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ABSTRACT OF THE DISSERTATION

Lumped Macroelement Modeling of Earth-Retaining Structures under Seismic Loading for

Nonlinear Time-History Analyses

by

Arastoo Dasmeh

Doctor of Philosophy in Civil and Environmental Engineering

University of California, Los Angeles, 2019

Professor Ertugrul Taciroglu, Chair

This dissertation addresses various engineering problems involving the seismic response mod-

eling of earth-retaining structures. These are namely, (i) lateral passive seismic behavior of

ordinary skew-angled bridge abutments, (ii) lateral passive seismic behavior of high-speed

rail transition abutments (with no skew), and finally (iii) active and passive seismic behavior

of (cantilevered) earth-retaining walls. The approach adopted for each problems is the same,

which is to devise a macroelement model with physics-based parameters (e.g., soil density,

shear strength, wall height, etc.) that captures salient response features. These models are

able to predict the lateral capacity of the retained soil and residual displacements with a

modest computational effort—as compared to, for example, predictive simulations carried

out with three-dimensional finite element models—, which renders them to be amenable for

repeated nonlinear time-history analyses required for performance-based seismic assessment

and design. The three aforementioned problems are briefly described below:

I. Presence of skew-angled abutments complicates the seismic behavior of ordinary bridges,

primary driver of which is the passive lateral resistance of the engineered backfill behind the

abutment. The eccentricity of the soil reaction relative to the bridge’s center of stiffness or

mass causes a skew bridge to rotate under seismic excitations, and a nonuniform soil pressure

distribution develops behind the abutment backwall. A distributed nonlinear spring model is

devised here to represent the lateral passive reaction of the backfill soil. To that end, a mod-
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ification factor is devised so that Log-Spiral Hyperbolic (LSH) backbone curves –which had

been developed in prior research and were validated for backfills of straight abutment–can

be used to generate the backbone curves of the said springs. This new modeling approach

is verified against three-dimensional finite element model simulations and is validated with

data from large-scale experiments conducted at Brigham Young University that had pro-

duced direct measurements of load-deformation backbone curves for several skew angles. In

the final step, the validated modified-LSH model is used in parametric studies to devise a

simple bilinear load-deformation relationship that is parameterized with respect to the back-

wall height, abutment skew angle, and the backfill soil properties. This simple relationship

is intended for routine use in the capacity-based seismic design and analysis of skew bridges.

II. California’s High-Speed Rail (HSR) System is slated to traverse nearly the entire

length of the state, and thus it will be exposed seismic risks from almost every known

major tectonic fault there. The present study deals with the seismic responses of bridge-

abutment transition backfills (BATBs), which are essential components of HSR bridges.

BATBs provide a gradual variation of vertical stiffness between the bridge deck and the

engineered backfill zone, enabling smooth operations for trains traveling at high speeds.

All prior investigations focused on this vertical stiffness in order to better characterize the

localized vertical differential movements around BATBs under periodic high axial loads from

train sets. Lateral behavior of BATBs, which are important under seismic loads, have not

been previously investigated. The present study offers a parametric nonlinear lateral force-

displacement backbone curve for BATBs that is verified against three-dimensional finite

element models and validated against data from large-scale tests conducted at Brigham

Young University. The parametric curve takes backwall height as well as abutment skew

angle into account.

III. Performance-based seismic assessment (PBSA) of earth retaining structures requires

the use of accurate yet computationally efficient analysis models. To date, limit equilibrium

models offered the most computationally efficient results, but they only produce estimates

of peak lateral seismic forces and cannot be used in nonlinear time-history analyses. While

detailed finite element models can possibly fill this need, they are not amenable for repeated
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simulations required for quantifying the uncertainties associated with estimated ground mo-

tions within the PBSA framework. A novel Lumped Impedance Model (LIM) is developed in

this study that generates as accurate solutions as detailed FE models, with trivial computa-

tional effort. The model is able to also reproduce lateral passive load-deformation backbone

curves as predicted by a state-of-the art limit equilibrium model, by its design. The com-

putational saving offered by LIM is due to lumping of mass and stiffness of the retained

soil, and the strategic placement of elastoplastic macroelements along pre-calculated active

and passive failure hyperplanes. LIM is verified against analytical solutions in frequency-

domain for linear response regimes—wherein it is shown that LIM can accurately capture

the frequency-dependent responses of the retained soil—as well as other previous studies for

inelastic conditions. LIM is also verified against detailed FEM simulations of cantilevered

retaining wall subjected to both narrow- and broadband excitations, and it is shown that

both elastic and inelastic responses of the retained soil (including residual wall displacements

and rotations) are adequately captured. Finally, a framework for PBSA of earth-retaining

structures using LIM as the predictive model is proposed and its use is demonstrated through

an example seismic assessment application wherein a fragility curve is computed.
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CHAPTER 1

A Validated Lateral Passive Capacity Model for

Skew-Angled Seat-Type Ordinary Highway Bridge

Abutments

1.1 Introduction

State-of-the-art in previous modeling of the passive lateral response of highway bridge abut-

ments can be traced back to the original work by Shamsabadi and co-workers [Shamsabadi et al., 2007]

who utilized an assumed Log-Spiral Rankine failure surface endowed with a modified stress-

strain backbone curve, which was a modified version of the model by Duncan and Chang

[Duncan and Chang, 1970]. A method of slices was then used for estimating the passive

capacity of the backfill using soil strength parameters along with soil cohesion and interface

friction angle of the wall-soil interface, which then produced lateral load-displacement data

pairs. The model was dubbed as the ”Log-Spiral (denoting the dominant shape of the soil

failure surface) Hyperbolic (denoting the shape of the stress-strain curve)” or simply the LSH

model by the authors. This work was later extended in [Shamsabadi et al., 2010] wherein

two Hyperbolic Force-Displacement (HFD) backbone curves were devised—one each for typ-

ical granular and cohesive backfill soil types—using the LSH model predictions wherein the

wall height was considered as an explicit parameter in the provided formula. More recently,

Khalili-Tehrani and co-workers [Khalili-Tehrani et al., 2016] further extended this approach

to a Generalized HFD (GHFD) model, which was parameterized using soil strength and co-

hesion as well as wall height, so that it could be used for broader range backfill characteristics

rather then only two.
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All of the aforementioned models were extensively verified and validated against both

centrifuge and large-scale field test data. While useful, these prior models are confined to

predicting the behavior of straight abutments. However, bridges with skew-angled abutments

are very common worldwide. Indeed, data from the US National Bridge Inventory indicates,

for example, that more than half of California’s nearly 25,000 bridges have skewed abutments,

with angles occasionally reaching above 60 degrees [Nojoumi, 2016, NBI, 2018]

Post-event reconnaissance reports form recent earthquakes indicate that the in-plane

rotation and subsequent unseating of the superstructure is the primary mode of damage

for this bridge type [Yashinsky et al., 2010, Kawashima et al., 2011]. The superstructure of

a skewed bridge tends to rotate away from the acute corner of the abutment due to the

eccentricity of its abutment’s passive lateral response relative to its the center of stiffness in

the horizontal plane.

As part of a pooled-fund seismic safety research program supported by the Federal High-

way Administration (FHWA) and various state departments of transportation, four large-

scale tests were carried out at Brigham Young University (BYU) to investigate the passive

lateral behavior of skewed abutments. The specimens had skew angles of 0, 15, 30 and

45 degrees and had identical and typical densely compacted backfills. The measurements

indicated that the lateral force-deformation backbone relationship has a near-hyperbolic

shape, which is similar to what is observed for non-skew abutments [Shamsabadi et al., 2007,

Shamsabadi et al., 2010]. However, there were significant reductions in both lateral stiffness

and capacity. Specifically, the measurements suggested that the entire backbone curve scales

down with increasing skew angle.

The purpose of the present effort is then to develop an appropriate model to represent the

lateral passive behavior of skew abutments using the LSH model (for a straight abutment) as

a basis. This model is then verified against prediction made with detailed three-dimensional

continuum finite element simulations validated against BYU’s large-scale tests. The vali-

dated backbone curves are ultimately packaged in the form of a fiber-based model (here

distributed nonlinear springs), which enables the analysis of backwalls that both rotate and

translate under seismic motions. The resulting model is simply referred as the Skew LSH
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(or SLSH) model henceforth.

1.2 Seismic Behavior of a Bridge with Skew-Angled Abutments

Figure 1.1: Deck rotation during a seismic Event [Shamsabadi and Rollins, 2014].

Figure 1.2: Plunging action of seat-type abutment system during a seismic event.

During a seismic event, the superstructure of a skew bridge will experience longitudinal and

transverse displacement as well as significant in-plane rotations about its vertical axis, as

shown in Figure 1.1.

As a result the bridge deck ”collides” with the abutment backwall-backfill system. The
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backwall is one of the main bridge sacrificial elements that is typically designed to disengage

during a seismic event in order to limit seismic forces transferred to the abutment foundation

which is capacity protected elements within the bridge system. The collision continues

for some time and then the rotation of the deck ensues about the centroid of the bridge

superstructure which can result in the separation of the deck at the acute corner of the

abutment.

As a result of deck rotation, the abutment backwalls tend to be pushed primarily in the

obtuse corners of the deck, causing asymmetric passive wedges to form behind the abutment

backwall. In skewed abutments, the eccentric loading of the abutment backwall can result in a

reduced mobilized soil passive capacity as compared to ordinary non-skewed abutments. The

ground heave at the far half of the backwall width in Figure 1.2 illustrates the formation of

the asymmetric passive wedge across the backwall resulting in a reduction of soil resistance

normal to the abutment backwall. For very high skew angles, the passive capacity can

significantly drop. This is a result of separation of the superstructure at the acute corners

and disintegration of the passive wedge after significant plastic ground deformation and heave

has occurred only near the obtuse corners of the deck. These findings raise the possibility

that due to unavoidable rotation, a skew abutment may develop a considerably reduced soil

resistance in comparison to a non-skewed abutment, affecting overall bridge response.

1.3 Definitions

Prior to describing the model, it is important to establish the definitions of various quantities

and terms that will appears throughout this Chapter, and elsewhere in this dissertation. It’s

particularly important for the reader to distinguish between the passive force from the total

force and transverse shear force mobilized behind the backwall. Also, realizing the differences

between different displacement-rotation scenarios is crucial, and it will be discussed later how

the SLSH model treats them differently.

The distribution of forces at the interface between a skewed bridge and the adjacent

backfill soil is illustrated in 1.3 [Burke, 1994]. The longitudinal force F can be induced
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by thermal expansion or seismic forces. For static or simplified pseudo-static analyses, the

components of the longitudinal force normal and transverse to the abutment must be resisted

by the passive force FN normal to the abutment backwall and the shear resistance FT on

the backwall.

Figure 1.3: Longitudinal component FN resisted by passive force and transverse component
FT resisted by shear resistance

As it will be discussed later, rotation adds more complexity to this problem, therefore

the problem of skew abutments is categorized into two subcategories based on the pres-

ence/absence of the rotation. The simpler case happens when the rotation degree of free-

dom is fixed, henceforth called the pure/straight push. Any rotating wall scenarios fall into

displacement-rotation push category which is divided to displacement-rotation. In this study

we just consider the case that the rotation increases linearly with displacement.

1.4 Log-Spiral Hyperbolic Model for a Straight Abutment

The Skew Log-Spiral Hyperbolic model presented in this chapter is essentially an extension

of LSH model [Shamsabadi et al., 2007] that incorporates effects of skew. The LSH model

employs a limit equilibrium approach, and by assuming log-spiral failure surfaces and using

modified hyperbolic soil stress-strain behavior, predicts the mobilized passive force behind

the backwall due to normal displacement.

5



[Shamsabadi et al., 2007] also calibrated a hyperbolic force-displacement (HFD) equation

that replicates results of LSH model for abutments with 1.67 m height with engineered

backfill using experimental data. [Shamsabadi et al., 2017] proposed a generalized HFD to

estimate nonlinear abutment-backfill force-displacement relationship as shown in equations

1.1 to 1.7.

F (y) =
Cy

1 +Dy
, where (1.1)

(1.2)

C = 2K50 −
Fult
ymax

(1.3)

(1.4)

D = 2
(K50

Fult
− 1

ymax

)
(1.5)

Figure 1.4: a) pure/straight push, b) displacement-rotation push
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Fult =
βH2.5

1 + ζH
(1.6)

K50 = ψH + µ (1.7)

where ymax = 0.05H and β, ζ, > ψ and µ are constant coefficients that are listed in table 1.1

for US customary units and metric units.

Table 1.1: Constants and units in US Customary and Metric systems

Contant US Customary Units Metric Units
β 5.5 1565.6
ζ 2.09 6.86
ψ 5.5 10372
µ 20 11496

Parameter US Customary Units Metric Units
F, Fult kip/ft kN/m

K50 kip/inch/ft kN/m/m
H ft m

y, ymax inch m

1.5 Finite Element Simulations

We use nonlinear 3D finite element model (Plaxis 3D) to Figure verify our SLSH model.

FEM model has been calibrated against full-scale non-skew abutment experiment carried

out by researchers at UCLA as part of seismic safety research fund supported by Caltrans

[Shamsabadi et al., 2007]. The objective of the experiment was to extract force-displacement

data for an abutment with 4.6 m width and 1.67 m height with a granular backfill with 95%

compaction ratio. The backfill retained within two wingwalls and interior surfaces had been

covered with plastic sheets to minimize the soil-wingwall interface friction. The backwall was

pushed horizontally between two wingwalls without any vertical movement and rotation.

We employed hardening soil model to simulate UCLA full-scale abutment backwall test

in Plaxis 3D. This model is an extension of the hyperbolic model originally proposed by
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Duncan and Cheng (1970). Among the unique capabilities of this soil model, one might

mention featuring a yield cap and soil dilatancy effects.

