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Abstract

Azo dyes and their intermediate degradation products are common contaminants of soil and
groundwater in developing countries where textile and leather dye products are produced. The
toxicity of azo dyes is primarily associated with their molecular structure, substitution groups
and reactivity. To avoid contamination of natural resources and to minimize risk to human
health, this wastewater requires treatment in an environmentally safe manner. This manuscript
critically reviews biological treatment systems and the role of bacterial reductive and oxidative
enzymes/processes in the bioremediation of dye-polluted wastewaters. Many studies have
shown that a variety of culturable bacteria have efficient enzymatic systems that can carry out
complete mineralization of dye chemicals and their metabolites (aromatic compounds) over a
wide range of environmental conditions. Complete mineralization of azo dyes generally
involves a two-step process requiring initial anaerobic treatment for decolorization, followed by
an oxidative process that results in degradation of the toxic intermediates that are formed
during the first step. Molecular studies have revealed that the first reductive process can be
carried out by two classes of enzymes involving flavin-dependent and flavin-free azoreductases
under anaerobic or low oxygen conditions. The second step that is carried out by oxidative
enzymes that primarily involves broad specificity peroxidases, laccases and tyrosinases. This
review focuses, in particular, on the characterization of these enzymes with respect to their
enzyme kinetics and the environmental conditions that are necessary for bioreactor systems to
treat azo dyes contained in wastewater.
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Introduction

Azo dyes are the largest group of synthetic dyes used in the

textile and dye products industries, most of which are located

in developing countries around the world. While it is well

established that many of these compounds are toxic, muta-

genic and genotoxic to wildlife and humans (Dafale et al.,

2010; Fraga et al., 2009; Osugi et al., 2009; Tsuboy et al.,

2007), every year, thousands of tons of azo dyes are released

into the environment by direct discharge to waterways.

Depending on the types of dyes that are used, the amounts

that are discharged in wastewater can range from 2% of the

original concentration for basic dyes to as high as 50% for

reactive dyes (Boer et al., 2004; Tan et al., 2000).

Subsequent human exposure can then occur by dermal

exposure to wastewater, use of contaminated groundwater

for human consumption or by less well-studied indirect routes

involving plant uptake and food chain transfer. Still other

effects include reduction of light penetration into surface

water that has been contaminated with dye wastewater,

and increases in biological oxygen demand (BOD)

(Bae & Freeman 2007), leading to eutrophication of water-

ways. For these reasons, there is an urgent need to develop

low cost, effective strategies for the treatment of dye-polluted

water, as well as development of new non-toxic synthetic dyes

to prevent their deleterious effects on human and aquatic life.

Although various physical, chemical and biological

strategies are used for treatment of azo dyes, the process

varies for individual dyes depending on their molecular

structure. Many dyes are not easily degraded by either

biological or physical treatment (Hsueh et al., 2009) and

physico-chemical methods can produce additional waste

products that makes use of these methods impractical

(Sharma et al., 2013). For this reason, complete mineraliza-

tion of dyes using microorganisms is an attractive option that

takes advantage of the metabolic versatility of microorgan-

isms that can target broad classes of dye chemicals (Khalid

et al., 2012; Mohanty et al., 2006; Sadettin & Donmez,

2007; Saratale et al., 2011). A variety of bacteria, fungi and

algae are able to degrade azo compounds via reductive and

oxidative enzymes, many of which function over the range of

environmental conditions relevant to wastewater treatment

(Prasad & Aikat, 2014). Along with the development of

inocula that can be used for wastewater treatment, azo dyes

also can be removed from wastewater by direct enzymatic

treatment using purified or partially purified enzymes (Rojas-

Melgarejo et al., 2006). Enzymatic methods also provide
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advantages such as better standardization of the treatment

process, easy handling and storage and essentially no

dependence on the need to maintain cultures of active

bacterial cells (Husain & Husain 2008; Husain et al., 2009).

Toxicity of azo dyes and their intermediates

Many azo dyes and their intermediates are toxic, mutagenic

and carcinogenic (Shah et al., 2013) and affect higher

organisms in both aquatic and terrestrial systems

(Puvaneswari et al., 2006). The toxicity of azo dyes varies

depending on their structural complexity, substitution groups

and reactivity (Maran & Sild, 2003). Recently, several

researchers have reported the toxicity of synthetic dyes in

contaminated ecosystems (Dafale et al., 2010; Fraga et al.,

2009; Osugi et al., 2009). According to Ferraz et al. (2010),

the azo dyes Disperse Red 1 and Disperse Red 13 also are

mutagenic to Salmonella, suggesting that they may affect the

activity and composition of microbial communities comprised

of bacteria that are sensitive to these toxins.

Dye structure-associated toxicity

Since azo dyes exhibit wide variability in their chemical

structure, it is not possible to generalize mutagenic responses

for all azo compounds. However, it is well established that

differences in the toxicity and mutagenic activity of azo dyes

are strongly dependent on their chemical structure

(Pissurlenkar et al., 2007; Umbuzeiro et al., 2005). Specific

features that contribute to mutagenicity of azo dyes are related

to differences in substitution sites, and the number and

position of hydroxyl and sulpho groups adjacent to the azo

bond (Table 1). For example, dyes containing a hydroxyl

group at the ortho position are more toxic than those

containing a hydroxyl group at the para position (Tauber

et al., 2005). Likewise, differences in biodegradability are

associated with particular features. In studies examining this

phenomenon, Pasti-Grigsby et al. (1992) found that a

hydroxyl group at position 2 of the naphthol ring increased

biodegradability, while Zimmermann et al. (1982) reported

that sulpho groups at ortho and para positions hindered

biodegradation.

Many researchers have observed that particular chemical

structures affect the rates of biodegradation for different dyes.

Hsueh & Chen (2007) observed a rapid biodegradation of

Methyl Orange azo dye containing a sulfonic group (a strong

electron-withdrawing group) at the para position relative to

the azo bond (–N¼N–). The presence of sulphonic groups on

the benzene ring of some dyes confers detergent properties to

the dye molecule, which can exert an inhibitory effect on

microbial growth (Shah, 2014). In another study, Hsueh et al.

(2009) found that the biodegradation of naphthol type azo dye

with a hydroxyl group at ortho to azo bond was faster than

that of non-naphthol type azo dye without a hydroxyl group.

Likewise, azo dyes with electron-withdrawing groups (e.g.

sulfo group in Reactive Red 198, Reactive Black 5 and

Reactive Red 141) decolorize faster than the azo dyes with the

electron-releasing groups (–NH-triazine in RB171 and

RG19). This work also suggested that the number of electron

withdrawing groups is very important with respect to

degradation of azo dyes as they observed fast decolorization

rates for those dyes that have more electron withdrawing

groups such as Reactive Red 198, Reactive Black 5 and

Reactive Red 141 (Hsueh et al., 2009).

The presence of particular substitution elements, especially

chlorine, also contributes to the mutagenic activity of dyes.

