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Abstract 

Existing models of statistical learning involve computation of 
conditional probabilities over discrete, categorical items in a 
sequence. We propose an alternative view that learning occurs 
through a process of tracking changes along physical 
dimensions from one stimulus to the next within a “perceptual 
similarity space.” To test this alternative, we examined a 
situation where it is difficult or impossible to label stimuli in 
real time, and where the two assumptions lead to conflicting 
hypotheses. We conducted two experiments in which human 
participants passively listened to a familiarization sequence of 
frequency-modulated tones and were then asked to make 
familiarity judgments on a series of test bigrams. Behavioral 
results were broadly consistent with a conceptualization of 
learning as tracking trajectories through perceptual similarity 
space. We also trained a neural network that codes stimuli as 
values along two continuous dimensions to predict the next 
stimulus given the current stimulus, and show that it captured 
key features of the human data.  
 
Keywords: statistical learning; similarity space; connectionist 
modeling 

Introduction 
In as little as two minutes of exposure to a stream of stimuli, 
humans are able to absorb an underlying pattern based on 
statistical regularities (Saffran, Aslin & Newport, 1996). 
This phenomenon of learning through passive observation is 
called statistical learning and it has been observed in 
humans of all ages including neonates (Gervain, Macagno, 
Cogoi, Pena, & Mehler, 2008), infants (Saffran et al., 1996; 
Aslin, Saffran & Newport, 1998), and adults (Saffran, 
Johnson, Aslin, & Newport, 1999, inter alia).  

Statistical learning is generally understood by assuming 
that learners are able to extract information from the 
environment by subconsciously recording and computing 
statistical relationships in sequences. By predicting 
upcoming stimuli from prior stimuli, for example, learners 
track transitional or conditional probabilities—that is, the 
probability of “x given y” (Aslin et al., 1998). These 
models, such as PARSER (Perruchet & Vinter, 1998) or the 
simple recurrent network (Elman, 1990; 1991), therefore 
rely on discrete representations of stimuli to segment a 
stream using statistics. All of these models assume that 
participants are quickly and accurately categorizing stimuli 
according to labels intended by the experimenter.  

It may be problematic to assume that learners are able to 
make these categorical judgments in real time, in particular 
if statistical learning is thought to extend to natural stimuli, 

which are often ambiguous and highly dependent on context 
to identify (Hockett 1960). Here we present a novel 
approach to understanding statistical learning that does not 
assume participants are categorizing stimuli in real time. We 
propose that participants rely on situating stimuli within a 
perceptual similarity space and learn by tracking the change 
from one stimulus to the next within this similarity space 
(Emberson et al., 2013; Wang & Zevin, submitted).  

We propose that by continuously tracking the perceived 
change from one stimulus to the next in a sequence, the 
learner represents stimuli relative to one another along a 
number of perceptual dimensions (for example, two 
dimensions were used in our experiments and simulations). 
Thus, each stimulus can be situated in a feature space 
defined by these dimensions (Shepard, 1965), where 
transitions from one stimulus to the next can be understood 
as the trajectory between two locations in this space. 
Concretely, we can model this by coding stimuli in two or 
more continuous dimensions. Rather than predict a discrete, 
symbolic stimulus from the current stimulus, such a model 
would predict the next location in terms of continuous 
values on its dimensions. A simple connectionist model 
provides a logical approach to simulating the phenomenon.  

 

 
 

Figure 1: The angles of all possible trajectories from 
each point in the acoustic space following the grammar 
for Experiment 1 (ABCD). 
 
For our experiments, we adapted stimuli from Holt and 

Lotto’s studies of auditory categorization (2006). Stimuli 
were frequency-modulated tones uniformly distributed over 
a two-dimensional acoustic space that can be visualized as a 
grid with carrier frequency on the y-axis and modulation 
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frequency on the x-axis. Each stimulus was assigned a 
category based on its location in this space by dividing the 
grid into four quadrants, labeled A, B, C, and D (see Figure 
1). During the familiarization phase of the experiments, 
stimulus tones were presented as a stream of bigrams 
organized by the four experimenter-defined categories (e.g. 
a tone from quadrant A was always followed by a tone from 
B). In this way, the sequences can be described alternatively 
as a sequence of category labels, or as a sequence of 
trajectories through similarity space, leading to different 
predictions about how participants should process the test 
stimuli. For example, some test stimuli violate predictions 
based on a sequence of category labels, but are broadly 
consistent with the direction of change in similarity space. 

A neural network simulation provided a qualitative fit to 
the results from two experiments with different sequences. 
In fact, the model fit a difference between the two 
experiments that we did not predict when designing the 
stimuli. 