Figure 1.5: Abutment-backfill stress strain model [Shamsabadi et al., 2007].

The hyperbolic shape of the stress-strain curve is depicted in Figure 1.5. Rf denotes

the ratio of the stress at failure qf and the asymptote of the curve qu. φ stands for soil

friction angle and Rint is ratio of the tangent of interface friction angle (tan(δ)) over soil

internal friction angle tan(φ). The loading stiffness is denoted by E50 and the unloading

stiffness is denoted by Eur. Dialating angle is chosen to be ψ = φ− 30 per recommendation

of [Vermeer and Brinkgreve, 1998]. Results of Plaxis 3D is plotted against the UCLA test

data in Figure 1.6.

Table 1.2: Soil properties used for simulation of UCLA and BYU test in Plaxis.

Test Unit
Weight
γ
(KN/m3)

Friction
Angle
φ

Cohesion
c

Wall
Friction
δ (deg)

Elasticity
E50

(kPa)

Unloading
Elasticity
Eur (kPa)

Failure
Ratio Rf

Poisson’s
Ratio ν

UCLA 20 40 14 20 6e4 1.3e5 0.97 0.3
BYU 20 41 8 31 6e4 1.3e5 0.97 0.3

Following our calibrated FE simulations against UCLA test data, we created a set of

skew-abutment simulations by modifying our simulation to match material properties and
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Figure 1.6: Validation of Plaxis 3D simulations agains UCLA test data.

backwall geometry of the BYU test. The material property used in our simulations are listed

in table 1.2 ([Marsh, 2013]). Backwall dimensions are listed in table 1.3. We also simulated

a 60o skew abutment with the same material properties and same bridge deck width (3.35

meters). Force per unit width of these skew abutments had been calculated Plaxis 3D FE

simulations and are plotted against the displacement in Figure 1.7.

Table 1.3: Backwall width in BYU and UCLA full scale experiments.

Test Backwall Width (m)
BYU 0-skew 3.3
BYU 15-skew 3.5
BYU 30-skew 3.9
BYU 45-skew 4.7
UCLA 0-skew 4.6

An important result of these simulations the exponential decay of the ultimate passive

force with respect the to skew angle. Figure 1.8 shows the normalized ultimate passive force.

We performed a regression optimization to fit a function of the form R = e−aθ. Figure

The 95% confidence intervals is a = [0.014, 0.022]. We have plotted the 95% confidence

interval internal for the reduction factor in Figure 1.8. The reduction factor proposed by
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Figure 1.7: Passive force-displacement curves for per unit width of the wall obtained for
straight and 15, 30, 45 and 60 degrees skew abutments.

[Shamsabadi and Rollins, 2014] R = e−θ/45 is sandwiched between boundaries of this interval

. We conclude that the proposed reduction factor is a legitimate factor and we construct our

SLSH model based on it.

Figure 1.8: Reduction ratio of the passive force.

Figure 1.9 shows a verification for the exponential reduction factor R. The backwall width
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in 45o-skew abutment test at BYU is 4.72 m wide. Although, the backwall in the UCLA test

is 4.57 m wide, the assumption that backwall in both test have same length is acceptable due

to slight extension of the embankment by sides of the backwall. Furthermore, as shown in

table 1.2 the backfill material in UCLA and BYU are relatively similar. Therefore, as shown

in Figure 1.9 reducing the force-displacement curve governing the UCLA test by factor of

R = e−θ/45 reproduces the that of the 45o-skew BYU test.

Figure 1.9: non-skew (UCLA) and 45o-skew (BYU) 15.5 ft backwall with engineered backfill.

1.6 Skew LSH Model

In the analysis of the backfill-backwall interaction problem under backwall horizontal dis-

placement and rotation, the behavior of abutment backfill, especially undergoing asymmetric

horizontal displacement, is one of the most important phenomena, which needs to be well

understood. The magnitude of the mobilized strength of the backfill material can be related

to the magnitude of shear strain within the backfill. The mobilized shear strength and shear

strains varies across the backwall as a function of backwall displacements and rotations.

A common method of analyzing abutment response to applied lateral load is through
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finite element modeling of the backfill-backwall system using a series of uniform nonlinear

spring elements along the width of the backwall to model the lateral backfill reaction. Cur-

rent design practices model the behavior of these spring elements using predefined lumped

Hyperbolic Force Displacement (HFD) curves that provide a relationship between the back-

fill reaction and lateral backwall displacement. However, HFD curves have been developed

based experimental and analytical studies for non-skewed abutments. The lumped HFD

curves do not consider variation of nonlinear backfill springs as a function of deck rotation

and displacements.

[Sandford and Elgaaly, 1993] mounted pressure cells on a 20 degree skewed monolithic

abutment backwall to measure the effects of the skew angle on the soil pressure distribution

on the backwall due to deck rotation caused by thermal expansion for a period of 33 months.

The deck rotation resulted in larger stress and strain at the obtuse corner than at the acute

corner. Hence the greater movement at the obtuse corner caused significant pressure and

permanent deformation on the backfill at the obtuse corner than on the acute corner. They

recommended trapezoidal pressure distribution equivalent to Rankine passive earth pressure

at the obtuse corner and Rankine active earth pressure at acute corner of the abutment shall

be used for the design of the abutment (figure 1.10(b)).

Figure 1.10: Abutment backfill pressure distribution (a) e = 0, (b) e < w
6
, (c) e = w

6
, (d)

e > w
6
.
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In SLSH model, soil domain is assumed to be limited within wingwalls. Therefore, in

our verification FE simulations, we modeled the backfill with no side embankment. As it

will be discussed later in SLSH verification section, the side embankment may have sig-

nificant contribution in total mobilized passive force behind the backwall. To account for

this contribution we calibrate the SLSH model with a factor, henceforth called 3D-factor

[Ovesen and Stromann, 1972].

In spite of the simplicity of this pushing scenario, it is really important to investigate the

behavior of the skew abutments under it since it forms the basis of the SLSH model for other

pushing scenarios. In fact, the SLSH is based on developing fiber backbone curves based on

straight push scenario, and modifying them for other displacement-rotation scenarios and

finally adding up the fiber forces to obtain passive force for the whole backwall.

Developing fiber backbone curves requires knowledge of the total passive force mobilized

behind the backwall and the way the force is distributed. Using the reduction factor R

proposed by the [Shamsabadi and Rollins, 2014], one can obtain force behind the skew-

abutment (Fθ) using equations 1.8 and 1.9:

R(θ) = e−θ/45 (1.8)

Fθ = R(θ)× Fo (1.9)

For a given displacement, one can read total passive force F from backbone curve ex-

tracted in equations 1.8 and 1.9. Assuming a trapezoidal distribution (figure 1.10) of pressure

behind the backwall, given total force and eccentricity, using geometric properties of trape-
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zoid one can obtain equivalent fiber backbone curves as below:

fmax =
F

W

( 6e

W
+ 1
)

(1.10)

fmin =
2F

W
− fmax (1.11)

fi =
fmax − fmin

W

(
xi +

W

2

)
+ fmin (1.12)

Fi = fi ×Wi (1.13)

where fi, Fi and F stand for average force per unit width of fiber i, total force behind

fiber i and total force behind the backwall, respectively. W is width of the backwall while Wi

is width of ith fiber. Figure 1.11 schematically explains the concept of fiber backbone curves

under straight push scenario. Figure ?? proves accuracy of our SLSH model comparing that

with Plaxis 3D FE simulation under straight push scenario.

Figure 1.11: Fiber backbone curves for the straight push scenario.

The reduction factor proposed by [Shamsabadi and Rollins, 2014] can be incorporated

in the hyperbolic equation 1.1 for estimating the mobilized passive force behind θ-skew

abutment under a pure push scenario. In other words, For purpose of a pure push, one can

expedite calculations by replacing the LSH algorithm with the simplified hyperbolic equation

1.14. Figure 1.12 shows the verification of LSH and extended hyperbolic equation against
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Plaxis 3D simulations.

F (y) =
Cy

1 +Dy
e−θ/45 (1.14)

Figure 1.12: Verification of SLSH and skew hyperbolic equation against Plaxis 3D simulation
results for the straight push scenario.

Fiber backbone curves developed for the straight push scenario will be modified based

on the displacement that each fiber experiences during the pushing procedure. Since the

rotation about any point can be explained in terms of a superposition of a displacement and

a rotation about the center of the wall, we narrow our study down to scenarios involving

rotations about the center.

Our FE simulations show a reduction of capacity in weaker fibers due to the rotation.

The reduction of the force developed behind a fiber is proportional to the ratio of the fiber

displacement at a displacement-rotation scenario over displacement at the pure push scenario

to power n. The power n has been calibrated against FE simulations with reasonable match.

During a seismic event, the superstructure of a skew bridge will experience longitudinal

and transverse displacement as well as significant in-plane rotations about its vertical axis,

as shown in Figure 1.

We assume that the rotated skew abutment reaches to its ultimate passive capacity
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when the middle fiber is displaced by the maximum displacement of the straight push case,

roughly ∆ult = 0.05H. At this ultimate condition, rest of fibers either exceed the ultimate

displacement ∆ult or never reach to the ultimate displacement. For those fibers that their

maximum displacement max(∆i) are larger than ∆ult, tail of corresponding backbone curve

extends by a straight line since they already reached their maximum capacity. However, for

those the max(∆i) is less than ∆ult, corresponding backbone curve is cut at the max(∆i).

Furthermore, the stiffness of of these fibers should be reduced by ratio of max(∆i) over ∆ult.

Figure 1.13 describes the method and concisely it can be formulated as below.


max(Fi) = max(Fi)st max(∆i) > ∆ult

Fi(∆) = (max(∆i)
∆ult

)0.2Fist(∆) max(∆i) < ∆ult

where max(Fi)st stands for maximum force of ith fiber under straight push condition and

Figure 1.13: Fiber backbone curves for the combined displacement-rotation scenario.

Fist(∆) is corresponding backbone curve under straight push condition. If at any point

during loading, a fiber detaches from the soil, the effective width of the backwall should be

reduced as shown in Figure 1.10. In other words, the force mobilized in the fiber is zero

(equation 1.15). Figure 1.13 illustrates the mechanism of the SLSH in presence of rotation
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and the flowchart in Figure 1.15 summarizes the method.

∆i < 0 ⇒ Fi(∆i) = 0 (1.15)

Figure 1.14: Verification of SLSH against Plaxis 3D simulations for displacement-rotation
scenarios.

Figure 1.15: Fiber SLSH algorithm.
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1.7 BYU Experiments and Model Validation

A series of full-scale static load tests were performed at BYU on an 3.35 m wide deck and 1.68

m tall skewed abutment with various angles as shown in Figure 1.17a (Marsh et al, 2013).

The tests were designed to differentiate the nonlinear resistance of the bridge abutment for

identical backfill but with four different skew angles namely, 0, 15, 30, and 45 degrees. The

backfill materials for all tests were identical, and were compacted to approximately 96% of

modified Proctor density per [ASTMD1557, 2012].

The inherent difference of UCLA full-scale experiment with the large scale experiment

performed in BYU is the configuration of the backfill. The backfill soil is restrained between

two plywood (figure 1.16a) and the interface of the plywoods and soil had been lubricated by

placing in a plastic sheet to avoid contribution of lateral plywood walls in the total mobilized

force. While in the BYU test the backfill is extended by 1.52 m from edges of the backwall

(figure 1.17a). The extended embankment in BYU test contributes to the resistance against

the longitudinal force imposed to the backwall. A 3D factor ([Shamsabadi et al., 2007],

[Ovesen and Stromann, 1972]) has been applied to SLSH and Plaxis 3D to account for the

contribution of embankment extended by the sides of the backwall.

Back calculated 3D-factors are shown on validation plots (figure 1.18). The reducing

trend of 3D-factors as the skew grows implies the reduction of the contribution of the part of

the backfill that is located on the opposite side of the skewness. Results of SLSH and HFD

are presented in Figure 1.18.The minor difference of results in these figures can be translated

to unideal soil model, uncertainty in soil properties measurement, unavoidable experimental

imperfections and errors due to numerical approximations.
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(a) Schematic representation of the UCLA full-
scale abutment test configuration.

(b) Excavation of native soil to be substituted
with the engineered backfill, UCLA experiment.

Figure 1.16: UCLA Experiment Configuration.

(a) Schematic representation of the BYU large-scale skew abutment
test configuration.

(b) BYU large-scale skew abutment field test.

Figure 1.17: BYU Experiment Configuration.
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Figure 1.18: Validation of SLSH and skew hyperbolic force-displacement equations 1.14
against BYU experimental data.

1.8 Recommendations for Implementation of SLSH in a Seismic

Design Code

Seismic Design Criteria [Caltrans, 2013] employs a simplified bilinear force-displacement re-

lationship for design of non-skew abutment backwall. The bilinear force-displacement curve

comprises an elastic segment with stiffness K and a horizontal segment representing equiva-

lent bilinear ultimate passive capacity Fbil. To derive an equivalent bilinear model, assuming

stiffness equals to K50 of the HFD model, Fbin is calibrated such that the mobilized poten-

tial energies behind the backwall have the minimum difference using two methods. In other

words, the area below the HFD curve and the equivalent bilinear curve are equal.

The calibration process begins with assuming a general form for Fbil with unknown pa-

rameter ξbil (equation 1.16) which are later determined through an optimization. In this

study, for a set of two hundred backwalls with heights varying from the potential energy

is calculated using HFD. Then a nonlinear regression is performed to determine α. The

regression analysis concluded that with 95% level of significance the value ξbil equals 2.37 for

US customary units and 7.78 for metric units. Figure 1.20 shows potential energy calculated

by the calibrated equivalent bilinear against the one calculated by HFD. For case of skew
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abutments the reduction factor R remains valid. Figure 1.21 comparatively depicts HFD

and bilinear estimations against experimental data.

