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ARTICLE

The gut microbiome in konzo
Matthew S. Bramble1,15, Neerja Vashist1,2,15, Arthur Ko 3, Sambhawa Priya4, Céleste Musasa 1,

Alban Mathieu5, D’ Andre Spencer1, Michel Lupamba Kasendue6, Patrick Mamona Dilufwasayo 1,6,

Kevin Karume 1,6, Joanna Nsibu6, Hans Manya 1,6, Mary N. A. Uy 1,7, Brian Colwell 8, Michael Boivin 9,

J. P. Banae Mayambu10, Daniel Okitundu11, Arnaud Droit 5, Dieudonné Mumba Ngoyi 6,12, Ran Blekhman4,

Desire Tshala-Katumbay 6,13✉ & Eric Vilain1,2,14✉

Konzo, a distinct upper motor neuron disease associated with a cyanogenic diet and chronic

malnutrition, predominately affects children and women of childbearing age in sub-Saharan

Africa. While the exact biological mechanisms that cause this disease have largely remained

elusive, host-genetics and environmental components such as the gut microbiome have been

implicated. Using a large study population of 180 individuals from the Democratic Republic of

the Congo, where konzo is most frequent, we investigate how the structure of the gut

microbiome varied across geographical contexts, as well as provide the first insight into the

gut flora of children affected with this debilitating disease using shotgun metagenomic

sequencing. Our findings indicate that the gut microbiome structure is highly variable

depending on region of sampling, but most interestingly, we identify unique enrichments of

bacterial species and functional pathways that potentially modulate the susceptibility of

konzo in prone regions of the Congo.
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Our current understanding of the symbiotic relationship
between humans and the gut microbiome, is largely based
on findings from western industrialized nations. Few

studies to date have investigated the structure and potential role
of the gut flora in African and other non-western societies1–5.
Collectively, studies on the microbiome have furthered our
understanding of basic bacterial composition and relationships
that are associated with geographic setting6,7, host genetics8–10,
age11,12, nutrition13,14, disease15–18, and to a large extent, dietary
practices4,19–21. Abundance of certain bacterial genera has been
demonstrated to be associated with different lifestyle practices
and geographical locations. Urbanized populations for example
are enriched for Bacteroides and conversely, Prevotella species are
more common in the guts of humans in rural subsistence living
environments4,5,7,22,23. While the exact factors behind these dis-
tinctions are uncertain, long-term diet, food diversity, and overall
nutrition are likely to be important contributors.

The Democratic Republic of the Congo (DRC) is one of the
least developed countries in the world with a high percentage of
individuals relying on a monotonous cassava (Manihot esculenta
Crantz) diet for basic survival. Cassava, also known as yucca or
manioc, is a drought-tolerant plant which resists harsh envir-
onmental conditions including poor and arid soils in tropical
regions. As such, it is an important crop for subsistence and
source of calories for populations dwellings in these regions.
Consumption of improperly processed food derived from bitter
cassava, which harbors high levels of cyanogenic compounds
such as linamarin, can result in an irreversible nonprogressive
motor neuron disease known as konzo, that predominately
manifests in children and women of childbearing age24,25. While
certain risk factors, such as food insecurity, chronic malnutri-
tion, and particularly a lack of sulfur containing amino acids are
associated with outbreaks of konzo, the exact biological
mechanisms underlying disease susceptibility and severity
remain poorly understood25. The consumption of toxic plants
for survival is not uncommon in other mammalian species such
as the Giant Panda and Desert Wood Rat, who consume foods
laced with high levels of cyanogenic glucosides and toxic creo-
sote, respectively. However, these mammals have evolved a gut
microbiome composition that serves to aid in the detoxification
of these xenobiotics, effectively enabling the survival of such
species26–28. Few populations in the world rely exclusively on
toxic foods for survival, making the DRC a unique country to
query the influence of a detrimental subsistence on the gut flora
and its relationship to this debilitating multifactorial neurolo-
gical disease.

Here we present a large comparison of gut microbiome profiles
in children from the Democratic Republic of the Congo, using
shotgun metagenomic sequencing, with study populations ran-
ging from the urbanized capital of Kinshasa to the extremely rural
settings of south-western DRC, including children affected with
konzo from prone villages. These data expand on our under-
standing of the gut microbiome in non-western lifestyles, as well
as serve as the first investigation into the gut microbiome of
populations that rely on toxic cassava as their staple food source.
Additionally, these data reveal an enrichment of bacteria and
genes in the konzo prone regions of the DRC that may exacerbate
the effects of cyanogenic glucosides by enhancing linamarase
activity, the key enzyme needed for the hydrolysis and subsequent
release of cyanide in the human gut.

Results
Study population description. During March of 2018, we col-
lected fecal samples and dietary recall questionnaires from 180
individuals in the Democratic Republic of the Congo; 30 from

Kinshasa, 30 from a rural village of Masi-Manimba and 120 from
konzo prone regions in Kahemba (Fig. 1). Samples from both the
populous urban capital of Kinshasa (Kin) and Masi-Manimba
(Mas), which is ~300 km east of the capital, were taken from
presumably healthy children who were not affected with konzo. It
should be noted that while outbreaks of konzo have not been
documented in Masi-Manimba, residents of this region of the
DRC also have a very high reliance on cyanogenic cassava as a
staple food source. The Kahemba region, which is ~600 km South
East of Kinshasa, harbors villages with the varying degrees of
konzo outbreak frequency, as well as being the region with the
most cases of konzo in the country. Our research team surveyed 2
villages in the Kahemba Health Zone that have historically had
higher prevalence of konzo (HPZ) cases, as well as a village with
lower prevalence of the disease (LPZ). Samples and dietary
questionnaires were collected from 30 unaffected children from
the HPZ (UHPZ) as well as 30 konzo-affected children from the
HPZ (KHPZ), in addition to 30 unaffected children from the LPZ
(ULPZ) and 30 konzo-affected children from the same village
(KLPZ) (Supplementary Data 1). Individuals with konzo were
diagnosed by in-country medical experts familiar with this disease
and the signatures associated with such, following the WHO
criterion for diagnosis. While unaffected children in Kahemba did
not have konzo at the time of collection, they were chronically
under-nourished and should not be thought of as “healthy”
per se, as their susceptibility to konzo remains a possibility.
Dietary questionnaires highlighted that food diversity was highest
in the urban capital and very low in the Kahemba region, where
protein sources such as meat and dairy products were generally
not consumed in the week prior to specimen collection (Sup-
plementary Fig. 1). These findings were in line with previous
reports unveiling monotonous protein-deficient cassava diets in
the region of Kahemba29,30.

Overall gut microbiome characteristics. After filtering to include
bacterial taxonomic assignments that were present at greater than
or equal to 0.01% relative abundance in each individual, we observe
that all study groups regardless of living environments harbored on
average over 450 unique bacterial species (Fig. 2a) (Supplementary
Data 2). All study groups also displayed measures of α-diversity as
measured by the Shannon index that were indictive of a diverse
microbial ecosystem (Fig. 2b). While variable between groups, the
four most abundant bacterial phyla, as expected for human popu-
lations, were Bacteroidetes, Firmicutes, Proteobacteria, and Actino-
bacteria (Supplementary Fig. 2a) (Supplementary Data 2).
Additionally, Bacteroidia and Clostridia were the two most abun-
dant classes in all groups (Supplementary Fig. 2b) (Supplementary
Data 2) with Bacteroidales and Clostridiales being the dominating
bacterial orders in all study populations (Supplementary Fig. 2c)
(Supplementary Data 2). When assessing bacteria at the family
taxonomic rank, we saw more broad differences between study
populations. The gut flora of individuals from urban center of
Kinshasa are dominated by bacteria belonging to the family Bac-
teroidaceae (Kin: 20.2%). The predominate bacterial family for rural
populations residing in Masi-Manimba, and the high konzo pre-
valence zone of Kahemba is Prevotellaceae (Mas: 18.5%, UHPZ:
20.8%, KHPZ: 20.5%) (Supplementary Fig. 2d) (Supplementary
Data 2). However, groups living in the low konzo prevalence zone
of Kahemba regardless of disease status are dominated by Lach-
nospiraceae (ULPZ: 14.7%, KLPZ: 15.4%) (Supplementary Fig. 2d)
(Supplementary Data 2). At the genus level, we also observe trends
associated with urban or rural living environments. The study
participants from Kinshasa harbor Bacteroides (Kin: 21.6%) as the
most abundant genus, while the genus Prevotella is the most
abundant for those residing in the rural settings of Masi-Manimba
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and the Kahemba HPZ (Mas: 19.8%, UHPZ: 22.7%, KHPZ: 22.6%)
(Fig. 2c) (Supplementary Data 2). Unaffected adolescents from the
Kahemba LPZ also are dominated by the genus Prevotella (ULPZ:
16.4%); however, those with konzo from the same zone have a
roughly equal relative abundance of Bacteroides (KLPZ: 15.6%) and
Prevotella (KLPZ: 15.5%) (Fig. 2c) (Supplementary Data 2). Despite
varied abundances, all individuals residing outside of urban Kin-
shasa on average have a significantly higher Prevotella to Bacter-
oides ratio (Supplementary Fig. 2e). After filtering to include
bacterial species that ≥0.01% average relative abundance in any of
the six groups, we were left with 694 species of interest, of which
show distinct abundance profiles and cluster based on geographic/
village location (Fig. 2d) (Supplementary Data 2). Given the high
level of individual gut microbiome variability that has been docu-
mented, we also assessed intra-group bacterial dissimilarity using
the Bray-Curtis index and observed that children from Kinshasa are
collectively the most variable as a group, whereas those individuals
residing in the rural Kahemba HPZ regardless of disease status are
the most similar overall to one another (Supplementary Fig. 2f).
These data suggest that factors contributing to the gut microbiome
profiles are likely more uniform in rural regions as compared to
urban settings of the DRC.

