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Abstract
Study Objectives:  Sleep problems are common, serving as both a predictor and symptom of posttraumatic stress disorder (PTSD), with these bidirectional 

relationships well established in the literature. While both sleep phenotypes and PTSD are moderately heritable, there has been a paucity of investigation into 

potential genetic overlap between sleep and PTSD. Here, we estimate genetic correlations between multiple sleep phenotypes (including insomnia symptoms, sleep 

duration, daytime sleepiness, and chronotype) and PTSD, using results from the largest genome-wide association study (GWAS) to date of PTSD, as well as publicly 

available GWAS results for sleep phenotypes within UK Biobank data (23 variations, encompassing four main phenotypes).

Methods:  Genetic correlations were estimated utilizing linkage disequilibrium score regression (LDSC), an approach that uses GWAS summary statistics to compute 

genetic correlations across traits, and Mendelian randomization (MR) analyses were conducted to follow up on significant correlations.

Results:  Significant, moderate genetic correlations were found between insomnia symptoms (rg range 0.36–0.49), oversleeping (rg range 0.32–0.44), undersleeping 

(rg range 0.48–0.49), and PTSD. In contrast, there were mixed results for continuous sleep duration and daytime sleepiness phenotypes, and chronotype was not 

correlated with PTSD. MR analyses did not provide evidence for casual effects of sleep phenotypes on PTSD.

Conclusion:  Sleep phenotypes, particularly insomnia symptoms and extremes of sleep duration, have shared genetic etiology with PTSD, but causal relationships 

were not identified. This highlights the importance of further investigation into the overlapping influences on these phenotypes as sample sizes increase and new 

methods to investigate directionality and causality become available. 

Key words:  insomnia; genetics; posttraumatic stress disorder; sleep and psychiatric conditions; genetic correlation; LDSC; LDSR; Mendelian randomization; sleep 

duration; sleep disorders

Statement of Significance
This paper provides the first formal investigation into genetic overlap between sleep phenotypes and posttraumatic stress disorder (PTSD), which, des-
pite known epidemiologic relationships, has yet to be studied at the genetic level. We present evidence for shared genetic influences between PTSD and 
several sleep traits, including insomnia and sleep duration, harnessing the power of the Psychiatric Genomics Consortium for PTSD and incorporating 
genetic data from the largest publicly available datasets. We also conduct Mendelian randomization analyses to examine potential causal relationships, 
although we do not find evidence for causality. Despite this, moderate genetic correlations shown here highlight genetic overlap, indicating potential 
shared pathophysiology. Additional work to further examine the basis of these correlations and test bidirectionality and causality is warranted.
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Introduction

Approximately 70% of adults worldwide are exposed to at 
least one traumatic event in their lifetime [1], with 7%–30% 
developing post-traumatic stress disorder (PTSD) [2], character-
ized by symptoms of intrusion, avoidance, negative alterations 
in mood and cognition, and alterations in arousal and reactivity 
[3]. Disruptions in sleep are common complaints among indi-
viduals with PTSD [4] and, indeed, sleep difficulties are included 
within the arousal and reactivity (insomnia) and intrusion 
(trauma-related nightmares) clusters [3]. However, the relation-
ship between sleep disturbance and PTSD is likely greater than 
symptom overlap, as research supports a complex and bidirec-
tional relationship between sleep and disorders that share in-
ternalizing characteristics, such as major depressive disorder 
(MDD) and PTSD [5, 6]. Longitudinal studies in Veterans demon-
strate that insomnia prior to deployment is a strong predictor 
of future PTSD or MDD diagnosis [7] and that insomnia is as-
sociated with PTSD and depressive symptom severity in this 
population [8]. Often, sleep symptoms are persistent and diffi-
cult to treat in the context of psychiatric disorders, serving as 
global markers of disorder severity and negative sequelae [9–12]. 
Understanding this comorbidity is important, as sleep problems 
themselves are also common: one in three adults in the general 
population report at least one symptom of sleep disturbance 
and 6%–10% of people meet the DSM diagnostic criteria for in-
somnia disorder [5]. 

One approach to further elucidating the nature of these bi-
directional relationships is through genetics. Both insomnia 
and PTSD are moderately heritable, with estimates from the 
twin literature ranging from approximately 20% to 60% for in-
somnia [13] and 30% to 70% for PTSD [14]. There is also some 
evidence for quantitative sex differences across both pheno-
types, although notably only sex effects for PTSD have been 
shown to be consistent within the molecular genetics literature 
[15–17]. Gene identification efforts have been rapidly growing, 
encompassing both genome-wide association studies (GWAS) as 
well as consortia efforts that afford meta-analysis of individual 
GWAS studies to gain statistical power. At the time of writing, 
there had been 10 individual GWAS of PTSD [18] and one com-
bined GWAS conducted by the Psychiatric Genomics Consortia 
(PGC) PTSD workgroup [16], with the second PGC–PTSD GWAS 
under review (now published) [17]. There were nine GWAS of 
insomnia-related phenotypes [19], 12 GWAS of sleep duration 
[20], and four of chronotype [21]. Relationships between sleep 
and PTSD at the genetic level have yet to be investigated in great 
detail. However, there is evidence for shared genetic etiology 
between PTSD and numerous disorders characterized by both 
internalizing and externalizing symptomatology [22] that also 
share genetic influences with sleep [23].

