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Network topology and functional connectivity
disturbances precede the onset of Huntington’s
disease

Deborah L. Harrington,1,2 Mikail Rubinov,3,4 Sally Durgerian,5 Lyla Mourany,6

Christine Reece,6 Katherine Koenig,7 Ed Bullmore,3 Jeffrey D. Long,8 Jane S. Paulsen8

for the PREDICT-HD investigators of the Huntington Study Group and Stephen M. Rao6

Cognitive, motor and psychiatric changes in prodromal Huntington’s disease have nurtured the emergent need for early interven-

tions. Preventive clinical trials for Huntington’s disease, however, are limited by a shortage of suitable measures that could serve as

surrogate outcomes. Measures of intrinsic functional connectivity from resting-state functional magnetic resonance imaging are of

keen interest. Yet recent studies suggest circumscribed abnormalities in resting-state functional magnetic resonance imaging con-

nectivity in prodromal Huntington’s disease, despite the spectrum of behavioural changes preceding a manifest diagnosis. The

present study used two complementary analytical approaches to examine whole-brain resting-state functional magnetic resonance

imaging connectivity in prodromal Huntington’s disease. Network topology was studied using graph theory and simple functional

connectivity amongst brain regions was explored using the network-based statistic. Participants consisted of gene-negative controls

(n = 16) and prodromal Huntington’s disease individuals (n = 48) with various stages of disease progression to examine the influ-

ence of disease burden on intrinsic connectivity. Graph theory analyses showed that global network interconnectivity approximated

a random network topology as proximity to diagnosis neared and this was associated with decreased connectivity amongst highly-

connected rich-club network hubs, which integrate processing from diverse brain regions. However, functional segregation within

the global network (average clustering) was preserved. Functional segregation was also largely maintained at the local level, except

for the notable decrease in the diversity of anterior insula intermodular-interconnections (participation coefficient), irrespective of

disease burden. In contrast, network-based statistic analyses revealed patterns of weakened frontostriatal connections and strength-

ened frontal-posterior connections that evolved as disease burden increased. These disturbances were often related to long-range

connections involving peripheral nodes and interhemispheric connections. A strong association was found between weaker con-

nectivity and decreased rich-club organization, indicating that whole-brain simple connectivity partially expressed disturbances in

the communication of highly-connected hubs. However, network topology and network-based statistic connectivity metrics did not

correlate with key markers of executive dysfunction (Stroop Test, Trail Making Test) in prodromal Huntington’s disease, which

instead were related to whole-brain connectivity disturbances in nodes (right inferior parietal, right thalamus, left anterior cingu-

late) that exhibited multiple aberrant connections and that mediate executive control. Altogether, our results show for the first time

a largely disease burden-dependent functional reorganization of whole-brain networks in prodromal Huntington’s disease. Both

analytic approaches provided a unique window into brain reorganization that was not related to brain atrophy or motor symp-

toms. Longitudinal studies currently in progress will chart the course of functional changes to determine the most sensitive markers

of disease progression.
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Introduction
Huntington disease is a neurodegenerative disorder result-

ing from a cytosine-adenine-guanine (CAG) repeat expan-

sion in the HTT gene. Diagnosis of Huntington’s disease is

made at the appearance of unequivocal motor signs, yet subtle

cognitive (e.g. attention, executive, memory), motor (e.g.

chorea, bradykinesia, oculomotor), and psychiatric symp-

toms (e.g. anxiety, depression, obsessive-compulsiveness)

are detected decades earlier during the prodromal phase.

With the development of treatments that could delay

onset or slow progression of symptoms, there is a need for

surrogate markers that are sensitive to changes in neuronal

dysfunction during the prodromal phase. Though cognitive

variables track disease progression and add to the prediction

of time to diagnosis (Harrington et al., 2012; Paulsen et al.,

2013, 2014a, b), striatal volumes are notably robust markers

(Aylward et al., 2012; Paulsen et al., 2014a, b; Ross et al.,

2014). However, atrophy of the striatum or cortex (Nopoulos

et al., 2010; Harrington et al., 2014) does not characterize the

functional topography of disease progression. In this regard,

measures of intrinsic functional connectivity from resting-

state functional MRI are of keen interest to elucidate the

effect of early striatal degeneration on intrinsic activity

within the whole brain.

Changes in the spatiotemporal dynamics of synchroniza-

tion in cognitive and perceptual resting-state networks,

identified by independent components analysis, have been

of interest owing to the decline in cognition in prodromal

Huntington’s disease. Initial resting-state functional MRI

studies suggest that only some of these networks exhibit

functional connectivity disturbances. The dorsal attention

network (occipital-parietal) showed decreased synchroniza-

tion in prodromal Huntington’s disease (Poudel et al.,

2014a), as did the visual network with sensorimotor

cortex (Dumas et al., 2013). In contrast, preserved func-

tional connectivity has been observed within the executive

(i.e. medial/lateral frontal), working memory (i.e. fronto-

parietal), and default mode networks in prodromal

Huntington’s disease (Dumas et al., 2013; Poudel et al.,

2014a). Seed-based approaches also found preserved func-

tional connectivity of the isthmus cingulate, a key element

of the default mode network (Seibert et al., 2012), in pro-

dromal Huntington’s disease.

Thus, initial studies using independent component-

derived networks and seed-based approaches indicate that

abnormal resting-state functional MRI connectivity may be

circumscribed to dorsal attention and visual networks, des-

pite declines in a range of cognitive abilities, including ex-

ecutive functions, attention, visuospatial cognition, and

memory (Tabrizi et al., 2009; Duff et al., 2010; Say

et al., 2011; Stout et al., 2011; Harrington et al., 2012;

Georgiou-Karistianis et al., 2014a; Paulsen et al., 2014a).

Although these analytical approaches have provided valu-

able insights, they do not provide an understanding of con-

nectivity at the scale of the whole brain, which to date has

not been studied in prodromal Huntington’s disease.

Furthermore, previous resting-state functional MRI studies

have not examined functional connectivity as a function of

disease burden, as approximated by the time to a manifest

diagnosis. Task-related functional MRI, for example, dem-

onstrates that activation patterns depend on the stage of

prodromal disease progression (Paulsen et al., 2004;

Zimbelman et al., 2007; Wolf et al., 2008; Rao et al.,

2014).