Gut microbiome profiles and functional potential segregate
across geographic locations. After accounting for all possible
interactors such as age, sex, location, and disease status, our data
indicate that geographic location (cassava toxicity) is the variable
that significantly contributes to observed bacterial composition
differences. When assessing geographic location differences (inter-
group differences) which most importantly coincide with dietary
practices, we observe that the gut microbiome profiles of those in
Kinshasa compared to unaffected children from all rural locations
are significantly different based on Bray-Curtis dissimilarity mea-
sures. When comparing the gut microbiome abundance profiles of
the Kinshasa group to the unaffected children of the rural regions of
Masi-Manimba and Kahemba, we see that these bacterial profiles
significantly segregate at the genus taxonomic rank (PERMANOVA
p= 1 × 10−5) (Fig. 3a). For this global urban versus rural com-
parison, the abundance of the genus Prevotella is most strongly
associated with the first principal coordinate (Axis.1) values
(Spearman ρ= 0.68, p= 1 × 10−12), which accounts for 30.7%
variability, while the abundance of Faecalibacterium is most asso-
ciated with second principal coordinate values (Axis.2) (Spearman
ρ=−0.75, p= 1 × 10−12) accounting for 18.9% of overall varia-
bility (Fig. 3a). In more specific comparisons between Kinshasa vs.

Fig. 1 Map of DR Congo highlighting sampling locations and food insecurity. Sampling locations and summary of study populations from South West
DRC that includes the urban capital of Kinshasa (n= 30, age= 8.7 ± 1.66, 15 F, 15M), rural regions in Masi-Manimba (n= 30, age= 9.9 ± 2.32, 15 F, 15M),
and 2 Konzo prone villages in Kahemba (Unaffected Low Prevalence Zone (ULPZ), n= 30, age= 7.93 ± 2.32, 15 F, 15M) (Konzo Low Prevalence Zone
(KLPZ), n= 30, age= 8.33 ± 2.67, 12 F, 18M) (Unaffected High Prevalence Zone (UHPZ), n= 30, age= 9.03 ± 2.03, 15 F, 15M) (Konzo High Prevalence
Zone (KHPZ), n= 30, age= 9.63 ± 2.31, 12 F, 18M). Using qGIS 3.8 software, we generated the map illustrating the current status of food insecurity for
children 6–59 months old in the DRC at the health zone level. Data and shapefiles were extracted from available datasets from Humanitarian Data
Exchange, which is coordinated through OCHA. Using the most recent and available administrative boundary data as a geographic base, we overlaid the
August 2018 to June 2019 Integrated Food Security Phase Classification (IPC) data provided by the OCHA DR-Congo. This dataset represents the
estimated prevalence of Global Acute Malnutrition (GAM), the weight to height ratio, of children 6–59 months in the representative health zones.
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Masi-Manimba (Fig. 3b), Kinshasa vs. unaffected children in the
LPZ (Fig. 3c) or Kinshasa vs. unaffected children in the HPZ
(Fig. 3d), strong segregation remains, with varying degrees of sta-
tistical significance (PERMANOVA p= 2 × 10−5, p= 0.00139,
p= 1 × 10−5, respectively). Interestingly, these global differences
extend beyond urban versus rural, as seen when comparing the
genus level gut flora profiles of children from rural Masi-Manimba
to the unaffected children of the Kahemba LPZ (PERMANOVA
p= 3 × 10−5) (Fig. 3e) and HPZ (PERMANOVA p= 0.00321)
(Fig. 3f). When assessing specific differences in relative abundance
at the genus level, we find that compared to Kinshasa, the unaf-
fected children of the Kahemba HPZ harbors the most significantly
different genera at 285, followed by Masi-Manimba with 215, while
137 genera were significantly different when compared to unaf-
fected children in the Kahemba LPZ (expected BH-corrected p-
value < 0.01, Wilcoxon test, ALDEx2) (Supplementary Data 3). To
determine if study groups differed in potential functionality, we
assessed the relative abundance of KEGG Orthology (KO) identi-
fiers (Supplementary Data 5) using the Bray-Curtis index, and
determined that like bacterial profiles, the functional profiles of
these urban and rural groups also significantly segregated on global

measures (Supplementary Fig. 3). Again, like we observed when
comparing differences in bacterial genera abundance, Kinshasa as
compared to the HPZ of Kahemba harbored the most significant
pairwise differences, with 446 KO’s showing significant differences
in overall relative abundance (BH-Corrected MWW, FDR < 0.01,
Supplementary Data 6). While 137 genera were significantly dif-
ferent between Kinshasa and the LPZ of Kahemba, at a functional
level this comparison yielded 312 KO’s that had significantly dif-
ferent relative abundance (Supplementary Data 6). Despite large
differences in bacterial genera abundance, Masi-Manimba com-
pared to Kinshasa yielded the fewest differences in functional
potential with 211 KO’s reaching statistical significance (Supple-
mentary Data 6). While functional differences between a rural and
urban context are expected, surprisingly the functional differences
observed between the two rural areas of Masi-Manimba and
Kahemba are even larger (Supplementary Data 6).

Machine learning accurately distinguishes populations. To
determine if bacterial gut flora of individual groups were distin-
guishable, we implemented random forest (RF) classifiers to

Fig. 2 Overall alpha diversity and bacterial distribution in study groups. Microbiome composition for all study groups that include a species level
assignments post filtering to include those bacteria whose relative abundance ≥0.01% in each of the 180 participants from Kinshasa (Kin) (n= 30,
mean= 473.2), Masi-Manimba (Mas) (n= 30, mean= 552.1), Unaffected Low Prevalence Zone (ULPZ) (n= 30, mean= 502.4), Konzo Low Prevalence
Zone (KLPZ) (n= 30, mean= 494.3), Unaffected High Prevalence Zone (UHPZ) (n= 30, mean= 594.5), and Konzo High Prevalence Zone (KHPZ)
(n= 30, mean= 606.2). b Shannon Index measures post filtering that includes species in each participant that had a relative abundance ≥0.01 from
Kinshasa (n= 30, mean= 3.918), Masi-Manimba (n= 30, mean= 3.996), ULPZ (n= 30, mean= 3.897), KLPZ (n= 30, mean= 3.9), UHPZ (n= 30,
mean= 4.186), and KHPZ (n= 30, mean= 4.217). c Highly abundant genus level assignments in the study groups (standard deviation for genus measures
can be found in Supplementary File 2). d Z-score Heat map representation of the average relative abundances of the 694 species that passed the ≥0.01%
relative abundance in either of the six study groups. In a and b, data are represented as boxplots where the diamond denotes the mean, middle line in the
box is the median, the lower hinge is the first quartile, the upper hinge is the third quartile, and the whiskers extend from the lower and upper hinges to the
smallest and largest value, respectively, at most to 1.5 * IQR (IQR, interquartile range, is the distance between the first and third quartile), with each
individual value plotted.
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evaluate whether machine learning algorithms could accurately
classify study samples based on bacterial relative abundance
profiles at the genus taxonomic level. We built six one-versus-all
binary classifiers to classify samples from one geographic location
compared to the rest (see Methods). Our classification models
performed well in predicting samples across geographic locations
(Fig. 4a, b), where, given the area under the receiver operating
characteristic (ROC) curve, or the AUC, is 0.5 for a random
classifier, the average AUCs for our models are 0.94 for Kinshasa,
0.89 for Masi-Manimba, and 87.3 for unaffected individuals from
Kahemba LPZ or HPZ. The RF classifier performed well in dis-
tinguishing samples from Masi-Manimba compared to Kinshasa
and unaffected children from the Kahemba LPZ with an AUC of
0.95 and specificity of 94% (Fig. 4a). The model was also very
accurate at classifying the Kinshasa samples from the rest of the
study groups, with AUC of 0.92 and 92% specificity, as well as the
unaffected children from the Kahemba LPZ with AUC of 0.90
and 96% specificity (Fig. 4a). While highly accurate in distin-
guishing samples from urban and rural settings, the top ten most
important genera that contributed to these distinctions varied by
population location. The top three most important genera that
distinguished Kinshasa from unaffected children in the Kahemba
LPZ or Masi-Manimba for the classifier were Actinomyces,

