
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Development of multiscale modeling methods for clinical decision making in single ventricle 
heart patients /

Permalink
https://escholarship.org/uc/item/26z8r7f7

Author
Esmaily-Moghadam, Mahdi

Publication Date
2014
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/26z8r7f7
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA, SAN DIEGO

Development of multiscale modeling methods for clinical decision

making in single ventricle heart patients

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Engineering Sciences with a Specialization in Computational Science

by

Mahdi Esmaily-Moghadam

Committee in charge:

Professor Alison Lesley Marsden, Chair
Professor Jurijs Bazilevs
Professor Juan Carlos Del Alamo
Professor Philip E. Gill
Professor Beth J. Printz
Professor Sutanu Sarkar

2014



Copyright

Mahdi Esmaily-Moghadam, 2014

All rights reserved.



The dissertation of Mahdi Esmaily-Moghadam is ap-

proved, and it is acceptable in quality and form for pub-

lication on microfilm and electronically:

Chair

University of California, San Diego

2014

iii



DEDICATION

To those seeking the truth with honesty and rationality.

iv



EPIGRAPH

I do not feel obliged to believe that the same God

who has endowed us with senses, reason, and intellect

has intended us to forgo their use and by some other

means to give us knowledge which we can attain by them.

—Galileo Galilei

What are we calling “I”? ...

It is true enough to say that, in physical terms,

you are little more than an eddy in great river of life.

—Sam Harris
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Infants with single ventricle physiology generally undergo three palliative

surgeries starting with stage-one, in which a systemic-to-pulmonary connection is

established via a shunt. Mortality is the highest among stage-one patients (up to

23%) due to sub-optimal oxygen delivery, ventricle volume overload, myocardial

ischemia, and high risk of shunt blockage. The clinical objective of the present

study is to simulate the stage-one circulation, analyze possible surgical options,

optimize current surgical methods, and explore a novel alternative surgical option.

Simulating the stage-one circulation in single ventricle repair requires a set

of numerical tools that are developed in the first part of this dissertation. First, an

xxii



implicit and modular multidomain framework with excellent stability and conver-

gence properties is introduced that allows multiscale simulation of the circulatory

system. Second, a stabilized formulation is presented for treating backflow at

Neumann boundaries that is inexpensive, stable, simple, and minimally intrusive,

and offers a promising alternative to previous methods. Third, an efficient pre-

conditioner for coupled boundary conditions and an efficient iterative algorithm for

solving system of equations governing incompressible flows are introduced. Fourth,

a scalable parallel data structure is introduced for performing algebraic operations

in iterative solvers efficiently. Fifth, an Eulerian formulation is proposed for cal-

culating residence time that lacks mesh dependency and avoids the high compu-

tational cost of Lagrangian particle-based approaches. These tools are applicable

to other cardiac mechanics and CFD simulations as well.

In second part of this dissertation, single ventricle physiology is studied us-

ing the tools presented in the first part. First, a multiscale model of single ventricle

physiology is simulated and the shunt geometry is optimized to maximize oxygen

delivery and improve performance. Second, surgical scenarios single and multiple

systemic-to-pulmonary connections are compared, revealing higher thrombotic risk

and lower oxygen delivery in the presence of multiple connections. Third, a novel

stage one palliative surgery, which provides an alternative source of blood flow in

case of shunt blockage and may ultimately reduce the number of open chest surg-

eries from three to two, is proposed and tested using multiscale modeling. Results

reveal the proposed surgical method, the Assisted Bidirectional Glenn, can deliver

more oxygen at a reduced heart load with only a modest increase in venous return

pressure.
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Chapter 1

Introduction

Neonates with pulmonary atresia or severe pulmonary stenosis in associa-

tion with balanced or unbalanced ventricles, represent a heterogeneous group of

patients that often require initial surgical palliation by means of a systemic-to-

pulmonary artery shunt (SPS) [2]. The Norwood procedure, performed in 2.4 out

of 10,000 live births diagnosed with hypoplastic left heart syndrome and other

single ventricle conditions, requires insertion of a SPS [3, 4]. These conditions are

generally fatal without surgical treatment following closure of the patent ductus

arteriosus, a natural systemic-to-pulmonary connection present in neonates which

closes automatically after few days.

Depending on the size of the single ventricle, single ventricle patients and

some patients diagnosed with pulmonary atresia or severe pulmonary stenosis un-

dergo three palliative open-heart surgeries to unload the heart, improve oxygena-

tion, and provide a growing and reliable source of pulmonary blood flow. The first

stage of these surgeries is called a Norwood procedure (or variant thereof) [5, 6].

In this procedure, performed within the first few days of life, single functional ven-

tricle is dedicated to provide systemic perfusion, and the pulmonary blood flow is

derived from a SPS between the brachiocephalic artery and the pulmonary artery

(PA), the so-called modified Blalock-Taussig shunt (MBTS) (Figure 1.1-a). The

purpose of shunt insertion, connecting the systemic vessels and the PA, is to pro-

vide a source of pulmonary blood flow and ensure sufficient oxygenation. Following

shunt insertion, the systemic and pulmonary circulations are arranged in parallel,

1
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such that blood travels through the aorta to both the body and lungs, and returns

to the right atrium through the pulmonary and systemic venous systems. In this

configuration, the heart carries a higher volume load since it must drive the sys-

temic and pulmonary circulations in parallel, and aortic saturation is compromised

due to mixing of oxygenated pulmonary and deoxygenated systemic venous blood

[7].

In the subsequent surgeries, the SPS is removed and the upper- and lower-

body venous return is rerouted to the lungs; hence blood is pumped to the sys-

temic and pulmonary arteries in series rather than in parallel. In the second stage,

the hemi-Fontan or bi-directional Glenn (BGLN) surgery, the SPS is taken down

and the superior vena cava is connected to the PA, partially unloading the heart

(Figure 1.1-b). Although systemic saturation is improved [8] compared to the

first stage, the lower body and pulmonary venous returns still mix and systemic

saturation remains sub-optimal. In the final palliative surgery, the Fontan, the

inferior vena cava is also anastomosed to the PA and the right side of the heart is

completely bypassed, creating an in-series circulation [9] (Figure 1.1-c). Although

most Fontan patients achieve near-normal systematic saturation, many still suf-

fer from morbidities including thrombosis, arrhythmias, exercise intolerance, and

cardiac failure [10, 11]. Despite significant improvements in surgical and manage-

ment methods for the single ventricle pathway, significant morbidity and mortality

remain at all three stages. The stage-one surgery, the focus of this dissertation,

presents the highest risk, with mortality rates as high as 23% [12].

The clinical objective of this dissertation is to identify important factors

with significant effect on the physiological condition of stage-one single ventricle

patients, gain insight into the hemodynamic conditions in this unusual anatomic

arrangement, investigate the possibility of improving current surgical methods by

performing optimization, and investigate alternative surgical options for these pa-

tients. Considering this wide range of goals and the ethical constraints imposed on

clinical studies, we adopt a simulation framework. Simulations provide a means to

augment the surgeons’ expertise and decision-making by providing a quantitative

assessment tool to test different surgical configurations. Achieving the clinical ob-
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(a) (b) (c)

Figure 1.1: Three stages of single ventricle palliation: (a) insertion of a SPS
between systemic and pulmonary circulation (Norwood), (b) removal of the shunt
and connection of superior vena-cava to the PA (BGLN), (c) connection of inferior
vena-cava to the PA (Fontan).

jectives of this study relies on developing a set of numerical tools in the context

of cardiovascular blood flow simulation. Development of these tools is a major

objective of this study.

Considering the parallel circulation in the stage-one circulation, the single

ventricle must provide both systemic and pulmonary blood flow while maintaining

a delicate balance that provides sufficient blood supply to both the pulmonary

arteries and systemic circulation. Too much pulmonary blood flow can lead to

heart failure, and too little may result in unacceptable cyanosis or inadequate

oxygenation [13, 14, 15]. Previous modeling and clinical studies have shown a

direct link between shunt diameter and flow distribution between the systemic and

pulmonary circulations, as well as cardiac output [16]. Therefore, the outcome of

stage-one surgery directly depends on the surgical intervention as well as overall

circulatory and physiological conditions. This presents a multiscale problem, in

which the accurate prediction of surgical outcomes requires capturing the dynamic

interplay between local hemodynamics and circulatory physiology, as well as large-

scale to small-scale vessels.

Due to the involvement of a vast range of length scales, complex geome-

try, and circulatory dynamics, accurate modeling and numerical stability remain



4

significant challenges in the study of cardiovascular flow. While small vessels and

capillaries contribute the majority of total vascular resistance in each organ, and

generally determine the direction of the flow in large vessels, most flow features of

clinical interest develop inside large vessels, and thus both domains are required for

an accurate representation of cardiovascular flow dynamics. Computational Fluid

Dynamics (CFD) simulations have been used extensively to model blood flow in

large vessels (e.g. [17, 18, 19, 20]). Although these studies provide useful spa-

tial and temporal information in the large vessels, their accuracy largely relies on

the accuracy of the downstream circulation model imposed through the boundary

conditions (BC). Due to computational cost and lack of image resolution for recon-

struction, it is currently impossible to include entire complex vascular networks in

3D patient specific models. Thus, to incorporate all relevant scales into a unified

model, a multidomain approach must be utilized, where the temporal and spatial

flow behavior is predicted for large vessels in the 3D domain, and the contribu-

tion of the numerous small vessels is predicted by a computationally efficient lower

order lumped parameter network (LPN).

It is well understood that in addition to the effect of the small scale cap-

illaries, the overall shunt resistance is an important parameter influencing the

balance between systemic and pulmonary perfusion in stage-one patients. Initial

CFD simulations [21, 1, 22] and in vitro studies [23, 24] assessed local hemody-

namics and estimated the relation between shunt geometry and resistance. To

gain understanding about global parameters such as total oxygen delivery (OD),

cardiac output, and pulmonary and systemic flow rates, a multidomain model was

previously introduced [25, 26]. These studies showed that the increase of shunt di-

ameter decreases the equivalent resistance of the entire circulation, which in turn

increases the cardiac output. Therefore, to obtain a more realistic representation

of the stage-one circulatory system, which incorporates effects of both small and

large vessels as well as the heart in a closed loop model, we adopt a the multido-

main approach in the present study. The necessary formulation of multidomain

approach for coupling an arbitrary LPN to a finite element (FE) Navier-Stokes

solver is presented in Chapter 2. As described in this chapter, the use of elabo-
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rate closed-loop LPN models of the heart and the circulatory system as BCs for

CFD simulations can provide valuable global dynamic information, particularly

for patient specific simulations.

Simulation divergence due to backflow is a common, but often undiscussed,

problem in three-dimensional simulations of blood flow in the large vessels. In

particular, the multidomain framework described in Chapter 2 usually requires

Neumann BCs on both inflows and outflows, making it vulnerable to bulk or par-

tial backflow. Because backflow is a naturally occurring physiologic phenomenon,

careful treatment is necessary to realistically model backflow without artificially

altering the local flow dynamics [27, 28, 29]. To address this issue, we quantita-

tively compare three available methods in Chapter 3 for treatment of outlets to

prevent backflow divergence in FE Navier-Stokes solvers. The methods examined

are: 1) adding a stabilization term to the boundary nodes formulation [30], 2) con-

straining the velocity to be normal to the outlet, and 3) using Lagrange multipliers

to constrain the velocity profile at all or some of the outlets [27]. Detailed compar-

isons are made to evaluate robustness, stability characteristics, impact on local and

global flow physics, computational cost, implementation effort, and ease-of-use.

Performing optimization, as was one objective of the present study, requires

running multiple multidomain simulations in a reasonable time frame [31, 32]. In

these simulations a large portion of computational resources is dedicated to solving

a system of linear equations. The conventional methods for solving this system

are, however, not very effective where physiological models with high aspect ratio

or coupled BCs are concerned. BCs in these applications are critical for obtaining

accurate and physiologically realistic solutions, and pose numerical challenges due

to the coupling between flow and pressure [33]. In Chapter 4, we will show that im-

plicit time integration methods, which have favorable stability characteristics, lead

to an ill-conditioned problem, deteriorating the performance of traditional iterative

linear equation solvers. Hence, we present a novel and efficient pre-conditioner in

this chapter that exploits the strong coupling between flow and pressure and sig-

nificantly reduces simulation cost. This pre-conditioner is integrated into a novel

and efficient iterative method designed for incompressible flow problems.
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A second avenue for performing multidomain simulations in a more reason-

able time frame is by adopting parallel processing [34, 35, 36]. Achieving linear

speedup in CFD simulations relies on designing proper parallel algorithms with

efficient communication. Hence, in Chapter 5, a parallel data structure that gives

optimized memory layout for problems involving iterative solution of sparse linear

systems is developed, and its efficient implementation is presented. This parallel

data structure is designed to reduce communication overhead and improve par-

allel scalability by allowing overlap between inter-processor communications and

local computations when performing matrix-vector products, reducing the com-

putational cost of vector inner products, and simplifying the implementation of

parallel iterative linear solver algorithms.

Predicting the risk of thrombosis in stage-one patients, as well as many other

clinical applications, is of critical importance [37, 38]. Cardiovascular simulations

provide a promising means to predict risk of thrombosis in grafts, devices, and

surgical anatomies in adult and pediatric patients. Although the pathways for

platelet activation and clot formation are not yet fully understood, recent findings

suggest that thrombosis risk is increased in regions of flow recirculation and high

residence time (RT). Current approaches for calculating RT are typically based

tracking positions of a finite number of Lagrangian particles that are released

into the flow field [39, 40, 41, 42, 43]. However, special care must be taken to

achieve temporal and spatial convergence, often requiring repeated simulations [39,

40]. In Chapter 6, we introduce a non-discrete method in which RT is calculated

in an Eulerian framework using the advection-diffusion equation. The presented

approach avoids multiple drawbacks associated with the conventional method and

can be incorporated in the FE framework as an extra post-processing step.

The numerical tools developed in Chapters 2 to 6 are used in a clinical

setting to study stage-one single ventricle surgery in Chapters 7 to 9. In Chapter

7, an idealized MBTS anatomy is parameterized and coupled to a closed-loop LPN

of the Norwood surgical anatomy using the multidomain approach. Note that cap-

turing global changes in cardiac output and OD resulting from changes in local

geometry and physiology is contingent on using a closed-loop LPN model in these
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patients. Then, the multidomain simulations are integrated into a fully automated

derivative-free optimization algorithm to obtain optimal MBTS geometries with

variable parameters of shunt diameter, anastomosis location and angles. Consider-

ing the major clinical complications associated with the stage-one surgery, which

are mainly related to insufficient OD, and also the utility of our simulation frame-

work, three objective functions 1) systemic, 2) coronary and 3) combined systemic

and coronary OD are maximized.

In some clinical scenarios, patients receive two systemic-to-pulmonary con-

nections, either by leaving the ductus arteriosus open, or by adding an additional

central shunt in conjunction with the MBTS [44, 45]. This practice has been mo-

tivated by the thinking that an additional source of pulmonary blood flow could

beneficially increase pulmonary flow and provide the security of an alternate path-

way in case of thrombosis [14]. However, there have been clinical reports of prema-

ture shunt occlusion when more than one shunt is employed, leading to speculation

that multiple shunts may in fact lead to unfavorable hemodynamics and increased

mortality. In Chapter 8, we investigate the hypothesis that multiple shunts may

lead to undesirable flow competition, resulting in increased RT and elevated risk

of thrombosis, as well as pulmonary over-circulation. CFD-based multidomain

simulations were performed to compare a range of shunt configurations and sys-

tematically quantify flow competition, pulmonary circulation, and other clinically

relevant parameters. In total, 23 cases were evaluated by systematically chang-

ing the patent ductus arteriosus or central shunt diameter, pulmonary vascular

resistance (PVR), and MBTS position and compared by quantifying OD to the

systemic and coronary beds, wall shear stress (WSS), WSS gradient, oscillatory

shear index, and RT in the PA and MBTS.

While there are several variations of stage-one surgery, all lead to a delicate

physiological condition with a high rate of mortality, as compared to subsequent

stages [7]. Single ventricle is overloaded, oxygen saturation is suboptimal, there is

a significant risk of pulmonary circulation blockage by thrombus formation in the

MBTS, and myocardial ischemia is common due to the diastolic coronary blood

flow steal and low oxygen saturation [13, 14, 15]. To mitigate these drawbacks,
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we introduce a novel surgical method, the Assisted bidirectional Glenn (ABG),

for stage one single ventricle repair in Chapter 9. To compare this new surgical

approach to the classical surgical options, idealized 3D anatomical models of the

MBTS, BGLN, and ABG are constructed and simulated using our multidomain

framework. To model pre-stage one and two conditions, two levels of PVR are

simulated. These are to examine and compare oxygen saturation level, OD, heart

load, superior vena-cava pressure, and pulmonary flow rate between ABG, MBTS,

and BGLN surgeries. Finally, we draw conclusions and discuss future directions.

In the following chapters, regular italicized font is used for scalars, and

bold italicized font for vectors, tensors, and matrices. Roman subscripts are used

to construct new variable names and italic superscripts are used as indices. This is

to distinguish between variable sets and construction of new variable names. For

example, ua,i represent velocity at node a and direction i. It can also be written

as ua and u(x, t) to denote a vector at node a or a vector field as a function of x

and t. To distinguish between velocity in the solid and fluid domains, we may use

us and uf , respectively.



Chapter 2

A Modular Coupling Framework

for Cardiovascular Simulations

Implementation of BCs in cardiovascular simulations poses numerical chal-

lenges due to the complex dynamic behavior of the circulatory system. Multido-

main simulations have been recently adopted for studying circulatory system be-

havior. This type of simulation involves coupling of two domains to incorporate

various scales of the circulatory system in a single model. Large vessels are gen-

erally included in a high-order 3D CFD domain and the rest of the circulation,

i.e. the heart and vessels that are not included in the 3D domain, are often mod-

eled in a reduced order domain. 0D models are often used as a reduced order

domain, by combining resistor, capacitor, inductor, and diode elements in a LPN

[46]. The temporal behavior of the 0D model is represented by a set of ODE’s, de-

rived from the analogous electrical circuit representation of the LPN components.

The coupling between the 3D domain and the reduced order model must ensure

conservation of mass, which imposes constraints on flow rates, and continuity of

pressure or normal stress. However, it is known that this can lead to the imposition

of defective BCs [47] and problems of well-posedness [47, 48].

In general, coupling between the 3D domain and a lower order 1D or 0D

model can be done using either a monolithic or a partitioned approach. In a

monolithic approach, the complete coupled system is solved simultaneously, either

by analytic implementation of the lower order model, or by numerical integration.

