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Social Learning from Incomplete Information in a Dynamic Decision-Making Task
Alexandra F. Ortmann

Department of Psychology, Stony Brook University, NY 11794, USA

Christian C. Luhmann
Department of Psychology & Institute for Advanced Computational Science, Stony Brook University, NY 11794, USA

Abstract

The exploration-exploitation dilemma in dynamic decision-
making scenarios is a notoriously hard problem to solve. Hav-
ing a partner to potentially learn from might make it easier to
balance exploration and exploitation. In the current study, we
investigate the impact of social information (i.e., about oth-
ers’ exploration behavior vs. their rewards) and partner per-
formance (optimal vs. random) on participants’ behavior in a
dynamic decision-making task that contains a learning trap.
We find that observing the exploration behavior of an opti-
mally choosing partner was detrimental to participants’ overall
performance and reduced participants’ exploratory tendencies.
In contrast, observing a random partner’s exploration behav-
ior stimulated participants’ exploration, though this increase
in exploration did not help participants to uncover the reward
function. Following previous literature, a reinforcement learn-
ing model that contained eligibility traces was able to describe
human behavior and helped to uncover potential mechanisms
that could explain aspects of the findings.

Keywords: social learning; reinforcement learning;
exploration-exploitation; dynamic decision-making

Introduction
The so-called exploration-exploitation dilemma (e.g., Cohen,
McClure, & Yu, 2007; Sutton & Barto, 2018; for reviews see
Hills et al., 2015; Mehlhorn et al., 2015), requires decision-
makers to choose between the option they currently believe
to be most valuable (exploitation) and other options they cur-
rently believe to be suboptimal but may turn out to be valu-
able (exploration). Past work investigating the exploration-
exploitation dilemma has used a stylized task environment,
commonly referred to as a multi-armed bandit, in which
decision-makers attempt to maximize rewards by repeatedly
selecting among multiple options. A broad range of such ban-
dits can be designed and the complexity of the reward func-
tions can vary dramatically. For example, reward functions
can be dynamic, with the mean reward delivered by a given
option changing over time (e.g., Daw, O’doherty, Dayan, Sey-
mour, & Dolan, 2006; J. Li & Daw, 2011; Toyokawa, Saito, &
Kameda, 2017; Toyokawa, Whalen, & Laland, 2019; for re-
view see Gonzalez & Dutt, 2011) or contain learning traps, in
which seemingly valuable options ultimately decrease earn-
ings (Gureckis & Love, 2009b; Otto, Gureckis, Markman,
& Love, 2009; Worthy, Gorlick, Pacheco, Schnyer, & Mad-
dox, 2011). Humans often struggle to balance exploration
and exploitation and to ultimately identify the optimal option,
particularly in these complex, dynamic multi-armed bandits

(Gonzalez, Lerch, & Lebiere, 2003; Gureckis & Love, 2009b,
2009a; Otto et al., 2009).

Exploration in Dynamic Decision-Making Tasks
To improve performance in these complex bandits, past work
has investigated a plethora of interventions. For example, it
has been argued that learning about the relationship of ac-
tions and rewards, which is particularly difficult in dynamic
decision-making tasks, can be fostered by stimulating explo-
ration (Gureckis & Love, 2009a; Tunney & Shanks, 2002).
Studies have shown that exploration can be increased by ex-
periencing losses instead of gains (Krueger, Wilson, & Co-
hen, 2017; Lejarraga, Hertwig, & Gonzalez, 2012; Lejarraga
& Hertwig, 2017; Yechiam, Zahavi, & Arditi, 2015), which
ultimately improves performance in a dynamic decision-
making task (A. X. Li, Gureckis, & Hayes, 2021). Finally,
another straightforward idea to foster learning is to provide
different kinds of feedback, for example, about forgone re-
wards (A. X. Li et al., 2021; Otto & Love, 2010) or to adjust
feedback presentation (Atkins, Wood, & Rutgers, 2002).

Social Learning in Dynamic Decision-Making Tasks
Learners often cannot only rely on their private information,
but also observe others coping with the same learning prob-
lem. The act of learning from others—also referred to as so-
cial learning (e.g., Bandura, 1971; McElreath et al., 2005;
Rendell et al., 2010, 2011; Whalen, Griffiths, & Buchsbaum,
2018)—has been shown to influence behavior in a variety of
contexts (e.g., Boyd & Richerson, 1985, 2009; Harris, 2012;
Laland, 2004; Molleman, Van den Berg, & Weissing, 2014;
Rendell et al., 2010; Shafto, Goodman, & Griffiths, 2014).
Bandura (Bandura, 1971; Bandura & Walters, 1977) high-
lighted that social learning offers potential advantages, but
requires careful selection of social learning strategies. As a
result, the act of social learning itself can be difficult (Kendal
et al., 2018; Laland, 2004). This difficulty is composed of at
least two separate challenges.

