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Flexible Strategies for Sensory Integration during
Reach Planning

Samuel Judah Sober

Abstract

The brain's success in perceiving and interacting with the world depends on its abil
ity to assimilate multiple streams of sensory information. One particularly important
sensory integration problem concerns the use of sensory feedback from the body to
plan and execute arm movements. Information about arm position is available to
both vision and proprioception, and these signals must be integrated in order to
plan accurate reaches. Although both modalities can encode arm position, the ques
tion of how the brain weights these signals has not been systematically investigated.
To address this issue, we developed a psychophysical technique for quantifying the
relative reliance on vision versus proprioception during reach planning. Subjects
planned and executed reaching movements while receiving virtual visual feedback.
By analyzing the reaching errors that resulted from shifting the visual feedback away
from the true hand position, we measured sensory integration at two different stages
of reach planning. As described in Chapter 1, we found that the first planning stage
relies mostly on visual information, whereas the second stage relies more on proprio
ceptive signals. This difference suggests that the planning computations performed
at each stage inform the selection of sensory input. This hypothesis is further sup
ported by the results presented in Chapter 2, which demonstrate that altering the
details of the sensorimotor task drives changes in sensory integration. In Chapter
3, we explore the consequences of sensorimotor adaptation on sensory integration,
and show that the effects of learning can drive changes at a single stage of reach
planning. Lastly, in Chapter 4 we present a set of hypotheses about where and how
the two planning stages might be implemented in the primate brain, and suggest a
series of experiments designed to confirm the computational role of single neurons.

Sº Cus ºffer
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Chapter 1 1

Chapter 1:
Sensory Integration during Motor

Planning

Abstract

When planning goal-directed reaches, subjects must estimate the position of the arm
by integrating visual and proprioceptive signals from the sensory periphery. These
integrated position estimates are required at two stages of motor planning: first
to determine the desired movement vector, and second to transform the movement
vector into a joint-based motor command. We quantified the contributions of each
sensory modality to the position estimate formed at each planning stage. Subjects
made reaches in a virtual reality environment in which vision and proprioception
were dissociated by shifting the location of visual feedback. The relative weighting
of vision and proprioception at each stage was then determined using computational
models of feedforward motor control. We found that the position estimate used for
movement vector planning relies mostly on visual input, whereas the estimate used to
compute the joint-based motor command relies more on proprioceptive signals. This
suggests that when estimating the position of the arm, the brain selects different
combinations of sensory input based on the computation in which the resulting
estimate will be used.

--
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Chapter 1 2

Sensory channels often provide redundant information, as is the case when both

visual and proprioceptive feedback encode the position of the arm. Recent stud

ies suggest that when integrating redundant signals, the brain forms a statistically

optimal (i.e. minimum-variance) estimate by weighting each modality according to

its relative precision. Minimum-variance models have been shown to account for hu

man performance when subjects integrate vision and touch (Ernst and Banks, 2002),

vision and audition (Ghahramani, 1995), and other combinations of sensory input

(Welch et al., 1979; Jacobs, 1999; van Beers et al., 1999). These models are appealing

because they provide a simple rule by which the brain could minimize errors due to

sensory noise.

While these models predict a single, optimal estimate, other lines of research

suggest that the brain forms multiple and sometimes inconsistent estimates of envi

ronmental variables. For example, studies of patients with temporal or parietal lobe

lesions indicate that the brain has independent streams of visual processing for per

ceptual as opposed to motor tasks (Goodale and Milner, 1992; Milner and Goodale,

1995). Studies of reaching to illusory objects have shown a similar dissociation in

normal subjects (Aglioti et al., 1995; Haffenden et al., 2001). These results suggest

that sensory signals might be processed differently depending on how they will be

Here we focus on the integration of visual and proprioceptive feedback from the

arm before the execution of a reach. This study seeks to quantify how vision and

proprioception are combined to estimate arm position and to determine whether the

nervous system uses a single criterion (e.g. minimum-variance) to combine the two

modalities, or if different combinations of sensory input are selected at each stage

of motor planning. Our approach is to displace the visual feedback from the arm

before movement onset and use the resulting movement errors to infer the relative

weighting given to each sensory modality.

.º
º º
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Chapter 1 3

Our analysis relies on the premise that estimates of arm position (a term we use

to denote both the position of the fingertip and the angles of the joints) are used

in two separate stages of motor planning and on the observation that distinct pat

terns of movement errors would result from position misestimation at each stage. In

the first stage, a desired movement vector in visual (extrinsic) space is computed

by subtracting the estimated initial arm position from the target location. Clearly,

if this initial position is misestimated, the planned movement vector will be wrong

(Rossetti et al., 1995). We will refer to the resulting error pattern, illustrated in Fig

ure 1A and B, as movement vector (MV) error. A second and perhaps less intuitive

source of error is the transformation of the extrinsic movement vector into a joint

based (intrinsic) motor command (Ghilardi et al., 1995; Goodbody and Wolpert,

1999). This transformation is equivalent to evaluating an inverse model of the arm

(Jordan, 1996) and requires an estimate of the arm's initial position. Position mis

estimation at this stage of reach planning will also result in movement errors. An

example is illustrated in Figure 1C. A leftward shift in estimated arm position causes

the subject to choose the wrong motor commands (an extension or flexion of the el

bow), resulting in clockwise (CW) errors in initial reach direction (Figure 1D). We

will refer to this type of error as inverse model (INV) error. While both MV and

INV error result from misestimation of the arm's initial position, the two stages of

motor planning may rely on two different position estimates.

The integration of vision and proprioception at these two planning stages has

never been independently and simultaneously characterized. Here we show that

shifts of visual feedback before movement onset result a combination of the MV and

INV error patterns. Fitting the observed errors with simple mathematical models

of motor planning allows us to quantify the relative contributions of vision and

proprioception to the position estimate used at each planning stage.
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Figure 1: Misestimation of arm position results in two types of reach errors. (A) Errors resulting
from a leftward shift in the position estimate used to plan the movement vector. The planned
movement directions (gray arrows) differ from the actual hand-to-target directions (dashed lines).
The pattern of directional errors (colored arrows) is plotted as a function of target direction in (B).
A rightward shift would produce the opposite pattern (see Figure 4B). CW: clockwise; CCW: coun
terclockwise. (C) Errors resulting from a leftward shift in the position estimate used to transform
the desired movement vector into a joint-based motor command. The directions of the achieved
movements (black arrows) differ from the planned movement directions (grey arrows). The pat
tern of errors (colored arrows) is plotted as a function of planned movement direction in (D). The
leftward shift shown here produces CW errors for all planned reach directions. A rightward shift
would produce CCW errors.
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Chapter 1 5

Materials and Methods

Experimental Setup and Data Collection

Seven right-handed subjects (2 female, 5 male) participated in the experiment. Sub

jects were 26-33 years of age and were healthy with normal or corrected-to-normal

vision. All subjects were naive to the purpose of the experiment and were paid for

their participation.

The task was performed with the right arm, which rested on a shoulder-height

table (Figure 2A). In order to minimize friction, the arm was supported by air

sleds (0.73 kg upper arm, 1.18 kg forearm). The wrist was pronate and fixed in

the neutral position with a brace, and the index finger was extended in a custom

splint that permitted only vertical movement of the digit. Both shoulders were

lightly restrained to minimize movement of the torso. This configuration restricted

movement of the arm to two degrees of freedom and to a horizontal plane just above

the table. Arm position could therefore be expressed interchangeably as ac, a two

dimensional vector representing the Cartesian position of the fingertip, or as 6, a

two-dimensional vector composed of the shoulder and elbow angles.

Three dowels, which served as tactile start points, were fixed a few centimeters

above the plane of movement and could only be reached when the subject raised his

or her fingertip from the splint. The visual feedback spot and target circles were

presented via a mirror and rear-projection screen such that the images appeared

to lie in the plane of the arm. An LCD projector (1024 x 768 pixels) with a 75

Hz refresh rate was used. A drape prevented vision of the arm, the table, and the

dowels. Five infrared-emitting diodes were attached to each subject's arm and torso

(Figure 2B). Arm position data were sampled at 120 Hz using an infrared tracking

system (OPTOTRAK, Northern Digital, Waterloo, Ontario). Elbow and shoulder
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Figure 2: Data collection and experimental design. (A) Side view of the behavioral apparatus.
For clarity, the tactile start points (dowels) and drape are not shown. (B) Top view of a subject
showing the placement of the infrared markers (gray dots). Joint angles (61 and 62) were computed
from these five positions and from the measured lengths of the upper and lower arm (L1 and L2).
(C) Workspace configuration. The dowels marking the three tactile start points (gray dots) were
arranged in a line parallel to the subject's left-right axis, and were spaced 6 cm apart. L - left
start point, C – center start point, R - right start point. (D) Trial types. Grid entries indicate the
tactile start point (left column) and the presence of a leftward or rightward shift (right column) in
each trial type.

angles were computed using the five marker positions and the lengths of the upper

arm and forearm, which were measured using standard anatomical landmarks.

Task Design

The workspace contained the three start points and eight targets (Figure 2C). The

dowels marking the start points were spaced 6 cm apart, and the center dowel was

positioned approximately 40 cm from the subject's chest and slightly to the right of

midline. The targets were evenly arrayed on a circle of radius 18 cm centered at the

middle start point.

The experiment consisted of 160 trials. At the beginning of every trial, text

reading “Left”, “Center”, or “Right” appeared briefly at a random location on the

screen, instructing the subject to locate the appropriate dowel with his or her raised

index finger. The trial continued when (1) the fingertip was within 1 cm of a point

directly below the appropriate dowel and (2) the fingertip was lowered back to the

ºº



Chapter 1 7

splint, where it remained for the rest of the trial. At this point, the visual feedback

spot (a white circle of radius 3 mm) appeared at the location of the subject's fingertip

or displaced to the left or right by 6 cm. Simultaneously, a red target of radius 5 mm

appeared at one of the eight target locations. After a variable delay of 500-1500

msec, the target turned green, cueing the subject to begin the reach. Subjects were

instructed to reach directly and accurately to the target. When the fingertip had

moved 5 mm from its starting point, the feedback spot was extinguished, and the

remainder of the reach was performed without visual feedback. The trial ended

when the tangential fingertip velocity fell below 1.2 mm/sec. The target remained

illuminated for the entire reach.

The experiment was comprised of five trial types (Figure 2D). In Left-Zero, Right

Zero, and Center-Zero trials, reaches were made from each of the three start points

with no visual shift. In Center-Left and Center-Right trials, reaches from the center

start point were made with 6 cm leftward and rightward visual shifts, respectively.

Note that with these shifts, the feedback spot appeared at the locations of the left

and right tactile start points. The experiment consisted of four reaches to each

of the eight targets under these five conditions in a pseudorandom order, totaling

4 × 8 x 5 = 160 reaches. In order to prevent subjects from adapting to the visual

shifts, trials with left shifts, right shifts, and veridical feedback were pseudorandomly

interleaved, and no two consecutive trials included the same shift. Adaptation was

also unlikely since only two-fifths of the trials included shifts and because the visual

feedback (shifted or veridical) was only available at the start point.

A set of 32 familiarization trials preceded the actual experiment. First, a block

of 24 Left-Zero, Center-Zero, and Right-Zero trials was performed with continuous

visual feedback to acclimate subjects to the task and experimental apparatus. Next,

a block of 8 trials was performed with initial feedback only to familiarize subjects

t
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Chapter 1 8

with reaching in the absence of visual feedback. After the experiment was completed,

subjects were asked whether they felt that the location of the visual feedback spot

ever deviated from the location of their fingertip. All but one subject reported being

unaware of any visual shift. The remaining subject (HA) reported that the location

of the feedback spot seemed to have been displaced on a small number of trials (fewer

than five).

Data Analysis and Model Fitting

Trajectory analysis. Arm position data were smoothed with a low-pass Butter

worth filter with a cutoff frequency of 6 Hz, and the fingertip velocity and acceler

ation were successively computed using numerical differentiation (first differences).

We quantified initial reach directions by determining the angle of the instantaneous

velocity or acceleration vector at the point along the trajectory at which the tangen

tial velocity first exceeded 40% of its peak value.

Modeling the initial movement direction. In building an explicit model of

reach planning, we had to specify which extrinsic and intrinsic variables are used.

Behavioral studies have variously suggested that reach planning uses either kinematic

(Flash and Hogan, 1985; Atkeson and Hollerbach, 1985) or dynamic (Uno et al., 1989;

Gordon et al., 1994a) variables, and neurophysiological findings have been cited to

support both hypotheses (Cheney and Fetz, 1980; Georgopoulos et al., 1982; Todorov,

2000). We therefore fit our data twice, using the two models shown in Figure 3. In

the velocity command model, the motor command is specified kinematically (as

joint angle velocities), whereas in the torque command model the motor command

is specified dynamically (as joint torques).
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Figure 3: Two models of feedforward motor planning. Arm position estimates £My and £INV
are computed by combining visual and proprioceptive signals. A movement vector describing the
desired direction of the initial velocity (£") or acceleration (£") of the hand is computed by sub
tracting £My from the target location r". An inverse model transforms this desired extrinsic vector
into an intrinsic motor command specifying joint angle velocities (6) or torques (t), depending on
the model being implemented. This transformation makes use of a second position estimate, ány.
Finally, the motor command is executed, determining the initial hand trajectory. Note that the
loop through the “Vision” and “Proprioception” boxes does not imply feedback control; in these
models, the position estimates are only used to plan the plan the initial, feedforward component of
a movement
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The goal of these models is to understand how visual and proprioceptive signals

from the sensory periphery combine to guide the initial, feedforward, component of

the reach. In these models, only the initial velocities or accelerations of movements

are computed, and feedback control is not modeled. We assume that the central ner

vous system weights the visual (£vis) and proprioceptive (£prop) position estimates

and adds them to create two estimates of the position of the arm, £My (‘movement
vector') and £ny (inverse model'):

*Mv = a Mv £vis + (1 − a Mv) prop (1)

The estimate £My is used to determine the desired movement vector in both models.
This vector specifies desired initial fingertip velocity in the velocity command model

and the desired initial fingertip acceleration in the torque command model. The sec

ond estimate, *INv. is used to convert the desired movement into an intrinsic motor

command. This command is expressed as joint velocities in the velocity command

model and as joint torques in the torque command model. In both models, therefore,

the weighting parameters oMy and any characterize sensory integration at the two
stages of reach planning.

Velocity Command Model. In the velocity command model, the planned move

ment vector is defined as the desired initial velocity of the fingertip (it’). The direc

tion of this velocity is specified by

&á' = 4 (rº – £My) + was (3)

where Zac represents the angle of vector a, a represents the location of target de

--
º

º
º *
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Chapter 1 11

[1,..., 8), £My is the estimated hand position defined in Equation 1, and wa is an
angular offset from the straight line connecting the estimated initial position and

target tº. We included the wa terms to account for the fact that natural, unperturbed

reaching movements are slightly curved (Soechting and Lacquaniti, 1981; Atkeson

and Hollerbach, 1985; Uno et al., 1989), resulting in initial reach directions that differ

from the target direction. This baseline bias was fit from the Center-Zero trials: each

wd was set to the average angular difference between the initial velocity direction and

the target direction for target r}. Equation 3 does not specify the magnitude of it",

as ultimately only the predicted direction of movement will be compared to the data.

Note that the pattern of errors in Zá' resulting from misestimation of £My is the
MV error shown in Figure 1A and B.

Given a desired Cartesian fingertip velocity it", the ideal joint angle velocity

command would be:

"ideal = J~"(9) ■ ’

where the Jacobian matrix J(9) is the gradient of the fingertip location with respect

to the joint angles:
da:

The kinematics equation a = K(0) describes the mapping from joint angles to finger

tip locations. Note that since the arm is restricted to planar, two-joint movements,

both the kinematics and the Jacobian are invertible. Since the internal inverse model

must rely on an estimate of the position of the arm (£ny), the implemented motor
command will be

6 = J~"(Ny)+" (4)

where 9My = K '(inv)
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Finally, this joint velocity command is executed, and the arm moves with an

initial fingertip velocity determined by the Jacobian (evaluated at the true arm

position):

# = JC9)6 = JC9).J.'(ºny) #" (5)

This model predicts that the initial velocity i will be distorted from the desired veloc

ity it" if the arm position is misestimated. The matrix Dvel(9, "Nv) = J(9) J "(INV).
which we will call the velocity distortion matrix, determines the INV error (Fig

ure 1C and D) in the velocity command model.

Torque Command Model. In addition to the velocity command model, which

assumes that reaches are planned in kinematic coordinates, we also considered a

model in which the dynamics of the movement are controlled via the joint torques

T. In the torque command model, the movement vector specifies a desired initial

acceleration, £", which is offset by some angle wa from the target direction:

The wa in this model are determined by measuring the average initial accelerations

for reaches to each target in the baseline (Center-Zero) trials.

The ideal joint torque command can be computed from the desired acceleration

as follows. The relationship between joint and endpoint acceleration is found by

differentiating Equation 5 with respect to time:

■ t = J064;U();
# & J(9)6 (7)

ºt
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The approximation in Equation 7 follows from the fact that we are only considering

the initial component of the movement, when the magnitude of the angular velocity

is small. The relationship between the joint torques and the kinematic variables of

the movement is given by the dynamics equations for the planar, two-joint, arm:

T = I(9)64- H(9,6)6

T ~ I(9) ■ (8)

where I is the position-dependent, non-isotropic inertia of the arm, and the H term

represents velocity-dependent centripetal forces, joint interaction torques, and damp

ing forces at the joints. Since this latter term varies linearly with respect to joint

velocity, it is small at the onset of movement, yielding the approximation of Equa

tion 8. Inverting Equation 7 and combining it with Equation 8, we obtain the ideal

joint torque command,

Tideal fiº I(9) J-'(9) #" (9)

However, the true value of the arm position is not available to the nervous system,

which must make use of the estimated joint angles, "Nv when computing the inverse
model:

xT = I(Ny).J.'(Nv);

Finally, we can invert Equation 9 to determine the fingertip acceleration that results

from a given joint torque command:

£ as J(9) I-'(9)T

Combining the two previous equations, we arrive at an expression for the distortion

t
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of the planned fingertip acceleration:

# = JC9) I'(9) I(Ny) J (NV)* (10)

The resulting acceleration distortion matrix is given by

Dace(0,&Nv) = JC)I (9) I(Ny).J.'(Ny),

where I(9) is the inertia matrix of the arm. The desired acceleration (£") will only

be achieved if the arm position estimate "Nv is correct. Note that Equations 8-10

represent only the instantaneous, initial dynamics of a rigid body model of the arm.

Our intention in employing this simplified model is only to show that our results

are robust to a consideration of the arm's inertia, and are therefore not dependent

on the purely kinematic analysis performed with the velocity command model. In

order to fit the torque command model to the data, we used previously published

estimations of the inertia matrix I(9) (Sabes and Jordan, 1997).

Generating quantitative model predictions. In order to generate quantitative

model predictions for comparison to our data, the model target locations (r) were

set to the locations of the visual targets, and the arm position variables (a and 6)

were set to the measured pre-movement values. Since it is not possible to measure

£prop and £vis directly, we assumed that vision and proprioception were unbiased,

i.e. that £prop = a and that £vis corresponded to the location of the visual feedback
spot. We will consider the possible consequences of sensory biases in the Results and

Appendix.

To illustrate the errors predicted by the velocity command model, we used the

model to simulate the effects of the shifts used in the actual experiment (Figure

º
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4). In these simulations, £prop and a were set to the location of the center start
point, £vis was placed 6 cm to the left or right of ac, and the wa terms were set to

zero. The mean arm length across subjects was used, and various values of oxy and
ony were chosen to demonstrate the influence of these mixing parameters on the
predicted errors.

Fitting model predictions to the data. For each subject and model, the values

of oxy and ony were simultaneously fit to a single dataset consisting of all of
the Center-Zero, Center-Right, and Center-Left trials for each subject (96 trials

total). The weighting parameters oMy and any were fit to minimize the squared
error between the model predictions and the measured initial movement directions

using a general purpose nonlinear regression algorithm (nlinfit in MATLAB, The

Mathworks Inc., Natick, MA). Note that only the directions, and not the magnitudes

of the initial velocities (velocity command model) or accelerations (torque command

model) were compared to the model predictions. Since the parameter space was

only two-dimensional, we were able to plot the error surface over a reasonable range

of parameter values. These plots were smooth, and no local minima were observed

(data not shown), confirming our observation that the fit values did not depend on

the initial conditions used in the optimization.

Hypothesis testing and confidence limits. To test the hypothesis that a given

position estimate relies on signals from a certain modality, we employed permutation

tests (Good, 2000) against the null hypothesis that the estimate relies exclusively

on the other modality. First consider a test for whether £My makes use of visual
information. The null hypothesis is Ho ; oxy = 0, i.e. that only proprioception is
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used. Rearrangement of Equation 1 yields

*Mv
F

£prop+o Mv(ivis-àprop) (1')

The null hypothesis states that tyry is independent of (£vis-àprop) in Equation 1'.
By substituting Equation 1' for Equation 1 in the models and permuting the trials

from which this difference is taken, we broke any existing dependence of £My on
on £vis, thereby constructing synthetic datasets which obeyed Ho. By creating 1000

such datasets and fitting oxy to each of them, we created a distribution of synthetic
oMy under Ho, which were typically centered around oxy = 0. We rejected Ho if
the oxy fit to the true (unpermuted) dataset was greater than the 95" percentile

of the synthetic distribution. We tested the null hypothesis Ho ; any = 0 in the
same fashion.

Next, we tested whether £My makes use of proprioceptive information. In this
case the null hypothesis is Ho ; oxy = 1, i.e. that only vision is used. A different
rearrangement of Equation 1 yields

£Mv = vis-H(1-aMV)(£prop-ºvis) (1")

If we define 3My = (1-oxiv) then the null hypothesis can be written Ho ; 3My = 0.
By substituting Equation 1" for Equation 1 in the models and permuting the trials

from which the difference (£prop–3:vis) is taken, we broke any existing dependence of

£My on £prop, thereby constructing synthetic datasets which obeyed Ho. Using the
permutation methods described in the previous paragraph, we then tested whether

3My from the unpermuted dataset was greater than the 95" percentile of the syn

thetic distribution of 3My. We tested the null hypothesis Ho ; oisy = 1 in the same
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fashion.

Finally, we tested whether there was a difference in the relative weighting of

vision and proprioception between the two position estimates. To accomplish this, we

performed a permutation test comparing each model to a simplified version of itself in

which only a single weighting of vision and proprioception is used, Ho: oyry = onv
and £My = *ny. This test was implemented by replacing oy■ y and any with a
common part O. and a difference odiff.COIn In

*comm T *MV

O'diff = QLNV T QMV

Applying these definitions to Equations 1 and 2, we obtain the following:

*Mv = £prop + *Comm(*vis
-

£prop) (1")

*INV = £prop + "commºvis
-

£prop) + ediff{ºvis
-

£prop) (2")

Under Ho, there is no difference between the two original weighting parameters,

so odiff = 0. This means that in Equation 2" there would be no dependence on
(£vis–àprop) beyond that accounted for in the ocomm term. Due to normal statistical
variation, however, inclusion of odiff in the model would still improve the fit. We

therefore compared the best-fit value of odiº from the real dataset to values obtained
from 1000 synthetic datasets in which we permuted the trials from which (£vis —

£prop) were taken for the odiff term in Equation 2". For the ocomm terms, the true
values of (£vis – £prop) were used. If the absolute value of the odiff fit to the true
data was greater than the 95" percentile obtained from the synthetic datasets, we

inferred that the o diff term reflects a real difference between QMV and QINV, and we
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rejected Ho. Additionally, we performed a more standard F-test of the “extra sums

of squares” obtained by including the second mixing parameter (odiff) in the model
(Draper and Smith, 1998).

In order to put confidence limits on the fit values of oxy and any, we employed
a bootstrapping technique (Efron and Tibshirani, 1993). For each subject, we created

1000 datasets in which the data from every trial were resampled (with replacement)

from one of the four trials of the same type and with the same target. The parameters

oMy and ony were then fit to each resampled dataset. The resulting distribution

was used to find the confidence ellipses for the fit parameter vectors ■ o My, opy] for
that subject.

Results

Errors in initial reach direction. The velocity and torque command models

predict the errors in initial movement direction for given values of the weighting

parameters a My and ony. Figure 4 shows the predictions made by the velocity
command model for four sets of parameter values. Similar error patterns are pre

dicted by the torque command model.

Figure 5 shows a typical subject's reach trajectories for trials beginning at the

center start point with a leftward visual shift (panel A), no shift (panel B), and a

rightward shift (panel C). The shift-induced changes in movement direction were

opposite in sign for the two visual shifts. Initial velocity directions for each of these

movements are shown in Figure 5D. As was typical, this subject displayed directional

biases in the unshifted condition. The wa (Equation 3, Methods) were set to the mean

of these biases for each direction (Figure 5D, dotted line). Figure 5E shows the

* º
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Target direction (deg) Target direction (deg)

Figure 4: Shift-induced errors in initial reach direction predicted by the velocity command model
with various values of o and of Ny. Each plot shows the predicted errors in initial velocity
direction as a function of target direction. Left column: o, = 0; right column: o = .7; top
row; any = 0; bottom row: of NV = .7. Black lines: leftward shift; gray lines: rightward shift.
Positive values on the ordinate correspond to CCW errors. Note that (B) shows the effects of MV
error alone, (C) shows the effects of INV error alone, and (D) shows their combined effects when
both £MV and iTNV are shifted.
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Figure 5: Data and velocity-command model fit from one subject. Movement paths from all Center
Left (A), Center-Zero (B), and Center-Right (C) trials. (D) Initial velocity direction (with respect
to target direction) as a function of target direction for Center-Left (•, individual trials; solid black
line, mean), Center-Zero (L, dotted line), and Center-Right (s, gray line) trials. (E) Shift-induced
error as function of target direction. Dashed lines represent the errors predicted by the best-fit
velocity-command model (oyfy = .97, oDNV = .34). Other symbols as in panel D. Data are from
subject HA.