Experiment 1: ABCD 
Experiment 1 was motivated by a desire to replicate, with 
more power, an earlier study on the same topic (Wang & 
Zevin, submitted). Twice as many subjects were recruited 
and an extraneous test condition was excluded for the new 
version of the experiment. The experiment was designed to 
test the different predictions made by the two accounts 
discussed in the introduction: the categorization-based 
approach and the similarity space approach. Specifically, 
two different types of non-words were created: one for 
which the items violate the grammar but whose transition 
trajectory was similar to other transition trajectories in the 
training (Correct Trajectory Non-Word), and one for which 
the items never occurred in the training and the transitional 
trajectory was very dissimilar to other transitional 
trajectories in the training (Incorrect Trajectory Non-Word). 
If participants relied on identifying the incoming units as 
categories A, B, C or D, they would treat words better than 
non-words and treat both types of non-words as equally 
unfamiliar. If participants made use of the transition 
trajectories, Correct Trajectory Non-Words should not be as 
good as Words but Incorrect Trajectory Non-Words should 
be much worse than both Words and Correct Trajectory 
Non-Words. 
 
Methods 
Participants: 78 undergraduate students from The 
University of Southern California were recruited from the 
Psychology Department subject pool. They received either 
course credit or a payment of $5 for their participation. Due 
to technical errors, data was only collected for 72 of the 78 
who participated.  
 
Stimuli: The stimuli were frequency-modulated tones 
adapted from the studies of Holt and Lotto (2006). 64 tones 
were uniformly distributed over a two-dimensional acoustic 
space in perceptually equivalent steps (30 Hz in carrier 

frequency, 18 Hz in modulation frequency). The stimuli 
were divided into four even quadrants each containing 16 
tones and labeled A, B, C, and D. Each stimulus comprised 
300ms of sound and 300ms of silence.  

 
Familiarization Phase: The entire experiment was 
controlled using Paradigm (Perception Research Systems, 
2007) on a Windows desktop computer. Participants were 
allowed to read the material of their choice while passively 
listening through headphones to 10.5 minutes of a sound 
stream. The sound stream consisted of a total of 512 AB 
words and 512 CD words, such that all possible A-B 
transitions and C-D transitions were presented twice. Only 
half of all possible part-word transitions (from B to A or C 
and from D to A or C) occurred. The stimuli were chosen 
using a recursive algorithm to ensure even sampling from 
the distribution. Consequently, the transitional probability of 
a tone from B following one from A is 1, while the 
probability of a tone from A following one from B is 0.5.  
 
Testing Phase: Immediately following the training phase, 
participants were instructed to make a series of familiarity 
judgments on 36 pairs of tones. During each trial, 
participants clicked anywhere on the screen to begin and a 
consecutive sequence of two tones was played. Following 
presentation of the sequence, participants were asked to 
indicate their familiarity with the pair of tones. A text 
prompt was displayed (“Do you think that you heard this 
sequence in the previous section?”) and participants 
responded by clicking on one of five ratings (“Definitely”, 
“Maybe”, “Not Sure”, “Maybe Not”, “Definitely Not”), 
ending the trial. There were a total of 36 trials, 12 of each 
from 3 test conditions: Word, Correct Trajectory Non-Word, 
and Incorrect Trajectory Non-Word. Each test category had 
4 unique test items that were repeated 3 times each, for a 
total of 12 trials per condition. To maintain consistency 
across conditions, all test items were novel (i.e. none of the 
bigrams were present in the familiarization sequence) and 
followed trajectories with a length of 3 arbitrary units from 
the first to second tone in the bigram. The Word condition 
contained two AB and two CD pairs, where bigrams that 
started in quadrant A followed the median angle for 3 units 
from the starting stimulus, terminating in quadrant B. In the 
Correct-Trajectory Non-Word condition, each pair of 
stimuli began and ended in the same quadrant (e.g. AA or 
BB) but followed a trajectory along the median angle 
established during the training phase (in general, towards 
the center of the acoustic space). The Incorrect Trajectory 
Non-Word condition contained the same pairs of sounds 
from the Correct Trajectory condition, but reversed the 
order in which they were played such that they followed the 
opposite, more unfamiliar trajectory (i.e. outwards from the 
center of the acoustic space). To reiterate, although the 
distance in feature space between each tone of a bigram 
remained at a constant 3 units, only items in the Word 
condition crossed a quadrant boundary.  
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Figure 2: Visualization of the 4 test items from each of 
the 3 test conditions for Experiment 1 (ABCD).  

