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Abstract

Purpose—We profiled circulating tumor cells (CTCs) to study the biology of blood-borne 

metastasis and to monitor biomarker status in metastatic breast cancer (MBC).

Methods—CTCs were isolated from 105 MBC patients using EPCAM-based immunomagnetic 

enrichment and fluorescence-activated cells sorting (IE/FACS), 28 of whom had serial CTC 

analysis (74 samples, 2–5 time points). CTCs were subjected to microfluidic-based multiplex 

QPCR array of 64 cancer-related genes (n=151) and genome-wide copy number analysis by array 

comparative genomic hybridization (n=49).

Results—Combined transcriptional and genomic profiling showed that CTCs were 26% 

ESR1−ERBB2−, 48% ESR1+ERBB2−, and 27% ERBB2+. Serial testing showed that ERBB2 
status was more stable over time compared to ESR1 and proliferation (MKI67) status. While cell-

to-cell heterogeneity was observed at the single cell level, with increasingly stable expression in 

larger pools, patient-specific CTC expression ‘fingerprints’ were also observed. CTC copy number 

profiles clustered into three groups based on the extent of genomic aberrations and the presence of 
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large chromosomal imbalances. Comparative analysis showed discordance in ESR1/ER (27%) and 

ERBB2/HER2 (23%) status between CTCs and matched primary tumors. CTCs in 65% of the 

patients were considered to have low proliferation potential. Patients who harbored CTCs with 

high proliferation (MKI67) status had significantly reduced progression-free survival (p=0.0011) 

and overall survival (p=0.0095) compared to patients with low proliferative CTCs.

Conclusions—We demonstrate an approach for complete isolation of EPCAM-positive CTCs 

and downstream comprehensive transcriptional/genomic characterization to examine the biology 

and assess breast cancer biomarkers in these cells over time.

INTRODUCTION

The biology of metastasis is not well understood, and studies have been hampered by 

availability of metastatic cells for analysis. Metastatic biopsy is limited by inaccessibility of 

certain disease sites, procedural risks, and patient discomfort and inconvenience. A non-

invasive source of tumor material are metastatic cells detected in the blood, also called 

circulating tumor cells (CTCs). The accessibility of CTCs, which can be obtained via a 

blood draw, provides an opportunity for serial analysis to monitor disease and response to 

treatment (1, 2). Indeed, a major impetus to CTC research is that it can enable “liquid 

biopsy” to circumvent limitations associated with tissue biopsy. Capturing pure CTCs, 

however, has proven difficult because they are extremely rare (3). Moreover, nucleic acids 

derived from these cells are fairly limited, creating yet another obstacle to CTC DNA and 

RNA characterization (3). Our group has developed an approach for complete isolation and 

downstream molecular characterization of EPCAM-positive CTCs (4–7). Our isolation 

method —called IE/FACS (immunomagnetic enrichment/fluorescence-activated cell sorting)

— yields CTC samples with minimal leukocyte contamination (4–7). Previous analyses 

indicated >90% purity of IE/FACS-isolated CTCs (5, 8, 9). Copy number analysis confirmed 

the malignant nature of these cells and revealed strong clonal relationship between CTCs 

and corresponding primary tumors, although genetic divergence was also detected (5, 6).

To shed further light on the molecular biology of CTCs, we performed gene expression 

profiling of CTCs in metastatic breast cancer (MBC) patients. We also conducted, in 

parallel, genome-wide copy number analysis on duplicate pools of CTCs isolated from the 

same blood samples. We assessed the status of therapeutic biomarkers (ER and HER2) in 

CTCs and compared them with matched primary tumors. We analyzed CTCs in serial blood 

draws to track changes in gene expression, and to evaluate biomarker status over time. We 

also performed single cell expression analysis to explore tumor heterogeneity in CTCs. 

Finally, we examined associations between CTC profiles and patient outcomes. To our 

knowledge, this study represents the largest example of integrated DNA and RNA analysis 

of CTCs.

PATIENTS AND METHODS

Patient samples and CTC enumeration

Clinical samples were collected between May 2010 to May 2012 from MBC patients 

enrolled in local (University of California San Francisco, UCSF) and nationwide clinical 
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trials Cancer and Leukemia Group B (CALGB) 40502 (NCT00785291) and 40503 

(NCT00601900), and Translational Breast Cancer Research Consortium (TBCRC) 009 

(NCT00483223) (Supplementary Table 1). CALGB is now part of the Alliance for Clinical 

Trials in Oncology. All patients gave informed consent under a protocol approved by 

institutional review boards in respective participating centers. Blood was drawn into 

CellSearch™ CellSave preservative tubes (Veridex) for CTC enumeration (Figure 1a). 

Additional volumes of blood were drawn into tubes containing EDTA for CTC isolation. 

Blood samples from other institutions were shipped overnight to the Park Laboratory at 

UCSF and processed immediately for CTC enumeration. Previous studies have shown that 

CTC numbers obtained from CellSearch™ and IE/FACS (described below) were highly 

concordant (2, 10). To determine whether a blood sample contained CTCs for isolation, we 

first screened blood samples using the CellSearch™ assay. Blood samples with ≥8 CTCs/

7.5mL (~ ≥1 CTC/mL) were subjected to IE/FACS. CTC isolation was performed between 

24–36 hours after blood draw. Both CTC enumeration (CellSearch) and isolation (IE/FACS) 

were performed in the Park Laboratory at UCSF. Detailed descriptions of the methods are 

provided in the Supplementary Information.