A first challenge is who to learn from. Intuitively, the ideal
scenario involves learning from partners that act optimally.
Gonzalez (2005) placed participants in a complex learning
environment and found that observing the behavior of an ex-
pert improved participants’ performance. In contrast, con-
forming to others that are not necessarily behaving optimally
seems potentially fraught (McElreath et al., 2005; Toyokawa
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et al., 2019). Therefore, whether social learning is beneficial
strongly depends on those being learned from.

A second challenge is that social learners may have limited
information about others. Some information such as other’s
goals and intentions might be inherently unobservable, and
even observable information (e.g., rewards and choices) may
not be available to social learners. Prior work suggests that
access to others choices is generally beneficial (Vélez &
Gweon, 2019; Whalen et al., 2018), though the benefit may
vary with task complexity. Access to the rewards others are
earning may increase exploration, which can be helpful in
difficult tasks but may be detrimental in simpler tasks (Nedic,
2011). Counter-intuitively, more social information is not al-
ways better. Toyokawa, Kim, and Kameda (2014), for ex-
ample, found that access to others’ evaluations, in addition
to choices, can actually be detrimental to individuals’ perfor-
mance.

The Present Study
As we have reviewed, people struggle to identify and choose
the optimal option in dynamic decision-making tasks. So-
cial learning is often successful when others’ behavior is op-
timal (or at least superior to one’s own). However, in every-
day life people often have only limited access to information
from other social sources, and the benefit of social learning
depends on what types of information people have access to.

In the current study, we asked whether participants con-
tending with a complex decision-making task can use limited
information about the behavior of a partner to improve their
own performance. Specifically, we were interested in how
observing others’ explorative tendencies (i.e., how often they
are switching, or alternating among options) without seeing
the choices themselves influences participants’ choices and,
ultimately, their overall performance. Observing others’ ex-
ploratory choice behavior could be beneficial as exploration
has been suggested to be a successful strategy in complex
environments where optimal strategies may be difficult to de-
tect. However, it could be detrimental because participants
are only able to observe a specific facet of their partner’s
behavior and it is, presumably, not the information partici-
pants most desire. As a comparison, other participants were
given access to the rewards their partners were earning, again
without seeing the choices that led to those rewards. Fur-
ther, as discussed earlier, the value of social information de-
pends on others’ performance. Therefore, partners were algo-
rithmic (rather than other participants) and either performed
optimally or switched randomly. Overall, there are two vari-
ables Information Type (Switch vs. Reward) and Partner Type
(Random vs. Optimal) resulting in four conditions that are
called switch-random, switch-optimal, reward-random and
reward-optimal.

Intuitively, participants observing an Optimal partner
should perform better than participants observing a Random
partner. Further, previous findings (Nedic, 2011) suggest that
information about rewards may be more helpful than infor-

mation about partners’ choice behavior. However, the ad-
vantages social information might provide should critically
depend on the interaction between Partner and Information
Type sometimes leading to surprising patterns. Therefore, we
are specifically interested in two hypotheses:

1. Observing actions from an Optimal partner is not always
helpful: Participants in the switch-optimal condition will
alternate less and choose the optimal option less than par-
ticipants in the switch-random and reward-optimal condi-
tions.

2. Observing actions from a Random partner is helpful: Par-
ticipants in the switch-random condition will alternate
most and choose the optimal option more often than the
reward-random condition.

Method
This study was approved by the Institutional Review Board at
Stony Brook University.

Participants
Seventy-two undergraduate students (18 per condition) par-
ticipated in exchange for partial course credit (age M = 19.99,
64% female). One additional participant was excluded due to
a technical error that caused the task to terminate prematurely.

