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1. Introduction

Topological defects in materials have a long and rich history in 
the context of domain walls separating equivalent  low-symmetry 
states of different orientations in ferroics. Such defects are func-
tional entities in their own right, often showing exotic behavior 
such as sheet superconductivity in the ferroelastic twin walls of 
tungsten oxide, WO3 [1] or fast ionic transport along twin walls 
in feldspar and perovskite structures [2].

Recently, interest in the concept of topology in condensed 
matter has exploded following the discovery of skyrmionic 
magnetic lattices [3] and the experimental verification of the 
existence topological insulators [4]. Like some ferroelastic 

and ferroelectric domain walls, both of these systems pos-
sess a property that is ‘protected’ in a symmetry sense, and so 
can be rigorously defined by its corresponding mathematical 
topological characteristics. At the same time, there has been 
a flurry of exciting new discoveries regarding the properties 
of interfaces [5, 6], domain walls [7, 8], vortices [9], and spin 
textures [10], particularly in ferroic and multiferroic systems, 
which it is tempting, although not always strictly correct, to 
discuss within a topological framework.

In this paper we review the distinction between topological 
defects as they are strictly classified in terms of mathematical 
homotopy theory, and other defects arising from stacking or 
structural aspects of a material for which the term is formally 
inapplicable. In particular, we distinguish between topological 
defects resulting from precise symmetry-breaking conditions 
classified by non-trivial homotopy groups, and defects which 
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are a consequence of the topography of the system. Since the 
latter often result from some type of geometric frustration, we 
refer to them in this work as geometric defects.

Understanding the conditions for existence of topological 
or geometric defects in a system is essential for understanding 
its physical properties and potential applications. The occur-
rence of topological defects in particular can prevent a system 
from reaching a single domain state, resulting instead in multi-
ple ferroelectric or magnetic domains. These domains are sep-
arated by domain walls, which can have novel properties and 
applications. An example is the conducting charged ferroelec-
tric domain walls that are trapped in multiferroic hexagonal 
manganites by virtue of the topology [11]. In magnetic mat-
erials with non-uniform spin textures, the topological ground 
state is typically more energetically stable than a monodomain 
phase. As a result it can be controlled at a much lower energy 
cost, suggesting a plethora of applications in spin-based mem-
ory and logic devices [12, 13]. Geometric defects, on the other 
hand, are associated with residual entropy which can lead to 
exotic emergent phenomena such as the monopole-type exci-
tations observed in spin-ice systems [14].

2. Topological defects

Topological defects were first defined rigorously by Tom 
Kibble in field theories in the context of cosmological phase 
transitions in the early universe [15, 16]. The mechanism 
introduced by Kibble gives the symmetry requirements for the 
formation of topological defects during a phase transition, and 
predicts—based on the particular details of the initial and final 
symmetries—what kinds of defects will form. In this sec-
tion we describe the requirements of the Kibble mech anism, 
which determine whether a topological defect will form and 
how it will manifest. We then give three simple examples—
misfit dislocations, skyrmions and ferroelectric domain 
 intersections—of topological defect formation in materials.

2.1. Spontaneous symmetry breaking

The first requirement for topological defect formation within 
the Kibble mechanism is that the phase transition be spontane-
ously symmetry breaking. A spontaneously symmetry break-
ing phase transition is one that exhibits a symmetry change 
from a higher to a lower symmetry state, which offers multiple 
degenerate choices of the ground state. (Note that isomorphic 
phase transitions, such as the evaporation of a liquid to a gas, 
are not spontaneously symmetry breaking since the symmetry 
does not change across the transition.) The development of 
the low symmetry state can be described by the onset of an 
order parameter, φ, which contains the relevant variables that 
emerge during the transition.

A well-known example of a spontaneous symmetry break-
ing transition is the paramagnetic to ferromagnetic trans-
ition in magnets. Here the loss of time-reversal symmetry is 
described by the onset of a magnetic order parameter, which 
is often taken to be the magnetization. In the absence of aniso-
tropy, the axis of magnetization in the ferromagnetic state can 

have any orientation, giving an infinite manifold of degenerate 
ground states; in real materials, spin–orbit coupling term lifts 
this rotational symmetry and causes a finite number of pre-
ferred easy axes. While many phase transitions in physics are 
caused by changes in temperature, the concept of spontaneous 
symmetry breaking is also applicable to changes driven by for 
example external electric or magnetic fields or pressure.

The canonical spontaneous symmetry breaking phase 
trans ition is described by the ‘Mexican hat’ potential shown 
in figure 1 with many examples existing in cosmology, high-
energy physics and materials science [17]. The hat indicates 
a complex order-parameter function comprising an amplitude 
and a phase, with the horizontal distance from the peak of 
the hat giving the magnitude of the order parameter, and the 
angle around the hat giving its phase. An example of a phase 
transition in condensed matter described by such a potential 
is superconductivity, for which the condensate wavefunction 
is the order parameter. The non-superconducting (high-sym-
metry) to superconducting (low-symmetry) phase transition 
spontaneously breaks the symmetry in such a way that the 
allowed values of the order parameter can point anywhere 
on a circle (in field-theory language this is described as an 
S1 order-parameter space.) When the system drops from the 
high-symmetry peak of the hat to the low-symmetry brim, it 
chooses a particular angle of phase, θ, from the infinite collec-
tion of degenerate ground states with θ ∈ {0, 2π}, losing its 
initial U(1) symmetry in the process. Since all choices of θ 
have the same energy, there exists a massless Goldstone boson 
running around the brim of the hat, which is a signature of the 
initial higher symmetry of the system.