9
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A simple 0D model with a known analytical solution can be directly implemented

inside the 3D solver as a hard coded BC, with a monolithic implementation of

the Dirichlet-to-Neumann operator [49]. Monolithic implementation of open-loop

coupled BCs, such as resistance, Windkessel (RCR), impedance, or simple heart

models, in which the relation between the pressure (normal stress) and the flow rate

of this boundary is precisely known, has been demonstrated for up to second order

ODEs, including coronary artery models [29, 50, 51]. However from a practical

point of view, any modification to these hard-coded BCs requires detailed end-

user knowledge of the 3D solver and intrusive implementation. A modular, and

easily modifiable system for coupling an arbitrary LPN network to a 3D solver is

therefore desirable, as it increases applicability to a variety of disease applications,

and does not require end-user modification of the 3D solver. Similarly, when the

0D network is more complex, leading to higher order or nonlinear networks of

ODEs or coupling of multiple outlets the Dirichlet-to-Neumann operator must be

computed numerically if there is no analytical solution for the ODE system. The

monolithic coupling approach has been compared in detail to its explicit-in-time

counterpart, in the context of fractional step methods [52]. The monolithic solution

of such a 3D-0D coupled system requires a significant change in the 3D solver, and

may lead to an ill-conditioned numerical system, unless proper care is taken for its

preconditioning [53, 54].

An alternative to the fully coupled monolithic schemes is the partitioned

approach, which has been the focus of much work in the last decade. In the

partitioned approach, having a separate solver for the 0D domain enables us to

relate flow rates and pressures at the coupled boundaries for any arbitrary closed-

loop, high order, nonlinear LPN, with a wide range of components such as diodes

and nonlinear resistors. Such an approach facilitates the use of existing solvers

and allows for the use of different numerical schemes in the 0D and 3D domains.

With the partitioned approach, coupling in time between the 3D and the reduced

(0D or 1D) domains can be either explicit, at one extreme, or implicit at the other.

This choice may be motivated by the time-step requirement of the Navier-Stokes

solver, which must be sufficiently small to use an explicit method [55], or by issues
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of numerical stability.

Several recent studies have used a partitioned approach with implicit stag-

gered schemes. In most of these studies a backward Euler scheme is used for the

time discretization of the 3D model and an implicit discretization is used for the

reduced model. Gauss-Seidel schemes with a number of sub-iterations between the

higher dimensional domain and the reduced model domain have been proposed

[47]. However, for realistic flow values, this approach has been found to require

too many sub-relaxation steps [53]. More recently, some partitioned strategies have

used a general heterogeneous coupling approach in which average quantities are

passed at the interface [56, 57]. A proof of concept was demonstrated on multiple

3D domains representing a bifurcating carotid artery [57]. In the coupling method

proposed in [56], two nonlinear iteration loops were required. These studies also

advocated use of Newton methods to achieve convergence. In another previous

study, a cycle by cycle open-loop simulation was used, and the outlet BCs were

corrected to re-balance outlet flow rates [58]. Despite this recent work, the effec-

tiveness of an iterative implicit coupled approach with complex closed-loop LPNs,

in which simultaneous temporal data in the LPN is required, has not been previ-

ously established. As noted in [55], these systems may suffer from ill-conditioning,

and special care must be taken to ensure numerical stability.

In this chapter, a time-implicit approach is proposed to couple the Navier-

Stokes equations solved in the 3D domain, to complex closed-loop 0D models. This

overcomes current limitations related to numerical instability and restrictive time

step choices. The contributions of the coupling to both the tangent matrix and the

residual vector are evaluated with an independent code. The Dirichlet-to-Neumann

operator is thus numerically, rather than analytically, determined. With proper

communication protocols between the two domains, this approach provides much

higher flexibility for modeling the entire circulatory system, with no requirement

for modification or intrusion into the 3D solver, once the coupling framework has

been implemented. Hence this method incorporates attractive features of both

monolithic and partitioned approaches. The adopted time discretization scheme

is second order accurate or higher, and allows both domains to be marched in



12

time simultaneously using a predictor-corrector algorithm. This facilitate use of a

implicit integration scheme in the 0D domain. We also aim to overcome previous

restrictions that required use of only Neumann BCs in the 3D domain, by expand-

ing our formulation to include Dirichlet coupling. This offers greater flexibility

in choosing LPN components, yet maintains the well-posedness of the problem.

Based on the selected component at the 3D-0D interface, which is dictated by the

physiological relevance of the LPN, a Dirichlet or Neumann BC can be used. In

previous approaches, to couple a heart model to the 3D domain, a combination of

Dirichlet and Neumann BCs with an augmented Lagrangian constraint was used.

While this approach allows one to prescribe a physiologic flow profile during sys-

tole, it requires appropriate numerics to perform the switching, and is associated

with increased implementation complexity, and higher computational cost [50, 59].

Here, the coupling is applied as a Dirichlet condition, with a chosen velocity profile.

The coupling term in this case is not strictly a part of the variational formulation,

since it is an essential BC that changes at each nonlinear iteration of the 3D solver,

according to the 0D numerical solution.

Neumann boundaries are vulnerable to numerical instabilities caused by

backflow, which is inevitable and physiologic for many cardiovascular applications

such as the ascending aorta (AA). Considering these challenges, as detailed in

Chapter 3, we incorporate a new relatively non-intrusive and robust method that

relies on a stabilized formulation in the presence of inward flow, therefore expanding

the practicality of Neumann boundaries to a wider range of problems. Therefore

with the introduced coupling method, based on user preference, a Neumann or

Dirichlet BC can be used to couple the lumped heart model to the 3D domain.

This chapter is organized as follows: we first describe the FE formulation

of the 3D solver and then introduce the essential multidomain formulation for

coupling any arbitrary 0D domain to a 3D FE discretized domain. Two possible

methods for coupling 0D and 3D domains, i.e. using modified classical Neumann

and Dirichlet BCs, and important considerations related to both of these methods

are discussed. To the best of our knowledge, this represents the first study of

heterogeneous multidomain coupling, in which these two variations are discussed
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and compared. Therefore, we make a detailed comparison of the pros and cons

of these methods, in which we contrast the effects of increasing LPN contribution

to the tangent matrix. The stability, accuracy, and cost of the numerical method

presented here are established through multiple case studies.

In what follows, we solve a coupled problem in which the Navier-Stokes

equations of blood flow in a 3D domain are numerically coupled to a system of

ODE’s in a 0D domain. Both systems are solved numerically, with appropriate

information exchange in each time step at the coupled boundaries. We first de-

scribe the numerical methods used for each domain and then describe the coupling

algorithm.

2.1 3D solver formulation

Throughout this study, the fluid is considered to be incompressible and

Newtonian and walls are assumed to be rigid, unless otherwise stated. Starting

with the Navier-Stokes equations, the momentum and continuity equations can be

written as,

ρu̇+ ρu · ∇u−∇ · T − f = 0,

∇ · u = 0, (2.1)

T = −pI + µ(∇u+∇uT ), (2.2)

u = g, x ∈ Γg (2.3)

T · n = h, x ∈ Γh (2.4)

where ρ, µ, t, x, h, g, u̇ = u̇ (x, t), u = u (x, t), p = p (x, t), f = f (x, t), and

T are the density, viscosity, time, position vector, Neumann boundary traction,

Dirichlet boundary imposed velocity, velocity time derivative taken with respect

to a fixed spatial location, velocity vector, pressure, body forces vector, and stress

tensor, respectively. Since shear rate is on the order of 100 s−1 throughout this

study, blood is assumed to behave as a Newtonian fluid [60]. Unless stated other-

wise, density and viscosity are set to be 1060 kg/m3 and 0.004 Pa·s based on blood

rheological properties.
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In Equations (2.3) and (2.4), the Neumann and Dirichlet boundaries are

denoted by Γh and Γg, respectively. As shown in Figure 2.1, these boundaries can

be split to coupled and uncoupled domains, Γh = Γhc ∪ Γhu and Γg = Γgc ∪ Γgu .

Note that for the coupled boundaries, g = g(u, p;x, t) and h = h(u, p;x, t) are

computed based on the 0D domain behavior, whereas for the uncoupled boundaries

g = g(x, t) and h = h(x, t) are prescribed values.

Figure 2.1: Schematic of the Neumann, Γh = Γhc ∪ Γhu , and Dirichlet, Γg =
Γgc ∪ Γgu , boundaries, each divided into coupled and uncoupled boundaries. Ω is
the entire 3D computational domain and Γh ∪ Γg = ∂Ω.

The equivalent weak form of Equations (2.1) to (2.4) is:

BG(w, q;u, p) =

∫

Ω

w · (ρu̇+ ρu · ∇u− f)dΩ

+

∫

Ω

∇w : TdΩ +

∫

Ω

q∇ · udΩ−
∫

Γh

w · hdΓ, (2.5)

where w and q are velocity and pressure test functions, respectively, and

Sh =
{

u|u(x, t) ∈ (H1)nsd × [0, T ], u = g on Γg

}

,

Wh =
{

w|w(x) ∈ (H1)nsd, w = 0 on Γg

}

,

Qh =
{

q|q(x) ∈ L2
}

,
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Ph =
{

p|p(x, t) ∈ L2 × [0, T ]
}

, (2.6)

are the discrete solution and weight spaces defined on the computational domain,

Ω ∈ R
nsd. Equation (2.5) is obtained by applying the Galerkin method to the

strong form of the Navier-Stokes equations. Since it convenient to use one dis-

cretized space, equal-order interpolation functions are generally used for pres-

sure and velocity. However, Equation (2.5) with equal-order functions does not

meet the so called Babuska-Brezzi condition and is unstable in the presented form

[61, 62]. In the discrete setting, we make use of a stabilized formulation (see, e.g.,

[63, 64, 65, 66]), which allows equal-order velocity and pressure interpolation, and

addresses the convective instability associated with Galerkin’s method by setting

B (w, q;u, p) = BG +
∑

e∈Ie

∫

Ωe

ρ∇w : (τ̄up ⊗ (up · ∇u)− u⊗ up + τC∇ · uI) dΩ

+
∑

e∈Ie

∫

Ωe

[ρw · (up · ∇u)− up · ∇q] dΩ = 0, (2.7)

in which Ie is the index set of elements, each with interior Ωe, and

up = −τM
(

u̇+ u · ∇u+
1

ρ
∇p− µ

ρ
∇2u

)

,

τM =

[

(

2c1
∆t

)2

+ u · ξu+ c2

(

µ

ρ

)2

ξ : ξ

]− 1
2

,

τ̄ = (up · ξup)
− 1

2 ,

τC = [tr (ξ) τM]
−1 , (2.8)

in which c1 and c2 are constants of this model, set to 1 and 3, respectively, ξ is an

nsd × nsd covariant matrix, obtained from a mapping between the physical and

parent domains which is inversely proportional to the square of mesh size, and

∆t is the time step size. The second, third, and fifth terms inside the integral

in Equation (2.7) are stream-wise upwind Petrov-Galerkin (SUPG) terms, which

are essential for achieving a stable scheme, and are common between different

stabilized formulations. As we will see later, the last term generates a Laplacian

operator acting on the pressure field and directly relates the continuity equation

to the pressure.
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To solve the stabilized weak form at time tn, variables are interpolated in

space using

w(x) =
∑

a∈Ia

Na(x)wa,

q(x) =
∑

a∈Ia

Na(x)qa,

u(x, t = tn) = un(x) =
∑

a∈Ia

Na(x)ua,n,

p(x, t = tn) = pn(x) =
∑

a∈Ia

Na(x)pa,n, (2.9)

in which Ia, Na, wa, qa, ua, and pa are the index set of mesh nodal points,

interpolation functions corresponding to node a, velocity and pressure weights and

solution at nodal point a, respectively. Substituting Equation (2.9) in (2.7), the

result must hold for any wa and qa, hence

Ra
m (u̇,u, p) =

∑

e∈Ie

∫

Ωe

ρNa (u̇+ (u+ up) · ∇u) dΩ

+
∑

e∈Ie

∫

Ωe

(∇Na)T (−pI + µ∇us + ρτ̄up ⊗ (up · ∇u)− ρu⊗ up + ρτC∇ · uI) dΩ

−
∫

Γh

NahdΓ = 0,

Ra
c (u, p) =

∫

Ω

[

Na∇ · u− (∇Na)Tup

]

dΩ = 0, (2.10)

in which Ra
m and Ra

c are the momentum and continuity residuals at node a, respec-

tively. Due to the nonlinear terms, Equation (2.10) is solved iteratively using the

Newton-Raphson method for linearization. To relate u̇ to u and to time-integrate

Equation (2.10), the second order generalized-α method is adopted, which works

as follows [67].

1. Predict the solution at time step n+1, given the solution at time step n, i.e.

{u̇a,n, ua,n, pa,n}a∈Ia

{

u̇a,n+1
}

a∈Ia
=

γ − 1

γ
{u̇a,n}a∈Ia

,

{

ua,n+1
}

a∈Ia
= {ua,n}a∈Ia

,
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{

pa,n+1
}

a∈Ia
= {pa,n}a∈Ia

. (2.11)

in which

γ = 0.5 + αm − αf ,

αm =
1

1 + ρ∞
,

αf =
3− ρ∞

2(1 + ρ∞)
, (2.12)

and ρ∞ are the generalized-α method coefficients. An initial condition is

used to initialize the simulation when n = 1. In this study, a zero-valued

initial condition is used for all the simulations in the 3D domain.

2. Calculate acceleration and velocity at n+ αm and n+ αf , respectively

{

u̇a,n+αm
}

a∈Ia
= (1− αm) {u̇a,n}a∈Ia

+ αm

{

u̇a,n+1
}

a∈Ia
,

{

ua,n+αf
}

a∈Ia
= (1− αf) {ua,n}a∈Ia

+ αf

{

ua,n+1
}

a∈Ia
. (2.13)

3. Perform a Newton-Raphson iteration on Equation (2.10), using u̇n+αm , un+αf

and pn+1 (obtained from Equations (2.9) and (2.13)) as the current point.

Hence, a linear system of equations is formed by differentiating the right-

hand-side vector, i.e. Rm = {Ra
m}a∈Ia

and Rc = {Ra
c}a∈Ia

, with respect to

the solutions yu and yp.

Kyu +Gyp = −Rm

(

u̇n+αm ,un+αf , pn+1
)

,

Dyu +Lyp = −Rc

(

un+αf , pn+1
)

, (2.14)

in which K, G, D, and L are blocks of the left-hand-side (LHS) matrix,

defined at row a and column b as

Kab ≈ ∂Ra
m

∂yb
u

,

Gab ≈ ∂Ra
m

∂ybp
,

Dab ≈ ∂Ra
c

∂yb
u

,
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Lab ≈ ∂Ra
c

∂ybp
. (2.15)

Note that yu and yp, which are the correction to velocity and pressure,

respectively, are defined such that G ≈ −DT .

4. Correct the predicted values at time step n + 1 based on the solution of

(2.14).

u̇a,n+1 ← u̇a,n+1 + ya
u ∀ a ∈ Ia,

ua,n+1 ← ua,n+1 + γ∆tya
u ∀ a ∈ Ia,

pa,n+1 ← pa,n+1 + αfγ∆tyap ∀ a ∈ Ia. (2.16)

To perform another iteration, go back to step 2, otherwise go back to step 1

and increase n by one.

Defining α̃f ≡ γ∆tαf , from Equations (2.9), (2.13), and (2.16)

∂u̇n+αm

∂ya
u

= αmN
a,

∂un+αf

∂ya
u

= αfγ∆tNa = α̃fN
a,

∂pn+1

∂ya
p

= α̃fN
a. (2.17)

Hence, the LHS matrix blocks are calculated from Equations (2.10), (2.15), and

(2.17) as follows.

Kab =
∑

e∈Ie

∫

Ωe

[

ραmN
aN bI + ρα̃fN

a (u+ up) · ∇N bI

+µα̃f

(

∇Na · ∇N bI +∇N b ⊗∇Na
)

+ ρα̃f τ̄up · ∇Naup · ∇N bI

+ ρτMu · ∇Na
(

αmN
b + α̃fu · ∇N b

)

I + ρα̃fτC∇Na ⊗∇N b
]

dΩ

Gab =
∑

e∈Ie

∫

Ωe

[

−α̃f∇NaN b + α̃fτMu · ∇Na∇N b
]

dΩ,

Dab =
∑

e∈Ie

∫

Ωe

[

α̃fN
a∇N b + τM∇Na

(

αmN
b + α̃fu · ∇N b

)]

dΩ,

Lab =
∑

e∈Ie

∫

Ωe

[

α̃fτM
ρ
∇Na · ∇N b

]

dΩ, (2.18)

Remarks:
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1. Advective velocities, e.g. ũ in ũ · ∇u are assumed constant while differen-

tiating Equations (2.10) with respect to velocity. In practice, this generally

improves the convergence rate when doing Newton-Raphson iterations. We

also note that derivatives of stabilization time constants, i.e. τM, τC, and τ̄ ,

are neglected.

2. Since Galerkin’s terms compared to stabilization terms and acceleration and

advection terms compared to viscosity terms (specifically in high Reynolds

number flows) are generally bigger, Kab is a diagonally dominated matrix.

Note that in Equation (2.18), the acceleration, advection, and part of the

viscosity and stabilization terms are added diagonally to Kab. Although,

Kab for a 6= b is not added diagonally to K, as shown in Chapter 4, fewer

iterations are required to solve a system with K on the LHS compared to a

system formed by all four blocks that are shown in Equation (2.14).

3. In Equation (2.16), yap is the change in pa,n+1 divided by αfγ∆t. As a result,

Galerkin’s terms in Gab and Dab produce a structure such that G ≈ −DT

and for a symmetric matrix M , DMG is nearly symmetric. Note the terms

in Gab and Dab that are proportional to τM are not antisymmetric, however

those terms are smaller and can be neglected in the formulation without

significantly affecting the convergence rate.

4. The structure of L is identical to a LHS matrix calculated for Laplace’s

equation. The symmetric structure of this elliptic operator will be exploited

in Chapter 4.

As we will detail Chapter 4, the system shown in Equation (2.14) is solved

with a combination of a conjugate gradient method and a preconditioned Gener-

alized Minimum Residual (GMRES) method. The spectral radius of infinite time

step (ρ∞ in Equation (2.12)) is set to 0.2 for all studies. For more details about

the FE discretization and linearization of the Navier-Stokes equations see [67].
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2.2 Strongly coupled multidomain formulation

For each LPN, we use a circuit analogy in which current and voltage are

analogous to flow and pressure, and resistors, capacitors, diodes, and inductors

represent the resistance to flow, distensibility of the vessels, valves, and flow inertia,

respectively [46]. Each LPN is described by a set of ODE’s.