Task
The task builds on the “Farming on Mars” task (Gureckis &
Love, 2009a, 2009b), which has been modified for differ-
ent purposes (Cooper, Worthy, Gorlick, & Maddox, 2013;
Cooper, Worthy, & Maddox, 2016; Otto et al., 2009; Otto
& Love, 2010; Worthy et al., 2011; Worthy, Otto, & Maddox,
2012) and is a member of a larger family of dynamic decision-
making tasks (Gonzalez, Fakhari, & Busemeyer, 2017; Her-
rnstein, 1991; Herrnstein & Prelec, 1991; Rahmandad, Den-
rell, & Prelec, 2021; Sims, Neth, Jacobs, & Gray, 2013; Tun-
ney & Shanks, 2002). Participants in the Farming on Mars
task are told that two robots have been sent to Mars in or-
der to produce oxygen. Participants are asked to repeatedly
choose which of the two robots should be used to produce
oxygen. Once selected, the amount of oxygen produced by
the robot is reported to the participant, allowing participants
to learn about the capability of the selected robot. Forgone
rewards (oxygen units) are not presented. The participant’s
goal is to maximize the total amount of oxygen produced.

The task appears to be a standard multi-armed bandit task
often used in reinforcement learning settings (Cohen et al.,
2007; Daw et al., 2006; Sutton & Barto, 2018). The robots
represent the “arms” or options and the oxygen represents the
reward to be maximized. Unlike conventional multi-armed
bandit tasks, however, the reward function is more complex,
largely due to the dynamic nature of the rewards. Unbe-
knownst to participants, the two robots not only offered sys-
tematically different rewards on each trial, but also had qual-
itatively different impact on future rewards.
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Ri = xi +1000∗ (h/10)+N(µ,σ) (1)

We distinguish between the short-term option, i = 1, and
the long-term option, i = 2. The reward, R, offered by each
option is, in part, determined by a fixed component x that
varied between the two options. For the short-term option,
this fixed component was relatively larger, x1=900, and for
the long-term option, this fixed component was relatively
smaller, x2=400. Thus, on any given trial, the reward of-
fered by the short-term option was larger (by 500 units) than
the reward offered by the long-term option. However, the to-
tal reward also depended on a dynamic component, h, which
captured the number of times the long-term option was se-
lected on the previous 10 trials. The existence of h intro-
duces long-range dependencies into the reward structure and
is what makes the task dynamic. Finally, a small amount of
normally-distributed noise (µ=0, σ=50) was added to the re-
ward on each trial. In this way, the short-term option is more
valuable in the short-term, but selecting the long-term option
maximizes long-term earnings. Therefore, cumulative earn-
ings are maximized by consistent selection of the long-term
option.

Participants were also presented with information about the
behavior of a partner. Participants were told that the part-
ner was in the same situation as they were and that details of
the partner’s behavior would be made available incrementally
throughout the task. In actuality, the behavior of the partner
reflected one of two simple algorithms. The behavior of the
Optimal partner followed a simple rule of choosing the long-
term option with probability 0.95 on each trial. Therefore, the
Optimal partners rarely switched between options and tended
to receive large rewards. The behavior of the Random partner
followed a simple rule in which choices tended to alternate
from trial to trial. Specifically, the Random partner selected
the option selected on the previous trial with probability 0.25
(i.e., switching with probability 0.75). Therefore, the Ran-
dom partner switched between options quite frequently and
tended to receive moderate rewards.

Participants were only given partial information about their
partner’s behavior. Specifically, participants in the Switch
condition were presented with information about whether
their partner alternated (switched) or repeated their previ-
ous selection. Participants in the Reward condition were
presented with information about the rewards their partner
earned. In neither condition did participants have access to
information about the options selected by their partner (i.e.,
long-term or short-term).

Procedure
Participants completed the experiment in person. After pro-
viding consent, participants made a sequence of 175 choices.
Each trial consisted of a choice phase, during which the op-
tions were presented and subjects could make their selection
via a keyboard key press. After a choice was made, the se-
lected choice was highlighted for 1 second. The outcome of

the choice (i.e., number of oxygen units generated) was then
presented for 1.5 seconds. Information regarding the most re-
cent choices (of both the participant herself and the partner)
was presented for an additional 1.5 seconds. The next trial
began immediately thereafter.

Historical information regarding the previous five trials re-
mained on screen at all times. This information was com-
prised of the last five rewards earned by the participant as
well as the last five trials-worth of information about the part-
ner (alternations or rewards depending on condition). Which
side of the screen the long-term and short-term options were
presented on and the color of the robots was counter-balanced
across participants.

Results
The goal of the current study was to better understand the
effects social learning might have on a notoriously difficult
dynamic decision-making task. Participants observed either
the exploration tendencies (i.e., alternations) or the rewards
earned by either a Random or Optimal partner.