Chapter 1 21

(A) (B)
- ? 3 O

1 5

1 5

0

-30 -90 0 90 180 30 -90 0 90 180
Target direction (deg) Target direction (deg)

(C) (D)
30 _ 30

§ 3.S 15 S 15
º

; Ohº! ; 0
- +5E-15 = -15
#30 #

-90 0 90 180 -90 0 90 180
Target direction (nominal,deg) Target direction (nominal,deg)

Figure 6: Initial velocity data averaged across all subjects. (A) Initial velocity direction (with
respect to target direction) for Center-Left (solid black line), Center-Zero (dotted line), and Center
Right (gray line) trials. (B) Shift-induced errors in initial velocity direction (line colors as in A). (C)
Initial velocity direction (with respect to target direction) for Left-Zero (solid black line), Center
Zero (dotted line) and Right-Zero (gray line) trials. (D) Data from (C) after subtraction of the
mean Center-Zero directions. Line colors as in (C). Target directions in (C) and (D) are relative
to the center start point for ease of comparison. Errorbars in all plots are +1 s.e. Dashed lines in
(B) and (D) indicate means for a given dataset.

velocity command model fit to this subject's shift-induced reach errors, which were

computed by subtracting the appropriate wa from the Center-Left and Center-Right

initial reach directions. The model captures the main features of the observed error

pattern (R* = 0.73). The fit values of the weighting parameters were oMy = .97
and ony = .34. This suggests that when planning a movement vector this subject
relied almost entirely on vision to estimate the position of the hand. In contrast,

when computing how this vector should be transformed into a motor command,

the subject used a mixed estimate that was 34% visual and 66% proprioceptive.

Consistent with these fit values, the data and model fit seen in Figure 5E show an

error pattern intermediate between those shown in Figure 4B and D.

Initial velocity data averaged across all subjects are shown in Figure 6. Baseline
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directional biases (dotted lines in panels A and C) varied from subject to subject,

but were always within 20° of the target direction (mean + s.e., 7.3° E 2.0). All

but one subject showed significant variation in the values of the baseline bias across

target directions (ANOVA, p < .05). The shift-induced errors in initial velocity

direction are shown in Figure 6B. To highlight the effects of INV error, the mean

errors across targets for the two shifts are shown as dashed lines. The separation

between these means reflects the rotational (CW-CCW) shifts typical of INV error

(see Figure 4C and D).

We examined the initial directions of movements made from the left and right

start points in the absence of visual shifts in order to test whether the shift-induced

errors were simply due to changes in the visually perceived start point, rather than

to misestimation of arm position. Figure 6C and D show that this is not the case.

The bimodal pattern reflecting the MV error is absent, and these control data do not

show the pattern of CW-CCW shifts seen in the shifted trials (compare the dashed

lines in Figure 6B and D).

The initial direction data presented in Figures 5 and 6 were sampled from the

point in the reach trajectory at which the tangential velocity first exceeded 40% of

its peak value (see Methods). This landmark occurred 125 + 24 msec after reach

onset (mean + average within-subject s.a.), and nearly always fell within the first

centimeter of the reach. Since feedback signals are able to influence reach trajectories

starting at about 150 msec (Prablanc and Martin, 1992; Paillard, 1996), it is possible

that on some trials the velocity and acceleration at the time of the measurement

were influenced by sensory feedback of the earliest portions of the reach. This might

be a cause for concern as our models are strictly feedforward. However, using an

earlier landmark (the point at which tangential velocity exceeds 20% of peak, which

falls 68 + 15 msec into the reach) yielded nearly identical average values of initial
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(A) Velocity command model (B) Torque command model

0.8 1

INV

Figure 7: Best-fit values of oMy and of NV for all subjects and both models. Each symbol is
divided into quadrants that are filed or empty depending on the results of the specified hypothesis
tests (p < .05, see inset). Ellipses represent one standard error (bootstrap analysis, see Methods).
Two-letter labels identify individual subjects. The dashed line represents CINV = CMV.

direction and produced model fits that were not significantly different from those

obtained using the 40% criterion (not shown). Because the tangential velocity was

very small at the 20% landmark, though, measurements of velocity direction taken at

this landmark were significantly more noisy than those taken at the 40% landmark.

For this reason, we elected to use the 40% criterion in all of our analyses.

Weighting parameters only and orny. The errors in initial direction were
used to fit both the velocity command model and the torque command model. The

fit values of a My and any for all subjects are shown in Figure 7. The average
values of ■ o My, ony] across subjects were [.87,.28] for the velocity command model
and [.82, 33 for the torque command model. The values of oxy indicate that
the position estimate used for movement vector planning relied predominately on

vision. For every subject and both models, oyry was greater than 0.5, and in every

º
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case we could reject the null hypothesis that £My relied solely on proprioception
(Ho ; oxy = 0). The values of ony suggest that the position estimate used for
converting a movement vector into a motor command relied more on proprioception.

In all but one case, the fit values of ony were less than 0.5 (the exception was subject
HA, torque command model opy = .51), and in every case the null hypothesis that
iny relied solely on vision (Ho ; onv = 1) was rejected. Despite these strong
biases toward vision and proprioception, however, both position estimates appear to

rely on a mixture of sensory inputs: in 7 of 14 cases we could reject the null hypothesis

that £My was purely visual (Ho ; oxy = 1), and in 9 of 14 cases we could reject
the null hypothesis that £INy was purely proprioceptive (Ho: onv = 0).

The difference between the fit values of the two weighting parameters suggests

that the two position estimates £My and £ny are indeed distinct quantities. We
examined this hypothesis by testing whether the fit values of oxy and ony differed
significantly from each other (see Methods). In 12 out of 14 cases, the permutation

test allowed us to reject the null hypothesis that the two parameters were equal (the

exceptions were subjects DO and HA, torque command model). These results were

confirmed by an F-test (p < .05), which agreed with the permutation test in all but a

single case (subject CA, torque command model). In the majority of cases, therefore,

the two position estimates relied on different combinations of sensory input, reflecting

a significant difference between multisensory integration at the two stages of reach

planning proposed by our models.

Both the velocity command and torque command models fit the observed data

well, and neither performed consistently better across subjects (R* values ranged

from .63 to .80 for the velocity command model and from 45 to .80 for the torque

command model). This similarity suggests that the choice of controlled variable

(joint velocities or joint torques) in the model is not critical, and that our results fol
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low from the assumption of a two-stage planning process in which a desired extrinsic

movement vector is computed and then converted into an intrinsic motor command.

Additionally, our assumption that visual and proprioceptive signals are additively

combined in Cartesian space (Equations 1 and 2) did not influence our conclusions.

We found nearly identical values of oxy and opy (all absolute differences less than
.003) when we refit the data with an alternate model in which visual and proprio

ceptive cues were combined in joint angle coordinates, implemented by substituting

a 6 for each £ in Equations 1 and 2.

In our models, the position estimates £My and inv are weighted sums of £vis and
£prop (Equations 1 and 2). In other words, we have assumed that each combined
position estimate lies on the line that connects the two unimodal estimates and

that the distance along that line is determined by the parameter oMy or ony.
However, van Beers et al. (1999) have argued that since individual sensory modalities

are more or less reliable along different spatial axes, a simple scalar weighting of

two unimodal estimates may not produce the statistically optimal combination of

these signals. These authors supported their argument by showing that in some

conditions the integrated estimate of arm position lies off the straight line connecting

the visual and proprioceptive estimates. Such a finding suggests that £My and £ny
might vary across the two-dimensional horizontal plane, and that a weighted-sum

model might be insufficient. To address this issue, we fit our data with a second

alternate model in which £My and £INy were free to vary across the horizontal plane.

Despite this freedom, the best-fit £My and £ny still lay near the line connecting the
unimodal estimates and there was no consistent component perpendicular to that

line (data not shown). Furthermore, the component along the line agreed with the

fits shown in Figure 7. These results validate the original weighted-sum model of

Equations 1 and 2 for our data. Note however, that these findings do not necessarily

º
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contradict the model of van Beers et al. (1999), since our study was conducted in a

different part of the workspace, and workspace location has been shown to influence

the orientations of the unimodal covariance ellipses (van Beers et al., 1998).

In order to fit our models to the data, we have also assumed that the visual

and proprioceptive position estimates are unbiased. The analysis described in the

preceding paragraph suggests that if any biases exist, they lie principally along the

axis parallel to the feedback shift. In fact, such biases could arise for two differ

ent reasons. First, the unimodal estimates may be inherently biased, so that £vis

and £prop might differ from the locations of the feedback spot and the fingertip,

respectively. A second source of bias could arise in the internal transformations of

the visual and proprioceptive signals required at each planning stage. For example,

comparing £prop to the target location might require computing the Cartesian fin

gertip location from the proprioceptive signal, while evaluating the inverse model

might require a joint-based representation. If these transformations were biased, the

true value of £prop may not be the same in Equations 1 and 2. In the Appendix,
we show that neither of these types of bias would significantly affect the fit values of

QMV and O'INV.

Position-dependent changes in the distortion matrix. The empirical mea

surements of the direction of the initial velocity and acceleration had to be taken

after the onset of the reach, at which point the fingertip had moved a small distance

from its initial position. On the other hand, when fitting the models to the data,

the model distortion matrices were evaluated at the initial position of the fingertip.

This simplification would have a negligible effect if the distortion matrix were nearly

constant over the initial movement segment. However, if the distortion matrix varied

rapidly across the workspace, there would be a marked change in INV error between
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Figure 8: Initial reach segments and predicted INV error. The initial portion of reaches (unfiltered
empirical data) are shown for all trials from subject HA in the (A) Center-Left and (B) Center
Right conditions. Black lines represent the path from movement onset to the point at which the
tangential velocity first exceeds 40% of the peak velocity (black dots). The large circle (dashed line)
represents the center start point window (radius 1 cm). Gray contour lines show the magnitude
of the predicted INV errors (velocity command model) due to the distortion matrix Dvel(9,6 )
as a function of arm position, assuming a V = 1. Positive contour values correspond to §§§
errors, negative values signify CW errors.

the initial arm position and the location at which the velocity and acceleration mea

surements were made. We assessed whether the assumption of a constant distortion

matrix significantly affected our results by determining how the predicted INV er

ror in the velocity command model varies over the initial segment of the trajectory

(Figure 8). For a given arm position, the INV error (that is, the error introduced

via the distortion matrix) depends on three variables: the true arm position, the

error in the estimated arm position, and the desired movement direction. For this

analysis, we assumed that the arm position estimate was equal to the location of the

visual feedback (ony = 1). This was the conservative choice, as it maximizes the
INV error. We also averaged the predicted error over the eight target directions, as

the INV error varies little over the desired movement direction (Figure 4C). We then

calculated the predicted INV error for each shift direction as a function of the arm's
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position for a representative subject and made a contour plot of the results (Fig

ure 8, grey lines). Superimposed on these plots are the initial segments of the same

subject's reach trajectories, ending at the point where the velocity and acceleration

were measured. Note that the predicted INV error typically varied less than 0.5°

over the initial movement segment. In contrast, for this subject the direction of the

initial velocity had a within-condition standard deviation of 5.73°. Therefore, any

error in model prediction stemming from the assumption of a stationary distortion

matrix would be lost in the inherent movement variability.

Magnitude of initial velocity. In our models, oxy and ony were fit using
only the directional component of the error in initial reach velocity or acceleration.

Here, we show that the shifts in visual feedback also lead to errors in the magnitude

of the initial velocity, and that these errors are consistent with the predictions of

the velocity command model. The results for initial acceleration and the torque

command model are qualitatively the same.

First consider that both the direction and magnitude of the INV velocity error are

determined by the distortion matrix, Dvel(9, "Nv). as shown in Equation 5. For the

starting location and visual shift directions used in this experiment, the distortion

matrices are mostly rotational, i.e. the desired velocity undergoes a rotation but

very little scaling. We determined this by evaluating the velocity distortion matrix

at the starting location for each subject for both the left and right visual shifts using

the best-fit opy. We then found the velocity direction that yielded the greatest
absolute percentage change in the magnitude of the velocity. Across subjects and

shift directions, the average maximum scaling was only 0.75% + 0.44% (mean + 1

s.d.) of the original length. The model therefore predicts that in our experiment,

the INV error should have a negligible effect on the magnitude of the velocity.
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Figure 9: Effects of visual shifts on reach velocity magnitude. Each line plots the mean peak
tangential velocity (across subjects) for each target normalized to the mean peak tangential velocity
in Center-Zero trials. Target directions are defined as the direction from the fingertip start position
to the visual target. (A) Left-Zero (solid line) and Center-Left (dotted line) trials. (B) Right-Zero
(solid line) and Center-Right (dotted line) trials. Errorbars are + 1 S.E.

In contrast, MV error alters both the direction and length of the planned move

ment vector, and we would expect these variables to influence the magnitude of the

planned velocity. This effect can be understood by considering the movements made

from the left and right start points in the absence of a visual shift. For each subject

and target, the peak velocities for reaches in the Left-Zero and Right-Zero conditions

were normalized to the average peak velocity for the same target in the Center-Zero

Condition. These values are plotted as a function of target direction in Figure 9

(filled symbols). This is the pattern that would be expected in the Center-Left and

Center-Right conditions if the estimated arm positions were located at the left and

*\ght starting locations, respectively (i.e. if oxy = 1). If there were no error in
the position estimate (oyry = 0), the average peak velocity would be the same as
in the Center-Zero condition, and so the normalized values would all be near unity.
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As can be seen from the open symbols in Figure 9, the dependence of peak velocity

on target direction in the Center-Left and Center-Right trials has the same shape

as that seen in the Left-Zero and Right-Zero conditions, but the effect is smaller

in size. Qualitatively, this is the pattern of MV errors that the velocity command

model would predict for the best-fit values of oxy, which are less than one.

Discussion

By dissociating visual and proprioceptive feedback, we induced errors in the arm

position estimates used at two different stages of reach planning. We then modeled

the errors in initial movement direction as a function of the misestimation at each

stage. Comparison of our models with the experimental data allowed us to quantify

these position errors and thus compute the extent to which each planning stage relies

on visual feedback. We found that the arm position estimate used for vector planning

relies mostly on visual feedback, whereas the estimate used to convert the desired

movement vector into a motor command relies more on proprioceptive signals.

This finding agrees with the results of a recent study by Sainburg and colleagues

that employed a reaching task very similar to our own (Sainburg et al., 2003). In

their experiment, the location of the initial visual feedback was constant across trials

while the actual initial location of the fingertip was varied. The authors found that

these manipulations did not affect reach direction, suggesting that subjects relied

heavily on the visual position signal (which did not change location) when planning

movement vectors. Furthermore, an inverse dynamic analysis revealed that subjects

generated intrinsic motor commands that took into account the true position of the

arm, suggesting that subjects relied mostly on proprioceptive signals when generating

motor commands. Although the relative weightings of vision and proprioception were
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not quantified, these results are in agreement with our own.

Psychophysical studies of the tradeoff between vision and proprioception in arm

position estimation have suggested that each modality is weighted according to its

statistical reliability (Howard and Templeton, 1966; Welch and Warren, 1980; van

Beers et al., 1999) or depending on the focus of the subject's attention (Warren

and Schmitt, 1978; Welch and Warren, 1980). However, while both of these factors

may influence multisensory integration, these models provide only a single criterion

for weighting the unimodal signals. Such models cannot account for our finding

that vision and proprioception are weighted differently at different stages of motor

planning.

Our results instead suggest that multisensory integration depends on the com

putations in which the integrated estimates are used. In order to compute the

movement vector, for example, the position of the hand must be compared to that of

the target in a common coordinate frame. Transforming signals from one coordinate

frame to another presumably incurs errors, either from imperfections in the map

ping between them (bias) or due to noise introduced in the additional computation

(variance). The effects of these errors on movement control can be reduced by giving

less weight to transformed signals. In our experiment, where targets are presented

visually, the increased reliance on visual feedback when planning movement vectors

would therefore have been advantageous.

A similar argument can explain the predominance of proprioception when trans

forming the movement vector into a motor command. Computing the inverse model

of the arm requires knowledge of the arm's posture. Although our experimental

constraints created a one-to-one relationship between joint angles and fingertip loca

tion, during more natural, unconstrained movements joint angles cannot be uniquely

inferred from visual feedback specifying only the location of the fingertip. Addition
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ally, errors can arise from biases in the coordinate transformation from extrinsic to

intrinsic coordinates (Soechting and Flanders, 1989a) and from variance introduced

during the computation, as in the first stage of planning. Because of these fac

tors, the reduced reliance on vision at this second planning stage would have been

advantageous.

This interpretation is compatible with a modified minimum-variance principle

that takes into account the errors introduced by coordinate transformations. The

computations performed at each stage require information about different aspects of

the position of the arm: when reaching to a visual target, movement vector planning

requires only the extrinsic location of the fingertip, whereas computing the inverse

model of the arm requires knowing the intrinsic, joint-based posture of the arm.

The values of oxy and ony reflect this difference, since the nervous system relies
more heavily on the signals which contain the information necessary to perform the

relevant computation and do not need to be transformed.

These conclusions are based primarily on analyses of initial movement direction.

However, numerous authors have argued that the planning of reach direction and

extent are independent processes (Gordon et al., 1994b; Messier and Kalaska, 1997).

If this hypothesis were true, the rules for integrating vision and proprioception might

be different for the planning of movement extent and direction. Indeed, such a

difference was found in the recent study by Sainburg and colleagues (Sainburg et al.,

2003). As noted above, they found that the direction of movements to a given target

depended on the location of the visual feedback, and not on the actual position of

the arm. In contrast, planning of movement extent appeared to depend on the arm's

true position to a greater or lesser degree, depending on the position of the arm

relative to the target. Our results do not rule out the possibility that a separate

estimate or set of estimates is used to compute movement extent. Nonetheless, we
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have shown in Figure 9 that the peak velocity relies on a position estimate located

between the positions specified by vision and proprioception, consistent with the

results of our analyses of movement direction. Although these data suggest that the

planning of reach amplitude and direction might use the same position estimates,

this hypothesis would have to be confirmed by a study that better controlled for the

various factors affecting reach amplitude.

Our quantification of sensory integration relies on model-based analyses of the

empirical data. We must therefore address how sensitive our conclusions are to the

details of the model. First, the velocity command and torque command models pro

duce similar estimates of multisensory integration at each planning stage (Figure 7).

This shows that our results do not depend critically on the assumption that the ner

vous system specifies kinematic or dynamic motor commands. Second, the alternate

model in which the two signals are combined in intrinsic space produces the same fit

values, showing that our results are not sensitive to the assumption that unimodal

signals are additively combined in extrinsic space. Third, the alternate model in

which oMy and opy were allowed to vary across the horizontal plane produces re
sults similar to those of the one-dimensional models, demonstrating that our results

do not depend on the assumption that vision and proprioception are weighted by a

scalar term.

Despite these invariances, however, all of our models make the basic assumption

that motor planning involves two stages, each using a separate estimate of arm

position. This need not be the case, since the whole planning process could in

theory be done in a single computational stage that computes an intrinsic motor

command directly from the target location and a single estimate of the initial arm

position (e.g., Uno et al., 1989). However, even if motor planning were performed

in a single stage, the two types of error described in this paper would still arise.
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A single-stage planner receiving unshifted feedback from the arm would determine

the motor command appropriate to move the hand from the initial position to the

target. The resulting movement constitutes the baseline trajectory. If the arm

position estimate is shifted, the motor command will be the one appropriate to

move the arm from the incorrect estimated location to the target. This command

would achieve the target location if the arm were actually at the estimated position,

and we will refer to that hypothetical trajectory as the planned trajectory. The

difference between the planned and baseline trajectories is essentially the MV error

described above. Since the arm is not at the estimated location, however, when the

motor command is executed the resulting reach direction will differ from that of the

planned trajectory. This difference is the INV error. If such a single-stage planner

were in fact in operation, the MV and INV errors would be due to a single shifted

estimate of arm position, and so we would expect that our analyses would find equal

values for a My and ony. The fact that we found consistent differences between
oMy and any suggests that planning indeed involves two separate stages.

Many cortical areas that encode pending movements appear to integrate infor

mation from multiple sensory modalities (Colby and Duhamel, 1996; Wise et al.,

1997; Andersen et al., 1997), and single cortical neurons encoding arm position show
varying weightings of visual and proprioceptive feedback from the arm (Graziano,

1999; Graziano et al., 2000). Given these findings, it is tempting to speculate that

the two planning stages proposed in this paper might be computed in different corti

cal areas. Two lines of evidence support the idea that the parietal cortex is involved

in the computation of extrinsic movement vectors. Recordings from the intraparietal

sulcus have revealed coding of reach direction in retinocentric coordinates (Buneo

et al., 2002), suggesting that this area encodes movement vectors but not intrin

sic motor commands. Additionally, disruption of neural activity in the posterior

* *
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parietal cortex by transcranial magnetic stimulation prevents subjects from making

corrective movements during reaching (Desmurget et al., 1999), providing further

evidence that this region might help compute the discrepancy between hand posi

tion and target location. Studies examining the motor and premotor cortices, on

the other hand, suggest a role for these areas in transforming movement vectors

into motor commands. Neural activity in these areas during both single- and multi

jointed movements encodes the intrinsic details of the movement in addition to the

extrinsic movement vector (Kakei et al., 1999; Scott and Kalaska, 1997; Scott et al.,

1997). However, these findings do not represent a complete dissociation between

parietal and frontal cortices. For example, Scott et al. (1997) showed that activity

in parietal area 5 is also modulated by intrinsic factors. Future studies that use

manipulations of sensory feedback to selectively alter the extrinsic movement vector

and intrinsic motor commands will be needed to clarify the neural bases of these two

computations.
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As described in Methods, in determining the weighting parameters oMy and any
we assumed that the unimodal position estimates £vis and £prop were unbiased. In
this Appendix, we consider the effects of biases in the unimodal position signals on

the fit values for the oxy and ony. We will show that sensory biases along the
direction of the visual shift (0° in Figure 1) would not bias our fit values for oxy
and onv.

Given values for the unimodal positions estimates, an integrated position estimate

■ (which could be either £My or £ny) can be computed from the appropriate
weighting parameter o (oyfy or ony), and vice versa:

£ - £prop + o:(£vis - £prop) (11)
£ – £prop

£vis
-

£prop

Note that in contrast to the Methods section, in Equation 12 and the rest of this

Appendix we treat all position and bias variables as scalar values along the 0° axis.

Since we do not have direct access to the internal unimodal estimates évis and £prop,

we previously assumed that these estimates were unbiased, i.e. that £prop = a, the
true location of the arm, and that £vis was offset from that location by the visual

shift. Here, we consider the possibility that the unimodal estimates are biased by

amounts bprop and byis, respectively:

£prop = a + bprop

£vis = a + A + byis,

where the visual shift is –A in Center-Left trials and +A in Center-Right trials.

We first explore how these biases would affect our estimates of a when fit sep

- -
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arately to trials with left and right visual shifts. Consider dividing our data into

two sets, one containing Center-Left and Center-Zero trials, and the other contain

ing Center-Right and Center-Zero trials. The integrated position estimates and the

best-fit weighting parameters pertaining to the two datasets will be identified by the

subscripts L and R. Given values for the unimodal biases, the integrated position

estimates can be determined from the true weighting parameter o and Equation 11:

£L = a + bprop + q(-A + bºis – bprop) (13)

If all were fit with the assumption that borop = byis = 0, we would still be able
to obtain the true value for £1 by evaluating Equation 13 using the same zero-bias

assumption and the fit value of O.L. Counterintuitively, this means that we would

be able to recover the true value of £L even from a biased fit value for ol. Next,

we can determine the bias in our fit value of oil by inserting the true value of £L

(Equation 13) into a version of Equation 12 that assumes, as do our models, that

£vis and £prop are unbiased:

£L – a■

(a – A) – a
= a – obvis + (1 – oborop)/A (15)

O'L

Similarly, from the Center-Right trials and Equations 12 and 14 we would find

or = a + [obvis + (1 – obprop]/A (16)

Equations 15 and 16 suggest that the presence of biases in the internal unimodal

--
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position estimates would cause errors in our fit values of oxy and ony. However,
a comparison of these two equations shows that the effects on the Center-Left and

Center-Right trials are in the opposite direction, as long as the bias terms do not

depend on the trial condition (a reasonable assumption given that the trials are

interleaved and that the proprioceptive location, at least, is constant across trials).

Therefore, in the complete analysis in which oyry and ony are fit to all trials, we
expect that any bias effects would cancel out.

This observation can be made more rigorous by averaging Equations 15 and 16,

giving

(ol + 0 R)/2 E CY (17)

Equation 17 tells us that the average of the parameters fit to the R and L datasets

should be equal to the true weighting parameters, regardless of potential biases in the

unimodal position signals. For each subject and each model, we fit oxy and ony
to the R and L datasets, and then compared (al-Ho R)/2 to the fit values of a shown

in Figure 7. The mean + s.d. difference is 0.0067 + 0.017 with a maximum absolute

difference of 0.068. These results show that our assumption of unbiased unimodal

signals had a negligible effect on our results. Additionally, note that because these

arguments can be applied separately to the parameters oMy and ony, Equation 17
holds for both parameters even if the biases in a unimodal position estimate are

different between Equations 1 and 2. For this reason, biases in the transformations

between coordinate frames (see Results) cannot be responsible for our findings.

