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Abstract 

Although we possess intuitions about pedagogy from early in 
life, adults commonly fail to teach effectively in real-world 
situations. Why might adults struggle in more complex 
teaching tasks? Here we develop a simple teaching task where 
adults fail to teach naïve learners, despite reporting high 
confidence that they taught effectively. Using a formal model 
of a rational teacher, we analyze the sources of our adult 
teachers’ failures. Our model-based analyses reveal that 
teachers successfully provided high-quality examples, but 
failed to address hypotheses that naïve learners find plausible. 
We validate these results in a second experiment, where we 
find that constraining learners’ hypothesis space increases 
their performance in the task. Our findings help bridge the 
gap between children’s teaching proficiency in constrained 
tasks, and adults’ teaching failures in more naturalistic tasks. 

Keywords: social cognition; theory of mind; pedagogy; 
computational modeling. 

Introduction 
Our propensity to share what we know with others allows 
our species to compile extensive bodies of knowledge over 
time, ameliorating the need for each generation to acquire 
information firsthand. But despite the ubiquity of our 
species’ pedagogical interactions, the act of sharing what we 
know is far from straightforward. Explaining too much is 
tedious and inefficient; explaining too little is ineffective. 
To teach well, we must decide what and how much to share. 
And to avoid providing the wrong amount of information, 
we must take into account what learners already know. But 
in choosing what to share, we face an epistemic problem: 
we cannot see other people’s knowledge. Thus, to teach 
well, we must infer what others know, and rely on these 
inferences to decide what and how much information to 
share. 

Impressively, children seem to solve this challenging 
problem from early on. Young children can reason about 
others’ beliefs even when those beliefs are incorrect 
(Wellman, Cross & Watson, 2001), and they are sensitive to 
features of teaching that make for a successful pedagogical 
interaction (i.e., whether teachers provide data that matches 
their learners’ needs; Gweon & Asaba, 2017; Gweon, 
Shafto & Schulz, 2014). Toddlers will point to share 
information with ignorant (but not knowledgeable) adults 
(Liszkowski, Carpenter & Tomasello, 2008), and by the late 
preschool years, children can identify and address learners’ 

errors during a simple teaching task (Ronfard & Corriveau, 
2016; Strauss, Ziv & Stein, 2002). Children also gauge the 
utility of different pieces of information in the context of 
learners’ goals and costs, and choose to share the utility-
maximizing information (Bridgers, Jara-Ettinger, & Gweon, 
2016).  

Puzzlingly, adults do not always teach as proficiently as 
one might expect, given children’s early pedagogical 
successes. Most of us can probably recall failing to get a 
point across despite our best intentions, and many studies 
have documented that adults often fail to teach effectively in 
unconstrained interactions (Chi, Siler, Jeong, Yamauchi & 
Hausmann 2001; Chi, Siler & Jeong, 2004; see VanLehn, 
2011 for review).  

If children already possess intuitions about successful 
teaching during the first few years of life, why does adult 
teaching so often break down in naturalistic tasks? Tasks 
where adults fail are often more complex than those where 
children and adults succeed. As such, there are many more 
pieces of information a teacher could choose to provide. 
Perhaps when teachers are confronted with so many options, 
they struggle to decide what information to share. Under 
this account, teachers may fail to teach effectively because 
they cannot distinguish helpful from unhelpful information. 
Alternatively, teachers may struggle to represent the specific 
hypotheses their learners consider plausible, especially in 
complex domains. Under this account, teachers succeed in 
simple tasks because they can represent learners’ hypothesis 
spaces easily, but fail in more complex tasks because they 
do not grasp the additional hypotheses learners consider. 