For example, longitudinal twin studies demonstrate sub-
stantial genetic overlap between insomnia and depression [23, 
24], and shared genetic influences between MDD and PTSD have 
also been documented in the twin literature, with genetic correl-
ations estimated at over 50% [25, 26]. Similarly, there is evidence 
for this overlap at the molecular genetics level as well, with sev-
eral recently published GWAS reporting moderate genetic cor-
relations between insomnia and depression phenotypes (range 
0.34–0.53) [19, 27, 28], and the most recent PGC–PTSD publication 
reporting a correlation of 0.62 between PTSD and depression 
[17]. However, no studies to date have explicitly examined gen-
etic overlap, biometric, or molecular, between sleep phenotypes 

and PTSD. As large-scale GWAS of insomnia phenotypes in-
creasingly show more robust genetic correlations with psychi-
atric disorders, as opposed to other sleep phenotypes [29, 30], 
a better understanding of genetic relationships between sleep 
and PTSD is clearly warranted.

Statistical genetic methods that utilize genomic data in aggre-
gate allow for the examination of molecular overlap across pheno-
types, often without the need for individual-level genetic data. An 
example of this is Linkage Disequilibrium score regression (LDSR 
or LDSC) [31], which incorporates data from GWAS summary stat-
istics to calculate genetic correlations (rg) between phenotypes 
based on available single nucleotide polymorphisms (SNPs) and 
LD scores. This method has been used to demonstrate genetic 
correlations between many medical and psychiatric traits [31, 32], 
including genetic correlations between insomnia and metabolic 
traits [19] and between PTSD and schizophrenia [16, 17]. While 
genetic correlations provide information regarding relationships 
across traits, they cannot identify causal associations or provide 
information regarding directionality. There are also methods that 
utilize summary-level data to conduct Mendelian randomization 
(MR) analyses [33], which allow one to test whether or not a spe-
cific exposure is causally related to an outcome variable through 
genetic polymorphisms [34]. The current study addresses gaps in 
the literature, outlined above, by examining genetic correlations 
between PTSD and sleep phenotypes (i.e. insomnia symptoms, 
sleep duration, daytime sleepiness, chronotype), and then con-
ducting MR analyses on phenotypes with significant correlations 
to determine whether genetic markers associated with sleep 
phenotypes are causally linked with PTSD.

Methods

Samples

PTSD
PGC–PTSD meta-analysis summary statistics from Freeze 2 
[17], which include 174 659 (European ancestry [EA]) individuals 
(23 212 cases with PTSD and 151 447 controls; all adults) from 
51 studies, were used for genetic correlation analyses. Only EA 
summary statistics were used given that the current version 
of LDSC cannot be used on genetic data from individuals with 
admixed ancestry (e.g. African Americans and many Latinos). 
For MR analyses, PGC–PTSD meta-analysis summary statistics 
from Freeze 1.5 (total N = 48 471; 12 823 cases with PTSD and 
35  648 controls), which excludes individuals from the UK 
Biobank dataset, were used. This is necessary, as MR analyses 
are not robust to sample overlap [33] and including the full 
results from Freeze 2 would bias results.

Sleep
Sleep phenotypes included those present in a total of 23 publicly 
available sets of summary statistics. Seventeen sets of summary 
statistics were chosen from sleep phenotypes available on LD 
Hub in April 2018; two phenotypes explicitly stated to reflect sleep 
apnea were excluded [35]. Of note, seven of these phenotypes 
were taken from the UK Biobank GWAS (run by Neale and 
colleagues; http://www.nealelab.is/blog/2017/7/19/rapid-gwas-
of-thousands-of-phenotypes-for-337000-samples-in-the-uk-
biobank/, last accessed May 30, 2019, see description below). An 
additional six sleep phenotypes (results from newly published 
manuscripts of updated UK Biobank data with larger sample 

http://www.nealelab.is/blog/2017/7/19/rapid-gwas-of-thousands-of-phenotypes-for-337000-samples-in-the-uk-biobank/
http://www.nealelab.is/blog/2017/7/19/rapid-gwas-of-thousands-of-phenotypes-for-337000-samples-in-the-uk-biobank/
http://www.nealelab.is/blog/2017/7/19/rapid-gwas-of-thousands-of-phenotypes-for-337000-samples-in-the-uk-biobank/
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sizes) were downloaded from the Sleep Disorders Knowledge 
Portal (http://sleepdisordergenetics.org/informational/data/, 
last accessed May 30, 2019) in May 2019. Although also present 
in the Sleep Disorders Knowledge Portal, results from two 
additional publications (one with actigraphy data and another 
investigating nighttime oxygen) were not included, as these 
phenotypes are outside the scope of this manuscript.

Phenotypes used were as follows: insomnia symptoms 
(N  =  4), sleep duration (N  =  8), daytime sleepiness (N  =  4), 
chronotype (N  =  6), and ICD-10 sleep diagnosis (N  =  1), which 
encompasses multiple categories of sleep disorders, including 
insomnias and hypersomnias. All sleep GWAS utilized the UK 
Biobank dataset, which is a large, population-based sample of 
adults aged 40–69 residing in England, Scotland, and Wales [36]. 
It is important to note that analyses of UK Biobank participant 
characteristics have demonstrated evidence of selection bias to-
ward healthy individuals [36]. Sleep phenotypes varied in their 
conceptualization, and all samples included both sexes. Each of 
the 23 sleep phenotypes does not necessarily represent a unique 
data point; instead there are multiple conceptualizations of the 
same category of phenotype analyzed across different subsets 
of the UK Biobank data. A subset of included studies provided 
results for phenotypes separated by sex (N = 4; insomnia symp-
toms [19, 27], daytime sleepiness [19], and sleep duration [19]).

