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Abstract

Summary: BLAST creates local sequence alignments by first building a database of small k-letter
sub-sequences called k-mers. Identical k-mers from different regions provide ‘seeds’ for longer local
alignments. This seed-and-extend heuristic makes BLAST extremely fast and has led to its almost
exclusive use despite the existence of more accurate, but slower, algorithms. In this paper, we introduce
BLANT, the Basic Local Alignment for Networks Tool. BLANT is the analog of BLAST, but for networks:
given an input graph, it samples small, induced, k-node subgraphs called k-graphlets. Graphlets have
been used to classify networks, quantify structure, align networks both locally and globally, identify
topology-function relationships, and build taxonomic trees without the use of sequences. Given an input
network, BLANT produces millions of graphlet samples in seconds—orders of magnitude faster than
existing methods. BLANT offers sampled graphlets in various forms: distributions of graphlets or their
orbits; graphlet degree or graphlet orbit degree vectors, the latter being compatible with ORCA; or an
index to be used as the basis for seed-and-extend local alignments. We demonstrate BLANT’s usefelness
by using its indexing mode to find functional similarity between yeast and human PPI networks.
Availability: BLANT is written in C and is availble athttps://github.com/waynebhayes/BLANT/releases
Contact: Wayne B. Hayes at whayes@uci.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
A k-graphlet is an induced subgraphg on any set ofk connected nodes from
a larger graph G, where k has typically been between 2− 5 (Pržulj et al.,
2004). Graphlets have have been used to compare and classify networks
(Hayes et al., 2013; Yaveroğlu et al., 2014), to identify structure-function
relationships (Davis et al., 2015) and for global alignment (Kuchaiev et al.,
2010). SI Figure 1 shows all the graphlets on 2, 3, 4, and 5 nodes including
their automorphism orbits (Pržulj, 2007). Many existing methods that use
graphlets for any purpose first perform an exhaustive enumeration of all
graphlets in the network being analyzed. However, the time complexity for
counting all k-graphlets is O(ndk−1), where d is the maximum degree
in G and n is the number of nodes in G (Shervashidze et al., 2009),
this cost is already prohibitive on existing networks. For example, ORCA
(Shervashidze et al., 2009) requires 18 hours to process the BioGRID
human PPI network released in 2018. For many applications, a statistical
sample would probably suffice (Chen et al., 2016).

Using a pre-computed lookup table allows graphlet isomorphism to
be done in constant time for k-graphlets up to size k = 8 (Hasan et al.,

2017). BLANT (Basic Local Alignment for Networks Tool) leverages this
speed, and rather than taking 18 hours, it can produce output statistically
indistinguishable from ORCA’s in minutes. Furthermore, while most other
tools only maintain a count of graphlets or orbits, BLANT is unique
in being able to create a statistically sampled index of nodes belonging
to each type of graphlet; this index can form the ‘seed’ part of seed-
and-extend local alignments, or be used to search for structure-function
relationships. BLANT has five sampling algorithms with a variety of trade-
offs between speed and bias. BLANT provides different output formats:
graphlet distributions, sampled indexed graphlet lists, graphlet degree
vectors and orbit degree vectors, the latter being compatible with the output
format of ORCA. In addition, BLANT supplies a graphlet drawing tool
for any k-graphlet, k ≤ 11.