2.2. Non-trivial homotopy

Kibble’s second condition for topological defect formation 
is that the symmetry breaking is described by a non-trivial 
homotopy group [15]. Two topological spaces are homotopic 
if they can be deformed into each other by continuous trans-
itions such as twisting and pulling. The canonical case is the 
topological equivalence of a coffee cup and a doughnut: a 
coffee cup can be transformed continuously into a doughnut 
by pushing the base of the coffee cup upwards until it meets 
its rim, and then pulling outwards. Thus the transformation 

Figure 1. Mexican-hat potential displaying the degenerate choice 
of ground states for spontaneous-symmetry breaking phase 
transitions.
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between the coffee cup and doughnut can be described by a 
trivial homotopy group.

In contrast, a bowl and a doughnut are not topologically 
equivalent. The only way to transform a bowl into a doughnut 
is to either make a hole in the bowl, or to form it into a long 
cylinder and attach the ends. Both of these involve cutting and 
glueing operations, and so the two shapes are homotopically 
distinct. In this case, the transformation between the bowl and 
the doughnut is described by a non-trivial homotopy group.

As a result of the non-trivial homotopy, a phase transition 
that is described by a non-trivial homotopy group introduces a 
local kink or crease in the order parameter field on formation 
of the low-symmetry state. The local kink separates two low-
symmetry regions with different values of the order parameter 
(for example different choices of angle in the Mexican-hat 
case) and is required to have the structure of the high-sym-
metry phase in order to resolve the discontinuity in the order 
parameter. The kink is topologically protected and can only 
be removed by a global change in the symmetry to the high-
symmetry phase.

2.3. Classification of topological defects

A powerful feature of homotopy theory is the ability to clas-
sify the topological defects based on the relationship between 
the initial and final symmetries [18–23]. This is achieved by 
mapping the high- and low-symmetry groups onto topological 
spaces and classifying the relationship between them in terms 
of its homotopy group. A rigorous mathematical treatment is 
given in the appendix—here we summarize the main results of 
the relationship between the initial and final symmetry groups 
and the order parameter field. We first look at the properties 
of the order parameter space, and next address the symmetry 
change through the phase transition.

Let us begin with a model that is invariant under some sym-
metry group G. If the symmetry group G is spontaneously 
broken, then there exists a field which remains a solution to 
the theory, but that is no longer invariant under G. We identify 
this field with the order parameter field and define the param-
eter space of the ordered, low-symmetry system as M = G/H 
where H describes the symmetry of the order parameter. Finally, 
we describe our ordered medium by a mapping, φ, from the real 
space manifold A into the order parameter space manifold M. A 
stable topological defect occurs when there is a discontinuity in 
the mapping, φ, between A and M, provided that the discontinu-
ity is not caused by pathological behaviour in φ.

The type of defects created are then determined by the 
order of the homotopy group and can be obtained from 

standard homotopy tables. The defects that are allowed by 
homotopy theory in condensed-matter systems are listed for 
various dimensions in table  1. Topologically protected sur-
faces manifest as domain walls in for example ferroelectric or 
ferroelastic materials. These domain walls separate domains 
that form in ferroics because M has disconnected comp onents 
as a result of the discrete symmetry breaking. In cases where 
M is not simply connected, then unshrinkable loops become 
trapped around holes in the manifold, leading to the forma-
tion of strings such as those formed in liquid Helium and 
superconductors [24]. Monopoles should form when M con-
tains unshrinkable surfaces, although the elusive magnetic 
monopole, predicted in Grand Unified Theories, remains to be 
observed6. Finally, textures form when more complex symme-
tries are broken, resulting in delocalized topological defects 
such as 2D spin textures [25].

2.4. Examples of topological defects in condensed matter

Next we look at three examples of topological defects in con-
densed matter systems: misfit dislocations, skyrmions, and 
vortices and domain intersections in multiferroics.

2.4.1. Misfit dislocation. The first example that we discuss is 
a simple misfit dislocation as shown in figure  2. The topo-
logical defect is located where the extra row disappears; no 
local rearrangement of the ions will remove the defect. To 
examine this from a topological perspective, we first identify 
the order parameter space which must have two translation-
ally symmetric dimensions for the case of a two-dimensional 
square lattice. In fact the order parameter space is defined by 
a torus since wrapping a 2D plane in the x-direction results in 

Table 1. Classification of the possible topological defects in condensed-matter systems for 1 � D � 4 where D is the dimension of the 
system.

Homotopy class D = 1 D = 2 D = 3 D = 4

π0 Monopole Vortex Surface Hypersurface
π1 Texture Monopole Vortex Surface
π2 — Texture Monopole Vortex
π3 — — Texture Monopole
π4 — — — Texture

Figure 2. Loop surrounding a misfit dislocation. The shaded 
rectangle marks where the extra row appears. The order parameter 
space is described by a torus (right).