UK Biobank GWAS
The UK Biobank GWAS, accessible at http://www.nealelab.is/
blog/2017/7/19/rapid-gwas-of-thousands-of-phenotypes-for-
337000-samples-in-the-uk-biobank/ (last accessed May 30, 
2019), is a genetics resource developed by Neale and colleagues, 
who conducted a series of genome-wide analyses across 
thousands of phenotypes available in the UK Biobank dataset 
(N ~ 337 000). The 2017 release (used in analyses presented here) 
also includes LDSC heritability estimates. In order to conduct 
genetic analyses on such a large scale, an automated system was 
used to create phenotypes, making all statistical distributions 
normal or binomial, running all models as linear, and modeling 
all alleles with additive effects. Only individuals of EA who 
were not related were used in genetic analyses. Furthermore, 
genetic analyses also had the following restrictions with regard 
to inclusion criteria: SNPs imputed from the Haplotype Research 
Consortium (initial analyses), MAF > 0.1, INFO > 0.8, and Hardy–
Weinberg equilibrium p > 1E−10. Thus, while this resource 
provides summary statistics for a wide range of phenotypes 
with large sample sizes, a limited number of SNPs are included, 
and phenotypes have not been validated. Consequently, all 
results should be considered preliminary and may change as 
new iterations of the data are developed. Detailed information 
regarding phenotypes, methods, and results can be accessed at 
the website listed above.

Data analytic methods and plan

Note that this work conforms to the ethical standards of the 
Declaration of Helsinki.

Genetic correlations

Genetic correlations between PTSD and sleep phenotypes 
were estimated using LDSC [31] version 1.0.0, downloaded 

from https://github.com/bulik/ldsc/ (Accessed August 17, 2019). 
Estimates were also stratified by sex where possible (i.e. for 
females only, as the heritability estimate for PTSD in males 
within the PGC–PTSD is not significantly different from zero 
[17]). Summary statistics files were filtered initially for removal 
of SNPs with INFO < 0.9 or MAF < 0.01 or > 0.99. Next, all files 
were run through the munge_sumstats.py script included in the 
LDSC program and filtered on a list of HapMap 3 SNPs in order 
to retain only well-imputed SNPs; the major histocompatibility 
complex was also removed, resulting in 1 215 001 potential SNPs 
retained for analysis. European ancestry LD scores from 1000 
genomes were used (https://data.broadinstitute.org/alkesgroup/
LDSCORE/, Acessed August 17, 2019). The intercept was not con-
strained for LDSC analyses. To correct for multiple testing, a 
Bonferroni-adjusted p-value of 0.0022 (p = 0.05/23 genetic correl-
ations) was used as the threshold for significance.

Mendelian randomization

For sleep phenotypes found to be significantly correlated with 
PTSD, we conducted MR analyses to further investigate potential 
causal and bidirectional relationships between these traits. MR 
is a method that uses genetic data (i.e. independent genome-
wide significant [GWS] SNPs often referred to as “instruments”) 
to determine if an exposure (e.g. short sleep duration) is causally 
related to an outcome (e.g. PTSD diagnosis). Analyses can also 
be run in the reverse direction (i.e. by flipping the exposure and 
the outcome variables) to examine bidirectionality of causal ef-
fects. Note that here, we utilize sleep variables as the exposure; 
this is in part due to low power for running PTSD as the ex-
posure (discussed in detail elsewhere in the manuscript), but 
also makes sense based on the literature: Sleep phenotypes are 
modifiable (e.g. insomnia can be treated with cognitive behav-
ioral therapy [37]), and longitudinal studies clearly demonstrate 
effects of pre-trauma sleep disturbances on post-trauma psychi-
atric phenotypes [7, 8]. For analysis, we utilized the R package 
TwoSampleMR (https://mrcieu.github.io/TwoSampleMR/, last 
accessed May 30, 2019) [33], which provides a streamlined ap-
proach to run MR analyses using summary statistics level data. 
For MR analyses, we used PTSD summary statistics from Freeze 
1.5 (see Table 1 for sample size and heritability).

Summary statistics were formatted per the guidelines 
specified in TwoSampleMR, beginning with the same files util-
ized for LDSC (i.e. filtered based on MAF and INFO, as above). 
The online tutorial (https://mrcieu.github.io/TwoSampleMR/, 
last accessed May 30, 2019) was used as a guide to conduct 
the appropriate steps of data management prior to analysis. 
For each sleep phenotype (“exposure”), SNPs with p < 5 × 10−8 
were chosen as potential instruments. The “clump” com-
mand, with default settings, was then run to retain only in-
dependent GWS SNPs for use in MR analysis. Next, data for 
each of the chosen SNPs was extracted from summary stat-
istics of the outcome variable (i.e. PTSD). Data harmonization 
was conducted for each combination of exposure phenotype 
and PTSD to verify the presence of corresponding effect al-
leles. Once this was completed, MR analyses were run using 
the default setting for the methods list, which runs MR using 
five different methods: MR Egger, weighted median, inverse 
variance weighted (IVW), simple mode, and weighted mode. 
The IVW method is the default method and the simplest, but 
does have assumptions regarding horizontal pleiotropy (i.e. 