The multidomain approach presented here should seamlessly integrate the

3D domain, where spatial and time dependent data are computed, with the 0D

domain, where only time dependent data are desired. Since the uncoupled Neu-

mann and Dirichlet boundaries are prescribed in time and space, the velocity and

pressure field in the 3D domain can be solved via Equation (2.7) once the coupled

boundaries h, ∀x ∈ Γhc and g, ∀x ∈ Γgc are known.

Let us define the coupled Neumann and Dirichlet boundary indices as

ηh = {1, 2, ..., nh} and ηg = {1, 2, ..., ng}, where nh and ng are the number of

coupled Neumann and Dirichlet boundaries, respectively. The flow rate and spa-

tially averaged pressure of the coupled boundaries are defined as,

Qi(t) =

∫

Γi

u · ndΓ, (2.19)

P i(t) =

∫

Γi pdΓ
∫

Γi dΓ
, (2.20)

where Γi ⊂ Γhc ∪ Γgc , i ∈ ηh ∪ ηg is the boundary of the surface i. Based on these

values, h and g for the coupled surfaces are defined as,

h(u, p;x, t) = −P in, x ∈ Γi, i ∈ ηh (2.21)

g(u, p;x, t) =
φ(x, t)
∫

Γi φdΓ
Qin, x ∈ Γi, i ∈ ηg (2.22)

where, φ(x, t) is the prescribed velocity profile. For cases in which we have fully

developed axial flow at the coupled surface, and the cross section is not necessarily

circular, this function can be approximately replaced by the solution of Poisson’s

equation with a constant source term and zero Dirichlet BC at the wall. For a

Newtonian, steady and unidirectional flow, Equation (2.1) reduces to [68],

∇2u =
1

µ
∇p, (2.23)
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where u is non-zero only in the axial direction (i.e. along the vessel centerline) and

pressure gradient is constant for that direction. Replacing u · n with φ, Equation

(2.23) is a Poisson equation with constant source term, which must be zero at the

walls due to the no-slip BC.

Some 0D models, such as resistance and Windkessel [29] models, are simple

enough that the relation between the boundary traction and surface flow rate, can

be explicitly derived (Figure 2.2). For these types of BCs P i is a function of the

flow rate of the same surface only, i.e. P i = P i(Qi), i ∈ ηh. For example, a

resistance BC is imposed by P i = RQi.

Viscous 

dissipation

Capillary

Pressure

Wall 

distensibility

Coupled to 

the 3D model

Figure 2.2: Schematic of a RCR (Windkessel) circuit for modeling capillaries.
The wall distensibility is modeled by including a capacitor, which stores blood as
pressure increases. Pressure drop due to the viscous dissipation is modeled using
two resistors.

In general an explicit function does not exist or must be solved numerically

for P i, i ∈ ηh and Qi, i ∈ ηg. That relationship can be a nonlinear function

of Qj, j ∈ ηh and Pk, k ∈ ηg represented by a system of ordinary differential

equations. Hence, a multidomain approach is used, in which the following system

of ordinary differential equations is solved to represent the circulation outside of
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the 3D domain,

Ẋ = ÃX + b̃(Qi,Pj , t), i ∈ ηh, j ∈ ηg, (2.24)

and to find P i, i ∈ ηh and Qi, i ∈ ηg for the coupled boundaries,

P i = P i(Qj,Pk,X l, t), i, j ∈ ηh, k ∈ ηg, l ∈ ηX , (2.25)

Qi = Qi(Qj,Pk,X l, t), j ∈ ηh, i, k ∈ ηg, l ∈ ηX , (2.26)

where, X i are the unknowns in the 0D domain and ηX is their corresponding index

set. Generally unknowns in the 0D domain are selected such that, {Qi,Pj} ⊂ X

for i ∈ ηg, j ∈ ηh.

The data passed between the two domains is shown schematically in Figure

2.3. The first type of coupling occurs when a flow rate is passed from the 3D to

the 0D domain, and a pressure is passed from the 0D to the 3D domain to impose

the traction via Equations (2.7) and (2.21). This type of coupling will be referred

to as Neumann coupling. We note that due to the coupling this BC is not strictly

a classic Neumann condition. The second type of coupling occurs when a pressure

is passed from the 3D to the 0D domain and a flow rate is passed back to the

3D domain to impose a spatial velocity profile via Equation (2.22). This type of

coupling will be referred to as Dirichlet coupling. In some situations, we may have

all of one type (either Dirichlet or Neumann) or we may have a mix of two types

of boundaries in the same model. In our formulation these data are exchanged

between the two domains at each Newton iteration of the nonlinear Navier-Stokes

solver to ensure convergence of both domains simultaneously.
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3D model

0D model

Integrating and 

finding Qi for 

inlet and Po for 

oulet

Meshing and 

discretization in 

space and time 

using FEM

Deriving ODEs 

and discretization 

in time

Constructing 

A and b

Find Pi for 

inlet and Qo 

for outlet

Constructing 

K and R

Pi Qo Po Qi

Qo

Pi

Po Qi

KY = −R

AX = b

Figure 2.3: Schematic of strongly coupled iterative multidomain solver. In the
0D domain ODE’s, discretized in time, can be solved by receiving the flow rate
of coupled Neumann surfaces and pressure of coupled Dirichlet surfaces from the
3D domain. The 3D domain, discretized in space and time, requires the pressure
of coupled Neumann surfaces and flow rate of coupled Dirichlet surfaces from the
0D domain to solve the linearized N-S equations. In this schematic, AX = b,
and KY = −R are the linearized system of equations solved in the 0D and 3D
domains, respectively.

In the discrete setting the linearized version of Equation (2.24) is solved for

time advancement in the 0D domain. This can be represented by,

AX
ñ+1 = b(X ñ, Qm

i ,Pm
j , t), i ∈ ηh, j ∈ ηg, m ∈ {n, n+ 1}. (2.27)

where ñ and n denote the time steps in the 0D and 3D domains, respectively.

This system of ODE’s representing the LPN is advanced in time with a 4th order

Runge-Kutta method. Since the integration of Equation (2.27) is cheap relative

to the 3D domain time-advancement, the time between n and n + 1 is split into

1000 0D-domain sub-time steps to increase accuracy and prevent potential sources

of instability emanating from the 0D domain.

At the start of the simulation, the 0D and 3D domains are initialized with

X
1 and {u1,p1}, respectively. In the generalized-α method, the solution at n is

fixed and the solution at n+ 1 is corrected after each nonlinear Newton-Raphson

iteration [67]. In each time step, from n to n+ 1 in the 3D domain, the following

steps are performed:
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1. Set k = 0 and predict unknowns at time step n+ 1 in the 3D domain based

on the solution at time step n, using Equation (2.11).

2. Use Equations (2.19) and (2.20) to compute the flow rate, {Qi,n, Qi,n+1} ∀i ∈
ηh, and pressure of the coupled boundaries, {P i,n,P i,n+1} ∀i ∈ ηg, and pass

them to the 0D domain.

3. After receiving the flow and pressure data at time steps n and n + 1 in the

0D domain and retrieving X
n as the starting point of integration, integrate

the ODE’s up to time step n+ 1 using Equation (2.27).

4. After receiving P i,n+1 ∀i ∈ ηh and Qi,n+1 ∀i ∈ ηg from the 0D domain,

calculate the traction at the coupled Neumann boundaries and the nodal

velocities at the coupled Dirichlet boundaries by using Equations (2.21) and

(2.22), respectively.

5. Use Equations (2.10) and (2.18) to construct the residual vector and tangent

matrix and solve the linearized Navier-Stokes equations to find yu and yp.

6. Correct the velocity and pressure in the 3D domain, using Equation (2.16).

7. Set k ← k + 1 and go back to the second step if the residual is not small

enough, ‖Rm‖2+‖Rc‖2 > ǫ2, or the number of iterations has not exceed the

maximum specified value, k > kmax.

8. Before going to the next 3D-domain time step, calculate X
n+1 based on the

corrected flow rate and pressure. Then set n ← n + 1 and go back to the

first step.

Compared to the method implemented in [55], the coupling in our approach

is implicit in time (Figure 2.4). This framework therefore offers the flexibility to

use either an implicit or explicit time-integration method in the 0D domain.
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3D domain 0D domain

j,n

Q i,n

j,n+1
Q
i,n+1

i,n+1
Q
j,n+1

u
n+1

n+1
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p
n
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P

P
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χ

χ

Figure 2.4: Schematic of time marching in both 3D and 0D domains. The 0D
domain sends corrected P i,n+1 and Qj,n+1 to the 3D domain and receives Qi,n and
Pj,n and the corrected Qi,n+1 and Pj,n+1 values from the 3D domain. In this figure
i ∈ ηh and j ∈ ηg.

2.2.1 Remarks on coupling the Neumann boundaries

In the case of a coupled Neumann boundary, the pressure is passed from

the 0D to the 3D domain, and flow rates are passed from the 3D to the 0D domain.

If the circuit element directly connected to the coupled boundary is a capacitor,

then using the presented numerical scheme it is essential to assign a Neumann

boundary to avoid instabilities (see Appendix A). In this case, the flow rate is a

natural forcing term in the system of ODEs, whereas pressure is a state variable.

This type of BC, in contrast to the Dirichlet BC, does not require a pre-specified

spatial velocity profile. For the coupled Neumann boundaries, the pressures can

be assembled into the discretized residual vector using,

Ra
m ← Ra

m +

∫

Γi

NaP i,n+1ndΓ, i ∈ ηh, (2.28)

where Na(x) is the shape function for node a.

For the coupled Neumann boundaries, the same Newton approach is used

to solve the nonlinear formulation as without the coupling. Hence, the algorithm
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contains only one nonlinear iteration loop involving the 3D solver. Since the added

term to the momentum residual vector in Equation (2.28) depends on the velocity,

the contribution of the 0D domain can be added to the tangent matrix to obtain a

robust implicit scheme. For an implicit coupling, the contribution of the coupled

surface terms in the tangent matrix in Equation (2.14) is

Kab ←Kab +
∂Ra

m

∂yb
u

. (2.29)

Using Equations (2.19) and (2.29), and the fact that P i,n+1 is constant over Γi,

Kab ←Kab +

(

∂Ra
m

∂Ql,n+1
⊗ ∂Ql,n+1

∂uc,n+1

)

∂uc,n+1

∂yb,n+1
m

= Kab + γ∆tMkl

∫

Γk

NandΓ⊗
∫

Γl

NbndΓ, (2.30)

where M ij is an nh × nh matrix

M ij =
∂P i,n+1

∂Qj,n+1
, i, j ∈ ηh. (2.31)

Generally, this matrix is not available analytically. Therefore, it must be calculated

numerically row-by-row, in this case using a finite difference method. This is done

by passing Qj,n+1 + ǫ, j ∈ ηh to the 0D domain, solving for the resulting pressure,

and then dividing the change in P i,n+1, i ∈ ηh by ǫ. This Jacobian-like matrix is,

M ij =
P i,n+1(Qj,n+1 + ǫ;Qj,n)− P i,n+1(Qj,n+1;Qj,n)

ǫ
. (2.32)

In the above expression, ǫ can be selected as,

ǫ = max{ǫabs, ǫrel
∣

∣Qj,n+1
∣

∣}, (2.33)

where ǫabs depends on the machine precision and ǫrel is chosen based on the ac-

curacy requirements. Because of the low computational cost of solving the 0D

domain equations, it is worth noting that this step requires essentially no addi-

tional computational time.

Generally, the off diagonal entries of M ij , which can be physically inter-

preted as the effect of changing the flow rate at face j on the pressure at face i,

are negligible compared to the diagonal terms. Neglecting the off diagonal entries
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improves the sparsity of the tangent matrix, which can be exploited in the linear

solver (LS). This is the choice that was implemented in this work. This matrix is

computed only once for a linear LPN.

To explore this choice further, in this chapter, we will compare three cases

with increasing levels of contribution to the tangent matrix within each Newton

iteration. We refer to the case in which we update the matrix at each iteration

as the implicit method. We refer to the case of partial update, i.e. when the

matrix is computed just once at the start of the simulation, as the semi-implicit

method. We refer to the case of no update, i.e. when no contribution is added

to the tangent matrix, as the explicit method. In subsequent chapters, we adopt

the semi-implicit method for coupling. Here we explore the trade-offs in cost and

stability among these three methods.

The method described here for the coupled Neumann boundaries can result

in numerical instability due to backflow at the coupled faces of the model. This

is a well-known problem in cardiovascular simulation, but one that is often over-

looked. This problem results when flow is entering the domain without explicit

prescription of a velocity profile. In many situations, accurately capturing back-

flow is essential to reproducing the correct physiological behavior. For example

a heart model coupled with the AA as a Neumann boundary will result in flow

entering the domain during systole without a prescribed velocity profile since the

flow normally reverses direction during this phase of the cardiac cycle. Except in

very simple geometries, if the Neumann boundaries are not treated with care, the

solution will diverge rapidly. This issue has been addressed in previous work by en-

forcing a velocity profile using Lagrange constraints, by enforcing normal velocity

at the outflow face, or by extending the outlets unrealistically using long cylindrical

sections. As elaborated in Chapter 3, a stable, accurate and non-intrusive method

for addressing this issue is to add an advective stabilization term to the weak form

of the Navier-Stokes equations [27, 69, 59, 30]. The added term in Equation (3.1)

is an outward traction, opposite the direction of backflow, which pushes the flow

in the direction of the outward normal. Because the added traction is defined to

be zero when the flow is directed outward, the added term is only active in the
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presence of flow reversal at the boundary.

2.2.2 Remarks on coupling the Dirichlet boundaries

The Dirichlet type of BC requires prescription of spatial velocity profile

information, which is scaled by the flow rate (received from the 0D domain) via

Equation (2.22). The pressure and velocity solutions inside the 3D domain depend

on the chosen velocity profile, φ(x, t), which is typically either a Poiseuille or

Womersley profile. Sensitivity of the solution to the chosen profile, however, is

problem-specific and varies depending on the interaction between the BCs and

geometry in the 3D domain.

If the circuit element in the LPN adjacent to the coupled boundary is an

inductor, it is essential to assign a Dirichlet BC to obtain a stable solution, as

outlined in Appendix A. In this case, pressure is a natural forcing term in the

system of ODEs that represents the 0D domain, whereas flow is a state variable.

The Dirichlet BC is updated at the beginning of each nonlinear iteration, using the

same procedure as for the Neumann boundaries. In this case, no contribution to

the tangent matrix is necessary and coupling is time-implicit. The nodal velocities

at n+ 1 are computed using Equation (2.22) after receiving flow rates at the cou-

pled Dirichlet surfaces from the 0D domain. Nodal acceleration is then corrected

according to the time discretization scheme,

u̇a,n+1 =
γ − 1

γ
u̇a,n +

1

γ∆t
(ua,n+1 − ua,n), a ∈ Γgc . (2.34)

If all the coupled boundaries are Dirichlet and there are no Neumann bound-

aries, an additional constraint is needed in the 3D domain formulation to prevent

pressure drift, namely
∫

Ω

pdΩ = 0, if Γ = Γg. (2.35)

In this case, the boundary pressures that are sent to the 0D domain are only pres-

sure differences. All relative pressures received in the 0D domain must be added

to the mean pressure in the 3D domain, P̄ , to obtain the correct absolute coupling

pressure. For this additional mean pressure unknown, the following additional
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conservation of mass equation must be enforced in the 0D domain,

ng
∑

i=1

Qi = 0. (2.36)

To relate equation (2.36) to P̄ , the governing equation for the inductors adjacent

to the coupled boundaries in the 0D domain can be used as

LidQ
i

dt
= Lif i = P̄ + P i − P i

d, i ∈ ηg, (2.37)

where, as shown in Figure 2.5, Li, f i, and P i
d are the inductance, time derivative of

the coupled surface flow rate, and distal pressure, respectively. Dividing Equation

(2.37) by Li and using Equation (2.36), one can show

P̄ = (

ng
∑

i=1

1

Li
)−1

ng
∑

j=1

Pj
d − Pj

Lj
. (2.38)

Denoting f̃ i as the time derivative of the flow rate at the coupled surfaces computed

in the 0D domain, based on a coupling pressure of P̄ = 0,

Lif̃ i = P i − P i
d, i ∈ ηg, (2.39)

and using Equation (2.37) one can show

f i = f̃ i − (Li

ng
∑

j=1

1

Lj
)−1

ng
∑

k=1

f̃k, i ∈ ηg. (2.40)

Since f̃ i is found from Equation (2.39) with no knowledge of P̄ , using Equation

(2.40), the correct f i to be imposed in the 3D domain can be calculated with the

above expression.

Γ

P P
d

i

i

i

L
i

Figure 2.5: Schematic of a Dirichlet boundary, Γi, coupled via an inductor to the
0D domain. Coupled surface pressure and distal pressure are denoted by P i and
P i

d, respectively.
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2.3 Model construction and simulation methods

To create the geometric models throughout this study, a customized in-

house version of the open source Simvascular package was used [70]. Models for

idealized geometries, e.g. cylinder and single ventricle models, were analytically

defined and constructed by lofting together circles. For the patient-specific models,

starting from the X-ray computed tomography (CT scan), the geometry of each

artery is identified and segmented [20]. By lofting these segments through the

centerline of the vessels, the solid model is created. The 3D models are meshed

with tetrahedral elements using the commercial package MeshSim c©(Simmetrix,

Clifton Park, NY).

Two finite-element solver codes are used throughout this study. In Chapters

2, 3, and 7, a customized version of Phasta [71] (open sourced as part of the

Simvascular project at simtk.org) is used for simulations. Experimental validation

of this solver in the context of cardiovascular flow simulations is discussed in [72].

In Chapters 4, 5, 6, 8, and 9, a separate in-house code, called the multi-physics

finite element solver (MUPFES), is used for solving the fluid flow equations as well

as fluid-structure interaction and advection-diffusion problems [73]. This code is

verified using test cases presented in [74], among others, and is used in other studies

such as [75, 76, 77].

2.4 Multidomain framework test results

We demonstrate the coupled formulation using three representative cardio-

vascular problems. The first is a verification exercise in a simple cylinder, the

second is a simple closed-loop model with one inlet and one outlet, and the third is

a model of a surgery for single ventricle heart patients with a closed-loop complex

network and multiple outlets. Both Dirichlet and Neumann methods are demon-

strated and compared. The time step size for the 3D solver is set to 5 × 10−4 s.

Nonlinear iterations are performed until the average second norm of the residual

vector is less than 5× 10−4 or the number of iterations exceeds 45.
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2.4.1 Verification using a Windkessel model

A cylinder with an unsteady prescribed Dirichlet BC at the inlet, and a

Windkessel (RCR) model at the outlet, is considered for verification purposes. The

model is shown in Figure 2.6, and is meshed with 331,636 tetrahedral elements.

In this model Rp, C, Rd, and Q(t) are the proximal resistance, capacitance, distal

resistance, and time dependent inflow, respectively.

