons. Replication of genomic and metabolomic findings was conducted in an 

additional 228 participants treated with atenolol as an add-on therapy in PEAR. SNPs were 

considered replicated if the one-sided P value was <0.05 with the same direction of effect.

Sensitivity analysis was performed by testing the association between rs2669429 and 

glucose change while excluding individuals who presented with IFG at baseline. We also 

tested the sensitivity of the results by conducting a meta-analysis between the discovery and 

replication cohorts including all 234 participants as well as excluding those who presented 

IFG at baseline.
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3 Results

3.1 Study population

The population was limited to Caucasian participants and includes 130 in the metabolomics 

analysis and 234 in the genomics analysis, as summarized in Fig. 1. Baseline characteristics 

of the metabolomics and genomics cohorts are summarized in Tables 1 and 2, respectively. 

Among those included in the metabolomics analysis, characteristics were similar comparing 

the discover and the replication sample sets, with the exception of waist circumference, with 

average waist circumference of 97 and 106 cm in the discovery and replication cohorts, 

respectively (P < 0.0001). Participants included in the metabolomics analysis had an average 

age of 50 years and consisted of 55 % females and average fasting glucose level in the 

discovery and replication cohorts was 87.7 and 89.5 mg/dL, respectively.

In the genomics analysis the discovery and replication cohorts did not differ in terms of 

baseline characteristics. Participants included in the genomics analysis were obese, with 

average waist circumference of 97.6 and 98.7 cm in the discovery and replication cohorts, 

respectively.

3.2 Metabolomics analysis

A total of 489 metabolites were detected and the 212 metabolites which were successfully 

matched to known compounds were used in the current analysis. A list of the metabolites 

identified is presented in Supplemental Table 1. The known metabolites have a microsatellite 

instability index (MSI) classification of 1 (verified with standards, mass spectra and 

retention times), with the exception of 25 metabolites with a MSI classification of 2, which 

were not verified by standards but with good mass spectral matches. After exclusion of 

participants with IFG at baseline, a total of 106 individuals remained in the metabolomics 

analysis. Linear regression analysis revealed that higher baseline levels of β-alanine were 

associated with increase in fasting glucose after treatment with atenolol (P < 0.0001; Q-

value = 0.007, β = +2.97 mg/dL). Each unit increment in β-alanine standard deviation was 

associated with an average increase of 2.97 mg/dL in glucose after atenolol treatment. In the 

replication cohort, which consisted of participants who received atenolol add-on treatment, 

association of baseline β-alanine level and change in glucose was observed to be in the same 

direction, however, did not achieve statistical significance (P = 0.89, β = +0.81 mg/dL). 

Given previous evidence in the literature associating the β-alanine pathway with glucose 

imbalance (Cheng et al. 2012; Zhou et al. 2013), β-alanine was pursued in the subsequent 

genomics analysis.

3.3 Genomics analysis

Figure 2 depicts the workflow of metabolic pathway analysis and SNP selection conducted 

in the genomics analysis. Assessment of β-alanine pathway in KEGG database resulted in 

19 genes directly involved in β-alanine metabolism. Figure 3 shows a diagram of β-alanine 

pathway with genes involved in synthesis and degradation of the metabolite. Given the fact 

that hepatic tissue is the main site of β-alanine production (Trexler et al. 2015), genes that 

lack expression in the liver according to the Tissue-specific Gene Expression and Regulation 

(TiGER) database (http://bioinfo.wilmer.jhu.edu/tiger/) were removed from analysis, leaving 
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a total of 14 genes. Extraction of SNPs within these genes resulted in 404 SNPs. LD-based 

pruning of SNPs conducted in PLINK determined 72 SNPs in 14 genes of the β-alanine 

pathway. A complete list of these genes and SNPs is shown in Supplement Table 2. Linear 

regression between SNPs and glucose change revealed that SNP rs2669429 in DPYS was 

significantly associated with an increase in fasting glucose after treatment with atenolol in 

our discovery cohort (P = 0.0006; Q = 0.05, β = +2.76 mg/dL; Fig. 3). These results indicate 

that for each copy of the G allele of rs2669429 the individual’s glucose level is predicted to 

increase by 2.76 mg/dL after treatment with atenolol. This finding was successfully 

replicated in our atenolol add-on cohort (one-sided P = 0.04, β = +1.86 mg/dL; Fig. 4). 