For instance, the dye Disperse Red 1 is more toxic than

Disperse Red 13 due to the presence of additional chlorine

atoms in its crystal lattice structure. Similarly, all of the azo

dyes with nitro groups are more toxic and have higher

mutagenic activity than dyes without this moiety (Brown

et al., 1978; Nestmann et al., 1981). Azo dye toxicity also

depends on the nature and position of the aromatic rings

and the amino nitrogen atom. For example, 2-methoxy-

4-aminoazobenzene is an extremely weak mutagen, whereas

3-methoxy-4- aminoazobenzene is a strong hepatocarcinogen

and mutagen (Esancy et al., 1990; Garg et al., 2002).

Likewise, the presence of sulphonic groups on aromatic

amines decreases their mutagenicity whereas the acetoxy

Table 1. Structure-related toxicity of azo dyes.

Dye name
Major structural characteristics of dyes or
their degradation products causing toxicity References

2-Hydroxyphenyl azo-20-naphthol azo dye Naphthalen-2-ol and 4-aminophenol Deb et al. (2011)
Acid Violet 7 Acetoxy (COCH3) substituent on the aromatic amine Ben Mansour et al. (2009b)
Acid Violet 7 40-Aminoacetanilide exhibited a strong genotoxicity, which

was imputed to the presence of the acetoxy (COCH3)
substituent on the aromatic amine

Ben Mansour et al. (2009a)

Acid Violet 7 and Acid Green 25 Presence of the acetoxy (COCH3) substitute Fabbri et al. (2010)
Acids yellow 17, Violet 7 and Orange 52 40-Aminoacetanilid (40-AA) imputed to the presence of the

acetoxy (COCH3) substituent on the aromatic amine
Ben Mansour et al. (2009c)

Direct Black 38 (DB38) Benzidine and 4-aminobiphenyl (4-ABP) Bafana et al. (2009)
Direct Blue 76, Direct Blue 218 Copper present in these direct dyes Bae & Freeman (2007)
Disperse Blue 373, Disperse Orange 37,

Disperse Violet 93
Tertiary amine (–N (CH2CH3)(CH2CH2OH) Carneiro et al. (2010)

Disperse Orange 1, Disperse Red 1 and
Disperse Red 13

Tertiary amine (–N (CH2CH3)(CH2CH2OH) Osugi et al. (2009)

Orange 52 N,N0-dimethyl-p phenylenediamine and sulfanilic Acid Ben Mansour et al. (2007)
Reactive Black 5 and Procion dyes 1-Amino-2-naphthol and vinyl sulphone Gottlieb et al. (2003)
Reactive Red 141 2-Aminophenol (2AP) and 3- aminophenol (3AP) Chen et al. (2009)
Remazol Black-5 Aromatic amines formed during anoxic conditions Dafale et al. (2010)

2 S. Mahmood et al. Crit Rev Biotechnol, Early Online: 1–13
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(COCH3) substituent increases their mutagenic effects

(Pasha et al., 2008; Roy et al., 2006).

Aromatic amines/intermediate-linked toxicity

Most azo dyes are manufactured from precursor compounds

that are known carcinogens, such as benzidine, naphthalene

and other aromatic compounds. Aromatic amines are released

after cleavage of azo bonds by microflora containing

azoreductases (Prasad & Aikat, 2014). Moreover, aromatic

amines are also produced when azo dyes come in contact with

sweat, saliva or gastric juices of living organisms (Pielesz,

1999; Pielesz et al., 2002). Similarly, ingested azo dyes can

be reduced to constitutive aromatic amines by the action of

anaerobic intestinal microflora or by mammalian azoreduc-

tases that are produced in the intestinal wall or liver (Chequer

et al., 2011). Aromatic amines are resistant to the traditional

wastewater treatment methods, so they are more persistent in

the environment than dyes (Chen et al., 2009). Within the

broad class of azo dyes, those that are produced from aromatic

amines, including benzidine and 4-biphenylamine, 4-amino-

biphenyl, monoacetylbenzidine and acetylaminobiphenyl,

pose a particularly serious threat to the environment

(Cerniglia et al., 1986; Chung, 2000). Nitroanilines are

commonly generated during the biodegradation of azo dyes

under anaerobic conditions (Khalid et al., 2009; van der Zee

& Villaverde, 2005). Toxicity of these metabolic products

also affects performance and ability of the dye decolorizing

bacteria that are used for wastewater treatment.

Toxicity to human, plants and aquatic life

Toxicity of azo compounds to higher organisms commonly

involves transformation of the parent molecules. In mammals,

transformation of azo dyes by hepatic cytochrome P450

enzymes leads to the formation of epoxides and/or reactive

oxygen species that damage DNA. Ben Mansour et al. (2007)

demonstrated a significant pro-oxidant effect, which suggests

that the mutagenicity mechanism occurs through a free radical

generation process. According to Umbuzeiro et al. (2005)

and Tsuboy et al. (2007), the acetoxy group (COCH3) located

on the benzene ring can be metabolized by the P450 enzyme

and other hepatic enzymes generating radical mutagenic

intermediates. Likewise, mutagenicity of these compounds

may occur through free radical generation and formation of

reactive oxygen species (Ben Mansour et al., 2007).

Reactivity of the azo group is critical for mutagenic activity

(Osugi et al., 2009). Biochemical activation through

N-hydroxylation, followed by sulfation, esterification or

acetylation reactions, generates reactive intermediates that

are able to bind to DNA and largely accounts for the

carcinogenicity of arylamines (Pinheiro et al., 2004).

Toxicity is directly related to the concentration of these

compounds and high doses can be lethal, causing formation of

micronuclei, DNA fragmentation and increased apoptotic

index in human hepatoma cells (Chequer et al., 2009). Some

dyes are reported to cause allergy, dermatitis, skin irritation,

eye irritation and respiratory irritation in humans (Keharia &

Madamwar, 2003). Dyes are also generally linked with the

induction of bladder cancer in humans, and of splenic

sarcomas, hepatocarcinomas and nuclear anomalies in

experimental animals (Puvaneswari et al., 2006; Rafii

et al., 1997). In the 1970s, intestinal cancer was relatively

more common in highly industrialized societies, and was

investigated in relation to the use of azo dyes (Chung et al.,

1978; Wolff & Oehme, 1974). Recent studies have indicated

that azo dyes also cause phytotoxicity (Ayed et al., 2011;

Khaliq et al., 2013).

Toxicity of azo dyes and their metabolic products can be

examined using various systems. For example, a micronucleus

assay was used by Rajaguru et al. (1999) to study the

mutagenic activity of azo dyes in mouse bone marrow,

whereas Tsuboy et al. (2007) examined the toxicity of azo

dyes using a heptoma cell test (HepG2). Likewise, the Ames

assay and the SOS chromotest have been used to study the

mutagenicity of azo dyes and their metabolites in Salmonella

and Escherichia coli, respectively (Ben Mansour et al., 2007,

2009b).

Bioremediation of azo dyes by bacteria

A wide range of organisms including bacteria, fungi, algae

and in some cases, plants have been reported to degrade azo

compounds. However, bacteria are receiving attention world-

wide due to their capabilities to degrade a variety of dyes

efficiently under anaerobic or aerobic conditions (Table 2).

Bacteria can remove azo compounds from the environment

through a number of different mechanism(s) including

biosorption, bioaccumulation, reduction, oxidation and

sequential reduction–oxidation processes. Biosorption makes

use of live or dead microbial biomass to remove dyes from the

contaminated wastewater (Du et al., 2012; Khehra et al.,

2005). In the case of bioaccumulation, the dyes are degraded

after intracellular uptake by the cells (Xin et al., 2010).