In the following, we focus on two different outcomes of
interest. First, the alternation rate of participants is of inter-
est as exploration has been suggested as a critical strategy to
overcome learning traps and might directly relate to the alter-
nation rate of their partner. Second, the proportion of long-
term choices is analyzed as in previous studies (Gureckis &
Love, 2009a, 2009b).

Descriptive Results
Over 175 trials participants chose the long-term option on
M = 51.21 (29.26%; SD = 22.3%) trials, generating M =
183,756 (SD = 18,188.22) total oxygen units, and switching
between options (i.e., alternating) on M = 35.54 trials (M =
20.31%, SD = 12.86%). Figures 1a and 1b illustrate the al-
ternation rate and proportion of long-term choices for each
condition. As is typical for multi-armed bandit tasks (e.g.,
Gonzalez & Dutt, 2011; Lejarraga & Hertwig, 2017), par-
ticipants explored more at the beginning than at the end of
the trial sequence (see Figure 1a). Further, it seems that par-
ticipants who received information about the alternation be-
havior of an Optimal partner alternated least and participants
who received information about the alternation behavior of a
Random partner alternated most. Compared to other groups,
participants observing their Optimal partners’ rewards ended
up choosing the long-term option most.

Bayesian Model: Group Differences
Model Specification Each outcome is assumed to be de-
scribed by a linear function with a subject-level intercept,
three nominal factors, and noise (error). The intercept was
modeled as a random effect. Each participant-specific inter-
cept was assumed to be drawn from an overarching normal
distribution (µ=0, σ=.5), which acted as a weakly informa-
tive hyper parameter. The nominal factors were effect coded,
with the first factor representing the deflection from a base-
line due to Information Type (-1=reward, 1=alternation), the
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(a) (b)

(c) (d)

Figure 1: (a) & (b) Behavioral data plotted by experimental condition; time courses smoothed using rolling window of five
trials; Proportion of (a) alternations, (b) long-term choices. (c) & (d) Results of model simulation using best fitting parameter
values and participants’ actual choice histories. Probability (c) to alternate, (d) of long-term choice.

second factor representing the deflection due to Partner Be-
havior (-1=random, 1=optimal), and the last factor represents
the interaction of the two. Coefficients associated with these
three factors were each informed by separate, weakly infor-
mative priors that were assumed to be normally distributed
(µ=0, σ=1) and were modeled as fixed effects. The predicted
outcome was assumed to be normally distributed and was
given a prior Half-Cauchy distribution to reflect noise in the
data. Standardized regression coefficients of the hierarchical
Bayesian mixed-effects regression model are reported. The
MCMC process generated stable estimates of the posterior
distribution and the traceplots explored the parameter space
reasonably well.

Results First, we analyzed whether participants’ alternation
behavior was related to whether they saw a partner’s alterna-
tion behavior or their rewards (see regression summary statis-
tics in Table 1). Overall, Information Type did not strongly
influence alternation (p(β̂1 > 0)=.412, M

β̂1
=-.02). In con-

trast, Partner Type did (p(β̂2 > 0)=.009, M
β̂2

=-.26). When
participants collaborated with an Optimal partner, they alter-
nated less than if they collaborated with a Random partner.
Further, it is very likely that there is an interaction between
Information Type and Partner Type (p(β̂1x2 > 0) = .005). To
better interpret these results, we investigated unstandardized
simple effects.

In line with the descriptive data presented in Figure 1a,
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Table 1: Regression Summary Statistics

Mean SD p(>0) HDI
3%

HDI
97%

Alternations
Information -.024 .111 .412 -.231 .189
Partner -.263 .110 .009 -.475 -.061
Info. x Partner -.287 .110 .005 -.498 -.081
Long-Term
Choices
Information -.261 .106 .008 -.461 -.065
Partner .029 .106 .608 -.171 .225
Info. x Partner -.383 .107 .000 -.583 -.180

Note. p(>0) represents posterior probability that effect is >0
(values can range from 0-1, 0 indicating potential negative
effect, 1 indicating potential positive effect). HDI columns
represent highest density interval for the corresponding
coefficient.

participants in the Reward condition alternated to a similar
extent, independent of whether they collaborated with a
Random (M̂alternation = .20) or Optimal (M̂alternation = .21)
partner (p([reward-optimal > reward-random])= .560).
In contrast, participants in the Switch condition al-
ternated more when they collaborated with a Ran-
dom partner (M̂alternation=.27) than if they collab-
orated with an Optimal partner (M̂alternation=.13;
p([switch-optimal > switch-random])< .001).