Cell isolation by IE/FACS

CTCs were isolated via IE/FACS as previously described (4–6) (Figure 1b). Briefly, 

magnetic beads coated with EPCAM monoclonal antibody were used to enrich for tumor 

cells. The tumor-enriched samples were then subjected to FACS analysis using differentially 

labeled monoclonal antibodies to distinguish tumor cells (nucleated, EPCAM+/CD45−) 

from leukocytes (nucleated EPCAM−/CD45+) during cell sorting. IE/FACS allowed for the 

isolation of single or small pools of cells, which could then be subjected to downstream 

molecular analyses.

Panel of 64 genes for transcript analysis

We used a panel that has been previously validated for gene expression analysis of rare 

tumor cells (11). The list includes EPCAM and PTPRC (encodes CD45), which are markers 

for epithelial cells and leukocytes, respectively. Also included are clinically relevant cancer 

genes (e.g., ESR1 and ERBB2), stem cell and epithelial-mesenchymal transition (EMT) 

markers, and candidate reference genes for data normalization (Fig. 1C). The complete list 

can be found in Supplementary Table 2.

Taqman Low-Density Array Quantitative PCR (aQPCR) analysis

For multiplex aQPCR analysis, we used a custom microfluidic card (384-well format) 

containing two sets of 64 Taqman probes printed in triplicate. Details of the cell lysis, 

reverse transcription, specific transcript (cDNA) preamplification, and aQPCR analysis are 

described in the Supplementary Methods. Results of performance evaluation of the aQPCR 

assay are presented in the Supplementary Results and Supplementary Figure 1a–e.

Reference genes

To select the reference genes for normalization, we used the geNorm algorithm within 

RealTime StatMiner® (see below) to calculate the gene stability measure (M) for candidate 
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genes: ACTB, GAPDH, GUSB, RPLP0, TFRC, and RPS18. Genes ACTB and RPS18 were 

chosen because they showed the lowest M values indicating least variable expression across 

105 CTC and 76 leukocyte samples (Supplementary Figure 1a).

Quality controls

Prior to aQPCR analysis, preamplified cDNA samples were screened for expression levels of 

ACTB, GAPDH, and RPS18 using conventional QPCR. Results of initial experiments 

revealed that samples with low transcript levels of RPS18 (Cycle threshold, Ct ≥26) (12) 

and/or ACTB and GAPDH (Ct >36) resulted in a failed aQPCR analysis, indicating 

insufficient quantity and/or poor quality RNA. Samples with <20% detection rate (i.e., 

detection of ≤12 of the 64 genes by aQPCR analysis) and those with undetectable expression 

(missing values) of references genes, RPS18 and ACTB, were excluded from the analysis.

Single cell gene expression analysis

Single cells were sorted by IE/FACS and subjected to expression profiling. Transcript levels 

for a subset of 32 genes were measured via the Fluidigm™ method following manufacturer’s 

instructions (Supplementary Table 2). Details of the protocol are described in the 

Supplementary Methods.

Array comparative genomic hybridization analysis (aCGH)

CTCs collected from a single time point were analyzed by aCGH in 49 of the 102 patients in 

the study. Genome-wide copy number aberrations were assessed using bacterial artificial 

chromosome aCGH, as previously described in detail (5, 13). Microarray data was subjected 

to circular binary segmentation using the DNAcopy package in Bioconductor (14, 15). 

Details of the computational methodologies for copy number analysis including the use of 

the Nexus 6.0 software (Biodiscovery) are described in the Supplementary Methods.

Gene expression analysis

We used the RealTime StatMiner® (version 4.2) to analyze gene expression data as 

previously described (11). The mean Cts for ACTB and RPS18 were used to calculate the 

ΔCts. Cluster analysis was performed using unsupervised ward linkage hierarchical 

clustering methods with Pearson correlation distance as a similarity measure. 

Multidimensional scaling analysis was also performed to visualize similarities in gene 

expression profiles among samples. Differentially expressed genes between two groups were 

elucidated using a parametric analysis (Limma) for unpaired samples, and a paired T-test for 

paired samples. To adjust for multiple comparisons, the Benjamini-Hochberg (BH) 

correction method was used (16), and an adjusted p value of <0.001 was considered 

statistically significant. Relative quantification (RQ) was reported in the logarithmic scale 

(log10RQ=log10 2−ΔΔCt). A log10RQ=0 indicated no differential expression, log10RQ=1 or 

−1 indicated that a gene is expressed 10 times or 1/10 as much in the test sample relative to 

the calibrator sample, respectively. Percent detection for each of the 64 genes in CTC and 

leukocyte samples was compared using a two-tailed Z-test. A p value of <0.05 was 

considered statistically significant.
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Serial expression analysis

To determine whether CTC samples from the same patients exhibit a unique gene expression 

signature, we calculated the mean Pearson and Fisher-transformed Pearson correlation (17, 

18) as well as the mean Euclidean distance between samples from the same patient and for 

all other patients. Patient IDs were then randomly permuted 10,000 times and the mean 

distance between samples per ‘simulated patient’ was calculated. A p-value was calculated 

using the Fisher transformation (17) for actual and simulated random data to test whether 

serial CTC expression profiles from the same patients were more similar to one another 

compared to those from other patients.