Rp

Rd

Q

C

Figure 2.6: Windkessel model coupled to a cylinder with an uncoupled Dirichlet
inlet BC. The cylinder diameter and length are 4.0 and 30.0 cm, respectively.

Prescribing inlet flow rate as Q = Q0

(

sin( t
∗

2
)
)2
, the pressure at the outlet

can be determined analytically as,

Pex

RdQ0

=

(

Rp

Rd

+
1

2

)

sin(
t∗

2
)
2

+
1

4

(

1− e−t∗ − sin(t∗)
)

, (2.41)

where t∗ = t
RdC

is the non-dimensional time.

In this simple case, a numerical solution of the 0D model is not necessary

since the circuit equation can be solved analytically. For verification purposes, we

compare three quantities: 1) the analytical ODE solution (Equation (2.41)), 2)

the hard-coded RCR coupling (pure monolithic approach [29]), and 3) the numer-

ically coupled solution, using the methods described in this chapter. There is only

one ODE that is time-integrated in the 0D domain to obtain the pressure of the

capacitor. In Figure 2.7, the analytical solution from Equation (2.41) is compared

to the coupled 3D-0D simulation results. This simulation is carried out for 1 sec

with Q0 = 10, Rp = 0.1, Rd = 1.0, C = 1
4π

in cgs units. The 3D domain time step

size is 1 ms and since 1000 time steps per each 3D domain time step is performed,

and each Runge-Kutta time step is 1 µs.
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(a) (b) (c)

Figure 2.7: Cylinder with periodic inflow BC coupled to the Windkessel model
shown in Figure 2.6, (a) Analytical (+), numerical coupled (solid line) and mono-
lithic or hard coded (dash line) outlet pressures, (b) Normalized error of numerical
solution in percent, (c) Normalized error of hard coded solution in percent.

Comparing the analytical and numerical results in Figure 2.7, the error is

less than 1% at all times. The norm of the error, i.e. 100
∥

∥

∥

P−Pex

RdQ0

∥

∥

∥
, for the hard

coded and numerical results is 0.42% and 0.46%, respectively. The total simulation

time, keeping everything else fixed, was 48 min and 44 min for the monolithic (i.e.

hard-coded) and partitioned (i.e. numerically coupled) simulations, respectively.

Considering the small time step size used in the 0D domain, the error due

to the 0D integration is negligible. Hence, the small error in Figure 2.7 is due to

the difference between flow rate at the inlet and outlet of the 3D model. From this

figure, the error is proportional to the time derivative of the flow rate. The norm

of the mass conservation error, i.e. the difference between the inlet and outlet flow

rates is 100
∥

∥

∥

Qi−Qo

Q0

∥

∥

∥, equal to 0.024%.

2.4.2 Closed-loop cylinder model

In this second example both the inlet and outlet of the cylinder are coupled

Neumann boundaries. The heart model along with the other blocks of the LPN is

shown in Figure 2.8. Flow is initiated in the 3D model by the pressure difference

produced by the heart model in the LPN. As described in [16] the following rela-

tion is assumed between atrial volume, Va, electrical activation, Aa(t), and atrial

pressure, Pa,

Pa = AaEa(Va − Vau) + Pa0(e
Ka(Va−Vau ) − 1) (2.42)
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Table 2.1: Figure 2.8 parameters values. R̂ are non-linear resistances modeling
the heart valves.

Block Parameter Value Unit

Artery
R 0.05 mmHg s/ml
C 0.02 ml/mmHg
L 0.004 mmHg s2/ml

Capillary
R 5.00 mmHg s/ml
C 0.20 ml/mmHg

Vein
R 0.09 mmHg s/ml
C 1.00 ml/mmHg

Atrium

R̂ 4× 10−4 mmHg s2/ml2

Ea 7.35 mmHg/ml
Vau 1.0 ml
Pa0 0.17 mmHg
Ka 0.484 1/ml

Ventricle

R 0.09 mmHg s/ml
Ev1 18.5 mmHg/ml
Ev2 -0.042 mmHg/ml2

Vvu 4.0 ml
Pv0 0.9 mmHg
Kv 0.062 1/ml

Aorta
R̂ 4× 10−5 mmHg s2/ml2

C 0.1 ml/mmHg

Aa(t) is modeled with a sinusoidal function which is non-zero during atrial con-

traction and Ea, Pa0 , Ka, and Vau are constants of this model. The same model is

used for the ventricle, except the first term in Equation (2.42) that models systole,

is replaced with a parabolic function,

Pv = Av[Ev1(Vv − Vvu) + Ev2(Vv − Vvu)
2] + Pv0(e

Kv(Vv−Vvu ) − 1). (2.43)

Equations (2.42) and (2.43) relate the pressures and volumes of heart chambers.

Nonlinear resistances are incorporated into the heart model to account for the pres-

sure drop caused by turbulence in the aortic and tricuspid valves. The parameter

values of the heart model and the rest of LPN are shown in Table 2.1.

The 0D/3D coupled system was solved using 331,636 elements in the 3D

domain, for 2.4 seconds (3 cardiac cycles), with a time step size of 2.4 ms. The

pressures at certain points in the LPN, including the coupled surfaces, are shown
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in Figure 2.8. The interaction between the aortic capacitor in the 0D domain with

the fluid inertia in the 3D domain causes aortic pressure oscillations. As expected,

this pressure oscillation is damped following the resistive element representing the

capillaries. In Figure 2.9 a snapshot of pressure and velocity contours is shown for

this simulation at t = 1.1T .
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Figure 2.8: LPN for the coupled cylinder case. This hypothetical model includes
6 blocks for the systemic artery, capillaries, veins, atrium, ventricle, and aorta.
The pressure of certain points in mmHg versus time is plotted. The flow rate at
the inlet of the cylinder is also plotted.
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Figure 2.9: Contours of pressure and velocity along the cylinder axis of the LPN
shown in Figure 2.8 during flow acceleration (t = 1.1T ). The velocity profile for
the coupled Neumann boundaries is not imposed, but is a part of the solution.
We confirm that the velocity has developed into a Womersley profile with forward
flow at the center and backward flow at regions close to the cylinder wall, typical
of high Womersley numbers (here 28.8).

The results in Figure 2.8 correspond to the last cycle of a three cycle simu-

lation. The pressure-volume loop of the heart chambers for all the three cycles is

shown in Figure 2.10. As shown in this figure, the difference between the second

and third cycles is less than the first and second cycles. In this case, due to the

accurate initialization of the unknowns in the 0D domain, a few cycles are sufficient

to obtain a periodic solution.
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Figure 2.10: Atrium (a) and ventricle (b) pressure-volume loops for the LPN
shown in Figure 2.8. Convergence of the heart model with number of simulated
cardiac cycles is shown in this figure.

2.4.3 Comparison of the Neumann and Dirichlet coupled

boundary approaches

To compare the use of Neumann and Dirichlet coupling methods in terms

of stability, accuracy, mesh sensitivity, and computational cost, we consider the

coupled model shown in Figure 2.8. For the coupled Neumann BCs, we use the

model as shown. For the Dirichlet case, to obtain a stable algorithm, we modify

the model to include inductors at both the inlet and outlet of the cylinder. For

this case, Equation (2.40) is used to account for the average pressure from the 3D

domain in the 0D domain.

As shown in Tables 2.2 and 2.3, the effect of time step size and mesh size

are studied and compared for the coupled Neumann and Dirichlet models. For

the Neumann cases, the stability of simulations without backflow treatment (i.e.

β = 0) and the effect of including M (Equation (2.31)) in the formulation (i.e.

I/SI/E) is studied further. Here, the explicit method (E) neglects the contribution

of M in the LHS matrix, the semi-implicit method (SI) evaluates M only once at

the beginning of the simulation, and the implicit method (I) updates M at each

iteration in each time step. A simulation with 331,636 elements, a time step of 0.1

ms, and β = 0.2 of each corresponding case serves as the reference case in these
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tables. The results are not reported for the unstable cases.

Table 2.2: The effect of time step size, left hand side contribution (M in Equa-
tion (2.31)), stabilization coefficient, and mesh size on the stability and accuracy
of the coupled Neumann boundary case. Results of the diverged cases are shown
by a dash. ∆t: 3D solver time step size in millisecond, I/SI/E: Implicit/Semi-
Implicit/Explicit, nEl: Number of elements, β: backflow stabilization coefficient,
nIt: Average number of nonlinear iteration needed to reduce second norm of resid-
ual to less than 10−3, tsim: Total simulation time in a parallel 8× 2.8 GHz proces-
sors machine in minutes. err = 100‖Q−Qref‖2

‖Qref‖2
: Normalized aortic flow rate error, as

compared to the reference case in percent.

Case ∆t I/SI/E β nEl nIt tsim err

N1 1.6 I 0.2 24450 9.1 19.5 7.81
N2 1.6 SI 0.2 24450 9.1 16.3 7.81
N3 1.6 E 0.2 24450 10.2 18.2 7.81
N4 6.4 I 0.2 24450 30.6 16.1 9.83
N5 6.4 SI 0.2 24450 30.1 13.4 9.83
N6 6.4 E 0.2 24450 - - -
N7 0.4 SI 0.2 24450 6.3 45.6 8.20
N8 0.4 SI 0.2 109547 5.0 158.4 2.26
N9 0.4 SI 0.2 331636 4.6 438.5 1.10
N10 6.4 SI 0.0 24450 31.3 14.1 20.2
N11 0.4 SI 0.0 24450 - - -
N12 0.4 SI 0.0 331636 - - -

Table 2.3: The effect of time step size and mesh size on the stability and accuracy
of the coupled Dirichlet boundary case. See Table 2.2 for abbreviations.

Case ∆t nEl nIt tsim err

D1 32 24450 8.0 0.73 12.6
D2 6.4 24450 6.2 2.68 3.80
D3 1.6 24450 6.0 10.5 3.27
D4 0.4 24450 6.0 42.7 3.47
D5 0.4 109547 4.6 146 0.61
D6 0.4 331636 4.0 389 0.16

The results of these two tables suggest:

1. The accuracy of the coupled Neumann case is independent of the contribution

of M to the tangent matrix as expected.
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2. The stability and convergence rate of the coupled Neumann case is improved

by switching from the explicit to the semi-implicit. But there is no further

improvement gained from switching to an implicit method. This indicates

that the time-accumulated contribution of the nonlinear 0D components in

a cardiac cycle is negligible compared to the linear components.

3. Using a semi-implicit method can reduce computational cost by improving

convergence. However due to the excessive cost of evaluating M at each

iteration, the implicit method is not cost effective.

4. In contrast to the coupled Dirichlet case, the time step size should be limited

for the coupled Neumann case to avoid instabilities due to backflow.

5. The stabilized boundary formulation is essential for stability of the Neumann

boundaries, especially for smaller time step or mesh sizes.

6. Fewer elements are required to obtain a mesh independent solution for the

coupled Dirichlet case as compared to the coupled Neumann case.

7. The coupled Dirichlet case has better convergence rates at larger time step

sizes, which is consistent with its lower computational cost.

Combining these observations, we conclude that the Dirichlet BC is the

least costly approach, but has the drawback of requiring additional information or

assumptions about the velocity profile at the coupled surfaces.

2.4.4 Single ventricle multidomain model

In the third example, the first stage surgical anatomy of a hypoplastic left

heart syndrome patient, described in Chapter 1, is modeled using a multidomain

approach. The LPN along with the MBTS anatomy is shown in Figure 2.11. In

this LPN, there is only one functional ventricle and it is used to pump blood to the

aorta. A shunt is inserted between the brachiocephalic artery and the PA to supply

blood to the lungs. The diameter of the shunt, which should be chosen properly to

maintain the ratio of systemic to the pulmonary blood flow at an optimal value, is
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3.5 mm in this case study. The AA, RPA, RCCA, and RCA diameters are 10, 5,

3, and 2.5 mm, respectively. To account for the effect of intra-myocardial pressure

on the coronary perfusion, the distal end of the capacitor between CB and CA2 is

connected to the ventricular pressure. With in the current framework, other LPNs

can also be used to model coronary circulation [78].

The 3D model is meshed with tetrahedral elements. For the interior, four

mesh sizes of 1.0, 0.8, 0.625, and 0.5 mm are selected, that produce approximately

130K, 210K, 400K, and 700K tetrahedral elements, respectively. The mesh size

for the coronary artery wall is 40% of the interior mesh size and the mesh size for

the rest of the walls is 80% of the interior mesh size. After simulating five cardiac

cycles, the differences between the cardiac output with the first three meshes and

the last mesh (most refined one) are 2.91%, 0.793%, and 0.524%, respectively.

Based on these results, an interior mesh size of 0.625 mm is chosen for this study,

which produced a mesh with approximately 400K elements. This example follows

previous work of Migliavacca et al, and the parameters in the 0D domain are tuned

based on physiological data obtained from a typical set of patients (see Appendix

B for LPN values) [16].
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Figure 2.11: The LPN coupled to the geometry with MBTS anatomy. This
LPN contains blocks for the upper body arteries (UBA), upper body capillary bed
(UBB), upper body veins (UBV), PA bed (PAB), pulmonary vein bed (PVB),
lower body arteries (LBA), lower body capillary bed (LBB), lower body veins
(LBV), two coronary artery (CA1, CA2), coronary capillary bed (CB), coronary
veins (CV), left atrium (LA), right atrium (RA), and single ventricle (SV). The
AA, descending aorta (AoD), brachiocephalic artery (BA), right common carotid
artery (RCCA), left common carotid artery (LCCA), left subclavian artery (LSA),
left PA (LPA), right PA (RPA), right coronary artery (RCA) are shown in the 3D
model. Note the left coronary artery, which is omitted here to make the schematic
less crowded, is connected to an LPN block identical to that of the right coronary
artery. Also note, the inertance connected to the AA is replaced by a capacitor if
Neumann BC is imposed at the AA.

Since all coupled boundaries, including AA, are adjacent to capacitors, we

use coupled Neumann BCs with a semi-implicit approach for all coupled surfaces.

This model is meshed with 400,936 elements. Since all coupled boundaries of the

MBTS model exhibit significant backflow during part of the cardiac cycle, these



41

simulations require backflow stabilization, and we set β = 0.2.

The resulting pressure and flow rate of the coupled surfaces are shown in

Figure 2.12. As expected, the results predict a lower pressure for the pulmonary

branches compared to the systemic side. In contrast to the other branches, the

coronary flow waveform has a second peak in diastole. There is significant backflow

in the brachiocephalic and right common carotid arteries due to the shunt flow,

which reduces the diastolic pressure in these branches.
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Figure 2.12: Pressure (a) and flow rate (b) plots for the LPN shown in Figure
2.11 for the coupled surfaces. Pressure plots are in mmHg versus time in seconds.
Flow rate plots are in mL/s versus time in seconds.

To see the interaction of the two domains, the ventricular pressure-volume

loop of three simulations with 3.0, 3.5, and 4.0 mm shunt (using the LPN and
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model shown in Figure 2.11) is shown in Figure 2.13. The 4.0 mm shunt diverts

more blood to the pulmonary bed, which has a lower resistance compared to the

systemic bed. Therefore, this geometry has lowest total resistance seen by the

heart, which leads to the largest stroke volume, and hence the highest cardiac

output. This example demonstrates the necessity of a coupled simulation for these

types of case studies.
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Figure 2.13: Ventricular pressure-volume loop of the LPN shown in Figure 2.11
with three different shunt sizes.

To compare the computational cost of the multidomain method with mono-

lithic BCs, we also performed a simulation with the same geometry and resistance

BCs. The resistance values are tuned to obtain the same average pressure at the

outlets as the multidomain simulation. The LPN is replaced with resistance BCs

at the outlets and a prescribed uncoupled velocity, which is duplicated from the

multidomain simulation results, at the inlet of the AA. Comparing the compu-

tational costs of two methods for pure resistance BCs, the partitioned approach

cost 9% more. However, comparing to the simulation with Windkessel BCs, the

partitioned approach cost 9% less (44 min versus 48 min). These small differ-

ences indicate a negligible difference in cost between the proposed partitioned and

monolithic approaches. The number of nonlinear iterations per cycle was almost

the same (0.3% difference in number of iterations), which indicates insignificant
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differences between the two approaches.

For the original simulation with LPN shown in Figure 2.11, five cardiac

cycles were simulated with an average of 7.5 iterations per time step. This required

7,503 iterations per cycle in total, which took 38 min/cycle on a parallel 48 × 2.4

GHz processor cluster. Comparing these values to the case with pure resistance

BCs using a monolithic approach, the LPN simulation required 22% more iterations

per cycle, while each cycle cost 55% less overall. This is because the multidomain

problem has a tangent matrix with a lower condition number, which reduces the

number of internal LS iterations, reducing its overall cost.

This example suggests the presented method can be used with multiple

outlets and a complicated LPN with no significant additional computing cost.

The semi-implicit implementation of the coupled Neumann boundaries formulation

inside the iterative loop resulted in a stable solution with a time step size that is

an order of magnitude higher than previous work, in which a similar problem was

studied [25].

2.5 Discussion

The multidomain approach presented in this chapter provides both detailed

hemodynamic information in the 3D domain of interest, and global hemodynamic

information in the circulatory system. We have presented a modular and flexible

framework for coupling 3D FE simulations to LPN models for cardiovascular sim-

ulation. In this framework, one can use either Dirichlet or Neumann coupled BCs,

depending on the type of LPN model employed. This method can be applied in a

range of patient specific blood flow simulations, in which global information about

circulatory dynamics is required. A separate numerical solver for the LPN, with

a specific protocol for passing pressure and flow information at the boundaries,

enables convenient implementation for legacy solvers in which the LPN can be

changed or reconfigured without recompiling the 3D solver code.

Depending on the type of nonlinear elements in the 0D model, time step

sizes, and other numerical parameters, either an implicit, semi-implicit, or explicit
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coupling approach can be used. Based on our results, the semi-implicit approach

seems the most attractive choice, since it provides a more stable, yet cost-effective

solution. In the explicit approach, a less costly scheme can be obtained that does

not change the non-zero pattern of the sparse tangent matrix. However, this proves

to be less stable with a lower convergence rate that increases the overall cost. By

including only the diagonal part of M in the tangent matrix, which is generally

a good approximation of the full matrix, we obtain a system of equations with

good convergence. In doing so, off-diagonal elements of M that would decrease

the sparsity of the tangent matrix and complicate parallelization of LS are ne-

glected. Implementation of this approach requires only minor modifications to a

Navier-Stokes solver in which simple BCs such as resistance models are already

implemented with a monolithic approach. Note that for these coupled Neumann

boundaries, backflow stabilization allowed us to perform this coupling, where other

methods may cause simulation divergence [59].

Conservation of mass can be directly satisfied through the external surfaces

(via 0D domain), if the coupled Dirichlet BC is imposed for all the external surfaces.