Next, we investigated participant’s choice behavior (see
Table 1). Information Type did influence how often partic-
ipants chose the long-term option (p(β̂1 > 0)=.008, M

β̂1
=-

.26). Participants likely developed a stronger preference for
the long-term option when they observed a partner’s rewards
rather than a partner’s alternation behavior. In contrast, a
partner’s performance (i.e., Partner Type) did not have any
overall impact on the proportion of participants’ long-term
choices (p(β̂2 > 0)=.608, M

β̂2
=.029). However, similar to

participants’ alternation behavior, there is a strong interaction
(M

β̂1x2
=-.38, p(β̂1x2> 0)<.001).

With near certainty participants who worked with an Opti-
mal partner preferred the long-term option more when seeing
their partner’s rewards (M̂Long−term choice=.44) than when see-
ing their partner’s alternation behavior (M̂Long−term choice=.16;
p([reward-optimal > reward-random])= .999). In contrast,
participants chose the long-term option to the same extent
regardless of whether they saw a Random partner’s rewards
(M̂Long−term choice=.26) or alternations (M̂Long−term choice=.31,
p([switch-optimal > switch-random])= .207).

Reinforcement Learning Model: Describing and
Predicting Behavior
When employing repeated decision-making tasks, RL mod-
els are often used to describe behavior. Gureckis and Love
(2009b) tested a range of RL models in the Farming on Mars
task. In the following, we will use one of these, consisting

of a Q-learning update rule, a softmax choice function, and
an eligibility trace (ET). This model is of particular interest
because the ET permits memory for past choices which is
particularly critical in the current task.

We took a two step approach to determine whether the
model could recreate human behavior. First, the model was
fitted to the choice data collected in the experiment and the
parameter estimates analyzed. Second, we simulated alter-
nation and choice behavior on individual trials by using the
best-fitting parameter values and the participant’s sequence
of choices over prior trials. This approach reproduces the pa-
rameter estimation routine. Together, these evaluations allow
us to investigate how and how well the ET model accounts for
human behavior in this task and provide insights into mecha-
nisms that can and cannot explain aspects of the findings.

Model Definition After every trial, t, the model updates
the subjectively expected outcome, Q j, associated with each
option, j, based on the difference between the subjectively
expected and experienced outcome, r, also called prediction
error. These adjustments are modulated by a learning rate,
0 ≤ ρ ≤ 1. The ET model includes a trace, λ, that cap-
tures how often each option has been chosen in the past and
uses this trace to update beliefs of recently chosen options
(Bogacz, McClure, Li, Cohen, & Montague, 2007; Gureckis
& Love, 2009b). How rapidly memory for past actions fades
is controlled by a decay parameter, τ. Greater values of τ rep-
resent a faster decay (i.e., outcomes are attributed to choices
in the recent rather than far past). A decay parameter of τ=1
reduces the ET model to the conventional RL model.

Q j, t+1 = Q j, t +ρλ j,t [r j,t −Q j,t ] (2)

λ j, t =

{
(1− τ)λ j,t−1 +1 if j is selected
(1− τ)λ j,t−1 otherwise

(3)

The model feeds these subjectively expected outcomes into
a softmax choice function (Luce, 1959; Sutton & Barto,
2018) which generates probabilistic preferences and, ulti-
mately, a dichotomous choice on each trial. θ is a free param-
eter that indicates the stochasticity of participants’ choices.

p j,t =
eθQ j,t

eθQ1,t + eθQ2,t
(4)

Estimation Applying a global optimization algorithm
(Virtanen et al., 2020; Wales & Doye, 1997) to the behav-
ioral data described above, we generated participant-level es-
timates of ρ, τ, and θ.

Estimated parameter values suggested that the manipula-
tions of Partner and Information Type influenced distinct as-
pects of the learning process (see Table 2). Partner Type in-
fluenced the learning rate for those receiving switch infor-
mation, with participants in the switch-random condition ex-
hibiting the most rapid updating (Mρ = .527), likely support-
ing the increased alternation observed in that condition. In
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Table 2: Mean Parameter Estimates.