Biodegradation via reduction process

A large number of bacterial species have been identified that

are capable of degrading azo dyes under reduced (anaerobic)

conditions (Oturkar et al., 2011; Sha et al., 2014). These

bacteria initially cleave the azo bond with the help of an

azoreductase enzyme. This process, called decolorization,

leads to the formation of colorless aromatic amines under

reduced conditions. To date, several bacterial species have

been reported to decolorize azo dyes under reduced condi-

tions (Table 2).

Several studies have demonstrated that the decolorization

of azo dyes is enhanced under micro-aerophilic conditions

(Joshi et al., 2008; Sandhya et al., 2005; Xu et al., 2007).

An accelerated degradation of reactive azo dyes has been

observed under partially reduced conditions (Khalid et al.,

2012). The reduction of azo dyes under partially reduced

conditions may require an alternative redox mediator to

transfer electrons from NADH to the dye molecule (Chang

et al., 2001; Isik & Sponza, 2003). Some azo dyes also are

degraded under aerobic conditions (Sarayu & Sandhya, 2010;

Ayed et al., 2011). However, the efficiency of the process

may decrease in the presence of oxygen (Pearce et al., 2006),

due to competition between oxygen and the dyes as electron

acceptors. Although a concomitant increase in microbial

biomass has been shown to occur in dye polluted water under

aerobic conditions, the degradation process does not appear to

DOI: 10.3109/07388551.2015.1004518 Detoxification of azo dyes by bacteria 3
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be as efficient as under reduced conditions (Isik & Sponza,

2003; Xu et al., 2007). This implies that the dye decoloriza-

tion process is mainly dependent on oxygen concentration, not

on microbial biomass. Similarly, the process is also very much

dependent on the availability and nature of electron donors

(Brige et al., 2008; Hong et al., 2008; Modi et al., 2010).

Most of the anaerobic reduction processes are location

specific but can take place both in cytoplasmic and membrane

fractions isolated from bacterial cells (Kudlich et al., 1997).

However, an essential component required for electron

transport from electron donors to azo compounds is thought

to be located in membrane fractions from bacterial cell

extracts (Hong et al., 2007a, 2009). This implies that the

coupling of oxidation of electron donor and reduction of azo

dyes is a universal biochemical phenomenon for azo dyes

degradation.

Biodegradation via oxidative processes

The colorless products consisting of aromatic compounds

generated from the reductive cleavage of azo dyes are usually

mineralized completely under aerobic conditions (Pandey

et al., 2007). Aerobic degradation is a multiple step process

and may include autoxidation, desulfonation, demethylation

and deamination reactions (Oturkar et al., 2011; Singh,

2006). Gan et al. (2011) reported that different enzymes

such as protocatechuate dioxygenases and aromatic ring

hydroxylases are responsible for the cleavage of aromatic

rings. Similarly, Dawkar et al. (2008) reported that laccases

are involved in the demethylation of aromatic compounds.

Hydroxylation dioxygenases have been reported to be

involved in oxidative deamination reactions forming phenol

like compounds (Lin et al., 2010). These oxidative enzymes

are released in the extracellular matrix of the bacteria and

hence aromatic amines could be degraded extracellularly,

whereas aromatic amines with ortho-substituted hydroxyl

groups may undergo autoxidation (Kudlich et al., 1999). In

this case, aromatic amines are initially oxidized to oligomers

and eventually to dark colored polymers with low solubility

that can easily be removed from the water phase (Klibanov &

Morris, 1981). Overall, there is a wide variation in the

oxidative degradation of different aromatic amines. For

example, in one study, Gan et al. (2011) depicted the

mineralization of 4-aminobenzensulfonate by Ralstonia and

Hydrogenophaga sp. In this mineralization process, oxygen

was introduced and degradation occurred through aromatic

ring hydroxylation carried out by dioxygenase enzymes

following a beta-ketoadipate pathway (Parales & Resnick,

2006). This process leads to the formation of non-toxic end

products including carbon dioxide, ammonium and sulfates.

Singh et al. (2007) suggested another mechanism in which

4-aminobenzensulfonate was first oxidized into catechol-

4-sulfonate by a strain of Hydrogenophaga intermedia,

after which this metabolite was further utilized by an

Agrobacterium radiobacter strain S2 most likely through

3,4-dioxygenase I and 3,4-dioxygenase II enzymes.

Laccases also oxidize aromatic amines such as anilines and

phenols, in the presence of oxygen (Bollag, 1992; Chivukula

& Renganahathan, 1995; Hoff et al., 1985). In this reaction,

the substrates are oxidized by an electron transfer step to

produce the corresponding phenoxy radicals. These radicals

are also polymerized to generate a phenolic polymer or can be

oxidized by laccase to produce quinone (Bollag, 1992).

Electrons received thereby are subsequently transferred to

oxygen and reduced to water. Pereira et al. (2009) also

proposed a pathway for the biotransformation of the azo dye

Sudan Orange G (SOG) by CotA-laccase. In this study, azo

dyes were oxidized without cleavage of the azo bond via free

radical highly non-specific mechanism, forming phenolic type

compounds. Toxic aromatic amines are not produced in this

mechanism (Chen, 2006). Free radicals generated by a

biotransformation process participate in coupling reactions

with intact dye and/or intermediate molecules. Oligomeric or

polymeric condensation products are the result of coupling

reactions between the intermediates of dye laccase-oxidative

process (Kandelbauer et al., 2004; Moldes et al., 2004).

Biodegradation via sequential reduction–oxidation
processes

Recently, anaerobic–aerobic sequential processes have

become popular for the treatment of azo dyes released by

the dye-products industry. Biodegradation of azo dyes

invariably starts with reductive cleavage of azo bond under

anaerobic conditions, generating amine-related structures that

are not completely degraded under anaerobic conditions

(Farabegoli et al., 2010; Hong et al., 2007b). However, such

amines are reported to be readily biotransformed under

aerobic conditions (Elbanna et al., 2010; Steffan et al.,

2005). Therefore, a sequential anaerobic–aerobic system

could be useful for the complete mineralization of azo dyes

in wastewater. Many researchers unequivocally support this

premise. Supaka et al. (2004) used a mixed culture of the

genera Paenibacillus and Pseudomonas for the degradation of

reactive azo dyes Remazol Brilliant Orange 3R, Remazol

Black B and Remazol Brilliant Violet 5R under anaerobic–

aerobic conditions. The results of this study indicated that

under anaerobic conditions, the azo dyes were converted to

aromatic amines through reduction enzymes. After re-aer-

ation of the synthetic dye wastewater, these amines were

further degraded by the same isolates. Similarly, Khalid et al.