The present study used two complementary analytical

approaches to examine whole-brain connectivity in pro-

dromal Huntington’s disease. The first examined network

topology using graph theory, which provides concise sum-

maries of global network interconnectivity, organizational

features of groups of nodes, and the extent to which indi-

vidual regions play an integrative role (Bullmore and

Sporns, 2009; Rubinov and Sporns, 2010; van den

Heuvel and Sporns, 2013). Owing to the absence of inves-

tigations into network topology in Huntington’s disease,

key properties of functional networks were assessed at

global, intermediate, and local scales. The second approach

investigated simple functional connectivity amongst every

connection linking 300 brain regions using the network-

based statistic (NBS) (Zalesky et al., 2010a, 2012a),
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which is a powerful tool for identifying group differences in

connectivity strength of clusters of interconnected nodes.

Our large sample of prodromal Huntington’s disease par-

ticipants (n = 48), with varying stages of disease progres-

sion, allowed us to examine the influence of disease

burden on network topology and functional connectivity

for the first time.

We hypothesized that disturbances in graph theory meas-

ures would identify novel properties of abnormal network

organization that would be expressed more strongly as dis-

ease burden increased. We also hypothesized that a core

feature of simple functional connectivity disturbances

would be a weakening in frontostriatal connections, pos-

sibly owing to prominent structural changes in the basal

ganglia (Aylward et al., 2012; Paulsen et al., 2014b) and

densely interconnected white-matter tracts underlying fron-

tal cortex (Matsui et al., 2014). We also explored relation-

ships between network topology and functional

connectivity indices and measures of executive functioning

and brain atrophy.

Materials and methods

Participants

Data were collected at the Cleveland Clinic and the University
of Iowa as part of the larger PREDICT-HD study (Paulsen
et al., 2006, 2008, 2014b). Ethics committees at both sites
approved the study procedures and written informed consent
was obtained from participants according to the Declaration of
Helsinki. Participants completed genetic testing for the CAG
expansion independent from entry into PREDICT-HD; con-
firmatory DNA testing was conducted after enrolment. A cer-
tified examiner completed the Motor Assessment section of the
Unified Huntington’s Disease Rating Scale (UHDRS;
Supplement 1). Examiners rated their confidence level that a
participant’s motor signs were an indication of Huntington’s
disease using the five-point Diagnostic Confidence Level
(DCL); participants were excluded with a DCL of 4 (599%
confidence of unequivocal signs of Huntington’s disease).
The Supplementary material specifies additional exclusion
criteria.

The sample consisted of 48 prodromal Huntington’s disease
participants and 16 gene-negative controls who were offspring
of a parent with Huntington’s disease, but without the CAG
expansion. The prodromal Huntington’s participants were
stratified into Low, Medium, and High groups (16 subjects
per group) based on the CAG-Age Product, computed as
CAP = [(age at study entry) � (CAG repeats � 33.66)], which
is a validated index of disease burden in prodromal
Huntington’s disease (Zhang et al., 2011; Paulsen et al.,
2014b) (Supplementary material). Cut-offs for the three CAP
groups were based on an optimization algorithm from the
larger PREDICT-HD cohort (n4 1000). Based on this strati-
fication, estimated time to diagnosis is 412.78 years, 12.78 to
7.59 years, and 57.59 years for the Low, Medium, and High
groups, respectively. Table 1 details group characteristics. As
expected, the Low group was significantly younger than the
High group, but also the Negative group. Though the High

group was less educated than the Negative group, mean edu-
cational level did not differ among the other prodromal
Huntington’s groups. There were no group differences in sex
or number of subjects scanned at the two sites.

Cognitive tests

Participants were administered three tests of executive func-
tions that track disease progression in prodromal
Huntington’s disease (O’Rourke et al., 2011; Paulsen et al.,
2013, 2014a) including: (i) the Stroop Color and Word Test
(color naming, word reading, and interference; total correct in
45 s) (Golden, 1978); (ii) the Symbol Digit Modalities Task
(total correct in 90 s) (Smith, 1995); and (iii) the Trail
Making Test (Parts A and B; time to complete) (Reitan and
Wolfson, 1993).

Neuroimaging protocol

Both sites used identical Siemens TIM Trio 3 T MRI scanners
equipped with a 12-channel receive-only head array.
Comparison of phantom data between sites indicated similar
image quality and signal-to-noise ratio. Frequent quality assur-
ance scans were performed at each institution to ensure that
imaging data were free of scanner artefacts and were compar-
able across sites. Whole-brain resting-state functional MRI
scans were acquired with a gradient-echo, echoplanar pulse
sequence [132 repetitions, 31 4.0 mm thick axial slices (no
gap); matrix 128 � 128; in-plane resolution 2 � 2 mm; echo
time/repetition time/flip angle, 29/2800 ms/80�; field of view,
256 � 256 mm; receiver bandwidth, 1954 Hz/pixel]. Subjects
kept their eyes closed during the scan. T1 with T1-weighted
inversion recovery turboflash (magnetization-prepared rapid
acquisition with gradient echo, MPRAGE) images [GRAPPA
factor = 2, 240 coronal slices, thickness = 1 mm, field-of-
view = 256 mm � 256 mm, inversion time/echo time/repetition
time/flip angle = 900 ms/3.09 ms/2530 ms/10, ma-
trix = 256 � 128, receiver bandwidth = 220 Hz/pixel] were
acquired for registration with echo planar images and grey
matter thickness/volumetric measurements.

Resting state image analysis

Physiologic noise was estimated using PESTICA (Beall and
Lowe, 2007) and was regressed out at the voxel level using
RETROICOR (Glover et al., 2000) (Supplementary mater-
ial). Several procedures were used to meticulously screen
resting-state functional MRI scans for motion including
visual inspection of resting-state functional MRI time
series and correlation maps (Supplementary material).
AFNI 3dvolreg (Cox, 1996) was used to retrospectively cor-
rect volumetric-level motion. The 3dvolreg program realigns
subsequent volumes of time series data to a base volume
and outputs volumetric motion parameters for rotation
and displacement of each volume to the base volume.
Volumetric parameters were then trigonometrically con-
verted to voxel-level displacement and a model of the
signal fluctuations was regressed from the time series at
each voxel (Bullmore et al., 1999). The groups did not sig-
nificantly differ in mean and maximum peak-to-peak dis-
placement during the resting-state functional MRI scan
(P4 0.163) (Supplementary material). Data were spatially
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filtered using a Hamming filter, affine transformed to
MNI152 stereotactic space, and temporally bandpass-filtered
to remove fluctuations 50.01 Hz and 40.1 Hz. Statistical
tests were conducted on the age-standardized residuals of
each imaging variable. Scanner site was not significantly
associated with any of the imaging variables.