Fblin =
βH2.5

1 + ξbliH
(1.16)

Figure 1.19: Bilinear force-displacement relationship.

Figure 1.20: The potential energy calculated by the calibrated bilinear model and HFD
model.
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Figure 1.21: Comparison of equivalent bilinear force-displacement and HFD models with
UCLA and BYU test data.

1.9 Conclusions and Recommended Future Work

Optimal design and analysis of bridges with skew abutments can always be a challenge due

to the complex behavior of backwall-backfill interactions. Our SLSH model and the skew

hyperbolic equation facilitates the so called optimal design. These models had been verified

against Plaxis 3D FEM simulations as well as full-scale experiments performed at UCLA

and BYU.

The SHFD is an extension of the HFD equation proposed by [Shamsabadi et al., 2007].

This is a simple equation that estimates the passive force mobilized behind the unit width

of the skew backwall under the straight push scenario. The SHFD has been verified against

SLSH and Plaxis 3D simulations and validated agains the large-scale experiment performed

in BYU.

Conventional LSH forms the basis of SLSH model which is capable of estimating the

behavior of backwall-backfill interactions as a function of displacement and rotation. The

objective is to develop the distributed soil springs along the length of the abutment backwall.

Our SLSH, FEM simulations and experimental data shows the exponential decay of
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the nonlinear abutment backbone curve as a function of skew angle. The reduction factor

R = e−θ/45 originally obtained based on BYU experimental data lies between boundaries

of 95% confidence interval of reduction factor calculated from FEM simulation results. In

other words, both finite element and large-scale experiment show that e−θ/45 is a reasonable

reduction factor.
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CHAPTER 2

A Validated Lateral Passive Capacity Model for

High-Speed Rail Transition Zone Abutments

2.1 Introduction

The California High-Speed Rail (CAHSR) system is being planned to connect major cities

of the state of the state (CAHSR, 2018), which renders it to be exposed to all major seismic

faults of the state (Field et al., 2018). The seismic performance criteria for HSR bridges

are different from highway bridge structures. CAHSR design criteria stipulates the seismic

design of all HSR bridges to be based on Operating Base Earthquake (OBE) and Maximum

Considered Earthquake (MCE) ground motions with 50-year, and 950 year return periods,

respectively (CASHR, 2013). Three levels of seismic performance criteria govern the designs.

The Operability Performance Level (OPL), Repairable Performance Level (RPL), and No

Collapse Performance Level (NCL). Both RPL and NCL are evaluated with respect to the

MCE. For HSR bridges at the OPL performance level, abutment response is required be ”es-

sentially elastic (see 11.7.5.1, CASHR, 2013)” and, the displacement levels are required to

comply with the OBE limits. Therefore, for the OBE performance requirements, the initial

lateral stiffness of the abutment-backfill plays a significant role in the seismic design and anal-

ysis of HSR bridges. It is useful to note here that HSR stipulations are different than those

for highway bridges, for which a simple idealized bilinear backbone curve is used for seismic

design and analysis (Caltrans, 2013). Per CAHSR (2013) design criteria, bridge-abutment

transition backfills (BATBs) should be designed to provide a gradual stiffness transition

from the bridge deck to the abutment backfill in order to minimize the differential vertical

movements between the bridge deck and the abutment due to a traveling train load. A
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conventional BATB consists of cement-treated aggregate (CTA) and unbounded compacted

aggregate as shown in Figure 2.1. Although passive force-deflection relationships are avail-

able for conventional compacted backfill materials (Rollins and Cole 2006; Shamsabadi et

al., 2007; Shamsabadi et al., 2010; Khalili-Tehrani et al., 2016), neither numerical/analytical

nor experimental studies have been carried out to characterize the passive force-deflection

behavior of HSR bridge-abutment transition zones.

Figure 2.1: California high-speed rail bridge abutment transition backfill configuration.

In the present study a new nonlinear force-displacement backbone curve is proposed

based on the experiments performed at Brigham Young University (BYU) on large-scale

HSR abutment models. The proposed model shares the same mathematical form –namely a

Hyperbolic Force-Displacement (HFD) relationship–as the model previously proposed by the

authors for highway bridge abutments with conventional engineered backfill materials (see,

e.g., Shamsabadi et al. 2018), but with different parameter values that optimally capture

HSR abutment behavior observed in BYU’s tests. In the following sections, the setup and

measurements form BYUs large-scale tests are provided first. Next, material and load-

deformation data from the tests are used for developing detailed three-dimensional nonlinear

finite element models that can capture the responses measured during the tests. Finally,

both the test data and the simulations with finite element models are used for calibrating

a parametric hyperbolic lateral force-displacement backbone curve that is appropriate for

HSR bridge-abutment transition zones.
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Figure 2.2: Schematic plan and profile of the typical test configuration.

2.2 Large-Scale Tests on Transition Backfills

Lateral passive force-deflection relationships were measured during a series of full-scale bridge

abutment tests with skew angles of 0o, 30o, and 45o at a test site located near the Salt Lake

International Airport (Figure 2.2 A). As shown in Figure 2B and Figure 2C, the backfill

geometry consisted of a zone of CTA backfill (Zone 1) behind an abutment backwall with

skew angle θ, followed by a zone of compacted gravel (Zone 2) that stood next to the native

soil of the test site (Zone 3). This bridge-abutment transition configuration and backfill

materials are in general accordance with the typical section specified in the CAHSR design

criteria document (CASHR, 2013).
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2.2.1 Test Setup

A reinforced concrete 11ft-wide, 5.5ft-high, and 15ft-long (3.4 m × 1.7 m × 4.6 m) pile cap

was used to simulate a bridge abutment backwall. North of the pile cap, an 11ft-wide, 6ft-

high, and 32ft-long (3.4 m × 1.8 m × 9.8 m) trench was backfilled to simulate the designed

embankment as shown in Figure 2.3A and Figure 2.3B. The embankment comprised one

zone of CTA and one of gravel. The CTA was placed and compacted against the pile cap

and extending 10 ft (3.0 m) from the pile cap at the embankment surface, then sloping

downward with a 1H to 1V slope away from the pile cap. North of the CTA, a zone of ”Type

3” gravel was placed with a base width of 10 ft (3.0 m), which was compacted against a 1H

to 1V slope of gravel that was already in place. Plywood and double-layer lubricate plastic

sheeting were used to line the concrete block sidewalls to the east and west of the backfill

zone, as shown in Figure 2.3A, in order to minimize side friction so that a typical segment

of wide-approach fills was represented in each test. The backfill Zone 1 of CTA and Zone 2

of gravel are shown in Figure 2.3B and Figure 2.3C. The extent of the passive wedge failure

beyond Zone 2 during one of the tests is shown in Figure 3D.

2.2.2 Particle Size Analysis

Backfill materials were tested in compliance with the CAHSR design criteria specifications for

particle-size distribution. Type 2 and Type 3 gravel backfills were needed for the transition

zone. Figure 2.4 displays the particle-size distribution of the material selected for the Type

2 (CTA) backfill plotted in a solid green line, with the upper and lower bound ranges for

acceptable particle-size distribution plotted with dashed lines. Figure 2.5 provides a similar

plot for the specially blended material used as Type 3 (gravel) backfill and the corresponding

specified range plotted with dashed lines. In both cases, the backfill gradations fall within

the specified boundaries.
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Figure 2.3: Various stages of construction and testing.

2.2.3 Moisture-Density Relationships

For both backfill material types, tests were performed to determine the modified Proctor

moisture-density relationship (ASTM D1557). Testing on the CTA was performed at the

specified cement content of 3% by mass. The maximum dry density for the Type 2 (CTA)

backfill was 138 lbs/ft3 with an optimum moisture content of 6.5%, while the maxim dry

density for the Type 3 (gravel) 135 lbs/ft3 with an optimum moisture content of 6.5%.

2.2.4 Test Results

Two 600-kip actuators were installed to push the pile cap until passive failure of the backfill

in all three tests (see, e.g., Figure 2.3D). Figure 2.8 displays the combined plot of the normal

component of the longitudinal force-displacement curves for the three skew angles. The data

indicate that the capacity drops with increasing skew angle (from 0o to 30o to 45o), which

is a trend that is similar to what was observed for conventional skew highway abutments

(Shamsabadi et al., 2018).
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Figure 2.4: Type 2 specification and particle-size analysis of the selected material.

2.3 Finite Element Modeling and Parametric Studies

Detailed three-dimensional finite element (FE) models of the tests were developed and simu-

lations were performed to achieve a more in-depth understanding of the interactions among

the backwall and the transition backfill materials. The FE models were created using Plaxis

3D, which is a well-known geotechnical engineering software. Figure 2.6 displays the generic

configuration of these finite element models. Each model includes a rigid surface, repre-

senting the backwall, and three soil bodies representing the cemented gravel, gravel, and

the bottom native soil. PLAXIS’ interface modeling features (i.e., frictional contact) were

utilized by specifying a reduced wall interface friction angle compared to the soil internal

friction (Rinter=0.8). The interface of the cemented treated material and the gravel is also

modeled using the same feature with the interface reduction parameter Rinter= 0.78. In each

simulation, a displacement equivalent to 0.04H–with H denoting the height of the backwall–

was prescribed to the rigid wall. All other outer boundaries were fixed in their perpendicular
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Figure 2.5: Type 3 specification and particle-size analysis of the selected material.

directions, but were allowed to slide (no friction) within the boundary planes–i.e. ”Teflon”

boundaries were used.

The ”hardening-soil model” of Plaxis (2018) was employed to model the cement-treated

gravel and the gravel material with using the parameter values given in Table 2.1. The

densities of materials were specified per the experiment report (Schwicht, 2018), and other

parameters were set within the typical ranges of properties reported by Obrzud and Truty

(2018). In the hardening soil model, the values of Eref
50 , Eref

oed , and Eref
ur determine the

stiffness behavior of the soil. Eref
50 is the reference modulus corresponding to the reference

confining pressure, Eref
oed is the oedometer loading modulus, and Eref

ur is the reference Young’s

modulus for unloading and reloading, as shown in Figure 2.7. The depth-varying cohesion

c(z) for this model is defined using parameters c
′

ref , c
′
inc, and zref as in
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Figure 2.6: TA schematic of the three-dimensional finite element model domains.

c(z) = c′ref + (zref − z)c′inc (2.1)

Force-displacement curves obtained from our finite element simulations were generally in

good agreement with the those obtained from the tests, as shown in Figure 2.8. Although

there are no test data for 15o and 60o skew angles, these two skew angle cases were simulated

with FE models whose parameters were iteratively calibrated to match the data from 0o,

30o, and 45o skew tests. These additional simulations provided additional data points to

calibrate the simplified backbone curve model later. In addition to providing a more refined

look at the capacity and initial stiffness reductions due to increasing skew angle, the FE

simulations also showed that a log-spiral shaped passive soil wedge was mobilized in the gravel

backfill, which matched observations made in prior tests on pile caps reacting against soils

(Rollins and Cole, 2006), and abutments reacting against conventional highway abutment

backfills (Shamsabadi et al., 2010). Figure 2.9 displays the incremental deviatoric shear strain

contours, which illuminates the log-spiral shape of the passive wedge forming in the gravel

region. The deformed shape of the finite element mesh, shown in Figure 2.10, indicates that

significant strains are confined to the gravel region wherein a significant heave takes place.
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Figure 2.7: The stress-strain relationship of the hardening soil model.

The displacement contour in Figure 2.11 highlights the near-rigid motion of the cemented

backfill wedge. These simulations results are in agreement with field observations (see 3.4.1,

Schwicht, 2018).

2.4 A Hyperbolic Force-Displacement Backbone Curve

Shamsabadi et al. (2007) had proposed a closed-form hyperbolic force-displacement (HFD)

relationship to model the backbone curves for highway bridge abutments. Shamsabadi et

al. (2007) found that, for highway bridges abutments with a typical granular backfill of

minimum of 95% compaction, the ultimate passive capacity of the abutment-backfill system

is reached at a displacement that is approximately τhwy = 5% of the backwall height H. The

original HFD formulation was later modified to accommodate the effects of backwall height

by Shamsabadi et al. (2010). The HFD formula was further extended to incorporate the

effects of skew angle on capacity and stiffness reductions by Shamsabadi et al. (2018) using

an exponential reduction factor R(θ). The latest formulation was dubbed SHFD, wherein
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Table 2.1: Soil Parameters.

 9 

 
Figure 7. The stress-strain relationship of the hardening soil model. 

Table 1. Soil Parameters. 

Gravel Hardening Soil Parameters 
Property Metric US Customary 

Density, ! 22.6 kN/m3 0.144 kcf 
%&'()* 384 MPa 8,000 ksf 
%,)-()* 192 MPa 4,000 ksf 
%.(()* 1152 MPa 24,000 ksf 
/()*0  12 kPa 0.25	ksf 

/6780  (avg.) 12 kPa 0.25	ksf 
9()* 1.67 m 5.5 ft 
: 41= 41= 
> 11= 11= 

?67@)( 0.78 0.78 
Cement Treated Gravel Hardening Soil Parameters 

Density, ! 23.1 kN/m 0.147 kcf 
%&'()* 720 MPa 15,000 ksf 
%,)-()* 720 MPa 15,000 ksf 
%.(()* 2160 MPa 45,000 ksf 
/()*0  48 kPa 1 ksf 

/6780  (avg.) 0.0389 MPa/m 0.25 ksf/ft 
9()* 1.67 m 5.5 ft 
: 41= 41= 
> 11= 11= 

?67@)( 0.8 0.8 

”S” stands in for ”skew.”