(2009) reported degradation of Disperse Orange-3 and its

byproduct 4-nitroaniline under sequential anaerobic–aerobic

conditions using a 3-member bacterial consortium. Likewise,

Elbanna et al. (2010) reported a complete mineralization of

Reactive Lanasol Black B (RLB), Eriochrome Red B (RN)

and 1,2 Metal Complexes I Yellow in anaerobic–aerobic

sequential system using a consortium of Lactobacillus casei,

Lactobacillus paracasei and Lactobacillus rhamnosus. Single

strains can also perform the sequential process, but may be

less efficient, leading to partial degradation of azo dyes

(Hong et al., 2007a). In one such study, Hong et al. (2007a)

used the bacterial strain Shewanella decolorationis S12,

which completely decolorized the Amaranth dye under

anaerobic conditions, but when it was exposed to aerobic

conditions, the byproducts of amaranth (1-aminenaphthylene-

4-sulfonic acid and 1-aminenaphthylene-2-hydroxy-3,6-

disulfonic acid) were only partially mineralized. The

1-aminenaphthylene-2-hydroxy-3,6-disulfonic acid was

completely removed while another component,

DOI: 10.3109/07388551.2015.1004518 Detoxification of azo dyes by bacteria 5
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1-aminenaphthylene-4-sulfonic acid, was not affected when

the cells were exposed to aerobic conditions. However, this

strain could completely mineralize other dyes like Fast Acid

Red GR under microaerophilic conditions (Xu et al., 2007).

Although more decolorization was observed under anaerobic

conditions, aromatic amines (aniline, 1,4-diaminobenzene and

1-amino-2-naphthol) generated from reductive cleavage of

azo dyes under microaerophillic conditions may accumulate

(Xu et al., 2007). These studies clearly demonstrate that

bacterial consortia can be more effective for the complete

mineralization of dyes than single strain cultures employing a

sequential anaerobic–aerobic treatment system.

Bacterial enzymes responsible for the degradation of
azo dyes

Recently, there has been interest in the development of direct

enzymatic processes for the treatment of dye-contaminated

wastewater (Champagne & Ramsay, 2010; Kalme et al.,

2009; Misal et al., 2011; Wang et al., 2011). Many studies

show that both reductive and oxidative enzymes play key

roles in the biodegradation of azo dyes (Table 3). With new

methods for enzyme immobilization and stabilization using

inert materials or encapsulation, pure enzymes offer many

advantages for development of a biotreatment process for

cleanup of azo dye containing wastewater.

Reductive enzymes

It is well established that the first step of azo dyes degradation

is reduction via azoreductase enzymes. Two broad types of

azoreductases including flavin-dependent and non-flavin

reductases have been reported (Blumel & Stolz, 2003;

Maier et al., 2004; Suzuki et al., 2001). Flavin-dependent

azoreductases usually reduce azo dyes through a Ping–Pong

Bi–Bi mechanism (Nakanishi et al., 2001; Ryan et al., 2010;

Wang et al., 2010). In this mechanism, two cycles of

NADPH-dependent reduction of FMN to FMNH occur,

converting azo dye to a hydrazine in the first step, and then

the hydrazine to two constitutive amines in the second step

(Correia et al., 2011; Ryan et al., 2010). Flavin dependent

azoreductases are polymeric in nature, and flavin molecules

are non-covalently attached with protein and link the dimeric

sub units of azoreductases (Liger et al., 2004). Flavin

contributes thermal stability to azoreductase enzyme

(Natalello et al., 2007). In general, flavin enzymes exhibit

broad substrate specificity with respect to the chemical

structure and size of the dye substrate, making it particularly

non-specific for any dye group (Goncalves et al., 2013).

The azoreductases are classified into two groups on the

basis of their electron donor requirements. The first includes

flavin containing azoreductases, which show preference for

NADH, while the second performs better with NADPH as a

reductant for azo dye decolorization (Chen et al., 2005;

Maier et al., 2004; Punj & John, 2008). Burger & Stolz

(2010) isolated a flavin free azoreductase enzyme from

Xenophilus azovorans KF46F strain. It was one of the first

flavin free azoreductase that was found to be oxygen tolerant.

The mechanism by which this enzyme functions for reduction

of azo dyes involves an ordered bioreactant reaction mech-

anism, which is different from the Ping–Pong mechanism

used by flavin containing enzymes. These flavin free

azoreductases also preferentially utilize NADPH as a

reductant.

Some other enzymes like NADH-DCIP reductase and

riboflavin reductase have been reported to function for

reduction of azo dyes (Ghodake et al., 2009; Kalyani et al.,

2008; Telke et al., 2009), but so far these have had limited

application for the reduction of azo dyes. Most of these

enzymes are shown to be ineffective in vivo (Blumel et al.,

2002; Russ et al., 2000). Limited transport of dyes across the

cell membrane and high reactivity of many of the ortho

aminohydroxy aromatics that are formed after the reductive

cleavage of the azo dyes restrict the reaction of azoreductases

(Grundmann, 1979; Kudlich et al., 1999). Russ et al. (2000)

suggested that the cytoplasmic anaerobic azoreductases are

flavin reductases and could function for extracellular reduc-

tion of azo dyes via an electron mediator. These mediators

allow transfer of redox equivalents from the cell membrane of

bacteria to azo dyes. A pre-requisite for these mediators

would be a greater ability to pass bacterial membranes than

flavins. This suggests that the microbial strains with the

ability to decolorize azo dyes require not only the presence of

azoreductases but also a transport system which allows the

absorption of dyes in cells. Thus, there is a need for research

to investigate the optimal range of conditions in which pure

enzymes might be used.

Oxidative enzymes

A variety of oxidative enzymes are also used for the

degradation of dyes (Aftab et al., 2011). These include

lignin peroxidase, laccase and tyrosinase. During decoloriza-

tion of Orange T4LL, a significant induction in the activities

of lignin peroxidase, tyrosinase and reductases (NADH-DCIP,

azo and riboflavin) was observed (Dawkar et al., 2010). Dye

degrading peroxidase degrades typical peroxidase substrates,

but also degrades hydroxyl free anthraquinone, which is not

transformed by other peroxidases (Marchis et al., 2011;

Sugano et al., 2006). Likewise, a combination of lignin

peroxidases and veratyl alcohol also enhances decolorization

of azo and anthraquinone dyes (Joshi et al., 2010). Recently,

it was reported that mono-rhamnolipid like molecules

significantly increased the extracellular activities of lignin

peroxidase and veratryl alcohol oxidase, the enzymes

involved in dye degradation (Jadhav et al., 2011). This

effect may be due to protection from inactivation of the

enzyme by hydrogen peroxide or interactions that facilitate

the complete oxidation–reduction cycle for the lignin perox-

idase (Young & Yu, 1997). Telke et al. (2009) reported a

novel enzyme, a laccase-like phenol oxidase that has the

ability to react with non-phenolic substrates. Lignin peroxid-

ase catalyzes the depolymerization of methylated lignin in dye

degradation process (Saratale et al., 2009, 2011).