Cortical and subcortical parcellation

To derive measures of functional connectivity, the cortical sur-
face and subcortical structures were subdivided into nodes.
Accurate parcellation is important for accurate mapping of
interregional functional connectivity (Zalesky et al., 2010b).
We used a medium-density resolution of 300 nodes, derived
using a spatially constrained clustering method (Craddock
et al., 2012) that subdivides regions into similarly sized parcels
while optimizing homogeneity of correlations among voxels
within each node (Supplementary material). The group parcel-
lation was based on gene-negative participants. However, our
main effect tests of group for graph-theory derived measures
were largely reproducible when we conducted individual sub-
ject parcellations using the current method (Craddock et al.,
2012) and another approach that maximizes homogeneity
without the constraint of similar parcel sizes (Blumensath
et al., 2013) (Supplementary Table 1).

Network topology analysis

Complex network analyses were conducted on weighted net-
works using the Brain Connectivity Toolbox (Rubinov and
Sporns, 2010). Weights in our matrices represent z-scores of
Pearson correlations. Intrinsic time series data are known to
have time and spatial correlations that can impact the

distribution of correlation values in individual subjects. To
normalize the sampling distribution, correlations were con-
verted to z-scores using the method of Lowe et al. (1998).
Edges were defined by thresholding the connectivity matrix
to include z-scores 40.84. This threshold was chosen to bal-
ance statistical evidence of connectivity with the desire to
avoid less reliable sparse networks (Braun et al., 2011;
Rubinov and Sporns, 2011; Wang et al., 2011). The threshold
excluded negative z-scores, which reduce the reliability of
graph theory-based metrics (Wang et al., 2011).

We computed widely-used complex network measures of
global, intermediate, and local-scale network organization

(Rubinov and Sporns, 2010; van den Heuvel and Sporns,

2011). Global network measures included: ‘density’, a measure

of total connectivity that is equivalent to the average connec-

tion weight in the network; ‘clustering coefficient’, a measure

of the propensity of the network to form clusters that is com-

puted as the average fraction of triangles out of all connected

triples (Onnela et al., 2005); and ‘global efficiency’, a measure

of the propensity of the network to be globally interconnected

that is computed as the average inverse shortest path length

between all pairs of nodes (Latora and Marchiori, 2001).

Intermediate-scale network measures capture organizational

properties of groups of nodes. We focused on the extent to

which the network may be said to contain a rich-club or a

central core of highly-connected regions (van den Heuvel and

Sporns, 2011). We did this by computing the ‘rich-club coef-

ficient’, defined as the density of connections (average connec-

tion weight) between central hub nodes (Colizza et al., 2006).

Clustering coefficient, global efficiency, and rich-club

coefficient were normalized to the mean value derived

from 100 random networks (Rubinov and Sporns, 2010)

(Supplementary material), because these measures of network

Table 1 Demographic, clinical and cognitive test variables

Negative Low Medium High

n = 16 n = 16 n = 16 n = 16 Pa ESb Post hocsc

Demographic and clinical

Age (years) 42.6 (9.2) 32.6 (9.0) 39.3 (9.7) 47.1 (12.6) 0.0020 0.22 Neg, High4 Low

Education (years) 16.0 (1.9) 14.4 (2.2) 15.3 (2.5) 13.9 (2.4) 0.0470 0.12 Neg4High

Sex (% male) 4 (25) 1 (6.3) 5 (31.3) 2 (12.5) 0.2510 –

CAG repeats – 41.8 (1.9) 42.6 (2.6) 43.6 (3.2) 0.1380 0.08

CAP score – 251.9 (30.2) 332.3 (18.5) 439.0 (45.5) 0.0001 0.85 Low5Med5High

UHDRS Motor Score 5.1 (4.5) 3.5 (3.8) 4.9 (4.4) 13.4 (7.8) 0.0001 0.36 Neg, Low, Med5High

Location scanned (CC, UI) 4, 12 7, 9 10, 6 7, 9 0.2060 –

Cognitive

SDMT 61.0 (9.8) 56.4 (10.4) 56.8 (9.7) 47.8 (10.6) 0.0018 0.09 Neg, Medium4High

Stroop Color 88.2 (15.10) 84.4 (10.6) 83.1 (10.6) 68.9 (14.2) 0.0002 0.20 Neg, Low, Med4High

Stroop Word 110.3 (19.8) 107.1 (12.4) 105.8 (16.1) 84.4 (19.7) 0.0002 0.19 Neg, Low, Med4High

Stroop Interference 51.4 (9.8) 51.4 (12.8) 52.4 (11.2) 40.2 (10.6) 0.0064 0.12 Neg, Low, Med4High

Trails A 19.4 (4.4) 23.7 (7.9) 21.4 (8.7) 30.3 (13.1) 0.0075 0.10 Neg, Med5High

Trails B 51.3 (19.0) 50.8 (19.0) 44.3 (8.7) 83.7 (42.5) 0.0002 0.20 Neg, Low, Med5High

Trails B-A 31.3 (17.8) 27.1 (15.8) 22.8 (9.2) 53.4 (38.4) 0.0023 0.16 Neg, Low, Med5High

aP-values for age, education, CAG, CAP score, and UHDRS derived from ANOVA; sex and location scanned from chi-square test; all cognitive variables from ANCOVA with age and

education as covariates.
bES = effect size; �2 for demographic and clinical variables and partial �2 for cognitive variables.
cTukey’s honestly significant difference; post hoc testing on cognitive variables based on means adjusted for age and education.

CC = Cleveland Clinic; UI = University of Iowa; SDMT = Symbol Digit Modality Test (total correct); Stroop = Stroop Color and Word Test (total correct for Color Naming, Word

Reading, and Interference subtests); Trails = Trail Making Test, Parts A and B (seconds to complete).