Implementation of this method does not not require any changes to the 3D solver,

compared to a classic Dirichlet BC other than passing the flow rate and pressure

information. Comparing this approach with the Neumann approach we obtained

improved convergence rates and stability, independent of the time-step size. On the

other hand, the Dirichlet BC approach requires knowledge of the velocity profile,

which is not usually available. This requires an assumption that may change the

local velocity solution and possibly the pressure field in the entire domain.

Use of a multidomain method enables prediction of important hemody-

namic parameters in the entire circulatory system that can be relevant to clinical

decision making and surgical planning. One example is selecting between surgical

options for single ventricle patients, in which prior explicitly coupled version of

this method proved to be important for clinical applications [25, 26, 79]. In addi-

tion, the combination of this type of multidomain simulation with formal design

optimization methods provides a powerful tool that can assist in surgical planning,

while accounting for the changing dynamic response of the heart and cardiovascular
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system [80].

Although, in comparison with 1D/3D coupling, the 0D/3D coupling cannot

predict wave propagation, it is the only feasible option for modeling vessels outside

of the 3D domain with no available geometrical information, as is often the case in

image-based modeling. However we note that, the same implicit modular approach

described in this work could be used for 1D/3D coupling.

Also, the dynamic response of an LPN can be modified to incorporate non

periodic phenomena [29] and auto-regulatory mechanisms [81] to model exercise

conditions. Due to the lack of available clinical data, specifying parameter values

in an elaborate LPN is a challenging issue [82], and usually restricted to Windkessel

type models [83, 84, 85].
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Chapter 3

Methods for Prevention of

Backflow Divergence

The occurrence of backflow divergence is a well-known but not sufficiently

addressed problem in the field of cardiovascular flow simulation. This problem

usually arises in large vessels that are exposed to backflow in 3D and 2D flow

simulations. There are three main situations that lead to numerical divergence

caused by backflow. First, backflow divergence can result from bulk reversal of

the flow through an outlet, such that there is negative flow over the entire outlet

face. Second, there may be localized areas of flow reversal on an outlet face with

bulk outward positive flow. And third, the use of multiscale modeling (e.g. using

closed-loop lumped parameter 0D models [26, 86], or 1D models [87, 53, 29,

54] coupled to the 3D model) may necessitate the passing of pressure and flow

information for which there is a lack of velocity profile information, leading to

numerical instabilities on either the coupled inflow or outflow faces. All of these

numerical instabilities emanate from the use of Neumann BCs on the outlet faces,

for which velocity profile information is not specified [88, 47, 89].

Bulk backflow (complete flow reversal at an outlet) is a physiologic and

commonly occurring phenomenon in the cardiovascular system in both healthy

and diseased states. It often occurs in vessels during diastole and flow deceleration,

particularly in certain regions. Thus, accurately capturing backflow phenomenon

is essential for reproducing realistic conditions in many cardiovascular problems.

47
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Examples of physiologic flow reversal include flow in the descending abdominal

aorta during diastole [28, 29], flow reversal in the brachiocephalic artery after

the stage 1 repair for single-ventricle heart patients (as was observed in the MBTS

simulation in Chapter 2) [25] and reversed flow due to respiratory effects in Fontan

patients [90].

Backflow divergence due to local flow separation or flow recirculation is

commonly caused by complex geometries such as the presence of stenosis, anas-

tomoses, or increased cross sectional area, near the outlets of a model. These

geometric features often lead to either steady or unsteady separation regions close

to the outflow faces of a model, particularly at peak systolic flow. Similarly, geo-

metric features can also lead to vortex shedding, and convection of vortices through

the outflow faces, also leading to backflow divergence.

Multiscale modeling, in which a closed-loop lumped parameter network of

ODEs is coupled to the inflow and outflow faces, usually requires Neumann BCs

on both inflows and outflows. As we observed in Chapter 2, in these situations, it

is common that flow reversal is dictated by the pressure passed to the 3D model,

causing a bulk inward flow without prescribing velocity profile information. In

these situations, instabilities can occur, particularly in cases with rapidly changing

dynamics that may alternate between positive and negative flow within a cardiac

cycle.

Simulation divergence due to the above causes, for either total or partial

flow reversal on an outlet face, requires careful consideration of the outflow BCs.

Since it is assumed that the inflow BC is given, altering the inlet flow wave form

to prevent backflow is not considered to be a viable solution [91, 92]. Use of a

mixed BC [93, 94], in which a Dirichlet BC is used for the normal component of

the velocity (either on the entire outlet or only in the region with backflow) along

with a Neumann BC for tangential velocity components, requires extra information

about the velocity profile and the flow rate magnitude, which is generally unknown

for the outlets.

The simplest solution to the backflow issue is to artificially elongate the

outlets by adding long straight sections, thereby dissipating the vortices before they
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reach the outlet. While this has been commonly used in simulations [69, 32, 95]

this method poses several major problems. First, it cannot be used as a solution for

the case of total flow reversal at the outlet due to conservation of mass. Second,

the addition of artificial extensions to the outlets has potential to change local

hemodynamics, particularly in patient specific models or in multiscale modeling

networks, where information as the boundary faces are coupled. And third, there

is a non-negligible additional computational cost incurred by the need to mesh

and simulate long outlet extensions. This added cost increases for high Reynolds

number flows, since longer extensions will be needed to dissipate the vortices.

Another option is to add additional vessels to the model until the flow becomes

unidirectional and the Reynolds number at the outlet is reduced [96]. While this

method has proven to be effective in patient-specific cases, it can only be used in

a non-artificial way if the image resolution is adequate enough to permit inclusion

of additional levels of branching. Additionally, this method increases the model

generation and computational costs significantly. Due to these issues, we will not

consider outlet extensions or additional branches as viable methods in this chapter.

Apart from model extensions, there are three alternate methods currently

in use for solving the issue of backflow divergence in FE solvers.

1. Modifying the weak formulation by adding a backflow stabilization term for

the Neumann boundaries [30].

2. Confining the backflow velocity to a desired direction, e.g. normal direction.

3. Using Lagrange multipliers for constraining the velocity profile to an assumed

form [27].

The issue of backflow divergence has been addressed in previous work of

Kim et al [27]. However, a thorough and quantitative comparison of these three

methods using a single code has not been previously performed. In this chapter

we present a detailed comparison of these methods and compare their impact on

the flow physics, computational cost, implementation effort, and robustness. The

weak formulation is presented and then the modified formulation is discussed for

each method. To produce an accurate comparison between the three methods,
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identical solver numerics, meshes, fluid properties, and inflow BCs are used. The

three backflow treatment methods are illustrated using three model problems which

have relevance to blood flow simulation, as well as other internal flow problems in

CFD, such as combustion simulations and duct flows.

First, a classic cylindrical expansion is studied with two exit lengths and

two Reynolds numbers. This illustrates the case of backflow due to a localized

steady separation region. Second, a 90-degree bend is studied with a physiologic

unsteady inlet flow wave-form. This illustrates the case of backflow due to an

asymmetric outlet velocity profile, as well as diastolic bulk flow reversal. The last

case is a patient-specific model of an aorta, for which the untreated simulation

diverges due to flow reversal during diastole. For this case, a non-ideal cut of an

outlet is also considered to investigate the robustness of the proposed methods.

3.1 Methods for backflow treatment

In this section, we present the numerical formulations of the three methods,

based on previous work. The pros and cons of the three methods are as follows.

Outlet stabilization has been proposed by Bazilevs et al. and used previ-

ously in cardiovascular applications in [30]. Advantages of this method include

accuracy, robustness, ease of implementation, and little to no additional computa-

tional cost. Cons of the method are the potential to alter the local flow dynamics

due to the addition of an artificial traction component opposite to the direction

of the flow. However, as shown in the results section, these effects turn out to be

minimal.

Confining the velocity profile to the normal direction is commonly used

for stabilization in commercial flow solvers. While it has been effectively used

in previous work, it has the obvious disadvantage of directly changing the local

flow field if the assumed flow direction is not aligned with the flow. However, by

choosing a proper direction, this method can cause little to no artifact in the flow

field. The main disadvantages of this method are a lack of stability, as compared

with the two other methods, which will be demonstrated in the results section.
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Recent progress on backflow stabilization was made through the introduc-

tion of the Lagrange multiplier method for constraining the velocity profile of

outlets. In the work of Kim et al. [27], this method was shown to have little

effect on the local flow field, and effectively stabilize simulations that otherwise

diverged. However, potential disadvantages of this method include complexity of

implementation, the need for adjustable parameters, and significantly increased

computational cost. Our work aims to build on this recent work by offering an

alternative through the use of the stabilization method.

The FE framework, described in Section 2.1, is used for discretization of

Navier-Stokes equations in space and time and obtaining the linear system of

equations.

3.1.1 Outlet stabilization

In this section, we follow the implementation of Bazilevs et al. [30] for

the addition of stabilization terms on the outflow boundaries. The weak form in

Equation (2.7) is vulnerable to backflow divergence. To obtain a more stable weak

form in the regions with backflow, an additional convective traction is added. The

parameter β presents a modification to the method proposed in [30]. The original

formulation, presented in [30], is equivalent to the current formulation for β = 1.

In this chapter, we present a modification of this method in which a fraction of

this term is added, and a more stable method is obtained. From our numerical

experience, this coefficient allows us to have a stable solution for larger time-step

values compared to the β = 1 case, when there is significant flow reversal. The

stabilization term can be defined as follows

B̃(w, q;u, p) = B(w, q;u, p)−
∫

Γh

βun−ρw · udΓ, (3.1)

where β is a positive coefficient between 0.0 and 1.0. For small values of β, this

method is less intrusive and also stable in numerical experiments over a larger
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range of time steps. In Equation (3.1), un− is defined as,

un− ≡
1

2
(u · n− |u · n|) =

{

u · n u · n < 0

0 u · n ≥ 0.
(3.2)

Considering the weak form of Equation (2.30), since the −βun−u · u term

is always positive, the energy dissipation added by this term is proportional to the

degree of backflow velocity. In physical terms, the added term in Equation (3.1) is

an outward traction, opposite the direction of backflow, which pushes the flow in

the direction of the outward normal (Figure 3.1). In this sense, this term provides

the missing convective flow information from outside of the computational domain

during flow reversal.

1

2

3

u = 0

u = 0

Neumann 

boundary

Added traction

Velocity 

profiles

Figure 3.1: Schematic of a 2D model with backflow at a Neumann boundary.
Three velocity profiles (green/solid, blue/dashed, and red/dot-dash) are shown
with different levels of reversal flow, but similar net-flow. All three profiles can
satisfy conservation of mass, causing the flow to become unstable as it transitions
from green toward red profile. This issue is resolved by adding an outward traction
proportional to the inward velocity.

3.1.2 Normal velocity constraint

In this method, the velocity is constrained to be in a particular direction,

ei, which is usually set to the surface normal direction. Therefore, a zero Dirichlet

velocity is imposed for the tangential directions. Although the normal velocity
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BC formulation can be found in standard FE text books [97], we have included

the formulation here for the sake of completeness. The momentum equation of

the outlet nodes is modified such that the two tangential velocity components are

zero, but the momentum equation is unchanged in the normal direction. Let us

define a rotation matrix T by,

T =









t1

t2

t3









, (3.3)

where t2 and t3 are the directions orthogonal to the vector t1. To confine the

velocity in the normal direction, t1, t2 and t3 in Equation (3.3) are simply replaced

by n and its orthogonal vectors. Multiplying Equation (2.14) by T in the element

level rotates it to the normal and tangential coordinates. From Equation (2.14),

for node b at the outlet surface we have

T ijkab,jkT lkT lpyb,pu + T ijgab,jybp = −T ijra,jm , (3.4)

where k and g are element stiffness matrices and rm is the momentum element

residual vector, obtained from local assembling of Equations (2.18) and (2.10).

To eliminate tangential components of T ijyb,jm , the stiffness matrices and residual

vector are replaced by

k̃ab,ij = T îkkâb̂,klT ĵlδ îĵδâb̂,

g̃ab,i = T îjgâb̂,jδ î1δâb̂,

r̃a,im = T îjra,jm δ î1. (3.5)

where δij is the Kronecker’s delta, equal to one for i = j and zero for i 6= j. There

is no summation over the indices with the hat notation, e.g. î.

Substituting Equation (3.5) into (3.4) and multiplying by T T to rotate back

to original coordinates, we have

T jik̃ab,jkT kpyb,pm + T jig̃ab,jybp = −T jir̃a,jm , (3.6)

which can be rewritten as

k̄ab,jiyb,im + ḡab,jybp = −r̄a,jm : b ∈ ∂hΩ, (3.7)
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so that the modified stiffness matrices, k̄, ḡ, and residual vector, r̄m, are defined

by

k̄ab,ij = T kik̃ab,klT lj,

ḡab,i = T jig̃ab,j,

r̄a,im = T jir̃a,jm . (3.8)

By using Equations (3.3)-(3.5) and (3.8), the modified element stiffness

matrices and residuals are found from k, g and rm and can be assembled into the

global matrices and vector. One might add another requirement of ub · nb < 0 to

Equation (3.7), in order to only effect the nodes with inward velocity (i.e. defining

this equation only on ∂h−
Ω). But for this study, we restrict all the nodes on the

outlet surface to obtain a more stable and general form. It should be noted that

while commercial solvers often have an option for normal velocity constraints, it is

impossible to guarantee identical implementation since this information is typically

proprietary.

3.1.3 Constraining the velocity profile

The concept of this method is to assume a particular velocity profile, e.g.

parabolic, for the outlet and then constrain the solution to converge to this as-

sumption. This is achieved by adding penalties to the residual vector for deviation

from this assumption. To this end, the following constraints are enforced using the

augmented Lagrange multiplier method as in the work of Kim et al. [27].

c1 = α (u · n− φ,u · n− φ)∂hΩ = 0,

c2 = α (u · t2,u · t2)∂hΩ = 0,

c3 = α (u · t3,u · t3)∂hΩ = 0, (3.9)

where t2 and t3 are tangential surface vectors and φ(x, t) is the velocity profile to

be imposed,

φ =

(

(u,n)∂hΩ
(1, 1)∂hΩ

)(

n+ 2

n

)

(

1− (
r

R
)n
)

, (3.10)
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where n is the velocity profile polynomial order defined by the user, r(x) is the

distance from the center of the face, and R is the surface radius defined by the

user. Also, α which is used to nondimensionalize Equation (3.9) is,

α =
(1, 1)∂hΩ

Q̄2
, (3.11)

where Q̄ is a user-defined estimate of the average flow rate through the surface.

Note that the definition of Equation (3.10) implies the requirement of circular

outlet cross sections, although this is not strictly required for use in all problems.

Having ci from Equation (3.9), a weak form obtained from the following

equation is included in the formulation for all the constrained surfaces (see [27]),

−λici +
1

2
κic

2
i + σiλ

2
i = 0, (3.12)

where λ, κ, and σ are Lagrange multipliers (part of the solution vector), user-

defined penalty numbers, and regularization parameters, respectively. The regu-

larization parameters, which are chosen to be small, are used to prevent an ill-

conditioned stiffness matrix.

3.2 Backflow treatment test results

The adopted model construction process is described in Section 2.3. Models

for the first two cases are idealized and third case is patient-specific. A Dirichlet BC

is imposed at the inlet with a parabolic velocity profile in all cases. At the outlet,

when a zero traction Neumann BC is imposed, all components of the traction

are set to zero, i.e. hi = 0 in Equation (2.5). An implicit method (the coupled

multidomain method) is adopted for RCR outlet BCs, in which the derivative of the

imposed pressure at each time step is considered in the stiffness matrix [29, 29].

The same number of non-linear iterations are used for all methods. All three

methods for outflow treatment were implemented in the same code with identical

numerics and meshing, allowing for an apples-to-apples comparison of the three

methods. The implementation of the Lagrange method used in this work was done

by Kim et al., and included in the open source release of the Simvascular package.
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For all the case studies, the β value in Equation (3.1) is equal to 0.2. The

profile order, i.e. n in Equation (3.10), is equal to 2 for all Lagrange cases, corre-

sponding to a parabolic profile, unless stated otherwise. The penalty numbers, κ,

are also set to 106, unless stated otherwise. Also, t1 is set to the surface normal

vector, n, in Equation (3.3).

3.2.1 Cylinder with expansion

The first case study is a cylinder with an expansion, as shown in Figure 3.2.

The inlet and outlet diameters are 5 and 10 mm, respectively. The lengths of the

inlet and expansion sections are 10 and 5 mm, respectively. Two lengths, 15 and 30

mm, are used for the outlet sections in the short and extended models, respectively.

The short and extended models are meshed with 215,910 and 320,157 tetrahedral

linear elements, respectively. The results are presented based on the inlet Reynolds

number with a steady inflow rate. A zero traction BC is imposed for the outlet.

As shown in Figure 3.3, the expansion in cross section produces a recirculation

region which causes backflow at the outlet at high Reynolds numbers.

Figure 3.2: Short solid model for first case study with 15 mm outlet section.
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Figure 3.3: Velocity contours and stream lines at Re = 1000 for first case study
illustrating stable vortices at the outflow face.

Extended model

This simulation is done with the extended model and an inlet Reynolds

number of 1000. At this Reynolds number and model length there is a very small

amount of backflow, and the simulation is stable with no boundary treatment.

A comparison of simulation results is shown in Figure 3.4 for the no boundary

treatment case and the three treatment methods. The pressure and velocity at the

centerline and the outlet are plotted in this figure.

We observe that the stabilization and normal constraint method results

are very close to the no-treatment case. However, the Lagrange method failed to

match to the no-treatment case results. Although this method does not change

the velocity in the region far from the outlet (see Figure 3.5), the velocity profile

is changed significantly at the outlet, as expected. The changes in the velocity

profile at the outlet are responsible for changes in the outlet pressure as well. The

reduction of velocity at the center and its increase in the peripheral region requires

higher and lower pressure in those areas, respectively, to satisfy the momentum

equations. This change in pressure is propagated throughout the model.
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Figure 3.4: Velocity and pressures for the extended model at the centerline and
outlet section at Re = 1000
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at Re = 1000.
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From Figure 3.4 it is clear that the Lagrange method has a significant effect

on the flow physics. To magnify the difference between the normal constraint and

the stabilization method, deviation of these methods from the no-treatment case is

shown in Figure 3.6 as the percent error. This figure suggests that in this case the

stabilization method has a larger impact on the flow than the normal constraint

method. This may be a result of the added traction from the stabilization term,

which opposes the inward flow.
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Figure 3.6: Differences in velocity for the normal constraint and stabilization
methods compared to no-treatment case at the outlet of the extended model at Re
= 1000

To obtain a more global picture of the effect of these methods on the flow,

the outlet and inlet energy fluxes and average pressures are tabulated (Table 3.1).