http://sleepdisordergenetics.org/informational/data/
http://www.nealelab.is/blog/2017/7/19/rapid-gwas-of-thousands-of-phenotypes-for-337000-samples-in-the-uk-biobank/
http://www.nealelab.is/blog/2017/7/19/rapid-gwas-of-thousands-of-phenotypes-for-337000-samples-in-the-uk-biobank/
http://www.nealelab.is/blog/2017/7/19/rapid-gwas-of-thousands-of-phenotypes-for-337000-samples-in-the-uk-biobank/
https://github.com/bulik/ldsc/
https://data.broadinstitute.org/alkesgroup/LDSCORE/
https://data.broadinstitute.org/alkesgroup/LDSCORE/
https://mrcieu.github.io/TwoSampleMR/
https://mrcieu.github.io/TwoSampleMR/
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where an instrument [SNP] has an effect on the outcome vari-
able that is independent [not mediated by] of its effect on the 
exposure variable), whereas these assumptions are less strin-
gent within the MR Egger method [33, 38]. We also conducted 
MR analyses by single SNP and ran additional tests exam-
ining heterogeneity and horizontal pleiotropy. A detailed ex-
planation of each MR method and its assumptions, as well as 
additional tests, is beyond the scope of this manuscript, but 
further information can be found in the main methods of the 
original publication for TwoSampleMR and supporting stat-
istical papers, referenced in the tutorial [33]. A  Bonferroni-
adjusted p-value of 0.0125 (p  =  0.05/4 sleep exposures) was 
used as the threshold for significance for MR.

Note that several limitations of the data affected MR ana-
lysis. First, given that all sleep phenotypes were from the UK 
Biobank dataset, and there were significant correlations across 
multiple versions of the same phenotype, we chose a repre-
sentative phenotype for each significant genetic correlation 
(i.e. insomnia symptoms, sleep duration, short sleepers, long 
sleepers). Note that the two significant daytime sleepiness 
phenotypes from the UK Biobank GWAS were not included in 
MR analyses, as these correlations are weaker, and the pheno-
types have not been validated. Furthermore, we did not specif-
ically test for reverse directionality (PTSD to sleep phenotypes), 
as the PTSD phenotype is not yet well powered for MR (i.e. 
there are not sufficient GWS instruments; only two GWS SNPs 

Table 1.  PTSD and sleep phenotypes utilized in genetic correlation analyses

Source* Phenotype N SNP-heritability (SE)

PTSD [17]
  PGC, Freeze 1.5 PTSD, binary 48 471 (12 823 Ca; 35 648 Co) 0.05 (0.018)
  PGC, Freeze 2† PTSD, binary 174 659 (23 212 Ca; 151 447 Co) 0.05 (0.010)
Insomnia
  Lane et al. [19] Insomnia symptoms,‡ binary 58 702 (31 767 Ca; 26 935 Co) 0.13 (0.012)
  Hammerschlag et al. [27] Insomnia symptoms,§ binary 113 006 (32 384 Ca; 80 622 Co) 0.09 (0.008)
UK Biobank GWAS Insomnia symptoms, continuous 336 965 0.06 (0.004)
Lane et al. [29] Insomnia symptoms,‡ binary 237 622 (129 270 Ca; 108 352 Co) 0.18 (0.007)||

Sleep duration
  Jones et al. [20] Sleep duration, continuous 127 573 0.07 (0.007)
  Lane et al. [19] Sleep duration, continuous 111 975 0.06 (0.007)
  UK Biobank GWAS Sleep duration, continuous 335 410 0.07 (0.005)
  Dashti et al. [42] Sleep duration, continuous 446 118 0.07 (0.003)||

  Jones et al. [20] Long sleepers,¶ binary 91 306 (10 102 Ca; 81 204 Co) 0.07 (0.016)||

  Dashti et al. [42] Long sleepers,¶ binary 339 926 (34 184 Ca; 305 742 Co) 0.08 (0.006)||

  Jones et al. [20] Short sleepers,# binary 110 184 (28 980 Ca; 81 204 Co) 0.09 (0.009)||

  Dashti et al. [42] Short sleepers,# binary 411 934 (106 192 Ca; 305 742 Co) 0.09 (0.004)||

Daytime sleepiness
  Lane et al. [19] Excessive daytime sleepiness, continuous 111 648 0.05 (0.005)
  UK Biobank GWAS Daytime dozing/sleeping (narcolepsy), continuous 336 082 0.05 (0.003)
  UK Biobank GWAS Nap during the day, continuous 337 074 0.08 (0.004)
  UK Biobank GWAS Easy to get up in morning, continuous 336 501 0.07 (0.004)
Chronotype
  Jones et al. [20] Chronotype, continuous 127 898 0.12 (0.007)
  Lane et al. [21] Chronotype, continuous 100 420 0.12 (0.007)||

  UK Biobank GWAS Chronotype, continuous 301 143 0.12 (0.006)
  Jones et al. [51] Chronotype, continuous 449 734 0.11 (0.004)||

  Lane et al. [21] Extreme chronotype [eveningness],** binary 35 672 (8 724 Ca; 26 948 Co) 0.40 (0.034)||

  Jones et al. [51] Morningness, binary 403 195 (252 287 Ca; 150 908 Co) 0.17 (0.006)||

Other
  UK Biobank GWAS ICD-10 Sleep Diagnosis,†† binary 337 199 (2025 Ca; 335 174 Co) 0.13 (0.051)

Ca, case; Co, control; GWAS, genome-wide association study; ICD, International Classification of Diseases; PGC, Psychiatric Genomics Consortium; PTSD, 

posttraumatic stress disorder; SE, standard error; SNP, single nucleotide polymorphism.