Connectivity in prodromal Huntington’s disease BRAIN 2015: 138; 2332–2346 | 2335

 by guest on A
pril 26, 2016

http://brain.oxfordjournals.org/
D

ow
nloaded from

 

http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awv145/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awv145/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awv145/-/DC1
http://brain.oxfordjournals.org/


organization should not be interpreted in isolation. For in-
stance, an increase in global efficiency is not necessarily bene-
ficial if it is accompanied by a reduction in measures such as
the clustering coefficient. Indeed, random graphs have very
high global efficiency, but very low clustering coefficients, re-
flecting an imbalance between integration and segregation.

Local measures, which describe the centrality of individual
nodes (van den Heuvel and Sporns, 2013; Crossley et al.,
2014), included: ‘weighted nodal degree’, the total sum of
weights associated with a node; ‘participation coefficient’, the
diversity of nodal connections between distinct subnetworks or
modules (Guimera and Amaral, 2005); and ‘eigenvector central-
ity’, a self-referential measure designating the degree to which
high eigenvector centrality nodes connect to other high eigenvec-
tor centrality nodes. These measures describe the extent to which
individual nodes play an integrative role in the network. To com-
pare different node centrality measures, we converted these meas-
ures to ranks (van den Heuvel et al., 2010).

Functional connectivity analysis

Simple functional connectivity disturbances were examined
using the NBS, which detects large within-network compo-
nents that are evaluated statistically using permutation testing
(Zalesky et al., 2010a, 2012a). A test statistic (fitted z-scores)
of correlation coefficients was computed for all edges connect-
ing the 300 nodes (i.e. positive and negative correlations). The
Negative group and each prodromal Huntington’s group were
then compared on age-standardized residuals of the fitted z-
scores for all edges by applying a threshold of t5 3.5 to form
a set of suprathreshold connected clusters (i.e. based on the
graph theoretical concept of connected components) at an un-
corrected level.

Structural MRI analyses of brain
morphometry

MRI scans were analysed to test for group differences in bi-
lateral regional cortical volume and thickness and subcortical
volumes, since hemispheric asymmetries have not been noted
across multiple studies (Nopoulos et al., 2010; Aylward et al.,
2012; Harrington et al., 2014). Cortical volume and thickness
were derived from the Desikan atlas parcellation method
(Desikan et al., 2006) in FreeSurfer 5.1 software (Fischl
et al., 2004), which demonstrates good test-retest reliability
across scanners and sites (Han et al., 2006) (Supplementary
material). Volumetric measures were adjusted for total intra-
cranial volume [(volume/intracranial volume) � 100)]. Five
subcortical volumes (putamen, globus pallidus, caudate,
accumbens, and thalamus) were analysed. ANCOVAs (age-
adjusted) tested for group differences in volume and thickness
measures, false discovery rate (FDR) corrected for multiple
comparisons.

Results

Neuropsychological testing

Group differences (ANCOVA; age and education covari-

ates) were found for all cognitive variables (Table 1). The

High group performed significantly worse than the

Negative group and one or more of the other prodromal

Huntington’s groups on all tasks.

Network topology

Tests for group differences on all network topology meas-

ures were assessed by permutation testing (100 000) using

the Kruskal-Wallis test (group main effect) and t-tests (coin

in R) for follow-up pairwise group comparisons (Hothorn

et al., 2008). Group means for age-adjusted residuals are

shown in Fig. 1 (unadjusted group means shown in

Supplementary Table 2) for global and intermediate net-

work measures. Significant group effects were found for

global efficiency. Planned comparisons demonstrated that

global efficiency was increased in the Medium (P = 0.035)

and High (P = 0.002) groups compared to the Negative

group and correlated with CAP scores (r = 0.33,

P = 0.022), indicating that efficiency became more like a

random network topology as disease burden increased.

No significant group differences were observed for density

or the average clustering coefficient.

Figure 3 displays the rich-club ratio for each group as a

function of node strength (k). A k of 130 was the highest

value for which all subjects had data and the k-value func-

tions exhibited no sharp discontinuities. The rich-club co-

efficient measure was therefore computed by integrating

each subject’s rich-club coefficients for all node strengths

4130 to compute the area under the curve (AUC).

Preliminary analyses demonstrated that the results were

not sensitive to the choice of threshold. The main effect

of group was significant for rich-club AUC (Fig. 1).

Planned comparisons showed that rich-club organization

was reduced in the Medium (P = 0.007) and the High

(P = 0.001) groups, with a non-significant trend for a re-

duction in the Low group (P = 0.093). Rich-club AUC

negatively correlated with CAP scores (r = �0.32,

P = 0.024), indicating that interconnectivity amongst a cen-

tral core of highly-connected regions declined with disease

burden (Fig. 2).

To characterize the rich-club anatomy, we identified

nodes whose strength (k) was 4130 in 90% of the subjects

in one or more of the groups (Supplementary material).

Thus, the location of rich-clubs was similar within and

across groups. Figure 4 shows the 50 nodes that were

identified, placing 17% of the nodes in the rich-club,

which is comparable to an anatomical rich-club of 15%

of the nodes (van den Heuvel and Sporns, 2011)

(Supplementary materials). High-strength nodes were

prominent in midline central (right supplementary motor

area, bilateral middle cingulate) and posterior (superior

parietal, precuneus, cuneus, lingual and fusiform gyrus)

cortices, sensorimotor cortex (precentral and postcentral

gyrus), lateral temporal (bilateral superior temporal and

Heschl’s gyrus; right middle temporal) and occipital cor-

tices (superior and middle occipital), and the cerebellum

(lobule VI). High node strength of midline anterior and
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posterior areas was notable. Critically, group differences in

node strength (summed z-score) were not significant for any

of the 50 nodes (FDR adjusted). This finding provides con-

verging evidence that the density of connections between

rich-club nodes specifically decreased with proximity to

diagnosis, rather than node strength.