Learning
Rate (ρ)

ET decay
(τ)

Determinism
(100∗θ)

Reward-Optimal .410 .596 .303
Reward-Random .424 .760 .414
Switch-Optimal .208 .632 .563
Switch-Random .527 .628 .384

contrast, Partner Type influenced the decay rate for those re-
ceiving reward information. Estimates of the ET decay rate
were greatest in the reward-random condition (Mτ = .760)
and smallest in the reward-optimal condition (Mτ = .596).
It is also notable that estimated decay values implied that
all participants attributed outcomes to choices made on ear-
lier trials—a central mechanism of the task environment—to
some extent.

Qualitative Check When participants’ specific choice his-
tories were used, the ET model reproduced the general trends
found in human alternation and choice behavior (see Fig-
ures 1c and 1d). In the reward-optimal condition, participants
were expected to choose the long-term option more often, es-
pecially after trial ∼50. Further, participants in the switch-
optimal condition were expected to choose the long-term op-
tion the least often and also alternate least. In the two Random
partner conditions, the models chose the long-term option to
roughly the same extent, especially towards the end of the
trial sequence.

Overall, the ET model seems capable of reproducing most
of the group differences found in the experiment. Especially
the model’s ability to reproduce alternations despite using pa-
rameters fitted to choice behavior, suggests that the model
might be a good description of the underlying mechanism.

Discussion
Overall, we found that both Partner Type (Random vs. Op-
timal) and social Information Type (Switch vs. Reward) im-
pacted participants’ alternation behavior and choices. First,
participants with access to an Optimal partner’s rewards were
the only participants that consistently developed any prefer-
ence for the long-term option and, consequently, earned more
than participants in any other condition. This finding is in
line with previous results (Nedic, 2011), which have demon-
strated that access to others’ rewards can be more helpful
than access to others’ choice behavior. However, in contrast
to Gonzalez (2005) and potentially intuition, learning from
an Optimal partner was not always advantageous. If partici-
pants only had access to an Optimal partner’s alternation be-
havior, they explored less than, and performed worse than,
any other participants. This seemingly counterintuitive and
divergent finding can be attributed to only having access to
incomplete information. Finally, participants’ alternation be-
havior revealed that participants who had access to a Random
partner’s alternation behavior alternated more than any other

participants and participants who had access to an Optimal
partner’s alternation behavior, alternated less than any other
participants. These results indicate that participants imitated
their partner’s behavior, at least to some extent. However,
the increase in exploration evoked by observing a Random
partner’s alternation behavior was not sufficient to lead par-
ticipants out of the learning trap and toward more optimal
performance.

We analyzed our behavioral data using an RL model that
included eligibility traces. The model yielded sensible pa-
rameter estimates, and was able to account for the behav-
ioral results for both long-term choice preferences and alter-
nations. Models exhibited less alternation and updated beliefs
more slowly (i.e., lower learning rate) in the switch-optimal
condition than in any other group. We then used participants’
specific choice sequence to generate single choices. The re-
sulting simulated data revealed that the model was able to re-
create the preferences found in behavioral data. Overall, the
parameter estimates are moderately consistent with the data,
and were sufficient to reproduce the relevant aspects of par-
ticipants’ behavior. Further, it seemed like the experimental
manipulations, especially with respect to the type of partner
information, might impact different steps within the learning
process. For example, participants observing partner’s alter-
nation behavior showed different learning rates dependent on
what type of partner they collaborated with. Participants who
saw partner’s rewards showed differences in the ET decay,
but not the learning rate. Given these findings, the models’
ability to serve as a description of participant’s learning in an
as-if capacity should be recognized.

Despite the performance of the ET model, the primary op-
portunities for future work lie in model development. Al-
though existing social learning models (e.g., McElreath et al.,
2005; Najar, Bonnet, Bahrami, & Palminteri, 2020; Nedic,
2011; Toyokawa et al., 2017) can be adapted, they cannot be
used as-is as they rely on integrating information about part-
ners’ choice behavior, which our participants did not have ac-
cess to. Another interesting question is whether social learn-
ing in this task is advantageous relative to individual learn-
ing. In addition to a ‘no social learning’ control condition, a
condition in which participants have access to a partner’s al-
ternation behavior as well as their rewards might be of further
interest. Such a design would permit inferences about which
combination of information types offers the best opportuni-
ties to learn from social sources.

Deciding between exploring and exploiting different op-
tions is not an easy task by itself. Having access to infor-
mation about how others make this trade-off might seem to
help weigh exploration and exploitation. However, the cur-
rent study shows that this notion crucially depends on the type
of information and performance of the partner in non-trivial
ways. Senselessly emulating a partner’s behavior can have
beneficial and detrimental effects, but does not seem to be the
right answer either way.
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