Laccases are oxidoreductases or multi-copper oxidases that

are widely used to oxidize a variety of dye by-products by

coupling reduction of oxygen to water with concomitant

oxidation of the dye product substrates (Kurniawati & Nicell,

2007, 2009; Morozova et al., 2007). Laccases catalyze

decolorization of textile dyes either by direct oxidation or

via indirect oxidation using mediators to accelerate the

6 S. Mahmood et al. Crit Rev Biotechnol, Early Online: 1–13
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reaction (Khlifi et al., 2010). The presence of redox medi-

ators is required for a number of biotechnological applica-

tions, serving for oxidation of complex substrates. Normally,

laccase mediators are good substrates for laccase, stable in

oxidized and reduced form and have no inhibitory effect upon

enzyme activity (Gonzalez et al., 2009). Relatively few

bacterial laccases have been studied with respect to their

ability to degrade azo dyes (Pereira et al., 2009; Singh et al.,

2007). However, laccases produced by Streptomyces are

reported to be effective for the decolorization of textile dyes

(Dube et al., 2008; Lu et al., 2013; Molina-Guijarro et al.,

2009). Gottlieb et al. (2003) demonstrated the usefulness of a

laccase enzyme produced by Streptomyces cyaneus CECT

3335. Redox mediators play an important role in oxidative

degradation by Streptomyces laccases, primarily by facilitat-

ing the movement of electrons in the system (Gonzalez et al.,

2009). Dye-degrading peroxidases are reported to degrade

hydroxyl-free anthraquinone dyes (Marchis et al., 2011;

Sugano et al., 2006). A combination of lignin peroxidases

and veratyl alcohol was found to enhance the decolorization

of azo and anthraquinone dyes (Joshi et al., 2010). The role

of lignin-degrading enzymes in the treatment of contaminated

effluent is also established, however their utilization demands

a thorough understanding of lignin degrading organisms and

their enzyme systems. Although oxidative enzymes produced

by fungi are also used for the degradation of azo dyes,

bacterial enzymes generally have greater heat stability and

broader substrate specificity (Hilden et al., 2009; Lee et al.,

2003; Reiss et al., 2011). Moreover, these can be produced in

a short time, operating in aqueous solvent at neutral to basic

pH (Wells et al., 2006), which is a common pH of real dye-

contaminated textile wastewater. Therefore, use of bacterial

enzymes seems to be one of the viable options for degrading

the dyes present in industrial effluents.

Structure and function of dye-degrading enzymes

Several azoreductases have been identified in bacteria but

very little is known about the structural basis for substrate

specificity and the nature of reaction. The subtle changes in

an enzyme structure lead to substrate binding and release.

These changes highlight the fine control and access to the

catalytic site that are required by the Ping–Pong mechanism,

and in turn, the specificity is offered by the enzyme towards

different substrates. The topology surrounding the active site

shows novel features of substrate recognition and binding that

help to explain and differentiate the substrate specificity

observed among different bacterial azoreductases (Goncalves

et al., 2013). The monomer and dimer structures of the

azoreductases determine their substrate specificity and

thermostability (Brissos et al., 2014). Gene sequences have

been determined for both dimeric azoreductases (Matsumoto

et al., 2010; Nakanishi et al., 2001) and monomeric enzymes

(Blumel & Stolz, 2003; Blumel et al., 2002). Dimeric

azoreductases are thought to be more thermostable (Ooi

et al., 2012) and these enzymes also show broad substrate

specificity for azo dye reduction (Mendes et al., 2011).

Both flavin-dependent and flavin-free azoreductases have

been described at the molecular level in the literature. In most

cases, the genes encoding aerobic flavin-dependent

azoreductases have been cloned from a variety of bacteria

including Bacillus sp. OY1-2 (Suzuki et al., 2001),

Escherichia coli (Nakanishi et al., 2001), Xenophilus azovor-

ans KF46F (Blumel et al., 2002), Pigmentiphaga kullae K24

(Blumel & Stolz, 2003), Enterococcus faecalis (Chen et al.,

2004), Geobacillus stearothermophilus (Mendes et al.,

2011). All flavo-enzymes by definition contain a covalently

or non-covalently bound flavin as a functional cofactor.

Typically, they contain either flavin mononucleotide (FMN)

or flavin adenine dinucleotide (FAD) having an isoalloxazine

ring system, which enables them to catalyze one and two

electron transfer reactions (Hefti et al., 2003). Recently, a

strictly anaerobic azoreductase enzyme was also characterized

from Clostridium perfringens by Morrison et al. (2012). The

enzyme activity was highest in the presence of two cofactors,

NADH and FAD. The azoreductase gene was found to be

homologous to either an FMN reductase or a flavodoxin-2

conserved region.

Very few studies have reported flavin free-azo reductases.

Two monomeric flavin-free azoreductases from X. azovorans

KF46F (Blumel et al., 2002; Zimmermann et al., 1982) and

P. kullae K24 (Blumel & Stolz, 2003) have been described.

The deduced protein sequences from these cloned genes did

not show significant homologies with flavin-dependent

azoreductases and probably both types of reductases evolved

from different origins (Chen et al., 2004).

Enzyme technology: some practical considerations

Successful treatment of dye-polluted wastewater using

enzyme-based technology requires that the dye-degrading

enzymes can be stably maintained in the treatment system.

Thermal stability and the ability of azo dye degrading

enzymes to function over a wide temperature range are thus

very important for their practical application. To date, a large

number of azoreductases have been shown to function over

temperature ranges from 25 to 85 �C (Table 3). Sharma et al.

(2013) observed maximum azoreductase activity at the

normal growth temperature (37 �C) for mesophilic bacteria.

Yang et al. (2013) reported an azoreductase that retained 85%

of is maximal activity at 25 �C at temperatures ranging from

30 to 40 �C. Matsumoto et al. (2010) reported a thermostable

azoreductase having an optimal temperature of 85 �C for

degradation of Methyl Red (MR). This enzyme remained

active for 1 h at 65 �C and for 1 month at 30 �C, demonstrating

superior long-term stability. Another azoreductase, known as

AzrA, exhibited optimal activity at temperature between 65

and 75 �C (Ooi et al., 2007), while 85 �C was the optimal

temperature for AzrG that exhibited remarkable activity

toward several azo compounds (Matsumoto et al., 2010). In

particular, the activity toward Acid Red 88 at 85 �C was

increased compared to 30 �C. Similarly, bacterial laccases

have been reported to be effective for the degradation of azo

dyes over a wide temperature range (40–60 �C) (Wang et al.,

2009).

Among other environmental factors, pH control is a key

factor for practical application of dye degrading enzymes

(Bibi et al., 2012; Mahmood et al., 2013). Azoreductases

exhibiting dye-degradation activities have been shown to

function over a wide range from as low as pH 4.0) and as high

8 S. Mahmood et al. Crit Rev Biotechnol, Early Online: 1–13
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as pH 9 (Johansson et al., 2011; Maier et al., 2004; Misal

et al., 2011; Sharma et al., 2013; Yang et al., 2013). In

contrast, bacterial laccases are reported to have their highest

activities under neutral to alkaline conditions (Reiss et al.,

2011). Metals are also widely used in dye synthesis and may

influence azoreductase activity. Usually, high concentrations

of metal ions such as chromium significantly inhibit enzyme

activity (Aksu & Karabayir 2008; Mahmood et al., 2013). In

contrast, Mg2+ and Mn2+ may enhance the activity of

azoreductases (Yang et al., 2011).