*All sources analyzed data from the UK Biobank. The description “UK Biobank GWAS” refers to a series of analyses conducted on UK Biobank data (2017 release), 

which can be accessed at: http://www.nealelab.is/blog/2017/7/19/rapid-gwas-of-thousands-of-phenotypes-for-337000-samples-in-the-uk-biobank/ (last accessed May 

30, 2019)
†This is the PTSD phenotype used for genetic correlations presented in this manuscript; both PTSD heritabilities were scaled to a population prevalence of 30%.
‡Insomnia cases were defined as individuals endorsing “Often” on the sleeplessness item, while controls included individuals endorsing “Never/Rarely.” Individuals 

endorsing “Sometimes” were designated as missing and not used in analysis.
§Insomnia cases were defined as individuals endorsing “Often” on the sleeplessness item, while controls were those endorsing “Never/Rarely” and “Sometimes.”
||Denotes that this heritability estimate was not published; instead it was estimated from downloaded summary statistic data using LDSC and converted to the li-

ability scale (with sample prevalence = population prevalence), if appropriate. Otherwise, the estimate was taken from the original source publication or https://

nealelab.github.io/UKBB_ldsc/, (last accessed May 30, 2019) as appropriate.
¶Long sleepers were defined as individuals reporting 9 or more hours of sleep, while controls were those endorsing 7–8 h.
#Short sleepers were defined as individuals reporting 6 or fewer hours of sleep, while controls were those endorsing 7–8 h.
**Extreme chronotype cases were defined as individuals endorsing “Definitely an evening person” or “Maybe an evening person,” while controls were individuals 

endorsing “Definitely a morning person” or “Maybe a morning person.” All other individuals were defined as missing.
††Note that this phenotype encompasses multiple categories of sleep disorders, including insomnias, hypersomnias, circadian rhythm disorders, sleep apnea, narco-

lepsy and cataplexy, other sleep disorders, and unspecified sleep disorder.

http://www.nealelab.is/blog/2017/7/19/rapid-gwas-of-thousands-of-phenotypes-for-337000-samples-in-the-uk-biobank/
https://nealelab.github.io/UKBB_ldsc/
https://nealelab.github.io/UKBB_ldsc/
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were identified in EA individuals) [17]. The use of Freeze 1.5 (as 
opposed to Freeze 2), which has a much smaller sample size, 
also decreased the power to detect associations through MR.

Results

Univariate SNP-heritability estimates

Briefly, heritability estimates based on additive genetic vari-
ance from autosomal SNPs (h2

SNP) for PTSD and sleep pheno-
types were derived from previous research and are shown in 
Table 1, including the original GWAS sample size and pheno-
type description. PTSD (Freeze 2)  had a small, but significant, 
h2
SNP = 0.05 (SE = 0.010), with a similar estimate seen for Freeze 

1.5 (h2
SNP = 0.05 [SE = 0.018]). For sleep phenotypes, h2

SNP estimates 
were generally small and ranged from 0.06 to 0.18 for insomnia 
symptoms, 0.06–0.09 for sleep duration, 0.05–0.08 for daytime 
sleepiness, 0.11–0.40 for chronotype, and 0.13 for ICD-10 sleep 
diagnosis.

Main genetic correlation analyses

Figure 1 presents genetic correlations and standard errors for 
analyses that include both sexes. Specific rg estimates and un-
corrected p-values are embedded in the right side of the figure. 
Moderate, positive genetic correlations were found between 
PTSD and insomnia symptoms (all four definitions of the pheno-
type; rg range 0.36–0.49), short sleepers (rg range 0.48–0.49), and 
long sleepers (rg range 0.32–0.44), and all except for the ini-
tial estimate for long sleepers (rg  =  0.44; p  =  0.0027) remained 

significant following Bonferroni correction (p < 0.0022; see Figure 
1 for raw p-values; range 1.3E−13 to 5.7E−05 for these pheno-
types). Several daytime sleepiness phenotypes showed small 
positive correlations with PTSD, although only napping during 
the day (rg  =  0.21) remained statistically significant following 
correction. In contrast, small, negative genetic correlations 
were found between PTSD and continuous sleep duration, with 
the correlations becoming larger in magnitude and significant 
after correction with increasing sample size (rg range [signifi-
cant] = −0.22 to −0.23). There was also a significant correlation 
between waking up in the morning (rg = −0.23; with higher scores 
indicating that the participant finds it easier to wake up on a 
typical day) and PTSD. Finally, there were no significant genetic 
correlations between any variation of chronotype (six different 
sets of summary statistics) and PTSD.

Sex-specific analyses (i.e. for females only)

Results of sex-specific analyses are shown in Table 2, along with 
h2
SNP estimates and other sample information. There were four 

phenotypes available for analysis (two for insomnia symptoms, 
one for daytime sleepiness, and one for sleep duration). Both 
insomnia phenotypes had significant, small to moderate correl-
ations with PTSD in females (rg = 0.26, SE = 0.10, p = 0.0069 for Lane 
et al. [19]; rg = 0.44, SE = 0.12, p = 0.0002 for Hammerschlag et al. 
[27]), consistent with analyses within the full sample. However, 
neither daytime sleepiness (rg  =  −0.14, SE  =  0.10, p  =  0.15) nor 
sleep duration (rg = 0.07, SE = 0.11, p = 0.50) were significantly 
correlated with PTSD for females, which is also consistent with 
results presented above.