The primary parameters of the SHFD formulation?which is completely defined through

Eqs. 2.2 through 2.8 below are stiffness at 50% of capacity (K50), the ultimate passive

capacity of the abutment-backfill system (Fult), and the ultimate displacement when the

passive capacity is reached (ymax), as shown in Figure 2.12.
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Figure 2.8: Force-displacement curves obtained by finite element simulations versus large-
scale test data.

F (y) =
Cy

(1 +Dy)
R?(θ) (2.2)

C = 2K50 −
Fult
ymax

(2.3)

D = 2(
K50

Fult
− 1

ymax
) (2.4)

Fult =
(βH2.5)

(1 + ξH)
(2.5)

K50 = (ψH + µ) (2.6)

R(θ) = exp(−θ/η) (2.7)

ymax = τH (2.8)

In the equations above, F is the passive lateral abutment reaction force, and y is the
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Figure 2.9: Incremental deviatoric shear strain contour indicates that a passive soil wedge is
mobilized in the gravel region of the transition backfill.

lateral bridge deck displacement at the abutment. The parameters K50 and Fult are functions

of height of the backwall (H) and the backfill material properties, which are represented by β,

ξ, ψ, and µ. Shamsabadi et al. (2018) back-calculated the values of these material dependent

constants from test data and results from simulations with validated finite element models

for highway bridge abutments with engineered backfill materials with 95% compaction ratio.

In order to use the same formulation for HSR transition abutments, all of the parameters

of the original SHPD need to be recalibrated, which is possible by using BYU’s test data

as well as simulation results from the validated FE model described in the previous section.

We first focus on parameter ?, which controls how rapidly the lateral backbone curve decays

with respect to skew angle (see, Eq. 2.7). For typical engineered backfills of highway bridges

with 95% compaction ratio, the value of this parameter is η = 45. (Shamsabadi et al., 2018).

For HSR abutments with transition backfill materials, the reduction in capacity at different

displacement levels for each skew angle (here, 0o, 15o, 30o, 45o, 60o) are obtained using the
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Figure 2.10: The deformed shape of the transition backfill due to a passive displacement of
the backwall wherein a significant heave is observed in the gravel backfill.

finite-element simulations as well as BYU test data. Figure 2.13 displays a scatter plot of

these reduction ratios. For the sake of simplicity and to retain the same functional form (i.e.,

exponential) of the original SHFD formulation, we opt here to use the following formula for

R(θ):

R(θ) =


exp(−θ/150) 0 < θ ≤ 30o

1.8 exp(−θ/38)), 30o < θ ≤ 45o

exp(−θ/75), θ > 45o

(2.9)

The reduction ratio R(θ) is also plotted in Figure 2.13 where it can be seen that the

agreement between this ratio and reductions observed in BYU tests (0o, 30o, 45o) as well as

reductions predicted by FE simulations (15o, 30o, 45o, 60o) are generally in good agreement.

Scattered points shows reduction ratio at different displacements for a given skew angle. The
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Figure 2.11: Displacement contour plot. The near-uniform warm colors in the cemented
backfill region suggests that it moves almost rigidly.

sizes of symbols for a given skew angle increase as the displacement increases. R(θ) is chosen

such that it provides a good estimation of the passive capacity at the ultimate displacement.

The same figure also includes the skew reduction ratio used for conventional highway bridges

for comparison (Caltrans SDC, 2018).

After settling the reduction ratio, it is now possible to determine the optimal values of the

SHFD parameters for the HSR application by utilizing the BYU test data. For this purpose,

we first construct a cost function and minimize it with respect to the model parameters ξ,ψ,

µ and κ, as in

min
β,ξ,ψ,µ,κ,λ

||FBY U(ȳ)− FSHFD(ȳ, β, ξ, ψ, µ, κ)|| (2.10)

where ȳ is the array of measured displacements during the tests, and FBY U and FSHFD

respectively denote the normal components of the experimental passive force and the force

predicted by the SHFD model as shown in Figure 2.14.

39



Figure 2.12: The Hyperbolic Force-Displacement (HFD) relationship used by Shamsabadi
et al. (2018).

The optimal values of this nonlinear least-squares minimization problem are presented in

Table 2.2, and the resulting SHFD model’s force-displacement backbone curves are presented

along the with BYU data in Figure 2.15. It can be seen that the calibrated SHFD model

mimic the test data quite well. It is useful to note there that this figure also contains data

from a second 45o skew BYU test that was not used in calibrating the SHFD model above,

which indicates that the test data are reliable/repeatable, and partially validates the SHFD

model for HSR bridge-abutment transition zone applications.

Table 2.2: Optimized parameters of HFD equation for HSR transition abutments.
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Figure 2.13: Reduction Factor scatter plots represent the reductions factors at different
displacements.

Figure 2.14: Normal (FN) and transverse (FT ) actuator thrust components resisted by the
backfill passive reaction.
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Figure 2.15: Optimized SHFD equation and the force-displacement data measured in BYU’s
large-scale tests.

2.5 Practical Implications

The current HSR bridge design employs bilinear elastic-perfectly plastic force-displacement

relationships proposed by Caltrans Seismic Design Criteria (SDC 2.0). This formulation

has been originally developed by Shamsabadi et al. (2018) for highway bridges with typical

engineered backfill material. The use of SDC formulation results in underestimations of

both stiffness and passive capacity. This issue has been discussed in the following example

involving an HSR bridge abutment with 3.35 m (11 ft) height and 13.1 m (43 ft) width

(Figure 2.16).

Following the current Caltrans SDC, the passive capacity and stiffness for the elastic-

perfectly-plastic force displacement backbone (shown in Figure 2.1) for this HSR abutment

would be predicted using
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Figure 2.16: An example HSR bridge section.

F SDC
ult =

5.5H2.5

1 + 2.37H
W R(θ) (2.11)

KSDC = (11H + 40)W R(θ). (2.12)

where US Customary units are used and W denotes the width of the backwall in ft.

On the other hand, we can produce an estimate of the backbone curve Eqs. (2.2)-(2.8) and

(2.11), and (2.12). These the capacity and stiffness resulting from these equations, which are
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appropriate for HSR, are tabulated in Table ??; and the SDC and HSR Force-displacement

curves are compared in the Figure 2.18.

Figure 2.17: The elastic perfectly plastic force-displacement relationship proposed by
Shamsabadi et al. (2018) used in Caltrans SDC for highway bridge abutments.

Table 2.3: Comparison of the capacity and stiffness calculated using SDC and proposed HFD
formula for HSR.

As seen in Table 2.3, use of SDC formulation for HSR abutments results in the underesti-

mation of the capacity by factors of 2.6 and 3.9 for 0o skew and 45o skew angles, respectively.

Also, SDC underestimates the stiffness by factors of 2 and 3, respectively.

It should be noted that the underestimation factors between the SDC and HSR formu-

lations vary with skew angle and abutment height. Figure 2.19 (A) and (B) display the

color-mapped surface plots for passive capacity ratios and stiffness ratios between the SDC
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Figure 2.18: Comparison of force-displacement curves for obtained by SDC formulation
versus proposed HFD equation for HSR abutments for the example abutment.

and HSR formulations for the typical ranges of skew angles and backwall heights. It can

be seen in these figures that for typical abutments ratio of passive capacities between HSR

and SDC can vary from 2 to 4.5 and for stiffness it can vary from to 2 to 3.4. Both figures

clearly show that the skew angle has a far more pronounced effect than the backwall height

on both stiffness and the passive capacity ratios between the two formulations.

2.6 Summary and Conclusions

Data from a series of full-scale lateral abutment load tests and simulations with detailed finite

element models were used for developing passive lateral force-displacement relationships

for bridge-abutment transition zone backfills for seismic analyses. Such backfills consist

of cement-treated aggregate (CTA) (here with 3% cement) and compacted gravel. The
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Figure 2.19: Color-mapped ratios of (A) passive capacity and (B) stiffness calculated using
Caltrans SDC and the proposed HSR SHFD for skew angles ranging from 0 to 60o and wall
heights ranging from 1.65 to 3.65 meters.

transition zone backfills are nominally designed to minimize differential movements between

the bridge deck and the abutment due to traveling trains. While there is adequate literature

on this particular function of the transition backfills, their lateral seismic responses have not

been previously characterized.

This study offered a parametric model of the lateral force-displacement backbone curve

that takes into account the height of the abutment backwall as well as its skew angle. Dubbed

as the Skew Hyperbolic Force-Displacement (or SHFD) model, the resulting parametric

backbone curve shares the same functional form (but different parameter values) with an

earlier model that was designed for highway bridge abutments.

Based on the model and the observations made from the tests, the following conclusions

can be drawn:

1. The peak passive force developed for HSR abutments is higher–ranging from 2 to

4.5 times higher with skew angles ranging from 0o to 60o– than what is predicted

for highway abutments (specifically Caltrans granular backfill materials) for the same

backwall height.

2. The displacement required to develop the peak passive force decreases with skew angle

and the reduction observed for HSR abutments is less than that for comparable highway

abutments.
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3. The peak passive force is developed when the lateral displacements reach around 4% of

the wall height (H) for the HSR abutment (as opposed to 5% of H for the conventional

highway abutment).

4. Field measurements suggest that the CTA backfill moves more or less rigidly with the

abutment, and does not exhibit significant heave. The shear failure and heaving is

confined to the granular backfill behind the CTA zone.
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CHAPTER 3

A Lumped Impedance Model for Nonlinear

Time-History Analysis of Retaining Walls

This chapter describes a new model—dubbed here as the Lumped Impedance Model (LIM)—

that can predicted the responses of earth-retaining walls and the retained soil under seismic

shaking, including the inelastic response of the soil under active and passive conditions as

well as residual wall displacements and rotations. The formulation of LIM is introduced and

verified against various analytical solutions as well as detailed finite element simulations.

Potential extensions of LIM are also outlined, together with a basic performance-based seis-

mic assessment and design framework for earth-retaining structures, which uses LIM as its

computational engine.

The remainder of this Chapter is structured as follows: First, a summary of literature on

experimental and analytical studies on retaining walls is provided. The available methods are

categorized into various groups and shortcomings of each group are discussed. The proposed

Lumped Impedance Model (LIM) is developed and verified next. The formulation of the

LIM for a rigid wall resting on a rigid base retaining an elastic material in the frequency

domain is explained, and it is verified against exact analytical and simplified solutions.

Then the implementation of the LIM for a cantilevered wall retaining an elastic soil in the

time domain is explained and verified against ABAQUS FEM simulations. Subsequently,

the innovative fuse element is introduced, and its application for simulating elastoplastic

behavior of wall-backfill under quasi-static passive and active conditions are verified. In the

last part of part two full implementation of LIM in the time-domain for cantilevered wall
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retaining elastoplastic soil is explained and verified against FEM simulations.

In part three, the reason for the unsuitability of FEM for conducting performance-based

assessments for retaining walls and also exigency of a computationally inexpensive model for

such aim is discussed. LIM’s capability for performing such intensive analysis is demonstrated

by developing a fragility curve for a sample retaining wall. Finally, necessary expansions of

LIM for making it a comprehensive performance-based design engineering tool is explained.

3.1 Introduction

Earth-retaining structures are ubiquitous in highway construction, and their potential failure

during seismic events bears significant consequences. Repair/retrofit/ replacement of these

structures “can become extremely costly, and time-consuming,” as such, research on im-

proved design and analysis methods for retaining structures is stated as having the “highest

priority” in NCHRP Report 611 (2008). Despite, their strong performances in past earth-

quakes, there does not appear to be any consensus on the level of design conservatism the

existing earth-retaining structures exhibit. Many engineers claim that there is gross conser-

vatism in current methods of analysis (e.g., Al Atik and Sitar, 2010; Lew et al., 2010), while

others have stated that those same design methods are non-conservative (e.g., Wood 1973;

Veletsos and Younan, 1994; Ostadan, 2005).

Most of the studies in the literature use Mononobe-Okabe (M-O) equations for deter-

mining seismic pressures on a retaining wall subjected to seismic excitations. The M-O

equations are based on a presumption that the wall yields or moves sufficiently that a soil

wedge is created behind the wall. Most of the studies during 1980-2007 (Bolton and Steed-

man, 1982; Sherif et al., 1982; Ortiz et al., 1982; Steedman, 1984; Steedman and Zeng, 1990;

Stadler, 1996; Madabhushi and Zeng, 2007) considered the MO predictions to becredible.

The NCHRP 611 report and also recent versions of AASHTO Bridge Design Specifications

assesses the MO method to be overly-conservative and alleviates this issue by recommending
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the use of half of the peak ground acceleration as the seismic coefficient. The centrifuge test

by Al Atik et al. (2010) also argues that methods based on the MO theory significantly

overestimate the recorded pressures and moments.

The basic shortcomings of the M-O model are recognized as (see, for example, NCHRP

Project 12-70, 2008) follows:

Backfill Cohesion & Active Pressures: MO equations are based on a homogeneous

cohesionless backfill and Coulomb failure-wedge hypothesis. For soils where the shear

strength is due to internal friction (φ) and cohesion (c), the distribution and magnitude

of the active pressures are largely unknown. Current provisions stipulate that the

incremental seismic load distribution is uniform, and hence its resultant is at the mid-

height of the wall. There is a consensus—which is supported by experimental evidence

and analytical studies (e.g., by Saran and Prakash, 1968; Richards and Shi, 1994;

Shukla et al., 2009)–that this stipulation incorrect and overly conservative (cf. B7.3.3,

Anderson et al., 2008).

Passive pressures: An accurate accounting of passive pressures is needed to determine

the resisting force at the toe of standard semi-gravity walls, and at the wall-face for pile-

supported cantilever walls. Again, the MO equations do not provide this information,

and should not be used. While there are more sophisticated limit-equilibrium methods

for determining the passive pressures for general c − φ backfills (Shamsabadi et al.,

2013; Xu et al., 2015), however, they currently do not take wave propagation and wall

flexibility effects into account and should be extended.