As for local centrality measures, group differences were

non-significant for nodal degree and eigenvector centrality

Figure 1 Network topology measures in the gene-negative and the gene-positive groups. Bar graphs display the mean (standard

error) standardized age-adjusted residuals for global efficiency, rich-club area under the curve (AUC), density, and average clustering coefficient in

each group. Plotted values can be negative as they are standardized residuals. Supplementary Table 2 reports the unadjusted means and standard

deviations for these measures, for which all values are positive. The main effect of group (Negative, Low, Medium, and High) was significant for

global efficiency and rich-club AUC. For these measures, asterisks designate significant differences in the means between the Negative group and a

prodromal Huntington’s disease group (global efficiency: Medium, P = 0.035, High, P = 0.002; rich-club AUC: Medium, P = 0.007, High, P = 0.001).

Figure 2 Association between network topology measures and disease burden in gene-positive participants. Scatter plots show

the relationship between the CAP score and the age-adjusted residuals for global efficiency (r = 0.33, P = 0.022) and rich-club area under the

curve (r = �0.32, P = 0.024). The solid lines show the best-fitting linear regression line and the 95% confidence intervals.
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for all 300 nodes (FDR adjusted). For the participation coef-

ficient, only the left anterior insula showed a significant group

effect (P = 0.00015; q = 0.045, FDR adjusted). Relative to the

Negative group [mean (standard deviation; SD) unadjusted

rank = 92.25 (39.14)], the participation coefficient for the an-

terior insula was ranked lower in the Low [189.88 (85.37),

P = 0.0002], Medium [143.44 (69.08), P = 0.01], and High

[197.75 (72.41), P = 0.00006] groups and did not correlate

with CAP scores.

Association between global efficiency and other

network metrics

A stepwise multiple regression analysis, adjusting for CAP

scores, tested the association between global efficiency and

the other network metrics. Rich-club AUC accounted for a

large per cent of the variance (R2
change = 0.47; Fchange =

50.45, P = 1.0 � 10�10), followed by the average clustering

coefficient (R2
change = 0.12; Fchange = 18.41, P = 0.0001) and

density (R2
change = 0.04; Fchange = 6.52, P = 0.014). These re-

sults indicated that as global efficiency increased, rich-club

organization, average clustering, and density decreased.

Functional connectivity

Permutation testing (5000) was used to identify significant

group differences (i.e. negative group versus each pro-

dromal Huntington’s group) at the cluster level (P50.05

corrected). The NBS analyses identified functional connect-

ivity disturbances in prodromal Huntington’s disease that

were characterized by weaker (Negative4 prodromal

Huntington’s disease) or stronger (prodromal

Huntington’s disease4Negative) connections relative to

Figure 4 Rich-club anatomy for the entire sample. Fifty nodes are shown whose strength (k) was greater than 130 in 90% of the subjects

in one or more of the groups. Images are displayed in neurological view (left side = left hemisphere). The red–yellow colour bar denotes the

average node strength across all subjects. High-strength nodes were prominent in midline central [right supplementary motor area (SMA),

bilateral middle cingulate] and posterior (superior parietal, precuneus, cuneus, lingual and fusiform gyrus) cortices, sensorimotor cortex (pre-

central and postcentral gyrus), lateral temporal (bilateral superior temporal and Heschl’s gyrus; right middle temporal) and occipital (superior and

middle occipital) cortices, and the cerebellum (lobule VI). The node strength of midline anterior and posterior areas was particularly notable.

Group differences in node strength were not significant (FDR adjusted) for any of these nodes.

Figure 3 Rich-club ratio plots for gene-negative and gene-

positive groups as a function of node strength. The graph

shows the association between the mean (standard error) ratios of

rich-club to a random network as a function of node strength (k) for

each of the groups. The figure shows that differences between the

Negative and the prodromal Huntington’s disease groups emerge as

node strength increases. A k-value of 130 was the highest node-

strength value for which all subjects had data and the functions were

well-behaved, exhibiting no sharp discontinuities (vertical

dotted line).
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the Negative group (Fig. 5). Functional connectivity was

preserved in the Low group. The number of weakened con-

nections within frontal cognitive-control centres (e.g. anter-

ior and middle cingulate, medial superior frontal, superior

frontal gyrus, middle frontal gyrus, inferior frontal gyrus),

the anterior insula, and the hippocampus/parahippocampus

was greatest in the High group, but was also found in the

Medium group (Supplementary Table 3). Many aberrant

edges involved interhemispheric connections. The High

group also showed weakened basal ganglia connections

(i.e. caudate with anterior cingulate and thalamus; putamen

with middle frontal gyrus), whereas the Medium group ex-

hibited weakened connections within ventral attention cen-

tres (lingual gyrus, calcarine cortex, superior/middle

temporal and occipital), which also showed reduced con-

nectivity to frontal areas.

Figure 5 Aberrant functional connectivity in the gene-positive groups. To identify anatomical sources of functional connectivity

disturbances in prodromal Huntington’s disease (prHD), the fitted z-scores of correlation coefficients (standardized age-adjusted residuals) for all

edges connecting the 300 nodes were compared between the Negative group and each of the prodromal Huntington’s disease groups using the

network-based statistic. The glass brains illustrate the aberrant functional connections that were identified for each prodromal Huntington’s

disease group. The brains at the top (Negative4 prHD) display functional connections that were weaker (red edges) in each prodromal

Huntington’s disease group relative to the Negative group. The brains at the bottom (prHD4Negative) display functional connections that were

stronger (blue edges) in each prodromal Huntington’s disease group relative to the Negative group. Empty glass brains signify no group differences

in functional connectivity.
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Only the High group showed stronger connectivity than

the Negative group (Fig. 5). Here, connections of ventral

attention areas (e.g. lingual gyrus, calcarine cortex, fusi-

form gyrus, superior/middle temporal and occipital) and

parietal cortex (precuneus, inferior parietal lobe) were

stronger with frontal cortex (medial superior frontal

gyrus, superior frontal gyrus, middle frontal gyrus, sensori-

motor), thalamus, and cerebellum (Supplementary Table 3).