Wall time is the parallel simulation time with 8 processors under the same cir-

cumstances for all cases. This table also confirms the results shown in Figures 3.4

and 3.6. Comparing the stabilization and normal constraint methods, the normal

constraint is slightly less intrusive, but more costly. The Lagrange method has

the highest impact on the flow with highest computational cost. Use of a higher

profile order in the Lagrange method slightly reduces the effect on the flow physics.
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The same is also true for lower penalty numbers, but this will also decrease the

robustness of the method.

Table 3.1: Comparison of the average pressure and energy fluxes for all methods
with the extended model at Re = 1000. tsim denotes simulation execution in wall
clock time.

Methods tsim P̄in P̄out Ėin Ėout −Ėout/Ėin

(s) (Pa) (Pa) (mW) (mW) (%)

No-treatment 379 1.90 -0.029 -10.89 8.70 79.9
Stabilization 394 0.26 -0.32 -10.87 8.70 79.9

Normal 399 1.72 -0.284 -10.89 8.69 79.8
Lagrange 537 -160 -63.3 -8.36 5.48 65.6

Lagrange (n = 5) 532 -128 -30.4 -8.85 6.01 69.4
Lagrange (κ = 105) 523 -57.1 -26.6 -9.97 7.66 76.8

Short model

The short model with no treatment at a Reynolds number of 1000 is not

stable. The results shown in Figure 3.7 are analogous to Figure 3.4. The zero

traction BC is not satisfied for the Lagrange method. As expected, the outlet

velocity profile for this method is closer to a parabolic profile.
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Figure 3.7: Velocity and pressures for the short model at Re = 1000

Higher Reynolds number

Figure 3.8 shows the results for the short model at a Reynolds number of

5000. In this figure, the Lagrange method velocity results are closer to the other

two. However, the pressure at the centerline is lower at the inlet and rapidly

increases at the outlet. This suggests lower pressure energy dissipation in this

method as compared with the others. To obtain stable results, the time-step size

is reduced to 10−3 from 10−2 for the lower Reynolds number case. When increasing

the Reynolds number further to 2×104, the Lagrange (keeping the penalty numbers

and profile order unchanged) and normal constraint methods are no longer stable,
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where the stabilization method remains stable. For the stabilization method, we

found that for lower β values, the solution was stable for higher time-step values.
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Figure 3.8: Velocity and pressures for the short model at Re = 5000

Considering the centerline velocity at Re = 1000 and 5000 in Figures 3.7

and 3.8, the impact of the both the stabilization and normal constraint methods on

the centerline velocity increases with the Reynolds number. This can be inferred

by the sharp reduction of the centerline velocity at the outlet at Re = 5000. Also,

the centerline pressure of these two methods does not match as well at Re = 5000

as it does at Re = 1000.
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3.2.2 Right angle bend

The second example illustrates pulsatile flow through a right-angle bend.

The radius of the bend centerline is 10 mm and its diameter is 5 mm. This is

a common shape in the arterial system, e.g. in a child’s descending aorta. This

simulation is done with a time-step equal to 10−4 over 1 s with three nonlinear

iterations per time-step. The inflow wave-form is physiological, with a cardiac

cycle time of 0.5 s [16]. This wave form (Q1) and the model are shown in Figure

3.9. The average flow rate was scaled to produce an average Re = 2500. This

high Reynolds number is chosen to challenge the robustness of these methods, and

is above the normal physiologic range. However, high Reynolds number such as

this can occur in the other applications, such as flow simulation through pipes and

ducts. Analogous to the previous case, a zero traction BC is set for the outlet.

Both the normal constraint and the no-treatment cases were unstable.
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Figure 3.9: Second case study geometric model and inflow waveforms.
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Table 3.2: Comparison between the average pressure and energy fluxes of the
curved model at average Re = 2500 for case study two.

Method P̄in (Pa) P̄out (Pa) Ėin (W) Ėout (W) −Ėout/Ėin (%)

Stabilization 1192 -24.1 -1.585 1.372 86.5
Normal - - - - -
Lagrange 1781 433.7 -1.584 1.323 83.5

From Table 3.2, the Lagrange method results show large differences in the

inlet and outlet pressures compared to the stabilization method results. Similar

to the previous cases, the zero traction BC at the outlet is not satisfied for the

Lagrange method. This is due to the added normal traction at the outlet, which

increases the pressure at the outlet nodes, for the Lagrange method. This pressure

propagates through the model, causing higher pressure at the inlet as well.

The inflow wave form was changed to a more critical case of π2

8
DνRe

sin (2πt/T ), where the T , D, ν, and Re are one cycle period, inlet diameter, fluid

kinematic viscosity, and average Reynolds number, respectively. This inflow wave

form has more backflow, as shown by Q2 in Figure 3.9. The Reynolds number is set

to 2000. At this Reynolds number the normal constraint simulation diverged. The

Lagrange constraint case remained stable, but the result was physically unrealistic,

with a high pressure oscillation through the cardiac cycle. The stabilization method

result, on the other hand, was stable and the solution residual was low.
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(a) (b)

(c) (d)

Figure 3.10: Second case study, outlet velocity vectors at peak flow (point A in
Figure 3.9) colored by pressure (Pa) using (a) stabilization method and (b) La-
grange method; and velocity vectors after deceleration (point B in Figure 3.9) col-
ored by tangential velocity for (c) stabilization method and (d) Lagrange method.

Figure 3.10 illustrates the larger differences in the outlet velocity vector

found using the Lagrange and stabilization methods. The vectors in Figure 3.10(b)

which are colored by pressure, clearly show the low artificial pressure at the center

of the outlet which tends to increase the velocity at the center to achieve the

desired parabolic profile. This is also true for the region of the outlet with high

velocity close to the wall, which has a higher artificial pressure. The residual value

is low for the stabilization method over the entire cycle, but the residual increases

in diastole for the Lagrange method. This is the reason that after deceleration (i.e.

point B in Figure 3.9) the velocity vectors shown in (d) are inconsistent with part

(c) of Figure 3.10.
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3.2.3 Patient-specific aorta model

The final case study is an aortic arch model constructed from CT data of

a healthy, 62 year-old male patient, which is shown in Figure 3.11. In addition to

the aorta, three branches of the brachiocephalic artery, the left common carotid

artery, and the left subclavian artery are included in the model. Physiologic RCR

BCs are imposed at all outlets [29, 51]. The sum of proximal and distal resistances

for each branch is tuned based on the flow rate in the branches, which assumed to

be proportional to the outlet surface areas. The proximal resistances are assumed

to be 10% of their corresponding distal resistances. The total resistance is tuned

to obtain an average pressure of 100 mmHg for the AA, a typical physiologic value.

The capacitances are tuned to obtain a pressure amplitude between 80-120 mmHg

at the outlets. To achieve mesh independence, the mesh is adapted twice based

on element residual values [98]. The final mesh contains approximately 2 million

tetrahedral elements. A Dirichlet BC is imposed at the inlet, i.e. AA, with the

flow waveform shown in Figure 3.11 [51]. All the outlets are constrained for the

Lagrange method with a profile order of 5. Also, Q̄ in Equation (3.11) was tuned

to the exact values obtained from the stabilization methods results, giving the

Lagrange method an exact initial guess for the flow rates at each outlet.

The flow rate is negative for a significant portion of the cycle for the three

upper branches (flow rate plots in Figure 3.11), but not for the descending aorta.

This backflow results in an unstable solution for the no-treatment case, and the

normal constraints case also diverged after 25% of the cardiac cycle.
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Figure 3.11: Flow rates (mL/s versus time) of the outlets obtained from the
stabilization and Lagrange methods results. The volumetric contours of time-
averaged velocity magnitude are shown for the stabilization and the Lagrange
methods.

Since there is no significant flow reversal in the descending aorta, the sta-

bilization method does not have any effect on this outlet. This is also true at flow

peak for the other branches, when there is no backflow at these outlets. Compar-

ing the flow traces of the Lagrange and stabilization methods shows no significant

difference between the results. Assuming the stabilization method results are close

to the supposed no treatment case results, it can be concluded that the Lagrange

method does not change the flow split values in this case. This is mainly due to the

fact that the flow split is determined by the BCs, rather than the 3D model hemo-

dynamics. This can be simply deduced by comparing the pressure loss through

the model to the pressure loss at the boundaries (see Figure 3.12).
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Figure 3.12: Pressure plots (mmHg versus time) at the outlets obtained from the
Lagrange and stabilization methods. The time-averaged pressure contours at the
surface are shown for the stabilization and the Lagrange methods.

As seen in this figure, the pressure loss in the model is on the order of 1

mmHg, while the mean pressure imposed by the BCs is approximately 90 mmHg.

Since the intrusion of the Lagrange method on the pressure field is of the same

order as pressure loss in the model, the variation in the pressure field is too small

to significantly affect the flow split. Hence, the flow split between the branches is

roughly inversely proportional to the sum of distal and proximal resistances.

However, if the Lagrange parameters are not tuned properly, the Lagrange

results can be drastically different from the stabilization results. The importance

of tuning the Lagrange parameters is deducible from Table 3.3. The results in this

table are obtained from steady state simulations with zero traction BCs for the

outlets. In the cases shown, the Lagrange method produces significantly different
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flow splits compared to the no treatment case, and the difference is made worse if

the Lagrange method parameters are not tuned properly (see Table 3.3).

Table 3.3: The effect of tuning Lagrange parameters on the solution. The flow
rates are in (mL/s) and pressures are in (Pa). Case I simulation is performed
with no treatment of the BC. Case II simulation is performed using Lagrangian
constraint with tuned Q̄ obtained from the no-treatment case, and n = 2. Case
III simulation is performed using Lagrangian constraint with tuned Q̄ obtained
from the no-treatment case, and n = 5. Case IV simulation is performed using
Lagrangian constraint with untuned Q̄, and n = 2. In latter case, Q̄ is estimated
based on the outlet surface area and AA flow rate. Note that the stabilization
results are identical to the no-treatment case, since there is no backflow at the
outlets. aa: ascending aorta; aod: descending aorta; ba: brachiocephalic artery;
lsa: left subclavian artery, lcca: left common carotid artery.

Case Q̄aa Q̄aod Q̄ba Q̄lsa Q̄lcca P̄aa P̄aod P̄ba P̄lsa P̄lcca

I -50.0 38.7 7.63 1.41 2.27 14.5 0.014 0.35 0.33 0.55
II -50.0 40.2 7.11 1.79 0.87 15.5 0.795 2.54 4.39 6.04
III -50.0 43.6 5.23 0.86 0.34 13.8 -0.017 7.15 8.71 9.37
IV -50.0 46.0 3.19 0.43 0.36 15.2 0.610 11.5 12.4 10.3

The contours of WSS magnitude for the steady state case with zero traction

BCs are shown in Figure 3.13. The Lagrange contours are obtained from the case

IV simulation in Table 3.3. The changes in the velocity field have caused large

changes in the WSS in the upper branches. In these branches the Lagrange method

predicts a lower flow rate, and hence a lower WSS. However, in the AA the WSS

predictions are very close, due to the identical flow rates at the inlet.
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Figure 3.13: The WSS contours obtained from the no-treatment and the La-
grange methods results. These results correspond to a steady state, zero traction
BC simulation. The Q̄ is untuned for the Lagrange method with n = 2 (case IV in
Table 3.3). The Lagrange method predicts lower WSS in the upper branches due
to the lower flow rates in these branches. However, the WSS is nearly unaffected
for the aortic arch.

To illustrate issues with robustness of the proposed methods, we present a

case in which we alter the cross sectional cut of one of the model outlets. This

represents a situation in which the outlet section cannot be cut perpendicular to the

flow direction for reasons related to model construction or lack of image data. Also,

due to unsteady flow phenomenon, the primary flow direction at a given outlet

can change over the cardiac cycle. Thus, there may be no unique direction for the

outlet normal that remains aligned with the flow direction during the entire cycle.

The situation is even more challenging when fluid-structure interaction modeling



71

is employed for cardiovascular simulation (see, e.g.,[99, 100, 101, 102]).

To investigate the robustness of the methods under these non-ideal circum-

stances, the brachiocephalic outlet is intentionally cut in an off-normal direction to

the vessel centerline (see Figure 3.14). Therefore, the normal constraint direction

is not aligned with the flow direction. Also, the outlet cross section is elliptical,

which differs from the assumed circular cross section in Equation (3.10). This

leads to divergence of the normal constraint simulation after 15% of the cardiac

cycle. Compared to the previous case, this demonstrates the sensitivity of the

normal constraint method to the outlet cut angle. Without tuning the Lagrange

method parameters, the simulation diverges. This is likely a result of inconsistency

between the outlet cross section and the assumed cross section in Equation (3.10).

The stabilization method remains stable for this case, and the time-averaged WSS

and pressure contours are smooth, matching well with the previous results. This

result indicates improved robustness of the stabilization method in non-ideal cir-

cumstances compared to the other two methods.

Figure 3.14: The brachiocephalic artery with normal and angled cut.

3.3 Discussion

The overall performance of the three treatment methods can be compared

in terms of robustness, impact on the flow physics, computational cost, implemen-

tation effort and ease-of-use aspects.
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Comparing the robustness of the three methods used for backflow treat-

ment, the stabilization method performed the best. Robustness was tested by

varying the Reynolds number and length of geometry in case study 1, by adding

flow pulsatility with backflow in case study 2, and by varying the outlet cut plane

in case study 3. For all these cases, the stabilization method produced a numeri-

cally stable solution without the need for parameter adjustment. In examining the

residuals of the numerical solution, we find that the Lagrange method was stable

while the normal constraint method failed for the second and third case studies.

However, the residual was still high for the Lagrange method compared to the

stabilization method in the second case study, and the obtained solution deviated

substantially from the stabilization method results. Both the normal constraint

method and the Lagrange method, depending on the formulation, can place addi-

tional requirements on the model geometry compared to the stabilization method.

The normal constraint method failed faster in case study 3 when the outlet section

was not cut properly. Since a circular cross section at the outlets was assumed,

the untuned Lagrange method also failed.

Perhaps the most important measure of performance is the impact of the

outlet treatment on the flow physics. In this case, the stabilization method outper-

formed the Lagrange and normal constraint methods. Although the stabilization

method can change the pressure slightly due to the added traction, this effect does

not appear to be significant, especially when examining the velocity vectors. The

stabilization method has absolutely no impact on the flow when there is no back-

flow. This is also true for the normal constraint if the normal constraint equation

is considered only for ∂h−
Ω, i.e. where ua · na < 0.

For all cases examined in this chapter, the Lagrange method had a signifi-

cant impact on the velocity profile at the constrained outlet. While the effect on

the velocity profile shape was restricted to a local region near the outlet, there

were important effects on other quantities including pressure and energy loss that

propagated globally. Our results showing only local changes in the velocity profile

agreed with the previous work of Kim et al [27]. However, to satisfy the momentum

equations, the Lagrange method also resulted in large changes to the pressure at
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the boundary, which affected the pressure globally throughout the model in case

studies 1 and 2. This causes an error in the predicted pressure field in regions far

from the constrained boundaries.

Our results suggest that the effect of the Lagrange method on the flow field

depends on the type of BCs used. Specifically, the Lagrange results were more

accurate when physiologic non-zero traction BCs are used, as compared to the

zero traction BCs. When using RCR BCs in case study 3, the pressure changes

due to the Lagrange constraint were small compared to the overall mean pressures

imposed by the BCs, and therefore, the resulting changes in both flow rate and

pressure were not significant. However, the excellent agreement obtained with the

Lagrange method for this case required tuning the Q̄ values using the stabilization

results, and the results were highly variable without tuning. These results also

suggest that the Lagrange method may be less suited to problems with lower

overall mean pressure, such as venous flow simulations. Decreasing the penalty

numbers can decrease the impact of the Lagrange method on the flow physics, but

it will also decrease the robustness of this method.

Comparing the results for computational cost, the normal constraint and

stabilization methods do not add any significant additional cost, whereas, the

Lagrange method can add up to 50% to the computational cost, depending on the

problem. This increased cost is due to the additional elements inside the solution

vector, i.e. Lagrange multipliers, as well as added blocks inside the stiffness matrix.

The implementation effort required for the normal constraint and stabiliza-

tion methods are both minimal, because the structure of the stiffness matrix and

the linear solver need not be modified for either method. The implementation of

the normal constraint method requires somewhat more effort because the rotation

matrix must be formed for each element, and also specific blocks of the element

stiffness matrix and residual vector should be modified. Due to the new entries in

the solution vectors and the changes in the structure of the tangent matrix, the

Lagrange method requires the highest implementation effort.

Considering the ease-of-use aspect, the normal constraint and stabilization

methods are fairly simple to use. However, the Lagrange method requires the use
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of several user-defined parameters. For example, the quantity Q̄ in Equation (3.11)

must be estimated and specified by the user prior to the running the simulation,

while this parameter should be a simulation result. In practice, this may required

a time-intensive iterative procedure. It should be noted that drastic changes in

these parameters can have profound effect on the final simulation results, even

with RCR BCs.
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Chapter 4

A Preconditioning Method for

Multidomain Simulations

Solution of linear systems of equations arising in the discretization of the in-

compressible Navier-Stokes equations remains an active area of research. Using di-

rect solvers for time-dependent cardiovascular simulations is not viable due to high

computational cost, poor scalability, and large memory requirements. Iterative so-

lution methods are therefore the strategy of choice for this class of problems. In

cardiovascular simulations, high outflow resistances, high Reynolds numbers, and

long, thin blood vessel geometry all contribute to ill-conditioning of the underlying

linear system.

Cardiovascular blood flow simulations mandates the use of a multidomain

approach to model the multiscale behavior of the cardiovascular system. As de-

tailed in Chapter 2, in this approach the 3D CFD domain is typically coupled

to a reduced dimension (RD) model, which acts as a BC for the 3D domain and

vice versa. In this context, the RD domain can be a simple impedance or re-

sistance, Windkessel model, 1D network of vessels, or a sophisticated 0D LPN

[29, 80, 49, 53, 25]. To couple the RD and 3D domains, both explicit or implicit

methods have been used. Implicit methods offer advantages due to superior numer-

ical stability and lower computational cost [49, 50, 103], while offering equivalent

modularity [33].

The developed method in Chapter 2 for implicit coupling have achieved

75
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stability by calculating the relation between flow and pressure, hence predicting

the influence of the RD domain in the 3D domain. This produces a contribution

from the RD domain in the 3D domain tangent matrix. For many physiological

scenarios, this contribution is much larger than that from the 3D domain. From a

physical point of view, in these scenarios the flow inside the 3D domain is mainly

determined by the BCs rather than the geometry of the 3D domain. In this chapter

we show that the contribution to the LHS matrix from the RD domain produces

an ill-conditioned matrix, which introduces new challenges in the LS. This issue

becomes more critical as the mesh size is reduced. To resolve this issue, we propose

a specialized preconditioner (PC) to reduce the tangent matrix condition number

and remove the dependence of the simulation cost on the BCs.