- - - -
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Chapter 2:
Flexible strategies for sensory integration

during motor planning

Abstract

When planning goal-directed reaching movements, subjects combine visual and pro
prioceptive feedback from the arm to form two estimates of the arm's position: one
to plan the reach direction, and another to convert that direction into a motor com
mand. These position estimates are based on the same sensory signals but rely on
different combinations of visual and proprioceptive input, suggesting that the brain
weights sensory inputs differently depending on the computation being performed.
Here we show that the relative weighting of vision and proprioception depends on
both the sensory modality of the target and the information content of the visual
feedback, and that these factors affect the two stages of planning independently. The
observed diversity of weightings demonstrates the flexibility of sensory integration,
and suggests a unifying principle by which the brain chooses sensory inputs in or
der to minimize errors arising from the transformation of sensory signals between
coordinate frames.
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Information about a single environmental cue or variable is often available to

more than one sensory modality, raising the question of how the brain weights and

combines sensory signals during perception and behavior. Previous theories of how

this is accomplished have focused on the statistical properties of the individual sen

sory signals (Welch et al., 1979; Ghahramani, 1995; Jacobs, 1999; van Beers et al.,

1999; Ernst and Banks, 2002). Here we demonstrate that input statistics alone are

insufficient to explain sensory integration during motor planning. Rather, we pro

vide evidence that sensory integration is strongly influenced by the cost of performing

coordinate transformations on these signals. The results suggest a model in which

sensory signals are weighted in order to limit the errors that are introduced when

sensory signals are transformed between coordinate frames.

We have previously developed a method for studying the integration of visual and

proprioceptive feedback signals from the arm during the planning of visually guided

reaches (Sober and Sabes, 2003). Subjects reached to visual targets in a virtual vi

sual feedback environment. The relative weighting of vision and proprioception was

quantified by displacing the virtual visual feedback by a fixed vector and measuring

the resulting reach errors. Such shifted feedback introduces two types of error: a

“Movement Vector” (MV) error that arises when the location of the visual target is

compared to the position of the fingertip (Fig. 10a), and an “Inverse Model” (INV)

error that arises when the planned direction is converted into an intrinsic (muscle- or

joint-based) motor command (Fig. 10b and c). Although errors from both of these

stages can affect a single movement, the MV and INV error (Fig. 10d and e, respec

tively) can be separately inferred from the pattern of shift-induced errors measured

across multiple reaches in different directions (Fig. 10f). Furthermore, the magnitude

of each type of error is proportional to the reliance on the shifted visual feedback

at each planning stage. By fitting these shift-induced error patterns with a simple
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Figure 10: Two types of reaching errors induced by visual shift. (a) Error in planned movement
direction that results from a leftward error in the position estimate used to plan the movement vector
(“MV error”), for example due to a leftward shift of the visual feedback. The planned movement
direction for a reach to the target at 90° (blue dot) differs from the true hand-to-target direction,
resulting in a clockwise error in planned movement direction (blue arrow). (d) The bimodal MV
error pattern resulting from a leftward error in estimated position. The blue arrow represents the
MV error shown in panel a. (b and c) Error in initial movement direction resulting from a leftward
error in the position estimate used to evaluate the inverse model of the arm and compute the motor
command (“INV error”). The wrong joint angle displacement (motor command) is planned for the
desired movement vector (panel b), resulting in a movement error (panel c). (e) A leftward error
in estimated position results clockwise errors for all target directions. (f) Measured errors in initial
direction are a combined effect of MV and INV errors (black curve). A rightward error in position
estimates would produce an error pattern of opposite sign (gray curve). Here and in subsequent
figures, 0° refers to rightward vector and positive angles are counterclockwise.
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model of motor planning, we determined the relative weighting of visual feedback at

each planning stage. We found that the two stages of reach planning rely on very

different mixtures of visual and proprioceptive input: movement vector planning re

lies mostly on visual signals, whereas computation of the intrinsic motor command

relies more on proprioceptive signals (Sober and Sabes, 2003).

This result raises the question of why the same sensory signals are weighted so

differently at the two stages of reach planning. We suggest that the difference ob

served in Sober and Sabes (2003) was due to the coordinate frame in which the two

computations took place. In that study, subjects reached to visual targets with their

index fingers, and the visual feedback before reach onset reflected only the position

of the fingertip. Computing the movement vector required an estimate of the cur

rent position of the fingertip relative to the visual target, a simple vector subtraction

in visual coordinates. In contrast, computation of the motor command required an

estimate of the intrinsic state of the arm, which was encoded by proprioceptive affer

ents but was not explicitly represented by the visual feedback. The sensory signals

that were not already in the appropriate coordinate frame for each stage of planning

would have had to undergo a transformation in order to be used in the relevant com

putation. We hypothesize that the weighting of vision and proprioception reflects

a strategy of minimizing errors that arise during such coordinate transformations.

We tested this idea in two experiments, altering either the coordinate frame of the

target or the nature of the visual feedback.

We first examined whether sensory integration during movement vector planning

is influenced by the sensory modality of the target (Experiment 1). When reach

ing to a visual target, the nervous system might rely more on vision because visual

feedback from the arm is already in the target's coordinate frame. Before proprio

ceptive signals can be used, they must be transformed into visual coordinates. This
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transformation will incur errors, either due to biases in the mapping between coor

dinate frames or to variance introduced by the additional computation (Soechting

and Flanders, 1989b, McIntyre et al., 2000), and the effect of these errors will scale

with the relative weighting of proprioception. Thus, if a proprioceptive target (i.e.

the felt location of the other hand underneath the tabletop) were used instead of a

visual target, we predict that subjects would rely more on proprioceptive feedback

from the reaching arm, since the target would already be in an intrinsic coordinate

frame. This change would be reflected as a reduction in the MV error observed when

the visual feedback is shifted. Model data illustrating this prediction are shown in

Figure 11a.

In Experiment 2, we asked whether the information content of the visual feed

back influences the relative weighting of vision and proprioception. As shown in

Figure 10b, an estimate of the joint angles is required to compute the appropriate

motor command from the desired movement vector. We hypothesize that the pre

viously observed reliance on proprioception during motor command generation was

due in part to the fact that the visual feedback (a single spot of light) specified

only the position of the fingertip (Sober and Sabes, 2003). The transformation of

visual signals (from the fingertip) into proprioceptive coordinates (joint angles) is

also expected to incur errors, again due to mapping biases or to the introduction of

variance during the computation. Additionally, this transformation is particularly

prone to errors since it is generally underconstrained: a single fingertip location can

be achieved by many joint angle configurations when the arm's range of motion is

unrestricted (Bernstein, 1967). Although the arm is actually restricted to two de

grees of freedom in our experiments, the reliance on proprioception in this context

likely reflects a general strategy of avoiding this underconstrained transformation of

the visual input. If the virtual visual feedback explicitly represented joint angles as
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Figure 11: Predicted changes in Experiments 1 and 2. Each panel shows the movement direction
errors predicted for different values of oy■ y and ony, which represent the relative weighting of
visual feedback at the first and second stages of º planning, respectively (see Methods). Both
panels include the model predictions for (a MV = .9, on V = .3), black lines, corresponding to the
values expected for reaches to a visual target with fingertip feedback (Sober and Sabes, 2003). (a)
Proprioceptive targets in Experiment 1 are expected to result in a lower value of O'MV. (b) Arm
feedback in Experiment 2 is expected to result in a higher value of CINV.
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Figure 12: Data collection and task parameters. (a) Virtual visual feedback setup. (b) In Exper
iment 1 a visual and proprioceptive target were both present on every trial; the “go” signal cued
subjects which reach to make. Visual feedback of the fingertip position was either veridical (gray
dot) or shifted leftward (white dot) or rightward by 6 cm. (c) In Experiment 2, subjects reached to
visual targets with visual feedback that showed either the fingertip or a simple, polygonal rendering
of the arm. Visual feedback either reflected the true position of the fingertip or was shifted leftward
(white dot, polygon) or rightward by 7 cm.

well as fingertip location, however, this source of uncertainty would be eliminated,

and the errors due to the transformation would be reduced. We therefore predict

that if the visual feedback included an image of the reaching arm (and hence explicit

information about joint angles), subjects would rely more on vision during motor

command generation. This in turn would lead to greater INV error when the visual

feedback is shifted (model data shown in Fig. 11b).

Results

We tested these two predictions in separate experiments. In both studies, subjects

made planar reaching movements on a horizontal table with virtual visual feedback

(Fig. 12a). Visual feedback was provided as subjects planned reaches to one of six

potential targets, but was extinguished as subjects began the reach.

In Experiment 1, two targets were available on each trial: a visual target, con
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sisting of a spot of light, and a proprioceptive target, provided by the felt position

of the left index fingertip (Fig. 12b). The left hand was positioned beneath the

table so that the two hands never came into contact. The color of the “go” signal

instructed subjects whether to reach to the visual or proprioceptive target. This

instruction was randomized across trials. Data from a typical subject are illustrated

in Figure 13. For both target types, raw reach trajectories show the effects of shifted

visual feedback (Fig.13a). For example, reaches made with leftward feedback shifts

display rightward directional errors, consistent with a leftward error in estimated

hand position during movement vector planning. Note also that the effects of the

visual shifts are smaller when the subjects reached to proprioceptive targets, con

sistent with our hypothesis that subjects would rely less on visual feedback in this

trial type. Reaction times, movement times, and baseline reach trajectories were

qualitatively similar for visual-target and proprioceptive-target reaches, although

reaches to proprioceptive targets were more variable and tended to be hypometric

(see Supplementary Information).

In quantifying the errors due to the pre-movement exposure to shifted visual feed

back, we focused on the direction of movement just after reach onset, as this variable

reflects the movement plan and not online feedback corrections. Shift-induced er

rors were computed by subtracting the initial movement direction on baseline trials

from the initial movement direction on trials that included shifts of the visual feed

back. The example subject's initial movement directions and shift-induced errors

are shown in Figure 13b and c as a function of target and trial type. Note that these

data resemble the model predictions of Figure 11a.

Using the simple model of motor planning illustrated in Figure 10, we inferred

the relative weighting of vision and proprioception at each planning stage. This was

accomplished by fitting two model parameters, oxy and ony, that represent the
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Figure 13: Sample data, Experiment 1. (a) Raw reach trajectories for a representative subject.
Filled symbols, reach targets; corresponding open symbols, reach endpoints. (b) Initial reach
direction, with respect to target direction, using the color conventions of panel a. (c) Reach errors
induced by visual feedback shifts, computed by subtracting the baseline directional biases (dotted
lines in panel b) from the initial directions in the shifted conditions (solid lines in panel b). Model
fits, dashed lines. Best-fit weighting parameters: oMV = .96, GINV = .32 for visual-target reaches
and oMV = 49, o■ NV = .19 for proprioceptive-target reaches.

relative weighting of vision when computing the movement vector and the intrinsic

motor command, respectively (a = 0 for proprioception only, and a = 1 for vision

Only; see Methods for more details). This analysis was performed separately for

the visual- and proprioceptive-target data shown in Figure 13c, and the model fits

are shown as dotted lines. For this subject, the best-fit weighting parameters were

(a Mv = 96, oxy = 32) for visual-target trials and (oytv = 49, any = 19) for
Proprioceptive-target trials. This subject therefore relied almost entirely on visual

feedback (oyry = .96) when computing the movement vector to visual targets, but
relied roughly equally on visual and proprioceptive information (a My = 49) when
Planning the movement vector to proprioceptive targets.

This trend was consistent across subjects. Figure 14 shows the initial direction

and shift-induced errors averaged across the 7 subjects in Experiment 1. The group

*Verages reflect the same trend observed for the example subject: shifted-induced
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Figure 14: Group data, Experiment 1. (a) Average initial direction (+1 SE), with respect to target
direction, for visual- and proprioceptive-target reaches. (b) Average errors in initial direction (+1
SE). Color conventions as in Figure 13.

errors are larger when reaching to visual targets, revealing a decreased reliance on

vision when reaching to proprioceptive targets. This effect was quantified by the

fit values of OMV and any (Fig. 15a and b). Every subject showed a signifi

cant (p < .05) reduction in QMV when reaching to proprioceptive targets, as shown in

Figure 15c (mean oMy = 88, visual-target trials; mean oxy = 42, proprioceptive
target trials). The mean change of .46 corresponds to a nearly fivefold increase

the use of proprioceptive information in the proprioceptive-target condition. There

was also a small reduction in opy (average change, .17), which was significant in

a single subject (the completely filled circle in Fig. 15c). The weighting of feedback

signals during movement vector planning therefore depends critically on the sensory

modality of the target.

Three issues regarding the design of Experiment 1 warranted control studies.

First, although subjects only received shifted visual feedback from the reaching

(right) hand in Experiment 1, it is possible that this shifted feedback might have af

fected the felt position of the target (left) hand. Analogous transfer effects have been
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Figure 15: Model fits, Experiment 1. (a,b) Fit values of a and o. for reaches to visual
and proprioceptive targets, respectively. Ellipses represent 1 §§ pººli.e. ofNV = a and
opy = 0. (c) Differences in model fit between visual- and proprioceptive-target reaches. % topºal; of the symbol is filled if the task-dependent change in oy■ y is significant (permutation
test, p<05), and the bottom right half is filled if the change in of is significant. --, average
across subjects. In all plots, the gray symbols are for the example subject shown in Figure 13.

described in studies of visuomotor adaptation (Kalil and Freedman, 1966; Wallace

and Redding, 1979; Dizio and Lackner, 1995; Sainburg and Wang, 2002), although

such effects are not always present (Taub and Goldberg, 1973; Cohen, 1973; Choe

and Welch, 1974; Kitazawa et al., 1997). In this study, however, the feedback shift

was not consistent from trial to trial, and so an adaptive shift in felt position of the

left hand is not expected. In a separate experiment, we found that the visual shift

protocol used in Experiment 1 does not affect the felt position of the left hand (see

Supplementary Information).

Second, eye position was neither measured nor constrained in Experiment 1. This

is potentially problematic, since subjects may have determined the target location for

proprioceptive reaches using either a visual fixation point or the felt gaze direction,

rather than the proprioceptive signals from the left arm. To address this concern, we

repeated Experiment 1 with the additional constraint that subjects were required to

maintain visual fixation on one of a number of points near the center of the workspace

(see Supplementary Information). We found that the task-dependent changes in oxy
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and any were very similar whether or not gaze was constrained. We conclude that
any information about the target location provided by gaze direction had a minimal

effect on Sensory integration during reach planning.

A third potential confound in the proprioceptive-target condition is that subjects

actively positioned the left arm and were required to support that arm against grav

ity during the planning and execution of the reaching movements. Efference copy

therefore may have provided non-proprioceptive information about the position of

the left arm. In order to ensure that this factor did not account for our results,

we tested subjects on another variation of Experiment 1 in which the left arm was

passively moved to the target location and was supported by a second tabletop

throughout the trial. As shown in Supplementary Information, we found that the

predicted change in oyry was of comparable magnitude when the target arm was
passively supported. The observed changes in oxy therefore do not depend on the
use of non-proprioceptive cues to the location of the proprioceptive target.

In Experiment 2, we tested the hypothesis that subjects would rely more on

vision during inverse model evaluation if the visual feedback represented the arm,

and thus the configuration of the joints, rather than just the location of the fingertip.

All reaches were to visual targets, and feedback consisted of either a spot specifying

fingertip location or a simple virtual image of the arm (Fig. 12c). Figure 16a and b

show data from a single subject. The bimodal MV error pattern is similar in the

two feedback conditions. Averaging across targets for each shift direction reveals the

INV error pattern: reaches made with leftward shifts are biased clockwise (Fig. 10e),

while reaches with rightward shifts are biased counter-clockwise. This INV error

pattern is more pronounced in the arm-feedback condition in the example subject

(compare the dashed lines in Fig. 16a and b), as in the rest of the subject pool

(Fig. 16c). These data suggest that subjects rely more on vision when computing
- * = .
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the difference between the mean errors for rightward- and leftward-shifted visual feedback. Error
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This effect is quantified by fitting the weighting parameters to the data from RA

º, --, Trº
fingertip- and arm-feedback reaches. Model fits for the example data in Figure 16a and b ---

ielded values of (o. = .84, o. = .25) for fingertip-feedback trials and (o. - -- º
y ( MV INV ) gertip- ( MV ---' sº *

.79, onv = .54) for arm-feedback trials (gray dots in Fig. 17a and b). This subject -
º --

therefore relied 25% on visual feedback during the second stage of reach planning º:

when the feedback represented only fingertip position. However, when visual feed- º,

back consisted of an image of the arm, that contribution increased to 54%. For all >7.
subjects, any was greater during the arm-feedback trials (mean ony = 24, fin- --
gertip feedback; mean ony = 42, arm feedback), although this difference was only 2 º'

- 1

significant in 3 out of 10 subjects (Fig. 17c). The mean change of .18 corresponds

to a 75% increase in the use of visual information in the arm-feedback condition.
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Figure 17: Model fits, Experiment 2. (a,b) Fit values of o and orny for fingertip-feedback and
arm-feedback trials, respectively. (c) Differences in model fit between arm- and fingertip-feedback
reaches. In all plots, the gray dot represents the subject whose data is shown in Figure 16a and b.
Other plotting conventions as in Figure 15.

Discussion

We have shown that altering the details of a sensorimotor task changes the relative

weighting of visual and proprioceptive feedback used to plan the motor response.

These changes can occur on a trial to trial basis as task conditions are varied. Fur

thermore, the task variations used in Experiments 1 and 2 drive different changes in

weighting at the two stages of reach planning, suggesting a degree of independence

in sensory integration at these stages.

Our results show that sensory integration is not determined solely by the statis

tics of the sensory input but is significantly influenced by the computations required

for task execution. The observed pattern of changes reflects a reduced reliance on sig

nals that must be transformed between visual and proprioceptive coordinate frames.

There are several potential costs that could be minimized by avoiding transformed

signals, for example the metabolic cost of performing additional neural computa

tions. However, we propose that sensory signals are weighted in order to minimize
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errors resulting from inherently noisy coordinate transformations. This points to

a view of sensory integration as a set of local, independently controlled processes

optimized to improve sensorimotor performance.

In Experiment 1, the value of oxy depended on the sensory modality of the
target, suggesting that the brain weights sensory feedback in order to minimize the

adverse effects of transforming arm position signals into the coordinate frame of the

target. Control studies demonstrated that these effects on oMy were not the result

of intermanual transfer of the visual shift, the effects of gaze direction, or the use

of an active motor command to position the proprioceptive target. One remaining

question is why this effect was not symmetric: when reaching to visual targets visual

feedback is weighted almost 90%, whereas proprioception was weighted just over 50%

when reaching to the fingertip of the other hand. This asymmetry may be due to

the fact that when reaching to a proprioceptive target an additional transformation

is required to convert proprioceptive signals from the left arm into the intrinsic

coordinates of the right arm.

Another issue that arises from Experiment 1 is why opy decreased when reaching
to proprioceptive targets. This effect was not predicted, since the target location is

only used to compute the movement vector (see the schematic of Fig. 10). While

this effect was smaller than the change in oxy, the trend was apparent in all but
one subject. Parallel changes in oxy and ony raise the possibility that some
factor other than the sensory modality of the target might be modulating sensory

integration at both stages. One candidate is attention: when subjects are instructed

to preferentially attend a particular sensory modality, that modality is weighted more

(Warren and Schmitt, 1978; Welch and Warren, 1980). This raises the possibility

that a shift of attentional focus from vision to proprioception could underlie the

decreases in both oxy and ony, despite the fact that the latter change is much
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smaller. Note however that Experiment 1 was explicitly designed to reduce the

likelihood of such attentional shifts: visual- and proprioceptive-target trials were

randomly interleaved, every trial included both a visual and a proprioceptive target,

and subjects were not instructed which target to reach to until shortly before the

“go” signal (see Methods). Thus, any shift in subjects' attention would have had

to occur between the appearance of the target instruction and movement onset.

Furthermore, attentional effects alone cannot explain key components of our results:

vision and proprioception can each dominate at different planning stages during the

same movement (see Figs. 15 and 17), and in Experiment 2 ony increased without
consistent changes in oyry (Fig. 17c).

Experiment 2 demonstrated that the value of opy depends on the information
content of the visual feedback. Proprioception predominates when the feedback rep

resents only fingertip position (mean ony = .25). We argue that this strategy is
chosen in order to minimizes the effects of errors that occur when inferring the pos

ture of the arm from the position of the fingertip. On the other hand, vision and

proprioception are weighted nearly equally when visual feedback of the whole arm

is available (mean any = .54, see also Fig. 17), suggesting that simply rendered,
virtual visual feedback of the arm is equally as informative to the brain as proprio

ception for determining the arm's posture. The fact that the average oyry was nearly
identical in the dot and arm feedback conditions (see Results) shows that the type of

feedback has a specific effect on the second stage of reach planning. This specificity

suggests that the key difference between the two conditions is the information about

the configuration of the joints, rather than the size or salience of the visual stimulus.

Our results demonstrate that simple minimum-variance models of sensory in

tegration, in which the weighting of sensory signals is determined solely by their

input statistics, are incomplete. The minimum-variance principle has successfully
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described sensory integration in a wide variety of tasks (Ghahramani, 1995; Jacobs,

1999; van Beers et al., 1999; Ernst and Banks, 2002), however it is inconsistent with

our finding that the same sensory signals can be given very different weightings

at different stages of reach planning or at the same stage of planning in different

tasks. While the brain does appear to minimize the variability of integrated sig

nals, we propose that this computation takes into account the additional variability

that arises during the coordinate transformations required for a given sensorimotor

task. Minimum-variance theories must therefore be extended to include the cost of

coordinate transformations in computing the optimal sensorimotor strategy.

The experiments presented here demonstrate for the first time that sensory in

tegration during reach planning is a dynamic process driven by the computational

demands of the task. These psychophysical phenomena presumably reflect differences

in the neural circuits or patterns of activity that are engaged during the performance

of each task. Neurons in many of the cortical areas involved in reach planning re

ceive both visual and proprioceptive inputs (Andersen et al., 1997; Wise et al., 1997;

Graziano, 1999; Graziano et al., 2000). Our results suggest that these sensory inputs

are gated in a task-dependent way. By quantifying the mixture of visual and pro

prioceptive inputs to a neural population across the task manipulations described

above, it may be possible to determine the computation in which a group of neurons

is participating. Such studies will help bridge the gap between computational and

physiological descriptions of motor planning.
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Methods

All subjects were right-handed, 18–34 years of age, and were healthy with normal or

corrected-to-normal vision. Subjects were naive to the purpose of the experiments

and were paid for their participation. Seven subjects (5 women, 2 men) performed

Experiment 1, and 10 different subjects (5 women, 5 men) participated in Experi

ment 2. There was no overlap in the subject pools for the two experiments.

Experimental Setup and Data Collection

Visual targets and visual feedback of the arm were presented using a virtual-reality

display system described previously (Sober and Sabes, 2003) and shown in Fig

ure 12a. Reaches were performed with the right arm, which rested on a shoulder

height table. A custom-built splint immobilized the wrist joint and fixed the right

index finger in an extended position. An air sled under the upper arm minimized

friction between the arm and the table. The torso was restrained using a vest at

tached to the back of the subject's chair. This arrangement restricted the arm to

two degrees freedom such that arm position could be expressed interchangeably as ac,

a two-dimensional vector representing the Cartesian position of the fingertip on the

table, or as 0, a two-dimensional vector consisting of the elbow and shoulder angles.

General Task Design

In both experiments, reaches began from a start point located on the subject's mid

line and approximately 40 cm from the chest. Six targets were located on an imag

inary circle centered at the start point, although the exact location of the targets

differed between the two experiments (see below). At the beginning of each trial

subjects received visual feedback from the reaching arm. This visual feedback re
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flected either the true location of the fingertip or a location shifted to the left or

right. Rightward, leftward, and null shifts were randomly interleaved to prevent

sensorimotor adaptation. The visual feedback disappeared after reach onset once

the fingertip moved 5 mm from the start point. Reach endpoints were defined as

the first time after reach onset that the tangential velocity of the fingertip dropped

below 3 mm/sec.

After completing the experiment, subjects were asked whether the visual feed

back had accurately reflected the position of the right arm. All subjects in both

experiments reported being unaware of any visual shifts.

Scoring

At the end of each trial, text appeared on the feedback display which informed

subjects of their current score and whether their reaching movement had been a “hit”

or a “miss.” If a reach ended within 2 cm of the target, the trial was judged a “hit”

and subjects received 1 point. All trials that included visual feedback shifts were

counted as “hits” to avoid providing error feedback and thus driving sensorimotor

adaptation. If subjects missed the target by more than 2 cm on an unshifted trial,

the trial was judged a “miss” and one point was deducted from the score. In order to

reduce variability in planning time and velocity profiles, subjects' score also depended

on two timing criteria. Two time intervals were defined. Interval 1 was from the

“go” signal until the time when the fingertip had moved 5 mm from the start point.

Subjects were allowed a minimum and maximum time of 150 and 750 msec for this

interval. Interval 2 was from the end of interval 1 until the first time after the

peak tangential velocity that the velocity fell to 10 cm/sec. Subjects were allowed

a minimum and maximum time of 250 and 650 msec for this interval. If either of
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these timing requirements was not met, subjects received zero points if they had hit

the target on that trial and lost one point if they had missed. Text appeared at

the end of each trial to inform subjects of any timing errors on that trial. Subjects

committed relatively few timing errors. The average error rate across subjects for

interval 1 was 3% in Experiment 1 and 2% in Experiment 2. The error rate for

interval 2 was 3% in Experiment 1 and 5% in Experiment 2.

Task Design - Experiment 1

In Experiment 1 we varied the sensory modality of the reach target (Fig. 12b). On

half of the trials (“visual-target trials”), subjects reached to a visual target consisting

of a dot of red light 5 mm in diameter. On the other half of the trials (“proprioceptive

target trials”), subjects reached to the felt location of their left index finger, which

had been positioned below the tabletop as described below. On all trials, visual

feedback of the right index fingertip consisted of a white spot of radius 5 mm which

appeared either at the fingertip or shifted leftward or rightward by 6 cm.

