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Abstract 

People learn by both decomposing and combining concepts; 
most accounts of combination are either compositional or 
conjunctive. We augment the DORA model of representation 
learning to build new predicate representation by combining 
(or compressing) existing predicate representations (e.g., 
building a predicate a_b by combining predicates a and b). The 
resulting model learns structured relational representations 
from experience and then combines these relational concepts 
to form more complex, compressed concepts. We show that the 
resulting model provides an account of a category learning 
experiment in which categories are defined as novel 
combinations of relational concepts. 

Keywords: symbolic-connectionist model; chunking; 
compression; mapping; comparison; relational categorisation; 
computational modeling  

Introduction 

Human learning consists of both decomposing and 

recombining information. We learn to break down the visual 

world into objects and relations, and we learn to combine 

concepts to form new ones.  

Accounts of learning by combining existing representations 

are usually either (a) compositional, or (b) conjunctive. 

Systems that combine compositionally (or symbolically) do 

so through a process of dynamically binding elements into 

new structures (e.g., Doumas & Hummel, 2005). The 

resulting structures are combinations of elements, but the 

independence of those elements is maintained. For example, 

a compositional system can combine representational 

elements like Mary, Sue, and taller to form a structure like 

taller (Mary, Sue). The resulting structure explicitly 

represents the bindings of roles to fillers (Mary is the taller 

element and Sue is the shorter) and retains the independence 

of the items so bound: the representations of Mary, Sue, and 

taller remain unchanged by their composition, and the same 

representational elements can be recombined to form new 

statements like taller (Sue, Mary) or taller (Bill, John), or 

happy (Sue). However, compositional representations pay for 

their representational power in terms of their complexity and 

resource requirements. Dynamically binding roles to fillers 

requires an additional informational signal (Doumas & 

Hummel, 2012), and maintaining these bindings in neural 

systems appears to require energy (von der Malsburg, 1995).  

By contrast, systems that combine via conjunction have the 

complimentary set of strengths and weaknesses. A 

conjunctive code in a neural network, for instance, is simply 

a unit that learns connections to a body of other units. Binding 

by conjunction costs very little in terms of resources, but the 

resulting representation does not maintain the independence 

of the bound items (e.g., Hummel, 2011).  

It is likely that the human cognitive system employs both 

forms for combinatory learning, however, most 

computational accounts that learn by some form of 

combination do so using either exclusively compositional or 

exclusively conjunctive mechanisms (e.g., Tessler & 

Goodman, 2019). The DORA (Doumas et al., 2008) model of 

representation learning has successfully accounted for over 

50 phenomena from the literature on human learning and 

development (for a review see Doumas & Martin, 2018). The 

model learns structured representations of concepts 

(including relations) from distributed representations of 

objects. Learning in the model works primarily via a process 

of comparison-based intersection discovery and refinement. 

Invariant features defining a concept are separated from 

extraneous context over a series of progressive comparisons 

(e.g., by comparing a series of red things, the model focuses 

on what features are invariant to representing red and discards 

extraneous features). DORA’s representation learning 

algorithm then learns structured (i.e., predicate) 

representations of these features that can be dynamically 

bound to objects. One limitation of the approach is that 

representation learning is primarily a process of refining 

feature sets, and combining concepts requires building 

compositional structures that require binding resources.  

Doumas (2005) proposed augmenting DORA’s learning 

with a mechanism for combining predicate representations 

that DORA had learned into compressions, or chunks. This 

mechanism was limited, however as it required the combined 

predicates contain entirely orthogonal sets of features. Here 

we propose the compression mechanism that works more 

broadly; the mechanism for combining the predicates that 

DORA learns into representational combinations which do 

not require additional binding resources. For example, the 

model might combine predicate representations for below (x) 
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and in-contact (x) to form a representation that combines the 

two, below&in-contact (x) (or supports (x)). We show that 

the model can account for data from a study of human 

category learning in which participants learned categories 

defined by novel combinations of relations. 

DORA Model 

We describe the model at a level of detail sufficient for 

presenting the novel compression routine as an extension to 

DORA. Full details of the model appear in Doumas at el. 

(2008).  

 

Figure 1: Macrostructure of the DORA network. 