Designing good preconditioning techniques for flow computations, espe-

cially those with stabilized methods, attracted much attention (see, for example,

[104, 105, 106, 107, 108, 109, 110, 111]). There exist several challenges facing lin-

ear equation solvers for incompressible flow in general [112], and for cardiovascular

fluid mechanics applications in particular [113]. Challenges associated with flows in

spatial domains that are longer in one dimension than the others (e.g., networks of

pipes or blood vessels) were addressed in [114], while the work in [115, 116] focused

on the difficulties encountered in cardiovascular applications involving high-aspect-

ratio boundary-layer elements. Furthermore, using a general purpose PC, such as

those available in standard open source linear equation solver packages is not effec-

tive for the aforementioned multidomain problem. These PCs are either too costly

or are not effective in reducing the condition number of the tangent matrix, hence

producing additional overall computational cost (e.g. see [117, 118]). Another

approach is to generate an orthogonal space based on the previous iterations and

use it to find the part of the solution that lives in that space. This method cannot

be used with multiple Newton nonlinear iterations and is often inefficient when the

LS requires more iterations (stiffer problems) [119]. For an efficient LS algorithm,

it is critical to design an efficient PC, because the overall algorithm performance

can be significantly degraded by even a minor overhead cost in the PC.

In this chapter we introduce an effective PC that reduces computational
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cost associated with implicit multidomain simulations. This PC is tested in an

efficient LS, also presented in this chapter, to demonstrate its minimal overhead

and combined algorithm effectiveness. We first show the contribution of the RD

domain to the tangent matrix. We then construct a PC based on this contribution,

and demonstrate its use inside the LS where the increments of the flow and pressure

variables are computed simultaneously. Using a set of clinically relevant examples,

we examine the efficiency of the proposed algorithm by comparing its performance

to the non-preconditioned case as well as standard GMRES [120, 121], achieving

an order of magnitude improvement in performance.

4.1 A PC for coupled Neumann BCs

Here we follow the FE framework, described in Section 2.1, for discretization

of Navier-Stokes equations in space and time and obtaining the linear system of

equations. We saw two types of BCs are imposed in the 3D domain: 1) Dirichlet

BC, which is an essential BC on the velocity, and 2) Neumann BC, which is a

weakly imposed traction. Since for a Dirichlet BC velocity is directly imposed, this

type of BC does not incur extra computational cost or instability. A Neumann

BC, however, can lead to higher computational cost and instabilities. Therefore,

for the purpose of developing the PC, we only consider coupled Neumann BCs in

this chapter.

In the case of a coupled Neumann boundary, the contribution of coupled

BCs to the LHS matrix is calculated by Equation (2.30), which is

Kab
bc =

nbc
∑

k=1

nbc
∑

l=1

γ∆tMkl

∫

Γk

NandΓ⊗
∫

Γl

N bndΓ. (4.1)

From Equation (2.14), we define

Kmcy = −R, (4.2)

Kmc =

[

K G

D L

]

(4.3)

where Kmc is the tangent (stiffness) matrix containing the blocks of momentum

and continuity tangent matrices (K, G, D, and L).
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We decompose the tangent matrix K into

K = K̂ +Kbc, (4.4)

in which K̂ is the 3D domain interior contribution and Kbc is the BC contribution

(Equation (4.1)). K̂ is a non-singular matrix, while Kbc is a linear combination

of nbc vectors and has only nbc non-zero eigenvalues. Hence, the condition number

of K (and also Kmc) highly depends on the relative norm of these two matrices.

Increasing the resistance of the coupled Neumann BC (i.e. M ), the entries of K

will be dominated by only a few eigenvalues of Kbc, producing an ill-conditioned

matrix. This causes poor performance of standard iterative methods, with a large

number of iterations required for convergence. Because K is dominated by only a

few eigenvalues when the entries of Kbc are much larger than K̂, we can exploit

this to construct a PC. We do this using the Sherman-Morrison formula [122].

Since only the diagonal entries of M are considered, we define

Ri ≡ γ∆tM ijδij, (4.5)

where no sum is taken on i. Also defining

Sk ≡
∫

Γk

N(x)ndΓ, (4.6)

Equation (4.1) can be rewritten as

Kbc =

nbc
∑

k=1

RkSk ⊗ Sk. (4.7)

Defining the operator D to select the diagonal entries of a matrix, we define

K̂d ≡ D(K̂), (4.8)

Kd ≡ K̂d +Kbc. (4.9)

We seek a matrix H , such that

H ≃K−1. (4.10)

Instead we find a matrix H , such that

HKd = I. (4.11)
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To normalize K̂d, a symmetric Jacobi PC is used

W ≡ (K̂d)
− 1

2 . (4.12)

Hence the normalized Kd is defined as

K̃d ≡WKdW . (4.13)

From Equations (4.9)-(4.13)

K̃d = I + K̃bc. (4.14)

From Equation (4.7) we have

K̃bc =

nbc
∑

i=1

RiS̃
i ⊗ S̃

i
, (4.15)

S̃
i ≡WSi. (4.16)

Defining

H̃ ≡W−1HW−1, (4.17)

it can be shown that

H̃K̃d = I. (4.18)

From Equations (4.14), (4.15), and (4.18)

H̃ +

nbc
∑

i=1

RiH̃S̃
i ⊗ S̃

i
= I. (4.19)

Since Γi ∩ Γj = {}, multiplying Equation (4.19) by S̃
j
produces

H̃S̃
j
=

S̃
j

1 +Rj‖S̃j‖2
. (4.20)

From Equation (4.20) we then have

nbc
∑

j=1

RjH̃S̃
j ⊗ S̃

j
=

nbc
∑

j=1

[

RjS̃
j ⊗ S̃

j

1 +Rj‖S̃j‖2

]

. (4.21)

The normalized PC is found by combining Equations (4.19) and (4.21)

H̃ = I −
nbc
∑

j=1

[

RjS̃
j ⊗ S̃

j

1 +Rj‖S̃j‖2

]

, (4.22)
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which after multiplying by W on the left and right is

H = (K̂d)
−1 −

nbc
∑

j=1

[

Rj((K̂d)
−1Sj)⊗ ((K̂d)

−1Sj)

1 +Rj‖(K̂d)
− 1

2Sj‖2

]

. (4.23)

We note that H reduces to a Jacobi PC if there are no coupled Neumann BCs.

When the norm of M is large, Equation (4.23) is a good approximation for K−1

and can be calculated directly from K̂ and Kbc with negligible computational

cost.

The proposed PC in Equations (4.22)-(4.23) is straightforward to implement

in a parallelized code. Generally all the nodes of a boundary reside in a single pro-

cessor, causing all the nonzero entries of Si to be allocated to that processor. In

this case, the product of H and a vector does not require any communication

between processors. If a boundary j is divided between two or more processors,

only a single dot product (already implemented in most LS) with collective com-

munication must be calculated for the boundary j. In the following section we will

see how this PC can be used inside the LS.

4.2 Bi-partition iterative algorithm

From Equation (2.14) we look for yu and yp that satisfies
[

K G

D L

][

yu

yp

]

= −
[

Rm

Rc

]

. (4.24)

Since K is non-singular we have
[

K−1 0

0 I

][

K G

D L

][

yu

yp

]

= −
[

K−1 0

0 I

][

Rm

Rc

]

, (4.25)

so that
[

I K−1G

D L

][

yu

yp

]

= −
[

K−1Rm

Rc

]

. (4.26)

To obtain a triangular structure we multiply both sides by a lower triangular matrix

such that
[

I 0

−D I

][

I K−1G

D L

][

yu

yp

]

= −
[

I 0

−D I

][

K−1Rm

Rc

]

, (4.27)
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and hence
[

I K−1G

0 S

][

yu

yp

]

= −
[

K−1Rm

Rc −DK−1Rm

]

, (4.28)

in which

S = L−DK−1G (4.29)

is the Schur compliment. Since having the Schur compliment as the LHS matrix

involves solving another linear system of equations, solving Equation (4.28) in the

form shown is expensive and impractical. Hence, K−1 is generally replaced by

(K̂d)
−1, which, as we will show, is a reasonable choice only in the absence of Kbc.

Here we use Equation (4.23) as a PC and as an approximation for K−1. Also

in the case that the system has K on the LHS, H is used as a PC to improve

convergence. A symmetric Jacobi PC can also be used to normalize Kmc and y.

Putting these together, given K̂, Kbc, G, D, L, yu, yp, ǫcg, ǫgm, and ǫ, the steps

of implementation are as follows:

1. Use a symmetric Jacobi PC to normalize Kmc and y such that

Wm = D(K̂)−
1
2 , (4.30)

W c = D(L)−
1
2 , (4.31)

K ←WmKWm, (4.32)

G←WmGW c, (4.33)

D ←W cDWm, (4.34)

L←W cLW c, (4.35)

yu ←Wmyu, (4.36)

yp ←W cyp, (4.37)

in which← is the assignment operator. Note Wm and W c can be employed

inside the iterative algorithm as well, leaving the Kmc blocks unchanged.

We found that directly applying Jacobi PC to the tangent matrix is more

computationally efficient.
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2. Use the GMRES method to solve for un-corrected yu. Use H as PC and ǫgm

as tolerance

(HK)yu = −HRm. (4.38)

Note, since the Jacobi PC is already applied to K, K̂d = I and Equation

(4.22) can be used directly instead of (4.23) to compute H .

3. Compute the corrected continuity residual

R̃c ← −Rc −Dyu. (4.39)

4. Approximate K−1 by H and use ǫcg as tolerance to solve for yp

(L−DHG)yp = R̃c. (4.40)

As discussed in Section 2.1, D is the approximate transpose of G. In Equa-

tion (4.40) we set D = GT, which allows us to solve the linear system using

the conjugate gradient (CG) method. Otherwise, the bi-conjugate gradient

method can be used.

5. Correct yu using

R̃m ← Gyp, (4.41)

(HK)ỹu = HR̃m, (4.42)

yu ← yu − ỹu. (4.43)

Note the second call to the GMRES solver in Equation (4.42).

6. If ‖Kmcy −R‖ > ǫ‖Ri‖, in which Ri is the initial preconditioned residual

vector, update y and R and repeat step 3-6, otherwise go to step 8.

7. Apply the Jacobi PC to obtain the final solution

yu ←Wmyu, (4.44)

yp ←W cyp. (4.45)
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In total this algorithm involves 2 GMRES solves and 1 CG solve. Generally, the

quality of the CG solve determines how well the continuity equation is satisfied.

Neglecting H (i.e. replacing it by I) leads to a velocity field that poorly satisfies

the continuity equation. We refer to this case as without PC (woPC) and the

full algorithm as with PC (wPC) in the results section. We refer to the case in

which Kmc is preconditioned by a symmetric Jacobi PC and solved by GMRES

as GMRES in the results section. Tolerances for the wPC method are ǫ = 0.4,

ǫcg = 0.2, and ǫgm = 0.01. Due to convergence issues, ǫ tolerance is reduced to 0.2

for the woPC method. Since the continuity equation is satisfied at lower tolerances

for the GMRES method, ǫ is set to 0.05 for this case. We compare the performance

of these methods on several examples in the next section.

4.3 PC test results

To illustrate the performance of the proposed PC method and test the

proposed algorithm, three example problems were chosen: 1) A cylindrical pipe

model, 2) a thoracic aorta model with detailed coronary artery anatomy, 3) a

multidomain closed-loop model of a single ventricle heart patient. In the first case

study, we show the effect of the PC on the tangent matrix condition number by

varying the outflow resistance value. We also study the dependence of tangent

matrix stiffness on the mesh size. The mesh dependency of the proposed method

is studied by using a wide range of mesh sizes. We test the algorithm performance

in the second case study with a more complex geometry and higher number of

elements (larger tangent matrix) at different time step sizes. This model, which

contains long and thin branches of the coronary arteries, is intended to test the

effectiveness of the proposed method for this class of problems. Using a complex

multidomain model, the performance and robustness of the algorithm is tested in

the third case study.
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4.3.1 Cylindrical model with variable resistance

The first case study is a cylinder with a resistance outlet BC and steady

inflow Dirichlet BC. The cylinder diameter and length are 5 and 30 cm, respectively

(Figure 4.1).

Figure 4.1: The cylindrical model with resistance outlet BC and prescribed inflow
BC.

The simulation was run on four processors for 0.5 s with a time step size of

50 ms. This large time step size was selected to produce a stiff LHS matrix, hence

testing the proposed method in an extreme situation. The non-linear iterations

continued until ‖R‖
‖R0‖

< 10−3, where R0 is the residual vector at t = 0, or the

number of iterations exceeded 8. The model was meshed with 331K tetrahedral

linear elements producing over 14M non-zero entries in the tangent matrix. A

parabolic velocity profile was prescribed on the inflow face with an average value

of 10 cm/s, producing Re = 1325. The resistance value was varied over a range of

values to study the effect of the PC on the computational cost. Our results show

that the simulation cost with the preconditioned matrix is nearly independent of

the outflow resistance value, whereas without the PC the cost goes up significantly

with increasing resistance (Figure 4.2). Comparing the computational cost of the

woPC case to GMRES case at low resistances demonstrates the effectiveness of the

LS algorithm. At higher resistances, the woPC algorithm was unstable. With an

outlet resistance of 1000 g/(s cm4) the simulation diverged and is not shown. In
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the woPC simulation, the time step size was reduced to 10 ms for resistance 100

g/(s cm4) to obtain a stable solution.
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Figure 4.2: The effect of boundary resistance on the computational cost. Using
the PC has produced a nearly independent simulation cost from the resistance
value, reducing the cost significantly compared to without PC or GMRES at higher
resistances.

To perfectly satisfy the continuity equation, the outlet flow rate must be

equal to the inlet flow rate. The normalized difference between these two flow rates

at t = 0.5s is shown in Figure 4.3 as a function of outlet resistance. Although a

smaller ǫ value was used for the GMRES method, the woPC and wPC methods

have satisfied the continuity equation more accurately at all resistance values.
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Figure 4.3: The effect of boundary resistance on the continuity equation solution
error.

To study the effect of mesh resolution on LS performance, we used the

cylinder model with a resistance value of 10 g/(s cm4). The model was meshed

with 24, 109, 331, 1449 K tetrahedral elements, producing 1.11, 4.82, 14.18, and

60.41 M non-zero entries in the LHS matrix.

Increasing the number of elements by 1 order of magnitude, the wPC

method had the best speedup by 1.6 orders of magnitude increase in the com-

putational cost. The increase in the computational cost was 1.7 and 1.9 orders of

magnitude for the woPC and GMRES, respectively (Figure 4.4).
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Figure 4.4: The effect of mesh size on the computational cost.

Comparing to the standard theoretical Poiseuille solution, ∆Pth, the errors

in the simulated pressure drop at t = 0.5 s are shown in Figure 4.5. This error

depends on the quality of the momentum equation solution. Due to the lower

tolerance of the GMRES method, this method generally predicts pressure drop

more accurately.
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Figure 4.5: The effect of mesh size on the pressure drop prediction error.

To study the effect of the PC on the convergence rate of GMRES calls in

the full algorithm, we consider a case with the mesh with 109 K elements and

outlet resistance of 1000 g/(s cm4). The error in GMRES solves (Equations (4.38)

and (4.42)) versus iteration number is shown in Figure 4.6. In this case, applying

the PC is equivalent to a single iteration of the GMRES solver, hence reducing the

number of iterations by one for each GMRES call. This suggests that at negligible

computation cost a major reduction in the residual can be obtained by applying

the PC. As a result, major improvement in overall convergence is obtained by

including H in Equation (4.40).
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Figure 4.6: The effect of including H (wPC) and replacing it by I (woPC) on
the convergence rate of GMRES calls in Equations (4.38) and (4.42).

4.3.2 Aorta model

The second case study is a patient specific model of an aorta with coronary

arteries (Figure 4.7) in a patient with Kawasaki disease [41, 77]. The BCs are

resistances at 15 outlets and a Dirichlet steady flow condition at the inlet. The

inlet flow and outlet resistances are based on physiological values [41]. The inlet

flow rate is 13.29 cm3/s and outlet resistances are 3.7×105, 3.5×103, 1.25−1.75×104

g/(s cm4) for the coronary arteries, the descending aorta, and the head and neck

vessels, respectively. Since this model has longer branches, it is a good candidate

for evaluating the performance of the proposed method subjected to abrupt changes

of the inlet flow rate that need to travel from the inlet to the outlets. Hence to

examine only these transient effects in the measured performance, we chose not

to continue this simulation longer that 0.01 s. The simulation was run on 64

processors with a time step size of 1 ms and 0.2 ms. Similar to Section 4.3.1,

the non-linear iterations were continued until the relative norm of the residual
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vector reduced to 10−3 or the number of iterations exceeded 8. Using boundary

layer meshing and a denser mesh for smaller branches produced 2.7 M tetrahedral

elements for this model (Figure 4.7).

Figure 4.7: The patient specific model with coronary arteries. WSS contour and
adapted tetrahedral mesh are shown.

As shown in Table 4.1, using the PC has reduced the simulation time by a

factor of 7.8 for ∆t = 0.2 ms and 15.6 for ∆t = 1 ms compared to the standard

GMRES method, and by a factor of 3.3 compared to the method without PC.

Due to the high resistance values, a time step size of 1 ms produces a relatively

ill-conditioned tangent matrix, causing the woPC case to diverge and GMRES to

take a long time to converge. With the same time step size, wPC is still efficient
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Table 4.1: Comparison between simulation times and err at different time step
sizes, ∆t, using the coronary model. tsim denotes the simulation time and the error
(err) is defined as 105|Q−1

in

∑16
i=1 Q

i|.
method ∆t (ms) tsim (s) err

wPC 0.2 560 2.798
woPC 0.2 1850 2.655

GMRES 0.2 4389 13.99
wPC 1 284 1.534
woPC 1 - -

GMRES 1 4435 32.05

and stable. For the woPC case, ǫcg is reduced to 0.1 at 0.2 ms time step size to

obtain a stable solution. As in the previous case, the wPC and woPC methods

satisfy the continuity equation better than the GMRES method.

Since the norm of the residual has reduced below the specified limit for

all simulations, results confirm that little difference was found between the three

methods (Figure 4.8).
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wPC                                  woPC                             GMRES 

Figure 4.8: Pressure contours and volume-rendered velocities for the coronary
model, using the results of simulation with ∆t = 0.2 ms.
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Table 4.2: Comparison of simulation times, cardiac output (CO) and average
aortic pressure (P̄AA), using the multidomain model with different LS methods.
tsim denotes the simulation time.

method tsim (s) CO (L/min) P̄AA (mmHg)

wPC 2087 1.1403 45.31
woPC 4119 1.1407 45.25

GMRES 9114 1.1403 45.46

4.3.3 Single-ventricle multidomain model

In the third example we consider an idealized post surgical anatomy of a

single ventricle heart patient, presented in Section 2.4.4. Flow simulations were

performed using a multidomain approach, in which the 0D domain consists of a

LPN that models the heart and downstream circulation (Figure 2.11) [16, 25, 80].