Assessment of ESR1/ERBB2/MKI67 status and intrinsic subtype analysis

We determined ESR1 status in CTCs using gene expression data. The bimodal distribution 

of ESR1 expression allowed for dichotomization into positive and negative groups using the 

local minimum between modes as a cutoff point. For ERBB2 status, CTCs were classified as 

ERBB2-positive based on aCGH defined copy number gains or amplification of the ERBB2 
locus. For CTC samples with no aCGH data (n=50), ERBB2 status was dichotomized based 

on a simple aQPCR gene expression-based classifier; this was derived by receiver-operating 

characteristics curve analysis (Youden index) of a subset of samples with both gene 

expression and aCGH data (n=101) (Supplementary Figure 1f). For proliferation status, we 

used MKI67 mRNA expression as a surrogate marker for Ki67 protein expression. We 

defined the top tertile (threshold=66% quantile) as ‘high’ and the remainder as ‘low’.

Intrinsic subtype was determined using the 16 PAM50 classifier genes present in the assay. 

We used a previously validated program and algorithm described by Parker and colleagues 

to make subtype assignments (19). Subtype calls were filtered using confidence measures 

produced by the program, only samples with >80% confidence were reported (i.e., 69/105 

(66%) of patient CTC samples). To validate our approach, we compared the intrinsic subtype 

calls using all of the PAM50 genes vs. the subset of 16 using the dataset available at https://

genome.unc.edu/pubsup/breastGEO/PAM50.zip, and observed 80% concordance (20).

Analysis and visualization of the data was performed using packages in R (21).

Survival analysis

We examined association between with CTC profiles and patient outcomes. The endpoints 

included progression-free survival (PFS), defined as time from study entry to documented 

progression or death from any cause, and overall survival (OS), defined as time from study 

entry to death from any cause. PFS and OS were estimated using the Kaplan-Meier method 

(22), and the log-rank test (23) was used to compare survival between groups, with p<0.05 

being considered statistically significant. The survival data used to assess outcome were 

collected by the Alliance Statistics and Data Center. Statistical analyses were performed on 

all data available as of July 18, 2016.
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RESULTS

Development and performance testing of CTC assays

DNA copy number profiling of CTCs was performed using our previously validated 

approach of whole genome amplification of CTC genomic DNA followed by aCGH analysis 

(5, 11).

For gene expression analysis, we developed a protocol involving microfluidic-based 

multiplex QPCR array (aQPCR) to analyze the transcript levels of 64 cancer-related genes. 

The method involves reverse transcription of total RNA, preamplification of specific cDNA 

transcripts and aQPCR analysis. A detailed discussion of the assay optimization and 

performance analysis is presented in the Supplementary Materials and results are displayed 

in Supplementary Figure 1b–e.

Proof-of-concept experiments using spike-in models

The performance of IE/FACS and aQPCR assay was further evaluated using spiked cancer 

cell lines (n=6) into healthy blood or cell admixtures (Supplementary Figure 2). Gene 

expression analysis of captured cells revealed high purity and specificity of IE/FACS 

isolation, and the robustness of the preamplification/aQPCR protocol (see Supplementary 

Materials for details).

Analytical validation of the CTC gene expression assay in clinical samples

We applied our optimized protocols to characterize CTCs from a prospective series of MBC 

patients who had provided informed consent in different multicenter clinical trials. The 

workflow of the study is outlined in Figure 1a. Starting from 244 blood samples from 162 

consecutive patients, we isolated ~10–20 CTCs by IE/FACS and performed gene expression 

analysis (Figure 1b–c, Supplementary Table 1). Of the 244 samples, 93 samples were 

excluded due to low CTC yield (n=46), poor RNA quality (n=37), or failed aQPCR 

experiment (n=10) (Supplementary Figure 3). The remaining 151 (61%) samples from 105 

unique patients yielded high quality expression data and were used for subsequent analysis. 

The dataset also included additional 46 CTC expression profiles collected at later time 

points from 28 patients (see below).

Leukocytes were isolated from the same blood samples, and profiled in parallel as non-

tumor controls. Matched leukocyte expression data was available for 76 of the 105 patients, 

29 patients lacked data because the samples had poor quality RNA.

Cluster analysis showed that CTCs grouped among themselves and away from normal blood 

(Figure 1d). Multidimensional scaling analysis to visualize expression data from all CTC 

(n=151) and leukocyte samples further confirmed that CTC expression profiles were clearly 

distinguishable from those from those of leukocytes (Figure 1e)

Transcripts coding for EPCAM, CD24, KRT19, ERBB2, CCND1, CAPG, BAG1, as well as 

reference genes, including ACTB, RPS18, RPLP0, GAPDH, and GUSB, were frequently 

detected (>90%) in CTCs (Supplementary Figure 4a).
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Expression of EMT, stem cell, and other cancer-related genes in CTCs

To determine differentially expressed genes between CTCs and leukocytes in 76 paired 

samples (BH corrected p<0.001), we compared the relative expression (ΔCt) of genes 

between the two groups with leukocytes as the calibrator. Consistent with our epithelial cell 

isolation approach strategy, CTCs exhibited up-regulation of EPCAM and down-regulation 

of PTPRC/CD45 (Figure 1f). Other breast cancer-related genes including CCND1, KRT7, 

MUC1, and TFF3 were up-regulated while CD68, a monocyte/macrophage marker, was 

down-regulated. Expression of EMT (SNAI1: 51%, TWIST1: 22%, CAV: 24%, and VIM: 
78%) and stem cell markers (CD44: 88%, CD24: 100%, and ALDH1A1: 22%) were 

observed in a subset of CTCs (Supplementary Figure 4b). However, when compared to 

leukocytes, all four EMT markers were down-regulated in CTCs, as were stem cell markers 

CD44 and ALDH1A1; while CD24 was up-regulated (Supplementary Figure 4c). Taken 

together, our results with isolated EPCAM-positive CTCs do not indicate epithelial/

mesenchymal or stem cell-like phenotypes.