At the beginning of each trial, subjects positioned their right fingertip to place

the feedback spot within an 8 mm ring. The feedback dot was visible only when the

Y-coordinate of the fingertip (defined as the axis pointing towards/away from the

body) was within 8 mm of the Y-coordinate of the start point. Once the starting

position was achieved, the ring disappeared and an array of 9 arrows appeared.

The arrows were used to guide subjects' left index finger along the bottom surface

of the table (Fig. 12a) to the proprioceptive target location without giving explicit

visual feedback of the fingertip's position. The location of the arrows remained fixed,

but the direction and magnitude were adjusted online, indicating the direction and

(scaled) distance from the left fingertip to the proprioceptive target. The positions

--
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of the arrows were randomized across trials and were not correlated with the target

location. When the fingertip had moved to within 5 mm of the specified position

for the proprioceptive target, the arrows disappeared and the visual target (a red

dot) appeared at a location distinct from the start point and the proprioceptive

target (Fig. 12b). Visual and proprioceptive targets were selected randomly on

each trial from six possible locations (60°, 90°, 120°, −120°, −90°, −60° as shown in

Fig. 13a) on an imaginary circle of radius 14 cm, centered at the start point. Target

directions in Experiment 1 were chosen to maximize the statistical power of the

model when fitting oxy. The visual and proprioceptive targets were always 180°
apart, as in the example shown in Figure 12b. After a delay of 500-1500 msec, a

target instruction cue appeared in the form of a small colored dot on top of the

feedback spot. Subjects reached to the visual target if this dot was red and to

the proprioceptive target if the dot was blue. The target instruction cue remained

illuminated for 1400-1600 msec and then disappeared. The disappearance of the

target instruction cue served as the “go” signal, and cued the subject to begin the

reach. When the tangential fingertip velocity fell below 3 mm/sec at the end of the

reach, the movement was scored. On trials with unshifted feedback that were scored

as misses, subjects were required to make a corrective movement to the target.

On reaches to visual targets, this correction was guided with reilluminated visual

feedback. On reaches to proprioceptive targets, a field of arrows directed the right

fingertip to the left, in the manner described above. Subjects were required to hold

the left index fingertip at the proprioceptive target while performing the reaching

movement with the right arm. All subjects did so successfully on every trial: mean

excursion of the left index fingertip during reaches was 3.1 mm in all subjects, and

in no case did the fingertip move more than 1 cm.

Eight reaches were made to each of six targets with three possible visual shifts,
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totaling 8 × 6 × 3 = 144 reaches in both the visual- and proprioceptive-target

conditions. Reaches to visual and proprioceptive targets were randomly interleaved,

forming a dataset of 288 trials. A set of 36 familiarization trials preceded the exper

iment and included all six trial types. In this familiarization period, however, trials

that would normally include leftward or rightward visual shifts were performed with

out visual shifts, but with the start points moved leftward or rightward by 6 cm. The

actual start points therefore matched the apparent start points that would have been

seen in the presence of a visual shift. Familiarization trials acclimated subjects to

the task and familiarized them with making reaches that appeared to originate from

three different start points. Familiarization trials were not included in the subsequent

analyses.

Task Design - Experiment 2

In Experiment 2 we varied the information content of the visual feedback (Fig. 12c).

In half of the trials (“fingertip feedback trials”), the visual feedback from the right

arm consisted of a bright white spot (100% gray level on the XGA projector used

to present visual images), as in Experiment 1, and feedback was either veridical or

shifted right or left by 7 cm. In the other half of trials (“arm-feedback trials”), the

visual feedback consisted of a white polygon (60% gray level) in the shape of the

subject's arm. The arm feedback was either coextensive with the subject's arm or

the fingertip was shifted left or right by 7 cm. When the fingertip was shifted, the

arm feedback was displayed with the correct posture given the shifted location of

the fingertip and the true position of the subject's shoulder.

At the beginning of a trial, subjects used visual feedback to position their right

index fingertip at the start point, as in Experiment 1. In Experiment 2, however,
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visual feedback appeared when the Y-coordinate of the fingertip was within 3 cm

of starting value. When the visual feedback was within the start window, a visual

target consisting of a red dot of radius 5 mm appeared. Target location was selected

randomly on each trial from one of six positions: 0°, 90°, 150°, 180°, −90°, and – 60°

along an imaginary circle with a radius of 18 cm. Target directions in Experiment 2

were chosen to maximize the statistical power of the model when fitting opy. After
a delay of 500-1500 msec, a small red dot appeared on top of the visual feedback

spot (fingertip-feedback trials) or the tip of the animated finger (arm-feedback trials),

remained illuminated for 1400-1600 msec, and then disappeared, serving as the “go”

signal. At the end of trials with unshifted feedback, the feedback was reilluminated

to provide error feedback, as in Experiment 1. Subjects did not use their left hands

in Experiment 2.

For each type of visual feedback, eight reaches were made to each of the six

targets with the three visual shifts, totaling 8 × 6 × 3 = 144 reaches. The

two feedback conditions were presented in blocks. Half of the subjects completed

144 fingertip-feedback trials followed by 144 arm-feedback trials, whereas the other

half of the subjects completed the blocks in the reverse order. Block order had no

effect on reach kinematics or the results or the model fits. Each block began with

36 familiarization trials as in Experiment 1.

Trajectory analysis

Position data were smoothed with a low-pass Butterworth filter (cutoff frequency of

6 Hz), and fingertip velocity was computed using first-order numerical differentiation.

We quantified initial reach directions by determining the angle of the instantaneous

velocity at the point when the tangential velocity first exceeded 40% of its peak
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value. This landmark fell 82 + 18 msec (mean + average within-subject SD) after

reach onset in Experiment 1 and 94 + 19 msec (mean + average within-subject SD)

after reach onset in Experiment 2.

Modeling the initial movement direction

Work from our and other labs has shown that subjects form two estimates of arm

position when planning a reaching movement (Sober and Sabes, 2003; Ghilardi et al.,

1995; Rossetti et al., 1995; Goodbody and Wolpert, 1999; Sainburg et al., 2003).

We have developed a method for quantifying the relative reliance on vision and

proprioception during reach planning (Sober and Sabes, 2003), which we applied to

the data collected from Experiments 1 and 2. Briefly, we assume that the two arm

position estimates, £My and £ny, are weighted combinations of visual (£vis) and
proprioceptive (£prop) inputs:

The weighting parameters oxy and opy describe the relative reliance on vision
and proprioception used when forming the position estimates.

In the model, the estimate £My is used to calculate the desired initial fingertip
velocity, it” or the “movement vector”. The direction of this vector is determined by

where 42 represents the angle of any vector z, a represents the target location, w

is an angular offset term that captures directional biases in baseline reaches, and

a *

--r
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de [1,...,6] indexes ar" and w over the six targets. Note that an error in £vis due

to shifted visual feedback will cause errors in £MV, and thus in Zi", and that the

magnitude of these errors will scale with oxy (Equation 18 and Fig.11a).
The desired fingertip velocity it" is then used to compute the motor command,

modeled here as a vector of joint angle velocities 6:

6 = J~"(INy)+", (21)

where "Nv = K "(*INV), is calculated from the inverse kinematics function KT"

that describes the mapping from Cartesian fingertip location to joint angles, and

J(9) = # is the Jacobian of the arm. This planning stage represents an evaluation

of an inverse model of the arm (Jordan, 1996)

When the motor command is executed, the fingertip moves with an initial velocity

described by

i = JC9)6 = [1() J'(ºv) £”. (22)

Note that shifting the visual feedback will cause a discrepancy between it and it",

since the matrix J(6).J.' (NV)* will equal the identity matrix only when 6 = "Nv.
The size of this INV error increases with increasing ony, as shown in Figure 11b.
Finally, since Equation 20 only specifies the direction of it", only the predicted di

rection of the initial movement vector in Equation 22 will be fit to empirical data.

Our conclusions rest on the validity of this model and the resulting fit values

of the weighting of vision and proprioception. See Sober and Sabes (2003) for a

discussion of the validity of the model and demonstrations that the fit values of oxy
and any are robust across various assumptions about the nature of reach planning.
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Fitting model predictions to the data

We fit the two free parameters of the model, oxy and ony, to the data from
each subject and experimental condition. Each fit was performed with a nonlinear

regression algorithm (nlinfit in MATLAB, The Mathworks Inc., Natick, MA) that

minimized the squared error between the predicted initial movement directions and

those measured in shifted feedback trials. The values of £vis and £prop in the model
were set to the position of the visual feedback and the true position of the finger

tip, respectively, on each trial. The value of ac" was set to the target position. The

baseline bias terms (wd in Equation 20) were determined from the mean angular dif

ference between the target direction and the initial velocity direction in the unshifted

feedback trials.

We used permutation tests (Good, 2000) to evaluate the hypotheses that the

values of oxy and ony differed between experimental conditions. Additionally,
we used a bootstrapping technique (Efron and Tibshirani, 1993) to place confidence

limits on the fit values of oxy and ony. Details of these statistical procedures are
described in Supplementary Information.
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Supplementary Information to Chapter 2:
Flexible strategies for sensory integration

during motor planning
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Effects of target direction and task condition

In order to examine the effects of task parameters on reach kinematics in the ab

sence of visual feedback shifts, we tested whether the target direction or task affected

the direction and timing of baseline (unshifted) reaches. Two-way ANOVAs were

performed, with target direction as one factor and target type (for Experiment 1)

or feedback type (for Experiment 2) as the second. Four dependent variables were

tested: baseline directional biases (wd in Equation 20), total reach distance, reaction

time (RT), and movement time (MT). Reaction time was calculated by finding the

interval from the “go” signal until the first time that tangential velocity exceeded

3 mm/sec. Movement time was defined as the latency from this landmark to the first

time velocity falls to 3 mm/sec after reaching peak velocity. This latter landmark

was defined as the reach endpoint when computing the total reach distance. The cor

rective movements that followed “miss” trials were ignored. We used the Bonferroni

correction (Campbell and Machin, 1993) to compensate for the effects of repeated

testing. The threshold for significance was therefore .05/N, where N was the number

of separate ANOVAs applied to the data from each experiment. For Experiment 1,

N=28 (7 subjects x 4 two-way ANOVAs), and for Experiment 2, N=40 (10 subjects

x 4 two-way ANOVAs).

The effects of target direction and target type (visual- vs proprioceptive-target

reaches) on various reach parameters are shown in Table S1. Target directions had

a strong effect on baseline directional error and reach distance due to small biases

in unperturbed reaches. The most salient effect of target type was a tendency for

subjects to underreach (i.e. make hypometric movements) to proprioceptive targets.

Mean reach distance (averaged across subjects and target directions) was 127 mm

for proprioceptive targets and 138 mm for visual targets. This trend resulted in

a significant main effect of target type on reach distance in 5 of 7 subjects, and a

ºf
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Baseline bias | Reach distance | RT | MT

Main effect of direction 5/7 7/7 - || 3/7
Main effect of target type

-

5/7 - || 4/7
Interaction 3/7 2/7 - 1/7

Table 1: ANOVA results, Experiment 1. Number of subjects with significant (p<.05) effects of
target direction, target type (visual vs. proprioceptive), or interactions between direction and
type. RT, reaction time; MT, movement time; -, no subjects with significant effect.

Baseline bias | Reach distance | RT | MT

Main effect of direction 9/10 5/10 - || 4/10
Main effect of feedback type 2/10 6/10 2/10 | -
Interaction

-

1/10 - 1/10

Table 2: ANOVA results, Experiment 2. Number of subjects with significant (p<.05) effects of tar
get direction, feedback type (dot vs. arm), or interactions between direction and type. Conventions
as in Table S1.

significant main effect of target type on movement time in 4 of 7 subjects. Addi

tionally, there was greater variability in reach direction for reaches to proprioceptive

targets. This trend was consistent across subjects and may have resulted from a

greater uncertainty in the location of the proprioceptive target than the position of

the visual target (van Beers et al., 1998).

As in Experiment 1, target direction affected baseline directional bias in most

subjects in Experiment 2 (Table S2). Although there was a main effect of feedback

type on reach distance in 6 of 10 subjects, there was no consistent trend to the sign

of this effect (average reach distance was greater for arm-feedback reaches in 5 of 10

subjects and greater for fingertip-feedback trials in the other 5).

In order to demonstrate that the effect of target type on the fit value of oxy
in Experiment 1 was not an artifact of the tendency to make hypometric reaches to

proprioceptive targets (see Table S1), we fit the data with an alternative version of

the model. In the new model, the target position (a' in Equation 20) was set to

the mean reach endpoint in the baseline condition. In other words, we assumed that
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reaches to proprioceptive targets were hypometric because of a bias in estimated

target position. In this alternate analysis, we observed the same reduction in oxy
when reaching to proprioceptive targets as in the original analysis. The change in

oMy was significant in all subjects, and had a mean value of 60.

Control for intermanual transfer of feedback shift effects

Experiment 1 showed that MV errors induced by visual shifts were smaller when

subjects reached to proprioceptive (as opposed to visual) targets. In the model-based

analysis, this difference was assumed to be the result of a reduced reliance on the

(shifted) visual feedback in the proprioceptive-target condition. However, there is

an alternative explanation for this change in error magnitude: intermanual transfer

of the feedback shift effects to the left hand could bias location of the proprioceptive

target. In the extreme case, if £My and the felt position of the proprioceptive target
were shifted by the same amount and in the same direction, then the fit value of oxy
would be equal to zero in proprioceptive-target reaches, since the desired movement

direction would still be correct. Such an effect could potentially be responsible for

the observed shift in oxy.
To address this possibility, we performed an additional experiment in which six

subjects used gaze direction to indicate the location of the proprioceptive target.

As in Experiment 1, subjects positioned the right index fingertip at the start point

using visual feedback. An arrow field then guided the left index fingertip to a target

location under the tabletop. The visual feedback (a white spot of radius 5 mm) was

either veridical or displaced to the left or the right by 6 cm. Unlike in Experiment 1,

however, only proprioceptive targets were used. Also, the targets were located only

at the 60, 90, and 120° positions, due to the constraints of the eye monitoring system.

750 ms after the right index fingertip arrived at the start position, a small green dot
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appeared on top of the feedback spot. When the green dot appeared, subjects moved

their eyes to fixate the position on the tabletop corresponding to the felt location

of the left index fingertip and then tapped the right index fingertip. An infrared

eye-tracking system (ISCAN, Burlington, MA) was used to monitor gaze direction.

Subjects were allowed as much time as they needed to fixate the left index fingertip,

and were instructed to tap their right index finger only when they were sure that

they were fixating the proprioceptive target. After the subjects had tapped their

right fingertip, the green dot disappeared and a small blue dot appeared in its place.

After 1900–2100 msec the blue dot disappeared, signaling the subject to reach to the

proprioceptive target.

Figure 18 shows that although shifts of the visual feedback do affect reach end

points (as in Experiments 1 and 2), they do not affect the felt location of the pro

prioceptive target. Leftward shifts in visual feedback lead to rightward biases in

reach endpoints (blue cross in Figure 18a). If a leftward shift in the feedback from

the right hand affected the felt location of the left hand, one would expect to see a

leftward shift in the gaze position used to indicate the location of the proprioceptive

target (blue cross in Figure 18b). However, no such pattern is seen (Figure 18c).

This experiment demonstrates that errors in the arm position estimates induced by

visual shifts do not transfer from the right to the left arm.

Control for eye gaze direction effects

A key premise of Experiment 1 is that target information in the proprioceptive

target condition comes from the felt position of the left arm. However, in our initial

experiment, gaze was neither monitored not constrained. This presents a potential

confound, since gaze signals could provide additional target information or bias the

planning of reaching movements. For example, in the proprioceptive-target condi

--
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Figure 18: Results of intermanual transfer experiment. Data from reaches to a single target from
a representative subject are shown in A and B. A shows the average reach endpoints for reaches
made with leftward (blue crosses), zero (black crosses), and rightward (red crosses) shifts of the
visual feedback. P. proprioceptive target location, S, reach start point. The blue and red squares
show the location of the left- and right-shifted visual feedback, respectively. B shows the average
gaze position used to indicate the proprioceptive target location (color conventions as in A). A
scatterplot of the group data are shown in C. Values on the abscissa indicate the average left
right separation of gaze positions recorded after leftward and rightward shifts of visual feedback.
Ordinate values indicated the average right-left separation of reach endpoints after leftward and
rightward visual shifts. Each point represents the values for a single subject and target. The red
dot represents the data point obtained from the subject and target shown in A and B, and the
white cross indicates the mean value across subjects and targets.
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tion, subjects might have been reaching not to the felt position of the left fingertip,

but rather to a visual fixation point or to a target specified by extra-retinal signals

related to gaze direction. Another potential problem is that subjects subject might

have directed their gaze to different parts of the workspace in the visual-target and

proprioceptive-target conditions (e.g. fixating visual targets when reaching to them,

but fixating the feedback from the reaching hand when reaching to proprioceptive

targets). Since gaze direction has been shown to affect the accuracy of reaching

movements (Bock, 1986), it is therefore possible that the different patterns of motor

error in the two target conditions result from different gaze behaviors.

In order to control for these effects, we ran 5 additional subjects on a modified

version of Experiment 1. In each trial, a fixation cross (Figure 19, a-c) appeared as

soon as the subject positioned the left index fingertip at the proprioceptive target.

After a delay of 1400-1600 msec, the fixation cross turned either red or blue, instruct

ing the subject to reach to the visual or proprioceptive target, respectively. Subjects

were required to maintain fixation for the duration of the reaching movement.

Subjects were able to maintain appropriate fixation on most trials. Trials on

which the subject broke fixation before tangential fingertip velocity exceeded 40%

of its peak value (see Methods) were marked as errors and excluded from analysis.

Very few trials had to be excluded (average error rate 3.33%, range 2.08 – 4.51%).

The results of this modified experiment were similar to those of the original ver

sion. Figure 19d shows that as before, subjects relied mostly on vision when reaching

to visual targets, but in every case increased their reliance on proprioception when

reaching to proprioceptive targets (Figure 19e). The magnitude of these changes

(mean change in oyry = .50, mean change in any = 16, Figure 19■ ) was in very
close agreement with those observed in the original version of Experiment 1 (mean

change in oviv = 46, mean change in orsy = 17). These results show that the

* -'
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Figure 19: Methods and model fits, gaze direction control experiment. In each trial, subjects fixated
a cross that appeared in the workspace. The location of the fixation cross was chosen randomly on
each trial from a set of locations (+ symbols in a-c), situated roughly halfway between the start
point (black squares) and circle of targets (black dots). Potential fixation points were chosen based
on the location of the visual and proprioceptive targets. Two of the four fixation points were used
for reaches where the targets were at 60° and 240° (a) and at 120° and 300° (c). When targets were
at 90° and 270° (b), all four potential fixation points were used. The results of this experiment are
shown in d-f, using the same conventions as in Figure 15 of the main text.
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changes in the weighting of vision and proprioception are not due to a difference

in gaze strategy between the two conditions, and demonstrate that our results do

not change substantially when subjects are not allowed to fixate the proprioceptive

target during reach planning.

Although the task-dependent changes in oMy were nearly identical in the original

and gaze-constrained versions of Experiment 1, constraining the direction of gaze

appears to have affected the absolute value of oxy. In reaches to both visual and
proprioceptive targets, the value of oxy was lower when eye position was constrained
(compare Figure 15a,b with Figure 19d,e). This trend, which had a magnitude of

.14 in the visual-target condition and .17 in the proprioceptive-target condition, fell

short of significance in both cases (t-test, p=.12 and p-.14, respectively). This effect

is likely due to the fact that the fixation constraint put the visual feedback in the

visual periphery at the time of reach initiation. Since peripheral visual signals are

noisier than foveal ones (Frisen and Glansholm, 1975; Wright and Johnston, 1983),

the finding that subjects weight proprioceptive feedback more heavily in the control

study is consistent with a minimum-variance strategy (see Discussion).

Control for active movement of the target arm

In the original version of Experiment 1, proprioceptive targets were specified by

the position of the left index fingertip. However, since subjects actively moved the

left hand to the target location and supported it against gravity once it was in place,

non-proprioceptive motor cues such as efference copy could have contributed to the

sensed position of the left hand. We therefore tested 5 additional subjects in a second

modified version of Experiment 1 aimed at minimizing non-proprioceptive cues to

target location. Specifically, the left arm was passively moved to the proprioceptive

target on each trial and was supported by a second tabletop (Figure 20a). The left

º
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Figure 20: Methods and model fits, passive proprioceptive experiment. In this study, the left
arm rested on a sled (not shown) supported by the lower table (a) and was passively moved to
the appropriate position to serve as a proprioceptive target. The left index fingertip touched the
upper table, which supported the right arm. Results are shown in b-d, plotting conventions as in
Figure 15.

forearm rested on a specially designed sled with an adjustable brace that fixed the

left wrist and held the left index fingertip in a raised position against the underside

of the upper table. The right arm rested on the top of the upper table. Subjects

received no information about where to move the left hand. Rather, an experimenter

stood to the subject's left and positioned the left index fingertip at the appropriate

proprioceptive target on each trial. This positioning was done based on visual cues

available to the experimenter but hidden from the subject, who was instructed to

relax the left arm while the experimenter positioned it.
/(
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The results of this modified experiment are shown in Figure 20b-d. As in the

original experiment, all subjects had a larger fit value of oxy in the visual-target

condition (mean difference in oyry = .38, Figure 20d). This result shows that the
pattern of sensory integration during movement vector planning observed in the

original experiment did not depend on the subject making active movements with

the left (target) arm. The average value of opy in the modified experiment was very
similar in both conditions (mean difference in opy = 04, larger for proprioceptive
targets).

Hypothesis testing and confidence limits.

We used a bootstrapping technique (Efron and Tibshirani, 1993) to determine

confidence limits on the fit values of oxy and ony. For each subject and trial type

(e.g. visual-target vs. proprioceptive-target trials in Experiment 1), we created 1000

datasets in which each datum was resampled (with replacement) from one of the

eight trials with the same reach target and visual shift. The model was fit to each of

these resampled datasets, resulting in a distribution of 1000 values of ■ amv, *INv
which was used to find the confidence ellipse for the values of oxy and ony fit to
the true (un-resampled) dataset.

To test the hypothesis that the value of oxy or opy differed between two trial
types, we used a permutation test against the null hypothesis that the mixing pa

rameter in question was equal in the two conditions. For example, in order to test

the hypothesis that oxy differs when a subject reaches to visual versus proprio
ceptive targets, we tested against the null hypothesis Ho : QMV1 F O'MV2, where

oMV1 is the value of oxy in the visual-target condition and oy■ v2 is the value of
oMy in the proprioceptive-target condition. This test is derived from the following
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rearrangement of Equations 18 and 19 from the main text:

£MV, i = P + ayiv, c6) (V - P.) (18')

*INV, i = P + onv, c(i) (V – P.) (19)

where V, and P. represent the visual and proprioceptive signal on the "trial, c(t)=1

for visual-target trials, and c(i)=2 for proprioceptive-target trials. Combining Equa

tions 18' and 19 with Equation 20 - Equation 22 from the main text, we can obtain

a single expression for the predicted initial velocity in all conditions:

# = J (K-'(P)) J-' (K- (P + onv., (V – P)) (*-P-ow... (V-P).
*

~

dº;

This equation can be rewritten using the indicator function 6.(i)_k, which equals 1 if

trial i is of type k and zero otherwise:

# = P. [r - P - ■ omvi■ .0)=1 + ayiv,66)–2] (V - P.) (23)

According to the null hypothesis Ho ; oxyl = oxive, the model will produce the
same predictions if the oy■ vi and oy■ v2 are randomly interchanged across trials.
This manipulation is achieved by permuting (randomly re-sorting) the values of c(i)

shown explicitly in Equation 23, leaving the un-permuted values of Pi. To perform

the permutation test, we created 1000 artificial datasets in this manner, fit the model

to each dataset, and computed the resulting R*. If the R* value for the true dataset

is greater than the 95" percentile of artificial R* values, then Ho can be rejected.

The null hypothesis H. : onvi = OTNV2 was tested in a similar fashion.
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Chapter 3:
Sensory Integration following

Sensorimotor Adaptation

Abstract

When planning reaching movements, subjects combine visual and proprioceptive
feedback in order to estimate the arm's initial position. This sensory integration
problem is solved at two different stages of reach planning: first when computing the
desired movement direction, and second when converting that vector into a motor
command. In this study, we explore how sensorimotor adaptation affects these two
planning stages. Subjects reached to visual targets after adapting to shifted visual
feedback. In one trail type, visual feedback consisted of a spot of light that followed
the movement of a subject's fingertip. In a second trial type, subjects received no
online feedback but pointed to a spot of light prior to the initiation of each reach.
In both trial types, subjects planned reaching movements using displaced visual
feedback, either because of shifts in the online visual feedback or because of errors
in the reach to the initial visual landmark. Analysis of the resulting reach errors
suggests that sensorimotor adaptation drives changes in the movement vector plan
ning stage, but that the second stage of reach planning is unaffected. Additionally,
we ask whether the relative weighting of vision and proprioception is influenced by
the availability of online visual feedback, a factor known to influence the extent of
Sensorimotor adaptation. We found that on average subjects weighted visual sig
nals equally in the two trial types, suggesting that a stationary visual landmark can
influence arm position estimation to the same extent as continuous visual feedback.