Naturally, both types of difficulties likely affect 
performance in complex tasks. Unfortunately, identifying 
the role that these limitations play has historically been 
challenging. Naturalistic tasks that elicit adult teaching 
failures are too complex to analyze formally. For example, 
Chi et al. (2004) asked college students to tutor 8th graders 
about the human circulatory system. These tutoring sessions 
lasted between 1.5 – 2 hours, with dialogue and questions 
encouraged. Despite the ability to query their learners and 
correct misunderstandings, Chi et al. (2004) found that after 
the tutoring session concluded, tutors tended to overestimate 
how much their students knew. And over the course of the 
tutoring session, tutors sometimes failed to detect, diagnose, 
and correct misconceptions. Because these tutoring sessions 
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were so long and unconstrained, it is difficult to identify the 
sources of teachers’ failures.  

Conversely, tasks that are susceptible to analysis are 
generally simpler, and teachers tend to succeed. Therefore, 
they do not reveal the sources of teachers’ difficulties. For 
example, Shafto, Goodman and Griffiths (2014) asked 
teachers to indicate the location and size of a rectangle by 
placing two markers on a screen. Learners would see only 
the markers, and would have to guess the location and size 
of the rectangle. Teachers in this task perform incredibly 
well, almost always placing markers in the two opposing 
corners of the rectangle (enabling learners to infer both 
relevant dimensions: size and location). In sum, tasks where 
teachers succeed tend to be simple and constrained. Tasks 
where teachers fail are more complex, and this complexity 
makes it difficult to identify the sources of teachers’ 
failures.  

In this paper, we bridge this divide by developing a 
teaching task complex enough to elicit teaching failures, but 
also simple enough to identify the causes of teachers’ 
difficulties. Relying on a standard model of pedagogy that 
explains how teachers and learners communicate 
successfully, we show that participants’ failures to teach 
cannot be explained by the quality of the examples they 
provide. Instead, our formal analyses suggest that teachers 
fail because learners’ hypothesis spaces are substantially 
larger than teachers assume. We validate our model 
conclusions through a second experiment, where we find 
that constraining learners’ hypothesis space increases their 
quantitative performance on their learning task. Altogether, 
our results are consistent with literature suggesting that 
pedagogy is impaired by a “curse of knowledge” (wherein 
participants’ ability to reason about naïve minds is impaired 
by their own privileged knowledge; Camerer, Loewenstein 
& Weber, 1989; Hinds, 1999; Nickerson, 1999). Our 
findings begin to shed light on how this curse arises. 

Computational framework 
Our computational framework is based on previous research 
investigating how people share information (Shafto et al., 
2014). Teachers can be formalized as generating data, given 
their knowledge of the correct hypothesis, and learners can 
be formalized as inferring the correct hypothesis, given the 
data that they receive. The process of teachers tailoring their 
data to learners, and learners reasoning about why the 
teacher provided that particular data, can be formalized 
through a pair of recursive equations: 
 𝑝!"#$!!"(𝐷|𝐻) ∝ 𝑝!"#$%"$(𝐻|𝐷) (1) 
and 
 𝑝!"#$%"$(𝐻|𝐷) ∝ 𝑝!"#$!!"(𝐷|𝐻), (2) 
 
where 𝒑𝒕𝒆𝒂𝒄𝒉𝒆𝒓(𝑫|𝑯) is the probability that the teacher will 
generate certain data, D, given the true hypothesis H, and 
𝒑𝒍𝒆𝒂𝒓𝒏𝒆𝒓(𝑯|𝑫) is the probability that the learner will infer 
the correct hypothesis given the data that they observe. 
These equations formalize the idea that rational teachers 
select data that will allow rational learners to infer the right 

hypothesis, and that rational learners infer this hypothesis 
by reasoning about why the teacher chose the data they did. 