Receptor and intrinsic subtype analysis

We classified CTC samples from 105 patients into groups according to receptor and intrinsic 

subtypes. ESR1 displayed a bimodal distribution allowing dichotomization into positive and 

negative groups (Figure 2a). MKI67 mRNA expression, which also showed a bimodal 

distribution, was used as a surrogate proliferation marker for Ki67 expression (Figure 2b). 

For ERBB2 status, we used both copy number and expression data (see Methods).

Approximately 70% of the CTC samples were considered ESR1-positive, of which 48% 

were ESR1+ERBB2− and 22% ESR1+ERBB2+ (Figure 2a). ERBB2-positive (and either 

ESR1-positive or negative) and ESR1−ERBB2− CTCs accounted for 27% and 26% of the 

samples, respectively. 65% of the CTC samples were considered to have low proliferative 

(MKI67) status. Of the 105 samples, 69 were assigned intrinsic subtype calls using the 16 

PAM50 genes present in the assay (see Methods). These samples were subdivided into 30% 

luminal A, 6% luminal B, 13% HER2-enriched, 33% basal, and 12% normal-like subtypes. 

As expected, we found a significant association between intrinsic and receptor subtype calls 

(Supplementary Figure 5a, chi-squared test, p=0.00055).

Clustering analysis using the 16 PAM50 genes revealed three major clusters (Figure 2b). The 

leftmost cluster (Cluster 1) included CTC samples comprising mostly basal and/or 

ESR1−ERBB2− profiles with high proliferative status. This cluster contained CTCs with 

matched primary tumors that were also ER-negative. Luminal B CTCs were found only in 

Cluster 2, while luminal A CTCs were found in both Clusters 2 and 3, and so were 

ESR1+ERBB2− and ESR1+HER+ receptor subtypes. As expected, similar results were 

obtained when all 64 genes were used for clustering analysis (Supplementary Figure 5b).

Monitoring CTC-based biomarker status over time

To assess the feasibility of serial CTC expression analysis over time, we isolated and 

profiled CTCs in 74 serial blood samples from 28 patients. Blood was collected from each 

patient 2 to 5 times at intervals ranging from 17 to 307 days from the first sample collection 

(T1). Visual inspection of the expression profiles of CTC samples from individual patients 
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showed fluctuations in expression at the individual gene level. However, intrinsic and 

clinical biomarker based phenotype assignments were generally consistent across time 

points (Figure 3a, Supplementary Figure 6a). 100% (28/28) of patients who were assessed 

for CTCs at multiple time points showed consistent ERBB2 status (by aCGH/aQPCR) at all 

time points sampled. ESR1 and proliferation (MKI67) status (by aQPCR) were less 

consistent (2-sample proportion test: p=0.0036 and p>0.001, respectively), with 32% (9/28) 

of patients showing a change of ESR1 status over time and 54% (15/28) exhibiting variable 

proliferation status.

To quantify changes in gene expression in serial CTC samples, we calculated the correlation 

between the first two samples (T1 vs. T2) from each patient (n=28), while noting the time 

interval between the two blood draws. We observed that CTCs collected and analyzed 

further apart in time—i.e., greater number of days elapsed between T1 and T2—showed 

lower Pearson correlation than those with shorter intervals between sample collections (r=

−0.434, p=0.021, Figure 3b, Supplementary Figure 6b). To extend this analysis, we 

examined the correlation of T1 samples with all samples from individual patients, including 

those collected at later time points. We observed that, in general, the median Pearson 

correlation of patients’ samples decreased across time points, although this pattern was not 

statistically significant (Figure 3c, Supplementary Figure 6c). Using the information above, 

we estimated an average Pearson correlation change of −0.31/year.

Visual examination of the expression profiles showed similarities in gene expression in serial 

CTC samples from individual patients. To test whether serial CTCs from a particular patient 

(ranging from 2 to 5 samples) were more similar to one another than to CTCs from other 

patients, we compared the correlation between metachronous samples from individual 

patients vs. correlations between randomly paired samples from a large simulated dataset 

(generated by permuting sample labels 10,000 times). This comparative analysis revealed 

that correlation among samples from the patient data (Fisher transformed mean ρ=0.66) 

were significantly higher compared to those from the simulated dataset (Fisher transformed 

mean ρ=0.80), indicating that CTC samples from individual patients were more related to 

each other than to randomly selected samples (p<0.0001; Figure 3d, Supplementary Figure 

6e). Moreover, visualization by multidimensional scaling analysis in four patients with the 

highest number of serial samples showed that CTCs from the same patient over time are 

more similar to one another than to samples from other patients (Figure 3e). Taken together, 

these observations indicate the reproducibility of our assay, and suggest that CTC expression 

profiles can be obtained from individual patients.

Single cell gene expression analysis reveals heterogeneity among individual CTCs

To assess tumor heterogeneity at the single cell level, we performed expression profiling on 

individual CTCs by multiplex aQPCR analysis using a microfluidic-based dynamic array 

(Fluidigm™). Pooled and single CTCs were isolated using IE/FACS from two MBC patients: 

4042 (Figure 4a) and 4043 (Figure 4b). Expression analysis revealed higher levels of 

heterogeneity observed among single cells compared to pooled cells (Figure 4c). Despite the 

heterogeneity, some genes (e.g., ESR1) did exhibit more consistent expression across all 

samples. Multidimensional scaling (Figure 4d) and clustering analysis (Figure 4e) showed 
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that CTCs from each patient displayed a unique gene expression signature, consistent with 

results from serial analysis of CTC samples. In addition, the expression signature seemed to 

be conserved down to individual cells, as single cell samples from each patient clustered 

together (Figure 4d).