During treatment processes, immobilization of dye-

degrading enzymes on specific support material could be

critical to determine whether introduced enzymes will

function effectively for removal of azo dyes from industrial

effluents. Our review of the literature suggests that there has

not yet been serious work aimed at the treatment of azo dyes

using immobilized azoreductases. Some researchers reported

decolorization of azo dyes using immobilized or spore-bound

bacterial laccases (Held et al., 2005; Hilden et al., 2009).

The crude enzyme mixture containing hydrolase was self-

sustaining and the respective reaction occurred without any

necessary cofactors. Efficacy of these enzymes in treatment

systems can possibly be enhanced by optimizing immobil-

ization procedures. Various materials such as calcium alginate

gel capsules, activated charcoal, charcoal pellets or biochar

can be potential materials for immobilization of dye

degrading enzymes.

Conclusions

Bacteria that produce versatile dye-degrading enzymes can be

used for the bioremediation of dye-polluted effluents. The use

of such bacteria for the removal of dye contaminants could be

very effective due to their fast growth rate and high perform-

ance in bioreactors. Nevertheless, considerable research is still

required to develop this biotechnology for the treatment of

dye-contaminated wastewater on a large scale. Molecular

studies should be conducted for monitoring activities of

degrading bacterial community in the treatment system.

Bacterial derived enzymes can also be directly used for the

treatment of azo dyes. In many cases, cell-free or isolated

enzymes are preferred for use over the intact organisms,

especially when the effluent to be treated contains pollutants

that inhibit microbial growth (Mugdha & Usha, 2012).

However, incorporation of enzymes into real treatment

systems requires extensive research for the optimization of

system conditions. Molecular level studies of bacterial reduc-

tive and oxidative enzymes that degrade azo dyes have

centered on their phylogeny and broad structural characteris-

tics, but have not yet addressed the active sites and features

affecting their specificity toward different dyes. Much research

is required to develop cost effective methods for application of

enzymes on a large scale. These processes are very promising

for the biodegradation of synthetic azo dyes and can be a future

strategy to tackle the dye contaminated wastewater problem.

Acknowledgements

The authors gratefully acknowledge the Pakistan Higher

Education Commission for financial support of Shahid

Mahmood, and Azeem Khalid.

Declaration of interest

The authors have no declarations of interest to report.

References

Aftab U, Khan MR, Mehfooz M, et al. (2011). Decolourization and
degradation of textile azo dyes by Corynebacterium sp. isolated from
industrial effluent. Pak J Zool, 43, 1–8.

Ahmed SGKA. (2014). Aerobic bacterial degradation and decolorization
of different azo dyes. J Biol Agric Healthcare, 4, 72–81.

Aksu Z, Karabayir G. (2008). Comparison of biosorption properties of
different kinds of fungi for the removal of Gryfalan Black RL metal-
complex dye. Bioresour Technol, 99, 7730–41.

Anjaneya O, Souche SY, Santoshkumar M, Karegoudar TB. (2011).
Decolorization of sulfonated azo dye Metanil Yellow by newly
isolated bacterial strains: Bacillus sp. strain AK1 and Lysinibacillus
sp. strain AK2. J Hazard Mater, 190, 351–8.

Ayed L, Mahdhi A, Cheref A, Bakhrouf A. (2011). Decolorization and
degradation of azo dye Methyl Red by an isolated Sphingomonas
paucimobilis: biotoxicity and metabolites characterization.
Desalination, 274, 272–7.

Bae JS, Freeman HS. (2007). Aquatic toxicity evaluation of copper-
complexed direct dyes to the Daphnia magna. Dyes Pigments, 73,
126–32.

Bafana A, Chakrabarti T, Devi SS. (2008). Azoreductase and dye
detoxification activities of Bacillus velezensis strain AB. Appl
Microbiol Biotechnol, 77, 1139–44.

Bafana A, Chakrabarti T, Muthal P, Kanade G. (2009). Detoxification of
benzidine-based azo dye by E. gallinarum: time-course study. Ecotox
Environ Saf, 72, 3960–4.

Ben Mansour H, Corroler D, Barillier D, et al. (2007). Evaluation of
genotoxicity and pro-oxidant effect of the azo dyes: acids yellow 17,
violet 7 and orange 52, and of their degradation products by
Pseudomonas putida mt-2. Food Chem Toxicol, 45, 1670–7.

Ben Mansour H, Corroler D, Barillier D, et al. (2009a). Influence of the
chemical structure on the biodegradability of acids yellow 17, violet 7
and orange 52 by Pseudomonas putida. Ann Microbiol, 59, 9–15.

Ben Mansour H, Mosrati R, Corroler D, et al. (2009b). In vitro
mutagenicity of acid violet 7 and its degradation products by
Pseudomonas putida mt-2: correlation with chemical structures.
Environ Toxicol Phamacol, 27, 231–6.

Ben Mansour H, Mosrati R, Limem I, et al. (2009c). Genotoxic and
antibutyrylcholinesterasic activities of acid violet 7 and its biodeg-
radation products. Drug Chem Toxicol, 32, 230–7.

Bheemaraddi MC, Shivannavar CT, Gaddad SM. (2013). Isolation and
characterization of an azo dye reactive red 2 degrading bacteria from
dye contaminated soil. Int J Pharm Biol Sci, 4, 711–22.

Bibi R, Arshad M, Asghar HN. (2012). Optimization of factors for
accelerated biodegradation of reactive black-5 azodye. Int J Agric
Biol, 14, 353–9.

Blumel S, Knackmuss H, Stolz A. (2002). Molecular cloning and
characterization of the gene coding for the aerobic azoreductase from
Xenophilus azovorans KF46F. Appl Environ Microbiol, 68, 3948–55.

Blumel S, Stolz A. (2003). Cloning and characterization of the gene
coding for the aerobic azoreductase from Pigmentiphaga kullae K24.
Appl Microbiol Biotechnol, 62, 186–90.

Boer CG, Obici L, de Souza CG, Peralta RM. (2004). Decolorization of
synthetic dyes by solid state cultures of Lentinula (Lentinus) edodes
producing manganese peroxidase as the main ligninolytic enzyme.
Bioresour Technol, 94, 107–12.

Bollag JM. (1992). Enzymes catalyzing oxidative coupling reactions of
pollutants. Metal Ions Biol Syst, 28, 205–17.

Brige A, Motte B, Borloo J, et al. (2008). Bacterial decolorization of
textile dyes is an extracellular process requiring a multicomponent
electron transfer pathway. Microbial Biotechnol, 1, 40–52.

Brissos V, Goncalves N, Melo EP, Martins LO. (2014). Improving
kinetic or thermodynamic stability of an azoreductase by directed
evolution. PLoS One, 9, e87209.

Brown JP, Roehm GW, Brown RJ. (1978). Mutagenicity testing of
certified food colours and related azo, xanthene and triphenylmethane
dyes with the Salmonella/microsome system. Mutat Res, 56, 249–71.

Burger S, Stolz A. (2010). Characterisation of the flavin-free oxygen-
tolerantbazoreductase from Xenophilus azovorans KF46F in

DOI: 10.3109/07388551.2015.1004518 Detoxification of azo dyes by bacteria 9

C
ri

tic
al

 R
ev

ie
w

s 
in

 B
io

te
ch

no
lo

gy
 D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
U

ni
ve

rs
ity

 o
f 

G
eo

rg
ia

 L
ib

ra
ri

es
 o

n 
03

/1
0/

15
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.



comparison to flavin-containing azoreductases. Appl Microbiol
Biotechnol, 87, 2067–76.