 

Results and Discussion 
Inferential tests for both experiments are based on linear 
mixed effects models created in Stata (StataCorp, 2013). 
Words were rated as significantly more familiar than items 
in both of the non-word conditions: Correct Trajectory (β = 
0.27, z = 5.01, p < 0.05) and Incorrect Trajectory (β = 0.37, 
z = 6.91, p < 0.05). This result demonstrates that learning 
has occurred, as participants treated the grammatical 
bigrams as different and more familiar than the other 
sequences. The difference between ratings for Correct 
Trajectory Non-Words and Incorrect Trajectory Non-Words 
was marginally significant (β = 0.10, z = 1.90, p = 0.057). 
Although the increase from Correct to Incorrect Trajectory 
Non-Words was only marginally significant, it is important 
to note the overall trend of increasing unfamiliarity across 
the 3 conditions (see Figure 3) is consistent with data from 
Wang & Zevin (submitted).  

 
Figure 3: Ratings by test category for Experiment 1. 
Each dot in the scatter represents a subject’s mean 
rating on a scale from 1 to 5 (where 1 is most familiar 
and 5 is most unfamiliar) for that category. The line and 
shadow indicate the mean rating and 95% confidence 
interval for all subjects in that category.  

Experiment 2: ABDC 

In Experiment 1 (ABCD), words were defined as transitions 
from a tone in quadrant A to one in B or from a tone in 
quadrant C to one in D, such that words could always be 
recognized as going down in carrier frequency. In other 
words, participants could have used a single dimension to 
learn the regularities in Experiment 1. However, we wanted 

to examine how participants would learn when the grammar 
was more complicated. So, in Experiment 2 (ABDC), words 
were defined as transitions from A to B or D to C, making it 
necessary to use both carrier frequency and modulation 
frequency to identify grammatical bigrams. This more 
complicated grammar should be harder for subjects to learn 
because it requires tracking two dimensions rather than one.  

Methods 
Participants: 84 undergraduate students from The 
University of Southern California were recruited from the 
Psychology Department subject pool. They received either 
course credit or a payment of $5 for their participation. Due 
to technical errors, data was only collected for 72 of the 84 
who participated.  

 
Stimuli: Stimuli were taken from the same acoustic space as 
Experiment 1. Each stimulus comprised 300ms of sound 
and 300ms of silence.  

 
Familiarization Phase: In Experiment 2, words were 
defined as transitions A-B and D-C (rather than C-D as in 
Experiment 1). The sound stream contained a total of 512 
AB words and 512 DC words, such that all possible A-B 
transitions and D-C transitions were presented twice. The 
procedure used was identical to Experiment 1, where 
participants listened to the familiarization stream passively. 

 
 

Figure 4: The angles of all possible trajectories from 
each point in the acoustic space following the grammar 
for Experiment 2 (ABDC). 

 
Testing Phase: The testing procedure for Experiment 2 was 
consistent with Experiment 1, but used a different set of test 
items. There were a total of 36 trials, 12 of each from the 
same 3 test conditions: Word, Correct Trajectory Non-
Word, and Incorrect Trajectory Non-Word. Each test 
category had 4 unique test items that were repeated 3 times 
each, for a total of 12 trials per condition. All test items 
were novel and followed trajectories with a length of 3 
arbitrary units from the first to second tone in the bigram. 
As before, the Correct-Trajectory Non-Word pairs of stimuli 
began and ended in the same quadrant (e.g. AA or DD) but 
followed a trajectory along the median angle established 
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during the training phase (in general, towards the center of 
the acoustic space). The Incorrect Trajectory Non-Word 
condition contained the same pairs of sounds from the 
Correct Trajectory condition, but reversed the order in 
which they were played such that they follow the opposite, 
more unfamiliar trajectory (i.e. outwards from the center of 
the acoustic space).  
 

 
 

Figure 5: Visualization of the 4 test items from each of 
the 3 test conditions for Experiment 2 (ABDC).  
 

Results and Discussion 

 
 

Figure 6: Ratings by test category for Experiment 2. 
Each dot in the scatter represents a subject’s mean 
rating on a scale from 1 to 5 (where 1 is most familiar 
and 5 is most unfamiliar) for that category. The line and 
shadow indicate the mean rating and 95% confidence 
interval for all subjects in that category.  
 