Copy number analysis of CTCs reveals aberrations frequently seen in primary breast 
cancers

Duplicate pools of CTCs were isolated from the same tumor-enriched blood samples in 49 

of the 105 patients for aCGH profiling. Genome-wide copy number analysis detected 

genomic aberrations in all of our CTC samples (Figure 5a; Supplementary Figure 7a). 

Frequent aberrations included gains in 1q and 8q, as well as losses in 8p and 16q 

(Supplementary Table 3). Gene amplifications were also detected for oncogenes, such as 

CCND1 (31%), ERBB2 (12%), and MYC (29%). Similar recurrent aberrations were 

observed when compared to a publicly-available dataset for primary breast tumors, 

consistent with our previous findings (Supplementary Figure 7b) (24).

Cluster analysis of copy number data revealed three distinct groups (Figure 5b). Examples of 

CTC copy number profiles for each cluster are shown in Supplementary Figure 7c. Cluster 1 

contained CTCs that exhibited significantly less genomic aberrations compared to CTCs in 

Clusters 2 and 3 (Supplementary Figure 7d). Cluster 2 included CTCs with 8q gain, while 

Cluster 3 included those with 1q gain/11q loss. Interestingly, CTCs with ESR1−ERBB2−/

basal phenotype were mostly observed in Cluster 1 containing CTC samples that display low 

genomic instability. Associations between genomic aberrations detected in CTCs vs. patient 

outcomes were not analyzed due to the limited sample size.

ERBB2 copy number and expression in CTCs

Our previous studies have shown that CTC aCGH analysis can accurately detect copy 

number changes involving ERBB2 (5, 11). We therefore performed aCGH analysis of the 

CTCs in the present study, and observed ERBB2-positive and ERBB2-negative CTCs 

(Figure 5c).

Other studies have shown that ERBB2 mRNA expression and copy number in primary 

breast cancer are highly concordant (25, 26). To evaluate concordance in CTCs, we 

compared ERBB2 expression and copy number from 49 patients in this study and an 

additional 88 patients from our previous work (5). Comparative analysis showed that the 

mean expression levels of ERBB2 in ERBB2-positive CTCs (by copy number) was 

numerically higher compare to ERBB2-negative CTCs; however, the agreement between 

copy number and expression data was not strong (Figure 5D). Also, broad ranges of ERBB2 
expression levels was observed in both ERBB2-positive and ERBB2-negative CTCs (by 

copy number), but more so in the latter group.

Biomarker status in CTCs and matched primary tumors

To investigate whether biomarkers relevant to breast cancer can change during disease 

progression, we compared the ESR1 (by aQPCR) and ERBB2 (by aCGH) status in CTCs 

with clinical ER and HER2 status of matched primary tumor. Comparative analyses between 
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CTCs and corresponding metastases were not performed because metastatic tissue was not 

available. Also, we did not analyze gene expression in matched primary tumors.

Of the 105 patients in this study, 70% harbored ESR1-positive CTCs. ER status for 102 

corresponding primary tumors was available for comparison, of these 85% were ER-

positive. ER status was in agreement in 73% (74 of 102) matched samples (Figure 5e). 

Conversely, 25% (22 of 87) of patients with ER-positive primary tumors showed ESR1-

negative CTCs, while 40% (6 of 15) of patients with ER-negative primary tumors had ESR1-

positive CTCs.

Assessment of ERBB2 status using available aCGH data revealed that CTCs from 26% (35 

of 137) of the patients showed copy number gains, and therefore were considered ERBB2-

positive. Comparison of ERBB2/HER2 status between 130 matched CTCs and primary 

tumors revealed a concordance of 77% (100 of 130) (Figure 5f). Of note, ERBB2-positive 

CTCs were detected in 24% (30 of 127) of HER2-negative primary tumors.

CTC profiles vs. patient outcome

We examined the correlation between CTC biomarker status and patient outcome. Follow-up 

period was approximately 40 months. There were no significant differences in OS between 

patients with ESR1-negative CTCs vs. those with ESR1-positive CTCs (Supplementary 

Table 4, Supplementary Figure 8a), and patients with ERBB2-negative CTCs vs. those with 

ERBB2-positive CTCs (Supplementary Figure 8b). We did observe that patients harboring 

CTCs with a more aggressive subtype (i.e., ESR1-negative or ERBB2-positive) had 

numerically shorter survival compared to those with less aggressive phenotype.

Survival analysis based on receptor subtype (combined ESR1 and ERBB2 status) revealed 

that patients with ESR1−ERBB2+ CTCs have significantly shorter PFS (log-rank p=0.015) 

compared to other subtypes (Supplementary Figure 9a). No significant differences were 

observed for OS (log-rank p=0.68). Patients with basal-like CTCs showed a trend towards 

shorter PFS (log-rank p=0.1053) and OS (log-rank p=0.1322), which was not statistically 

significant (Supplementary Figure 9b). Analysis based on proliferation status revealed that 

patients with CTCs showing high expression of MKI67 (encodes the proliferative marker 

Ki67) have significantly shorter PFS (log-rank p=0.0011, Figure 6a) and OS (log-rank 

p=0.01, Figure 6b) compared to patients with CTCs that express the gene at low levels.