Computational Macrostructure 

DORA has a long-term memory (LTM; see Figure 1) 

composed of bidirectionally connected layers of units called 

token units, with the lowest layer of token units connected to 

a common pool of feature units. Token units are yoked to 

inhibitors. The inhibitors integrate input from their yoked unit 

and token units in higher layers, and fire after reaching a 

threshold. Yoked inhibitors serve the purpose of 

implementing phasic firing and refractory periods in the 

token units, which are important for implementing dynamic 

binding in the network. Potentiated sets of token units, or 

memory sets (dashed boxes in Fig. 1), correspond to DORA's 

working memory. Memory sets include the driver, DORA’s 

current focus of attention, and the recipient, DORA’s current 

active memory. Token units in the same layer inhibit one 

another within, but not across, memory sets. Activation in the 

model flows from the token units in the driver to the units in 

the recipient and LTM via the shared pool of feature units. 

DORA represents propositions using a hierarchy of 

distributed and progressively more localist units whose 

activation oscillates over a hierarchy of progressively slower 

time scales (Figure 2).  At the bottom of the hierarchy, feature 

units represent the basic features of objects and relational 

roles in a fully distributed manner. Tokens at the lowest level 

of the hierarchy (POs) take inputs directly from feature units 

and learn, without supervision, to respond to objects or 

relational roles in a localist fashion. Tokens in the next layer 

(RBs) take their inputs from PO tokens and learn, in an 

unsupervised fashion to respond to pairs of PO units—that is, 

to roles and the objects (arguments) to which they are bound. 

Tokens in the highest layer (Ps) learn, in an unsupervised 

fashion, to respond to collections of RB units firing in close 

temporal proximity to one another.  

When a unit in P becomes active, it excites the units in RB 

to which it is connected. RB units inhibit one another, which, 

in combination with each unit’s yoked inhibitory unit, causes 

the excited RB units to oscillate out of synchrony with one 

another. These same temporal dynamics are instantiated at a 

faster time scale in the PO units. When an RB unit becomes 

active, it excites the PO units to which it is connected, and 

inhibitory connections between those PO units cause them to 

oscillate out of synchrony with one another. The result is that 

bound roles and objects fire in direct sequence. For example, 

to represent above (cup, table) (i.e., the binding of higher-

than-something to cup and lower-than-something to table), 

the units corresponding to higher-than-something will fire 

directly followed by the units corresponding to cup, followed 

by the units for coding lower-than-something followed by the 

units for table. In brief, the network moves between stable 

states, with binding information carried by the sequence of 

such states. Thus, the network represents relational roles and 

fillers independently and simultaneously represents the 

binding of roles to fillers.  

 

 
 

Figure 2. Representation of the proposition above (cup, 

table) in DORA. Color of units indicates temporal sequence. 

The blue and red higher and cup units fire in sequence, 

followed by the orange and green lower and table units. 

When higher and cup are active, the purple higher+cup RB 

unit is active. When lower and table are active, the brown 

lower+table Rb unit is active. The grey above (cup, table) P 

unit is active throughout. At time t(1), blue, purple, and grey 

units are active; at time t(2) red, purple, and grey units are 

active; at time t(3) orange, brown, and grey units are active; 

at time t(4) green, brown, and grey units are active. 

Basic DORA routines 

Retrieval DORA performs retrieval from LTM as follows. 

Assume a proposition in the driver. As representation in the 

driver becomes active, as a result of time-based binding, 

bound units will become active in sequence, imposing 

sequential patterns of activation on the feature units. For 

example, if the proposition above (cup, table) becomes active 

in the driver, the representations of higher and cup will 

become active in sequence, followed by the representations 
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of lower and table. As each representation becomes active, it 

will activate its constituent features. Because feature units are 

shared across LTM, these patterns may excite units in LTM 

Representations in LTM compete (via lateral inhibition) to 

respond to the patterns of activation. Propositions from LTM 

are retrieved into the recipient based on these patterns of 

activation, which more active propositions more likely to be 

retrieved into LTM (specifically, retrieval is governed by the 

Luce choice axiom; Luce, 1959). 

 

Mapping Mapping in DORA is an extension of LISA’s 

(Learning and Inference with Schemas and Analogies model) 

mapping algorithm (Hummel & Holyoak, 1997). DORA 

learns mapping connections between units of the same type 

(e.g., PO, RB, etc.) in the driver and recipient (e.g., between 

PO units in the driver and PO units in the recipient). These 

connections grow whenever corresponding units in the driver 

and recipient are active simultaneously. They permit LISA to 

learn the correspondences (i.e., mappings) between 

corresponding structures in separate analogs. They also 

permit correspondences learned early in mapping to influence 

the correspondences learned later.  