* ,
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INTRODUCTION

When planning a reaching movement, subjects integrate vision and proprioception

to estimate the position of the arm. In the course of planning a single movement,

two position estimates are formed. First, an integrated estimate is used to plan

the desired reach direction, or movement vector. Then, a second position estimate

is used to transform the movement vector into a joint- or muscle- based (intrinsic)

motor command (Sober and Sabes, 2003). We have demonstrated the flexibility

Of sensory integration at both of these stages. Manipulations of the reaching task

have shown that the reliance on vision versus proprioception at the first planning

stage is strongly influenced by the coordinate frame of the target and that sensory

integration at the second stage is significantly affected by the information content of

the visual feedback (Sober and Sabes, 2005).

In our previous work, we quantified sensory integration using acute shifts of visual

feedback to dissociate visual and proprioceptive hand position signals. These shifts

lead to errors at both stages of reach planning by displacing the estimated hand

position away from the true hand location. At the first stage of reach planning,

shifted visual feedback induces errors in the planned movement vector, or “MV

error”. At the second stage, feedback shifts lead to errors in generating the motor

Command necessary to achieve the desired movement vector. This inverse model

Or “INV error” consists of counterclockwise changes in initial movement direction

when visual feedback is shifted rightward and clockwise changes when feedback is

shifted leftward (Goodbody and Wolpert, 1999). Since the magnitudes of MV and

INV error are proportional to the reliance on vision at each planning stage, we were

able to infer the weighting of vision and proprioception from the changes in initial

reach direction caused by shifted visual feedback (Sober and Sabes, 2003, 2005).

-
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Here we explore how vision and proprioception are combined following sensorimotor

adaptation, when a persistent shift of visual feedback leads to lasting changes in

motor planning and a realignment of the visual and proprioceptive maps of the

workspace (Helmholtz, 1925; Welch, 1986).

We quantify sensory integration following adaptation to shifted visual feedback in

Order to address three questions. First, we ask whether the process of sensorimotor

adaptation differentially affects the two stages of motor planning. If movement

vector planning and inverse model evaluation are truly independent planning stages,

it seems reasonable that the process of adaptation might affect them independently.

By examining the effects of adaptation on MV and INV error, we hope to further

demonstrate the modularity of the planning process. Subjects adapted to shifted

visual feedback and then performed center-out reaches under two conditions. In

One case, subjects made reaches with continuous visual feedback of their fingertip

using the same visual feedback shift they experienced during training (“with-feedback

reaches”). In a second condition, subjects began by reaching to a spot of light

at the center of the workspace. These initial movements were inaccurate, due to

the aftereffects of adaptation. This aftereffect led to a dissociation of vision and

Droprioception analogous to that experienced in with-feedback reaches. From this

starting point, subjects then reached to a target in the continued absence of online

visual feedback (“no-feedback reaches”). By comparing the magnitudes of MV and

INV error in both trial types with the results of our previous studies (in which

these errors were evoked in the absence of adaptation), we are able to determine the

relative effects of sensorimotor adaptation on the two planning stages.

Second, comparing sensory integration in with- and no-feedback reaches to that

found in previous studies allows us to ask whether the reach errors experienced during

adaptation have an effect on sensory integration. In both our current and previous
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studies, we induced reach errors by altering visual feedback. Error on any given trial

is therefore proportional to the reliance on vision. In our previous studies, subjects

were given no visual feedback about the accuracy of their reaching movements. In the

current study, however, error information is provided in order to drive sensorimotor

adaptation. Subjects in the current experiment could therefore use error feedback to

drive adaptive changes in sensory integration, decreasing their reliance on vision in

Order to reduce the size of reaching errors. Using a previously described mathematical

model of motor planning (Sober and Sabes, 2003), we quantify the relative reliance on

vision and proprioception during motor planning. Comparing the inferred weighting

of vision and proprioception in the present study with that found previously allows

us to ask whether such a strategy is in fact employed.

Third, we ask whether the presence or absence of online visual feedback influences

Sensory integration. Studies of sensorimotor adaptation have shown that this factor

influences the extent to which visual shifts lead to learning (Foley and Maynes, 1969;

Cohen, 1967). We therefore investigate whether the availability of continuous visual

feedback affects sensory integration as well. Although no-feedback and with-feedback

reaches both began with a discrepancy between visual and proprioceptive signals,

visual feedback represented the full motion of the fingertip only in the with-feedback

Case. Fitting the same model to data from both trial types allows direct comparison

Of the weighting of vision and proprioception in these two conditions.

- .
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METHODS

All subjects (4 female, 5 male) were healthy, right-handed, had normal or corrected

to-normal vision, and ranged from 24–46 years of age. Subjects were paid for their

participation and were naive to the purpose of the experiments. Reach targets and

visual feedback of the arm were presented using a virtual-reality display system de

scribed previously (Sober and Sabes, 2003). Subjects performed all reaching move

ments with the right arm, which rested on a shoulder-height table. The wrist was

immobilized by a splint, which also fixed the right index finger in an extended posi

tion. Friction between the right arm and the table was minimized by air sleds under

the upper arm and forearm. The left arm rested comfortably below the table, and

the left hand held a mouse which subjects clicked as part of certain tasks (see Task

Design below). The torso was immobilized with a padded harness, and a drape pre

vented direct vision of the arm and shoulder. Movement data were collected using

an infrared tracking system (OPTOTRAK, Northern Digital, Waterloo, Ontario).

Infrared-emitting diodes attached to the arm and shoulders allowed us to compute

the angles of the shoulder and elbow joints.

Task Design

The workspace consisted of eight targets equally spaced along an imaginary circle of

radius 10 cm surrounding a ninth, central target. Each target (when illuminated)

was a spot of radius 5 mm. The central target was positioned approximately 40 cm

from the subject's chest and slightly to the right of the midline.

Block design. Each subject participated in two sessions, which were sepa

rated by at least 24 hours. Each session was composed of three blocks – Baseline,

Workspace Control, and Visual Shift. In Baseline blocks, visual feedback was veridi

--
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cal. In Visual Shift blocks, the visual feedback was shifted to the right or left (one

direction in each session) by 120 mm. In Visual Shift blocks, the visual workspace

was also shifted by the same amount as the visual feedback. The effect of this was

that the actual workspace (that is, the location of the reaches in table-centered co

ordinates) was not altered, although the apparent (visual) workspace changed. As a

control for this shift in apparent location, Workspace Control blocks were included

in which visual feedback was veridical, but the workspace was shifted to match the

apparent workspace in that session's Visual Shift block. Blocks consisted of varying

combinations of six different trial types (training, with-feedback testing, no-feedback

testing, no-feedback transition, visual midline, and proprioceptive midline), which

were presented in sets.

Training trials. A training set (Figure 21A) consisted of 49 reaches between

the central target and the eight peripheral targets. Each training trial began in the

absence of visual feedback with the appearance of one of the nine targets. Subjects

were then required to move their index finger towards the target. When the fingertip

had moved 75% of the distance to the target, the subject began to receive visual

feedback. Visual feedback in this and all other trial types consisted of a white circle

of light 6 mm in diameter. Subjects completed their reach in the presence of visual

feedback, and the target and feedback spot were extinguished after the spot was held

within the target for 150 msec. We selected this schedule of visual feedback after

a preliminary study indicated that this method produced more robust adaptation

aftereffects than continuously illuminated visual feedback (data not shown).

With-feedback trials. A with-feedback testing set (Figure 21B) consisted of

eight center-out reaches to the peripheral targets in pseudorandom order. The trial

began when the central target appeared as a green circle. Subjects positioned the

feedback spot on the central target and clicked a button on the mouse held in the
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Figure 21: Task design. In each experimental session, subjects performed six different tasks. (A) In
a set of training trials, subjects performed 49 reaches and received visual feedback at the end of each
movement. (B) During with-feedback trials (8 trials/set), visual feedback was available throughout
the movement. A set of 3 no-feedback transition trials followed each set of with-feedback trials. In
these trials, subjects reached to three targets in the absence of visual feedback. During no-feedback
trials (8 trials/set), subjects reached to the central start point in the absence of visual feedback,
and then reached to one of the peripheral targets. (C) In visual midline and proprioceptive midline
trials, subjects used only a single sensory modality to estimate their midline on the table surface.
(D) Each session included a Baseline, Workspace Control, and Visual Shift block, made up of the
trial types described in (A-C), as shown. In Visual Shift and Workspace Control blocks, the nine
visual targets were shifted rightward or leftward (“--” or “-”) by 120 mm. In Visual Shift blocks,
visual feedback from the fingertip was shifted by the same amount. Visual feedback was veridical
in Workspace Control blocks.
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left hand. A blue target circle then appeared in one of the eight peripheral locations.

After a delay of 500-1500 msec, the target turned purple, which cued the subject

to reach to the target. The start point disappeared as soon as the movement was

initiated. The velocity of the fingertip was monitored online, and the trial ended

when either the visual feedback spot had been held at the target for 100 msec or

if fingertip speed dropped below 1.2 mm/sec. When either of these conditions were

met the target disappeared and the green start point reappeared to begin the next

trial.

No-feedback trials. No-feedback testing sets were identical to with-feedback

sets except that subjects did not receive visual feedback from the finger. Subjects

were therefore required to estimate the location of the central target at the beginning

of every trial. The estimated start points of the no-feedback reaches – that is, the

location of the fingertip when subjects clicked the mouse button to begin each trial

– were used to measure the magnitude of the sensorimotor aftereffects induced by

the visual shifts (see Data Analysis below).

No-feedback transition trials. Preliminary studies indicated that when no

feedback testing trials directly followed with-feedback trials, subjects showed an

aftereffect magnitude equal to the magnitude of the visual shift (100% adaptation)

On the first movement to the central start point. Since adaptation to shifted visual

feedback typically has a significantly smaller magnitude (Welch, 1986; Clower and

Boussaoud, 1998), this suggested that the subject might be relying on visual feedback

from the previous trial to estimate the first no-feedback start point. For this reason,

a set of three transition trials were introduced between the with-feedback and no

feedback trial sets. In each transition trial, a pseudorandomly selected target was

illuminated and subjects were required to point, without feedback, to their best

estimate of the target location and click the mouse button.

; ■ º
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Visual and proprioceptive midline trials. At the conclusion of each block,

subjects completed two additional sets of single-modality trials intended to deter

mine the contributions of visual and proprioceptive recalibration to the start point

estimation aftereffect described above (Figure 21C). In the first set (“visual mid

line”), a small white dot moved slowly across the workspace. Subjects kept their

reaching hand stationary and clicked the mouse button when they judged that the

dot was crossing the midsaggital plane (midline). This was repeated eight times,

and the dot began its trajectory from alternating sides on consecutive trials. In a

second set (“proprioceptive midline”), also consisting of eight trials, subjects pointed

at their estimate of the midline at the approximate distance from the body that the

white dot had traversed in the visual midline trials. This estimation was done in

the absence of visual feedback. Between the proprioceptive midline trials subjects

moved their reaching hand to alternating sides of the workspace before making the

next estimate. Prior to beginning each experimental session, subjects were familiar

ized with all six trial types. This familiarization was completed in the absence of

any visual shifts.

Data Analysis and Model Fitting

Aftereffect calculations. Aftereffects were measured in three different ways. First,

reach aftereffects were quantified by measuring the change in subjects' estimates of

the position of the central start point in no-feedback testing trials. Reach aftereffects

were separated into a component parallel to the direction of the visual feedback

shift and a component in the orthogonal direction. A subject was judged to have

a start point aftereffect if there was a significant change between the Visual Shift

and Baseline blocks (t-test, p<.05) in the component parallel to the visual feedback

**-
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shift. Single-modality (visual midline and proprioceptive midline) aftereffects were

measured in the same way, except that aftereffects were only assessed along the

direction parallel to the shift.

Since the topic of this study was the effects of adaptation on motor planning,

and not adaptation per se, we applied a strict subject selection criterion based on

the aftereffect data. A subject was judged to have adapted successfully if in both

experimental sessions they showed a significant aftereffect in both the start point

and one of the two single-modality tests. Since previous work has shown that such

single-modality effects accompany prism adaptation (Harris, 1963; Hay and Pick,

1966; Uhlarik and Canon, 1971) we established the second requirement to reject

data from subjects that may have been altering their start point estimates as part

of a conscious strategy to compensate for the shifted visual feedback or as a result

of procedural, task-related learning. If a subject did not meet the two requirements

in one or both sessions their data was not included in the final analysis.

Trajectory analysis. Raw trajectory data were smoothed with a low-pass But

terworth filter with a cutoff frequency of 6 Hz. Average trajectories for each target

and feedback condition were calculated by designating the first and last times the

tangential velocity equaled 10% of the peak velocity for each individual trial. The

velocity trace between these landmarks was then resampled using cubic spline in

terpolation into 50 points evenly spaced in time. The interpolated trajectories were

then averaged to compute the mean trajectory for each subject, target and feedback

condition. These averaged trajectories were used for display only and were not used

in any data analysis.

Initial direction. We quantified initial reach direction by choosing two early

landmarks along the reach trajectory and determining the average velocity between

them. The first and second landmarks were the first points along the trajectory

* *
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where the speed exceeded 40 and 60% of the peak speed. These markers nearly

always fell within the first centimeter of the reach path. The results presented here

are robust to variations in these landmark percentages between 20-70% of the peak.

Model fitting. The data from each subject were fit with a model of feedforward

motor planning. In earlier work, we have developed a technique that allows us to

quantify how vision and proprioception are combined at each planning stage (Sober

and Sabes, 2003, 2005). In these earlier experiments, subject planned reaching move

ments with shifted visual feedback. These shifts introduced error at the movement

vector and inverse model planning stages (MV error and INV error, respectively).

By measuring the magnitude of these errors as a function of target direction, we

were able to fit the values of oxy and ony, corresponding to the extent to which
the subject relied on visual feedback at each stage.

In our previous work, the visual shifts varied randomly from trial to trial, and

subjects never received feedback about the resulting reach errors (Sober and Sabes,

2003, 2005). As a result, visuomotor adaptation did not occur. In this study, how

ever, subjects received error feedback in the training and with-feedback testing trials.

Subjects adapted to the consistent visual shifts and displayed the type of reaching

aftereffects described in classic studies of prism adaptation (Helmholtz, 1925; Welch,

1986). As described below, we found that the process of sensorimotor adaptation

led to an elimination of MV error. We therefore did not attempt to quantify QMV

(see Discussion). However, INV error persists after visuomotor adaptation, and we

quantified ony as in our previous work.
For each subject, data from the with- and no-feedback conditions were fit sep

arately. In the model, visual and proprioceptive signals are integrated to yield a

combined estimate of arm position. Arm position is interchangeably expressed in

Cartesian workspace coordinates (a) or in terms of joint angles (9), related by the
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kinematics equation a = K(9). Note that the kinematics equation is invertible for

the restricted, two degree of freedom movements made in this experiment. A mixing

term any parameterizes the relative contributions of these two modalities to the
final estimate:

*INv = onvivis + (1 - onv) prop. (24)

The direction of the planned movement vector is described by

Zá' = 4 (arº – a “") + was (25)

where Zz represents the angle of any vector z, ar" represents the target location,

a"*" represents the start point location, w is an angular offset term that captures

* and w overdirectional biases in baseline reaches, and d e [1, ..., 8 indexes ar", a

the eight targets.

The desired fingertip velocity it” is transformed into a motor command, which

we model as a vector of joint angle velocities 6:

6 = J~"(Ny)+", (26)

where "Nv = K_*(*INy) and J(0) = # is the arm Jacobian. This planning stage
describes an evaluation of an inverse model of the arm (Jordan, 1996).

When this command is implemented by the arm, the change in endpoint is related

to the change in joint angles by the Jacobian:

# = JC9)db = JC9).J.'(ºny)+" (27)
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Note that if the initial position estimate is accurate (INy = 0), the arm movement
will be along the desired movement vector. If the shifted visual feedback results in a

discrepancy between 0 and "Nv. however, the initial velocity it will differ from the

desired velocity it", resulting in INV error.

The model was fit to the data from each subject using ony as the sole free
parameter. The wa for each of eight target directions was set to equal the average

angular offset in the Baseline block for that target and experimental session. The

fit datasets consisted of arm positions at the beginning of each movement (£prop in

Equation 24), the visual locations of the start point (£vis in Equation 24), which in

with-feedback trials was coextensive with the visual feedback spot, and the initial

directions of movement (it in Equation 27) for with-feedback and no-feedback testing

trial sets in the Baseline and Visual Shift blocks. The value of opy was fit separately
to datasets from with- and no-feedback trials using a nonlinear regression algorithm

(MATLAB, The Mathworks Inc., Natick, MA). Each fit dataset consisted of 128

trials (4 blocks × 8 targets x 4 repetitions).

Alternate model analysis The above model assumes that the visual and pro

prioceptive signals combined to estimate arm position in are unbiased. In Sober and

Sabes (2003) we show that the model is able to fit the correct value of OTNV even

in the presence of constant biases of £vis and £prop, provided that the biases are the
same when visual feedback is shifted leftward and rightward. However, sensorimotor

adaptation leads to aftereffects in visual midline and proprioceptive midline trials

that differ based on the direction of the visual shift (see Figure 22).

It is unclear whether these behavioral biases reflect changes in £vis and £prop or
whether they result from some process separate from those described in the preceding

equations. To test how biased values of £vis and £prop might affect the fit value of

ony, we performed an alternate analysis in which Equation 24 was modified to take
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into account visual and proprioceptive biases:

*INv = any (ivis-FAv.)+(1-onv) (ºprop+AP.). (24')

In this modified equation, Av, and AP, represent the biases in vision and propriocep

tion resulting from sensorimotor adaptation to visual feedback shifted in direction

8. Fitting the values of Av, and Ap, (in addition to any) would result in a model
with more degrees of freedom than could be constrained by the data. We therefore

estimated these terms from the shift-induced changes in subjects' estimates of the

midline:

Av -
–(V,

-

Vb)s

Ap, = -(P, -Pb).

The terms V, and P, are the mean visual and proprioceptive midline estimates
following a shift in direction s, and Vºl and Pb are the appropriate baseline values.

The sign reversal reflects the fact that a leftward shift in a perceptual map will lead

to a rightward shift in the estimate of the subject’s midline, and vice versa.

Significance testing and confidence intervals. We determined whether each

fit value of any was significantly different from zero using a permutation test (Good,
2000). A rearrangement of Equation 24 yields

*INV
– £prop + CINV (ivis

-

£prop).

Under the null hypothesis opy = 0, the initial direction of movement is independent
of (£vis – £prop). By permuting the trial identities from which this difference term
is taken, we can break any existing dependence, creating an artificial dataset that

:
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obeys the null hypothesis. By creating 1000 such datasets and fitting opy to each
of them, we created a distribution of opy under the null hypothesis. We rejected
the null hypothesis for the actual dataset if the best-fit opy was greater than the
95" percentile of this distribution.

Additionally, we used a bootstrapping technique (Efron and Tibshirani, 1993) to

put confidence limits on the fit values of ony. We created 1000 datasets where all
data for each trial were resampled (with replacement) from one of the four trials in

the same block with the same target direction and feedback condition. The value of

ony was then fit to each synthesized dataset. The resulting distribution of ony
was used to find the confidence limits of the fit opy from the actual datasets.

Predicted changes across the workspace. To compute the average change in

initial reach direction predicted by the model at each point in the workspace (shown

in Figure 26), we used the fit values of ony and the arm Jacobian for a given
subject to calculate the matrix M = JC9).J '(Nv) at an array of points across the

workspace. The average predicted change at each workspace location was calculated

as the mean angular change induced by M across the unit circle.
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Figure 22: Aftereffects. Each symbol plots the mean + 1 S.E. aftereffect (Visual Shift minus
Baseline) from a single subject after rightward and leftward shifts of visual feedback. Errorbars
are hidden by the symbols in many cases. (A) shows the component of start point aftereffects
parallel to the direction of the visual feedback shifts. (B) shows the aftereffect component in
the orthogonal direction. (C) and (D) show the aftereffects in visual midline and proprioceptive
midline trials, respectively. Symbols in (A) through (D) indicate the results of t-tests (p<.05)
to determine whether aftereffects are significant. Positive values in (A), (C), and (D) indicate
rightward aftereffects, however note that values on the abscissa (A and D) and ordinate (C) have
been sign-reversed so that data from subjects showing the expected aftereffects fall in the upper right
quadrant. (E) shows aftereffect magnitude plotted against the combined magnitudes of the visual
and proprioceptive-only aftereffect recorded in a single experimental session. Sessions including
leftward visual feedback shifts are plotted as squares, and sessions including rightward shifts are
plotted as circles.

RESULTS

Aftereffects All 9 subjects showed significant start point aftereffects in both ex

perimental sessions. In the single-modality trials, however, only 6 subjects showed

significant aftereffects in either the visual midline or proprioceptive midline trials

in both experimental sessions. Using the criterion outlined in Methods, these 6

datasets were selected for full analysis. Aftereffect data for these selected subjects
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are shown in Figure 22. Adaptation to leftward and rightward visual shifts produced

large aftereffects along that axis (Figure 22A) in the direction opposite the visual

shift. When averaged across the two experimental sessions completed by each sub

ject, the magnitude of start point aftereffects ranged from 29-93% of the magnitude

of the visual feedback shift. Small aftereffects were sometimes seen in the direction

orthogonal to the axis of shift (Figure 22B). Additionally, the single-modality trials

revealed a recalibration of the visual and proprioceptive estimates of the subjects'

midline, as previously reported (Hay and Pick, 1966; Welch et al., 1974). In visual

midline tests, the visually perceived straight-ahead direction was perturbed in the

direction of the shift in visual feedback (Figure 22C). Proprioceptive midline trials

showed that the felt position of the midline was shifted in the opposite direction

(Figure 22D). Figure 22E shows that the magnitude of start point aftereffects was

not predicted by the sum of visual midline and proprioceptive midline aftereffects.

This finding is consistent with the findings of Welch et al. (1974), although Hay and

Pick (1966) found that reach aftereffects were well-predicted by the sum of effects

observed on trials using single modalities.

Initial Direction Reach trajectories from a single subject in the with-feedback

condition are shown in Figure 23A and B. Leftward and rightward and visual shifts

produced clockwise and counterclockwise changes in the initial direction of reach, the

pattern typical of INV error. This rotational pattern is not consistent with errors in

movement vector planning, which is characterized by a bimodal pattern of changes

in initial direction (see Figure 1, Chapter 1). Because subjects received continuous

visual feedback throughout the movement, they fully corrected their initial errors

in the later parts of the reach trajectory. The clockwise/counterclockwise pattern

of changes was consistent over most, but not all, target directions for this subject

(Figure 23C).
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Figure 23: Reach trajectories and initial reach directions from a representative subject, with
feedback trials. Although all trajectories begin at the same central start point, trajectories have
been offset by 1 cm in the direction of the target for clarity. Narrow lines in (A) show individual
reach trajectories during leftward (black) and rightward (gray) shifts of visual feedback. Heavy
dashed lines show mean trajectories in the appropriate Baseline condition. (B), detail of the initial
portion of the movement (box in A). Heavy solid lines in (B) show the mean trajectory during
leftward and rightward shifts. (C) Shift-induced changes in initial direction (Visual Shift minus
Baseline) as a function of target direction. A target direction of 0° corresponds to the rightward
target, and the target furthest from the subject is at 90°. Positive and negative values on the
ordinate correspond to counterclockwise and clockwise errors, respectively. Errorbars, + 1 S.E.
Dashed lines represent the mean error across target directions for a given shift. Data are from
subject tr.
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This pattern of shift-induced changes in initial direction was observed in every

subject. To investigate whether this pattern was statistically significant, changes in

initial reach direction were pooled across the eight target directions and subjected

to a t-test. For all subjects, directional changes resulting from the leftward and

rightward shifts were significantly different (p < 05). Figure 24A shows the mean

change in initial reach direction in with-feedback reaches. Rotational errors were

not seen in the Workspace-Control blocks (Figure 24C and D), in which the start

point and targets were shifted but visual feedback was veridical. Changes in initial

direction in the Workspace Control blocks were not significant in any dataset in

the with-feedback condition, and differed significantly in only one of six datasets

in the no-feedback condition. These results indicate that the pattern of clockwise

and counterclockwise changes observed in the Visual Shift blocks was not due to the

change in apparent workspace.

Data from no-feedback trials reflected a similar pattern of changes in initial di

rection. Subjects began each no-feedback reach by pointing to the visual start point

(Figure 25A, open circles) in the absence of visual feedback. Each reach there

fore began from a different starting point. Aligning the start points (Figure 25B

and C) shows that reaches in the no-feedback condition display the same clockwise

counterclockwise pattern of changes seen in with-feedback reaches (compare to Fig

ure 23A and B).

The direction and magnitude of the disparity between the signals provided by

vision (the start point) and proprioception (the hand location) in the no-feedback

condition varied from trial to trial. In our model, the position estimate £ny lies
along the line connecting the two position signals (Equation 24). Furthermore, the

predicted error on any given trial depends on both the actual and estimated hand

locations (Equation 27). There was therefore a moderate amount of trial-to-trial º



Chapter 3 97

A No-feedback

;

| |
-90 0 90 180

Target direction (deg)

Figure 24: Visual shift-induced directional errors, averaged across subjects. (A) and (B) show the
mean + 1 S.E. change in initial direction in the Visual Shift blocks relative to Baseline blocks.
(C) and (D) show the same changes in the Workspace Control blocks relative to the Baseline
blocks. Data from the with-feedback condition are shown in parts (A) and (C), and results from
the no-feedback trials are shown in (B) and (D). Other plotting conventions as in Figure 23C.