Sloping backfill and high seismic coefficient: The M-O equations possess mathe-

matical singularities for certain values of the backfill slope angle and for high seismic

coefficients. These problems may cause non-physical predictions in the form of ”unre-

alistically large seismic active earth pressure coefficients,” or ”infinite earth pressures”

(NCHRP (2008)).
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An important consideration lacking in the current design guidelines of earth retaining

structures is the prediction of permanent wall displacements (e.g., lateral translation and

rotation). Force-based approaches are based on designing the system to withstand peak

seismic loads. Unless the system being designed is very fragile (i.e., low ductility), force-

based designs will be overly conservative (FHWA (2011)). While there have been continued

attempts at devising predictive models of residual wall displacements since the late 60s

(e.g., Newmark (1965); Richard and Elms (1979); Nadim and Whitman (1983); Cai and

Bathurst (1996)) observations from recent earthquakes (e.g., Al-Homoud and Tahtamoni

(2000); Fang et al. (2003); Zhang et al. (2012)), as well as comparisons against experimental

measurements (e.g., Cascone et al., 1995; Watanabe et al., 2003) have demonstrated that

this issue remains an unresolved problem.

3.1.1 Developments in seismic response analysis and design of earth retaining

structures

Recent studies on seismic response analysis of earth retaining structures can be categorized

based on their objectives. In the first category, the soil is studied as an elastic material

that seismic waves propagate through it. Efforts in a sub-category of this class of studies

provide analytical solutions for evaluating the seismic earth pressures under a seismic event,

while others propose a simplified lumped model that acceptably estimates the seismic earth

pressures. Studies in the second category account for the mobilization of a soil wedge due

to the rupture along the failure surface. The model proposed in this study incorporates

state-of-the-art in both categories.

Wood’s (1973) study is a turning point in studying soil as an elastic medium. The study

proposed a model based on the classical elasticity theory for determining earth pressures on

two walls retaining soil resting on a rigid base. Arias et al. (1981) extended Wood’s model

for anisotropic homogenous soil and using Bessel functions came up with a solution for a

semi-infinite backfill. Veletsos and Younan (1994) used a single degree of freedom oscillator
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that could replicate results of the mathematically intensive model by Arias. Ostadan’s (2005)

model incorporated the soil nonlinearity in Veltesos’ SDOF oscillator. Brandenberg (2015)

accounted for wave propagation effects by using frequency dependent stiffnesses proposed by

Kloukinas et al. (2012) and explained conflicting results of Ostadan (2005) and Al Atik et

al. (2010).

Use of lumped parameter models to determine the earthquake-induced pressures on the

retaining walls began with Scott’s (1973) attempt to model a rigid wall on a rigid base

using springs attached a shear beam representing the far-field soil column (Figure 3.1 (a)).

Veletsos (1994) found the steady state base shear amplitude under a harmonic excitation

differs from the one obtained by the analytical solution and resolved this discrepancy by

use of a single degree of freedom oscillator (Figure 3.1 (b)). Wolf (1997) came up with

a systematic approach for developing lumped parameter models based on the analytically

derived frequency-dependent stiffnesses. His frequency independent lumped model (Figure

3.1 (c)) not only could predict earthquake-induced pressures and driving moment but also

imitated the frequency response function of the model with frequency dependent stiffness.

Figure 3.1: (a) Scott’s model: shear beam represents the far-field soil column (b) Veletsos
(1994) model: employs a SDOF oscillator, (c) Wolf’s model: obtained through his systematic
approach for developing lumped models.

There are two general approaches for constructing lumped parameter models: the sys-

tematic derivation or optimization of parameters. In a systematic procedure, the frequency

dependent stiffness (dynamic stiffness function) is rewritten/factorized in terms of ratios

of two polynomials. Order and roots of the polynomials determine the configuration and

parameters of the equivalent lumped model. Wolf (1994) explains the derivation of such
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models for semi-infinite mediums and Wu and Prakash (2001) proposed a model for founda-

tions resting on a half-space using such a systematic approach. This type of lumped models

typically predicts frequency response function accurate in all range of frequencies. How-

ever, derivation of a such lumped model for more complex problems with layered soil, wall

flexibility, etc., is very difficult if not unattainable.

The alternative approach for constructing lumped models is based on the minimization

of an objective function to solve for parameters of a pre-sdetermined configuration. The

construction of the lumped model begins with choosing a configuration of masses, springs,

and dashpots with values to be determined. The objective function is defined as the difference

between a reference Frequency Response Function (FRF) (in this case pressure-frequency

function), and its counterpart obtained from the lumped model. The reference FRF is

achieved either through analytical methods or high-fidelity numerical methods like FEM. By

defining the objective function, one can find optimal parameters of the given configuration

by employing nonlinear regression techniques.

Seismic earth pressure models involved with the mobilization of a soil wedge fall into two

main sub-categories, models with a planar failure surface and those with log-spiral failure

surface. M-O method assumes that the failure surface is similar to the one predicted by

Coulomb and Rankine earlier. The trial wedge method is basically a numerical implemen-

tation of the M-O method that takes the soil cohesion into account. Tolunay and Shields

(1973) proposed a limit equilibrium model using Terzaghi’s predicted log-spiral shape for

failure surface. Marrison and Ebeling (1995) modified Toulnay’s limit equilibrium model

by accounting for the balance of angular momentum. Shamsabadi et al. (2013) noted that

under certain conditions Marrison’s model could be non-conservative and proposed a model

using the method of slices which is typically used for slope stability analysis.

The method proposed in this study is a lumped model but novel in several aspects. In a

sense, the method is an alternative systematic approach meaning the stiffness and dashpot

values are obtained systematically but not based on the dynamic stiffness function of the
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system. All the above-mentioned lumped parameter models are valid for cases that no

soil wedge is mobilized; however, this model incorporates such condition by defining a new

element henceforth called fuse. The threshold of this fuse represents the yielding force on the

failure surface. Implanting fuses only on strategic locations makes the forthcoming model

computationally inexpensive.

3.1.2 Classification of Seismic Analysis Methods

Available methods in literature for seismic analysis of retaining walls can be classified based

on employed analysis method (limit equilibrium, finite element, or finite difference), whether

they are pseudo-static, pseudo-dynamic, or dynamic. In this section, these different types

along with their advantages and shortcomings are explained. Also, summaries of available

methods in literature are tabulated in Table 3.1 and Table 3.2 that are updated versions

of tables provided by Taylor (2007). The following classification summary heavily borrows

from Taylor (2007).

3.1.2.1 Pseudo-Static Methods

A summary of these methods is given in Table 3.1. Methods under this category fall into

two subclasses:

Force-Based Methods: In this class of methods, the total static load acting on retaining

wall assumed to be a sum of loads imposed by static sources (like gravity or static

surcharge) and a pseudo-static seismic load. The horizontal and vertical components

of the pseudo-static load are obtained by multiplying the mass of a pre-calculated failing

soil wedge with coefficients of horizontal and vertical ground acceleration Kh and Kv.

These methods are reported to be too conservative and result in over-design; therefore,

codes recommend a lower factor of safety for pseudo-static analysis comparing to static

(Taylor (2007). To the best of authors’ knowledge, no force based pseudo-static is
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capable of estimating wall displacements.

Displacement-Based Methods: These methods are empirical equations resulted from

a Franklin and Chang (1977) database developed based on Newmark sliding block

analysis. Their proposed equations estimate the wall displacement for accelerations

causing the mobilization of a failure wedge. Critical accelerations resulting such lim-

iting conditions are determined using the M-O earth pressure theory. The methods

have shown inconsistent estimations for residual wall displacements, mostly because of

their empirical basis (Kramer (1996)).

3.1.2.2 Pseudo-Dynamic and Dynamic Methods

These methods are capable of time-history analyses. A summary of these methods is given

in 3.2.

Force-Based Methods: Both efforts in this category of retaining wall analyses to some

extent rely on principals of pseudo-static methods. Zarrabi (1979) requires the deter-

mination of the size of the failure wedge at each time increment. They employ MO

theory to carry such pre-processing, therefore preserves MO’s over-conservative na-

ture. The method proposed by Steedman and Zeng (1996) also depends on MO theory

for calculation of critical rotational acceleration Kcr. It further assumes the resultant

thrust acts on 1/3 height of the wall which turns out to be inaccurate.

Dynamic Methods: Limit equilibrium models capable of performing dynamic time-

history analysis are typically complex. Although the complexity of numerical methods

like finite element methods (FEM) and finite difference (FD) are not any less than

dynamic limit equilibrium models and are computationally more expensive, they re-

ceived better attention in commercial engineering tool because of their robustness.

The model proposed in this study (Lumped Impedance Model (LIM)), retains the ro-

bustness of FEM and FD while reduces the complexity and computational cost by
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employing state-of-the-art earth pressure theories in the back-end processes.
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3.2 Development and Verification of the Lumped Impedance Model

The determination of lateral earth pressure behind a retaining wall subjected to a seismic

excitation is a problem with a convoluted nature. In order to solve such a complicated

problem, many simplifications and idealizations are generally required. Although for cer-

tain problem conditions such simplifying assumptions may result in solutions with some

acceptable predictive power, most of these solutions are not extendible to an inclusive set

of problem conditions. In this chapter, a novel lumped parameter model is proposed that

in addition to simplicity, is extendible to a vast extent of retaining wall problems. The

distributed lumped model is comprised of elements with physical interpretations; hence, it’s

easy to implement and extend. Since the backbone of the model relies on the fundamentals

of classical elasticity one can customize it for specific inquiries. The model also handles soil

nonlinearity by employing an innovative fuse element concept which significantly reduces

complexity and computation cost of plastic limit conditions.

The rest of this chapter is organized as follows: a general description of the lumped

impedance model; the implementation of the model in the frequency domain is described

and verified against available methods in the literature; time-domain implementation of the

model for elastic material and verification against finite element simulations; quasi-static

nonlinear calibration of the model against) LSH model by Shamsabadi et al. (2013) and

the finite element studies by Nakai (1981); full time-domain implementation of the nonlinear

model and verification against finite element simulations.

3.2.1 Derivation of The Lumped Impedance Model

The lumped impedance function is a lumped mass-spring system derived from fundamental

equations of elasticity. Constructing the lumped impedance model begins with discretizing

the soil domain lumped masses (Figure 3.2(a)) which are interconnected by horizontal and

shear springs. Figure 3.2(b) shows the generic form of the lumped impedance model. In
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addition to masses and springs, the model comprises fuse element, to account for the soil

nonlinearity in active/passive limiting conditions; a rigid element, representing the retaining

wall; and two base springs, to account for the wall embedment/foundation.

Figure 3.2: (a) Discretization of the soil domain to lumped masses (b) generic schematics of
lumped impedance model (c) schematic symbol of active fuse and (d) passive fuse.

Stiffness parameters of the lumped impedance model are obtained through a systematic

approach. Parameters of the model are determined directly from the fundamental equations

of elasticity assuming plane strain condition. If a rectangular coordinate system of x, y is

used as shown in Figure 2 2 the equation of motion may be written in the form of:

ρ
∂2u

∂t2
=
∂σxx
∂x

+
∂σxy
∂y

(3.1)
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Assuming no coupled stresses is developed in the backfill, vertical displacements are zero,

and stress components have the following forms, one can derive the equations of motion in

terms of displacement.

σxx = Kxx
∂u

∂x
(3.2)

σxy = Kxy
∂u

∂y
(3.3)

Figure 3.3: Developing the elasticity equation under plane strain assumption.

Also, to account for material damping, it’s assumed that there exists a constant ? that

relates stiffness values to cohesion values as following:

Cxx = κKxx, Cxy = κKxy (3.4)

Therefore, stress-strain relationships of a cohesive soil are:

σxx = Kxx
∂u

∂x
+ Cxx

∂u̇

∂x
(3.5)

σxy = Kxy
∂u

∂y
+ Cxy

∂u̇

∂y
(3.6)

And finally, equation 3.1 can be written as follows:

ρ
∂2u

∂t2
= (1 + κ

∂

∂t
)(Kxx

∂2u

∂x2
+Kxy

∂2u

∂y2
) (3.7)
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The proposed formulation represents anisotropic solid, and it resembles classical elasticity

if and only if the stiffness values are taken equal to Kxx = E/(1− ν2) and Kxy = G (Arias

et al. (1981)). Value of κ can be determined analytically based on characteristics of the

soil provided by laboratory tests or can be back-calculated through an optimization process

based on a frequency response function. One can also use common methods like Rayleigh’s

method to account for material damping. But developing a soil damping model is beyond

the scope of this work.

To build-up the distributed lumped model, the backfill soil is discretized to a number

of elements as depicted in Figure 3.4. A major difference of this lumped parameter model

with commonly used lumped models is that the lumped masses represent real segments of

the physical domain and it is not just a calibrating parameter. In this sense, the distributed

lumped parameter model is similar to the finite element method. This becomes particularly

important later in nonlinear lumped impedance model, for implanting the fuses on the failure

surface. The model can also be interpreted as dices discretization resembling the concept of

slices in LSH model proposed by Shamsabadi et al. (2013).

Figure 3.4: Discretization of backfill in order to establish the lumped parameter model.