As in the previous experiment, there is robust evidence of 
statistical learning in Experiment 2. Unlike in Experiment 1, 
however, there was only a marginally significant difference 
between average ratings for Words and Correct Trajectory 
Non-Words (β = 0.11, z = 1.96, p = 0.05). As before, Words 
were rated as significantly more familiar than Incorrect 
Trajectory Non-Words (β = 0.30, z = 5.62, p < 0.05). 
Further, Correct Trajectory Non-Words were rated as 
significantly more familiar than Incorrect Trajectory Non-
Words (β = 0.20, z = 3.66, p < 0.05), which indicates 
sensitivity to the direction of change.  

Thus, results from both Experiment 1 (ABCD) and 
Experiment 2 (ABDC) follow the same general trend: words 
were rated as most familiar, followed by Correct Trajectory 
Non-Words, with Incorrect Trajectory Non-Words rated as 
most unfamiliar, although particular pairwise contrasts 

differ in significance across experiments. Curiously, and 
contrary to our initial predictions, the difference between 
ratings for Words and Correct Trajectory Non-Words is 
smaller in Experiment 1 than in Experiment 2, (β = -0.17, z 
= -2.20, p < 0.05).  

Computational Modeling 

Design and Procedure 
In order to simulate learning in our experiments, we 
developed a simple feed-forward back-propagation, neural 
network using PDPTool (McClelland 1986; 2015). The 
neural network used a logistic activation function and had 
two input units, two output units, a two-unit hidden layer 
and a bias. Two versions of the model were trained ten 
times each: ABCD and ABDC, which were identically 
constructed but received different inputs corresponding to 
the 1024 stimulus sequences from Experiment 1 and 2, 
respectively. Each stimulus was coded as a pair of 
coordinates representing its location in the acoustic 
space. Inputs and outputs were scaled to fit within the valid 
range of input [-1,1] and output [0,1] values. The model was 
trained to predict the next stimulus from the current 
stimulus as bigram pairs, including both Words and Part-
Words, so for example the sequence ABCD would be 
presented to the model in three discrete trails: AB, BC, and 
CD. As an initial measure of learning, we trained multiple 
runs for 100 epochs, collecting pattern sum of squares (pss) 
on the training items after each of the first ten epochs, and 
every fifth epoch thereafter. We observed that the model 
reached asymptote by this measure after ten epochs, to an 
error of 0.12 for ABCD and 0.14 for ABDC. 

Error scores for the test items were generated by 
presenting the first stimulus in each test pair to the model 
and calculating the summed squared error (pss) for the 
model’s output relative to the second item in the test bigram. 
This measure was taken for all 12 test items every 5 epochs 
from the 10th to the 50th, and the mean of these 
observations taken for each run. Means of all ten runs and 
standard deviations across runs are reported in Tables 1 and 
2.  

Results and Discussion 
 

 
 

Figure 7: Average error by test category over 10 runs of 
the model for ABCD (right) and ABDC (left).  
 

Word% Correct%Tr.%NW% Incorrect%Tr.%NW%
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The computational models for ABCD and ABDC 
qualitatively replicated the human data. Figure 7 displays 
each model’s error by test condition, measured as the 
squared distance between the model’s prediction and the 
target (i.e. the second point in the test item). Thus, the 
higher the error for a test item, the further away in feature 
space the second tone in the pair was from the model’s 
prediction. As such, the model’s error on each test item 
parallels the measures of familiarity collected from the 
human data. As in the human data, both ABCD and ABDC 
display the overall increasing trend across the three test 
conditions, with the Incorrect Trajectory Non-Words treated 
as significantly different than the Words. Furthermore, there 
is a difference in the Correct Trajectory Non-Word 
condition between ABCD and ABDC. The ratio of the 
errors between the categories Word and Correct Trajectory 
Non-Word is larger in ABCD (0.0955) than in ABDC 
(0.0387), and it is clear from Figure 7 that this increase is 
larger for ABCD than ABDC. This difference qualitatively 
mimics the observed discrepancy between ratings for 
Correct Trajectory Non-Words in Experiments 1 and 2.  

 
Table 1: Average error and standard deviation by test 
category over 10 runs of the simulation for ABCD. 

 
Condition Avg. Error Std. Deviation 

Word 0.0229 0.0094 
Correct Tr. NW 0.2399 0.0165 

Incorrect Tr. NW 0.5484 0.0333 
 

Table 2: Average error and standard deviation by test 
category over 10 runs of the simulation for ABDC. 