Figure 4 shows the mean glucose change in the discovery and replication cohorts according 

to rs2669429 genotypes.

Sensitivity analyses were conducted with several different approaches. When participants 

with IFG at start of treatment with atenolol were excluded, the direction and magnitude of 

the effect was almost identical to what was observed in the main analysis, however the FDR 

corrected Q-value of the association between SNP rs2669429 did not reach significance (Q 

= 0.18, β = 2.65 mg/dL). Meta-analyses were also conducted for evaluation of sensitivity. 

When the entire cohorts of 234 and 228 participants in the discovery and replication cohorts 

were used, the meta-analysis of rs2669429 and glucose change resulted in a statistically 

significant Q-value of 0.02 and an effect size of 2.33 mg/dL. When individuals with baseline 

IFG were excluded from the meta-analysis, the magnitude of effect was similar (Q = 0.11, β 
= 2.17 mg/dL).

4 Discussion

In this study, we integrated metabolomics and genomics data from hypertensive individuals 

in order to identify potential biomarkers that can be used to predict an individual’s glucose 

response during treatment with atenolol. The metabolomics step in our analyses revealed 

that the amino acid β-alanine was significantly associated with glucose change after 

treatment with atenolol. From the genomics analysis, we identified a gene in the pathway of 

β-alanine (DPYS) that was also associated with glucose response.

β-alanine is a non-essential amino-acid that has recently gained much attention due to its use 

as a performance enhancer by high-intensity athletes (Blancquaert et al. 2015). β-alanine 

intake leads to an increase of intramuscular carnosine, a histidine-containing dipeptide that 

acts as an intracellular buffer, protecting myocytes from acid accumulation and thus 

improving exercise performance and duration. β-alanine has been previously associated with 

diabetic status in a study looking at amino acid alterations in obesity and diabetes (Zhou et 

al. 2013). Furthermore, N-carbamoyl-β-alanine, an intermediate of β-alanine production, 

was associated with several cardiometabolic risk factors, including body mass index, waist 

circumference, insulin levels and insulin resistance (Cheng et al. 2012).

A recent study conducted in a cohort of 35 Caucasian males found higher levels of muscle 

carnosine, a peptide derived from β-alanine, in obese and glucose intolerant individuals 

(Stegen et al. 2015). In the present study we found an increase in β-alanine levels that is 

associated with an increase of blood glucose levels after treatment with atenolol. 
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Considering that β-alanine is the rate-limiting precursor of carnosine synthesis in muscle 

(Harris et al. 2006), our results could point to a role of β-alanine-derived carnosine in the 

dysregulation of glucose metabolism after treatment with a β-blocker.

However, the evidence concerning carnosine levels in diabetic state is contradictory, given 

that both increased and decreased levels of carnosine have been observed in studies 

analyzing human muscle tissue samples (Gualano et al. 2012; Srikanthan et al. 2012). Since 

carnosine was not present among the metabolites identified in our metabolomics platform, a 

separate study to quantify this compound in our cohort would be necessary to confirm if an 

association (whether positive or negative) exists between this metabolite and glucose change 

during treatment with atenolol.

We further assessed the involvement of β-alanine with our phenotype by moving it forward 

in the metabolomics-genomics integrative analysis. Genomic data revealed that SNP 

rs2669429 is significantly associated with increased levels of blood glucose after treatment 

with atenolol. In our study population, individuals carrying the rs2669429 G allele presented 

increased glucose change after treatment with atenolol when compared to individuals with 

the A allele. SNP rs2669429 is located within the first intron of the gene DPYS, which codes 

for the enzyme dihydropyrimidinase (DHP). DHP is involved in the reductive degradation of 

pyrimidines and catalyzes the second step in the formation of β-alanine from uracil. SNP 

rs2669429 has been previously reported to correlate with DHP-mediated fluoropyrimidine 

metabolism (Fidlerova et al. 2010). Furthermore, rs2669429 was found to be located in a 

binding site of the hepatic transcription factor HNF1 (Thomas et al. 2007). HFN1 is an 

important modulator of gene expression in the liver and pancreatic β-cells. HNF1 has been 

reported to control the expression of glucose and insulin transporters (Evans et al. 2008) and 

mutations in this gene have been associated with Maturity Onset Diabetes of the Young 

(MODY) (Kaisaki et al. 1997).