The learner’s success in recovering the right hypothesis 
(Eq. 2) depends on two factors: the teacher’s data, and the 
learner’s hypothesis space. Here, our main interest is in 
using the model to evaluate teachers’ data. Thus, 
𝒑𝒕𝒆𝒂𝒄𝒉𝒆𝒓(𝑫|𝑯) is obtained from Study 1, and this data is 
evaluated using Equation 2. To gauge the quality of the 
data, we designed a set of hypothesis spaces that 
sequentially increase in size, by combining basic primitive 
hypotheses using two logical operators: AND (&), and OR 
(|). In our study, primitive hypotheses correspond to beliefs 
that a specific block must be on top of a machine for it to 
activate (see Study 1 methods for details). In the simplest 
hypothesis space, hypotheses consist of up to two primitive 
hypotheses combined by one logical operator (e.g. E; A&C; 
B|D).1 These hypotheses correspond to simple beliefs 
participants might hold about the machine (e.g., that block E 
makes the machine go; that blocks A and C together are 
required to make the machine go; that either block B or 
block D is required to make the machine go).  

This hypothesis space can be expanded by increasing the 
number of primitive hypotheses that can be combined 
(called the ceiling), and it can be modified depending on 
whether primitive hypotheses can only be combined by a 
single logical primitive (called single-primitive space; e.g. 
A&B&C; A|B|C), or by more than one primitive (called 
dual-primitive space; e.g., A&(B|C); (A&B)|C). 

Study 1 
Study 1 consisted of a teaching task and a learning task (run 
across participants). Participants in the teaching task learned 
how to activate a machine, and were then asked to generate 
examples that would show a naïve participant how the 
machine works. Participants in the learning task saw a set of 
these examples, and then were asked to infer how the 
machine works. Teachers’ performance was assessed based 
on the proportion of naïve participants who uncovered how 
the machine worked. The sources of any failures were 
analyzed by feeding teacher-selected data to our model. 

Methods 
Participants 220 participants were recruited from 
Amazon’s Mechanical Turk platform. The first 20 
participants (mean age = 35.4; range = 21-70) were assigned 
to the teacher condition, and the last 200 participants (mean 
age = 34.4; range = 19-68) were assigned to the learner 
condition. Five additional participants were recruited but not 
included in the study because they failed an inclusion 
question (teacher n = 2; learner n = 2) or because they did 
not follow task instructions (n = 1). 
Stimuli Stimuli consisted of images of a machine with a 
triangle on the front, and of 5 blocks. The color of the 

                                                             
1 We do not consider the hypothesis space that consists only of 

hypotheses with no logical primitives (A, B, C, D, E), because it does not 
contain the true hypothesis (B&E) used in our task. 
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triangle signaled whether the machine was on or off (see 
Figure 1). When two particular blocks (B and E) were 
placed on top of the machine together, it activated 
(henceforth referred to as the “B&E” rule). The presence or 
absence of other blocks did not affect the outcome.   
Procedure Teachers. Participants assigned to the teacher 
condition were told how the machine worked, and asked to 
generate between 3 and 20 unique examples that would 
teach a naïve learner the B&E rule. After generating their 
examples, teachers were asked to rate their confidence (on a 
Likert scale) that a naïve learner would learn the B&E rule 
from their examples. Critically, teachers were explicitly told 
that learners would know nothing about how the machine 
worked, but that their understanding of the machine would 
be tested after they saw teachers’ examples.  
Learners. Participants assigned to the learner condition 

were first familiarized with the machine, and taught how to 
distinguish between an inactive and an active machine. 
Unlike participants in the teacher condition, however, 
learners were not told how the machine works. Instead, 
learners were shown the examples that one of the teachers 
generated (with ten learners assigned to each of the twenty 
teachers) and they were asked to infer the underlying 
activation rule. Understanding was assessed in two ways: In 
the quantitative task, participants were shown every possible 
combination of block(s) on the machine, and indicated 
whether each combination would activate the machine or 
not (31 possible combinations). In the qualitative task, 
participants were asked to explain how the machine worked. 

 

 
Figure 1: Stimuli used in the study. The far right panel shows the 
activation rule teachers had to communicate (blocks B and E 
together made the machine turn on). 