6 Note that condensed matter analogues of the magnetic monopole such 
as emergent monopoles in spin ice [14], and magnetoelectric monopoles 
in magnetoelectrics [10] are not true monopoles and are not topological 
defects.
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a cylinder and subsequent imposition of boundary conditions 
in the y-direction joins the ends of the cylinder to form a torus.

To analyze the properties of the defect, we circumnavigate 
the defect noting the motion of the order parameter on the 
torus. From site A to site B, we see that the order parameter has 
an upwards drift with respect to the ideal lattice. Continuing 
around the defect, there is a continuous drift of the ions with 
respect to the perfect lattice until point C which again coin-
cides with an ideal lattice site but with an extra row of ions in 
the y-direction. In the order parameter space, this gives us a 
loop around the torus as shown in figure 2 (right). The torus 
contains one hole which corresponds to the extra row of ions. 
In order to return to exactly the same point, the lattice shifts 
by one complete ion in looping around the defect once, corre-
sponding to a winding number of 1.

2.4.2. One-dimensional skyrmion. A 1D skyrmion provides 
our second example of a topological defect [26]. We consider 
a 1D lattice composed of magnetic XY spins. In the high-
symmetry phase the solution is paramagnetic with disordered 
spins. At the transition to the skyrmion phase the spins form 
a spiral as sketched in figure 3 (left). Imposing conventional 
periodic boundary conditions to the case shown would cause 
a discontinuity in the order parameter since it would place an 
‘up’ spin directly next to a ‘down’ spin. To remedy this, the 
order parameter space twists once to restore the continuity 
of the order parameter and becomes a Möbius strip (figure 3 
(right)).

By comparing the properties of a loop with and without a 
twist, we can determine the topological charge, n, carried by 
the defect in the 1D case, as shown in figure 4. A loop with 

no twists has n = 0. In our case, we have a single kink with a 
change of π of the order parameter; this situation is defined to 
have a topological charge of n = 1

2. A loop with two opposite 
twists, with changes of +π and −π again has n = 0.

2.4.3. Vortices in multiferroics. Finally we discuss the case 
of the multiferroic hexagonal manganites RMnO3 (R = Sc, 
Y, Dy, Ho, Er, Tm, Yb, Lu, In) [27–29]. These materials are 
intriguing because they display one-dimensional topologi-
cally protected vortices associated with their ferroelectric 
phase transition [30], which occurs TC ∼ 1200 K, depending 
on the R cation.

The crystal structure of RMnO3 consists of planes of cor-
ner-sharing MnO5 trigonal bipyramids separated by triangular 
planes of R cations, as shown in figure 5(a) [31]. The high-
temperature phase is centrosymmetric with the P63/mmc 
space group. The spontaneous symmetry breaking phase 
trans ition at the ferroelectric Curie temperature is unusual in 
that it is driven by condensation of a trimerizing tilting mode 
of K3 symmetry, with the ferroelectric Γ−

2  mode coupling to 
it as a secondary order parameter [31–33]. First-principles 
calcul ations [33] and Landau theory analysis [34] show that 
for small amplitudes, the energy lowering provided by the 
condensation of the K3 mode is independent of the tilt angle, 
as shown in figure  5. The onset of the ferroelectric phase 
trans ition can therefore be treated in terms of the breaking of 
a continuous U(1) symmetry, in which the full rotational sym-
metry is broken by tilting of the polyhedra in the full 2π range 
of angles. The corresponding potential energy surface resem-
bles a Mexican hat (figure 5(b)) [30].

The U(1) symmetry of the order parameter space close to 
the transition allows us to directly apply homotopy theory to 
predict the resulting topological defects. The order parameter 
symmetry group, U(1), is first mapped to its corresponding 
topological space, the one-dimensional circle S1. From homot-
opy tables [18], we find that the homotopy group of this space, 

Figure 3. A one-dimensional skyrmion. To restore continuity of the 
order parameter we introduce a kink in the manifold resulting in a 
Möbius strip.

Figure 4. Loops with different numbers of twists, and their 
corresponding topological charges, n.

Figure 5. (a) RMnO3 structure at the onset of the ferroelectric 
phase transition. The tilting action of the trimerizing K3 mode is 
shown with yellow arrows and the degenerate 360° tilting angles 
of the MnO5 polyhedra is indicated by the yellow circle. (b) 
Mexican-hat potential energy surface of the hexagonal manganites. 
At high energy (the peak of the hat) the energy is independent of 
the angle of trimerization, and the system has U(1) symmetry. At 
lower energy (in the brim of the hat), six of the trimerization angles 
become favorable, reducing the symmetry to a six-fold discrete Z6 
symmetry.

J. Phys.: Condens. Matter 29 (2017) 343001



Topical Review

5

πk(S1) is non-trivial and in fact produces one-dimensional 
topological singularities—strings or vortex cores [35].

With further temperature decrease, the discreteness of the 
lattice begins to manifest in the energy landscape resulting in 
a lifting of the 360° degeneracy. The polyhedra locking into 
tilt angles of 0, 2π/3 or 4π/3, described by Z3 symmetry; 
combined with an additional degeneracy in their tilting direc-
tion (‘in’ or ‘out’) with Z2 symmetry, the final order param-
eter manifold is comprised of six elements and described by 
Z2 × Z3 ∼= Z6. This additional coupling to the lattice causes 
a discrete symmetry breaking which supplements the previ-
ous vortex formation with the six domains surrounding each 
vortex core, separated by six domain walls. Since neighbour-
ing domains have opposite polarization, this allows the direct 
observation of the domains and hence the topological vortices 
by piezo-force response microscopy [36, 37].