Before introducing the differentiation scheme, it is necessary to establish a numbering

scheme. In this study, we number elements from left to right and bottom to top as shown

in Figure 3.4. nr and nc stand for the number of elements in each row and each column

respectively. Using the central difference scheme the derivatives of displacement u in equation
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3.7 can be written in the following form:

∂u2

∂x2
=
ui+1 − 2ui + ui−1

∆x2
(3.8)

∂u2

∂y2
=
ui+nr − 2ui + ui−nr

∆y2
(3.9)

By plugging these derivatives into equation 3.7, the governing equation for each lumped mass

is obtained:

ρüi = Kxx
ui+1 − 2ui + ui−1

∆x2
+Kxy

ui+nr − 2ui + ui−nr
∆y2

(3.10)

In order to isolate the mass on the left side of the equation we can multiply both sides with

∆x and ∆y terms:

miüi = Kxx
∆x

∆y
(ui+1 − 2ui + ui−1) +Kxy

∆y

∆x
(ui+nr − 2ui + ui−nr) (3.11)

Hereby, we derive the equilibrium equation of the ith mass from its free body diagram in order

to determine the stiffness parameters of the LIM. Figure 3.5 shows the free body diagram

of a lumped element assuming no body force. The equilibrium of forces in x-direction will

results in:

miüi = Kh(ui+1 − 2ui + ui−1) +Ks(ui+nr − 2ui + ui−nr) (3.12)

One by one correspondence of equations 3.11 and 3.12 results in:

Kh = Kxx
∆y

∆x
=

E

(1− ν2)

∆y

∆x
(3.13)

Ks = Kxy
∆x

∆y
= G

∆x

∆y
(3.14)

By determining the stiffness parameters of the model, one can assemble the stiffness

matrix of the multi-degree of freedom system to perform calculations in frequency and time-
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Figure 3.5: (a) the general connectivity of a lumped mass, (b) the free-body diagram of a
typical lumped element.

domain. A significant advantage of the lumped impedance model over finite element model

is that it does not require numerical integrations for assembling matrices which notably re-

duces the computational costs of simulations. Comparing to the finite difference method, the

perspective that LIM provides reduces the complexity of formulation by providing physical

interpretation of differentiation schemes, and makes the extendibility of the model signifi-

cantly simpler especially in case of nonlinearities.

3.2.2 Frequency Domain Model

To establish a verification process for the lumped impedance model, in this section the

implementation of the model for a rigid wall subjected to harmonic excitation is discussed.

To establish a valid comparison with Arias et al. (1981) and Veletsos and Younan (1994), It is

further assumed that the wall rests on a rigid base retaining a homogenous soil. Although at

the far-field boundary a fixed boundary condition is assumed, to assure negligibility of effects

of such simplifying assumption the far-field is placed far enough. Following the formulation

and verification studies of the frequency response is provided.

3.2.2.1 Formulation

After assembling mass, damping and stiffness matrices of the LIM once can perform frequency

domain analysis to identify the response spectrum of the system under harmonic loads. Under
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a base excitation (shown in Figure 2 5), the governing equation can be rewritten as follows:

M(ü− üg) + Cu̇+ Ku = 0 (3.15)

where M, C, and K are mass, damping and stiffness matrix of the LIM, u is the vector of

lumped elements displacements, and üg is the base acceleration. Under a harmonic excita-

tion, the frequency domain formulation of the latter equation is obtained by taking Fourier

transformation:

−Mω2u+ C(iω)u+ Ku = −Mugω
2 (3.16)

Figure 3.6: A retaining wall resting on rigid base and retaining a homogenous backfill sub-
jected to a base excitation.

3.2.2.2 Verification

Veletsos and Younan (1994) provided an analytical solution for determining dynamic pres-

sures and associated forces induced by ground acceleration to a rigid retaining wall resting

on a rigid base retaining a semi-infinite homogenous layer of soil. This analytical method

is based on the solution of the coupled system of partial differential equations of motion for

the backfill medium with stronger assumptions than those used by Arias et al. (1981). The

LMI model is verified against Veletsos?s analytical solution as well as his equivalent lumped

parameter models.

67



Veletsos and Younan (1994) also developed two lumped parameter models (Figure 3.7)

in an attempt for resolving shortcomings of Scott?s shear beam model. In a version of

their lumped model, parameters of the model are frequency independent while the other

version stiffness and damping parameters are frequency dependent. As will be shown later

in verification studies, both models provide a relatively reasonable approximation of the

analytical solution.

Figure 3.7: The lumped parameter model proposed by Veletsos and Younan (1994).

In the constant parameter model, the value of the stiffness is determined such that the

undamped frequency of the system equals the fundamental frequency of the backfill idealized

as a series of vertical shear beams. In the frequency dependent version of their lumped

model, the values of stiffness and damping are defined as calibrated functions of frequency

that minimizes the difference between the lumped model response and the exact analytical

formulation.

In Figure 3.8 the base shears calculated by analytical solution per Veletsos and Younan

(1994) are plotted against the those of the lumped impedance model. The discretization

causes some unwanted damping modes. To eliminate effects of those modes a negligible

amount of numerical damping (κ = 1e − 5) is added to the lumped impedance model for

undamped case. As the figures show, the lumped impedance model estimates the maximum

base shear precisely although it the natural frequency of the LIM is insignificantly less than

the exact model. The LIM generally underestimates the based shear under high-frequency

68



harmonic excitations. In the undamped case, the LIM shows a pick at normalized frequency

ω/ω1 = 3 while it is not able to accommodate the sharp spike seen in the analytical solution.

Figure 3.8: Comparison of frequency response of the lumped impedance model versus the
analytical solution by Veletsos and Younan (1994).

In another comparison, the LIM is compared with both frequency dependent and constant

value parameter lumped models proposed by Veletsos and Younan (1994). Generally, all the

three models show an acceptable performance in estimating the maximum base shear and

the first natural frequency. Both lumped parameter models proposed Veletsos and Younan

(1994) underestimate the high-frequency responses like LIM. In fact, in the high-frequency

region, the LIM outperforms those lumped models (Figure 3.9).

The amplitude of the reaction moment can be expressed as the product of the base-shear

reaction and the height of the point of the application. In Figure 3.10 the calculated point

of application using the LIM is compared with the exact solution. Except for the undamped

case, the point of application is predicted about 0.6H where H is the height of the wall.

To capture the moment, Veletsos and Younan (1994) chose (2/?)H=0.637H as the point of

application for their lumped models (Figure 3.7).
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Figure 3.9: The frequency response estimated by lumped impedance model versus constant
value lumped model, frequency dependent lumped model, and the analytical model by Velet-
sos and Younan (1994).

Figure 3.10: The comparison of height of the point of application using the LIM and Veletsos
analytical solution and lumped model.
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3.2.3 Time-Domain Elastic Model

In the following section, the implementation of the LIM in the time-domain for a rigid

cantilever wall embedded in an elastic foundation soil and retaining an elastic backfill soil

is elaborated. The system is subjected to a ground motion from the bottom boundary of

the foundation soil. Figure 3.11 (a) shows the general configuration of a cantilever wall of

height H and with embedment depth Hemb. The problem is simplified in LIM as a rigid

wall of height H resting on two base springs accounting for translational (Kt) and rocking

stiffness (Kr) of the embedment. A transfer function is used to convert the bedrock shaking

time-history to the shaking time-history at the embedment level. For verification studies in

this chapter, the LIM is utilized to determine such transformation.

Figure 3.11: (a) A generic configuration of a cantilever wall problem. (b) The idealized
equivalent LIM.

The time-domain implementation of the LIM using the Newmark time-stepping scheme

is the first step toward the implementation of the full elastoplastic model in the time-domain.

For elastic backfill material, linear Newmark time-stepping is employed as springs behave

linearly throughout time-history excitations. In following sections, use of nonlinear Newmark

time-stepping for handling elastoplastic backfills is explained. Subsequent to the derivation

of the LIM in the time-domain for elastic backfill, it has been verified against several finite

element simulations.
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3.2.3.1 LIM Setup and Formulation

In the time-domain formulation of the LIM the mass, damping and stiffness matrices are

assembled as explained in section 3.2. The far-field boundary (the side of soil domain located

opposite to the wall) is assumed to be fixed and to assure negligibility of effects of such

truncation this boundary should be located at sufficiently far distance of the wall. To impose

shaking boundary condition, all the elements at the bottom boundary are connected to the

ground degree-of-freedom. The displacement of the ground degree-of-freedom is prescribed

by the transfer function which transfers the ground motion from bedrock depth to wall depth.

The values of translation stiffness Kt and the rocking stiffness Kr are calibrated to op-

timize results LIM methodology. It is assumed that the interactions of the embedment and

the soil are frequency independent. This simplifying assumption is essentially similar to the

effort by Gazetas and Roesset (1976) for developing the closed-form equation for stiffness of a

rigid strip footing. Although in extensions of LIM a solution for avoiding such simplification

is recommended (see section XXX).

The governing equation of the time-domain model has the form of:

Mf 0

0 Mp

üf (t)
üp(t)

+

Cff Cfp

Cpf Cpp

u̇f (t)
u̇p(t)

+

Kff Kfp

Kpf Kpp

uf (t)
up(t)

 =

0

0



where the uf and up are the displacement vectors corresponding to free degrees of freedom

and prescribed degrees of freedom respectively. In most cases the rotation calculated by

FEM were negligible and due to the wall flexibility, therefore, in the rest of this document,

the rocking degree of freedom assumed to be fixed unless mentioned. The rest of degrees of

freedom including wall translational displacement are set to be free.

Subsequent to assembling and partitioning the matrices, and defining the time-histories

of prescribed degrees of freedom, one can employ the linear Newmark?s time-stepping scheme

to solve for uf (t):
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unf = un−1
f + du (3.17)

du = Kff
−1

(
(

1

β∆t
Mf +

γ

β
Cff )u̇n−1

f + (
1

2β
Mf + ∆t(

γ

2β
− 1)Cff )ü

n−1
f + Cfpu̇

n
p + Kfpu

n
p

)
(3.18)

u̇nf = u̇n−1
f +

γ

β∆t
du− γ

β
u̇n−1
f + ∆t(1− 1

2β
)ün−1

f (3.19)

ünf = ün−1
f +

1

β∆t2
du− 1

β∆t
u̇n−1
f − 1

2β
ün−1
f (3.20)

where β and γ are Newmark time-stepping constants.

To implement the transfer function, the same procedure must be done. After assembling

matrices of soil sublayers, one can prescribe the displacement of the bottom boundary (input

of the transfer function) and read the displacement time-history at the wall depth (output of

the transfer function). The output of this transfer function is fed to the system of the wall

and the backfill as the prescribed displacement time-history of the ground degree of freedom.

The transfer function in LIM configuration is intended to accommodate more sophisticated

site-response techniques.

3.2.3.2 FEM Setup and Verification

To verify the time-domain implementation of the LIM for elastic backfill material, a series

of finite element simulations are conducted using ABAQUS. In these simulations, an elastic

concrete cantilever wall of height 7 meters and with 0.45 meters width retains an elastic

material (Figure 3.12). The wall is embedded in an elastic soil with 5 meters embedment

depth. The domain is truncated at 35 meters from each side of the wall. The depth of

each soil layer is 7 meters and soil properties are listed in Table 3.3. An input time-history

displacement is prescribed at the bottom boundary. The interface of the wall and the soil

is modeled using a contact element which behaves hard in the normal direction and in

tangential direction uses a penalty constraint with 0.3544 friction coefficient.
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Table 3.3: Material properties used in ABAQUS simulations.

The wall and both soil layers are meshed using the ABAQUS 4-node bilinear plane-strain

quadrilateral mesh element CPE4R with reduced integration and hourglass control. The soil

mesh near the wall is refined to assure the accuracy of the wall-soil contact behavior. The wall

height is discretized by 48 elements (4 elements per meter) and the width is discretized by 6

elements. The model consists of two steps, a quasi-static load step for enforcing the gravity

and a dynamic step for imposing the ground motion. All tolerance defaults of ABAQUS

assumed to be sufficiently accurate for all models. Maximum time step values were adjusted

to assure the smoothness of the projected result.

Figure 3.12: The finite element simulation of a cantilever wall.

Sine-Dwell Excitation: In the first series of simulations, the imposed ground motions

had the sine-dwell form. The sine-dwell excitations enable us to understand the behavior

of the cantilever wall under a quasi-harmonic excitation with varying amplitudes. For each

frequency of our series of sine-dwell excitations, the ground motion time-history begins with

three periods of rest followed by 10 periods with ascending amplitude. After the first thirteen
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periods the signal reaches to its maximum amplitude and hold the amplitude for another

20 periods and after 10 periods of descending it returns to rest state. The simulations

are stopped after 46 periods giving the system another three periods for free-vibration and

returning to the rest (Figure 3.13).

Figure 3.13: Sine-dwell displacement time-histories used for FE simulations.

Three sine-dwell displacement time-histories with frequencies 0.07 Hz, 0.24 Hz, and 2

Hz and amplitude 0.1 m are chosen for the purpose of this verification study. Amplitude is

chosen based on the maximum amplitude of the El Centro displacement time-history. The

0.07 Hz excitation represents the first peak in El Centro frequency content (Figure 3.14),

and 0.24 Hz represents the last tangible peak frequency in El Centro. The excitation with

2 Hz frequency is employed to verify the response of the LIM for high-frequency values. To

assure the smoothness of the simulations the maximum time-step equals 1/16 of the period

of the excitation. Both dimensions of the backfill have been discretized to 20 elements in the

LIM simulation.

The translational stiffness Kt is a frequency dependent value as the embedded part of the

wall, and the wall interface interacts with the surrounding soil in different ways at different

frequencies. In this study, Kt has been calibrated for different frequencies. The calibrated

translation base stiffness Kt in these simulations are 4.86e+7, 5.01e+7, 7.31e+6 N/m for

0.07, 0.24 and 2.00 Hz excitation frequencies. A solution to this issue will be discussed more

in section 3.4.2 wherein potential future extensions of the LIM are described.

The estimated wall displacement, thrust, and moment time-histories by LIM are com-

pared with the FEM simulations in Figure 3.15. Displacement time-histories shows a close

agreement of the results between the models. The oscillations in force and moment time-
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Figure 3.14: Frequency content of the El Centro Record.

histories for the higher frequencies in the LIM are due to the difference of the bottom trun-

cation boundary. As the bottom truncation boundary in LIM is a Dirichlet (displacement)

type, there is some energy trapped in the backfill soil while in the FEM model this energy

is distributed in the foundation soil as well. To alleviate the effects of these reflections, in

Figure 3.16 a small numerical damping is added to the model using κ = 5e − 3(ξ < 1%).