Results 
Although participants in the teacher condition only had to 
produce a minimum of three examples, they produced an 
average of 8.2 examples (range = 3-20; SD = 4.4), with only 
two participants providing the minimum three unique 
examples. On the post-task confidence rating, teachers were 
confident that a naïve participant would successfully learn 
from their examples, with a mean confidence rating of 6.05 
on a 7-point scale (range = 5-7; SD = 0.76). 

Despite teachers’ confidence, not all participants in the 
learner condition succeeded in learning how the machine 
worked. Only 50% (n = 100) of participants performed at or 
near ceiling in the quantitative task, correctly identifying 
which block combinations activated the machine with one 
mistake or less (n = 88 performing perfectly). Nonetheless, 

the remaining 50% of participants showed evidence that 
they had partially learned how the machine worked. On 
average, these participants predicted whether the machine 
would be on or off correctly in 70.6% of trials, performing 
significantly above chance (n = 100; t(99) = 17.58; p < 
.001). Although it is possible that learner performance 
reflects only differences in motivation, a Monte-Carlo 
permutation test revealed this is not the case. Learners’ 
performance is significantly predicted by the teacher they 
were assigned to learn from (p = 0.03, 10,000 samples).  

To uncover the sources of learners’ difficulties, we next 
examined their qualitative explanations. 52% (n = 104) of 
learners correctly described how to activate the machine 
(answers independently coded by the first and second 
authors; Cohen’s κ = 0.85; p < .001). These learners were 
largely the ones who performed well on the quantitative task 
(86 performed perfectly, 6 made one error). Nine learners 
gave uninformative explanations (e.g., “When the machine 
is on, the triangle turns to the yellow color”) and were 
excluded from analyses. 

The remaining 43.5% of explanations most naturally fell 
into one of two categories: either referencing the right kinds 
of hypotheses, or the wrong kinds of hypotheses. 
Participants who provided the right kinds of explanations 
understood that the machine was activated by placing a 
certain combination of blocks on top, but didn’t quite figure 
out which ones (n = 42). Participants who provided the 
wrong kinds of explanations did not identify the relevant 
features of the task, producing explanations that referenced 
incorrect activation mechanisms (for example, believing that 
the distance between the blocks determined whether it 
would be activated or not, or that the blocks needed to form 
an English word for the machine to go; n = 45). 

Model-based Analysis 
To formally evaluate whether learners erred because 
teachers failed to infer their complete hypothesis space, we 
next analyzed teachers’ examples through our 
computational model. Given teachers’ examples, our model 
computes what learners should conclude from these 
examples, as a function of the hypotheses they are 
considering. If learners struggled in our task because 
teachers provided bad or confusing data, then our model 
should be unable to infer how the machine works, even 
under constrained hypothesis spaces. However, if learners 
struggled in our task because teachers provided helpful data 
that simply did not target their beliefs, then our model 
should find this data to be sufficient to infer how the 
machine works under constrained hypothesis spaces. 

We first evaluated the data using the simplest hypothesis 
space: a single-primitive hypothesis space with ceiling = 2 
(see Computational Framework for explanation of the 
ceiling and single/dual primitive parameters). Hypotheses in 
this space could be single blocks (e.g., B), and two blocks, 
combined with an AND or an OR operator, (e.g., B&E, or 
B|E; 30 hypotheses total). The model inferred the correct 
rule for 75% of teachers (n = 15), placing over 95% of the 
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posterior probability mass on the correct hypothesis (these 
results are identical when the mass threshold is decreased to 
50%). For the remaining 5 participants, the model continued 
to place the highest posterior probability on the correct 
hypothesis (B&E; on average 12%), but similar hypotheses 
were rated as equally plausible, preventing the right 
hypothesis from accruing a probability mass above 50%." 