ESR1 status in CTCs and ER status in primary tumors vs. patient outcome

We also investigated whether combining biomarker status in primary tumors and CTCs was 

correlated with patient outcome. Stratification based on ER status revealed that patients 

whose CTCs and primary tumor were both ESR1−/ER− had significantly shorter PFS (log-

rank p=0.01, Figure 6c) and OS (log-rank p=0.0035, Figure 6d) compared to patients who 

were ESR1+/ER+ in both compartments. In patients where ESR1/ER status in primary 

tumor and CTCs changed from positive to negative or vice versa, the PFS and OS were 

similar to survival probabilities based on the original ER status of the primary tumor. 

Survival analysis based on ERBB2/HER2 status was not performed due to the limited 

number of evaluable HER2-positive patients in the study.
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DISCUSSION

Genomic analysis of CTCs has been limited by technical hurdles including isolation of 

CTCs away from contaminating leukocytes and limited amounts of recoverable tumor 

DNA/RNA (3). Nevertheless, initial studies of CTC-enriched samples have been performed 

(27–35). Attempts to isolate individual tumor cells by micromanipulation or laser 

microdissection, although feasible, can be technically challenging (36–41). To address these 

issues, we have used an immunomagnetic enrichment/FACS-based (IE/FACS) approach for 

direct isolation of CTCs, which are then amenable to detailed molecular analysis (4–7), 

including transcriptional profiling in the present study.

Differential expression analysis confirmed that CTCs isolated by IE/FACS were clearly 

distinct from normal blood cells. Consistent with our EPCAM-based purification approach, 

CTCs displayed high expression of EPCAM (relative to normal blood), while hematopoietic 

markers (e.g., PTPRC/CD45 and CD68) were down-regulated. Detection of MUC1, ESR1 
and ERBB2 expression in CTCs was consistent with the epithelial origin of these cells, 

while the up-regulation of known oncogenes, e.g., CCND1 and CCNB1, provided evidence 

of malignant transformation.

The EPCAM-positive CTCs captured by IE/FACS did not exhibit dual epithelial-

mesenchymal properties, nor the CD44+/CD24−/low ALDH1+ phenotype attributed to breast 

cancer stem cells (42). These results are in contrast with previous reports showing EMT- and 

stem cell-like characteristics in EPCAM-positive CTCs (43–45). Those studies, however, 

were performed on CTC-enriched samples and not on isolated CTCs, and expression levels 

were not normalized to those of blood cells. Other studies involving direct isolation of 

EPCAM-negative CTCs suggest that these cells can display markers consistent with EMT 

(46) or cancer stem cells (47).

Clinical tests to evaluate biomarker status in breast cancer typically consist of 

immunohistochemical (IHC, e.g., ER, PR, HER2, Ki67) and fluorescence in situ 

hybridization (FISH, e.g., HER2) assays. While other studies have described similar 

immunocytochemical and FISH based assays of CTCs (for review, see (48)), we used 

transcriptomic panels and genome wide copy number analysis in this study in order to 

demonstrate the feasibility of expanded multigene profiling of CTCs. Therefore, we 

analyzed standard biomarkers in CTCs using alternative aQPCR (ESR1, PGR, ERBB2, 

MKI67) and aCGH (ERBB2) analyses.

Subtyping of receptor status in CTCs revealed frequencies (ESR1-positive: 70% positive and 

ERBB2-positive: 27% positive) similar to those observed in primary breast cancers (49). 

35% of the patient CTC samples were considered to have high proliferation (MKI67) status. 

Interestingly, 16 (70%) of the 23 basal-like CTCs (ESR1−ERBB2−) showed high MKI67 
expression, indicating high proliferative status in these cells.

Serial expression analysis showed that ERBB2 status in CTCs remained unchanged across 

time points, while ESR1 and proliferation (MKI67) status were less stable. Moreover, the 

good correlation observed among serial CTCs samples from individual patients indicate the 

reproducibility of our assay.
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Copy number analysis corroborated our previous findings that IE/FACS captures CTCs that 

are unequivocally malignant cells [5]. Genomic aberrations frequently found in primary 

breast tumors, including 1q/8q gain, 8p/16q loss, MYC, CCND1 and ERBB2 amplification 

(24), were also observed in CTCs. Cluster analysis of CTC copy number profiles revealed 

three major groups. One cluster displayed less genomic alterations compared to the other 

clusters. Large chromosome imbalances, like 8q gain and 1q gain/11q loss, appeared to 

underlie the separation of the latter two clusters. Serial copy number analysis was not 

performed in this study. We previously reported that copy number profiles of CTCs obtained 

at different time points from individual MBC patients display unequivocal relatedness, 

although genetic divergence was also observed (5).

Quantitative studies of single cell expression analysis have shown that stochastic noise can 

arise from interrogation of low copy number transcripts (50, 51), which represents a 

potential limitation of the present study as well. To minimize this noise in our single cell 

profiling, we chose a subset of the 64 genes that were highly expressed in CTCs based on 

our initial aQPCR experiments in CTC pools from 102 patients. Results from our single cell 

expression analysis revealed increased heterogeneity in single CTCs compared to pooled 

CTCs. Despite this variability, we observed that expression profiles of single CTCs analyzed 

from two patients clustered away from each other (Figure 4d–e), suggesting the overall 

consistency of patients’ CTC gene expression profiles at the single cell level, as well as the 

reproducibility of our assay.

Exploratory survival analysis revealed that proliferation status in CTCs was correlated with 

clinical outcome. Patients with CTCs that express MKI67 at high levels displayed inferior 

survival probabilities compared to those with CTCs with low level MKI67 expression. It has 

also been reported that castration-resistant prostate cancer patients harboring Ki67-positive 

CTCs have significantly shorter survival compared to patients with Ki67-negative CTCs 

(52). We observed that patients with ESR1−ERBB2+ CTCs had inferior PFS compared to 

patients harboring CTCs of other receptor subtypes, although the very small sample size of 

this subgroup precludes any conclusions.