Carneiro PA, Oliveira DP, Umbuzeiro GA, Zanoni MVB. (2010).
Mutagenic activity removal of selected disperse dye by photoele-
trocatalytic treatment. J Appl Electrochem, 40, 485–92.

Cerniglia CE, Zhuo Z, Manning BW, et al. (1986). Mutagenic activation
of the benzidine-based dye direct black 38 by human intestinal
microflora. Mutat Res, 175, 11–16.

Champagne PP, Ramsay JA. (2010). Dye decolorization and detoxifi-
cation by laccase immobilized on porous glass beads. Bioresour
Technol, 101, 2230–5.

Chan FC, Rashid NAA, Koay LL, et al. (2011). Identification and
optimization of Novel NAR-1 bacterial consortium for the biodeg-
radation of orange II. Insight Biotechnol, 1, 7–16.

Chang JS, Chou C, Lin Y, et al. (2001). Kinetic characterization of
bacterial azo dye decolorization by Pseudomonas luteola. Water Res
35, 2841–50.

Chen H. (2006). Recent advances in azo dye degrading enzyme research.
Curr Protein Pept Sci, 7, 101–11.

Chen BY, Yen C, Chen W, et al. (2009). Exploring threshold operation
criteria of biostimulation for azo dye decolorization using immobi-
lized cell systems. Bioresour Technol, 100, 5763–70.

Chen H, Hopper SL, Cerniglia CE. (2005). Biochemical and molecular
characterization of an azoreductase from Staphylococcus aureus,
a tetrameric NADPH-dependent flavoprotein. Microbiology, 151,
1433–41.

Chen H, Wang R, Cerniglia CE. (2004). Molecular cloning,
overexpression, purification, and characterization of an aerobic
FMN-dependent azoreductases from Enterococcus faecalis. Protein
Expres Purif, 34, 302–10.

Chequer FMD, Angeli JPF, Ferraz ERA, et al. (2009). The azo dyes
Disperse Red 1 and Disperse Orange 1 increase the micronuclei
frequencies in human lymphocytes and in HepG2 cells. Mutat Res,
676, 83–6.

Chequer FMD, Dorta DJ, de Oliveira DP. (2011). Azo dyes and their
metabolites: does the discharge of the azo dye into water bodies
represent human and ecological risks? In: Hauser PJ, ed. Advances in
treating textile effluent. Croatia: InTech, 27–48.

Chivukula M, Renganahathan V. (1995). Phenolic azo dye oxidation
by laccase from Pyricularia oryzae. Appl Environ Microbiol, 61,
4374–7.

Chung KT, Fulk GE, Egan M. (1978). Reduction of azo dyes by
intestinal anaerobes. Appl Environ Microbiol, 35, 558–62.

Chung KT. (2000). Mutagenicity and carcinogenicity of aromatic amines
metabolically produced from azo dyes. Environ Carcinog Ecotoxicol
Rev, 18, 51–74.

Correia B, Chen Z, Mendes S, et al. (2011). Crystallization and
preliminary X-ray diffraction analysis of the azoreductase PpAzoR
from Pseudomonas putida MET94. Acta Cryst, 67, 121–3.

Dafale N, Agrawal L, Kapley A, et al. (2010). Selection of indicator
bacteria based on screening of 16S rDNA metagenomic library from a
two-stage anoxic–oxic bioreactor system degrading azo dyes.
Bioresour Technol, 101, 476–84.

Dawkar VV, Jadhav UU, Jadhav SU, Govindwar SP. (2008).
Biodegradation of disperse textile dye Brown 3REL by newly isolated
Bacillus sp. VUS. J Appl Microbiol, 105, 14–24.

Dawkar VV, Jadhav UU, Tamboli DP, Govindwar SP. (2010). Efficient
industrial dye decolorization by Bacillus sp. VUS with its enzyme
system. Ecotoxicol Environ Saf, 73, 1696–703.

Deb T, Choudhury D, Guin PS, et al. (2011). A complex of Co(II) with
2-hydroxyphenyl-azo-2-naphthol (HPAN) is far less cytotoxic than the
parent compound on A549-lung carcinoma and peripheral blood
mononuclear cells: reasons for reduction in cytotoxicity. Chem Biol
Interact, 189, 206–14.

Dhanve RS, Kalyani DC, Phugare SS, Jadhav JP. (2009). Coordinate
action of exiguobacterial oxidoreductive enzymes in biodegradation of
reactive yellow 84A dye. Biodegradation, 20, 245–55.

Du L-N, Wang B, Li G, et al. (2012). Biosorption of the metal complex
dye Acid Black 172 by live and heated biomass of Pseudomonas sp.
strain DY1: kinetics and sorption mechanisms. J Hazard Mater, 29,
47–54.

Dube E, Shareck F, Hurtubise Y, et al. (2008). Homologous cloning,
expression, and characterisation of a laccase from Streptomyces
coelicolor and enzymatic decolourisation of an indigo dye. Appl
Microbiol Biotechnol, 79, 597–603.

Elbanna K, Hassan G, Khider M, Mandour R. (2010). Safe biodegrad-
ation of textile azo dyes by newly isolated lactic acid bacteria and
detection of plasmids associated with degradation. J Bioremed
Biodegrad, 1, 112. doi: 10.4172/2155-6199.1000112.

Esancy JF, Freeman HS, Claxton LD. (1990). The effect of alkoxy
substituents on the mutagenicity of some aminoazobenzene dyes and
their reductive-cleavage products. Mutat Res, 238, 1–22.

Fabbri D, Calza P, Prevot AB. (2010). Photoinduced transformations of
Acid Violet 7 and Acid Green 25 in the presence of TiO2 suspension.
J Photochem Photobiol A Chem, 213, 14–22.

Farabegoli G, Chiavola A, Rolle E, Naso M. (2010).
Decolorization of Reactive Red 195 by a mixed culture in an
alternating anaerobic–aerobic Sequencing Batch Reactor. Biochem
Eng J, 52, 220–6.

Ferraz ERA, Umbuzeiro GA, de-Almeida G, et al. (2010). Differential
toxicity of disperse Red 1 and disperse Red 13 in the Ames test,
HepG2 cytotoxicity assay, and Daphnia acute toxicity test. Environ
Toxicol, 26, 489–97.

Fraga LE, Anderson MA, Beatriz MLPMA, et al. (2009). Evaluation of
the photoelectrocatalytic method for oxidizing chloride and simultan-
eous removal of microcystin toxins in surface waters. Electrochim
Acta, 54, 2069–76.

Galai S, Youssoufi HK, Marzouki MN. (2014). Characterization of
yellow bacterial laccase SmLac/role of redox mediators in azo dye
decolorization. J Chem Technol Biotechnol, 89, 1741–50.

Gan HM, Shahir S, Ibrahim Z, Yahya A. (2011). Biodegradation of
4-aminobenzenesulfonate by Ralstonia sp. PBA and Hydrogenophaga
sp. PBC isolated from textile wastewater treatment plant.
Chemosphere, 82, 507–13.