Next, the hypothesis space was sequentially increased to 
identify the first space where the model usually failed to 
infer the underlying activation rule. The model continued to 
succeed for the same 75% of teachers in all single-primitive 
hypothesis spaces, for all ceiling values. By contrast, in the 
dual-primitive hypothesis spaces, the model concluded that 
participants should fail to learn the activation rule with a 
ceiling as low as 2. This hypothesis space contained 
hypotheses built from up to two primitive units, and 
combined with both types of logical primitives (e.g., 
(B&(E|C)); 120 hypotheses total). For this hypothesis space, 
the model inferred the activation rule for 25% of teachers (n 
= 5). The examples from the remaining teachers did not 
sufficiently narrow down the posterior hypothesis space. 
While no other hypotheses were ever rated as more likely 
than the B&E rule, there continued to be too many 
hypotheses left that were consistent with teachers’ data. 

Our results demonstrate that teachers provided examples 
informative enough for a rational learner model to infer the 
correct activation rule under constrained hypothesis spaces. 
This model assumed that examples were chosen by a teacher 
attempting to maximize the learner’s belief in the right 
hypothesis (Equation 2). Past work has established that, 
when learning from minimal data, this pedagogical 
assumption is critical (Shafto et al., 2014). To evaluate if 
this assumption was also critical in our analyses, we 
reanalyzed the data using an impaired model that did not 
treat the data pedagogically. In contrast to our main model, 
the impaired non-pedagogical model computed the posterior 
probability of the hypothesis space based on whether each 
hypothesis was consistent with the observed data (without 
any assumptions about how this data was selected). 
Intuitively, this corresponds to an assumption that the 
examples were randomly generated, rather than selected by 
a knowledgeable teacher.  

At the 50% probability mass threshold, the impaired 
model produced identical results, but it was less successful 
at the 95% probability mass threshold. For all single-
primitive hypothesis spaces, this model only placed over 
95% of the posterior probability mass on the correct 
hypothesis for 65% of teachers (n = 13). And for the dual-
primitive hypothesis space with a ceiling of 2, the impaired 
model only placed over 95% of the posterior probability 
mass on the correct hypothesis for 10% of teachers (n = 2). 
Additionally, the impaired model “learned” more slowly 
than the full pedagogical model. To succeed in placing over 
95% of the posterior probability mass on the true 
hypothesis, this model needed to observe 1 more example 
than the pedagogical model on average.  

In sum, given single-primitive hypothesis spaces, both 
models successfully learned the correct activation rule from 
the majority of teachers’ examples (with the impaired model 
performing more weakly at the 95% threshold). And given a 
larger, more complex dual-primitive hypothesis space, both 
models failed (even at the lowest possible ceiling of 2). That 
is, under some circumstances, both models found most 
teachers’ data to be sufficient. The fact that teachers’ 
examples were informative in the single-primitive 
hypothesis spaces (even at a conservative 95% probability 
mass threshold) suggests that teachers did not generate poor 
examples. Instead, this suggests that participants may have 
failed to teach well because they did not consider the entire 
space of learner hypotheses. 

Discussion 
Although teachers were confident they provided good data, 
many learners struggled to infer the activation rule. While 
these failures could arise from a lack of teacher motivation, 
teachers generally provided more examples than they 
needed to. Furthermore, our model-based analyses suggest 
that teachers’ data was informative, but only useful under 
narrow hypothesis spaces: because teachers failed to 
represent the breadth of learners’ beliefs, they failed to teach 
effectively. If this is the case, then learners whose beliefs 
are constrained to match teachers’ representations should be 
able to learn more effectively from this data.  

Study 2 
Learners were presented with the examples obtained from 
the teacher condition in Study 1. First, however, learners 
were shown the activation rules of similar machines, thus 
constraining their hypothesis space. By demonstrating that 
similar machines are always activated by one or more 
blocks, learners should now only consider hypotheses that 
consist of block combinations - independent of irrelevant 
features such as their spatial arrangement. Consequently, we 
predict that learner performance will improve, even given 
the same examples as learners in Study 1. 