Figure 25: Reach trajectories from a representative subject, no-feedback trials. Trajectory data
are shown in (A). Center-out reaches begin after subjects reach to a visual start point (circles)
as explained in Methods. Trajectories and visual start points used during leftward and rightward
shifts of visual feedback are shown in black and gray, respectively. In (B), reaches to each target
are aligned at their starting points. Average initial trajectories (from the area enclosed by the box
in B) are shown in (C). Data are from subject wi.
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Figure 26: Predicted changes in reach direction from a single subject. The locations of reach start
points (black dots) in no-feedback (A and B) and with-feedback (C and D) trials are shown for
leftward (A and C) and rightward (B and D) shifts of visual feedback. Gray dots show the loca
tions of the visual start points. Contour lines show the average change in initial reach direction
predicted by the model for reaches begun at each location in the workspace. Positive values repre
sent counterclockwise changes. Data and error predictions are from the reach start position data,
arm dimensions, and model fits (ainv = .82, with-feedback; of NV = .73, no-feedback) for subject
tr.

variability in the predicted change in initial reach direction for no-feedback trials

(Figure 26A and B), whereas the predicted effects of visual shifts were of a fairly

constant size in with-feedback trials (Figure 26C and D). Despite this variation,

however, data from no-feedback trials showed similar patterns of directional error as

those from with-feedback reaches (Figure 24B). This difference was significant in all

6 subjects.

Model Fitting We fit the model separately to the with- and no-feedback data

from each subject as described in Methods. The values of wa (average baseline bias)

were typically small, indicating that the planned movement vector (£" in Equation 25

- Equation 27) was approximately parallel to the start-target vector. The mean +

1 S.D. values of wa were 1.3 + 4.6° in the with-feedback condition and 0.7-E 7.8° in

!
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the no-feedback condition

Despite the difference in the availability of online visual feedback provided in

the two conditions, the model fits showed that subjects used a similar mixture of

vision and proprioception in with- and no-feedback trials (Figure 27A). Although

some subjects showed substantial differences in sensory integration in the two trial

types, the average value of any was similar in the two feedback conditions (mean
ony = 40, with feedback; onv = 45, no feedback). Permutation tests (see Meth

ods) revealed that all fit values of any in both feedback conditions were significantly
different from zero. This allows us to categorically reject the hypothesis that sub

jects were relying exclusively on proprioception when estimating the location of their

arm. Fit values of any in the two feedback conditions did not correlate with the
magnitude of sensorimotor adaptation or the size of single-modality aftereffects. Ad

ditionally, we fit the model to data from the three subjects that had initially been

eliminated from consideration for failing to meet our criterion for sensorimotor adap

tation. These three subjects had substantially lower values of ony than the six who

adapted (mean ony = 24, with feedback; of NV = .19, no feedback). However, in

cluding these subjects did not qualitatively change our results. As before, values of

ony were comparable across feedback conditions (mean any = .34, with feedback;
any = .35, no feedback).

So far, our analysis has assumed that visual and proprioceptive signals are un

biased. That is, we have assumed that the visual and proprioceptive signals com

bined to estimate arm position represent the actual location of visual objects in the

workspace and the true position of the fingertip, respectively. We also performed an

alternate analysis (Figure 27B, see Methods) that assumed that the single-modality

aftereffects shown in Figure 22C and D reflect a recalibration of vision and proprio

ception that applies to the signals combined to form £INy. This alternate analysis

º
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Figure 27: Fit values of ony in the with- and no-feedback conditions. Errorbars are +1 S.E.
Grey symbols indicate mº }: where any is not significantly different from zero. The initials
at right identify the subjects to whom the values of CINV apply, and black lines connect the values
fit to data from the two feedback conditions from the same subject. (A), results of the primary
analysis. (B), results of the alternate analysis that takes into account potential biases in vision and
proprioception (see Methods).

yielded qualitatively similar results as the original model. We found comparable

values for onv in the two feedback conditions (mean ony = .51, with feedback,

ony = 36, no feedback). The average difference in any between the with- and no
feedback conditions was not significantly different from zero (1-tailed t-test, p=.40).

Note that the between-condition difference in ony is mostly due to a single sub
ject (subject tr), who shows an unusually high value of ony in the with-feedback
condition in both analyses. Therefore, although it is not clear whether the observed

unimodal biases apply to £vis and £prop in Equation 24, including them in the model
does not produce qualitatively different results.

DISCUSSION

Work from our own and other labs has described the modular nature of reach plan

ning, in which the brain first plans the overall movement vector and then converts

it into an appropriate motor command. Evidence for these two stages has come

5.
*
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from studies in which errors are introduced at the first stage (Rossetti et al., 1995),

second stage (Ghilardi et al., 1995; Goodbody and Wolpert, 1999), or at both stages

simultaneously (Sober and Sabes, 2003, 2005). Here, we provide further evidence

for the modularity of reach planning by showing that sensorimotor adaptation pre

dominantly affects only one of the two stages. Following adaptation to shifted visual

feedback, subjects showed none of the MV error seen when visual feedback is shifted

acutely (Sober and Sabes, 2003). The training trials, which provided subjects with

feedback about their reaching errors and drove sensorimotor adaptation, therefore led

to the elimination of MV error, and subjects planned reaching movements roughly

parallel to the visually-specified start-target vector (Goodbody and Wolpert, 1999).

On the other hand, extensive practice with shifted feedback did not eliminate INV

error, which arises at the second stage of reach planning. Sensorimotor adapta

tion therefore appears to drive substantial changes at the movement vector planning

stage, but less so during inverse model evaluation.

In our previous work, we used acute shifts of visual feedback to quantify sensory

integration at both stages of motor planning. In addition to quantifying ony, we
used MV error to infer oyry, the weighting of vision and proprioception used during
vector planning. In this study, we were unable to quantify oxy because the process
of sensorimotor adaptation effectively eliminated MV error. Although it is tempting

to speculate that this reflects a complete reliance on vision at the movement vector

planning stage, this is unlikely to be the case. Sensorimotor adaptation is composed

of several phenomena. First, adaptation shifts the visual and proprioceptive maps of

the workspace (Hay and Pick, 1966; Welch et al., 1974). Such changes (Figure 22C

and D) presumably alter the perceived positions of the start and target, leading

to realignments of the planned movement vector. Second, sensorimotor adaptation

causes changes in the reach direction planned on the basis of sensory input (Welch

--->
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et al., 1974; Harris, 1963; Hardt et al., 1971). These changes are thought to account

for the fact that reach aftereffects are frequently larger than the sum of visual and

proprioceptive effects, as was often the case in our results (Figure 22E). Since the

absence of MV error results in part from changes affecting the MV planning stage,

rather than from changes in sensory integration, measuring MV error does not pro

vide reliable information about CMV. INV error, on the other hand, is not reduced

during sensorimotor adaptation and should not be affected by shifts in sensory maps

or by systematic alterations of the planned movement vector. We are therefore able

to quantify any in much the same way as in our previous work.
Despite the changes in movement vector planning that accompany adaptation,

sensory integration during inverse model evaluation appears to be unaffected by

adaptation. The with-feedback condition presented here is similar to the task pre

sented in Sober and Sabes (2003). In both cases, subjects were exposed to laterally

shifted, continuous visual feedback when planning reaching movements. This sim

ilarity of experimental design allows us to compare the fit values of any in the
with-feedback condition to the values of opy shown in Figure 7A of Chapter 1. In
that study, the mean value of any was .28. This value is somewhat lower than the

mean (onv=40) in the with-feedback condition. Therefore, although sensorimotor
adaptation drives changes at the first stage of planning that lead to the elimination

of MV error, INV error is the present study is as large or larger as in the absence

of adaptation. Although the higher mean value of opy in the current results might
reflect a real difference in sensory integration, note the presence of an outlier value

of opy in the with-feedback condition (subject tr, see Figure 27A). If this value is
excluded, then the mean value of any in the present study is .32, in good agreement
with the results of Sober and Sabes (2003).

A second goal of this study was to ask whether the visual error feedback that
(
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drives sensorimotor adaptation affects sensory integration. In order to induce and

maintain adaptation, subjects were given visual feedback of their reach errors in

training and with-feedback trials. Because visual feedback was shifted, the INV

error experienced on any trial was proportional to ony, the subject's reliance on
vision. Subjects could therefore have reduced the size of their INV errors by relying

more on proprioception. In contrast, in Sober and Sabes (2003), subjects did not

receive any feedback about the accuracy of their reaches. Sensory integration was

therefore quantified in the absence of error information, and as such the average

value of any in this earlier study can be used as a baseline measure of how vision
and proprioception are integrated. Since we observed higher values of ony in this
study than in Sober and Sabes (2003) (see above), we can conclude that subjects

did not decrease their reliance on vision following adaptation in order to reduce INV

€II'Or.

Sensory integration at the second stage of reach planning, therefore, does not

appear to be a site of plasticity during sensorimotor adaptation. In contrast, we have

shown that large changes in ony are driven by changing the information content of
the visual signal from the arm (Sober and Sabes, 2005). Sensory integration during

inverse model evaluation is therefore flexible, but driven by different signals than

those that cause the observed changes in movement vector planning.

The third aim of this study was to investigate whether the availability of online

visual feedback has an impact on the weighting of vision and proprioception. Fitting

our model to the data showed that the mean value of opy is similar in the no
feedback and with-feedback conditions. This indicates that a visual landmark - the

spot of light to which subjects initially reached in no-feedback trials - can influence

a subject's arm position estimate to the same extent as continuous visual feedback.

The most significant factor, therefore, appears to be that the subject treats the
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visual object as a proxy for hand position, and not whether the visual cue mimics

the movement of the hand. Similarly, Lackner (1974) found that subjects undergo

sensorimotor adaptation when a discrepancy exists between the felt position of the

hand and the location of a visual landmark (a vertical metal pin). This study provides

further evidence that the nervous system can use the location of a stationary object

bearing no resemblance to the hand to estimate arm position.

An alternate explanation for the results of our model fits is that sensory integra

tion is strongly influenced by gaze direction. Eye position has been shown to affect

the accuracy of reaching to remembered visual targets (Enright, 1995), and the ac

curacy of reaching is affected by the retinotopic location of the target (Bock, 1986;

Henriques et al., 1998). Although eye position was neither measured nor constrained

in our studies, it seems likely that subjects’ oculomotor behavior was similar in both

feedback conditions, since the visual display was nearly identical in both tasks. A

possible interpretation of our results, therefore, is that the similar values of QINV

might reflect similar oculomotor behavior in the two conditions, due to the potential

influence of gaze direction on the hand position estimate £ny. This explanation is
unlikely to account for our results for two reasons. First, in Sober and Sabes (2003)

we show that while the fit values of ony reflect a reliance on proprioception at
the second stage of reach planning, subjects rely mostly on vision at the first stage

of planning, when the movement vector is being computed. Since eye position is

presumably the same when both computations are taking place, sensory integration

cannot be determined by eye position alone. Second, we have shown that when

eye position is controlled, sensory integration at a single planning stage can differ

dramatically between two different tasks (Sober and Sabes (2005), Supplementary

Information). Therefore, although the gaze dynamics during the present experiment

are unknown, it seems unlikely that the similar values of ony result from similar

a
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oculomotor behaviors.

Sensory integration and sensorimotor learning are both processes in which the

brain must combine discrepant peripheral signals in order to produce accurate be

havior. In the case of sensory integration, properties of the task and the stimulus

have been shown to influence the weighting of different modalities (Ernst and Banks,

2002; Sober and Sabes, 2005). In both of these studies, sensory inputs appear to

be weighted in ways that reduce the variability of the integrated estimate, thereby

improving task performance. In the case of visuomotor learning, visual error feed

back is used to drive changes in motor planning and in the calibration of visual and

proprioceptive workspace maps. These changes serve both to reduce the apparent

motor error and to decrease the discrepancy between vision and proprioception.

Our data suggest a close relationship between adaptation to shifted visual feed

back and movement vector planning. Because the visual shifts employed in this

study altered only the apparent kinematics of movement (rather than the dynam

ics of the reaching limb), it is perhaps unsurprising that alterations were seen only

during movement vector planning, when the desired reach kinematics are computed.

Many studies have shown that exposing subjects to force fields or altering the expe

rienced dynamics of the arm leads to lasting changes in motor planning (Shadmehr

and Mussa-Ivaldi, 1994; Dizio and Lackner, 1995). It seems likely that this type of

learning reflects changes at the second stage of planning, when the dynamics of the

reaching limb must be taken into account. If this is the case, then it seems clear

that different types of error signals drive changes at discrete computational stages

in the motor planning pathway. Exploring how these errors signals affect different

planning modules will provide insight into the brain's ability to adapt to novel tasks

and environments.

----
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Chapter 4:
Possible Neural Mechanisms and Future

Directions

Abstract

Psychophysical studies have shown that the planning of reaching movements consists
of two distinct stages. First, the overall direction of movement (movement vector) is
planned by combining visual and proprioceptive feedback from the arm with signals
specifying the location of the target. Second, the desired movement vector is con
verted into an intrinsic motor command using visual and proprioceptive information
about the arm's posture. Sensory integration at both stages is flexible, and visual
and proprioceptive signals appear to be weighted in order to minimize a cost asso
ciated with transforming signals between coordinate frames. Here, I review some of
the recent literature on the neurophysiology of motor control and consider where in
the brain these two planning stages might be performed. Then, I propose a set of
experimental approaches that would allow an experimenter to confirm the compu
tational role of single reach-related neurons. Finally, I suggest several models of the
cost of coordinate transformations in terms of neural activity, and suggest possible
mechanisms by which this cost might influence sensory integration in a range of
behavioral tasks.
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In the preceding chapters, we have described a mathematical model of reach

planning in which sensory signals from the arm and the reaching target are combined

to produce motor commands. This model proposes that reach planning proceeds

in two separate stages – a first stage in which reach trajectories are planned in

the coordinates of the workspace, and a second in which the planned trajectory is

converted into a motor command. In the model, visual and proprioceptive inputs are

weighted at each stage to produce an estimate of the arm's position. In Chapter 1,

we provided evidence that the weighting of these two inputs can vary greatly between

the two planning stages, and suggested that this variation is due to differences in

the computational problems that the brain must solve at each stage. In particular,

the observed pattern of sensory integration is consistent with a strategy in which the

brain avoids a cost associated with relying on signals that have been transformed

between coordinate frames. In Chapter 2, we tested this hypothesis by varying the

parameters of the reaching task. These manipulations led to independent changes in

sensory integration at the two stages, and provided further evidence for a two-stage

model of reach planning in which sensory integration is strongly influenced by the

cost of performing coordinate transformations.

In this chapter, I address how such a two-stage model of motor planning might be

instantiated in the primate brain. I begin by considering where in the brain the two

planning stages might take place. Although no neurophysiological studies have been

explicitly designed with our mathematical model in mind, many researchers have

investigated the planning of reach trajectories and the generation of motor com

mands. This literature is therefore extremely useful in trying to guess the mapping

between the proposed planning stages to the many areas of the brain involved in

target-directed reaching. The response properties of neurons in certain areas of the

brain often correlate well with the general properties of one of the planning stages,

-º -

**
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allowing a preliminary mapping of planning computations onto neural structures.

Following this review of the literature, I suggest an experimental approach to

identifying the computational roles of single neurons. The proposed approach uses

the psychophysical methods developed in earlier chapters to generate quantitative

predictions about how neurons involved in specific computations should fire under

different task conditions. Such a method could be applied to any area of the brain

where firing is affected by hand position during reach planning and could be used to

differentiate multiple functional networks within a single area.

Finally, I consider how the cost of performing coordinate transformations might

be expressed in terms of the activity of populations of neurons. Based on neural

models of how sensory signals are combined to estimate arm position, I consider

how this cost might influence sensory integration. While speculative, these model

circuits provide a biological account of the psychophysical results described in earlier

chapters.

Two Stages of Reach Planning: Expected Neural Correlates

When planning reaching movements, sensory signals from the arm and target are

integrated and transformed into the appropriate motor commands. Psychophysical

studies have suggested that reach planning consists of two distinct stages (Sober and

Sabes, 2003; Rossetti et al., 1995; Goodbody and Wolpert, 1999; Sainburg et al.,

2003). These stages, and the computations comprising them, are shown in Fig

ure 28a. During the movement vector planning (MV) stage, visual and propriocep

tive signals about the position of the arm are combined to produce £My, an estimate
of the hand's initial position (Equation i in Figure 28a). The combination of sensory

signals is parameterized by oxy, which describes the percent to which subject rely

*
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movement vector Planning:
Sensory Integration:

-

*My = a My V H (1 - a My) P
Desired Velocity:

# = f(T-ixiv)

(i)

(ii)

Inverse Model Evaluation:

Sensory Integration:

(iii) finv = any V + (1 - aDNV)P
Motor Command Output:

{} = fº(t), *INvº)(iv)

V-Vision T-Target
P-Proprioception 0- Arm postureKey:

Figure 28: Planning stages and potential cortical sites. (a) Reach planning consists of a movement
vector planning stage (red) and an inverse model evaluation stage (blue). The computations that
make up the two stages are summarized by Equations i-iv. (b) Potential cortical loci for the
two planning stages. Lateral view of a macaque brain (anterior is to the right) showing several
areas involved in goal-directed reaching movements. Areas are colored based on their potential
participation in the two planning stages according to the color conventions in (a), as explained in
the text. Part (b) adapted from Wise et al. (1997), additional connections drawn based on Dum
and Strick (2002) and Kurata (1991). IPS, intraparietal sulcus; CS, central sulcus; see text for
other abbreviations.
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on visual feedback. The position estimate £My is used to plan the desired veloc
ity (Equation ii), according to some function fl. Note that the only input to this

function is [T – £My], the vector from the estimated initial position to the target.
In the inverse model evaluation (INV) stage, the desired velocity computed by the

MV stage is converted into a motor command. First, visual and proprioceptive sig

nals are again combined to produce an estimate of the arm's position (Equation iii).

The weighting of vision and proprioception at this stage is described by opy. This
integrated arm position estimate is then used to generate a motor command, shown

here as a velocity in joint-angle space (6), according to some function f2. Note that

unlike the first stage of planning, the output of this function depends on the true

posture of the arm (9) as well as its estimated initial position (£ny). The exact
forms of functions fi and f2 are described in Chapter 2.

When speculating about the neural basis of these computations, it is important to

consider which areas of the brain have the right combination of response properties to

be involved in the MV and INV stages. First, the candidate areas must receive both

visual and proprioceptive feedback from the arm. Second, the structures must be

active during reach planning and/or execution, and lesions of these areas should lead

to deficits when performing sensorimotor tasks. Third, the candidate areas must be

connected to each other such that sensory signals are passed along to motor output

structures. These criteria describe a large number of networks in the brain involving

cortical, subcortical, and cerebellar structures. For the purposes of this review,

however, I will focus primarily on one particularly well-studied set of interconnected

cortical areas spanning the parietal and frontal lobes (Wise et al., 1997).

This parieto-frontal network, shown in Figure 28b, includes several areas within

and dorsal to the intraparietal sulcus. These areas, which receive visual as well as

proprioceptive inputs, are strongly interconnected with several motor and premotor
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areas in frontal cortex (Wise et al., 1997; Dum and Strick, 2002; Kurata, 1991).

Reach-related activity has been observed in each of these areas (Kalaska et al., 1990;

Scott et al., 1997; Kakei et al., 1999; Li et al., 2001; Buneo et al., 2002), and lesion

studies have demonstrated their importance to the execution of reaching movements

(Brinkman, 1984; Passingham, 1988; Hoffman and Strick, 1995; Rushworth et al.,

1998).

The components of the parieto-frontal circuit are therefore candidates for imple

menting the MV and INV stages of reach planning. The response properties expected

from an area involved in each of these stages can be characterized according to the

computations performed during planning. Calculating the movement vector, for ex

ample, consists of planning the desired velocity of the hand in extrinsic (workspace)

coordinates. The output of this planning stage is determined by the disparity be

tween the estimated position of the hand and the target (Equation ii in Figure 28a),

and is not influenced by the change in joint angles or muscular forces needed to

achieve the desired kinematics. Neurons that compute the movement vector should

therefore code exclusively the extrinsic aspects of the planned movement. That is,

they should modulate their activity only when the desired hand trajectory is altered,

even if the change in joint angles needed to achieve it is identical, and should show

the same response when a given trajectory is achieved with different motor com

mands. Consistently finding this type of “extrinsic coding” in an area would suggest

that that area is involved in the MV planning stage.

Evaluating the inverse model, on the other hand, consists of transforming the

extrinsic movement vector into the appropriate intrinsic (arm-based) coordinates

(Equation iv in Figure 28a). The motor command necessary to achieve a given hand

velocity depends on the posture of the arm and on the muscular forces needed to

produce the appropriate change in joint angles. Neurons involved in the INV stage
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should therefore modulate their activity to reflect the change in joint angles or muscle

contractions needed to achieve the specified movement vector, even when different

motor commands are used to achieve the same extrinsic trajectory. Conversely,

these cells should show the same response when identical motor commands are used

to produce different hand trajectories. Finding this type of “intrinsic coding” would

implicate an area in the INV planning stage.

Extrinsic and Intrinsic Coding: a Review of the Literature

Recent work on the physiology of motor control has taken a variety of approaches to

the question of extrinsic versus intrinsic coding. One of the most fruitful has been

to record neural activity while varying the motor command used to achieve a given

movement direction. In one series of experiments, monkeys were trained to make

wrist movements with directions specified in extrinsic coordinates (Kakei et al., 1999,

2001). These movements were repeated with the forearm in three different postures,

thereby dissociating the extrinsic movement vector - the direction of hand movement

- from the intrinsic motor command needed to produce it. Neural recordings in the

frontal lobe revealed that cells in the ventral premotor cortex (PMv) are tuned to

the extrinsic aspects of the movement, whereas cells in primary motor cortex (M1)

showed a mixture of extrinsic and intrinsic (muscle-like) responses (Kakei et al.,

2001). These data suggest that PMv might be involved in movement vector planning,

whereas M1 might take part in the transformation of the desired direction into an

appropriate motor command. Areas shown in Figure 28b are colored to reflect these

interpretations.

Data suggesting that the extrinsic and intrinsic aspects of reaching are encoded by

PMv and M1 (respectively) also come from experiments in which primate subjects
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adapt to distorted visual feedback. By driving sensorimotor adaptation during a

tracing task, Schwartz et al. (2004) showed that cells in PMv encoded the trajectory

of a cursor representing hand position, suggesting that PMv encodes the apparent

movement vector even when it does not reflect the actual motion of the hand. Ac

tivity in M1, on the other hand, encoded the true hand trajectory, suggesting that

this area computes the intrinsic motor command. Kurata and Hoshi (2002) obtained

comparable results using displacing prisms to separate neural activity related to the

position of extrinsic (visual) targets from activity encoding the motor commands

used to reach to them. They found cells coding in extrinsic and intrinsic coordinates

during reach planning in PMv, whereas responses found during planning in M1 were

almost exclusively intrinsic.

Evidence for intrinsic coding in M1 and other areas has also been obtained by

training monkeys to make reaches with similar hand trajectories but different pos

tures (Scott et al., 1997; Scott and Kalaska, 1997). Variation in the starting posture

meant that different changes in joint angles were required to produce the same hand

path, dissociating the planned movement vector from the motor command needed to

produce it. In M1, dorsal premotor cortex (PMd), and parietal area 5, the majority

of cells modulated their activity when different postures were used to produce the

same movement. These findings provide more evidence that M1 might be involved

in transforming movement vectors into motor commands, and suggests that PMd

and area 5 may be as well.

This view of M1 and PMd is supported by the results of Caminiti et al. (1990,

1991). In these studies, monkeys made reaching movements in three different regions

of the workspace. Targets were arranged so that the same movement vector was

executed from different initial arm positions, requiring different motor commands to

produce parallel reach trajectories. These authors found that single cells in both M1
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and PMd regularly changed their response properties when the initial position of the

reach was varied, providing further evidence that these areas encode the intrinsic

aspects of reaching movements.

Other groups have used externally imposed forces to ask whether neural activity

reflects the planned trajectory or the motor command necessary to produce it. These

studies, which typically involve training subjects to produce similar kinematics while

reaching with different loads or force fields, allow the same reach trajectory to be

associated with a variety of required muscular forces. Such manipulations produce

consistent changes in firing in M1 during reaching, once again showing that this area

codes the intrinsic aspects of movement (Liet al., 2001). Even more provocative is the

finding that delay-period (premotor) activity in PMd and the supplementary motor

area (SMA) smoothly changes from extrinsic to intrinsic prior to reach onset, strongly

implicating these areas in the kinematics-to-dynamics transformation characteristic

of the INV stage (Padoa-Schioppa et al., 2002). Firing in parietal area 5, however,

does not appear to be influenced by external loads (Kalaska et al., 1990), suggesting

that this area is not involved in the transformation of desired kinematics to dynamic

motor commands. However, the findings of Scott et al. (1997) described above

suggest that area 5 codes the angles of the joints in addition to the kinematics of the

endpoint, making the relationship between this parietal region and the two stages of

reach planning difficult to evaluate.

Neurons elsewhere in the parietal cortex appear to encode the position of the tar

get in extrinsic, eye-centered coordinates. By varying the reach start point, target

location, and gaze direction, Batista et al. (1999) showed that cells in the parietal

reach region (PRR) are tuned to the position of the target relative to the animal's

center of gaze. Cells that code in eye-centered coordinates have similar activity

during reaches in different directions and with different start points, provided that
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Figure 29: Tuning for initial hand position in the parietal cortex. (a) Task schematic. A monkey
made reaches from five different start points to five target positions while maintaining gaze fixation
at a single position. (b) Response of a single neuron recorded in PRR. Numerical labels and
color contours show the mean firing rate during the 400 msec epoch centered on reach initiation.
Reproduced from Buneo et al. (2002).

target position relative to the center of gaze is constant. It is therefore unlikely that

these cells compute the motor command necessary for task execution. On the other

hand, the activity of most PRR neurons is not in the hand-centered coordinates of

the movement vector, either. However, the hand-centered movement vector could

in theory be readily extracted from the activity of a population of PRR neurons.