 
Condition Avg. Error Std. Deviation 

Word 0.0052 0.0007 
Correct Tr. NW 0.1342 0.0051 

Incorrect Tr. NW 0.5060 0.0039 
 

General Discussion 
The behavioral results from the two experiments 

presented here are broadly consistent with our 
conceptualization of statistical learning as occurring by 
situating stimuli in a perceptual similarity space. Further, 
the computational model we designed according to this 
conceptualization fits the data quite well. The auditory 
stimuli were specifically designed to be difficult to 
categorize, yet participants were able to distinguish between 
words and non-words after brief, passive familiarization 
with a sequence of grammatical bigrams. Although results 
for the Correct Trajectory Non-Word condition differed 
between Experiments 1 and 2, the overall trend of 
increasing unfamiliarity across conditions indicates that 
learners are sensitive to the trajectory from one stimulus to 
the next in feature space.  

Using the same stimuli – indeed, the same ABCD 
familiarization sequence used in the current Experiment 1 – 

Wang and Zevin (submitted) observed a small difference 
between Words and Correct Trajectory Non-Words, and a 
much larger difference between Correct and Incorrect 
Trajectory Non-Words. Across a number of experiments we 
are not reporting here due to space limitations, the general 
pattern of decreasing familiarity from Words to Correct to 
Incorrect Trajectory Non-Words is always present, although 
different contrasts are significant by inferential tests under 
different conditions. We therefore suggest that this overall 
pattern is the most critical feature of the data to simulate. 

Interestingly, there are more subtle differences between 
Experiments 1 and 2 that are also captured by the 
simulation. Both the model and the human participants 
treated Correct Trajectory Non-Words as more similar to 
Incorrect Trajectory Non-Words in Experiment 1, but more 
similar to Words in Experiment 2. Until examining the 
simulation results, we failed to consider an idiosyncrasy 
with how the test items were chosen between experiments. 
The test items for ABCD and ABDC differed slightly in 
how they were sampled from throughout the feature space. 
As shown in Figures 2 and 5 above, the four non-word pairs 
for ABCD were taken from each of the four quadrants while 
in ABDC the four non-word items were drawn from only 
two quadrants (two from A and two from D). Therefore, 
half of the Correct Trajectory Non-Words in ABCD 
followed the correct trajectories for words and the other half 
for part-words while in ABDC they all followed trajectories 
for words. This could explain why the Correct Trajectory 
items were rated as more unfamiliar in ABCD than in 
ABDC for both the human experiments and the 
computational models.  

Interestingly, the simulation’s overall error, especially for 
Words, is lower in ABDC than ABCD. One possible 
explanation is that having two meaningful dimensions to 
define words provides the model with more information 
over which it can track probabilities, increasing its ability to 
learn the grammar. In contrast, the extra dimension 
introduces additional complexity that makes the sequences 
more difficult for humans to learn. This gets at one of the 
problems with the model: it is almost too good at learning 
the pattern. While humans must approximate each 
stimulus’s location in similarity space, the model receives 
exact coordinates so naturally the model will produce more 
accurate and precise predictions. A further problem with the 
simulation lies in the fact that connectionist models like the 
SRN (Elman, 1990) and the one presented here all learn 
with supervision. While the model receives feedback on its 
predictions for every stimulus, human learners are thought 
to be dependent on unsupervised mechanisms under similar 
conditions (McClelland, 2006).  

Furthermore, because the model was designed for a very 
specific experimental setting, it has limited applications. We 
have proposed elsewhere (Wang & Zevin, submitted) that 
the trajectory-tracking approach may provide an explanation 
for statistical learning phenomena hitherto unaccounted for 
by existing models. For example, word segmentation during 
initial language acquisition is a real-life situation in which 
category labels are not readily available and the sequence 
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signal may be ambiguous due to natural variation in human 
speech (Shannon, 1948; Hockett, 1960).  

However, there is no reason to believe that the trajectory-
tracking model tells the whole story. It is more likely that 
learners utilize different mechanisms, either simultaneously 
or individually, depending on the situation and the 
information that is readily available in the stimuli sequence. 
Relying on perceptual similarities is useful when stimuli are 
defined on the same dimensions and low-level physical 
features are readily extracted. When it is easy to abstract and 
divide stimuli into categories, however, there may be 
situations in which stimuli are readily recognizable, and it is 
simpler (i.e. involves lower computational load) to compute 
transitional probabilities over labels. 

In conclusion, the results of this series of experiments and 
their remarkably close fit to the simulations provide 
overwhelming support for our theory that learning occurs by 
tracking changes in perceptual features from one stimulus to 
the next in a sequence. Although we observed a difference 
in one of the test conditions between the two experiments, 
the simulations reproduced the phenomenon, leading us to 
believe that it was a result of an idiosyncrasy in our test 
stimuli. Results from both experiments were otherwise 
consistent with our assertion that participants are situating 
stimuli within a perceptual similarity space and learn the 
pattern by tracking their trajectories through this space.  
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