Methods 
Participants 200 participants were recruited from Amazon 
Mechanical Turk (mean age = 34.4; range = 18 - 66).  
Stimuli We created images of two additional light-up 
machines (of a different size and color), each with a 
corresponding set of blocks).  
Procedure First, we constrained learners’ beliefs by 
introducing them to two other light-up machines. One 
machine was introduced with three blocks (one of which 
made it go), and the other with six blocks (three of which 
were needed to make it go). After learning the activation 
rules of these two machines, participants were introduced to 
the target machine from Study 1. The experiment then 
proceeded identically to the learner condition in Study 1. 
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Results 
Quantitatively, learners in Study 2 performed significantly 
better than learners in Study 1 (mean = 92%, SD = 16; p < 
.001, permutation test with 10,000 samples; Figure 2). 
Average learner scores (calculated by teacher) improved the 
most drastically for teachers whose learners had produced 
the most wrong kind explanations in Study 1: the difference 
between average learner performance in Study 1 and Study 
2 is marginally predicted by the number of wrong kind 
explanations learners gave in Study 1 (β = 0.7724; p = .064). 

As in Study 1, the first and second authors independently 
coded qualitative explanations (Cohen’s κ = 0.94; p < .001). 
Four participants provided uninformative explanations (e.g., 
“The machine turns on by the yellow triangle”) and were 
therefore excluded from qualitative analyses. As predicted, 
the number of correct qualitative explanations was 
significantly higher than in Study 1 (75% of participants 
giving the right activation rule; Fisher’s exact test, p < 
.001). Furthermore, while participants produced only 3 
fewer right kind explanations in contrast to Study 1 (n = 39), 
they produced 38 fewer wrong kind explanations (n = 7).  
 

 
Figure 2: Learner performance across studies. Each point 
represents average learner performance in Study 1 (x-axis) and 
Study 2 (y-axis) for a given teacher’s examples. Points above the 
diagonal indicate that learners with a constrained hypothesis space 
(Study 2) performed better than learners with an unconstrained 
hypothesis space (Study 1). 

Discussion 
Although learners in Study 2 saw the same examples as 
learners in Study 1, participants performed better on both 
the qualitative and quantitative measures. Moreover, 
performance improved the most for teachers whose 
examples had produced the most wrong kinds of 
explanations in Study 1. We investigated the mechanism 
behind this improvement, and found that learners in Study 2 
provided significantly fewer explanations that focused on 
the wrong kinds of hypotheses. These results indicate that 
we succeeded in constraining learners’ hypothesis spaces 
(because they were no longer considering the wrong kinds 

of hypotheses). These results also dovetail with those of our 
model-based analysis, providing strong evidence that 
teachers in Study 1 indeed chose helpful data, but misjudged 
learners’ initial hypothesis spaces. 

General Discussion & Conclusion 
Despite the ubiquity of teaching interactions, we often 
struggle to share information effectively (e.g., Chi et al., 
2004). Two types of teaching deficits could explain these 
suboptimal outcomes: perhaps teachers cannot decide what 
information will be helpful to share when they have many 
options. Or, perhaps teachers inaccurately represent the 
possibilities that learners are considering, and therefore 
provide good data that isn’t matched to learners’ beliefs. 

To distinguish between these two accounts, participants in 
our first study were assigned to a teaching or learning task. 
Although teachers in this task were confident they had 
taught well, naïve participants struggled to learn from their 
data. A formal analysis indicated that teachers chose 
informative data, but misrepresented the breadth of learners’ 
potential beliefs (and thus failed to address possibilities 
learners found likely).  In Study 2, we validated these results 
with an additional behavioral experiment, finding that when 
learners’ hypothesis spaces are constrained, all teachers’ 
examples become quite effective. Although these 
participants saw the exact same data as learners in Study 1, 
they performed significantly better on both our qualitative 
and quantitative measures. These findings indicate that, 
broadly, teachers did not struggle to choose informative 
data. Rather, they failed to infer the breadth of hypotheses 
learners were considering, and thus did not produce enough 
data to provide evidence against many of these possibilities. 