Clostridioides, and Leuconostoc. Additionally, the relative abun-
dance of all three of these genera were also significantly different
between the groups in applicable pairwise comparisons (expected
BH-corrected p-value < 0.01, Wilcoxon test, ALDEx2) (Supple-
mentary Fig. 4) (Supplementary Data 3). When distinguishing
Masi-Manimba from Kinshasa or unaffected children in the LPZ
of Kahemba, Phoenicibacter, Tolumonas and Rothia were the top
three most important features, with Phoenicibacter and Tolumo-
nas being significantly different among groups in pairwise mea-
sures (expected BH-corrected p-value < 0.01, Wilcoxon test,
ALDEx2) (Supplementary Fig. 4). Denitrobacterium, Gemmati-
monas, and Pandoraea were the three most important RF features
that distinguished the samples from Kahemba LPZ when com-
pared to either Kinshasa or Masi-Manimba. The relative abun-
dance of Denitrobacterium and Gemmatimonas were only
significantly different between ULPZ and Mas (expected BH-
corrected p-value < 0.01, Wilcoxon test, ALDEx2), while Pan-
doraea and Denitrobacterium were significantly different in
relative abundance between ULPZ and Kinshasa (expected BH-
corrected p-value < 0.01, Wilcoxon test, ALDEx2) (Supplemen-
tary Fig. 4). RF classifiers performed the best with highest overall
prediction metrics for classifying samples from Kinshasa com-
pared to those from Masi-Manimba and the unaffected children

Fig. 3 Global measure of gut bacteria dissimilarity at the genus level for a geographic context. PCoA representations based on Bray-Curtis dissimilarity
matrix values at the genus taxonomic level for a Kinshasa (Kin) vs. Masi-Manimba (Mas) and unaffected children from the low prevalence zone (ULPZ)
and high prevalence zone (UHPZ) of Kahemba combined, b Kinshasa vs. Masi-Manimba, c Kinshasa vs. ULPZ, d Kinshasa vs. UHPZ, e Masi-Manimba vs.
ULPZ, and f Masi-Manimba vs. UHPZ. Correlations in a were generated using Spearman’s Correlation method of genus relative abundance against
principal coordinate 1 and 2 axis values for each sample, and standard error with a 0.95 confidence interval is shown in gray with the regression line.
Statistics for Bray-Curtis dissimilarity were generated using PERMANOVA.
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from the HPZ of Kahemba (Fig. 4b). Overall, the predictions
from our RF classifier agrees with conclusions drawn from ana-
lysis using the Bray-Curtis dissimilarity index (Fig. 3a), adding
additional confidence to suggest that the gut bacterial profiles are
significantly different and distinguishable in an urban versus rural
context as well as between rural regions of the DRC.

Unaffected adolescents from konzo prone villages display
markedly different gut flora profiles, but not functional capacity.
Given the strong differences in gut microbiome profiles observed
across regions, we investigated whether distinguishable differences
were also present between the two konzo prone villages within the
same geographic region of Kahemba. When assessing the gut flora
of the unaffected adolescents from the low konzo prevalence zone
(ULPZ) compared to those unaffected from the high konzo pre-
valence zone (UHPZ), we observe significant segregation at the
genus level based on Bray-Curtis measures (Fig. 5a) (PERMA-
NOVA p= 0.00057), despite both groups having an overall similar
diet, lifestyle, geographic setting, and chronic reliance on toxic
cassava. Of the 494 bacterial genera that passed the ≥0.01% relative
abundance in at least one of the six study groups, 63 were sig-
nificantly different between the unaffected children residing in these
two konzo prone areas, with the vast majority of these genera
displaying higher abundance in unaffected children from the HPZ
(expected BH-corrected p-value < 0.05, Wilcoxon test, ALDEx2)
(Supplementary Data 2 and 3). Two highly abundant genera were
most significantly associated with the principal axes of the Bray-
Curtis dissimilarity ordination matrix, with Faecalibacterium, a
butyrate-producing microbe, correlating most strongly with PCoA

Axis.1 (Spearman ρ=−0.80, p= 5 × 10−6) while Prevotella was
most strongly correlated with PCoA Axis.2 values (Spearman
ρ=−0.93, p= 1 × 10−9). The relative abundance of Faecalibacter-
ium was also unexpectedly different, with the unaffected children
from the HPZ harboring on average ~8% versus ~15% in those
children from the LPZ (expected BH-corrected p= 0.0078, Wil-
coxon test, ALDEx2) (Fig. 5b). However, when considering the
compositionality of the dataset, the genus Prevotella fails to reach
statistical significance, despite the relative abundance appearing
largely different between these two groups. The random forest
classifier was also able to distinguish the unaffected children from
either the LPZ or HPZ at the bacterial genus level, with an AUC of
0.88 and 80% specificity (Fig. 4c). Lower abundance genera con-
tributed most to the RF classifiers output, with Gordonibacter,
Denitrobacterium, and Tumebacillus being the top three of the 10
most important features (Supplementary Fig. 5). While measurable
differences in overall gut bacteria relative abundance were observed
between these two groups, at the functional level, no differences
were observed in pairwise measures of relative abundance of
KEGG Ortholog (KO) identifications (MWW BH-Corrected
FDR < 0.01) (Supplementary Data 6) or on a global measure
of differences in KO distribution using the Bray-Curtis
index (PERMANOVA p= 0.05741) (Supplementary Fig. 6a).
Collectively, these data indicate that despite similar levels of
nutritional deficiency, lifestyles, and diets high in cyanogenic
cassava, the relative abundance of gut flora in unaffected chil-
dren from these two konzo prone areas are significantly dis-
tinguishable, however it appears that the functional potential of
the gut bacteria of both populations are similar overall.
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Fig. 4 Random forest classification across populations. Receiver operating characteristic (ROC) curves and classification performance metrics for one-vs-
all random forest classifiers for a Kinshasa vs Masi-manimba vs Kahemba unaffected low prevalence zone (LPZ), and b Kinshasa vs Masi-manimba vs
Kahemba unaffected high prevalence zone (HPZ), binary classifier for c unaffected individuals from HPZ vs unaffected individuals from LPZ, and those with
konzo from HPZ vs konzo from LPZ, and d konzo vs unaffected individuals from LPZ and HPZ. All ROC curves and performance metrics are averaged over
10 repetitions of 10-fold cross-validation.
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Differences in the gut flora composition and potential func-
tionality between konzo prone areas is less distinct for those
stricken with the disease. After establishing that notable bacterial
abundance differences existed between unaffected children
depending on the village of habitation in the Kahemba region, we
next sought to determine if these differences were also observed
between those affected with konzo. When globally comparing the
gut flora profiles of affected individuals from the LPZ to those
from the HPZ, we find that these populations significantly seg-
regate based on Bray-Curtis dissimilarity measures (Fig. 5c)
(PERMANOVA p= 0.01744). While statistically significant, the
effect appears to be less pronounced than for those not affected
with the disease (Fig. 5a). However, in pairwise assessments, the
only 4 genera, that were significantly different in normalized
abundance between individuals with konzo from these two zones
were Adlercreutzia, Slackia, Eggerthella and Gordonibacter,
(expected BH-corrected p-value < 0.05, Wilcoxon test, ALDEx2)
(Supplementary Data 3). The minimal differences in genera
abundance between children in a disease state from the LPZ and
HPZ extends to functionality as well. Statistically significant dif-
ferences were observed neither globally when comparing the
relative abundance of KO identifiers that were ≥0.01% in at least
one of the study groups using the Bray-Curtis index