Association between aberrant connectivity and

network topology

The sum of the z-score residuals were computed separately

for all aberrant connections that were weaker and stronger

in the NBS analysis (Fig. 5) in one or more of the pro-

dromal Huntington’s groups. A stepwise multiple regres-

sion analysis, adjusting for CAP scores, tested the

association between the sum of aberrant weakened and

strengthened connectivity and the network topology met-

rics. For weakened connections, rich-club AUC accounted

for a large per cent of the variance (R2
change = 0.34;

Fchange = 26.6, P5 0.0001), followed by density

(R2
change = 0.10; Fchange = 8.72, P = 0.005), indicating that

as the connectivity of aberrantly weakened connections

decreased, so did rich-club organization and density. For

strengthened connections, decreased rich-club organization

(R2
change = 0.07; Fchange = 4.81, P = 0.03) and increased dens-

ity (R2
change = 0.07; Fchange = 5.28, P = 0.026) were weakly

associated with an increase in the connectivity of aberrantly

strengthened connections. The correlation between rich-

club AUC and aberrant connectivity may be associated

with their partial overlap in anatomy (e.g. sensorimotor,

precentral and postcentral gyrus, cingulate and fusiform

gyrus, precuneus, superior temporal and occipital areas).

However, only 5% of the weakened and strengthened

connections were between two rich-club hubs (rich-club

connection), whereas only one node of an edge was a

rich-club hub for 35% of the aberrant connections (hub

connection) (van den Heuvel and Sporns, 2011). Thus,

the majority of aberrant connections (60%) involved two

peripheral nodes.

Whole-brain functional connectivity of aberrant

nodes

Some nodes exhibited abnormal connectivity with multiple

regions in the Medium and/or High groups. As disturb-

ances in these nodes might be an important source of ab-

normal communication, we explored the effects of disease

burden on ‘whole-brain connectivity’ within this subset of

nodes. To identify these nodes, the frequency by which

each of the 300 nodes appeared in an aberrant connection

in the Medium and/or High group was plotted. The point

at which the distribution of the number of aberrant edges

began to asymptote defined the nodes with the most aber-

rant connections (range = 8 to 25 aberrant connections;

Supplementary Table 4). The sum of z-scores for each of

these nodes and their edges was calculated to obtain a

measure of a node’s ‘whole-brain’ functional connectivity.

Group differences in the sum of z-scores for each node

was then tested by permutation testing (100 000) using the

Kruskal-Wallis test (group main effect) and t-tests for

follow-up pairwise group comparisons (Fig. 6). Left anter-

ior cingulate connectivity was weakened in the Low and

High groups, whereas left middle occipital gyrus connect-

ivity was weakened in only the Medium group. All pro-

dromal Huntington’s groups showed weakened left

hippocampus, right thalamus, bilateral insula, left inferior

frontal gyrus, and right Heschl’s gyrus connectivity relative

to the Negative group. CAP scores did not correlate with

the summed z-scores for any of these regions. Strengthened

whole-brain connectivity of the right inferior parietal lobe

also differed in prodromal Huntington’s disease, positively

correlating with CAP scores (r = 0.31, P = 0.032).

Correlations of cognitive variables
with network and functional
connectivity

In prodromal Huntington’s disease participants, stepwise

multiple regression analyses tested associations between ab-

normal network topology and functional connectivity

measures and cognitive variables (Symbol Digit

Modalities Test, Stroop Color, Stroop Interference, and

Trails B-A). The analyses correlated age-adjusted residuals

for the imaging measures with age- and education-adjusted

residuals for the cognitive measures. No significant associ-

ations were found between cognitive measures and global

efficiency, rich-club AUC, or the participation coefficient

for the left anterior insula (FDR adjusted). Likewise, no

significant associations were found between cognitive meas-

ures and connectivity of aberrantly weakened and strength-

ened connections (FDR adjusted). Motor symptoms

(UHDRS) also did not correlate with any of these

measures.

For the abnormal ‘node-based whole-brain functional

connectivity measures’, four stepwise regression models

were tested in which frontal (left anterior cingulate, bilat-

eral inferior frontal gyrus), right parietal, and thalamic

nodes were used as predictor variables for each of the

four cognitive measures, since these regions are particularly

associated with executive control. Figure 7 shows that

poorer Stroop Color Naming performance (lower values)

correlated with stronger right inferior parietal lobe func-

tional connectivity [F(1,46) = 10.41, P = 0.002 uncorrected,

P5 0.05 FDR corrected; r = �0.434], whereas poorer

Stroop Interference performance correlated with stronger

right thalamus connectivity [F(1,46) = 14.87, P = 0.0004

uncorrected, P5 0.05 FDR corrected; r = �0.494].

Poorer Trails B-A performance (higher values) correlated

with weaker connectivity of the left anterior cingulate

[F(1,46) = 5.70, P = 0.02 uncorrected, P5 0.05 FDR cor-

rected; r = �0.332]. No other connectivity measures

added to the prediction of performances on these variables.

Although some of these relationships (e.g. correlation of
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Trails B-A with anterior cingulate connectivity) were partly

driven by the High group’s poorer performance (Fig. 7),

none of them were confounded by motor symptoms.

Network and functional connectivity
correlations with brain morphometry

Group differences in cortical thickness and volume were

not significant after FDR correction (Supplementary

Tables 5 and 6). As expected, group differences in volumes

of bilateral putamen, globus pallidus, caudate, and nucleus

accumbens were found (Supplementary Table 7), largely

due to atrophy in the High group compared to the

Negative and/or Low groups. Subcortical volumes did not

correlate with abnormal network topology or functional

connectivity measures (FDR adjusted).

Discussion
Our results revealed, for the first time, abnormalities in

whole-brain intrinsic functional connectivity in prodromal

Huntington’s disease that increased with disease burden.

Graph theory analyses showed that global network inter-

connectivity approximated a random network topology as

proximity to diagnosis neared and was associated with

decreased connectivity within the rich-club network core.