2 Features
BLANT’s command-line interface allows the user to select: (1) graphlet
size 3 ≤ k ≤ 8 nodes; (2) number of samples; (3) number of threads for
additional speedup; (4) graphlet sampling technique; (5) output format;
(6) graphlet ID representation; (7) file name.
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Four of the sampling techniques implemented in BLANT each begin
by selecting an edge uniformly at random to start the graphlet. Then, (1)
Edge Based Expansion (EBE): the next edge is selected uniformly at
random from edges emanating from the previously selected vertices; this
method is fastest on dense networks but produces graphlet distributions
with significant bias; (2) Node Based Expansion (NBE): the next node is
selected uniformly at random from neighbors of currently selected nodes
(Hayes and Maharaj, 2018); this method is fastest on less dense networks
and is also less biased than EBE; (3) Neighbor Reservoir (RES): starts
with NBE and then further reduces bias by erasing its memory via a random
walk for some number of steps. All three of EBE, NBE, and RES output a
graphlet once k nodes have been found, and then the process starts afresh
with a new randomly chosen edge. Thus, all three of EBE, NBE, and
RES are equally likely to sample a graphlet from any where in G; (4)
MCMC: a sliding window of k− 1 edges is kept during a single random
walk on the network to form a k-graphlet (Chen et al., 2016); this method
produces asymptotically correct graphlet concentrations, but since it is a
single long walk, it produces sequences of graphlets in which adjacent
graphlets have as many as k − 1 overlapping nodes, and so it may not
“see” the entire graph G unless the walk is extremely long. Finally, the 5th
method is impractical but included for completeness: Accept/Reject (AR)
selects k nodes uniformly at random and rejects if the resulting graphlet
is not connected (Lu and Bressan, 2012); this method is guaranteed to
produce unbiased samples but is extremely slow since the majority of k-
node sets are disconnected. Full details of these sampling methods are
discussed in SI Section S3. SI Table S1 shows the time taken to sample
differently sized graphlets from various networks using each sampling
method. Figure 1 (top) shows the difference in proportion from the true
proportion (computed by ORCA), of each graphlet obtained by using each
of these 5 sampling techniques on various synthetic networks described in
SI Section S5.

The sampled graphlets may be output in various formats: (1) indexed
k-graphlet lists: each line containsk+1 columns; the first column contains
the graphlet IDs and the next k columns are the vertices forming the
graphlet, (2)k-graphlet counts: the total of each type ofk-graphlet sampled
from the network or the concentration of each k-graphlet in the case of
MCMC sampling, (3) sampled graphlet degree vectors: a vector for each
node representing the number of sampled graphlets to which it belongs,
(4) sampled orbit degree vectors: a vector for each node representing the
number of orbits it touches from the sample. BLANT’s setup instructions
are in SI Section S4, its options and interface are shown in SI Figure 4.

3 Biological Relevance
GO Term Prediction In a PPI network, a large clique suggests a protein
complex whose members share common function. Finding large cliques is
NP-complete. By sampling 107 8-node graphlets from the 2017 BioGRID
human network, and analyzing overlapping 8-node cliques (see bottom left
of Figure 1), we found a 60-node near-clique (having 97% of all possible
edges). Using GO terms (The Gene Ontology Consortium, 2008) of 2016,
and assuming any GO term appearing in more than half the 60 nodes
should be transferred to the rest, resulted in 213 GO term predictions, 46
of which were corroborated by GO terms of 2018. None of the remaining
predictions were contradicted, suggesting they may be corroborated by
future GO discoveries.

Topology-function relations We indexed 106 6-node graphlets from
both the 2018 BioGRID yeast and human PPI networks. Whenever the
same graphlet appeared in both networks, we imposed the resulting local
alignment between them. If function is related to topology, then we expect
a pair of frequently aligned nodes (one from yeast, one from human) to
share functional similarity. Figure 1 (bottom right) shows that mean Resnik
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Graphlet-based local alignment frequency between node pairs

Mean GO Similarity vs. Frequency of locally aligned nodes

"SC-HS-freq-resnik.mean+StdDev"
3.177*x**0.05

Fig. 1. Top: The error in proportion of each 3, 4, and 5-graphlet obtained from 106

graphlet samples using each of BLANT’s implemented sampling methods (except
AR for which we sampled 104 graphlets due to the long run time), on various types of
sparse synthetic networks. The error bars represent 1σ of proportion difference. The
proportion differences and error bars are smallest for RES and MCMCs, indicating
that these methods produce more accurate graphlet concentrations. Our MCMC
receives the same results as the original MCMC implementation, indicating correct
implementation as shown in SI Figure 2. The sampling error is reported in SI Table
S2. Bottom Left: Given two k-cliques g1 and g2 with overlapping nodes, we can
test for the existence of a larger clique Q by examining all remaining connections
(eg. red edge). Bottom Right: The number of times a pair of nodes (one in yeast, one
in human) are locally aligned in a 6-graphlet orbit is binned on a log scale on the
x-axis. Error bars depict the 1σ standard deviation of GO-term similarity for node
pairs in each frequency bin.

similarity increases with pairwise alignment frequency. To our knowledge,
this is the first demonstration of such a broad correlation between local
network topology and functional similarity.
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