(PERMANOVA p= 0.053) (Supplementary Fig. 6b) nor in spe-
cific pairwise comparisons of relative abundance of KO identifiers
(BH-Corrected MWW, FDR ≤ 0.01) (Supplementary Data 6).
Additionally, the random forest classifier also performed poorly
when classifying these konzo-affected individuals from either the
HPZ or LPZ based on genus level assessments, with an AUC of
0.69 and 63% specificity (Fig. 4c), whereas the classifier was more
accurate in determining unaffected individuals from the same
corresponding villages (Fig. 4c) (Supplementary Fig. 5). Taken
together, this further highlights the notion of more bacterial
similarity between individuals in a diseased state than between
those without konzo, for reasons that remain elusive.

The gut bacterial profiles between unaffected and konzo-affected
individuals in their respected villages are indistinguishable.
Having established minimal differences between high prevalence
and low prevalence zones based on a diseased or unaffected state,
we next sought to assess if measurable differences were observable
between cases of konzo and unaffected individuals within each
prevalence zone. From a global view using the Bray-Curtis index,
unaffected adolescents compared to konzo cases from their
respected LPZ or HPZ villages do not segregate at the genus level
(PERMANOVA p= 0.9105, 0.569, respectively) (Fig. 5d and 5e).
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Fig. 5 Global measures of gut bacteria dissimilarity at the genus level for the Kahemba region. PCoA representations based on Bray-Curtis dissimilarity
matrix values at the genus taxonomic level for a Unaffected children from the low prevalence zone (ULPZ) vs. Unaffected children from the high prevalence
zone (UHPZ); correlations were generated using Spearman’s Correlation method of genus relative abundance against principal coordinate 1 and 2 axis
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and normalized CLR medians of both Prevotella and Faecalibacterium genera between unaffected children from the LPZ (n= 30) and HPZ (n= 30). Data are
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HPZ of Kahemba. Statistics for Bray-Curtis dissimilarity were generated using PERMANOVA.
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This trend was also observed in pairwise comparisons (using
ALDEx2) on CLR transformed values, where zero statistical dif-
ferences were observed using an FDR< 0.01 between individuals in
a diseased state compared to the unaffected group from their cor-
responding village (Supplementary Data 3). As expected, there were
also no measurable differences observed in relative abundance of
KO identifiers that passed the filter criterion on both a global scale
using Bray-Curtis index (Supplementary Fig. 6c and 6d) or in
appropriate pairwise comparisons (MWW) using an FDR ≤ 0.01
(Supplementary Data 6). The random forest classifier also per-
formed the worst with an average AUC of 0.63 for comparisons of
konzo cases and unaffected children from their respected areas,
stemming from the high degree of similarity between these groups,
which was also recognized by all tested measures (Fig. 4d). Col-
lectively, it appears that the gut flora of those with konzo compared
to those who are unaffected from Kahemba are nonsignificantly
different on all measures tested, indicating that if the microbiome is
a modulating factor in the development of konzo, then the dietary
practices and nutritional status of the Kahemba region likely puts
the entire population of children at risk.

Kahemba and Masi-Manimba harbor enrichments of gut bacteria
and functional potential to exacerbate or moderate the effects of
cyanogenic glucoside exposure respectively. Given the high degree
of similarity in gut flora structure between individuals with konzo
compared to unaffected individuals from the Kahemba region, we
next sought to determine if bacteria with varying degrees of docu-
mented linamarase/β-D-glucosidase activity were enriched in this
region of the DRC. In pairwise comparisons that passed the abun-
dance filter for analysis, we observe several bacterial species with
known linamarase activities31–34 that are significantly more abundant
in children from both the LPZ and HPZ, regardless of disease status
(Fig. 6a and Supplementary Fig. 7) (Supplementary Data 3). Two
particular lactic acid/fermenting species, with high levels of lina-
merase activity, Lactobacillus plantarum and Lactococcus lactis, are
>2× more abundant in both affected and unaffected children residing
in Kahemba as compared to children of Kinshasa (expected BH-
corrected p-value < 0.05, Wilcoxon test, ALDEx2, for all compar-
isons), while differences in the lower abundant Leuconostoc mesen-
teroides are less dramatic (Supplementary Data 2 and 3). When
assessing differences from a konzo prone regions (Kahemba HPZ
and LPZ) versus non-konzo regions (Masi-Manimba and Kinshasa)
all three species are significantly different and enriched in Kahemba,
with the most enzymatically active species, L. plantarum and L Lactis,
showing the strongest differences in these comparisons (Supple-
mentary Fig. 7). Interestingly, neither of these lactic acid bacteria
show significant enrichment in children of Masi-Manimba as com-
pared to Kinshasa, indicating that these observations are not exclu-
sively an effect of urban versus rural differences (Supplementary
Fig. 7) (Supplementary Data 3). While these LABs have been shown
to biochemically possess the functional requirements to hydrolyze
linamarin, the primary enzyme required, β-D-glucosidase, is not
restricted to just those bacteria. Given that, we next sought to
determine if sequences that mapped to β-D-glucosidase (EC: 3.2.1.21)
(KO 5350) genes were also enriched in Kahemba. Interestingly, we
observe that when compared to Masi-Manimba, a village whose diet
most closely resembles that of Kahemba, genes that code for β-D-
glucosidase (EC: 3.2.1.21) are enriched in unaffected and konzo-
affected children from both the LPZ (BH-Corrected MWW
p= 0.013, p= 0.028, respectively) and HPZ (BH-Corrected MWW
p= 0.034, p= 0.078, respectively) (Fig. 6b) (Supplementary Data 6).
While some bacteria harbor the potential to exacerbate the effects of
linamarin exposure by harboring β-D-glucosidase enzymes, other
bacteria have been shown to harbor the ability to detoxify cyanogenic
compounds via pathways utilizing thiosulfate sulfurtransferase/

Rhodanese (EC: 2.8.1.1) and 3-mercaptopyruvate sulfurtransferase/
MPST (EC: 2.8.2.1). When compared to the unaffected and konzo-
affected children residing in the LPZ (MWW p= 0.007, p= 0.016,
respectively) and HPZ (MWW p= 0.008, p= 0.002, respectively) of
Kahemba, the children of Masi-Manimba on average have sig-
nificantly more abundant representation of both bacterial MPST and
Rhodanese genes (KO1011) (Fig. 6c) (Supplementary File 6). Col-
lectively, these data highlight two plausible scenarios as to how the
gut microbiome can modulate the development of konzo, through
either a susceptibility or protective scenario, under the assumption
that all other required factors are present that enable the development
of konzo.

Discussion
In recent years there has been much interest into investigating the
gut microbiome structure of understudied populations, particu-
larly individuals from the African continent to better understand
how this symbiotic relationship varies across human
populations5,6. Given the limited studies in this region, we sought
to investigate the gut microbiome structure of individuals from
the DRC, with a particular focus on children who are afflicted
with cassava induced neurotoxicity/konzo. This multifactorial
disease predominately affects children and women of child-
bearing age in sub-Saharan African countries including Tanzania,
Cameroon, Mozambique, Central African Republic, and the DRC,
particularly in Kahemba, Bandundu province25,29. The occur-
rence of konzo is strongly associated with the consumption of
improperly processed bitter cassava coupled with malnutrition
and environmental stressors such as drought and turbulent times,
leading to irreversible spastic paralysis and neurocognitive
deficits35. To understand how the gut microbiome may modulate
disease occurrence, we used shotgun metagenomic sequencing to
assess the gut flora profiles from unaffected and presumable
healthy children residing in the urban capital of Kinshasa, a rural
village with no documented history of konzo outbreaks, yet who
rely on cassava as their staple diet, Masi-Manimba, and two areas
with different konzo prevalence in the Kahemba region.