Garg A, Bhat KL, Bock CW. (2002). Mutagenicity of aminoazobenzene
dyes and related structures: a QSAR/QPAR investigation. Dyes
Pigments, 55, 35–52.

Gayathri R, Kavi A, Meena P, et al. (2014). Biodegradation of azo dyes
by using soil bacteria. Int J Eng Res Technol, 3, 738–41.

Ghodake GS, Kalme SD, Jadhav JP, Govindwar SP. (2009). Purification
and partial characterization of lignin peroxidase from Acinetobacter
calcoaceticus NCIM 2890 and its application in decolorization of
textile dyes. Appl Biochem Biotechnol, 152, 6–14.

Goncalves AMD, Mendes S, de Sanctis D, et al. (2013). The crystal
structure of Pseudomonas putida azoreductase – the active site
revisited. FEBS J, 280, 6643–57.

Gonzalez MD, Vidal T, Tzanova T. (2009). Electrochemical study of
phenolic compounds as enhancers in laccase-catalyzed oxidative
reactions. Electroanalysis, 21, 2249–57.

Gottlieb A, Shaw C, Smith A, et al. (2003). The toxicity of textile
reactive azo dyes after hydrolysis and decolourisation. J Biotechnol,
101, 49–56.

Grundmann C. (1979). Ortho-Chinone. In C. Grundmann, ed., Methoden
der organischen Chemie (Houben-Weyl), part II. Chinone. 4th ed., vol.
7/3b. Stuttgart, Germany: Georg Thieme Verlag, 144.

Handayani W, Meitiniarti VI, Timotius KH. (2007). Decolorization of
Acid Red 27 and Reactive Red 2 by Enterococcus faecalis under a
batch system. World J Microbiol Biotechnol, 23, 1239–44.

Hefti MH, Vervoort J, van Berkel WJ. (2003). Deflavination and
reconstitution of flavoproteins. Eur J Biochem, 270, 4227–42.

Held C, Kandelbauer A, Schroeder M, et al. (2005). Biotransformation of
phenolics with laccase containing bacterial spores. Environ Chem
Lett, 3, 74–7.

Hilden K, Hakala TK, Lundell T. (2009). Thermotolerant and thermo-
stable laccases. Biotechnol Lett, 31, 1117–28.

Hoff T, Liu SY, Bollag JM. (1985). Transformation of halogen-, alkyl,
and alkoxy-substituted anilines by a laccase of Trametes versicolor.
Appl Environ Microbiol, 49, 1040–5.

Hong Y, Chen X, Guo J, et al. (2007a). Effects of electron donors and
acceptors on anaerobic azo dyes reduction by Shewanella decolor-
ationis S12. Appl Microbiol Biotechnol, 74, 230–8.

Hong Y, Guo J, Sun G. (2008). Characteristic and phylogenetic analysis
of facultative anaerobic dissimilatory azo-reducing bacteria from
anaerobic active sludge. Int Biodeter Biodegrad, 61, 313–18.

Hong Y, Guo J, Sun GP. (2009). Energy generation coupled to the
azoreduction by the membranous vesicles from Shewanella decolor-
ationis S12. J Microbiol Biotechnol, 19, 37–41.

Hong Y, Xu M, Guo J, et al. (2007b). Respiration and growth of
Shewanella decolorationis S12 with an azo compound as sole electron
acceptor. Appl Environ Microbiol, 73, 64–72.

10 S. Mahmood et al. Crit Rev Biotechnol, Early Online: 1–13

C
ri

tic
al

 R
ev

ie
w

s 
in

 B
io

te
ch

no
lo

gy
 D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
U

ni
ve

rs
ity

 o
f 

G
eo

rg
ia

 L
ib

ra
ri

es
 o

n 
03

/1
0/

15
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.



Hsueh C, Chen B. (2007). Comparative study on reaction selectivity of
azo dye decolorization by Pseudomonas luteola. J Hazard Mater, 141,
842–9.

Hsueh CC, Chen BY, Yen CY. (2009). Understanding effects of chemical
structure on azo dye decolorization characteristics by Aeromonas
hydrophila. J Hazard Mater, 77, 2101–8.

Husain M, Husain Q. (2008). Applications of redox mediators in the
treatment of organic pollutants by using oxidoreductive enzymes: a
review. Crit Rev Environ Sci Technol, 38, 1–41.

Husain Q, Husain M, Kulshrestha Y. (2009). Remediation and treatment
of organo-pollutants mediated by peroxidases: a review. Crit Rev
Biotechnol, 29, 94–119.

Isik M, Sponza DT. (2003). Effect of oxygen on decolorization of azo
dyes by Escherichia coli and Pseudomonas sp. and fate of aromatic
amines. Process Biochem, 38, 1183–92.

Ito K, Nakanishi M, Lee WC, et al. (2008). Expansion of substrate
specificity and catalytic mechanism of azoreductase by X-ray
crystallography and site-directed mutagenesis. J Biol Chem, 283,
13889–96.

Jadhav SB, Phugare SS, Patil PS, Jadhav JP. (2011). Biochemical
degradation pathway of textile dye Remazol red and subsequent
toxicological evaluation by cytotoxicity, genotoxicity and oxidative
stress studies. Int Biodeter Biodegrad, 65, 733–43.

Jadhav UU, Dawkar VV, Tamboli DP, Govindwar SP. (2009).
Purification and characterization of veratryl alcohol oxidase from
Comamonas sp. UVS and its role in decolorization of textile dyes.
Biotechnol Bioprod Eng, 14, 369–76.

Jin R, Yang H, Zhang A, et al. (2009). Bioaugmentation on decolor-
ization of C.I. Direct Blue 71 by using genetically engineered strain
Escherichia coli JM109 (pGEX-AZR). J Hazard Mater, 163, 1123–8.

Joe M, Lim SY, Kim DH, Lee IS. (2008). Decolorization of textile dyes
by Clostridium bifermentans SL186 isolated from contaminated soil.
World J Microbiol Biotechnol, 24, 2221–6.

Johansson HE, Johansson MK, Wong AC, et al. (2011). BTI1, an
azoreductase with pH-dependent substrate specificity. Appl Environ
Microbiol, 77, 4223–5.

Joshi SM, Inamdar SA, Telke AA, Tamboli DP. (2010). Exploring the
potential of natural bacterial consortium to degrade mixture of dyes
and textile effluent. Int Biodeter Biodegrad, 64, 622–8.

Joshi T, Iyengar L, Singh K, Garg S. (2008). Isolation, identification
and application of novel bacterial consortiumTJ-1 for the decolour-
ization of structurally different azo dyes. Bioresour Technol, 99,
7115–21.

Kalme S, Jadhav S, Jadhav M, Govindwar S. (2009). Textile dye
degrading laccase from Pseudomonas desmolyticum NCIM 2112.
Enzyme Microb Technol, 44, 65–71.

Kalyani DC, Patil PS, Jadhav JP, Govindwar SP. (2008). Biodegradation
of reactive textile dye Red BLI by an isolated bacterium Pseudomonas
sp. SUK1. Bioresour Technol, 99, 4635–41.

Kandelbauer A, Erlacher A, Cavaco-Paulo A, Gübitz GM. (2004).
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