2.5. Summary

To summarize this section, topological defects are features 
that result from strict symmetry requirements associated with 
certain symmetry-breaking phase transitions. The Kibble 
mechanism gives the requirements for their formation using 
mathematical homotopy theory. First, the symmetry must be 
spontaneously broken, that is, that the ground state is degen-
erate. The second requirement is that the symmetry change 
corresponds to a non-trivial homotopy group. The nature of 
the homotopy group also predicts the type and dimension of 
the resulting topological defect. Dislocations, skyrmions and 
ferroelectric domain intersections are examples of topological 
defects in materials.

3. Geometric defects

Geometric frustration occurs when perfect long-range order is 
prohibited from forming because of short-range constraints, 
which can result from the connectivity of the lattice, the magn-
etic interactions or the details of the chemical bonding. It arises 
when physical interactions are incompatible with the crystal or 
spatial geometry in which they are embedded, so that all inter-
actions can not be satisfied simultaneously and a large ground-
state degeneracy results. Legend has it that the term ‘frustration’ 
was first used in 1976 by Anderson who wrote ‘Frustration is 
the name of the game’ on an Aspen blackboard [38]; the term 
was first seen in the literature in works by Toulouse [39] and 
Villain [40]. For a clear and concise description of the physical 
consequences of geometric frustration see [41].

Here we discuss three examples in which geometric frus-
tration introduces geometric defects in solid state physics: the 
tiling of a plane with regular pentagons, which is relevant in 
the analysis of quasicrystals; antiferromagnetic interactions 
between magnetic moments on a triangular or tetrahedral lat-
tice, such as occur in multiferroic hexagonal manganites and 
Kagome lattices; and finally water- and spin-ice mat erials, 
such as the rare-earth pyrochlores, which have a residual 
entropy and several interesting emergent properties.

3.1. Examples of geometric defects in condensed matter

3.1.1. Pentagonal tiling and quasicrystals. We begin by trying 
to tile a 2D plane with regular polygons, as shown in figure 6. 
While squares or hexagons can easily be arranged to com-
pletely fill a 2D plane, tiling a plane with regular pentagons 
is impossible without forming kinks called defects (when a 
gap remains between adjacent pentagons) or excesses (when 
adjacent pentagons overlap). These are geometric defects, and 
are a result of the incompatibility of the local-ordering rule of 
regular pentagons with the 2D surface that it is tiling.

The local-ordering rule of regular pentagons is compatible, 
however, with tiling a 3D (or higher-dimensional) surface. In 
dimensions greater than 2, the curvature of the space allows 
the pentagons to fit neatly together avoiding the formation of 
geometric defects and forming a 3D ‘football’, as shown in 
figure 6.

This simple example illustrates the two most relevant char-
acteristics of geometric defects: first, a local constraint (regu-
lar pentagons) prevents long-range ordering from forming 
with the production of geometric defects. Second, to achieve 
long-range order, one must change the global space on which 
the local ordering is applied, in this case increasing the dimen-
sion of the tiling plane from two to three.

The analogous exercise in three dimensions leads to the 
well-known rule that a crystal can not have five-fold rotational 
symmetry. Indeed, the report in 1984 of an apparent five-fold 
symmetry in the Bragg diffraction from alumunim-manga-
nese alloys [42] was so transformative in our understanding 
of crystallography that it was awarded the 2011 Nobel prize 
in Chemistry. We now call materials showing this behavior 
quasi crystals, to reflect the fact that they have long-range 
order but no long-range translational symmetry.

3.1.2. Triangular antiferromagnetism. Another example of 
geometric defects occurs in the case of antiferromagnetically 
coupled collinear magnetic moments (Ising spins) on a trian-
gular lattice. This scenario was first studied by Wannier [43] 
and is depicted in figure 7. Once the two left-most spins have 
coupled antiferromagnetically, the total energy is indepen-
dent of the orientation of the remaining spin and the system 
is frustrated. As a result long-range order is prevented, and a 
measurable entropy results from the large number of possible 
geometrically-frustrated arrangements.

Defect

Figure 6. Pentagons cannot tile a 2D plane. The defects are 
removed when applied to a higher-dimensional space, forming a 
dodecahedron.

J. Phys.: Condens. Matter 29 (2017) 343001
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In figure  7 we show a route to achieving compatibility 
between the local ordering rules and the global space. By 
moving away from the simple Ising picture, which only allows 
for collinear spins, the local ordering can adopt the triangular 
compromise shown. This removes both the frustration and the 
defects. The order parameter space now allows more solutions 
than simply ‘up’ and ‘down’ in the Ising case.

Interestingly, noncollinear triangular antiferromagnetism 
is observed in the hexagonal rare earth manganites described 
above [44, 45]. The Mn atoms form a triangular sublattice, 
and below TN ∼ 100 K their magnetic moments couple anti-
ferromagnetically via the superexchange interaction. Because 
of the incompatibility between the lattice structure and the 
exchange coupling, a noncollinear 120° magnetic ordering is 
the ground state.