Initially, we evaluated the structure of the gut microbiome in
relation to an urban versus rural context to establish a baseline of
expectation from these regions of the DRC. We found that
regardless of region, all study groups on average harbored >450
unique species with levels of α-diversity that were indicative of
“diverse” microbiomes. While all groups appear to harbor diverse
microbiome structure, numerous differences were detected when
comparing the profiles of individuals from Kinshasa to those
residing in either Masi-Manimba or Kahemba. On global mea-
sures at the genus taxonomic level, the urban population sig-
nificantly segregates from both rural groups of children based on
Bray-Curtis dissimilarity measures. Significant segregation of
microbial profiles was also observed for the two different rural
regions, indicating regional specifications and influences that
contribute to the overall structure of the gut flora in this study
population, outside of a simple urban versus rural context. These
findings were further supported with the use of a random forest
classifier that was also able to accurately distinguish these
populations based on bacterial abundance profiles. Unique dif-
ferences at the genus level were detected in pairwise assessments
of bacterial relative abundance when comparing Kinshasa to rural
sites; however, the vast majority of said differences were shared,
highlighting specific genera that were consistently more or less
abundant in urban or rural settings. We also observe trends in
bacterial enrichment that have been traditionally associated with
western-based diets versus diets of rural populations. Numerous
studies have demonstrated that bacteria within the genus Bac-
teroides are associated and more abundant in humans that
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consume western style diets rich in refined sugar, carbohydrates,
and fat, whereas enrichment of bacteria from genus Prevotella are
most frequently associated with diets rich in fiber and unpro-
cessed foods5,22,36. Interestingly, within our study population, we
observe similar trends showing children residing in rural loca-
tions have significantly higher representation of Prevotella and
children from Kinshasa having a microbiome dominated by
Bacteroides. The vast majority of studies that associate such
findings often compare industrialized western countries to rural
sampling sites; however, here we observe the same trends within a
single country of origin, as was also observed in studies using 16 S
sequencing of gut flora focusing from individuals of Nigerian37

and Himalayan descents38. While Kinshasa is an urban city, we
would not consider the diet western per se, therefore these
associations observed in this study are most likely influenced by
the higher degree of dietary diversity for residents of Kinshasa
compared to less diversification in rural DRC. Collectively, these
findings add to a growing body of literature investigating the gut
flora of non-westernized regions and highlight key differences
between those individuals residing in the urban capital of Kin-
shasa versus those who live in rural villages of the Congo.

The DRC represents a unique region to investigate the inter-
section of diet and the microbiome, as particular regions such as

Kahemba rely solely on a monotonous diet of bitter cassava, with
very little protein intake. This dietary combination coupled with
malnourishment of those who reside in the region, notably a
severe lack of sulfur amino acids, sets the stage for susceptibility
to the development of konzo25,39. While the dietary factors
known to cause konzo are for the most part uniform in Kahemba,
the prevalence of this disease is variable between villages, but can
be as high as 10% of the population25. Additional factors and
their contribution to enabling the development of konzo remain
unclear; however, underlying putative gene and environmental
interactions, or as it pertains here, gut microbial components
have been speculated25. When genus level gut bacterial profiles
were compared from unaffected children residing in a zone of
high prevalence versus unaffected children from a zone of lower
prevalence using the Bray-Curtis index, significant segregation
was observed. In direct pairwise comparisons of bacterial abun-
dance between these groups, 63 genera showed significant dif-
ferences. Notably, large differences were observed in dominating
genera such as Faecalibacterium, an unexpected finding con-
sidering the general homogeneity of lifestyle, dietary practices and
high levels of malnourishment of these two study populations.
The random forest classifier was again accurate in distinguishing
these two populations at the genus level with an AUC of 0.88,
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performing nearly as well as detecting urban or rural groups.
Interestingly, when children affected with konzo from these two
villages were compared, we still observe significant profile seg-
regation based on Bray-Curtis measures; however, there were no
statistically significant differences in direct pairwise comparisons
of bacterial abundance between these groups. This lack of dif-
ference conclusion was also supported using the random forest
classifier, which was not very accurate in distinguishing these two
groups, particularly compared to the accuracy when distin-
guishing unaffected individuals from their respective high or low
konzo prevalence villages. Collectively, these findings suggest that
individuals in a diseased state have an overall more similar
microbiome than those who are unaffected between the two vil-
lages of study. While we cannot determine from these data if the
microbiome of these individuals were the same prior to the onset
of konzo or if having konzo is what contributed to the striking
similarity between these individuals. However, having konzo
limits ones mobility, reduces social engagement due to disability
and contributes to stigmatization, all of which likely influence
overall diet, environmental exposures (via limited mobility), and
normal activity, all possible contributors that shape similarities in
the microbiome profiles of these individuals.

In searching for bacterial differences between unaffected and
those with konzo within their respected villages, we observe no
statistical segregation of bacterial profiles at genus level assess-
ments using the Bray-Curtis index. Additionally, the random
forest classifier performed the worst in these comparisons, further
supporting the conclusion that both affected and unaffected
adolescents from the same villages are virtually indistinguishable,
on global measures.

Given the high degree of bacterial similarity between children
with konzo compared to unaffected individuals, our data suggest
that if the microbiome contributes to the development of konzo,
then perhaps the entire region of Kahemba is at risk, as recently
inferred40. This is a plausible notion considering the unaffected
children in this region are by no means “healthy”, as they too are in
a state of malnourishment and chronically rely on improperly
processed cyanogenic cassava as their main source of food; the key
risk factors for developing konzo. Given the monotonous con-
sumption of cassava as the staple for the Kahemba population, we
sought to determine if bacteria with known linamarase activity were
enriched in these populations as a whole. To our surprise, we
identify several species of lactic acid bacteria that were significantly
more abundant in the Kahemba region regardless of disease status,
particularly when compared to children of Kinshasa. Notably, the
relative abundance of both Lactobacillus plantarum and Lactococcus
lactis is more than doubled in the gut microbiomes of the children
of Kahemba compared to those of Masi-Manimba and tripled when
compared to Kinshasa. Other lactic acid species such as Leuconostoc
mesenteroides were also significantly more abundant in the
Kahemba region than in the children of Masi-Manimba and Kin-
shasa. These findings are of interest as these particular bacterial taxa
have been demonstrated as key facilitators of cassava fermentation,
and monotonous consumption of these foods as is the case in
Kahemba, could potentially elevate their abundances within the gut
microbiome, be it transitory or permanent31,33,34. Traditionally,
lactic acid bacteria are considered “pro-biotics” and beneficial for a
healthy gut microbiome41; however, in the case of konzo, their
enrichment may represent a cautionary tale.

Linamarin, cassava’s primary cyanogenic glucoside cannot be
directly utilized for energy by humans, and if ingested should
typically be secreted intact through urine. However, if hydrolyzed in
the digestive tract by resident bacteria that possess the required β-
D-glucosidase (EC: 3.2.1.21) enzyme, results in the release of the
glucose and acetone cyanohydrin molecules, leading to toxicity42.
As β-D-glucosidase is not exclusively restricted to lactic acid

bacteria, we sought to determine if functional genes that code for
this enzyme were also enriched in the Kahemba region. When
compared to Masi-Manimba, a village whose diet and living
environment is more similar to that of Kahemba, yet outbreaks of
konzo have not been identified, we see also significant enrichment
of genes that code for β-D-glucosidase (EC: 3.2.1.21) (KEGG
ortholog 5350). Collectively, it appears that children of Kahemba
not only harbor enrichments of bacteria that have been demon-
strated to hydrolyze linamarin, but also contain an overall higher
abundance of genes that code for β-D-glucosidase, when compared
to a village of similar structure. While the diet and living conditions
of Masi-Manimba are similar to that of Kahemba, why outbreaks of
konzo do not exist in that region remains unknown. However,
when assessing genes that could serve to detoxify cyanogenic
compounds, we see that the children of Masi-Manimba on average
have higher abundance of both bacterial thiosulfate sulfurtransfer-
ase/Rhodanese (EC: 2.8.1.1) and 3-mercaptopyruvate sulfur-
transferase/MPST (EC: 2.8.2.1) (KEGG ortholog 1011) as compared
to the children of Kahemba. These data highlight a scenario where
bacterial abundance and functional genes could exacerbate the
release of cyanide after ingesting cyanogenic glucosides in the
children of Kahemba, as well as a possible scenario of added pro-
tection/detoxification in Masi-Manimba.