 

Schema induction During schema induction, DORA learns 

a new representation based on the featural overlap of two 

mapped propositions. For example, if DORA maps a 

representation of chase (Fido, Rover) and scared (Rover) in 

the driver to a representation of chase (Sally, Bowser) and 

scared (Bowser), then it might learn a representation like 

chase (animal1, animal2) and scared (animal2) in the 

recipient. DORA, like LISA, performs schema induction 

using a form of self-supervised learning. If propositions in the 

driver and recipient map, DORA licenses schema induction. 

During schema induction, when mapped units in the driver 

become active, units of the same type are recruited and 

activated in the recipient (e.g., if a mapped PO unit becomes 

active in the driver, a PO unit is recruited in the recipient). 

Recruited units in the recipient update their connections via 

Hebbian learning: recruited PO units learn connections to 

active features, recruited RB units learn connections to active 

PO units, and recruited P units learn connections to recruited 

RB units. The result of this process is a representation of the 

intersection of mapped driver and recipient propositions (see 

Hummel & Holyoak, 2003).  

Representation Learning 

DORA starts with unstructured representations of objects 

encoded as feature vectors. An object is represented by a 

localist token unit (PO) connected to features that define it. 

DORA learns representations as a process of mapping-based 

learning. If two objects map between the driver and recipient, 

DORA learns, via Hebbian learning, a representation of their 

shared features encoded as a PO unit. In addition, DORA 

recruits an RB unit (when none are active) that learns 

connections to the object in the recipient and the newly 

learned PO unit. This mechanism allows the model to 

construct single-place predicates, such as climber (Hillary) 

and climbed (Everest) from representations of single objects 

(e.g., Hillary and Everest). 

Through a similar process, co-occurring sets of single-place 

predicates are linked into multi-place relational structure. 

When sets of role-filler bindings are mapped across the driver 

and recipient, DORA recruits a P unit in the recipient (when 

none are active) that learns connections to active RB units via 

Hebbian learning. For example, if DORA maps a 

representation like climber (Joe) and climbed (Ben Nevis)) in 

the driver to climber (Hillary) and climbed (Everest)) in the 

recipient, it will link the climber (Hillary) and climbed 

(Everest)) predicate-argument pairs to form the multi-place 

relation, climbs (Hillary, Everest).  

Recently DORA was equipped with an energy circuit which 

allows the model to discover invariants for relative 

magnitude (e.g., “same”, “more”, “less”) based on the 

properties of neural encodings of absolute magnitude and eye 

movements (Doumas et al., 2017). When two vectors, A and 

B, encoding absolute magnitude information as an analog or 

rate code are compared, the difference between A and B will 

be positive if A is larger than B, negative if A is smaller than 

B, and zero if they are the same. In broad strokes, the energy 

circuit exploits this pattern and learns to activate invariant 

features in response to these invariant signals. The end result 

is that the set of features that become active in response to a 

positive difference between A and B come to encode “more”, 

those that respond to a negative difference come to encode 

“less”, and those that respond to no difference come to 

encode “same”. The upshot is that when two representations 

of absolute magnitudes on a dimension are compared, the 

energy circuit learns connections between the larger item and 

the invariant features for “more” and the smaller item and the 

invariant features for “less”; when the dimensional encodings 

of both objects are the same, the circuit learns connections 

between both objects, the invariant features for “same”. 

DORA’s representation learning algorithm then learns 

structured representations of these relational features (i.e., 

structured relational representations). For details see Doumas 

et al., 2019).  

Compression, A New DORA Routine 

One of the strengths of DORA as a symbolic-connectionist 

model is the dynamic binding of roles (predicates) and fillers 

(objects). The novel compression routine lets the model take 

fuller advantage of this capacity by compressing multiple 

simpler roles into single more content-dense roles. The 

resulting representations are structured and support DORA’s 

relational reasoning, but the compressed structures are also 

preserved in a manner which allows the model to unpack it 

without the information loss (but with processing cost).  