Studies comparing ER and HER2 status between primary breast cancer and corresponding 

metastatic tumors have found that biomarker status can shift during the course of the disease 

(53, 54). In this study, we observed that ESR1/ER and ERBB2/HER2 status between CTCs 

vs. matched primary tumors changed in about 25% of the patients. This discordance may be 

due to several factors, such as tumor heterogeneity, subclonal selection and expansion, as 

well as variability in assays for biomarker testing (55).

Existing guidelines by the National Comprehensive Cancer Network recommend re-biopsy 

and retesting of receptor status in recurrent tumors (55). The clinical utility of CTC-based 

assessment of receptor status is currently being investigated (56, 57). An advantage of CTCs 

over conventional tissue-based biopsy is that the status of clinically important biomarkers 

can be monitored serially to help guide treatment decisions in real-time. Information 

regarding changes in biomarker status, especially those involving a shift from negative to 

positive, can potentially aid in therapeutic decisions in the clinic.
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Clinical trials are currently evaluating whether HER2-targeted therapy provides benefit in 

patients with conventionally HER2 negative status derived from primary tumor testing but 

with HER2-positive CTCs (56, 58). We observed some CTCs with ERBB2 overexpression 

but no ERBB2 copy number gain or amplification. It is possible that HER2-targeted therapy 

could also provide benefit in these patients.

In our study, we observed that the change in ER status between primary tumor and CTCs did 

not appear to affect patient outcome, i.e., patients with ER-negative primary tumors had 

significantly shorter survival compared to ER-positives, regardless of the ESR1 status in 

CTCs. The impact of CTC biomarker information on prognosis cannot be fully appreciated 

in this study as treatment regimens were not changed based on biomarker status in CTCs. 

Moreover, this study consisted of correlative science performed in conjunction with clinical 

trials incorporating various therapeutic regimens for MBC (59–61). The study was not 

designed nor powered to evaluate effects of specific therapies on CTC gene expression.

A limitation of our approach is that it utilizes EPCAM-based methods for enrichment and 

purification of CTCs, and therefore may fail to detect EPCAM-negative CTCs such as those 

undergoing EMT. While results from numerous studies have now shown that EPCAM-

positive CTCs are strongly and unequivocally associated with poor prognosis—including a 

recent meta-analysis involving 1,944 patients from 20 studies (62)—the clinical significance 

of EPCAM-negative CTCs has yet to be established.

Assessment of CTC-based biomarkers can potentially better inform treatment decisions and 

improve cancer care, as these cells may be more relevant to the current disease compared to 

the primary tumor. Furthermore, comparative gene expression profiling of CTCs and 

matched primary tumors/metastases can provide important information regarding clonal-

relatedness and tumor heterogeneity/evolution during disease progression. In principle, 

molecular profiling of CTCs via copy number and expression analyses as described here 

could be complemented by next generation sequencing to identify potentially actionable 

mutations in candidate genes. We have recently reported the feasibility of whole genome 

sequencing of CTCs for this purpose (8).

CONCLUSIONS

We demonstrate the feasibility of direct isolation and expanded molecular profiling of 

EPCAM-positive CTCs. Our approach involving combined copy number and gene 

expression profiling of CTCs enabled the assessment of biomarkers relevant to breast cancer. 

We also demonstrated the feasibility of monitoring CTC gene expression and biomarker 

status over time. Assessment of breast cancer biomarkers in CTCs has the potential to help 

guide therapeutic decisions in the face of evolving or progressing metastatic breast cancer. 

However, for CTCs to be used in the context of personalized medicine, the clinical utility of 

CTC-based biomarkers has yet to be demonstrated (63).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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TRANSLATIONAL RELEVANCE

Molecular characterization of circulating tumor cells (CTCs) offers a unique approach to 

examine biologic mechanisms and biomarkers that are associated with cancer progression 

and treatment resistance. Indeed, liquid biopsy via CTC profiling provides obvious 

advantages over tissue biopsy, including non-invasive access and ease of serial 

monitoring. We isolated circulating tumor cells for copy number and gene expression 

profiling to evaluate biomarkers relevant to breast cancer. Molecular characterization of 

CTCs offers an approach to evaluate biomarkers potentially associated with cancer 

progression and treatment resistance.

Magbanua et al. Page 18

Clin Cancer Res. Author manuscript; available in PMC 2019 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Study schema, IE/FACS isolation method and gene expression profiling of CTCs and 
matched leukocytes
a) Blood sample was drawn into CellSearch™ CellSave Preservative Tubes (Veridex) for 

CTC enumeration. Additional volume of blood was drawn into tubes containing EDTA for 

CTC isolation. To increase the likelihood of isolating CTCs for molecular analysis, we first 

performed CTC enumeration in 7.5mL of blood using the CellSearch™ assay to identify 

patients with ≥1 CTC/mL. Gene expression and copy number analyses were performed by 

Taqman Low Density Array (TLDA) aQPCR and array comparative genomic hybridization, 

respectively; b) IE/FACS is a two-step process for isolation of CTCs. It composed of 
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immumomagnetic enrichment (IE) followed by fluorescence-activated cell sorting. CTCs are 

defined as nucleated cells that stain positive for EPCAM (epithelial marker) and negative for 

CD45 (leukocyte marker). Blood cells (leukocytes) can also be collected to serve as non-

tumor controls; c) Map of the TLDA microfluidic card containing 64 genes printed in 

triplicate; d) Unsupervised hierarchical clustering analysis showing that CTCs (n=105) 

clustered away from leukocytes (n=76) samples; e) Metric multidimensional scaling analysis 

(MDSA) was performed using gene expression data from 64 genes profiled by aQPCR 

analysis in 151 CTC and 76 leukocyte samples; f) Genes differentially expressed between 

matched CTCs and leukocytes (n=76 pairs) isolated from the same tumor-enriched blood 

sample by IE/FACS. A paired t-test was performed using leukocytes as calibrator samples. 