The figure also shows that the LIM overestimates the moment in higher frequencies. This

overestimation is mainly due to the idealization of the FEM flexible wall as a rigid wall in

LIM.

Broadband (El Centro) Excitation To verify the predictive ability of the LIM for a

wide range of frequencies, the aforementioned retaining wall studied when it is subjected

to El Centro displacement time-history. The calibrated base translational stiffness for this

verification study is 2.70e+7 N/m. The response time-histories are plotted in Figure 2 16.

The over-predicted value of the moment is due to the idealization of the wall as a rigid plate
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Figure 3.15: Verification of LIM wall displacement, thrust, and moment time-history against
ABAQUS FEM simulations for the example retaining wall subjected to sine-dwell excitation.

Figure 3.16: The added numerical damping eliminates the effects of the trapped energy due
to bottom truncation boundary.

in LIM.

3.2.4 Full time-domain elastoplastic model

To investigate the applicability of the LIM in passive and active limit conditions, the im-

plementation of LIM for elasto-plastic backfill material is discussed in this section. This

implementation accounts for soil nonlinearity using the innovative fuse element. The fuse

element is an elastic-perfectly plastic element which controls the behavior of the backfill
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Figure 3.17: Verification of response time-history estimated by LIM against ABAQUS FEM
for the example retaining wall subjected to El Centro recorded time-history.

when a failure wedge is mobilized. The active and passive capacities are controlled using

the yielding force of these fuse elements calibrated using LSH model by Shamsabadi et al.

(2013).

The fuse elements are placed in strategic locations and their strength are calibrated to

capture the force-displacement curves proposed by well-known limit equilibrium models.

LIM employs a log-spiral shape failure surface calculated by LSH limit equilibrium model

proposed by Shamsabadi et al. (2013) or the classic Rankin failure surface. In a sense, quasi-

static implementation of LIM is an extension of LSH limit equilibrium model proposed by

Shamsabadi et al. (2013) which considers vertical discretization in addition to the horizontal

discretization of the backfill.

3.2.4.1 LIM Setup and Formulation

After assembling the general connectivity of the elements, the springs corresponding to the

elements on the failure surface are replaced with the fuse element (Figure 2 17). Fuse elements

on the active failure surface behave linear elastic in compression and have an elasto-plastic

behavior in tension. On the other hand, fuse elements on the passive failure surface have

an elasto-plastic behavior in compression and elastic behavior in tension. For the purpose
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of the time-domain analysis of retaining walls, passive fuse elements will not be necessary,

as it is impossible for these fuses to be mobilized in a seismic event. However, the passive

elements can be used to analyze abutment backwall behavior.

Figure 3.18: (a) placing the fuse elements on strategic locations determined by the failure
surface calculated by LSH model. (b) the schematic of the active fuse element. (c) the
schematic of the passive fuse element.

Determination of the force and permanent elongation of the fuse element requires knowl-

edge of the fuse endpoints displacements {u}, rest length of the fuse (reference elongation

of the fuse) Lref , the yielding force of the fuse Fy, and its stiffness K as reflected in the

flowchart in Figure 3.19. The Fy is material dependent strength parameter determined using

LSH method by Shamsabadi et al. (2013), and the stiffness K is equivalent to the spring

stiffnesses determined by LIM. Reference length Lref is initialized with zero and changes

when some plastic deformation is mobilized in the fuse and defines the displacement state

for which the fuse is at rest (zero force).

The effective elongation ∆L which causes mobilization of some force in the fuse is the

difference of the endpoints displacement and the reference length Lref . In the following

flowchart, a temporary value of force is determined assuming the fuse remains in elastic

regime Ft. If this assumption is correct, there is no need for further calculation of the force,

and the Jacobian of force between endpoints of the fuse equals the stiffness of the fuse.

Otherwise, if Ft exceeds the yielding force, the fuse force equals ∓Fy (signs correspond to

passive/active behaviors respectively), and Jacobians of the endpoints will be zero. In this
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case, the reference length needs to be updated to reflect the permanent elongation of the

fuse.

Figure 3.19: Flowchart of the determination of the force and permanent elongation of an
active fuse element for a given displacement array.

Figure 3.20 shows the generic force-displacement behavior of the active fuse element.

Initially, there is no permanent elongation in the fuse, and in compression, it behaves like

simple spring. However, if the active fuse is stretched enough until it reaches its capacity

Fy (at elongation (∆ = ∆y), it begins deforming without gaining more force (Figure 3.20

(a)). After such plastic deformation, the permanent elongation of the fuse Lref defines the

zero-force state (Figure 3.20 (b)), and compression only happens when (ui − uj) > Lref

(Figure 3.20 (c)). The passive fuse shows the same behavior only in the opposite direction.

In the quasi-static active/passive scenarios the wall displacement slowly increases through-

out the simulation time, and the ground degree of freedom and the far-field boundary are

fixed. In the nonlinear LIM, the restoring force vector provided by springs and fuses is a

nonlinear function of displacements r = r(u). Therefore, to solve for free degrees of freedom,

the nonlinear Newmark time-stepping must be used. In nonlinear Newmark time-stepping,

displacements of the free DOFs at each step unf , are calculated by adding a differential
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Figure 3.20: Generic behavior of the active fuse element. (a) loading the fuse element until it
reaches its capacity (b) unloading after plastic deformation (c) compressing the fuse element.

displacement du to displacement at the previous step un−1
f :

unf = un−1
f + du (3.21)

where du is determined through corrector-predictor iterations:

dui = dui−1 − K̂T εi−1 (3.22)

where K̂T is the effective tangent stiffness and εi−1 is residual unbalanced force vector based

on the predicted dui−1. The effective tangent stiffness is calculated based on the predicted

value of dui as follows:

u∗i = unf + dui (3.23)

A =
1

β
∆tMf +

γ

β
Cff (3.24)

B =
1

2
βMf + ∆t

γ

2β − 1
Cf f (3.25)

K̂T =
1

∆t
A+ Jε(u) (3.26)

where the Jε(u) is the Jacobian of the residual unbalanced force vector with respect to
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element displacements. If elements p and q are connected by conventional springs [Jε(u)]pq

equals to the spring stiffness, otherwise, if they are connected by a fuse element with stiffness

K and yielding displacement ∆y the Jacobian is determined by:

[Jε(u)]pq =
[ ∂εp
∂uq

]
=


K ∆pq ≥ ∆y

0 ∆pq < 0

(3.27)

where ∆pq is the elongation of the fuse element connecting elements p and q. In other words,

Jε(u) represents the stiffness of the fuse or the spring connecting elements p and q. As the

stiffness of the fuses are a function of elongation, the Jε(u) and subsequently the effective

stiffness matrix K̂T are displacement dependent matrices. The residual unbalanced force in

iteration i is given by:

ε∗i =
1

∆t
Adui + F (u∗i )− F (u(n− 1)) (3.28)

upon convergence of the corrector-predictor iterations to the a du value, velocity and accel-

eration at the time-step n are obtained by:

u̇n =
γ

β
∆tdu+ (1− γ

β
)u̇n−1 + ∆t(1− γ

2β
)ün−1 (3.29)

ün =
γ

β∆t2
du+ (

1

β∆t
u̇n−1 + (

1

2β
)ün−1 (3.30)

3.2.4.2 Quasi-Static Verification

In the following verification study, the same 7 m height wall retaining a backfill with Poisson?s

ratio ν = 0.3, and friction angle φ = 40o is used. The interface of the wall and the backfill

soil is assumed to be frictionless (δ = 0), and the backfill assumed to be cohesionless (C = 0).

The backfill is 7 m deep and 32.5 long to assure its ability to accommodate the failure surface.

The backfill has been discretized into 20 elements in each direction. Bottom and far-field

boundaries are fixed, and the prescribed wall displacement is applied sufficiently slow to
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Table 3.4: Parameters of Nakai-Matsuoka (1983) soil model used in FEM simulations by
Nakai (1981).

avoid dynamic effects.

The strength of fuses is calibrated to achieve the force-displacement relationship of FEM

simulations by Nakai (1981) for quasi-static push/pull of a cantilevered wall with material

properties tabulated in Table 3.4. The calibrated elasticity modulus E = 13 MPa is also used

to match the initial stiffness. The interface of wall is a frictionless in Nakai (1985); hence,

we employ Rankine?s closed form equation to determine the location of failure surface in the

LIM. The force-displacement calculated by both models are compared in Figure 3.21.

The model is also verified against LSH model proposed by Shamsabadi et al. (2010). LSH

is a limit equilibrium method that determines the force-displacement of a rigid abutment

retaining a given backfill soil, subjected to passive push using method of slices. Parameters

used in this verification study is tabulated in Table 3.5.

For the given soil properties, the calculated yielding strength of horizontal fuses are

3.45e+3 N and 1.76e+5 N for active and passive case, respectively. The calibrated values for

the shear fuses are 4.01e-7 and 3.50e-2 which are negligible comparing to horizontal fuses.
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Table 3.5: LSH parameters used for the calibration and verification of quasi-static imple-
mentation.

Figure 3.21: The force-displacement curve obtained by calibrated LIM versus Nakai (1981)
and LSH.
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Figure 3.22: The displacement contour obtained by LIM in the passive (a) and active (b)
limiting conditions show the large relative movement of the passive and active wedges.

3.2.4.3 Full Time-Domain Elastoplastic Verification

The formulation of the LIM in time-domain is explained in the previous section. In this sec-

tion, the full implementation of the LIM model is verified against ABAQUS FE simulations

for dynamic excitations. First, to evaluate the predictive ability of the LIM for specific fre-

quencies, the ground DOF is subjected to semi-harmonic sine-dwell excitations with specific

frequencies. Eventually, the model is verified for the broadband El Centro excitation record.

A wall with the same geometry and material property as section 3.2.3.2 is used in this

study. The soil depth is extended to 75 meters (Figure 3.23) and to avoid unnecessary

convergence iterations, first 50 meters of the soil is an elastic material. As reflected in Table

3.6 the elastic property of the elastic property of the elastic layer is the same as the foundation

layer. The Mohr-Coulomb plasticity model is used for modeling elastic-plastic materials (soil

1 and soil 2). The mesh size reduces by distancing from boundaries and approaching to the

concrete wall. The height of the wall is discretized into hundred elements and the width of

the wall into six.
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Figure 3.23: The ABAQUS FEM model with elastoplastic material.

Table 3.6: Material properties used in the elastic-plastic FEM model.

Sine-Dwell Excitations: Similar to section 3.2.3.2, the LIM is initially verified against

FEM for sine-dwell displacement time-history. Also similar to section 3.2.3.2, for each fre-

quency of our series of sine-dwell excitations, the ground motion time-history begins with

three periods of rest followed by 10 periods of ascending amplitude. After the first eight

periods the signal reaches to its maximum amplitude and hold the amplitude for another 20

periods till after 10 period of descending it returns to rest state. The simulations are stopped
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after 46 periods giving the system another three periods for free-vibration and returning to

the rest (Figure 3.13).

The three sine-dwell displacement time-histories used in this verification study have the

same frequencies (0.07 Hz, 0.24 Hz, and 2 Hz). The amplitude used to verify the elastic model

(0.1 m) caused such severe plasticity in the FEM model for 2 Hz case that no converged

solution could be obtained. Therefore, the peak amplitude for all frequencies chosen to be 1

cm in this verification study. Even 1 cm peak amplitude of the excitations caused significant

residual force.

Figure 3.24 shows a comparison of displacement, force and moment time-histories calcu-

lated by LIM and FEM. The calibrated translation base stiffness Kt for 0.07, 0.24 Hz and

2.00 Hz are 1.10e+6, 1.06e+6, and 3.35e+5 N/m, respectively. The yielding strength of hor-

izontal fuse elements is Fyh=2e+3 N. The shear fuses are assumed to be strengthless Fys=0.

Small numerical damping (κ=5e-5 N.s) is added to the model to alleviate effects of numer-

ical discretization of the soil domain and account for energy dissipation by Mohr-Coulomb

material in areas other than failure surface.

Figure 3.24: Comparison of the displacement, trust and moment time-histories calculated
by FEM and LIM.

Although the LIM provides good estimation of displacement and thrust mobilized behind
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the wall, it overestimates the moment in all frequencies for several reasons. The idealization

of the flexible wall (in FEM) to a rigid wall (in LIM) significantly effects the amplitude of

the moment. Also, the base in the LIM model assumed to behave elastic while the FEM

simulations shows a passive wedge mobilized behind the embedded part of the wall (Figure

3.25). This passive wedge indicates that the embedment behaves in an elastoplastic way

rather than a perfectly elastic. This issue will be further explained in section 3.4.2 wherein

future extensions of the LIM are described.

Figure 3.25: Plastic strain magnitude contour in rest after El Centro excitation obtained
from FEM simulation. The concentration of the plastic strain shows passive and active
failure wedges.

Broadband (El Centro) Excitation: The elastoplastic LIM is verified against FEM

simulations for the El Centro broadband excitation. In the translational base stiffness in

these simulations is calibrated to 1.13e+6 N/m and the strength of fuses are the same as the

semi-harmonic excitations (Fyh=2e+3 N, Fys= 0). The same damping coefficient κ=5e-5

N.s is used to alleviate effects of numerical discretization of the soil domain, the trapped

energy due to truncation of the bottom boundary, and account for energy dissipation by

Mohr-Coulomb material in areas other than failure surface. Figure 2 25 shows a comparison

of the time-histories of LIM and FEM model.
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Figure 3.26: The displacement, thrust and moment time-histories obtained by LIM versus
FEM simulations.