Although neurons in this region are tuned for the location of the target in eye co

ordinates, the tuning of some cells is scaled (or “gain modulated”) by the initial

hand position (Figure 29). This scaling provides the information necessary to ex

tract the position of the target in hand-centered coordinates from a population of

gain-modulated neurons (Buneo et al., 2002; Salinas and Abbott, 1995). Based on

these data and on the anatomical connectivity of PRR, it is tempting to speculate

that the gain-modulated eye-centered activity observed in PRR represents a source

of input to the MV planning stage. Significantly, neurons in area 5 appear to code

in coordinates intermediate between eye and hand (Buneo et al., 2002), suggesting

that they might process the output of PRR for further use in motor planning.
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Figure 28b shows our predictions, based on the literature reviewed above, about

the participation of different cortical areas in the two stages of reach planning. How

ever, these speculations are uncertain for several reasons. First, while the physio

logical data are sometimes clear as to whether an area's task-related activity is in

an extrinsic or intrinsic reference frame, as for M1 and PMv, in other cases (such as

area 5) the correspondence is not as apparent. Second, assuming that all cells in a

given area code the same way is almost certainly an oversimplification. A single area

might be home to many functionally distinct networks, and so assigning an area to a

given planning stage based on its average response may not be appropriate. Third,

although extrinsic and intrinsic coding are the expected hallmarks of the two stages

of reach planning, these criteria are not definitive. Movement vector planning and in

verse model evaluation are transformations of sensory inputs, and so it is ambiguous

whether activity in a given reference frame reflects the output of a transformation

or the transformation itself. Intrinsic coding, for example, might reflect either the

transformation of the extrinsic movement vector or the motor signals downstream of

it. EMG signals are by definition intrinsic, for example, but it would be a mistake

to conclude that the inverse model is being evaluated by the muscles.

Neural Correlates of Sensory Integration: a Suggested Ex

perimental Approach

For these reasons, I propose an experimental approach that does not rely on making

distinctions between intrinsic and extrinsic patterns of activity. Rather, I suggest

using the psychophysical methods described in Chapters 1 and 2 in combination with

neural recordings to correlate neural firing patterns with the fit values of oxy and
ony. Establishing that the tuning of a single neuron reflects the same mixture of
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Figure 30: Spatial distribution of hand position estimates. (a) Experimental technique used in
Experiment 1 of Chapter 2. Subjects reached to visual targets with leftward (blue arrow) and
rightward (red arrow) shifts of visual feedback. (b) Mean fit values of oxy and opy. (c)
Inferred location of hand position estimates. Vertical arrows show the position of it computed
from the locations of the visual (V) and proprioceptive (P) signals from the hand and from the fit
values of oMV and a■ MV.

visual and proprioceptive information observed during movement vector planning or

inverse model evaluation will provide strong evidence that the cell is involved in that

stage of reach planning.

Figure 30a and b show the psychophysical technique used in Experiment 1 of

Chapter 2. Subjects planned reaches to visual targets while visual feedback (con

sisting of a spot of light) was shifted leftward or rightward. By analyzing the reach

errors that resulted from these shifts, we fit the values of QMV and opy. Mean
model fits are shown in Figure 30b.

Since shifting the visual feedback dissociates the visual and proprioceptive po

sition signals, the relative weighting of the two inputs determines the position the
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integrated position estimate. When estimating the initial hand position during move

ment vector planning, for example, subjects relied mostly on vision (mean value of

oMy = 88, Figure 30b). The estimated initial hand position (£My in Equation i) is
therefore much closer to the visual signal than to the proprioceptive signal, as shown

in Figure 30c. When estimating the initial hand position during inverse model evalu

ation, on the other hand, subjects rely mostly on proprioception (mean opy = .29).

The estimated initial hand position (£INy) is therefore closer to the proprioceptive
signal.

Dissociating visual and proprioceptive feedback therefore allows the experimenter

to shift the arm position estimate used at a given planning stage by a known amount.

This is an potentially useful experimental tool, since neurons in several areas of

the brain are tuned to initial hand position during reach planning and execution

(Caminiti et al., 1990, 1991; Buneo et al., 2002). The neuron shown in Figure 29b,

for example, is tuned to both the initial position of the hand and the position of the

target.

Although cells tuned to initial hand position have been observed in several ar

eas of the brain, the tuning of such neurons has never been studied when visual

and proprioceptive feedback from the hand is dissociated during reach planning. It

has therefore not been possible to say whether a neuron tuned to initial hand po

sition is encoding £My (during movement vector planning) or iny (during inverse
model evaluation). The experiment described below uses shifts of visual feedback to

disambiguate the computational role of the recorded neuron.

Figure 31a schematizes a behavioral task similar to that shown in Figure 30.

The primate subject would make center-out reaches from a linear array of start

points (start position range from – to +, arbitrary units). Veridical (unshifted)

visual feedback would be provided during this portion of the experiment. Figure 31b
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Figure 31: Proposed recording experiment. (a) Workspace configuration. Subjects make center-out
reaches from a range of start positions. (b) Model neural response properties. (c) Location of the
position estimate it following leftward (blue) and rightward (red) shifts of the visual feedback,
assuming a fit value of oMV = 9. (d) Location of it , for a fit value of o = .2. (e and f)
Expected shift in tuning for model neuron A following leftward (blue) and rightward (red) visual
feedback shifts.
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shows the tuning profiles of three hypothetical neurons. Neuronal responses would be

quantified as a function of starting and target position, as shown. Neurons might be

tuned to both the starting and target position (model neuron A, note the similarity

to the cell shown in Figure 29b), the initial hand position only (model neuron B) or

the target position only (model neuron C).

The response profiles in Figure 31b describe the model neurons' tuning to the

initial position of the hand. However, from these data alone it is not clear which

of the two position estimates (tyry or £ny) is being encoded. This ambiguity will
be resolved by having the subject make reaches with visual feedback shifts similar

to the ones shown in Figure 30a. This manipulation will yield two important pieces

of data. First, we will be able to fit our model of reach planning to the behavioral

data, yielding values for QMV and ony. As shown in Figure 31c and d, these values
tell us how far the position estimates £My and £ny move when the visual feedback
is shifted. Second, we will be able to measure shifts in the neuron's tuning profile

that result from shifting the visual feedback, and compare the size of these shifts

with those expected from a cell encoding a particular position estimate. If a tuning

profile encodes £My, for example, then its peak should shift by the same distance as

£Mv, as shown in Figure 31e. If a neuron encodes the location of *INV, on the other

hand, its peak is predicted to shift by the same distance as £ny, as illustrated in
Figure 31f. A close correlation between these two types of data – such as that shown

between Figure 31c and e or Figure 31d and f – would provide strong evidence of

the involvement of the recorded neuron in one of the two stages of reach planning.

This experimental paradigm would allow the identification of other neuronal pop

ulations as well. Cells that showed no shift in tuning profile (even when the fit values

of oxy and ony indicate that visual signals are in fact being used) would be cat
egorized as proprioceptive, since they encode the true initial position of the hand.
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Figure 32: Psychophysical results from Chapter 2. (a) Mean fit values of "My and of NV fromeExperiment 1, in which the modality of the reaching target was varied. (b) Mean fit values from
Experiment 2, in which the content of the visual feedback was varied.

Conversely, cells with shifts equal in magnitude to the visual shift (even when oxy
and any indicate a partial reliance on proprioception) would be categorized as
purely visual.

This technique therefore constitutes a quantitative method to collect evidence

about the computational roles of single neurons. The experiment shown in Figure 31

uses only a single behavioral condition (reaches to visual targets using visual feedback

of the fingertip), resulting in a single set of values for oMy and ony. However, our
previous work has shown that altering the coordinate frame of the target or the

content of the visual feedback reliably drives stage-specific, quantifiable changes in

sensory integration (Figure 32). If preliminary testing suggested that a cell encoded

£My or £INy, testing with a different behavioral task (e.g. switching from visual to
proprioceptive targets in order to vary the value of oxy) would allow the correlation
between the fit value of oxy and the shift in neural tuning to be further established.
Note however that this technique is only viable for cells tuned to initial hand position

(such as model neurons A and B in Figure 31b). Cells not tuned to this parameter

(such as model neuron C) could not be analyzed with this method.
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Figure 33: Proposed stimulation experiment. (a) Response profiles of two hypothetical neurons,
which have peaks to the left (blue) and right (red) of the central initial hand position. (b) Expected
effect of stimulating the two hypothetical neurons. (c) Movement vector error expected if stimulated
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estimated hand position. (d) Inverse model error expected if stimulated neurons encode *INV.
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Additional data about the neural basis of a particular computation could be gath

ered by electrically stimulating the brain during reach planning. Figure 33 shows a

second proposed experiment, which would be performed after the tuning of a neuron

has been established using the procedure shown in Figure 31. After establishing a

neuron's response profile (two hypothetical profiles are shown in Figure 33a), stim

ulating current would be passed through the recording electrode while the subject

planned reaching movements with veridical visual feedback. Provided that the stim

ulation drives activity in both the recorded cell and in other nearby cells with the

same tuning, the hand position estimate will be shifted in the direction of the cell's

preferred position (Figure 33b). In our previous work, we have shown that errors in

£My and £ny produce distinct patterns of motor error. Stimulating a network of
neurons that computes £My would be predicted to induce movement vector (MV)
error when reaches are executed (Figure 33c). Perturbing the activity of cells that

compute £ny, on the other hand, would introduce inverse model (INV) error, as
shown in Figure 33d. See Figure 10 in Chapter 2 for an explanation of the particular

shapes of MV and INV error.

For stimulation to yield a consistent pattern of motor error, the stimulating

current must drive activity in a population of neurons with similar tuning to the

recorded cell. This would be expected to occur if cells with similar preferred initial

hand positions were adjacent to each other in the brain. Such topography, however,

has not been reported in the cortical areas in which hand-position tuning has been

described. However, stimulation could also activate a coherent network of neurons

if cells with similar tuning activated each other through lateral connections. Con

nectivity of this type is thought to exist in visual cortex (Malach et al., 1993). If no

such topography or connectivity exists, however, stimulation would not be expected

to produce MV or INV error, even if the recorded neuron was indeed involved in
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computing the position of £My or £ny. A failure of stimulation to elicit MV or
INV error might therefore be due to the connectivity of the cortical circuit rather

than the computational role of the site being stimulated.

The techniques described above could be applied to any neural population that

encodes the initial position of the hand as a part of reach planning, and could there

fore be used to investigate subcortical and cerebellar structures in addition to the

cortical areas shown in Figure 28b. These methods are designed to implicate single

cells in particular computations, and could be used to identify separate computa

tional networks that might be mixed within a single area of the brain. Furthermore,

the specificity of this technique offers the potential to map the computational steps

outlined in Figure 28 onto low-level anatomical features such as cell morphology and

cortical layer.

Possible Neural Mechanisms for Flexible Sensory Integration

As discussed in Chapter 2, the dependence of oxy and ony on the modality of the
target and the nature of the visual feedback (Figure 32) is consistent with brain's

avoiding a cost associated with transformed sensory signals. A full neural model of

sensory integration must explain this cost in terms of neural activity, and several

possibilities are discussed below. I propose a model for how this cost affects activity

in neural populations that integrate visual and proprioceptive signals, and speculate

as to how these factors give rise to the observed task-related effects on oxy and

CINV.

The cost of performing a coordinate transformation using neural units could

take several forms. Visual and proprioceptive afferents encode the position of the

arm in different coordinate frames. These coordinate systems presumably reflect
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Figure 34: Hypothesized costs for coordinate transformations. (a) General case in which arm
position can be represented in two coordinate systems, z and z'. Arm position is encoded by
spiking activity in populations of neurons (colored dots) with a range of preferred values of z
(green) or z' (red). Transforming a neural representation of arm position in z' into a representation
in z (blue) could change the shape of network activity because of convergence (b), random errors
in connectivity (c), or neural noise (d).
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the properties of the sensory periphery – visual signals begin in the two-dimensional

coordinates of the retina and are used to construct a three-dimensional representation

of space, whereas proprioceptive signals have a dimensionality related to the number

of joint angles, muscle lengths, or muscle tensions that describe the reaching limb.

Figure 34 shows the simplified case in which arm position can be represented in one

dimension and is encoded by populations of neurons with preferred tuning in two

different coordinate frames, z and z'. In this schema, coordinate transformations

are accomplished via the pattern of synaptic connectivity between populations of

neurons (Figure 34 b-d).

There are several ways that transforming the population activity in this manner

could alter population activity. First, inputs from neurons with a range of preferred

values of might converge onto each output cell, resulting in a broadening (detuning)

of the population response (Figure 34b). This would be expected if the mapping

between coordinate systems were many-to-one. For example, if joint angles were

represented in z' and the visual location of the fingertip were represented in z, then

the fact that many different postures can produce a single fingertip position would

be expressed as a convergence of z' inputs onto z outputs. Second, even if there were

a one-to-one mapping between coordinate frames, random errors in the connectiv

ity between the input and output populations could also cause a broadening in the

population response (Figure 34c). A third possibility is that the coordinate trans

formation would simply add noise to the population code, owing to the stochastic

nature of neural transmission and/or imprecision in the strength of the connections

between the two populations (Figure 34d). Any of these factors (or some combina

tion of them) would alter the shape of the population activity encoding the position

of the arm.

Figure 35 shows a model of how these transformation-induced changes in popu
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Figure 35: Target modality and sensory integration. (a) Model of neural activity in the visual
target condition of Experiment 1 from Chapter 2. Shifted feedback dissociates the visual and
proprioceptive encoding of arm position (bottom). Proprioceptive activity is transformed into
visual coordinates, resulting in a broadening of the population activity (middle). The two sensory
streams converge on an output population representing £My (top). (b) Model of neural activity
in the proprioceptive-target condition. In this case, visual signals from the arm are transformed
into proprioceptive coordinates.
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lation activity could affect sensory integration during movement vector planning. In

Chapter 2, we showed that subjects rely more on visual feedback from the arm at this

stage when reaching to visual targets, but more on proprioception when reaching to

proprioceptive targets. We hypothesized that this difference in sensory integration

arises from the cost of transforming sensory signals into the coordinate frame of the

target. In the example shown in Figure 35a, the visual feedback is shifted leftward

as the subject plans a reach to a visual target. The peak activity of the neural

population representing arm position in visual coordinates (model neural activity in

green) is therefore located to the left of the peak representing arm position in pro

prioceptive coordinates (red). The transformation of the proprioceptive encoding of

arm position into visual coordinates (blue) results in a broadening of the activity

profile, as described above. This transformed population activity is then combined

with activity encoding arm position in visual coordinates as the two populations con

verge onto an output population. This output network (top, model neural activity in

black) encodes the hand position estimate £My, and multiplies the inputs provided
by the two sensory pathways (Salinas and Abbott, 1996; Pouget et al., 2003). Be

cause the proprioceptive population activity has been broadened as a result of being

transformed, the peak of the output population activity will be closer to the position

originally encoded by visual signals (dashed green line). If the position estimate

£My is located at the peak or center-of-mass of the output population activity, then
the fit value of a My will be close to one, reflecting the proximity of £My to the
visual signal and in agreement with our psychophysical data on visual-target reaches

(Figure 32a). Note that in the limit case where the transformed activity has been

broadened completely (flattened), the visual signal will dominate completely.

In the case of reaches to proprioceptive targets, on the other hand, we have hy

pothesized that visual signals are transformed into proprioceptive coordinates. As
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Figure 36: Visual feedback type and sensory integration. (a) Model of neural activity in the
fingertip-feedback condition of Experiment 2 from Chapter 2. (b) Model of neural activity in the
arm-feedback condition. Conventions as in Figure 35.

shown in Figure 35b, this transformation might lead to a broadening of the popula

tion activity as visually-driven activity is converted into proprioceptive coordinates.

When the activity of the transformed signal is combined with the proprioceptive pop

ulation activity, the peak of the output population encoding of £My will be closer

to the proprioceptive location. The fit value of oxy in this case will therefore be
closer to zero, as in the psychophysical results shown in Figure 32a.

Figure 36 shows how the cost of transforming sensory signals could account for the

effects of visual feedback type on sensory integration during inverse model evaluation.

We have shown that when visual feedback consists of an image of the whole arm,

subjects rely more on visual feedback at the INV stage than when only fingertip
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position is shown (Figure 32b). We have hypothesized that this difference arises

because of the many-to-one nature of the arm's kinematics. Since a single fingertip

position can be achieved by many different arm postures, subjects might rely less

on vision during fingertip-feedback trials in order to avoid the uncertainty of the

visual-to-proprioceptive transformation. This uncertainty cost is reflected in the

broadened population activity that results from transforming visual feedback of the

fingertip into proprioceptive coordinates (Figure 36a, model neural activity in blue).

When this activity pattern converges with the activity encoding the proprioceptive

location of the arm (red), the peak of the resulting population activity (black), and

therefore the location of £ny, will be closer to the position originally encoded by
proprioceptive signals (dashed red line). The fit value of opy will therefore be close
to zero, as observed in our psychophysical data.

On the other hand, if the visual feedback shows the whole arm (and thus explicitly

specifies the joint angles), the uncertainty introduced by transforming visual signals

into proprioceptive coordinates will be reduced. This difference would result in a

transformed population activity (Figure 36b, blue) that is less broad than the one

resulting from transformed fingertip feedback. This sharper peak would in turn

result in £ny being closer to location specified by visual feedback, and therefore an
increased value of ony, consistent with the results shown in Figure 32b.

In the model circuits shown in Figures 35 and 36, the position of the integrated

arm position estimate (£My or £ny) is an emergent property of the way that sensory
signals are transformed and combined. In this “bottom-up” scheme, the relative

weighting of vision and proprioception is determined by the shapes of the visual

and proprioceptive population activities, the exact form of the cost of coordinate

transformations, and the way in which population activities are combined in the

output layer. The integration terms oxy and any are therefore not represented
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explicitly by neural activity, but simply reflect the way that visual and proprioceptive

signals propagate through the network.

In an alternative neural circuit, QMV and ony might be controlled explicitly

by the brain. Figure 37a and b show a model of sensory integration during reaches

to visual and proprioceptive targets, respectively. There are several important dif

ferences between this schema and the one shown in Figures 35 and 36. First, the

cost of transforming a sensory signal is the addition of noise to the population code,

instead of a broadening of the activity. Second, the value of oxy is represented by

the activity of a network of neurons (orange boxes). This network introduces a mul

tiplicative scaling to the two streams of sensory information such that a high value

of oxy leads to a strengthening of the visual signal relative to the transformed pro
prioceptive signal (Figure 37a), whereas a low oyry strengthens the proprioceptive
activity relative to the transformed visual signal (Figure 37b). Third, the output

layer sums the inputs provided by the two sensory streams, rather than multiplying

them.

The final key feature of this circuit is that the value of oMy is learned based
on the error feedback that the brain accumulates from the performance of various

sensorimotor tasks. In this “top-down” scheme, the brain learns about the costs

of coordinate transformations via task error. For example, when reaching to visual

targets (Figure 37a), the brain would learn that the noise in the output population

(black) increases rapidly with the reliance on transformed proprioceptive signals

(blue). In order to decrease this noise cost, the brain would learn to set a high value

of oxy, corresponding to a higher gain for the visual signal than for the transformed
proprioceptive signal. For reaches to proprioceptive targets, on the other hand, the

brain would learn to minimize noise in the output population by decreasing the

reliance on vision (Figure 37b).
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Sensory integration – top-down or bottom-up?

The psychophysical methods developed in the first chapters of this thesis allow the

relative weighting of vision and proprioception to be quantified with a fair degree

of precision in a variety of sensorimotor tasks. However, data gathered with these

techniques do not address the fundamental question of whether sensory integration

is better characterized as a top-down or bottom-up process. In Chapter 2, we ar

gued that the brain weights sensory inputs in order to minimize the variability of

the integrated position estimates. This top-down characterization of sensory inte

gration (similar to the one shown in Figure 37) requires that the brain learn (at least

implicitly) the relationship between the mixture of sensory signals and task error.

One advantage of this arrangement is its flexibility. For example, parameters such

as the shape of the sensory population activity or the form of the transformation

cost might vary from task to task. This type of network is explicitly designed to

minimize task error (the definition of which might itself vary from task to task) and

could therefore perform consistently across these conditions. A disadvantage of this

type of architecture, however, is that it must build up a model of the relationship

between sensory integration and task error in each behavioral context.

Bottom-up networks, in contrast, are simpler but perhaps less flexible. The

performance of the network in Figure 35, for example, is highly dependent on the

particular form of the cost of the coordinate transformation and the relative widths

of the population activities. Although such networks can provide a simple account

of our data, their sensitivity to model parameters suggests that they might not be

able to explain sensory integration in a wider variety of contexts.

The model networks shown here represent only a small sample of the potential

architectures that could give rise to the observed psychophysical data. The true neu
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ral implementation could be constrained by both psychophysical and physiological

studies. The question of top-down versus bottom-up coding might be addressed by

behavioral experiments that address the dynamics of sensory integration in new be

havioral contexts. Such studies could shed light on whether the weighting of vision

and proprioception is learned from experience or hardwired. In parallel with this

work, neurophysiological studies could reveal the neural cost of performing coordi

nate transformations. These experiments might be based on an approach similar

to that outlined earlier for identifying the computational role of single neurons.

Together, such approaches could clarify the computational and physiological under

pinnings of reach planning, and establish the links between them.



135

Literature Cited

Aglioti, S., DeSouza, J. F. X., and Goodale, M. A. (1995). Size-contrast illusions
deceive the eye but not the hand. Current Biology, 5(6):679-685.

Andersen, R. A., Snyder, L. H., Bradley, D. C., and Xing, J. (1997). Multimodal
representation of space in the posterior parietal cortex and its use in planning
movements. Annual Review of Neuroscience, 20:303—330.

Atkeson, C. G. and Hollerbach, J. M. (1985). Kinematic features of unrestrained
vertical arm movements. Journal of Neuroscience, 5(9):2318–2330.

Batista, A. P., Buneo, C. A., Snyder, L. H., and Andersen, R. A. (1999). Reach
plans in eye-centered coordinates. Science, 285(5425):257–260.

Bernstein, N. (1967). The coordination and regulation of movements. Pergammon,
London.

Bock, O. (1986). Contribution of retinal versus extraretinal signals towards visual
localization in goal-directed movements. Experimental Brain Research, 64(3):476–
482.

Brinkman, C. (1984). Supplementary motor area of the monkey's cerebral cortex:
short- and long-term deficits after unilateral ablation and the effects of subsequent
callosal section. J. Neurosci., 4(4):918–929.

Buneo, C. A., Jarvis, M. R., Batista, A. P., and Andersen, R. A. (2002). Direct
visuomotor transformations for reaching. Nature, 416(6881):632–636.

Caminiti, R., Johnson, P. B., Galli, C., Ferraina, S., and Burnod, Y. (1991). Making
arm movements within different parts of space: the premotor and motor cortical
representation of a coordinate system for reaching to visual targets. J. Neurosci.,
11(5):1182–1197.

Caminiti, R., Johnson, P. B., and Urbano, A. (1990). Making arm movements within
different parts of space: dynamic aspects in the primate motor cortex. J. Neurosci.,
10(7):2039–2058.

Campbell, M. J. and Machin, D. (1993). Medical Statistics: A Commonsense Ap
proach. John Wiley & Sons, Chichester, 2 edition.

Cheney, P. D. and Fetz, E. E. (1980). Functional classes of primate corticomo
toneuronal cells and their relation to active force. Journal of Neurophysiology,
44(4):773–791.

Choe, C. S. and Welch, R. B. (1974). Variables affecting intermanual transfer and
decay of prism adaptation. Journal of Experimental Psychology, 102(6):1076–1084.



136

Clower, D. and Boussaoud, D. (1998). Adaptive aftereffect depends on actual, not
representational, feedback of limb position. European Journal of Neuroscience,
10:6715.

Cohen, M. M. (1967). Continuous versus terminal visual feedback in prism aftere■
fects. Percept. Mot. Skills, 24(3):1295–1302.

Cohen, M. M. (1973). Visual feedback, distribution of practice, and intermanual
transfer of prism aftereffects. Percept. Mot. Skills, 37(2):599–609.

Colby, C. L. and Duhamel, J. R. (1996). Spatial representations for action in parietal
cortex. Cognitive Brain Research, 5(1-2):105-115.

Desmurget, M., Epstein, C. M., Turner, R. S., Prablanc, C., Alexander, G. E., and
Grafton, S. T. (1999). Role of the posterior parietal cortex in updating reaching
movements to a visual target. Nat. Neurosci., 206):563-567.

Dizio, P. and Lackner, J. R. (1995). Motor adaptation to coriolis force perturbations
of reaching movements: endpoint but not trajectory adaptation transfers to the
nonexposed arm. J. Neurophysiol., 74(4):1787–1792.

Draper, N. and Smith, H. (1998). Applied Regression Analysis. John Wiley & Sons,
New York, 3rd edition.

Dum, R. P. and Strick, P. L. (2002). Motor areas in the frontal lobe of the primate.
Physiol. Behav., 77(4-5):677–682.

Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. Chapman
and Hall, Boca Raton, Florida.

Enright, J. T. (1995). The nonvisual impact of eye orientation on eye-hand coordi
nation. Vision Research, 35(11):1611–1618.

Ernst, M. O. and Banks, M. S. (2002). Humans integrate visual and haptic infor
mation in a statistically optimal fashion. Nature, 415(6870):429–433.

Flash, T. and Hogan, N. (1985). The coordination of arm movements: an experi
mentally confirmed mathematical model. J. Neurosci., 5(7):1688–1703.

Foley, J. E. and Maynes, F. (1969). Comparison of training methods in the produc
tion of prism adaptation. Journal of Experimental Psychology, 81(1):151–155.