Although these findings are an exciting step towards 
better understanding pedagogy (and its boundaries), there 
are several limitations. First, in our formal analysis, our 
modeled ‘learners’ began by considering a particular 
hypothesis space, which became constrained as they 
observed teachers’ examples. But intuitively, real learners 
probably don’t start off with a large array of hypotheses 
they are considering. Rather, learners likely come up with a 
space of possibilities over time. Although this is a point 
where our model is likely incongruent with real learners’ 
reasoning, our model is not intended to capture the 
algorithms people use to build hypothesis spaces. It instead 
provides a computational-level analysis (Marr, 1982) of 
how teacher-provided data constrains hypothesis spaces of 
different sizes. Future work will investigate how learners 
generate hypotheses as a function of the examples they see. 

Second, the experiments reported in this paper were 
conducted on Amazon’s Mechanical Turk platform. 
Although teaching failures are often found in lab-based 
samples (e.g. Chi et al., 2004), it is possible that participants 
online performed poorly because they were unmotivated, or 
due to task-based constraints on their ability to generate 
examples for learners. Overall, it appears unlikely that 
teachers were unmotivated: most teachers provided more 
examples than required (even those the model failed to learn 
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from). And even learners who struggled usually performed 
far above chance. However, it is possible that the online 
format prevented teachers from producing certain types of 
examples, and thus teaching to their fullest capacity. Future 
work will address both of these possibilities by replicating 
Study 1 with an in-lab sample of teachers (with a real 
machine and blocks that they can use for demonstrations). 

Our findings also introduce some important future 
directions. For example, do teachers struggle to generate the 
types of hypotheses learners might be considering? Or do 
they generate an appropriate range of possibilities, but fail 
to evaluate which ones learners still find likely? Future work 
will address this question by providing teachers with 
different hypotheses a learner might consider on this task. 
Teachers will only have to rate the probability that a learner 
might consider each hypothesis. These judgments will be 
contrasted to those obtained from actual learners.  

It is also unclear exactly why teachers might have an 
overly narrow representation of learner’s hypothesis spaces. 
While our findings are certainly consistent with proposals 
that the curse of knowledge may affect our pedagogical 
abilities (Hinds, 1999; Camerer, 1992), there have been few 
formal investigations into how the curse of knowledge 
arises. How do agents with privileged information decide 
what the hypothesis space of a naïve agent looks like? One 
method might be to recall the hypotheses they themselves 
considered when they had been naïve. If this is the case, it 
would suggest that the more recently a participant has 
become knowledgeable, the better they will teach, because 
they will have better access to the range of hypotheses they 
were considering (e.g., Hinds, 1999). A different method 
might be to simply independently generate sets of plausible 
(but incorrect) alternatives to the truth. Future work should 
distinguish between these possibilities. By further clarifying 
the mechanism underlying teachers’ difficulties, this work 
could also help us understand how to ameliorate them. 

We began by noting an apparent inconsistency in the 
pedagogical literature: teachers appear to excel in 
constrained teaching tasks (e.g. Shafto et al., 2014), but fail 
in more naturalistic tasks (e.g. Chi et al., 2004). Across two 
studies, we find that when knowledgeable adults teach, they 
often fail to consider the breadth of hypotheses a naïve 
learner may be considering. Although these teachers provide 
excellent data, they fail to provide enough of it for some 
naïve participants to learn from. Our results unify prior 
findings, suggesting that teachers should succeed in tasks 
where the kinds of hypotheses learners can consider are 
relatively constrained – but fail in more naturalistic tasks, 
where learners are considering many possibilities. Because 
most real-world teaching occurs in naturalistic, 
unconstrained settings, these findings suggest that teachers 
would benefit from putting more effort into gauging 
learners’ beliefs – or constraining them.    
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