The compression routine runs in DORA if the driver 

contains an object(s) bound to two roles simultaneously. For 

example, consider three objects, glass, mug, and cup. Assume 

that each object has a featural dimension height with a unique 

magnitude and that DORA has previously learned 
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representations of the relations more-height (x, y) (or taller 

(x)+shorter (y)). Applying these relations to the objects, 

DORA has representations of more-height (glass, mug) and 

more-height (mug, cup) (Figure 3a). Thus, the object mug is 

bound to two roles simultaneously, taller and shorter.  

The compression routine allows the model to build the 

representation where amongst three objects the mug is of 

medium height. The result of running the compression 

algorithm (described below) is a new structural 

representation of the facts that the mug is shorter than the 

glass and taller than the cup.  

 

 
 

 

 

 

 

 

 

 

 

Figure 3: a) Two propositions in the driver before 

compression. The object mug is bound to two roles 

simultaneously. b) After compression: the proposition where 

the object mug is bound to the compressed role connected to 

a higher-order feature. 

 

These relations are represented as a ternary proposition taller 

(glass) taller_shorter (mug), shorter (cup) (Figure 3b), where 

the new role taller_shorter compresses the features 

representing both roles, taller and shorter. The compression 

results in the development of higher-order features, that 

essentially tokenize collections of features in type space (see 

Doumas & Hummel, 2005). 

The new compression routine allows DORA to build 

representations that are still structured in the sense that they 

can take arguments, but with a reduced number of role 

bindings. The new representations lose some structural 

information (there are no longer independent representations 

of taller (mug) and shorter (mug)), but allows processing the 

resulting representations with fewer binding resources.  

 

Compression Algorithm Although we discuss the 

compression algorithm in broad strokes for reasons of 

exposition and space, all processes are carried out via local 

computations with traditional neurocomputing units (see 

Doumas et al., 2019). After DORA performs mapping, when 

an object in the driver is connected to multiple RB units 

(Figure 3a), the model licenses compression. During 

compression, objects in the driver become active in sequence. 

Using a version of its schema induction algorithm (see 

Hummel & Holyoak, 2003), DORA learns new 

representations of the objects and the roles to which they are 

connected in LTM. Specifically, units are recruited in LTM 

to match the active driver units (e.g., an active PO to match 

an active PO) and connections between units in adjacent 

layers are updated via Hebbian learning. The result is that 

when objects are connected to a single role, the representation 

is copied into LTM (e.g., taller (glass) in Figure 3a and 3b).  

When the object is connected to multiple roles, however, 

the object passes activation to each of its roles and they 

become active in sequence (due to the lateral inhibition 

between PO units in the driver). In this case, the model 

recruits a PO unit in LTM to serve as a compressed role and 

a feature unit to act as a higher-order feature. As the roles 

connected to the object become active, the model learns 

(through Hebbian learning) connections between a higher-

order feature unit and (1) features that represent each of the 

roles and (2) the newly recruited PO for the compressed role. 

The model also learns connections between any active token 

units in adjacent layers of LTM. The result of the 

compression process is a representation that includes copies 

of any predicate-argument pairs with unique objects, and 

compressed representations of any predicates connected to 

the same object. For example, when an object in the driver is 

connected to predicates for taller and shorter, the compressed 

representation of that object will be connected to a single 

predicate encoding taller_shorter (Figure 3b). 

Note that the result of the compression is not necessarily a 

ternary proposition. For example, if two objects are compared 

on two dimensions and one of them is shorter and wider and 

the other is taller and narrower, the resulting binary 

proposition contains two objects, each bound to a compressed 

role: taller_narrower (glass)+shorter_wider (mug). Each of 

the compressed roles is connected to a higher-order feature 

unit. Each higher-order feature unit is also connected to the 

set of features representing each of the simple roles 

comprising the compressed role. This ensures that the 

information about which of the objects is short, wide, narrow, 

and tall is preserved, and that allows the simple roles to be 

“unpacked” if needed.  

The unpacking part of the process allows the recovery the 

original set of features and to ensure the binding of the objects 

to the correct roles. This part of the process is not important 

for the current simulation and is not further discussed. 