However, average clustered connectivity between a node

and its nearest neighbours was preserved. The centrality of

Figure 6 Whole-brain functional connectivity of nodes with the highest number of weakened and strengthened aberrant

connections in gene-positive individuals. Displayed nodes are those showing a significant main effect of group (Negative, Low, Medium, High)

(Supplementary Table 4). Their anatomical location is shown on lateral and medial sections of brains. The bar graphs display the mean (standard

error) of the whole-brain summed z-scores (standardized age-adjusted residuals) for each group. An asterisk designates significant differences in

the means between the Negative group and a prodromal Huntington’s disease group. The scatter plot (left) illustrates the significant association

between CAP scores and whole-brain functional connectivity of the right inferior parietal lobe (r = 0.31, P = 0.032).
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individual regions in promoting communication was also

stable, except for the left anterior insula, which occupied a

less central role in intermodular integration, irrespective of

disease burden. In contrast, NBS analyses revealed patterns

of weakened frontostriatal and strengthened frontal-poster-

ior functional connections that evolved as disease burden

increased. These connectivity disturbances were often asso-

ciated with long-range connections involving peripheral

nodes or interhemispheric connections. Notably, we found

a robust association between weaker connectivity and

decreased rich-club organization, indicating that whole-

brain simple connectivity partially expressed disturbances in

the communication amongst highly connected hubs, which

form a backbone that integrates processing from diverse

brain regions (van den Heuvel et al., 2012; Vertes et al.,

2014). However, network topology metrics and NBS con-

nectivity components did not correlate with cognitive func-

tioning. Rather, cognitive variables correlated with whole-

brain functional connectivity of specific nodes (right inferior

parietal, right thalamus, left anterior cingulate) that exhibited

multiple aberrant connections and that mediate executive

control, in support of their relevancy to cognitive decline

during the prodromal phase. Aberrant network topology

and functional connectivity were not related to brain atrophy

or motor symptoms, demonstrating that whole-brain con-

nectivity measures provide a unique window into the reorgan-

ization of the brain in the prodromal phase.

Network topology disturbances

The changes observed in network topology appear related

to altered network organization rather than connectivity, as

the average global weight of connections was preserved in

prodromal Huntington’s disease. This contrasts with other

diseases wherein altered network topology is often con-

founded by a loss in the average strength of connections

(Liu et al., 2008; Lynall et al., 2010; Rudie et al., 2013).

Increased global efficiency as a function of disease burden

may suggest that the number of topological shortcuts be-

tween brain regions progressively increases with proximity

to a diagnosis (Bullmore and Sporns, 2009), thereby result-

ing in higher global integration. This effect was strongly

associated with a loss in rich-club organization. Thus,

Huntington’s disease seems to target a central core of

highly-connected regions thought to promote efficient infor-

mation integration between disparate brain regions and

when damaged cause disintegration of the system as a

whole (van den Heuvel and Sporns, 2011; Collin et al.,

2014; Crossley et al., 2014; Vertes et al., 2014). Indeed,

we found a non-significant trend for reduced rich-club or-

ganization in the Low group, possibly signifying deterior-

ation in rich-club organization decades before diagnosis.

The anatomy of the rich-club was prominent in known

highly-connected hubs including sensorimotor, superior/

middle temporal, and auditory cortices (Achard et al.,

2006; Tomasi and Volkow, 2011; Grayson et al., 2014)

and midline central and posterior areas (Hagmann et al.,

2008; Tomasi and Volkow, 2010, 2011; Crossley et al.,

2013; van den Heuvel and Sporns, 2013), which contain

key elements of the default mode network. Yet studies in

prodromal Huntington’s disease that used seed-based and

independent component-based methods found preserved

functioning of the default mode network or key elements

(Seibert et al., 2012; Dumas et al., 2013; Poudel et al.,

2014a). At the same time, the progressive loss in rich-club

organization of sensorimotor and visual areas is compatible

Figure 7 Association between whole-brain functional connectivity in regions of interest and cognitive performances in gene-

positive participants. Graphs plot the age- and education-adjusted residuals for the cognitive measures against the age-adjusted residuals of the

regional summed z-scores in the prodromal Huntington’s disease subjects. The solid lines on scatter plots show the best-fitting linear regression

line and the 95% confidence intervals. Black, red, and green dots designate participants in the Low, Medium, and High CAP groups, respectively.

Left: Association between Stroop Color Naming and whole-brain functional connectivity of the right inferior parietal lobule (r = �0.434,

P = 0.002). Middle: Association between Stroop Interference and whole-brain connectivity of the right thalamus (r = �0.494, P = 0.0004). Right:

Association between Trails B-A and whole-brain connectivity of the left anterior cingulate (r = �0.332, P = 0.02).
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with previous findings of reduced connectivity in these

structures in prodromal Huntington’s disease (Dumas

et al., 2013; Poudel et al., 2014a). However, the present

results suggest more extensive aberrant connectivity likely

due to our whole-brain approaches, which characterized

different properties of regional connectivity than previously

studied. Our results indicate that changes during the pro-

dromal period may be better distinguished by the commu-

nication between central hubs per se, owing to the high

cost that their damage confers on global efficiency (van

den Heuvel and Sporns, 2011). This conclusion was bol-

stered by the absence of group differences in node strength

for any of the rich-club regions. We note that rich-club

analysis in functional networks may overestimate the

extent to which hubs are densely connected, due to the

transitive nature of correlation coefficients (Zalesky et al.,

2012b). However, because such transitivity is present to the

same extent in all subjects, it is unlikely to alter our main

results.

Importantly, functional segregation (average clustering)

within the global network remained stable, compatible

with preserved resting-state functional MRI in visual, audi-

tory, and cerebellar networks in prodromal Huntington’s

disease (Poudel et al., 2014a), yet differed from diseases

in which cognition is markedly altered and clustering at

the global level is reduced (Lynall et al., 2010; Liu et al.,

2014). Stable functional segregation was also maintained

regionally, except for the left anterior insula, which occu-

pied a less central role in intermodular integration (partici-

pation coefficient), even in the Low group, suggesting that

it may be an early marker of brain dysfunction. The anter-

ior insula is a functional hub (Zuo et al., 2012; van den

Heuvel and Sporns, 2013; Collin et al., 2014; Grayson

et al., 2014) that is highly interconnected with cortical as-

sociation regions and the striatum (Chikama et al., 1997)

and that supports focal attention and integrative functions

(Nelson et al., 2010; Kelly et al., 2012). Thus, reduced

intermodular integration may explain the abnormal anter-

ior insula activation in prodromal Huntington’s disease

during various cognitive tasks (Zimbelman et al., 2007;

Gray et al., 2013; Georgiou-Karistianis et al., 2014b; Rao

et al., 2014).