While this study is the first investigation into the gut microbiome
of children that rely on a monotonous cyanogenic rich diet, the
notion of the involvement of gut bacteria in hydrolyzing linamarin
and other cyanogenic glucosides in the guts of the host are not
novel. Studies from the early 1970–1990’s demonstrated that pre-
parations derived from rodent caecal material and bovine ruminal
contents possessed the biochemical ability to liberate cyanide from
not only linamarin, but other relevant cyanogenic sugars such as
amygdalin and prunasin43–45. It has also been shown that amyg-
dalin, a former cancer remedy as well as a cyanogenic glucoside
found in almonds, is nonlethal if orally administered to germ-free
mice46. However, if the same dose is given to mice colonized with
bacteria, it can result in lethality46. Collectively, the involvement of
the gut microbiome in relation to liberating cyanide derivatives has
been established; however, more recent data are scarce, particularly
in a human context. Conversely other mammalian species that
frequently ingest toxic compounds in their food have developed a
gut microbiome that serves to aid in detoxification of these sub-
stances, as has been observed for the bamboo eating Panda Bear26

and most notably the creosote eating desert wood rat27,28. While
our findings indicate enrichments of bacteria capable of hydrolyzing
linamarin as well as genes coding for β-D-glucosidase in the chil-
dren of Kahemba, the development of konzo is multifactorial in
nature with numerous environmental variables and stressors. As
such, the gut microbiome cannot be the sole cause of disease, but
rather a required modulator, as without a functioning gut micro-
biome, linamarin, and other cyanogenic glucosides would pose little
to no risk to humans. With additional investigation, components of
the gut flora may serve as targets to mitigate the susceptibility of
konzo in the DRC and other vulnerable populations around the
globe; a subject of global health relevance, as reliance on cassava and
its food products will continue to rise as populations expand and
agricultural environments change.

Methods
Sample collection. During March of 2018, our research group comprised of DRC
based physicians and experts on konzo along with research scientists collected
180 stool samples and 7-day dietary recall questionnaires from study populations
in Kinshasa, Masi-Manimba, and Kahemba, DRC. Prior to collection, the Ministry
of Health for the DRC and the institutional review board at the Oregon Health and
Sciences University provided ethical approval for this study. All participants and
parents were consented prior to collection in either French or the appropriate
language for the region of collection. Stool samples were self-collected from all
participants then transferred to cryovials and stored in liquid nitrogen within 1 h of
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sample collection, by our research team. Stool samples stored in nitrogen collected
outside of Kinshasa were transported back laboratories at the INRB in Kinshasa
prior to cold chain shipment to the USA for sample preparation and sequencing.
During sample collection an assessment as to whether an individual was affected
with konzo was conducted following the WHO’s 3 main criteria for diagnosis
including evidence of a (1) visible symmetric spastic abnormality of gait while
walking or running, (2) a history of onset of less than 1 week followed by a
nonprogressive course in a formerly healthy person, and (3) bilaterally exaggerated
knee or ankle jerks without signs of disease of the spine47,48.

DNA extraction, quantification, and sequencing. Total DNA was extracted from
~250 mg of stool sample for each individual using the QIAmp PowerFecal DNA
Kit (Qiagen) following manufacturer’s protocol and quantified using the Qubit
dsDNA BR Assay Kit (ThermoFisher Scientific). DNA was then stored at −20 °C
prior to sequencing. DNA was submitted to the Genomics Core at George
Washington University for shotgun metagenomic sequencing. Sequencing libraries
were constructed using Illumnia’s Nextera XT kit following manufactures protocol
and sequenced in 3 runs on the NextSeq500 High-Output to increase read depth
per sample. An average of 5,288,982 (sd= 1310988.0) total reads were assigned
from Kinshasa, 6,089,750 (sd= 310897.1) from Masi-Manimba, 6,493,479 (sd=
1089570.3) from ULPZ, 6,276,254 (sd= 735609.8) from KLPZ, 5,906,960 (sd=
575714.1) from UHPZ, and 6,512,447 (sd= 396276.4) from KHPZ.

Determination of the bacterial composition. We trimmed Illumina adapter
sequences and removed low-quality base-pairs from the metagenomic reads using
skewer (v0.2.1). Potential human host reads were filtered out using BMTagger
(v3.101) by aligning reads to the human reference genome, hg38 (UCSC), prior to
microbial abundance estimation. Kraken 2 (v2.0.6)49,50 and Bracken (v2.0.0)51 were
used to assign DNA sequences to taxonomic labels and to compute species abun-
dance. The standard Kraken 2 databases (human, bacteria, viral, and archaea) were
used for both Kraken 2 and Bracken. We processed Kraken/Bracken outputs with
Pavian52 and carried out all downstream statistical analyses and data visualization in
R Studio (v3.6.1). Read counts for each taxonomic classification were converted to
relative abundance within each sample to account for the differences in sequencing
depth. We determined the alpha and beta diversities using R Packages, phyloseq
(v1.28.0)53 and vegan (v2.5-6). We used number of species and the Shannon Diversity
Index to estimate alpha diversity, and the Bray-Curtis dissimilarity matrix and
principal coordinates analysis (PCoA) to estimate and visualize beta diversity in the
samples. To better estimate species richness in the sample and remove likely super-
fluous low abundance taxa, all species with a relative abundance less than 0.01% for a
sample were set to zero, only for calculating number of species and the Shannon
Diversity Index. Prior to assessing beta diversity and determining significantly dif-
ferent taxa between specific pairwise comparisons (further explained in Statistical
Analysis section), taxa with low relative abundance were removed, but using an
overall filtration method that was also used for KO data. Taxa (or KOs when
applicable) that on average had a relative abundance greater than or equal to 0.01% in
any group were retained for further analysis.

Determination of functional annotation. We removed Illumina adapter
sequences and performed quality trimming using FASTP (v0.20.0)54 using default
parameters (minimum base quality: 15, max number of “N” bases in a read: 5,
polyG trimming). The resulting reads were annotated using Kraken 2 with database
consisting of RefSeq bacterial, archaeal, virus, fungi, and human50, and the reads
that were not identified as human were retained for further functional annotation.
These reads were aligned against the KEGG microbial gene database55 using
bowtie2 (v2.4.4)56 with default parameters except, secondary alignment was
omitted (--omit-sec-seq). The alignment results were concatenated to KEGG
orthologs KO using custom Perl scripts (https://doi.org/10.5281/zenodo.5171168)
and KEGG relational tables. The resulting read counts were also converted to
relative abundance prior to applying the same overall filtration done in the analysis
of bacterial composition. Any KOs with an average relative abundance of greater
than or equal to 0.01% in any one group were retained for further analysis.

Random forest method. We implemented random forest (RF) models using taxa
summarized at the genus level. We filtered for rare genera by retaining only those
taxa that are present at least 0.01% relative abundance in at least 25% of samples,
resulting in 519 distinct taxa at the genus level used in the random forest model.
We then applied centered log ratio (CLR) transform on the filtered taxa count
matrix to account for compositionality effects. To compare between geographic
locations (Kinshasa, Masi-manimba, and unaffected adolescents from two villages
in Kahemba, HPZ and LPZ), we used binary classification approach and built six
one-versus-all binary RF classifiers to classify samples from one geographic loca-
tion compared to the rest. We also built binary classifiers for classifying between
unaffected individuals from HPZ versus unaffected individuals from LPZ, konzo
individuals from HPZ versus konzo individuals from LPZ, konzo versus unaffected
individuals within HPZ and within LPZ. To build these models, we performed 10
rounds of 10-fold cross-validation (using R package caret), using accuracy as the
metric for selecting the optimal model. The performance metrics and ROC curves
were averaged across the cross-validation rounds. The ROC curves and

performance metrics showing sensitivity-specificity trade-off and classification
performance for each classifier are shown in Fig. 4a–d.