Method 

Category Learning Tasks 

Stimuli for the simulations were adapted from Experiments 1 

and 2 of Doumas and Hummel (2013). In these experiments 

participants attempted to learn categories defined by novel 

combinations of relations. In the Experiment 1 each exemplar 

consisted of a drawing of three organic cells in a square 

frame. The cells varied on five dimensions: size, location 

within the frame, number of organelles in the cell, width of 

tallerThan(G, M) 

taller(Glass) shorter(Mug) 

 

shorter Glass Mug 

tallerThan(M, C) 

shorter(Cup) 

  

Cup 

taller(Mug) 

taller 

a) 

tallerThan(G,M,C) 

taller(Glass) shorter_taller(Mug) 

 

shorter(Cup) 

 

shorter_taller Cup Mug shorter 

Higher-Order Feature 

Glass taller 

b) 
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the nucleus, and membrane roundness. Category membership 

was defined by the relation between the nuclei and the 

membranes of the cells. The exemplars where the membrane 

thickness and nucleus roundness positively covaried (cells 

with wider membranes had rounder nuclei) belonged to one 

category (‘X’), while exemplars where they negatively 

covaried belonged to the other (‘Y’).  

Participants attempted to learn the category by categorising 

50 exemplars with feedback. Participants then completed 

either a Map or NoMap task. In the Map condition 

participants were presented with two exemplars from the 

same category and were explicitly instructed to decide which 

elements from one stimuli corresponded with the elements of 

the other. In the NoMap condition participants were 

instructed to simply study the two stimuli for one minute.  

The dimensions that defined category membership in 

Experiment 1 (relative roundness and relative width) were 

salient enough for participants to successfully map the two 

exemplars during the mapping trial. The results showed that 

mapping facilitated discovery of novel relations, with those 

in the Map condition rising to ceiling performance on 50 

additional category classifications and transfer to novel 

stimuli which included dimensional values the participants 

had not seem during training.  

In Experiment 2, each exemplar consisted of three isosceles 

triangles in a square frame. The triangles varied on four 

dimensions: location within the frame, colour, width of the 

base of the triangle, and rotation of the tip around the 

triangle’s central point (orientation). Category membership 

was defined by the relations between the triangles’ relative 

widths and relative orientations. The wider and the more 

rotated triangles comprised category ‘X’ and the wider and 

less rotated triangles comprised category ‘Y’.  

The Map and NoMap conditions in this experiment were 

identical to the Experiment 1. An additional task Comparison 

vs NoComparison was added before the mapping task. In the 

comparison condition participants compared items within an 

exemplar (chosen at random), listing the ways in which each 

item differed from the others. In the NoComparison 

condition, participants studied the two exemplars for one 

minute.  

The second experiment was more difficult than the previous 

one because the dimensions used to define the relational 

categories were not as salient to participants as those used in 

experiment 1. For participants who did not have extensive 

math background, the dimension of rotation around the 

central point was not salient (without first comparing items 

within an exemplar to note their differences, participants 

tended not to map items based on their relative rotation). In 

experiment 2, mapping alone was not sufficient to categorise 

exemplars with less salient dimensions. In order to highlight 

relevant dimensions, comparison within the exemplar and 

identification of differences, not only similarities, was needed 

to facilitate successful mapping. 

Simulation 1  

Simulation 1 was based on the Experiment 1 of Doumas and 

Hummel (2013).  

 

Representation Learning Phase While the category 

defining relations used in the experiments were novel to 

participants, the basic relations from which they were 

composed were not (e.g., participants had not previously 

represented a conjunction between cell membrane width and 

nucleus roundness, but they had learned representation of 

width). To account for prior knowledge, DORA was allowed 

to learn from a different set of stimuli. Learning was similar 

to Simulation 1 in Doumas et al. (2017). Representations of 

200 gabor patches of different sizes and orientations were 

placed in DORA’s LTM. DORA attempted to learn 

representations by sampling random items from LTM, 

comparing them, and storing the results. After 2000 learning 

trials DORA had learned structured representations of spatial 

relations including wider/thinner, taller/shorter, 

bigger/smaller, higher/lower, left/right, more-tilted/less-

tilted. 