3.1.3. Water ice and spin ice. In 1936, calorimetry measure-
ments on water ice down to 15 K revealed a residual entropy, 
that is an entropy greater than that expected for a crystalline 
state [46]. Linus Pauling explained this by considering con-
figurational disorder in the local arrangements of the hydrogen 
atoms surrounding each oxygen [47], using the Bernal–Fowler 
‘ice rules’ [48]. In the cubic and hexagonal forms of ice, each 
oxygen atom is tetrahedrally coordinated by four hydrogen 
atoms, while each hydrogen has two oxygen neighbors  (figure 
8(a)). In order to maintain local H2O entities, each oxygen 
forms strong, short covalent bonds with two neighboring 
hydrogens, and weak, long hydrogen bonds with the other two 
neighboring hydrogens. The very large number of possible 
‘two-in’, ‘two-out’ arrangements is the origin of the residual 
entropy. In this case the geometric frustration arises from the 
incompatibility between the tetrahedral hydrogen–oxygen net-
work and the local bonding rules of the chemical environment.

An analogous situation occurs in the pyrochlore com-
pounds Dy2Ti2O7 and Ho2Ti2O7, commonly referred to as 
‘spin ice’ [14]. In the pyrochlore lattice, the rare-earth ions 
Dy and Ho occupy the corners of tetrahedra. Because of the 
strong spin–orbit coupling of these elements, their spins are 
Ising-like with their easy axes along the tetrahedral axes con-
necting the center of the tetrahedra to the vertices (figure 
8(b)). The minimal energy solution is for two spins to point 
towards the center of the tetrahedron, and two to point out-
wards, resulting in the ‘two-in’, ‘two-out’ spin-ice rules. Like 

the water-ice case, the spin-ice materials have non-zero resid-
ual entropy [49], and furthermore host fascinating emergent 
properties such as monopoles and Dirac strings as a result of 
the geometric frustration [50].

Note that in these examples the new global space that 
allows restoration of the local order has the same topology as 
the initial space and so the defects are not topological.

4. Summary

We have reviewed the concept of topological defects, using 
simple examples from materials and condensed-matter phys-
ics to illustrate their occurrence and properties, and introduced 
the term geometric defect to describe non-topological defects 
that occur as a result of geometric frustration in condensed-
matter systems.

An obvious connection exists between topological and 
geometric phenomena in the sense that both are caused by 
symmetry constraints, and both have a feature that precludes 
the system from reaching a homogeneous global minimum. 
In the case of topological defect formation, the order param-
eter describing the phase transition has a ‘kink’ which can 
never be ironed out, whereas geometric frustration prevents 
the system from adopting long-range order through a kink in 
the short-range order.

The two defect types have important differences, how-
ever. While topological defects result from an incompatibility 
between the topology of the initial and final symmetry groups 
across a phase transition, geometric defects are caused by an 
incompatibility between local ordering rules and the space or 
lattice in which they are applied. Topological defects can only 
be removed by changing the topology of one of the underly-
ing spaces, for example by the introduction of holes or twists, 
so that the initial and final symmetry groups have the same 
homotopy. In contrast, geometric defects can be removed by 
changing the global symmetry to that of a suitable higher sym-
metry group allowing restoration of the local ordering. Since 
the geometric frustration results in a large ground-state degen-
eracy, a signature of geometric defects is an exper imentally 
measurable residual entropy.

Both types of defects are associated with myriad fascinat-
ing material properties, some of which we have reviewed here, 

Figure 7. (a) Collinear Ising spins on a triangular lattice. If the 
spins have antiferromagnetic coupling, they cannot form a long-
range ordering. (b) Noncollinear spins on a triangular lattice. The 
antiferromagnetic coupling between the spins drives formation of a 
120° spin structure.

O

H Dy

O

(a) (b)

Figure 8. (a) Water ice in the Ih structure with the ‘two-in’,  
‘two-out’ arrangement of H atoms surrounding an O atom.  
(b) Spin-ice Dy2Ti2O7 with the Ising spins of the Dy atoms pointing 
in a ‘two-in’, ‘two-out’ configuration along the tetrahedral axes.
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and many of which have only recently been observed. We 
expect that there are many more awaiting discovery.
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Appendix. Mathematical description of Kibble 
mechanism for defect formation

The first homotopy group π1(M) is also called the fundamen-
tal group of the manifold M at a because all groups π1(M, a) 
are identical.

To generalize the first homotopy group to higher homo-
topies, a fundamental theorem will be stated (without proof) 
and then applied to a symmetry-breaking process. The main 
point is that to determine the homotopy group of a symmetry 
breaking, we need not know both the high- and low-symmetry 
groups G and H. Rather it is sufficient to know the topology of 
the vacuum manifold, M = G/H.

Let a simply-connected7 G be spontaneously broken to a 
subgroup H. The vacuum manifold M is then given by the 
space of cosets H ⊂ G , M = G/H.