This study has some limitations worthy of mention. Our analyses were restricted to 

Caucasian participants from PEAR and the generalizability of our findings to other race 

groups should be assessed in future studies. Although many sources in the literature report 

an association of antihypertensive therapy with atenolol and development of diabetes, the 

present study found only modest increases in fasting blood glucose after 6–9 weeks of 

treatment with this β-blocker. This observation possibly stems from the short period 

participants were exposed to atenolol, since short-term treatment with the drug might not be 

sufficient to elicit full adverse glucose reactions. Nonetheless, previous studies have shown 

that minor increases in fasting glucose levels before diabetes threshold is reached are also 

associated with increased chances of diabetes onset (Nichols et al. 2008). Furthermore, 

fasting blood glucose was shown to be linearly correlated with increased risk of adverse 

cardiovascular outcomes, even at glucose levels considered normal (Sung et al. 2009). 

Sensitivity analyses indicate our study suffered from low sample size, which in turn 

decreased the power of our analyses. Specifically, our genomics signal, rs2669429, was not 

significant after participants with IFG were removed from the analysis, but maintained the 

same direction and similar effect sizes when meta-analysis including the discovery and 

replication cohorts was conducted.
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5 Concluding remarks

In summary, by utilizing a metabolomics-genomics integrative approach we were able to 

identify β-alanine and SNP rs2669429 in gene DPYS as potential biomarkers associated 

with increased levels of blood glucose after treatment with the β-blocker atenolol. Our data 

suggest that β-alanine and rs2669429 might be important biomarkers to identify individuals 

who are at higher risk of developing dysglycemia and diabetes if exposed to atenolol. This 

could allow healthcare providers to choose alternative therapy strategies prior to the onset of 

adverse effects, reducing risk to patients and financial costs associated with treatment.
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Fig. 1. 
Flow diagram of participants included in metabolomics and genomics analyses in the 

discovery cohort (a) and in the replication cohort (b). IFG impaired fasting glucose
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Fig. 2. 
Flow diagram of the steps conducted in the genomics analyses. After identification of genes 

involved in β-alanine metabolism, SNPs were extracted and LD-based pruning (r2 = 0.3) 

was conducted using PLINK
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Fig. 3. 
Diagram of β-alanine pathway analyzed in KEGG Pathway. Gene symbols in italic represent 

genes included in the genomics analysis
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Fig. 4. 
Mean glucose change (in mg/dL) after treatment with atenolol according to genotype 

groups, in the discovery and replication cohorts. P-values for the discovery (P = 0.0006) and 

replication (P = 0.04) analyses are included
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Table 1

Baseline characteristics of participants included in the metabolomics analysis

Characteristic Discovery (n = 106) Replication (n = 86) P*

Age (years)a 50.3 ± 10 49.9 ± 9.1 0.94

Sex (%) Female (54.7 %) Female (48.3 %) 0.13

Waist circumference (cm)a 97.0 ± 13.1 106.7 ± 11 < 0.0001

Baseline glucose (mg/dL)a 87.7 ± 6.9 89.5 ± 7.2 0.07

Glucose change (mg/dL)a 4.7 ± 8.4 3.2 ± 9.6 0.23

Fasting insulin (mIU/mL)a 8.5 ± 6.1 10 ± 6.7 0.10

*
P-values from two-sample t-test for quantitative variables or Chi-Square test for categorical variables

a
Values are presented as mean ± standard deviation
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Table 2

Baseline characteristics of participants included in the genomics analysis

Characteristic Discovery (n = 234) Replication (n = 228) P*

Age (years)a 49.5 ± 9.5 50.0 ± 9.4 0.64

Sex (%) Female (46.9 %) Female (39.9 %) 0.13

Waist circumference (cm)a 97.6 ± 12.7 98.7 ± 13.6 0.37

Baseline glucose (mg/dL)a 91.9 ± 11.6 94.2 ± 13.2 0.44

Glucose change (mg/dL)a 1.7 ± 10.1 1.5 ± 11.7 0.78

Fasting insulin (mIU/mL)a 10.0 ± 9.9 10.4 ± 9.6 0.46

*
P-values from two-sample t-test for quantitative variables or Chi-Square test for categorical variables

a
Values are presented as mean ± standard deviation
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