 

Categorisation Process On pre-mapping trials in both 

simulations, DORA first “contemplated” each stimulus as 

follows: it performed pairwise comparisons of the objects 

within each exemplar using the energy circuit and used the 

results to retrieve relational representations from LTM that it 

represented about the items. For example, assume two 

objects, o1 and o2, were compared on the dimensions of 

height and width. If o1 was higher than o2, then the energy 

circuit would activate the features for “more” and “height” in 

response to o1 and “less height” in response to o2. As DORA 

has previously learned representations of the relation taller 

(x, y) that contained the features of “more”, “less”, and 

“height”, it retrieved that representation from LTM and 

represented it about the current objects, forming the 

representations taller (o1, o2). The process was repeated 

between 2-3 times (decided randomly) for two randomly 

selected pairs of objects.  

For the first few trials DORA performed the contemplation 

process described above, guessed the category at random, and 

then stored the exemplars in LTM with the correct category 

label (equivalent to feedback received by participants). When 

presented with the next stimuli, DORA performed the 

contemplation process and attempted to retrieve 

representations from LTM based on their similarities of the 

tokens. If an exemplar was successfully retrieved from LTM 

into the recipient, the current exemplar in the driver was 

labeled with the same category label as the retrieved 

exemplar. If retrieval failed, DORA tried to guess the 

category. In any case its accuracy was recorded, and the 

correct label was attached to the current exemplar as it was 

stored in LTM.  

To simulate the NoMap condition, one exemplar was 

placed into DORA’s driver and the other into the recipient.  
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Figure 4: a) Accuracy on pre-mapping, post-mapping and transfer trials of Map condition in DORA (Simulation 1) and 

human participants (Experiment 1). b) Accuracy on pre-mapping, post-mapping and transfer trials of NoMap condition in 

DORA (Simulation 1) and human participants (Experiment 1). c) Accuracy on post-mapping trials in DORA (Simulation 2) 

and human participants (Experiment 2) in four conditions. d) Accuracy on transfer trials in DORA (Simulation 2) and human 

participants (Experiment 2) in four conditions. 

 

 

The model performed the contemplation process for both 

exemplars and stored them in LTM. To simulate the Map 

condition, DORA placed one of the two exemplars (selected 

randomly) in the driver, the other in the recipient, performed 

the contemplation process, and then attempted to map them. 

If mapping was successful, DORA attempted compression 

and schema induction (as per Hummel & Holyoak, 2003).  

On the post-mapping trials in the Map condition DORA 

contemplated the stimulus and compared the roles bound to 

the objects in the driver to those created in the relational 

schema during the mapping trial. If it could find 

correspondences, it guessed the category of the schema on the 

first post-mapping trial (since mapping trials did not provide 

feedback). Then it used the schema to categorise each 

exemplar as “the same as the schema” or as “the other one”. 

In the NoMap condition (and if mapping was unsuccessful in 

the Map condition, i.e., the model had not learned a schema) 

the dimensions were sampled randomly as in previous trials.  

Transfer trials were identical to the post-mapping trials with 

the exception of introducing stimuli with novel dimensional 

values that the model has not seen before (see Doumas & 

Hummel, 2013 for more details).  

In the first simulation DORA categorised stimuli from the 

Experiment 1 of Doumas and Hummel (2013). As was 

mentioned above, Experiment 1 showed that width and 

roundness are salient dimensions for adults. In the Map 

condition, after being instructed to compare two objects of 

the same category during mapping trial, participants who 

mapped the exemplars correctly were able to identify the 

relevant dimensions of width and roundness. To imitate the 

ease with which adults determined the relevant dimensions, 

DORA simply used them to encode the exemplars for the 

Map and NoMap conditions.  

Simulation 2  

The second simulation was based on the Experiment 2 of 

Doumas and Hummel (2013). The original experiment aimed 

to disentangle the processes of mapping and of highlighting 

the relevant dimensions which defined category membership. 

One task was added prior to the mapping-studying trial – 

Comparison/No-comparison.  

Simulation 2 proceeded as simulation 1 with the exception 

of the Comparison/No-comparison task added before the 

Map/NoMap phase. To simulate the Comparison task, 

DORA searched for the dimensions relevant for the 

categorisation process. Specifically, the model distinguished 

between monotonic and non-monotonic dimensions. On each 

dimension, the model compared the magnitudes of the 

triangles in the exemplar and identified whether the 

magnitudes followed a monotonic or a non-monotonic order. 