3.3 LIM for Performance-Based Assessment

The concept of Performance-Based Seismic Design (PBSD) is developed to mitigate conse-

quences designs per of prescriptive building codes. The orthodox building design procedure

involves satisfying certain criteria that are intended to protect human life under a design

seismic incident. Such perspective criteria fail to account for the cost of repair and indirect

economic losses due to the downtime of the building. On the other hand, in PBSD prospec-

tive the design is not only intended to guarantee the safety but also to assure that direct

and indirect costs due to an earthquake incident, is rationally proportional to the intensity

and return period of an earthquake.

FEMA (2012) in Seismic Performance Assessment of Buildings, proposed a PBSD pro-

cedure that includes two preliminary steps and several design/assessment iterations (Figure

3.27). It begins with setting a performance level in terms of some performance criteria (like

residual drift, etc.) and determining potential seismic scenarios based on the geotechnical

characteristics of the site. Subsequently, the performance of the initial design is assessed

under potential seismic scenarios, and the design is modified until it reaches the pre-set per-

formance level. The performance assessment step includes enormous time-history analyses.

In establishing the concept of PBSD for retaining walls and embedded structures, a cru-
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cial step is to develop a computationally inexpensive robust analysis method. Although FEM

fosters such robustness, its significant computational cost makes iterations of Performance-

Based Assessment (PBA) practically impossible. In contrast to FEM, LIM reduces the

computational cost by limiting the plastic behavior strategically. Its reliance on the funda-

mental principles of elasticity and also its simple physical interpretation facilitates its robust

expansions.

Figure 3.27: The flowchart of PBSD proposed by FEMA (2012).

In this chapter, the capability of LIM as a performance-based assessment toolbox is

demonstrated. Since decisions on the performance criteria and performance levels are beyond

the scope of this study, permanent wall drift is chosen as the performance criteria, and an

arbitrary value is chosen to represent the objective performance level. Also, determining

the appropriate intensity measure requires additional parametric study which is beyond this

study. The employed intensity measure in this study is Peak Ground Acceleration (PGA).
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Ground motions used in this study are all recorded ground motions in California earthquakes

and are obtained from PEER database.

3.3.1 Problem Definition

To demonstrate capability of LIM for performance-based assessment of a retaining wall

preliminary design. The wall mass and backfill soil, the foundation soil material properties

are shown in Figure 3.28. In the preliminary design, the embedment is 5 meter and it

may subject to change through the design iterations. The wall height is 7 meters, and it is

unchangeable as imposed by the constructions in the vicinity of the wall.

Figure 3.28: The preliminary design of the case-study wall.

The potential earthquakes in the wall are assumed to have frequency content similar to

the records listed in Table 3.7. In this table component angle is the angle that the recorded

time-history makes with north and ’V’ means the vertical component. The records serve only

as a broadband excitation, and their orientations are not important for the simulations. In

other words, excitations are imposed as a ground motion perpendicular to the wall as shown

in Figure 3.28 These records are not necessarily the accurate choice of ground motions and

are utilized just for the purpose of demonstration.

The acceleration time-histories of these records are plotted in Figure 3.29. In a few of
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the ground motions found to have base drift. To obtain input displacement time-histories

baseline correction is performed and the corrected displacements are plotted in Figure 3.30.

The intensity of the ground motions are normalized based on their Peak Ground Acceleration

(PGA) from 0.05g to 0.3g. The frequency contents of the normalized displacement time-

histories are shown in Figure 3.31.

Table 3.7: The earthquake used in the performance-based seismic assessment of the sample
retaining wall.

3.3.2 Sample Performance-Based Assessment Post-Processing

In this example study, permanent wall drift assumed to be a sufficiently accurate indicator

of the structural performance (performance criteria) and in the acceptable performance level

the is assumed to be permanent drift less than 2% height of the wall (in this case 14 cm).

Wall displacement time-histories for ground motions with frequency content similar to listed

ground motions in Table 3.7, are shown in Figure 3.32 to Figure 3.33. The dashed line in

these figures represent the 14 cm threshold defining the acceptable performance.

Summary of permanent wall drift (residual drift) of all 60 earthquake scenarios is shown

in Figure 3.38. By defining failure as exceedance of the residual drift from the prescribed
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Figure 3.29: Time-history records used for performance-based assessment of the sample
retaining wall.

Figure 3.30: Corrected displacement time-history records used as input motions in LIM
models.

threshold ur < ut = −0.14m, the failure/success matrix of these simulation are summarized

in Figure 3.39.

The probability of failure for a given PGA can be quantified based on this failure-success
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Figure 3.31: The frequency content of normalized displacement time-histories.

Figure 3.32: Wall displacement time-history for the potential earthquake scenarios, normal-
ized PGA = 0.05g.

matrix. Assuming the failure for a given PGA follows a binomial distribution, one can

estimate a probability of failure and its corresponding confidence interval for a certain level

confidence using elementary statistical operations. The estimated probabilities of failure for
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Figure 3.33: Wall displacement time-history for the potential earthquake scenarios, normal-
ized PGA = 0.10g.

Figure 3.34: Wall displacement time-history for the potential earthquake scenarios, normal-
ized PGA = 0.15g.

this study and their corresponding 95% confidence interval are listed in Table 3.8. After

fitting an erf function to the obtained probabilities, the probability of failure as a function
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Figure 3.35: Wall displacement time-history for the potential earthquake scenarios, normal-
ized PGA = 0.20g.

Figure 3.36: Wall displacement time-history for the potential earthquake scenarios, normal-
ized PGA = 0.25g.

of PGA is shown in Figure 3.40. The probabilities directly calculated by simulations are

scattered around the curve. The filled region in this figure shows the 95% confidence interval
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Figure 3.37: Wall displacement time-history for the potential earthquake scenarios, normal-
ized PGA = 0.30g.

Figure 3.38: Summary of residual drifts for all 60 earthquake scenarios.

of the estimated probability. The confidence interval becomes narrower by increasing the

number of potential earthquake scenarios.
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Figure 3.39: The failure/success matrix of the preliminary design under the given 60 earth-
quake scenarios.

3.4 Summary and Conclusions

The details of the LIM are described and verification studies were provided earlier in section

2 of this chapter and LIM’s application in performance-based assessment was discussed in

section 3. In what follows, a brief summary of the model is provided in an effort to articulate

is current capabilities followed by a short section wherein potential future extensions are

elaborated. The extensions include the use of state-of-the-art site response analyses in the

transfer function module, employment of absorbing boundaries at truncation boundaries of

Table 3.8: Estimated probability of failure for sample PGA values.
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Figure 3.40: Probability of failure as a function PGA in units of gravity accelerations. The
filled region represents the 95% confidences interval.

the LIM, incorporation of wall flexibility using beam elements, and enabling soil layering.

All these extensions will serve the ultimate goal of this study, which is the development of

a comprehensive performance-based seismic assessment and design tool for earth retaining

walls.

3.4.1 Summary of the Method

The Lumped Impedance Model (LIM) is a nonlinear lumped parameter model for simula-

tion of retaining wall-backfill interaction. The elastic parameters of the lumped model are

obtained by numerical discretization of the uncoupled equation of motion proposed by Arias

et al. (1981), and elasto-plastic fuses are calibrated to imitate the failure behavior estimated

by LSH proposed by Shamsabadi et al. (2013). Per Wolf?s (1994) classification of lumped

models, the development of LIM is categorized under the systematic approach of developing

lumped models since it uses analytical equations for determining parameters rather than

optimization.
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Figure 3.41 shows a generic form of the LIM. In the magnified part (b) of the figure

details of connectivity of a lumped mass on the failure surface is shown. The bottom shear

spring and the top fuse has the same shear stiffness Ks = G∆x/∆y, and the left fuse and

the right spring has the same horizontal stiffness Kh = E/(1 − ν2)∆y/∆x . The yielding

force of the horizontal fuses fyh are calculated by the capacity calculated by LSH divided

by the number of elements on the failure surface and yielding strength of shear fuses fys are

negligible.

The vertical boundary far from the wall is truncated in a sufficiently distant location to

imitate a far-field boundary. The motion is inputted to a transfer function which transfers

bedrock motion to the wall level motion. Translational and rocking stiffness values (Kt and

Kr) are calibrated values to account for the resistance force and moment provided by the

embedment. In future expansions of the LIM, latter features will be modified to provide a

more accurate representation of the wall-backfill interaction.

Figure 3.41: (a) Generic form of the LIM, (b) connectivity of a lumped mass on the failure
surface, (c) connectivity of a typical lumped mass.

3.4.2 Future Extensions

Although verifications show the LIM has a strong predictive power, there are some extensions

that makes LIM a universal tool for analysis of retaining walls. It?s particularly important
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for LIM to handle retaining wall with layered backfills while in the current study the backfill

assumed to be homogenous. Also, in the current study the base stiffness values are fre-

quency independent calibrated values, while the interaction of the wall embedment with the

foundation soil is frequency dependent. Effects of the trapped energy due to fixed boundary

conditions can be alleviated by utilizing absorbing boundary conditions like Lysmer (1969),

PML, and etc. More realistic moment estimations can be obtained by using beam-elements

to account for the wall flexibility.

3.4.2.1 Soil Layering and Site Response Analysis

The current study focused on development of the LIM model for homogenous backfill ma-

terial. However, soil layering can be conveniently implanted in the LIM model using the

physical interpretation of the lumped parameters. A generic form of the LIM with layered

soil is depicted in Figure 3.42. Different density of layers translates into lumps with different

masses, elastic parameters changes with the elastic property of layers, strength parameters

of soil layers define the yielding force of the fuse elements.

A potential obstacle in the implementation of LIM for layered backfill is the internal layers

interface behavior especially in the case of passive/active limit conditions. In a comparative

study of current site response analysis methods by Bolisseti and Whittaker (2015), the

high-frequency response is reported as a common problem with the available time-domain

analysis methods. The observed high-frequency response is due to inability of internal soil

layer boundaries to transmit waves with certain frequency content.

It is reasonable to assume that within each layer elastic properties are conserved. There-

fore, stiffness values of shear springs and horizontal springs are calculated using the same

formulations in LIM for homogenous backfill. Previous studies for formulating the contact

behavior of elastic bodies including Simons and Bergan (1986), and Wu et al. (2016) serve

as the basis for formulating the interface shear springs in layered LIM.
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Most studies in the area of limit conditions of retaining walls, consider a homogenous

backfill material. Shamsabadi et al. (2013) (the method used for determining the strength

of fuse elements) employs methods commonly used in slope stability analysis, to determine

the failure surface shape and the limit condition force for a retaining wall. Slopes with

layered soil are investigated in Ji and Low (2012), and Xue and Gavin (2007). A preliminary

study for developing layered LIM should include modification of Shamsabadi et al. (2013)

to account for soil layering.

The transfer function connected to the ground degree of freedom in LIM provides the

opportunity of fostering state-of-the-art in site response analysis for transferring motions in

bedrock to the simulation depth. The LIM is capable of performing a linear site-response

analysis similar to well-known software SHAKE, use of nonlinear site response analysis mod-

els like DEEPSOIL increases the credibility of simulations with an insignificant amount of

computational cost.

3.4.2.2 Wall Flexibility

The idealization of the wall as rigid plate causes in overestimation of moment and elimination

of some shape modes. One can employ beam elements available in the literature to account

for the flexibility of the wall. It is common sense that a reinforced concrete wall rarely

experiences nonlinearity or inelasticity and a linear elastic beam element formulation should

provide a satisfactory estimation of its behavior. Although, one can use the inelastic beam

Figure 3.42: (a) Schematic presentation of a rigid wall on a rigid base retaining layered soil
backfill material. (b) Generic concept of LIM with layered soil.
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element formulation proposed by Spacone et al. (1992) to account for inelastic behavior of

the wall under extreme conditions like extreme vertical dynamic surcharge.

3.4.2.3 The Truncation Boundary

In verification of the model against FEM simulations, effect of the trapped energy due to

truncation of the bottom boundary has been alleviated using some artificial numerical damp-

ing. In the FEM model, the simulated soil is 70 meters deep, and the effects of reelections

are less because the energy is redistributed all over the soil medium. While in the LIM sim-

ulation only the 7 meters depth of backfill is simulated and the energy injected in through

the fixed bottom boundary is trapped in this limited medium.

Figure 3.43: Effect of the trapped energy due to fixed bottom boundary is observable in the
LIM time-history response under the El Centro excitation.

This trapped energy is seen in high-frequency fluctuations in the time-history response

of the LIM under the El Centro excitation in Figure 3.43. Although the numerical damping

added to the model eliminates the effects of such trapped energy, it inevitably suppresses the

effects of some of the real vibration modes. The existence of an absorbing boundary condition
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at the bottom boundary can significantly reduce the necessity of numerical damping. Placing

such boundary condition on the far vertical boundary can also help to account for the

dissipation of energy in the far-field. The concept of employing the absorbing boundary

condition is illustrated in Figure 3.44.

Figure 3.44: LIM with concept of absorbing boundary conditions.

3.4.2.4 Full Geometry Simulations

In the above verification studies, the base stiffness values are calibrated in order to cap-

ture the objective response calculated by FEM. Such calibration presumes that the em-

bedment?s interaction with the foundation soil is frequency independent and linear elastic.

However, similar to the wall-backfill interaction which is a frequency dependent behavior,

the embedment-soil interaction is also frequency dependent. Furthermore, the passive wedge

mobilized behind the embedment implies the nonlinearity of such interaction.

Both these issues can be addressed using a simple expansion of the simulated soil domain

in the LIM to include the foundation soil as well. A concept of such extension is illustrated

below.
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Figure 3.45: Mobilized plastic strains magnitude in rest state after the El Centro excitation.

Figure 3.46: Concept of the LIM with full geometry that accounts for frequency dependency
and nonlinearity of the embedment behavior.
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