Statistical analysis. Alpha diversity measurements were determined using the
estimate richness function of the phyloseq package53. To test the statistical sig-
nificance for the difference in beta diversity (ex: Bray-Curtis Dissimilarity), PER-
MANOVA analysis using the adonis function with 99,999 permutations in R
Studio was used on relative abundance values for genus that passed our overall
filtration scheme. The initial test was done on the Bray-Curtis distance matrix for
all 180 samples, using a formula incorporating factors geography, region, disease,
age, and sex; the formula tested for each factor independently and any possible
interactions. Furthermore, the adonis function was used to analyze variance using
the Bray-Curtis dissimilarity matrix for relative abundance data for KOs as well.
The results from the specific comparisons performed were visualized as PCoA plots
using ordination. Using a Spearman Correlation, genus relative abundance was
correlated with PCoA values for the corresponding axis 1 and 2 values to determine
which bacterial genus associated with the principal coordinates. To account for
compositionality, the ALDEx2 (v1.16.0) package in R studio was used to determine
differences in taxa abundance between specific pairwise comparisons. The counts
for taxa at each taxonomic rank that were retained after filtration were tested using
default parameters for the aldex function (including mc.samples= 128, test= “t”,
denom= “all”). The aldex function takes in read counts as input and performs CLR
transformation to infer abundance prior to performing statistical testing57,58. The
expected Benjamini-Hochberg (eBH), FDR < 0.05, corrected p-value of the Wil-
coxon test was used to determine differentially abundant taxa between different
pairwise comparisons. Additionally, the Mann-Whitney-Wilcoxon (MWW) test
was done as a post-hoc test corrected for multiple testing with a Benjamini-
Hochberg correction of 0.01 FDR to determine specific differences in each of the
presented pairwise comparisons for relative abundance differences for the various
taxonomic classifications and KOs.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw FASTQ files generated from shotgun metagenomic sequencing have been
deposited in NCBI’s Sequence Read Archive (SRA) database under BioProject
PRJNA752006 for open access. OCHA Humanitarian Data Exchange’s datasets on DR
Congo-Health Zones (https://data.humdata.org/dataset/dr-congo-health-0) and
Malnutrition datasets (https://data.humdata.org/dataset/rdc-taux-de-la-malnutrition-
decembre-2019) were used to generate the map in Fig. 1 and the datasets are free
available to the public. The KEGG database (https://www.genome.jp/kegg/) was used as
reference for identifying genes present in the dataset (Fig. 6). All additional data used in
the reported findings have been made available in the Supplementary Data Files, with
specific references when relevant in the manuscript.

Code availability
The code used in this manuscript has been deposited in Zenodo from github (https://
doi.org/10.5281/zenodo.5171168). Although the code used in this manuscript is not
entirely custom and default parameters are used when utilizing the various software/
packages, any deviations from the default settings have been noted in the manuscript.

Received: 1 September 2020; Accepted: 24 August 2021;

References
1. Brewster, R. et al. Surveying gut microbiome research in Africans:

toward improved diversity and representation. Trends Microbiol. 27, 824–835
(2019).

2. Tang, M. et al. Different gut microbial profiles in sub-Saharan African and
South Asian women of childbearing age are primarily associated with dietary
intakes. Front. Microbiol. 10, 1848 (2019).

3. Schnorr, S. L. et al. Gut microbiome of the Hadza hunter-gatherers. Nat.
Commun. 5, 3654 (2014).

4. Morton, E. R. et al. Variation in rural African gut microbiota is strongly
correlated with colonization by Entamoeba and subsistence. PLoS Genet. 11,
e1005658 (2015).

5. Gomez, A. et al. Gut microbiome of coexisting BaAka Pygmies and Bantu reflects
gradients of traditional subsistence patterns. Cell Rep. 14, 2142–2153 (2016).

6. Hansen, M. E. B. et al. Population structure of human gut bacteria in a diverse
cohort from rural Tanzania and Botswana. Genome Biol. 20, 16 (2019).

7. De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a
comparative study in children from Europe and rural Africa. Proc. Natl Acad.
Sci. USA 107, 14691–14696 (2010).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25694-1 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:5371 | https://doi.org/10.1038/s41467-021-25694-1 | www.nature.com/naturecommunications 11

https://doi.org/10.5281/zenodo.5171168
http://www.ncbi.nlm.nih.gov/bioproject/752006
https://data.humdata.org/dataset/dr-congo-health-0
https://data.humdata.org/dataset/rdc-taux-de-la-malnutrition-decembre-2019
https://data.humdata.org/dataset/rdc-taux-de-la-malnutrition-decembre-2019
https://www.genome.jp/kegg/
https://doi.org/10.5281/zenodo.5171168
https://doi.org/10.5281/zenodo.5171168
www.nature.com/naturecommunications
www.nature.com/naturecommunications


8. Bonder, M. J. et al. The effect of host genetics on the gut microbiome. Nat.
Genet. 48, 1407–1412 (2016).

9. Goodrich, J. K. et al. Human genetics shape the gut microbiome. Cell 159,
789–799 (2014).

10. Goodrich, J. K. et al. Genetic determinants of the gut microbiome in UK twins.
Cell Host Microbe 19, 731–743 (2016).

11. Xu, C., Zhu, H. & Qiu, P. Aging progression of human gut microbiota. BMC
Microbiol. 19, 236 (2019).

12. Aleman, F. D. D. & Valenzano, D. R. Microbiome evolution during host aging.
PLoS Pathog. 15, e1007727 (2019).

13. Singh, R. K. et al. Influence of diet on the gut microbiome and implications for
human health. J. Transl. Med. 15, 73–73 (2017).

14. Frame, L. A., Costa, E. & Jackson, S. A. Current explorations of nutrition and
the gut microbiome: a comprehensive evaluation of the review literature. Nutr.
Rev. 78, 798–812 (2020).

15. Ley, R. E. et al. Obesity alters gut microbial ecology. Proc. Natl Acad. Sci. USA
102, 11070–11075 (2005).

16. Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2
diabetes. Nature 490, 55–60 (2012).

17. Wang, X. et al. Sodium oligomannate therapeutically remodels gut microbiota
and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit
Alzheimer’s disease progression. Cell Res. 29, 787–803 (2019).

18. Henke, M. T. et al. Ruminococcus gnavus, a member of the human gut
microbiome associated with Crohn’s disease, produces an inflammatory
polysaccharide. Proc. Natl Acad. Sci. USA 116, 12672–12677 (2019).

19. Zinöcker, M. K. & Lindseth, I. A. The Western diet-microbiome-host
interaction and its role in metabolic disease. Nutrients 10, 365 (2018).

20. Gupta, V. K., Paul, S. & Dutta, C. Geography, ethnicity or subsistence-specific
variations in human microbiome composition and diversity. Front. Microbiol.
8, 1162–1162 (2017).

21. Tomova, A. et al. The effects of vegetarian and vegan diets on gut microbiota.
Front. Nutr. 6, 47–47 (2019).

22. Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473,
174–180 (2011).

23. Martínez, I. et al. The gut microbiota of rural papua new guineans: composition,
diversity patterns, and ecological processes. Cell Rep. 11, 527–538 (2015).

24. Kashala-Abotnes, E. et al. Konzo: a distinct neurological disease associated
with food (cassava) cyanogenic poisoning. Brain Res. Bull. 145, 87–91 (2019).

25. Tshala-Katumbay, D. et al. Cassava food toxins, konzo disease, and
neurodegeneration in sub-Sahara Africans. Neurology 80, 949–951 (2013).

26. Zhu, L. et al. Potential mechanism of detoxification of cyanide compounds by
gut microbiomes of bamboo-eating pandas. mSphere 3, e00229–18 (2018).

27. Kohl, K. D. & Dearing, M. D. The woodrat gut microbiota as an experimental
system for understanding microbial metabolism of dietary toxins. Front.
Microbiol. 7, 1165–1165 (2016).

28. Kohl, K. D. et al. Gut microbes of mammalian herbivores facilitate intake of
plant toxins. Ecol. Lett. 17, 1238–1246 (2014).

29. Kashala-Abotnes, E. et al. Konzo: a distinct neurological disease associated
with food (cassava) cyanogenic poisoning. Brain Res. Bull. 145, 87–91 (2018).

30. Kashala-Abotnes, E. et al. Dietary cyanogen exposure and early child
neurodevelopment: an observational study from the Democratic Republic of
Congo. PLoS ONE 13, e0193261 (2018).