If the magnitudes on two dimensions monotonically 

increased or decreased, it considered triangles similar on the 

two dimensions. If the magnitudes were non-monotonic, it 

also considered them similar. However, if there was a mix of 

monotonicity and non-monotonicity, the triangles on those 

dimensions were considered different. The dimensions that 

highlighted similarity of objects were candidate relevant 

dimensions for contemplating. If more than two dimensions 

made the “relevance list”, the model picked two dimensions 

randomly. With this procedure the model was able to 

highlight relevant dimensions in 80% cases on average, 

which was in agreement with the Experiment 2 results where 

80% of participants were able to figure out the dimensions 

relevant to the categorisation process. 

Results 

During Simulation 1 DORA demonstrated trends similar to 

those of human participants in Experiment 1 of Doumas and 

Hummel (2013). On pre-mapping trials both human 

participants and DORA categorised the exemplars at chance. 

In NoMap condition, accuracy of DORA and human 

participants did not rise above chance (Figure 4a). In Map 

condition, accuracy improved over post-mapping trials and 

reached celling on transfer trials. DORA’s accuracy 

improved faster than that of human participants (Figure 4b). 

We attribute this to the fact that categorisation is the model’s 

only objective in this simulation and DORA does not 
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distribute attention over distractors nor does it follow 

curiosity as humans might do.  

In Simulation 2 DORA’s accuracy mirrored that of human 

participants in Experiment 2 of Doumas & Hummel (2013). 

Like the human participants DORA in No Comparison 

conditions (both Map and NoMap) as well as in Comparison-

NoMap condition performed at chance on both post-mapping 

and transfer trials (Figure 4c and d). Also like the human 

participants, the model’s accuracy was above chance only in 

Comparison-Map condition on post-mapping and transfer 

trials (Figure 4c and d). This supports the notion that both 

processes–highlighting relevant dimensions and mapping are 

needed for learning the relevant relational category.  

Interestingly, average accuracy on post-mapping and 

transfer trials in Comparison-Map condition was 82-83% for 

both DORA and human participants. However, the 

participants who were able to compare and map the 

exemplars correctly during mapping trial reached ceiling 

performance. If we isolate cases where DORA mapped the 

exemplars fully (not partially), its performance also reached 

the ceiling during post-mapping and transfer trials. This 

similarity suggests that the model’s routines described above 

might indeed be useful approximations to the mechanisms of 

highlighting relevant dimensions and mapping in humans.  

General Discussion 

We have proposed an augmentation to the DORA model that 

complements its existing representation learning algorithm. 

Representation learning in DORA has traditionally been 

focused on building more refined representations. While this 

algorithm accounts well for some aspects of human learning, 

it is necessarily incomplete. We often learn by combining 

existing concepts in ways that do not require expending 

binding resources (as in chunking; Johnson, 1970).  

The compression algorithm we have proposed builds 

conjuncted representations of concepts wherein the resulting 

representations act like predicates that can be bound to 

arguments. For example, the model can combine 

representations of the relations taller (x, y) and wider (x, y) to 

form a single predicate encoding taller_wider (x, y).  

We have shown that the model accounts for the findings of 

two experiments from Doumas and Hummel (2013). In these 

experiments, participants learned categories defined by novel 

conjunctions of relations. As the participants in the study, 

DORA learned the conjunctive concepts only after mapping. 

We agree with the original assertion by Doumas and Hummel 

(2013) that many complex concepts might be learned as 

combinations (or compressions) of simpler relational 

concepts. We posit that our compression mechanism may be 

a useful account of how people perform this kind of learning.  

The compression algorithm adds a new dimension to the 

DORA model, providing a mechanism for learning more 

complex relational representations from comparatively 

simpler ones. That is, the model currently easily learns spatial 

relations (such as above or larger) simply by experience with 

simple visual scenes (see Simulation 1). However, through 

compression, these “simpler” relations can be combined to 

form more complex relational structures. In the simulations 

reported the model learned representations of middle-most on 

various dimensions. However, several other representations 

might also be represented as compositions of spatial relations. 

For instance, as noted above, the relation supports might be 

represented as a combination of above and in-contact. In fact, 

previous research by Richardson and colleagues (Richardson, 

Spivey, Edelan, & Naples, 2001) has found that surprisingly 

consistent spatial regularities emerge when adults are asked 

to draw instances of complex relations. Moreover, even 

abstract verbs and concepts appear to have very consistent 

spatial underpinnings (Richardson, Spivey, Barsalou, & 

McRae, 2003).  
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