Figure 1.  Genetic correlations (rg) between sleep phenotypes and posttraumatic stress disorder (PTSD). Genetic correlation estimates obtained through linkage disequi-

librium score regression (LDSC) are shown here, grouped by sleep phenotype, with each specific study name on the left. Error bars represent standard error. p-Values 

that pass multiple testing correction (p < 0.0022 per Bonferroni correction) are indicated by an (*).
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Mendelian randomization analyses

Results from TwoSampleMR analyses investigating potential 

causal relationships between four sleep phenotypes (expos-

ures) and PTSD (outcome) are shown in Table 3. There was no 

evidence to support causal relationships between any of the 
four sleep phenotypes (insomnia symptoms, sleep duration, 
short sleepers, long sleepers) and PTSD utilizing any of the five 
MR methods. Furthermore, none of the phenotypes showed 
strong evidence for significant heterogeneity (all p values > 0.05 

Table 3.  Results of two-sample Mendelian randomization [MR] analyses examining causal relationships between four sleep phenotypes (in-
somnia symptoms, sleep duration, short sleepers, and long sleepers), and PTSD

Mendelian randomization* Heterogeneity test† Pleiotropy test‡

Method nSNP Beta SE P value Q Qdf

Q 
p val

Egger 
Int. SE p value

Insomnia symptoms (Lane et al. [19])
  MR Egger 38 −0.563 0.986 0.571 24.732 36 0.922 0.011 0.010 0.280
  Weighted median 38 0.372 0.403 0.356 — — —    
  Inverse variance weighted 38 0.471 0.288 0.102 25.937 37 0.914    
  Simple mode 38 0.385 0.838 0.648 — — —    
  Weighted mode 38 0.036 0.688 0.958 — — —    
Sleep duration (Dashti et al. [42]
  MR Egger 70 −0.639 0.555 0.254 86.188 68 0.067 0.011 0.009 0.240
  Weighted median 70 −0.136 0.214 0.525 — — —    
  Inverse variance weighted 70 −0.006 0.153 0.966 87.967 69 0.062    
  Simple mode 70 0.236 0.482 0.626 — — —    
  Weighted mode 70 −0.136 0.363 0.708 — — —    
Short sleepers (Dashti et al. [42])
  MR Egger 24 4.340 2.917 0.151 28.138 22 0.171 −0.025 0.020 0.224
  Weighted median 24 0.293 0.796 0.713 — — —    
  Inverse variance weighted 24 0.771 0.635 0.225 30.144 23 0.145    
  Simple mode 24 −0.551 1.457 0.709 — — —    
  Weighted mode 24 −0.218 1.347 0.873 — — —    
Long sleepers (Dashti et al. 2019)
  MR Egger 6 −1.331 5.092 0.807 1.619 4 0.805 0.009 0.029 0.772
  Weighted median 6 0.160 1.852 0.931 — — —    
  Inverse variance weighted 6 0.178 1.521 0.907 1.716 5 0.887    
  Simple mode 6 0.454 2.594 0.868 — — —    
  Weighted mode 6 0.076 2.721 0.979 — — —    

Int., intercept; MR, Mendelian randomization; PTSD, posttraumatic stress disorder; SE, standard error; SNP, single nucleotide polymorphism.

*Mendelian randomization was conducted utilizing the TwoSampleMR package in R.
†Heterogeneity tests were conducted on the MR Egger and inverse variance weighted results within the TwoSampleMR package.
‡Horizontal directional pleiotropy was tested using the TwoSampleMR package.

Table 2.  Genetic correlations between sleep phenotypes and PTSD, females only

Source† Phenotype N
SNP- 
heritability 

Genetic correlation 
with PTSD

rg (SE) p value

PTSD [17]
  PGC, Freeze 1.5 PTSD, binary 15 656 (6128 Ca; 9528 Co) 0.21 (0.05) — —
  PGC, Freeze 2‡ PTSD, binary 86 600 (12 973 Ca; 73 627 Co) 0.10 (0.02) — —
Sleep phenotypes
  Lane et al. [19] Insomnia symptoms,§ binary 30 445 (NR Ca; NR Co) 0.14 (0.02)¶ 0.26 (0.10) 0.007*
  Hammerschlag et al. [27] Insomnia symptoms,# binary 59 367 (19 521 Ca; 39 846 Co) 0.08 (0.01) 0.44 (0.12) 0.0002*
  Lane et al. [19] Excessive daytime sleepiness, continuous 59 576 0.06 (0.01) −0.14 (0.10)e 0.148
  Lane et al. [19] Sleep duration, continuous 59 365 0.08 (0.01) 0.07 (0.11)e 0.498

Ca, cases; Co, controls; NR, not reported; PGC, Psychiatric Genomics Consortium; PTSD, posttraumatic stress disorder; SNP, single nucleotide polymorphism.
†All sources analyzed data from the UK Biobank. The description “UK Biobank GWAS” refers to a series of analyses conducted on UK Biobank data (2017 release), 

which can be accessed at: http://www.nealelab.is/blog/2017/7/19/rapid-gwas-of-thousands-of-phenotypes-for-337000-samples-in-the-uk-biobank/ (last accessed May 

30, 2019)
‡This is the PTSD phenotype used for genetic correlations presented in this manuscript; both PTSD heritabilities were scaled to a population prevalence of 30%.
§Insomnia cases were defined as individuals endorsing “Often” on the sleeplessness item, while controls included individuals endorsing “Never/Rarely.” Individuals 

endorsing “Sometimes” were designated as missing and not used in analysis.
#Insomnia cases were defined as individuals endorsing “Often” on the sleeplessness item, while controls were those endorsing “Never/Rarely” and “Sometimes.”
¶This heritability estimate was not published; instead it was estimated from downloaded summary statistic data using LDSC. Otherwise, the estimate was taken 

from the original source publication.

*p < 0.05.

http://www.nealelab.is/blog/2017/7/19/rapid-gwas-of-thousands-of-phenotypes-for-337000-samples-in-the-uk-biobank/
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for both MR Egger and IVW analysis) or horizontal directional 
pleiotropy (all p values > 0.05) contributing to the results. As 
there were no significant results within the main MR analyses, 
we are not presenting results of single SNP analyses. Scatter 
plots showing MR results for each method, as well as forest 
plots of each individual SNP, are available upon request. Of note, 
there were only six SNPs included in analyses of long sleepers 
following clumping, so results should be interpreted in light of 
the smaller number of instruments for this phenotype.