Genes with an adjusted p value <0.001 were considered statistically significant. Relative 

quantification (RQ) is reported in the logarithmic scale (log10RQ=log10 2−ΔΔCt). A 

Log10RQ=1 or −1 indicates that a gene is expressed 10 times or 1/10 as much, respectively, 

in the CTCs relative to leukocyte samples.
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Figure 2. Intrinsic subtype, ESR1/ERBB2, and proliferation (MKI67) status in CTCs
a) Frequency distribution of ESR1, and b) MKI67 gene expression levels across all samples. 

Expression levels are shown as −ΔCt; c) Pie charts showing distribution of receptor and 

intrinsic subtype, proliferation (MKI67) status in CTCs; d) Heat map showing results of 

unsupervised hierarchical clustering analysis of 105 CTCs using 16 of the PAM50 intrinsic 

subtype classifier. Intrinsic and receptor subtypes along with proliferation (MKI67) status, 

and clinical ER status of matched primary tumors are shown above the heat map.
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Figure 3. Serial expression analysis reveals patient-specific CTC expression signatures
a) Heat map showing results of supervised clustering analysis of CTC expression profiles 

from 28 patients (74 samples). Intrinsic and receptor subtypes along with ESR1, ERBB2, 

and proliferation (MKI67) status are shown above the heat map and the time points are 

indicated below; b) Pearson correlation of serial CTC samples from the same patient 

collected at time points 1 and 2 (y-axis) and the days elapsed between two time points (x-

axis); c) Pearson correlation of samples between time point 1 (T1) and other time points. 

Each line indicates an individual patient. The dark line inside the box plot shows median 

Pearson correlation across all patients; d) Distribution of Pearson correlations of simulated 

gene expression data generated by 10,000 random permutations (histogram) and median 
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Pearson correlation among samples from the same patient (blue line); e) Metric 

multidimensional scaling analysis (MDSA) was performed using gene expression data from 

64 genes profiled by aQPCR analysis in serial CTC samples from four patients (pts).
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Figure 4. Single cell expression analysis reveals inter- and intra-patient heterogeneity
Microfluidic-based dynamic array expression analysis (Fluidigm™) of single and pooled 

CTCs isolated by IE/FACS from patients a) 4042 and b) 4043. The samples (columns) are 

arranged in a supervised fashion according to the number of cell input for expression 

analysis indicated above the heat map; c) Mean levels of heterogeneity (standard deviation/

gene/patient) in single and pooled CTCs from patients 4042 and 4043. Gene expression 

levels of 32 genes listed in Supplementary Table 2 were analyzed via Fluidigm™; d) Metric 

multidimensional scaling analysis (MDSA) was performed using 32 genes analyzed in 

single and pooled CTCs from patients 4042 and 4043; e) Unsupervised hierarchical 

clustering showing that CTC samples from the same patients clustered together.
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Figure 5. Copy number and ERBB2/ESR1 status in CTCs
a) plot showing recurrent aberrations in CTCs from 49 metastatic breast cancer patients; b) 

Unsupervised clustering analysis of copy number profiles of CTCs with matched expression 

data (n=49). Each column on the heat map represents a sample. The colors, red (gain), blue 

(loss), grey (normal) and yellow (high-level amplification), indicate copy number status. The 

green arrowheads indicate 1q gain and 11q loss and the black box indicates 8q gain. The bar 

to the left indicates chromosome locations with chromosome 1pter to the top and 22qter to 

the bottom; note that only the odd-numbered chromosomes are indicated. The short/p-arms 

are colored aqua or green while the long/q-arms are colored blue or yellow. The annotation 

strip shows assignment to groups based on gene expression results. c) Representative array 
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comparative genomic hybridization (aCGH) profiles showing HER2-positive (top panel) and 

HER2-negative CTCs (bottom panel). The arrows point to the chromosome region 

containing the ERBB2/HER2 gene. The log2 ratio value for each BAC clone is plotted on 

the y-axis. The x-axis represents the genomic position of each BAC clone on the array, with 

chromosome numbers indicated. Vertical solid lines indicate chromosome boundaries, and 

vertical red dashed line represents the centromeric region dividing each chromosome into 

the p- or short arm (to the left of centromere) and the q- or long arm (to the right of the 

centromere). Color represents copy number status: red=loss, green=gain, 

blue=amplification, and black=normal; d) ERBB2 expression levels (−ΔCt) and HER2 status 

by aCGH analysis; Concordance between e) ESR1 status (by QPCR) and f) ERBB2 status 

(by aCGH) in CTCs vs. clinical ER/HER2 status of corresponding primary tumors.
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Figure 6. Circulating tumor cell phenotype and patient outcome
Kaplan-Meier plots showing estimates for a) progression free survival and b) overall 

survival of patients harboring CTCs with low or high proliferation status based on the 

expression of MKI67 (encodes Ki67); c) Progression free survival and d) overall survival of 

patients based on ESR1/ER status in CTCs and primary tumor (PT).
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