Let the subgroup H have a component H0 connected to the 
identity. The disconnected components of H can be labelled 
by the quotient group π0(H) = H/H0. This is isomorphic to 
the fundamental group of the coset space π1(G/H), that is

π1(G/H) ∼= π0(H) (A.1)

Thus, whether or not defects will form is determined by the 
topology of the vacuum manifold. Consider the order param-
eter mapping φ : A → M . The defect condition is then

πk(M) �= 1 (A.2)

where πk(M) is the kth-homotopy group of M and k ∈ R. To 
find the homotopy group πk(M), the various classes of homo-
topy mappings from Sk  to M are found. If M is some m-sphere, 
the πk(Sk) is only non-trivial when k � m > 1. Considering 
the case for m = 1, the kth homotopy πk(Sk) is only non-triv-
ial when k = 1. To classify defects, the unbroken symmetry 
group is all that is necessary, provided we started with a sim-
ply-connected group in the beginning. So in order to have a 
defect, a non-trivial group is needed in the first place.

ORCID

Sinéad M Griffin  https://orcid.org/0000-0002-9943-4866
Nicola A Spaldin  https://orcid.org/0000-0003-0709-9499

References

	 [1]	 Aird A and Salje E K H 1998 Sheet superconductivity in twin 
walls: experimental evidence of WO3 J. Phys.: Condens. 
Matter 10 L377

	 [2]	 Salje E K H 2000 Fast ionic transport along twin walls in 
ferroelastic minerals Properties of Complex Inorganic 
Solids 2 ed A Meike et al (Boston, MA: Springer) pp 3–15

	 [3]	 Rößler U K, Bogdanov A N and Pfleiderer C 2006 
Spontaneous skyrmion ground states in magnetic metals 
Nature 442 797

	 [4]	 König M, Wiedmann S, Brüne C, Roth A, Buhmann H, 
Molenkamp L W, Qi X-L and Zhang S-C 2007 Quantum spin 
hall insulator state in HgTe quantum wells Science 318 766–70

	 [5]	 Ohtomo A and Hwang H Y 2004 A high-mobility electron gas 
at the LaAlO3/SrTiO3 heterointerface Nature 427 423–6

	 [6]	 Stengel M, Vanderbilt D and Spaldin N A 2009 Enhancement of 
ferroelectricity at metal-oxide interfaces Nat. Mater. 8 392–7

	 [7]	 Seidel J et al 2009 Conduction at domain walls in oxide 
multiferroics Nat. Mater. 8 229

	 [8]	 Salje E K H 2013 Domain boundary engineering—recent 
progress and many open questions Phase Transit. 86 2

	 [9]	 Yadav A K et al 2016 Observation of polar vortices in oxide 
superlattices Nature 530 198

	[10]	 Spaldin N A, Fechner M, Bousquet E, Balatsky A and 
Nordström L 2013 Monopole-based formalism for the 
diagonal magnetoelectric response Phys. Rev. B 88 094429

	[11]	 Meier D, Seidel J, Cano A, Delaney K, Kumagai Y, 
Mostovoy M, Spaldin N A, Ramesh R and Fiebig M 2012 
Anisotropic conductance at improper ferroelectric domain 
walls Nat. Mater. 11 284

	[12]	 Kiselev N S, Bogdanov A N, Schäfer R and Rößler U K 2011 
Chiral skyrmions in thin magnetic films: new objects for 
magnetic storage technologies? J. Phys. D: Appl. Phys. 
44 392001

	[13]	 Fert A, Cros V and Sampaio J 2013 Skyrmions on the track 
Nat. Nano. 8 152–6

	[14]	 Bramwell S T and Gingras M J P 2001 Spin ice state 
in frustrated magnetic pyrochlore materials Science 
294 1495–501

	[15]	 Kibble T W B 1976 Topology of cosmic strings and domains 
J. Phys. A: Math. Gen. 9 1387

	[16]	 Kibble T W B and Pickett G R 2008 Introduction 
cosmology meets condensed matter Phil. Trans. R. Soc. A 
366 2793–802

	[17]	 Arodz H, Dziarmaga J and Zurek W H 2003 Patterns of 
Symmetry Breaking (Berlin: (Springer) vol 127

	[18]	 Kervaire M A and Milnor J W 1963 Homotopy Groups of 
Spheres: I (Annals of Mathematics Second Series vol 77) 
(Princeton, NJ: Princeton University) pp 504–37

	[19]	 Mermin N D 1979 The topological theory of defects in 
ordered media Rev. Mod. Phys. 51 591

	[20]	 Nakahara M 2003 Geometry Topology and Physics (Boca 
Raton, FL: CRC Press)

	[21]	 Rogula D 1976 Large deformations of crystals, homotopy and 
defects Trends Appl. Pure Math. Mech. 311–31

	[22]	 Kléman M, Michel L and Toulouse G 1977 Classification of 
topologically stable defects in ordered media J. Phys. Lett. 
38 195–7

	[23]	 Trebin H-R 1982 The topology of non-uniform media in 
condensed matter physics Adv. Phys. 31 195–254

7 The restriction of simply-connected group can be imposed by extending 
any (compact, Lie) group into a universal covering group.