Discussion
This analysis is the first demonstration that PTSD and sleep-
related traits have overlapping genetic architecture based on 
molecular genetic data. We also present the first analyses exam-
ining causal relationships between sleep phenotypes and PTSD, 
although we did not find substantial evidence for causality 
within this data. While correlations are expected based on both 
the twin and molecular genetics literatures (PTSD has genetic 
overlap with symptoms of other psychiatric disorders, particu-
larly depression [22], which themselves overlap with insomnia 
[23]), genetic overlap between insomnia and PTSD has not been 
explicitly examined. However, results should be interpreted in 
the context of low SNP heritability estimates, as shown in Table 
1: PTSD itself has a SNP heritability of 5% within the PGC Freeze 2 
sample [17] and most sleep phenotypes used within this manu-
script have SNP heritabilities under 15%. This means that while 
significant, correlations represent small portions of shared vari-
ance in the traits examined (although note that all phenotypes 
had the recommended heritability Z-score > 4, which indicates 
that power is appropriate and estimates are interpretable) [35].

Genetic correlations, mixed sexes

The strongest and most consistent genetic correlations across 
studies were found for PTSD and insomnia symptoms, which 
is not surprising given that insomnia symptoms are included 
within PTSD symptom clusters. Furthermore, published GWAS 
of insomnia phenotypes support that insomnia symptoms have 
substantial shared genetics with psychiatric disorders in general 
and less of a relationship with other sleep phenotypes such as 
chronotype and sleep duration [29, 30]. Thus, one would expect to 
see the most robust genetic correlation with PTSD for insomnia 
symptoms when compared to other phenotypes examined here. 
Estimates of genetic correlations between insomnia symptoms 
and PTSD reported here ranged from 0.36 to 0.49. These esti-
mates are similar in magnitude to those reported in other studies 
estimating molecular genetics overlap between insomnia and de-
pression, where estimates have ranged from 0.34 to 0.51 [19, 27, 
28, 39]. The magnitude is also similar to the reported genetic cor-
relations between PTSD and depression (rg = 0.34 in initial PGC–
PTSD results [16] and rg = 0.62 in PGC–PTSD Freeze 2 [17]). Given 
that PTSD and depression are highly comorbid [40] and known to 
share genetic architecture as demonstrated in twin and molecular 
studies [16, 25, 26], similarities across genetic correlations are lo-
gical. Notably, genetic correlations discussed here are moderate, 
suggesting that each trait has a considerable degree of unique gen-
etic architecture not accounted for by the insomnia/PTSD overlap.

For other sleep-related traits, the highest correlations were 
between short sleepers (sleeping 6 or less hours a night), and 

long sleepers (sleeping 9 or more hours a night), with weaker but 
significant correlations seen with napping during the day and 
waking up in the morning. A moderate, positive correlation was 
seen for any ICD-10 sleep diagnosis (rg = 0.43), but this was only 
nominally significant, as it did not pass multiple testing correc-
tion. Positive genetic correlations between both oversleeping 
and undersleeping are consistent with the epidemiologic litera-
ture demonstrating that both short- and long-sleep increase risk 
for PTSD in veterans [41] and provide evidence for a relationship 
between genetic influences on the extremes of sleep duration 
and PTSD. In contrast, only two of four continuous sleep dur-
ation phenotypes survived multiple testing correction, and sleep 
duration was negatively correlated with PTSD, with the highest 
correlation at −0.23. With increasing sample sizes, and thus 
increasing power, we provide evidence that sleep duration is in-
deed correlated with PTSD, although not at the same magnitude 
as the extremes of duration (short/long sleepers). Correlations 
between the extremes of sleep duration and sleep duration it-
self (estimated using LDSC and summary statistics data from 
Dashti et al. [42]) are high, with rg = 0.69 for long sleepers and 
rg = −0.89 short sleepers (this makes sense given the U-shaped 
curve of sleep duration). There are also published genetic cor-
relations between sleep duration and schizophrenia (0.29) [19] 
and schizophrenia and PTSD (0.33) [16], which provides some 
support for a sleep duration and PTSD association.

Large GWAS are beginning to identify a substantial number 
of loci for sleep duration [42], and combining self-report with 
actigraphy measures, but it may be that sleep duration is less 
heritable and/or a more complex phenotype. It does not appear 
to be strongly correlated with insomnia symptoms [19], and as 
shown in Table 1, may be less heritable than insomnia symp-
toms and chronotype. Results from a twin study of sleep dur-
ation and depression may help reconcile these findings: Watson 
and colleagues [43] found that sleep duration moderates gen-
etic influences on depression. Results indicated that, while ini-
tial models did not demonstrate genetic overlap, shared genetic 
influences on the two traits increased as sleep duration be-
came more extreme. Furthermore, the heritability of depression 
was higher for individuals who were short or long (vs. normal) 
sleepers within this sample [43]. These results highlight the 
complexity of genetic influences on sleep duration, and thus it 
may be that shared genetic influences between sleep duration 
and PTSD can best be seen at extremes of duration, as opposed 
to a linear relationship with sleep duration.