31. Okafor, N. & Ejiofor, M. A. N. The linamarase of Leuconostoc mesenteroides:
production, isolation and some properties. J. Sci. Food Agric. 36, 669–678 (1985).

32. Lei, V., Amoa-Awua, W. K. & Brimer, L. Degradation of cyanogenic glycosides
by Lactobacillus plantarum strains from spontaneous cassava fermentation and
other microorganisms. Int. J. Food Microbiol. 53, 169–184 (1999).

33. Vasconcelos, A. T. et al. Detoxification of cassava during gari preparation. Int.
J. Food Sci. Technol. 25, 198–203 (1990).

34. Giraud, E., Gosselin, L. & Raimbault, M. Degradation of cassava linamarin by
lactic acid bacteria. Biotechnol. Lett. 14, 593–598 (1992).

35. Tshala-Katumbay, D. D. et al. Cyanide and the human brain: perspectives from a
model of food (cassava) poisoning. Ann. N. Y Acad. Sci. 1378, 50–57 (2016).

36. Senghor, B. et al. Gut microbiota diversity according to dietary habits and
geographical provenance. Hum. Microb. J. 7-8, 1–9 (2018).

37. Ayeni, F. A. et al. Infant and adult gut microbiome and metabolome in rural
Bassa and urban settlers from Nigeria. Cell Rep. 23, 3056–3067 (2018).

38. Jha, A. R. et al. Gut microbiome transition across a lifestyle gradient in
Himalaya. PLoS Biol. 16, e2005396 (2018).

39. Howlett, W. P. et al. Konzo, an epidemic upper motor neuron disease studied
in Tanzania. Brain 113, 223–235 (1990).

40. Boivin, M. J. et al. Neuropsychological effects of konzo: a neuromotor disease
associated with poorly processed cassava. Pediatrics 131, e1231–e1239 (2013).

41. Pessione, E. Lactic acid bacteria contribution to gut microbiota complexity:
lights and shadows. Front. Cell. Infect. Microbiol. 2, 86 (2012).

42. Michlmayr, H. & Kneifel, W. β-Glucosidase activities of lactic acid bacteria:
mechanisms, impact on fermented food and human health. FEMS Microbiol.
Lett. 352, 1–10 (2014).

43. Majak, W. & Cheng, K.-J. Cyanogenesis in bovine rumen fluid and pure
cultures of rumen bacteria. J. Anim. Sci. 59, 784–790 (1984).

44. Majak, W. & Cheng, K. J. Hydrolysis of the cyanogenic glycosides amygdalin,
prunasin and linamarin by ruminal microorganisms. Can. J. Anim. Sci. 67,
1133–1137 (1987).

45. Cressey, P. & Reeve, J. Metabolism of cyanogenic glycosides: a review. Food
Chem. Toxicol. 125, 225–232 (2019).

46. Jaswal, V., Palanivelu, J. & Ramalingam, C. Effects of the Gut microbiota on
Amygdalin and its use as an anti-cancer therapy: substantial review on the key
components involved in altering dose efficacy and toxicity. Biochem. Biophys.
Rep. 14, 125–132 (2018).

47. Cliff, J. et al. Konzo and continuing cyanide intoxication from cassava in
Mozambique. Food Chem. Toxicol. 49, 631–635 (2011).

48. Organization, W. H. WHO Konzo, a distinct type of upper motor neuron
disease. Wkly. Epidemol. Rec. 30, 225–232 (1996).

49. Wood, D. E. & Salzberg, S. L. Kraken: ultrafast metagenomic sequence
classification using exact alignments. Genome Biol. 15, R46 (2014).

50. Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with
Kraken 2. Genome Biol. 20, 257 (2019).

51. Lu, J. et al. Bracken: estimating species abundance in metagenomics data. PeerJ
Computer Sci. 3, e104 (2017).

52. Breitwieser, F. P. & Salzberg, S. L. Pavian: interactive analysis of metagenomics
data for microbiome studies and pathogen identification. Bioinformatics 36,
1303–1304 (2020).

53. McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive
analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).

54. Chen, S. et al. fastp: an ultra-fast all-in-one FASTQ preprocessor.
Bioinformatics 34, i884–i890 (2018).

55. Kanehisa, M. et al. KEGG as a reference resource for gene and protein
annotation. Nucleic Acids Res. 44, D457–D462 (2016).

56. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat.
Methods 9, 357–359 (2012).

57. Fernandes, A. D. et al. ANOVA-like differential expression (ALDEx) analysis
for mixed population RNA-Seq. PLoS ONE 8, e67019 (2013).

58. Fernandes, A. D. et al. Unifying the analysis of high-throughput sequencing
datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective
growth experiments by compositional data analysis. Microbiome 2, 15 (2014).

Acknowledgements
We would like to thank all of the Congolese participants of this study for kindly donating
specimens for microbial analysis. We would also like to thank the funding sources for
this project, with DTK being supported by NIH grant NIEHS/FIC R01ES019841, E.V.
being supported by the A. James Clark Distinguished Professor of Molecular Genetics
Endowment and M.S.B. being supported by the Fogarty International Center of the
National Institutes of Health (NIH) under Award Number D43TW009343 and the
University of California Global Health Institute (UCGHI); The content is solely the
responsibility of the authors and does not necessarily represent the official views of the
NIH or UCGHI. We would also to acknowledge the passing of a co-author, Jean-Pierre
Banea Mayambu, a pioneer in the field of konzo, who will truly be missed.

Author contributions
M.S.B. and N.V. conceived and designed this study along with data collection, processing, and
analysis as well as manuscript preparation. A.K., S.P., A.M., R.B. and M.NA.U significantly
aided in data analysis, machine learning applications and graphic representations in this
manuscript. D.S., C.M., J.N., K.K., H.M. and P.M. aided in sample collection, consent and
questionnaires that were administered to participants of this study, as well as data analysis.
B.C., B.M., M.B., A.D., D.O., D.M.-N., R.B., D.T.-K. and E.V. provided senior guidance as well
as ethic approvals in the DRC and USA for this study, as well as providing oversight of study
design, data collection, analysis, and final manuscript preparation. Both M.S.B. and N.V.
contributed equally and have the right to list their name first when referencing this work.

Competing interests
The authors declare no competing interests.

Ethics statement
Prior to any specimen collection, community consent was first obtained from village
leaders. Informed and written consent was then obtained from the Chef de zone/Médecin
de zone, who represent the interests of the ministry of health and individuals in the study
population. Upon approval and consent by the representatives, verbal and/or written
consent was obtained from the parent and/or guardian of the children that participated
in the study. Verbal consent was obtained when there were limitations with literacy and
the individual expressed a general disinclination to signing written documents that
cannot be read and fully comprehended by them. The study posed no harm to subjects,
and participants could choose to not donate samples. The study was approved by the IRB
review board at the Oregon Health & Science University (OSHU) (IRB FWA00000161)
and from the Ministry of Health of the Democratic Republic of the Congo (DRC).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25694-1

12 NATURE COMMUNICATIONS |         (2021) 12:5371 | https://doi.org/10.1038/s41467-021-25694-1 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-25694-1.

Correspondence and requests for materials should be addressed to Desire. Tshala-
Katumbay or Eric. Vilain.

Peer review information Nature Communications thanks the anonymous reviewers for
their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25694-1 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:5371 | https://doi.org/10.1038/s41467-021-25694-1 | www.nature.com/naturecommunications 13

https://doi.org/10.1038/s41467-021-25694-1
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	The gut microbiome in konzo
	Results
	Study population description
	Overall gut microbiome characteristics
	Gut microbiome profiles and functional potential segregate across geographic locations
	Machine learning accurately distinguishes populations
	Unaffected adolescents from konzo prone villages display markedly different gut flora profiles, but not functional capacity
	Differences in the gut flora composition and potential functionality between konzo prone areas is less distinct for those stricken with the disease
	The gut bacterial profiles between unaffected and konzo-affected individuals in their respected villages are indistinguishable
	Kahemba and Masi-Manimba harbor enrichments of gut bacteria and functional potential to exacerbate or moderate the effects of cyanogenic glucoside exposure respectively

	Discussion
	Methods
	Sample collection
	DNA extraction, quantification, and sequencing
	Determination of the bacterial composition
	Determination of functional annotation
	Random forest method
	Statistical analysis

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Ethics statement
	Additional information