J. Phys.: Condens. Matter 29 (2017) 343001

https://orcid.org/0000-0002-9943-4866
https://orcid.org/0000-0002-9943-4866
https://orcid.org/0000-0003-0709-9499
https://orcid.org/0000-0003-0709-9499
https://doi.org/10.1088/0953-8984/10/22/003
https://doi.org/10.1088/0953-8984/10/22/003
https://doi.org/10.1007%2F978-1-4615-1205-9_1
https://doi.org/10.1007%2F978-1-4615-1205-9_1
https://doi.org/10.1038/nature05056
https://doi.org/10.1038/nature05056
https://doi.org/10.1126/science.1148047
https://doi.org/10.1126/science.1148047
https://doi.org/10.1126/science.1148047
https://doi.org/10.1038/nature02308
https://doi.org/10.1038/nature02308
https://doi.org/10.1038/nature02308
https://doi.org/10.1038/nmat2429
https://doi.org/10.1038/nmat2429
https://doi.org/10.1038/nmat2429
https://doi.org/10.1038/nmat2373
https://doi.org/10.1038/nmat2373
https://doi.org/10.1080/01411594.2012.694434
https://doi.org/10.1080/01411594.2012.694434
https://doi.org/10.1038/nature16463
https://doi.org/10.1038/nature16463
https://doi.org/10.1103/PhysRevB.88.094429
https://doi.org/10.1103/PhysRevB.88.094429
https://doi.org/10.1038/nmat3249
https://doi.org/10.1038/nmat3249
https://doi.org/10.1088/0022-3727/44/39/392001
https://doi.org/10.1088/0022-3727/44/39/392001
https://doi.org/10.1038/nnano.2013.29
https://doi.org/10.1038/nnano.2013.29
https://doi.org/10.1038/nnano.2013.29
https://doi.org/10.1126/science.1064761
https://doi.org/10.1126/science.1064761
https://doi.org/10.1126/science.1064761
https://doi.org/10.1088/0305-4470/9/8/029
https://doi.org/10.1088/0305-4470/9/8/029
https://doi.org/10.1098/rsta.2008.0098
https://doi.org/10.1098/rsta.2008.0098
https://doi.org/10.1098/rsta.2008.0098
https://doi.org/10.2307/1970128
https://doi.org/10.2307/1970128
https://doi.org/10.1103/RevModPhys.51.591
https://doi.org/10.1103/RevModPhys.51.591
https://doi.org/10.1051/jphyslet:019770038010019500
https://doi.org/10.1051/jphyslet:019770038010019500
https://doi.org/10.1051/jphyslet:019770038010019500
https://doi.org/10.1080/00018738200101458
https://doi.org/10.1080/00018738200101458
https://doi.org/10.1080/00018738200101458


Topical Review

8

	[24]	 Volovik G E 2003 The Universe in a Helium Droplet (Oxford: 
Oxford University Press)

	[25]	 Dussaux A, Schoenherr P, Koumpouras K, Chico J, Chang K, 
Lorenzelli L, Kanazawa N, Tokura Y, Garst M and 
Bergman A 2016 Local dynamics of topological magnetic 
defects in the itinerant helimagnet FeGe Nat. Commun. 
7 12430

	[26]	 Skyrme T H R 1962 A unified field theory of mesons and 
baryons Nucl. Phys. 31 556

	[27]	 Bertaut E F, Pauthenet R and Mercier M 1963 Proprietes 
magnetiques et structures du manganite d’yttrium Phys. 
Lett. 7 110–1

	[28]	 Yakel H L, Koehler W C, Bertaut E F and Forrat E F 1963  
On the crystal strcuture of the manganese (III) trioxides  
of the heavy lanthanides and yttrium Acta Cryst.  
16 957–62

	[29]	 Łukaszewicz K and Karut-Kalicinska J 1974 X-ray 
investigations of the crystal structure and phase transitions 
of YMnO3 Ferroelectrics 7 81–2

	[30]	 Griffin S M, Lilienblum M, Delaney K T, Kumagai Y, 
Fiebig M and Spaldin N A 2012 Scaling behavior and 
beyond equilibrium in the hexagonal manganites Phys. Rev. 
X 2 041022

	[31]	 van Aken B B, Palstra T T M, Filippetti A and Spaldin N A 
2004 The origin of ferroelectricity in magnetoelectric 
YMnO3 Nat. Mater. 3 164–70

	[32]	 Lonkai T, Tomuta D G, Amann U, Ihringer J, 
Hendrikx R W A, Tobbens D M and Mydosh J A 2004 
Development of the high temperature phase of hexagonal 
manganites Phys. Rev. B 69 134108

	[33]	 Fennie C J and Rabe K M 2005 Ferroelectric transition in 
YMnO3 from first principles Phys. Rev. B 72 100103

	[34]	 Artyukhin S, Delaney K T, Spaldin N A and Mostovoy M 
2014 Landau theory of topological defects in multiferroic 
hexagonal manganites Nat. Mater. 13 42

	[35]	 Kibble T W B 2000 Classification of topological defects, their 
relevance to cosmology, elsewhere Topological Defects, the 
Non-Equilibrium Dynamics of Symmetry Breaking Phase 
Transitions (NATO Science Series vol C 549) (Dordrecht: 
Kluwer)

	[36]	 Choi T, Horibe Y, Yi H T, Choi Y J, Wu W and Cheong S-W 
2010 Insulating interlocked ferroelectric and structural 
antiphase domain walls in multiferroic YMnO3 Nat. Mater. 
9 253–8