Functional connectivity disturbances

The NBS analyses demonstrated weakened and strength-

ened connectivity that was expressed most strongly in the

High group. Weakened connections corresponded well to

the frontostriatal network, but also included the thalamus,

anterior insula, and memory centres. Notably, weakened

edges were frequently long-range interhemispheric connec-

tions, possibly linked to white-matter changes in the corpus

callosum and frontal cortex (Rosas et al., 2010; Matsui

et al., 2014) and striatal pathway deterioration (Aylward

et al., 2012; Poudel et al., 2014b). Altered frontostriatal

intrinsic connectivity has not been previously found in pro-

dromal Huntington’s disease, despite the importance of

these networks in executive functioning. Similar network

disturbances surfaced in the Medium group, although stri-

atal connectivity was not weakened, possibly because atro-

phy was restricted to the putamen in our sample. Network

reorganization in the Medium group was also characterized

by weakened connectivity within ventral attention centres,

where connectivity with frontal areas was also diminished.

In contrast, long-distance connectivity of ventral attention

and parietal areas with frontal and subcortical areas (thal-

amus, cerebellum) was stronger only in the High group,

possibly signifying compensatory intermodular integration

between systems, which coactivate during attention-de-

manding tasks. Interestingly, reconfiguration of networks

during cognitive performance is particularly marked by

changes in long-range connections (Crossley et al., 2013;

Hermundstad et al., 2013), which promote integration and

may partly underlie cognitive decline in prodromal

Huntington’s disease.

For nodes containing multiple aberrant connections,

whole-brain connectivity was usually weakened irrespective

of disease burden, except for the right inferior parietal lobe,

wherein whole-brain connectivity strength increased with

disease burden. Although not identified as rich-club hubs

by our analyses, these nodes are important centres for cog-

nitive control (anterior cingulate, inferior frontal gyrus),

integration and attention (anterior insula, right thalamus,

right inferior parietal lobe), and memory (hippocampus),

consistent with the diversity of cognitive changes in the

prodromal phase (Harrington et al., 2012; Paulsen et al.,

2013, 2014a, b). Intriguingly, most of these nodes were

components of the rich-club in a meta-analysis of task-

related functional MRI (Crossley et al., 2013), consistent

with the reconfiguration of high-degree hubs during cogni-

tion (Hermundstad et al., 2013). Thus, abnormal intrinsic

connectivity of peripheral nodes may also disrupt informa-

tion integration and serve as early markers of network

changes.

Cognitive correlations with network
topology and functional connectivity

Emerging research indicates that various properties of net-

work efficiency correlate with intelligence and attention in

healthy adults (van den Heuvel et al., 2009; Giessing et al.,

2013). Yet in our study, cognitive measures were not asso-

ciated with aberrant network topology metrics or the con-

nectivity of aberrantly weakened and strengthened

connections (NBS). Although surprising, changes in the

brain can occur years before behavioural manifestations

of a disease are observable clinically. Indeed, cognitive

changes in prodromal Huntington’s disease are subtle

(Harrington et al., 2012) and often not clinically significant

(Duff et al., 2010). At the same time, summary measures of

network organization or connectivity may not be sensitive

to subtle changes in specific executive functions, which are

governed by specialized brain networks. Indeed, we found
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that changes in executive functions known to track disease

progression longitudinally in prodromal Huntington’s dis-

ease (Paulsen et al., 2014a), correlated with the connectiv-

ity of selected regions. Worse performance on measures of

selective attention, including Stroop Color Naming and

interference correlated with stronger whole-brain connect-

ivity of the right inferior parietal lobe and the right thal-

amus, respectively. These findings may reflect compensation

in the inferior parietal lobe and thalamus, which mediate

top-down attentional control (Hopfinger et al., 2000;

Corbetta et al., 2008) and coordinate communication

amongst attentional and arousal networks (Portas et al.,

1998; Shipp, 2004). These results are particularly note-

worthy because the Stroop test is one of the most robust

measures of longitudinal cognitive change in prodromal

Huntington’s disease (Paulsen et al., 2014a) and is a

strong predictor of time to manifest diagnosis (Paulsen

et al., 2014b). In contrast, poorer cognitive flexibility

(Trails B-A) was associated with weaker connectivity of

the anterior cingulate. This finding comports with research

demonstrating that the anterior cingulate plays a central

role in switching and maintenance of task set (Dosenbach

et al., 2007; Leber et al., 2008; Economides et al., 2014).

Altogether, these neurocognitive associations elucidate po-

tential mechanisms of cognitive decline on key cognitive

markers of disease progression (Paulsen et al., 2014a), in-

dependent of motor symptoms.

Conclusion
This is the first study to demonstrate abnormal and pre-

served network topology properties during the prodromal

phase of Huntington’s disease. These results contrasted

with functional connectivity analyses, which revealed re-

gional patterns of weakened and strengthened connectivity,

especially in long-range connections between peripheral

nodes and interhemispheric connections. Summary meas-

ures from both approaches (global efficiency, NBS wea-

kened connections) were strongly associated with rich-

club organization, suggesting that both metrics partially

expressed disturbances in the functioning of hubs that are

thought to be central for efficient integration of information

(van den Heuvel et al., 2012; Crossley et al., 2014). Both

approaches also demonstrated that functional reorganiza-

tion of whole-brain networks advanced as proximity to

diagnosis neared, yet regional connectivity disturbances in

nodes containing multiple aberrant connections were typic-

ally noted decades before an expected diagnosis. Our find-

ings contrast with previous reports of connectivity

disturbances in prodromal Huntington’s disease that were

more circumscribed (Dumas et al., 2013; Poudel et al.,

2014a). While this discrepancy likely relates in part to

our whole-brain analytic approaches, which measure differ-

ent dimensions of connectivity, both approaches revealed

aberrant connectivity of a different sort in sensorimotor,

parietal and occipital areas. In addition, when disease

burden is ignored as in past studies, this can mask func-

tional changes that emerge as individuals approach a

diagnosis.

We also found that connectivity disturbances in selected

nodes were associated with key markers of executive func-

tioning in the prodromal phase, whereas summary meas-

ures of network topology and functional connectivity were

not. Studies are needed that assess functioning in a range of

cognitive and behavioural domains (Paulsen et al., 2014b)

to better evaluate the sensitivity of summary and regional

connectivity metrics to changes in clinical variables.

Longitudinal studies currently in progress will chart the

course of changes in network topology and whole-brain

functional connectivity to determine the most sensitive

functional markers of disease progression.
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