Finally, there was no evidence for a significant genetic cor-
relation between PTSD and chronotype. Genetic variants in 
clock genes have shown association with mood disorders [44, 
45] RORA has been implicated in PTSD [18], and a recent meta-
analysis of PTSD candidate gene studies implicates a poly-
morphism in ADCYAP1R1 [46], the gene coding for the pituitary 
adenylate cyclase-activating polypeptide (PACAP) receptor, 
which is an important neurotransmitter in circadian regula-
tion [47, 48]. However, this evidence for a role of circadian genes 
in PTSD is not robust and should be interpreted in light of nu-
merous problems with the candidate gene method (e.g. false 
positives, assumption of incorrect effect sizes) and the poten-
tial for false-positive GWAS results, particularly with smaller 
sample sizes [49, 50]. Thus, it is plausible that shared genetic 
influences between circadian rhythms and PTSD are not signifi-
cant. Consistent with our findings, one GWAS failed to find any 
genetic overlap between chronotype and insomnia symptoms, 
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despite a known role of circadian rhythms in insomnia [19]. 
Additional research is needed to further elucidate the role of cir-
cadian genes in PTSD, and a better understanding of the role 
of circadian loci in chronotype, as is emerging from new GWAS 
[51], will also be useful in this endeavor.

Sex-specific genetic correlations

We also attempted to estimate sex-based genetic correlations 
where possible, given existing evidence for quantitative sex dif-
ferences across both phenotypes [15–17]. Note, however, that 
recent GWAS have not identified substantial sex differences in 
SNP-heritability estimates at the molecular level for insomnia 
symptoms [27, 30]. Analyses were unfortunately limited to fe-
males only, as the SNP-heritability of PTSD for males in the PGC 
does not differ from zero [17]. We report similar estimates for 
females only as in the full samples for two insomnia pheno-
types (0.26 and 0.44, as compared to 0.36 and 0.49 in the mixed-
sex samples), and the standard errors are larger. This is not 
surprising given the loss in power due to smaller sample size 
in sex-specific analyses. It may be that with increasing sample 
sizes, significant differences in the genetic correlation become 
observation (i.e. more robust for females than in males), but this 
will need to be further investigated in future studies.

Mendelian randomization analyses

In order to better elucidate the nature of the relationships be-
tween significantly correlated sleep phenotypes and PTSD, we 
conducted the first set of MR analyses for sleep exposure vari-
ables (insomnia symptoms, sleep duration, short sleepers, long 
sleepers) and PTSD. We did not find substantial evidence for 
causal relationships between sleep and PTSD, despite running 
analyses using results from the largest available GWAS of val-
idated sleep phenotypes and PGC–PTSD data. However, given 
the lack of robust, replicated associations for sleep phenotypes 
that can be used as instruments, particularly when compared 
to other psychiatric phenotypes like schizophrenia [52] and low 
number of GWS hits for PTSD [17], this is not necessarily unex-
pected. The MR approach itself has limitations, particularly with 
regard to pleiotropy and weak instrument bias [33]. We were 
also interested in examining bidirectionality, given complex re-
lationships between sleep and PTSD [6], but were not powered 
to conduct analyses of causality in the reverse direction, given 
that there are only two GWS SNPs for PTSD in Freeze 2 [17]. 
TwoSampleMR does include a test of bidirectionality [33], but 
this was likely under powered as well. Although these results 
are largely inconclusive, further examination of the shared gen-
etics between sleep and PTSD with regard to bidirectionality and 
causality is warranted as methods evolve and more datasets be-
come available.

Limitations

The present study included data from the largest PTSD GWAS 
meta-analysis to date (N = 174 659 EA individuals) and the lar-
gest published sleep-related GWAS results. However, there are a 
number of limitations to consider. Given that sleep disturbance 
is part of PTSD diagnostic criteria, this may induce some degree 
of correlation based on overlapping phenotype definitions. In 

one twin study, this confound was reduced by removing sleep 
items from depression operationalization [23] but that was not 
possible here. The sleep-related phenotypes are mostly limited 
to single-item self-report items rather than validated ques-
tionnaires, clinician diagnoses, or objective data. Furthermore, 
analyses were only conducted on individuals of EA given limi-
tations of LDSC. As our understanding of how to approach ad-
mixed populations in genetic studies increases, future studies 
that replicate findings across other ancestry groups will be 
useful. Similarly, all sleep phenotypes used UK Biobank data, 
which limits the generalizability of results. Finally, summary 
statistics for many sleep phenotypes came from the UK Biobank 
GWAS (http://www.nealelab.is/blog/2017/7/19/rapid-gwas-
of-thousands-of-phenotypes-for-337000-samples-in-the-uk-
biobank/, last accessed May 30, 2019) and should be considered 
preliminary, as phenotypes have not been validated and gen-
etic analyses have specific constraints (see Methods section for 
more details).

Conclusions
In summary, these results indicate that there are common gen-
etic factors shared between PTSD and sleep-related pheno-
types, in particular insomnia symptoms. This has implications 
for gene finding efforts, as genes that have been identified (or 
are identified in the future) for PTSD may also be important in 
sleep phenotypes; the reverse may also be true. Thus, further 
investigation of specific variants and genes may shed light on 
the underlying pathophysiology of both disorders. For example, 
one could hypothesize that stress response pathways may be 
involved in the development of both sleep problems and PTSD, 
given relationships between sleep and stress [53]. As sleep 
problems and PTSD are highly comorbid and the literature re-
garding the optimal way to treat both is a work in progress [54], 
a better understanding of the relationships between sleep and 
PTSD at the genetic level could lead to the development of novel 
treatment approaches as the field advances. Future studies 
with more in-depth phenotyping and genotyping, functional 
studies of identified variants, and analyses that test for caus-
ality and bidirectionality are clearly needed to advance this line 
of research.
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