	[37]	 Lilienblum M, Soergel E and Fiebig M 2011 Manipulation 
of ferroelectric vortex domains in hexagonal manganites J. 
Appl. Phys. 110 052007

	[38]	 Buschow K H J 2003 Handbook of Magnetic Materials vol 15 
(Amsterdam: Elsevier)

	[39]	 Toulouse G 1977 Commun. Phys. 2 115
	[40]	 Villain J 1977 Two-level systems in a spin-glass model. I. 

general formalism and two-dimensional model J. Phys. C: 
Solid State Phys. 10 4793

	[41]	 Shechtman D, Blech I, Gratias D and Cahn J 1984 Metallic 
phase with long-range orientational order and no 
translational symmetry Phys. Rev. Lett. 53 1951

	[42]	 Moessner R and Ramirez A P 2006 Geometrical frustration 
Phys. Today 59 24–9

	[43]	 Wannier G H 1950 Antiferromagnetism the triangular ising net 
Phys. Rev. 79 357–64

	[44]	 Bertaut E F and Mercier M 1963 Structure magnetique de 
MnYO3 Phys. Lett. 5 27

	[45]	 Fiebig M, Fröhlich D, Kohn K, Leute S, Lottermoser T, 
Pavlov V V and Pisarev R V 2000 Determination of the 
magnetic symmetry of hexagonal manganites by second 
harmonic generation Phys. Rev. Lett. 84 5620–3

	[46]	 Giauque W F and Stout J W 1936 The entropy of water and 
the third law of thermodynamics the heat capacity of ice 
from 15 to 273° K J. Am. Chem. Soc. 58 1144

	[47]	 Pauling L 1935 The structure and entropy of ice and of other 
crystals with some randomness of atomic arrangement 
J. Am. Chem. Soc. 57 2680

	[48]	 Bernal J D and Fowler R H 1933 A theory of water and 
ionic solution, with particular reference to hydrogen and 
hydroxyl ions J. Chem. Phys. 1 515

	[49]	 Ramirez A P, Hayashi A, Cava R J, Siddharthan R and 
Shastry B S 1999 Zero-point entropy in spin ice Nature 
399 333

	[50]	 Castelnovo C, Moessner R and Sondhi S L 2008 Magnetic 
monopoles in spin ice Nature 451 42

J. Phys.: Condens. Matter 29 (2017) 343001

https://doi.org/10.1038/ncomms12430
https://doi.org/10.1038/ncomms12430
https://doi.org/10.1016/0029-5582(62)90775-7
https://doi.org/10.1016/0029-5582(62)90775-7
https://doi.org/10.1016/0031-9163(63)90627-9
https://doi.org/10.1016/0031-9163(63)90627-9
https://doi.org/10.1016/0031-9163(63)90627-9
https://doi.org/10.1107/S0365110X63002589
https://doi.org/10.1107/S0365110X63002589
https://doi.org/10.1107/S0365110X63002589
https://doi.org/10.1080/00150197408237954
https://doi.org/10.1080/00150197408237954
https://doi.org/10.1080/00150197408237954
https://doi.org/10.1103/PhysRevX.2.041022
https://doi.org/10.1103/PhysRevX.2.041022
https://doi.org/10.1038/nmat1080
https://doi.org/10.1038/nmat1080
https://doi.org/10.1038/nmat1080
https://doi.org/10.1103/PhysRevB.69.134108
https://doi.org/10.1103/PhysRevB.69.134108
https://doi.org/10.1103/PhysRevB.72.100103
https://doi.org/10.1103/PhysRevB.72.100103
https://doi.org/10.1038/nmat3786
https://doi.org/10.1038/nmat3786
https://doi.org/10.1038/nmat2714
https://doi.org/10.1038/nmat2714
https://doi.org/10.1038/nmat2714
https://doi.org/10.1063/1.3623777
https://doi.org/10.1063/1.3623777
https://doi.org/10.1142/9789812799371_0009
https://doi.org/10.1142/9789812799371_0009
https://doi.org/10.1088/0022-3719/10/23/013
https://doi.org/10.1088/0022-3719/10/23/013
https://doi.org/10.1103/PhysRevLett.53.1951
https://doi.org/10.1103/PhysRevLett.53.1951
https://doi.org/10.1063/1.2186278
https://doi.org/10.1063/1.2186278
https://doi.org/10.1063/1.2186278
https://doi.org/10.1103/PhysRev.79.357
https://doi.org/10.1103/PhysRev.79.357
https://doi.org/10.1103/PhysRev.79.357
https://doi.org/10.1016/S0375-9601(63)80014-6
https://doi.org/10.1016/S0375-9601(63)80014-6
https://doi.org/10.1103/PhysRevLett.84.5620
https://doi.org/10.1103/PhysRevLett.84.5620
https://doi.org/10.1103/PhysRevLett.84.5620
https://doi.org/10.1021/ja01298a023
https://doi.org/10.1021/ja01298a023
https://doi.org/10.1021/ja01315a102
https://doi.org/10.1021/ja01315a102
https://doi.org/10.1063/1.1749327
https://doi.org/10.1063/1.1749327
https://doi.org/10.1038/20619
https://doi.org/10.1038/20619
https://doi.org/10.1038/nature06433
https://doi.org/10.1038/nature06433