Frisen, L. and Glansholm, A. (1975). Optical and neural resolution in peripheral
vision. Investigative Opthamology, 14(7):528–536.

Georgopoulos, A. P., Kalaska, J. F., Caminiti, R., and Massey, J. T. (1982). On
the relations between the direction of two-dimensional arm movements and cell
discharge in primate motor cortex. Journal of Neuroscience, 2(11):1527–1537.



137

Ghahramani, Z. (1995). Computation and Psychophysics of Sensorimotor Integra
tion. Thesis/dissertation, Massachusetts Institute of Technology.

Ghilardi, M. F., Gordon, J., and Ghez, C. (1995). Learning a visuomotor transfor
mation in a local area of work space produces directional biases in other areas (vol
73, pg 2535, 1995). Journal of Neurophysiology, 74(6):U28–U28.

Good, P. (2000). Permutation Tests. Springer Series in Statistics. Springer-Verlag,
New York, 2 edition.

Goodale, M. A. and Milner, A. D. (1992). Separate visual pathways for perception
and action. Trends in Neurosciences, 15(1):20–25.

Goodbody, S. J. and Wolpert, D. M. (1999). The effect of visuomotor displacements
on arm movement paths. Experimental Brain Research, 127(2):213–223.

Gordon, J., Ghilardi, M. F., Cooper, S. E., and Ghez, C. (1994a). Accuracy of planar
reaching movements.2. systematic extent errors resulting from inertial anisotropy.
Experimental Brain Research, 99(1):112–130.

Gordon, J., Ghilardi, M. F., and Ghez, C. (1994b). Accuracy of planar reach
ing movements .1. independence of direction and extent variability. Experimental
Brain Research, 99(1):97–111.

Graziano, M. S. A. (1999). Where is my arm? the relative role of vision and proprio
ception in the neuronal representation of limb position. Proceedings of the National
Academy of Sciences of the United States of America, 96(18):10418–10421.

Graziano, M. S. A., Cooke, D. F., and Taylor, C. S. R. (2000). Coding the location
of the arm by sight. Science, 290(5497):1782–1786.

Haffenden, A. M., Schiff, K. C., and Goodale, M. A. (2001). The dissociation between
perception and action in the ebbinghaus illusion: Nonillusory effects of pictorial
cues on grasp. Current Biology, 11(3):177–181.

Hardt, M. E., Held, R., and Steinbach, M. (1971). Adaptation to displaced vision: a
change in the central control of sensorimotor coordination. Journal of Experimental
Psychology, 89(2):229–239.

Harris, C. (1963). Adaptation to displaced vision: Visual, motor, or proprioceptive
change? Science, 140:812–813.

Hay, J. and Pick, R. (1966). Visual and proprioceptive adaptation to optical displace
ment of the visual stimulus. Journal of Experimental Psychology, 71(1):150–158.

Helmholtz, H. v. (1925). Treatise on physiological optics, volume 3. Optical Society
of America, Rochester, New York.



138

Henriques, D. Y. P., Klier, E. M., Smith, M. A., Lowy, D., and Crawford, J. D.
(1998). Gaze-centered remapping of remembered visual space in an open-loop
pointing task. Journal of Neuroscience, 18(4):1583–1594.

Hoffman, D. S. and Strick, P. L. (1995). Effects of a primary motor cortex lesion on
step-tracking movements of the wrist. J. Neurophysiol., 73(2):891-895.

Howard, I. P. and Templeton, W. B. (1966). Human Spatial Orientation. John Wiley
& Sons, London.

Jacobs, R. A. (1999). Optimal integration of texture and motion cues to depth.
Vision Res., 39(21):3621–3629.

Jordan, M. (1996). Computational aspects of motor control and motor learning.
In Heuer, H. and Keele, S., editors, Handbook of Perception and Action: Motor
Skills. Academic Press.

Kakei, S., Hoffman, D. S., and Strick, P. L. (1999). Muscle and movement represen
tations in the primary motor cortex. Science, 285(5436):2136-2139.

Kakei, S., Hoffman, D. S., and Strick, P. L. (2001). Direction of action is represented
in the ventral premotor cortex. Nat. Neurosci., 4(10):1020–1025.

Kalaska, J. F., Cohen, D. A., Prud’homme, M., and Hyde, M. L. (1990). Parietal
area 5 neuronal activity encodes movement kinematics, not movement dynamics.
Erp. Brain Res., 80(2):351–364.

Kalil, R. E. and Freedman, S. J. (1966). Intermanual transfer of compensation for
displaced vision. Percept. Mot. Skills, 22(1):123–126.

Kitazawa, S., Kimura, T., and Uka, T. (1997). Prism adaptation of reaching move
ments: specificity for the velocity of reaching. J. Neurosci., 17(4):1481–1492.

Kurata, K. (1991). Corticocortical inputs to the dorsal and ventral aspects of the
premotor cortex of macaque monkeys. Neurosci. Res., 12(1):263–280.

Kurata, K. and Hoshi, E. (2002). Movement-related neuronal activity reflecting
the transformation of coordinates in the ventral premotor cortex of monkeys. J.
Neurophysiol., 88(6):3118–3132.

Lackner, J. R. (1974). Adaptation to displaced vision - role of proprioception. Per
ceptual and Motor Skills, 38(3):1251–1256.

Li, C. S., Padoa-Schioppa, C., and Bizzi, E. (2001). Neuronal correlates of motor
performance and motor learning in the primary motor cortex of monkeys adapting
to an external force field. Neuron, 30(2):593–607.



139

Malach, R., Amir, Y., Harel, M., and Grinvald, A. (1993). Relationship between
intrinsic connections and functional architecture revealed by optical imaging and
in vivo targeted biocytin injections in primate striate cortex. Proc. Natl. Acad.
Sci. U. S. A., 90(22):10469–10473.

McIntyre, J., Stratta, F., Droulez, J., and Lacquaniti, F. (2000). Analysis of pointing
errors reveals properties of data representations and coordinate transformations
within the central nervous system. Neural Comput., 12(12):2823–2855.

Messier, J. and Kalaska, J. (1997). Differential effect of task conditions on errors
of direction and extent of reaching movements. Experimental Brain Research,
115(3):469–478.

Milner, A. D. and Goodale, M. A. (1995). The Visual Brain in Action. Oxford
Psychology Series. Oxford University Press, Oxford.

Padoa-Schioppa, C., Li, C. S., and Bizzi, E. (2002). Neuronal correlates of
kinematics-to-dynamics transformation in the supplementary motor area. Neu
ron, 36(4):751–765.

Paillard, J. (1996). Fast and slow feedback loops for the visual correction of spatial
errors in a pointing task: A reappraisal. Canadian Journal of Physiology and
Pharmacology, 74(4):401–417.

Passingham, R. E. (1988). Premotor cortex and preparation for movement. Erp.
Brain Res., 70(3):590–596.

Pouget, A., Dayan, P., and Zemel, R. S. (2003). Inference and computation with
population codes. Annual Review of Neuroscience, 26:381–410.

Prablanc, C. and Martin, O. (1992). Automatic control during hand reaching
at undetected 2-dimensional target displacements. Journal of Neurophysiology,
67(2):455–469.

Rossetti, Y., Desmurget, M., and Prablanc, C. (1995). Vectorial coding of movement:
vision, proprioception, or both? J. Neurophysiol., 74(1):457-463.

Rushworth, M. F., Johansen-Berg, H., and Young, S. A. (1998). Parietal cortex
and spatial-postural transformation during arm movements. J. Neurophysiol.,
79(1):478–482.

Sabes, P. N. and Jordan, M. I. (1997). Obstacle avoidance and a perturbation
sensitivity model for motor planning. Journal of Neuroscience, 17(18):7119–7128.

Sainburg, R. L., Lateiner, J. E., Latash, M. L., and Bagesteiro, L. B. (2003). Effects
of altering initial position on movement direction and extent. J. Neurophysiol.,
89(1):401–415.



140

Sainburg, R. L. and Wang, J. (2002). Interlimb transfer of visuomotor rota
tions: independence of direction and final position information. Exp. Brain Res.,
145(4):437–447.

Salinas, E. and Abbott, L. F. (1995). Transfer of coded information from sensory to
motor networks. J. Neurosci., 15(10):6461–6474.

Salinas, E. and Abbott, L. F. (1996). A model of multiplicative neural responses in
parietal cortex. Proc. Natl. Acad. Sci. U. S. A., 93(21):11956–11961.

Schwartz, A. B., Moran, D. W., and Reina, G. A. (2004). Differential representation
of perception and action in the frontal cortex. Science, 303(5656):380-383.

Scott, S. H. and Kalaska, J. F. (1997). Reaching movements with similar hand paths
but different arm orientations. i. activity of individual cells in motor cortex. J.
Neurophysiol., 77(2):826-852.

Scott, S. H., Sergio, L. E., and Kalaska, J. F. (1997). Reaching movements with simi
lar hand paths but different arm orientations.2. activity of individual cells in dorsal
premotor cortex and parietal area 5. Journal of Neurophysiology, 78(5):2413–2426.

Shadmehr, R. and Mussa-Ivaldi, F. (1994). Adaptive representation of dynamics
during learning of a motor task. Journal of Neuroscience, 14(5):3208-3224.

Sober, S.J. and Sabes, P. N. (2003). Multisensory integration during motor planning.
J. Neurosci., 23(18):6982–6992.

Sober, S.J. and Sabes, P. N. (2005). Flexible strategies for sensory integration during
motor planning. Nature Neuroscience, in press.

Soechting, J. F. and Flanders, M. (1989a). Errors in pointing are due to approxima
tions in sensorimotor transformations. Journal of Neurophysiology, 62(2):595-608.

Soechting, J. F. and Flanders, M. (1989b). Sensorimotor representations for pointing
to targets in 3-dimensional space. Journal of Neurophysiology, 62(2):582-594.

Soechting, J. F. and Lacquaniti, F. (1981). Invariant characteristics of a pointing
movement in man. J. Neurosci., 1(7):710–720.

Taub, E. and Goldberg, L. A. (1973). Prism adaptation: control of intermanual
transfer by distribution of practice. Science, 180(87):755–757.

Todorov, E. (2000). Direct cortical control of muscle activation in voluntary arm
movements: a model. Nature Neuroscience, 3(4):391-398.

Uhlarik, J. J. and Canon, L. K. (1971). Influence of concurrent and terminal ex
posure conditions on nature of perceptual adaptation. Journal of Experimental
Psychology, 91(2):233.

---,

(
7–

º

RA
*--



141

Uno, Y., Kawato, M., and Suzuki, R. (1989). Formation and control of optimal
trajectory in human multijoint arm movement: Minimum torque-change model.
Biol. Cybern., 61(2):89–101.

van Beers, R. J., Sittig, A. C., and van der Gon, J. J. D. (1998). The precision of
proprioceptive position sense. Experimental Brain Research, 122(4):367–377.

van Beers, R. J., Sittig, A. C., and van der Gon, J. J. D. (1999). Integration
of proprioceptive and visual position-information: An experimentally supported
model. Journal of Neurophysiology, 81(3):1355–1364.

Wallace, B. and Redding, G. M. (1979). Additivity in prism adaptation as manifested
in intermanual and interocular transfer. Percept Psychophys., 25(2):133-136.

Warren, D. H. and Schmitt, T. L. (1978). On plasticity of visual-proprioceptive bias
effects. Journal of Ea■ perimental Psychology-Human Perception and Performance,
4(2):302–310.

Welch, R. B. (1986). Adaptation of space perception. In Boff, K. R., Kaufman,
L., and Thomas, J. P., editors, Handbook of Perception and Human Performance:
Sensory Processes and Perception, volume 1, pages 24.1–24.45. Wiley.

Welch, R. B., Choe, C. S., and Heinrich, D. R. (1974). Evidence for a 3-component
model of prism adaptation. Journal of Erperimental Psychology, 103(4):700–705.

Welch, R. B. and Warren, D. H. (1980). Immediate perceptual response to intersen
sory discrepancy. Psychological Bulletin, 88(3):638-667.

Welch, R. B., Widawski, M. H., Harrington, J., and Warren, D. H. (1979). Examina
tion of the relationship between visual capture and prism adaptation. Perception
& Psychophysics, 25(2):126–132.

Wise, S. P., Boussaoud, D., Johnson, P. B., and Caminiti, R. (1997). Premotor
and parietal cortex: Corticocortical connectivity and combinatorial computations.
Annual Review of Neuroscience, 20:25–42.

Wright, M. J. and Johnston, A. (1983). Spatiotemporal contrast sensitivity and
visual field locus. Vision Research, 23(10):983–989.



-—m

\ ■ º
-

y º T
"- sº tº º tºº | *, *, * > |-- * tºo

º º sº -—— º - sº - º, ■ º • s º ■ …”
A ºf vº■ ºjl■ º º º º/(' º ºvugin º º s

º, sº * , , , , , , "º 2. Nº * … ^ sº ■ º, º f ■ º, ■ º '4 St.
---

tº º, */º sº c),&//wcºco sº tº ºil///?y sº -\,:..)" sº- º
º º,

- a - -- > 'º. ■ …” s

sº rº, sº º, L. P. Raº, sº | º W]º sº […] –
& l ...]

* º sº I 0. -r- & |-- * - - * , sº Cº, ºn tº
* t /( º, --- 's ºf j in º º ■ /(. º, º A riv M G | T &

* -
º *** -, jº º ** -- ~~ 4. * * --º

-
2 -N * / - ºf S \ /.

--- * -\ 2001) *::///º
- e ** = -- a--- º } \ 7 º

-

º
º - * * º - ** **, e C. A. J. ("º //º

* \º 7 º’c■ , ■ co **4. 0.0", 1// º l ºy sº º º/ /º/Cºo º
- - *

* º

2.
-

*** **
~ *** N ck *

º ”, * - * * * }}}
a rº * * * ** z. ))) º fº 1. {} º º ■ º Y º --- 32 JA * ~

-
! ■ ! } RA R_Y sº *

| º, 4– 5 s ■ -- **. _* tº a º r º º Af .*
* * ----- s |-

- ×, -* ! ---- O. sº |-- so º *-. -
*

º
7, * -º-

* -> ~~ -
!, ** º º

º
- *-

-

// º, º/wº S., 7..., "…sº a º
º S ºn cº rºcºco sº,

- A- sº º fºcºco **, *
-

* . * * , ** Z. -º- *O
- * * *- - ** *. .* *...

-
y &- º"º ■ º tºº ºs - 1 – º - - - -

* s 3. ~~ ** L •o- -
-* sº T &

ºvº gº i º L J's sº /(
y

º,
r

L. º

---, -o
-

* |
-

*

". . s T/(' º [] º A Rivº *} || º,
*-

º/C º" .. º
- - *

*s

* / g- - y º
º- 2 ºvudri ººl, - ( º,ºn Zºº º sº - ºf ºs ºs o 'º

ºlº■ ?" A / //; º, Sº º -- . .” -- ~~ º 0.01 ºf ■ º * > • *-*..…
.." "A1A º sº cº 7", "A?■ ■ º & *

-
--- º Nº. %. *), º, / lº■■ Cºco

- .** º --" *" * , º, y
-

sº ºº sº- & * - t () *

- * + * * - º, º & º, º..)
f y sº […] º, 1 R. RA * Y s | | º, g * - sº […] º, 1■ B RARY sº

~ O a * - re < * O -- *

". --º. -*. ar --- * - º * * g---4--- * * zº * - - >
- * º * , f º -- c º

f. *.
* - " -- a * , , º 'º' ºr L- a .

º, ■ º ºvºgri º (■ ( º, ºvºi gin º-s,
y. º - !. º

- a ºz. --> --, º, ºr4, sº }; - ? , , , , , , "º º, N. */ ~ 2 º' º: , , , , , * tº sº º
~ 0.7%. , ■ º ■ º, ºf .s * - - - - - - - . . ) tº 'º'; 'A' A' ºf *.*

* * º
f /// S. º 4. cº/ 7 º’Clººd sº tº º º _c < . º º

º L ...] ”, t *~ sº […] º, L; ■ º RA R_Y º Ll º, .."
-

º [. º, 1º --- º ... * º & ». C º

*** * *
º, ■ º º * Lºs º, -- sº ** *- ** "… | | sº º º

* • * - * ºf ºn tº gº º --- º * hu - - - - - - -UC º' 's ºvernººl . ( *, *-ºs ºvºia- ?
** -- º, sº 1) ºf }//?! / 'A' ~, º, s º ~ % sº º ** º, ~,*/º/fri■ co º U. º.º. Z/ //"(.. s & Jº■ /ºi/■ cºco sº cº-º/º **º- £ sº, sº º, *- Sº tº - 4

º º º j o 2. *** O ^\ , -

tº RARY gº º, ..) !- º […] º, L. B R ARY sº L ”, ..) !-2 sº*-
| º * - * º

r -r S *o & ––– O. - ºr- X- __ •o -* sº
º 12. º

- -
c º º &

-

* -- J is º /( ' 'º, ■ ºvº º 17 ºl- ºc * […] º
• * sº v ºr º, sº * , / º 'º, sº * * * º, sº -** *

- * * -\ - * ~ * º 0.2% ºf //C ºf . ºn Zºº
e - ~ *-

& 2, *— º 77/7C■ , ■ º Sº *
- --- º º, *- al■ º /7//CºGo sº º,* : ** . - --> -

ºº

- * º º, ); …
-

& *3.
s ■ - a | º, | | B RA RY s ---- º, ..) º 2 sº º, i. ■ . 5 RA R_Y º

->

_ _ º, – º L. °o sº | T]* * * * g : - 'º |-- º T- O. —r- &
* º

-
* * -

º L | *
- º *...c-, º º, ––– -** * </ º cº- º‘o sº ((( º, º As ºf v ºf J I º .*. (/ 3*

- - * * - …” ~
~, tº sº ^12 º' * (* * * * * * º, "º sº * -

* , ; // / /º * S
-- -- * * * * * ~~~ 2 < º/ *// b *.S. º * - - - - - - -ºf . 'y sº º º/7//w/cºco *S*.

-e- 4- is ºw Cº º
), s' º, *- * -

_º *. O), sº º, L. : C & A, ºr * .*
" --> º [...] º, L i B R A R Y sº ■ º º, * – º ”, Gº & R ºr sºl, L. º' tº ■ º.

-- a - º
-

º º *As a . º • ' *ºvºgº ºld s º/C ºvugin º-,-] sº .
-* * * * o r- - * y *-

* , ** ~, º, º * --> A º ---, º ºs
f ** - * . . . . " ... --- º *** tº º *** * : * > //, /a:/

- , *ºf tº º º, ■ º º 'º -* -.
º ---. -

sº C.).7///ºco & ºt *** * * :- G.' '
■ ra ºn 4. .S. * * * * º *, * * * * tº *--

*z, !, * sº º
-- > -º ** * º ) ! - º ‘’s * *| " --" sº ■ ---, *. Li º Rº R v º º º tº * ~~~ _º -- 2. L.- », -*- * - - * , * ** ». º

r * -- f., , " … ■ * >- - --º- * - - - C

* * , |- J º K-- " -, - º, | º -, * > ºr.º, ºvº º 1-1 % H-1.3 (
-

AT: ; ºf :
-

L.

º º - ---

- s
-

* ---
º, º' ----------- - - " -* , ºf sº, *, * º ºº:://ºn * S -\ ... 1 * º, a- - i i■ a - * * -º- -

º

r



~ :-------, --~ \- * 2.4 ºf A / 1*** { 1, #4 (J.
-

Z J º º, º Q// * * * * * º
Nº. *

• tº
º

º

*
º º *** * * º {- ■

av'■ } s º º, L1B NARY sº º, f le--~~~~ ** T Q. O [...] º

º | º *** * * * * º, [T] dº TT, º [...]
as a --

º ºg ºf G | T &

~ º ºf fºr A / ■ i■ . is , tº - *-

sº 4.et vº/ º sº*
** º Tº ■ º. A Q º

-

º […] º, | | Sº R ARY sº
~ --- -

º

-

C.
-

-- >
-

C o -

S ºf J 17 * Lº■ s º //º **
b

º

* º º * * * * º º º º
-

Cºº" / 2,2' º Not tC) be taken jº A/ºvo * -S -\ ?? º ".
º from the TOOIn --- ...) º º Q_* (* * *

*- 2
-

O)] º ■ º
- t- º º *

s - ºr º, ...) sº º A-2 Jº […] º L15 Rºx
-- ----- º, | | sº l{EG º [. | º º, | --*º- * - ~ * f

* /*
º KN --

%. s AT’■ vº 9 T %.
-, 4. ºy

■ /(, * - A
y *-

% º nº vºy;” º ... -- + *_ º º * % sº C.? º, º º º, sº
º/vºcºco sº cººl■ !!! ■ º Wºo sº. -- ■ º tºº - Yº sº.- * - J. s º º _º- º

- º Cº. * , º n -

n ***tº 9 º' ºr ºr r-, * } |||||||||||||||| º On ,
º s ºn º J/ 3 1378 00807 1147 º [...] °. ... I

º L
º

l …” s °. […] * ~ * * * C, |-- o” º [...] sº ~ * * *
* --- sº º/C º sº ■ ºvº; G 11 %, § º/C º, * A \º
º, º º■ º º, sº n /… ". s?

-
* sº º* * * * *- : 2. Sº dº. A■ ºf Q º ,, .....…. ?, ? Cºlº■ ?

z. Yºº, fºcíº J & 9 -º-º-º: & 2, CYJ’■ , f fººt * * --~~~~
s «. C º y fºr tº -> *. º sº º Cº.; sº *. º

º *tº Lie Rºº °, /4-2 sº […] *. Library sº *, * *,” */- - -

- - 4– Q. —r- º [...] so -- *- 9 –– Q- -- a º [...] °o --

- -- c - * ** º
-

C | ■ & º |
* R \,\! i■ 11 & |- s cº/” * Ll s' ■ º gº º º cº-7, % --º,º * --

º * * V (■ º º º c º *... .sº Q. ºf 2: …
; ; * ºf 1 º --- -> º, -º * } // . /* * º, S. ***** * *2 º'

'-'. 4/ /.../J. º.º. - º/ºr
* - -

00:0//? // 'º' * . *** * *r-e ºf rº- º
O * & }º ■ º, ■ º ■ º º - s & Cºº■ fººd Sº,

-
º º “”. º º sº, *- *C15 sº º

Ole ºº L■ B RARY I º, 0/2.3 ºt- * Leº st-& *

-

[.º º —- *e, --- O 9 º [...] sº
t ^c, [...] º". 4. - * * * * - * - -

* > & Kºjº 17 º' [...] º ºg º ºvºi º º■ º
• * -'a º !

º º, cº- W.
cº ! tº ■ º

*
º:

*
º*

, tº ** *

_* º %. *~ *- *sº º zº, i. As º _º- ! º
- -

/. º º * --> --> &- º º, º -jº, º tºº tº 2- ºr--ºriº
- *- -

- --> - *. sº Qe
-

& º c
- o -- -

,-7 , 27 º sº ºf ºs º, [...] º cº-ºr °º [...] sº º, L■
* º, º A. gº; £5 1"I ^o. & (t C º, º A Tº wº 3 IT º, sº

º º, sº * º, sº a * -º º,
-

ºn--- a º, -º º; ) i■ : ºf * Sº ** 2 -º º /. º **"A a rºº gº º ºs º-, … . . . 4. A ■ º ºf .º * '- a - ºf , º/* , , , , , , ") 7.ºv : *//* sº cytº■ ºcºco sº. Cº-º/ º 'º.
*~ º 4.

---
> º!,~ ■ - N **

º º- sº º * &
-

* * : * ■ º ■ º, ■ º º Q.
-

zo * º .** " … º ©ºr tº O■ lº tº tºº sº. Ole tº
-

sº *s
- - -

sº … " ~1.a * […] sº […] sº "… […] sºº. º º, º, * º
º -A º § 1 - ... Nº-- ~. (C * - Aº Q in * -- ~. (C * – ºvºº º . ~ º - *.

"... º.º. º. oºm º/ºr º, sº Q º sº anº/º, Cº. / i■ /1■ º sº -------, SS 4. 7///7”/icº Co sº
e —º

… • *. ** º º º & º, -º- %, o ■ º- 2 - in tº * &- º / --> º º, *

º [...] %, * f : . R^. R_Y º [...] º, £º ~2 sº [...] º, 1–1 B RA R_Y .* [...] *, 4. / *

!--- 9. r- & * •o * C. --- & vo :
* 2°, - - -7. & *. [T] *A* g. C. | | * * º f

* Nº 3 in º. º º/C º, is ■ º gº º, sº -/C º'--
** -- \ * * * w *- --

2.

". º/ºr
-

º, sº Q.
-

% sº dº */º ~, º, sº º... sº sº. A ■ º, º --~~~~ -
ºf MA 7'º'

- a - - - 2.
º º * @ cº■ , ºf Cºco sº. ~~ : Sº N & cº Jºcº sº.

s º f -- -

O 7 º- * -- - ".

- > * * --- -
ºII sº * [...] a *… [...] sº º, Ll sº -*-*. - -- -: * ºf, •º'-' ºrvºgn º & º/C º, & ºvus in º. & fº - - -. Sº *

º º sº */ *… < --- ºt. º _*% is cºlº ■ º. O As *... º.
Sº, Cº,//ºc■ ºù sº

º sº, Ç º º *- sº *
- º - zºº. **- 1. *-

* * º º ‘e - y -
º º

º | || º J/13 sº º, L. BRARY is º 9/2– sº º, L13 RA
sº g º o' C. -

_& º * * –– o --, *... [...] sº "o, ■ º sº *… [...] of ^c, [T]A ** K. ~ : * ~ * :- º [...] & cº- º & ~. --→ *, L–
*- & C º º A riº■ g T *. cº ( / º, -> A Tºjº, º *** z. ** -

-- aw
-

**. -** - -
1. – 5

g