All outlets are coupled Neumann boundaries and the inlet, i.e. the AA, is a coupled

Dirichlet boundary in this case. Due to the presence of reversed flow at the outlets,

stabilization method described in Section 3.1.1 is used at the coupled Neumann

boundaries to avoid rapid simulation divergence.

An interior maximum element edge length of 0.625mm was chosen for this

study. The maximum edge length for the coronary artery wall was 0.25mm and

the maximum edge length for the other walls was 0.5mm, producing approximately

340K elements. The simulation was run on 32 processors for five cardiac cycles (2.5

s) with a time step size of 1 ms. Similar to Section 4.3.1, the non-linear iterations

were continued until the norm of the residual vector reduced to 10−3 or the number

of iterations exceeded 8.

The costs of GMRES and woPC simulations were 2.0 and 4.3 times higher

than the wPC (Table 4.2) simulation. The differences between the predicted car-

diac output and average aortic pressures were well below the clinically accepted

tolerances, with qualitatively indistinguishable differences (Figure 4.9). The outlet

flow waveforms were also very similar for all methods.
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Figure 4.9: The multidomain model outlet flow rates (in cm3/s) versus time and
WSS at peak systole.

4.4 Discussion

Due to the wide range of scales and nonlinearities, efficient solution of the

Navier-Stokes equations is computationally challenging. In the context of car-

diovascular simulations, the pressure drop inside the model is typically orders of

magnitude lower than the boundary pressure. The dependence of boundary pres-

sure on flow rate, as is the case for the coupled Neumann boundaries, introduces a

small number of eigenvalues into the tangent matrix with significant effect on the

solution. For instance, the flow split in a bifurcation highly depends on the BCs

used for the daughter branches rather than the 3D geometry. This is shown by

an example in Figure 4.10, which is a schematic of flow in a parent branch that

bifurcates to two branches, each coupled to a resistance. We showed that high

resistance values produce an ill-conditioned tangent matrix that increases compu-

tational cost significantly. We also showed that a PC can be employed for the

coupled Neumann BC that exploits the presence of a few dominant eigenvalues
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in the tangent matrix to dramatically improve LS efficiency. This PC greatly im-

proves the condition number of the tangent matrix, hence reducing the number of

iterations and computational cost.

Q

R
L

R
R>

Figure 4.10: Schematic of flow in a bifurcating vessel with resistance BC at outlets
and inflow condition at the inlet. For high resistance values, flow split to the right
and left branches highly depends on the BC, rather than the 3D geometry.

Perturbations on one side of a domain travel through to the other side to

affect the solution on the other side. From this perspective, the continuity equa-

tion has a significant impact on the overall solution quality. The standard GMRES

method is designed to minimize the norm of the residual vector, regardless of how

essential the solution quality is of each particular equation (continuity vs. mo-

mentum). Hence, for the GMRES method a very tight tolerance is required to

sufficiently reduce the momentum equation residual before reducing the continuity

equation residual, even after using the Jacobi PC. In the proposed method, a com-

bination of iterative solvers, i.e. CG and GMRES, is used as the main algorithm.
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In this method, the tangent matrix is decomposed into sub-blocks and velocity

and pressure are solved separately. Having a symmetric Schur compliment allows

use of the CG algorithm, which is an effective iterative method to deal with the

continuity equation. This allows a relief on the tolerance, reducing the overall

computational cost furthermore. At lower resistances or in the absence of coupled

Neumann BCs, this method was shown to be effective by reducing the computa-

tional cost by an order of magnitude compared to the pure GMRES method. This

method showed better scalability characteristics with mesh size (size of tangent

matrix) compared to GMRES alone.

The combination of the proposed LS and PC provides a powerful algorithm

that can be applied to a wide range of problems, including those with coupled

Neumann boundaries and stiff problems with large time step sizes, by improv-

ing the tangent matrix condition number, solving the continuity equation more

accurately, and significantly reducing the computational cost. This increase in ef-

ficiency could have far reaching implications for numerous cardiovascular disease

and device applications, enabling solutions of larger and more detailed models, or

higher throughput of simulations in studies with a larger number of patients.
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Chapter 5

Parallel Algorithms for Iterative

Linear Solvers

Large systems of linear equations arise in many areas of computational

science and engineering. They are often a byproduct of a finite-difference, finite-

volume, or finite-element discretization of partial differential equations (PDEs)

governing the behavior of a given physical system. The software written for a

given set of PDEs typically assembles the linear equation system, which is then

passed to a LS to produce the discrete solution. Solving large linear systems of

equations is a computationally demanding process that often requires using high

performance parallel computing. For large problems, due to memory limitations

and scalability issues, an iterative LS is generally preferred to its direct counterpart,

especially for the solution of time-dependent PDEs.

Parallel processing is utilized to offset the high computational cost of large-

scale PDE-based simulations. However, designing efficient parallel algorithms for

this class of problems remains a challenge and continues to attract significant at-

tention in the community [34, 35, 36]. In PDE-based simulations, to ensure the

required continuity of the solution field, a significant portion of the total computa-

tional time is spent in the inter-processor communications. In particular, most of

the inter-processor communications occur inside the LS, where the entire discrete

solution, although partitioned between the processors, is calculated simultane-

ously using global operations. Global operations require collective or processor-to-

97



98

processor communications that are costly, in large part due to the need for waiting

before sending or receiving messages. This wait time, in turn, contributes a large

portion of the overall wall-clock time for multi-processor simulations. In addition,

for large problems, the overall communication time can further increase because

of a larger number of processors employed.

In this chapter we present an algorithm for efficient handling of parallel

algebraic operations in iterative solvers. By mapping the sparse matrix row and

column indices on each processor, a low-entropy data structure is obtained that

leads to efficient and scalable parallel communications.

The chapter is outlined as follows. In Section 5.1, after briefly recalling the

basic concepts, we present and explain an algorithm to produce the appropriately

sorted node list. We then show how to use the sorted node list to perform algebraic

operations commonly used in iterative LS: matrix-vector product and vector inner

product. The proposed approach allows some overlap between communication and

computation, which is key for improving parallel efficiency. In Section 5.2, we test

the method using three incompressible flow example problems. A FE discretization

is employed and the cases are tested using a wide range of mesh sizes and processor

numbers. To establish a baseline for the performance of the proposed algorithm,

the results are compared with PETSc [123]. The advantages of using the low-

entropy data structure are clearly demonstrated using the numerical examples.

5.1 Sorted data structure

In this section, we discuss a general approach for performing basic alge-

braic operations in parallel, present the data sorting algorithm, and describe its

implementation. Assuming that the underlying PDE is scalar-valued, we associate

the unknowns in the linear system of equations with the mesh nodes. As a result,

the terms node and entry may used interchangeably. This is done for simplicity

of exposition and is not a requirement of the proposed method. In what follows,

subscripts g and s are generally used to denote the global and sorted counterparts,

respectively. Indices i, j, and k are used for processor IDs, and p and q for node
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IDs.

5.1.1 Basic concepts

The first step in solving a PDE in parallel is to partition the mesh and

assign each processor to a partition (i.e., a subdomain). As a result, in what

follows, the terms processor ID and partition number will have the same mean-

ing. There are two choices for mesh partitioning, namely, node-based (also called

vertex-based) and element-based, in which elements and nodes are shared between

adjacent processors, respectively.

We adopt the element-based partitioning approach. The physical domain

Ω ⊂ R
nsd is partitioned into a set of non-overlapping subdomains Ωi as

np
⋃

i=1

Ωi = Ω, (5.1)

Ωi ∩ Ωj = Γij, (5.2)

where np is the number of subdomains assumed to be equal to the number of

MPI processors, and Γij, an nsd−1-dimensional manifold in R
nsd, is the boundary

between the subdomains i and j. In this case, the information corresponding to

nodes on Γij is shared between the processors.

We denote a linear system of equations by

Ax = b, (5.3)

where A is an n× n LHS matrix, b is an n× 1 right-hand-side vector, and x is an

n× 1 solution vector.

After assembling the matrix and vector regardless of the neighboring sub-

domains, each processor contains a part of A and b,

np
∑

i=1

Ai
g = A, (5.4)

np
∑

i=1

big = b, (5.5)
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where Ai
g and big are the global representations of the contributions of Ωi to the

LHS matrix and right-hand-side vector, respectively.

Denoting the number of non-zero entries in big by ni, the non-zero entries

of big can be mapped to a local vector, bi, using a permutation matrix P i as

bi = P ibig. (5.6)

The transpose of the permutation matrix may be written as

P iT =
[

1ai(1) 1ai(2) · · · 1ai(ni)
]

, (5.7)

where 1p is a vector with a unit entry at location p, i.e.,

1p(q) =

{

0 q 6= p

1 q = p,
(5.8)

and ai is the unsorted list of all nodes in subdomain Ωi. Similarly, the LHS may

be written as

Ai = P iAi
gP

iT, (5.9)

where Ai is the local counterpart of Ai
g.

In general, the distribution of non-zero entries in big, or a particular column

or row of Ai
g does not follow a specific rule. Hence, the shared entries between bi

and bj are randomly distributed among the unshared entries. From the point of

view of inter-processor communication this randomness has some drawbacks. A

random distribution requires random fetches from the main memory during the

communications, which reduces the cache hit ratio. Furthermore, shared entries

need special handling that largely depends on the nature of the algebraic opera-

tions performed. In what follows, we present a local-to-global node mapping that

removes the above mentioned drawbacks, and leads to a reduced communication

overhead.

5.1.2 Local data representation

The most common algebraic operations that take place in iterative linear

algebra solvers can be divided into three groups:
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1. Addition and scaling of vectors. These operations are simple and produce

mathematically consistent results regardless the node ordering.

2. Calculation of vector inner products and norms. In this group of operations

special care must be taken when handling the shared entries of bi and bj.

A traditional approach is to send the shared entries from processor j to

processor i, set the shared entries on j to zero, perform the operation on

the vectors local to the processors, and sum the values on all processors to

obtain the final result.

3. Calculation of matrix-vector products. Special care is also required here

since the shared rows in Ai only contain a part of the corresponding rows

in A, which is a consequence of element-based partitioning. Traditionally,

the product y = Ax is calculated in parallel using four steps: First, it is

ensured that shared entries of xi and xj have the same values; Second, the

local-to-processor matrix-vector products are performed; Third, the shared

entries of yi and yj are added; Finally, the results are “scattered” back to

processors i and j.

To obtain a more favorable substrate for the second and third group of

operations, we start from the list of global node IDs ai, and modify it to produce

a sorted list ai
s using the mapping M

i, where

ps =Mi(p), (5.10)

ais(ps) = ai(p), (5.11)

and p, ps ∈ {1, . . . , ni}. In practice, Mi is a pointer array with length ni that

orders the local representation of data. The mapping M
i is found, such that,

given ni and ai, the following holds:

1. The owner of a node p shared between m processors {i1, · · · , im} is im, given
im > ij ∀j ∈ {1, · · · ,m − 1}. In this case, processor im is called the owner

of p and ij ∀j 6= m will only keep a copy of node p.
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2. The conditions
ais(p) ∈ aj

s

ais(q) /∈ ak
s ∀k 6= i

i < j















⇒ q < p, (5.12)

are satisfied. In this case p is possibly owned by j, and q is “only” owned by

i.

3. The conditions
ais(p) ∈ aj

s

ais(q) /∈ ak
s ∀k 6= i

j < i















⇒ p < q, (5.13)

are satisfied similar to those in Equation (5.12), which ensure that entries

shared by the lower- and higher-numbered processors are located in the be-

ginning and end of the vector, respectively. Note that both p and q are owned

by i in Equation (5.13).

Equation (5.12) presents a more relaxed set of conditions compared to those

presented in [124], which are repeated here for convenience:

ais(p) ∈ aj
s

ais(q) ∈ ak
s

j < k















⇒ p < q. (5.14)

Equation (5.14) ensures a fully sorted vector from low to high processor ID on any

processor i, while Equations (5.12) and (5.13) only mandate unowned entries to be

located at the end, and owned, shared entries at the beginning of the vector (see

Figure 5.1 for an illustration). This simplifies the computation ofM, specifically in

cases that an entry is shared between more than two processors, hence eliminating

the need to track these entries and to use an extra hash table.

We denote the last owned shared entry by ni
s and the last owned unshared

entry by ni
o, i.e.,

ni
s = sup

{

p ∈ {1, . . . , ni} : ai
s(p) ∈ aj

s , j < i
}

, (5.15)

and

ni
o = sup

{

p ∈ {1, . . . , ni} : ai
s(p) /∈ aj

s , ∀j 6= i
}

. (5.16)
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Figure 5.1: Data distribution in memory for a partitioned mesh with 3 processors.
Encircled numbers denote processor IDs. The initial and final segments of vectors
are shared by lower and higher processors, respectively. Hatched areas with mul-
tiple colors show segments of vectors that contain entries shared with processors
with corresponding colors.
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Note that

ni
s = inf

{

p ∈ {1, . . . , ni} : ai
s(p) /∈ aj

s , ∀j 6= i
}

− 1, (5.17)

and

ni
o = inf

{

p ∈ {1, . . . , ni} : ai
s(p) ∈ aj

s , i < j
}

− 1. (5.18)

(See Figure 5.1 for an illustration.)

Given ai, ni, n, and np, we obtain M
i as follows:

1. Construct a global-to-local array ai
g with size n that is initialized to zero and

communicate {a1, . . . ,anp} between all processors to construct an max(ni)×
np-dimensional array di as:

ai
g
← 0

do p = 1, · · · , ni

ai
g
(ai(p))← p

do j = 1, · · · , np

di(p, j)← aj(p)

2. Construct the shared segments of ai
s as:

ni
s
← 0

ni
o
← ni

do j = np, · · · , 1
i f j 6= i

do p = 1, · · · , nj

pg ← di(p, j)

q ← ai
g
(pg)

i f q 6= 0

i f di(q, i) 6= 0

di(q, i)← 0

i f j < i

ni
s
← ni

s
+ 1

ai
s
(ni

s
)← pg

else

ai
s
(ni

o
)← pg

ni
o
← ni

o
− 1
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Note the third if statement and the assignment statement that follows it,

where di(:, i) is used to make sure that the nodes are included in ai
s only

once.

3. Construct the rest of ai
s, the segment that contains nodes only owned by i,

as:

q ← ni
s
+ 1

do p = 1, · · · , ni

pg ← di(p, i)

i f pg 6= 0

ai
s
(q)← pg

q ← q + 1

4. Reconstruct the global-to-local array ai
g based on the sorted list ai

s, and

calculate the mapping array as:

do p = 1, · · · , ni

ai
g
(ai

s
(p))← p

do p = 1, · · · , ni

Mi(p)← ai
g
(ai(p))

Remarks:

1. The above algorithm assumes that all arrays start from index 1, which is the

Fortran default.

2. As superscript i suggests, all arrays are processor-specific, and calculations

are performed independently on all processors.

3. The proposed method is not memory intensive. The largest arrays employed,

ai
g and di, are approximately n bytes each. This value is independent of the

number of processors, hence the memory requirements do not increase with

np.
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Figure 5.2: An example of a mesh with 9 nodes partitioned to three subdomains
that are denoted by encircled numbers. The global and local node IDs are shown
using the numbers outside and inside of the box, respectively. For example, node
9 (central node) is local node 2 on processor 3 and 4 on processors 1 and 2.

4. The number of operations is also proportional to n on each processor, there-

fore the wall-clock time for the calculations is independent of np as well. This

is confirmed by the test cases reported in the numerical results section.

We present a simple example to illustrate the node numbering scheme and

the data structures employed. We consider a 2D four-element and nine-node mesh

decomposed into three processors, with n1 = 6, n2 = 4, and n3 = 4 (see Figure 5.2

for an illustration). Assuming an unsorted list of nodes for each partition,

a1 =
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, (5.19)
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we use the above algorithm to obtain

a1
s =
























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, (5.20)

and

M
1 =
























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6


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
















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




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


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
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
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




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



. (5.21)

In this example, n1
s = 0, n1

o = 3, n2
s = 1, n2

o = 2, n3
s = 3, and n3

o = 4. There are two

shared nodes between any two processors, hence two blocks of data with length

two are sent and received in a communication after a matrix-vector product. More

discussion is given in the what follows.

Benefits for vector inner-product and norm computations. In the computation

of a vector norm that is mapped by M
i, only locally owned entries are considered.

In practice this can be achieved by simply setting the upper limit of the nested

loop to ni
o instead of ni. This is a valid approach since all the entries following

ni
o are owned by other processors and will be included in the calculations exactly

once. As a result, the entries of bi(p), p ∈ {ni
o + 1, · · · , ni} do not have any ef-

fect on the norm or dot product calculation and may retain any value. This is in

contrast to the traditional method that requires setting those entries to zero to

avoid computing a single entry twice. The proposed renumbering reduces extra

computations associated with the assignment of the entries ni
o + 1 to ni to zero

and looping over them. Also, depending on how an iterative LS is implemented,

the proposed mapping can reduce the amount of data communicated between the
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processors. Note that
∑np

i=1 n
i
o = n is the number of nodes participating in the

inner-product computation. It is coincident with the total number of nodes in the

mesh, and is independent of the number of mesh partitions np.

Benefits for matrix-vector product computations. Using the sorted list of nodes

is also beneficial in matrix-vector products. The benefits are achieved by using

non-blocking communications calls overlapped with computations. The parallel

procedure involves the following steps:

1. Perform the matrix-vector products at the processor level for the shared rows,

from 1 to ni
s and from ni

o + 1 to ni.

2. Wait for the send requests.

3. Copy the resulting values in the shared entries to the buffer, and call non-

blocking processor-to-processor send and receive routines.

4. While the messages are being delivered, calculate the unshared rows, from

ni
s + 1 to ni

o.

5. Wait for the receive requests.

6. Add the received values to the corresponding vector entries.

Note that the communicated data is first copied to a separate buffer, and the

send buffer is used again only during the next call to the routine. By that time

the message from the former call has been delivered, and, as a result, there is no

time delay in step 2 above. Step 5, however, may be associated with significant

overhead, especially when there is an imbalance in the amount of floating-point

operations performed on each processor. This issue may be partly mitigated by

massive computations performed in step 4. Generally, step 4 contains the major-

ity of floating-point operations, because the number of internal nodes in a mesh

partition is much larger than that on a shared boundary.

Using the sorted data structure, all the vectors can be kept in a communicated
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state. Combining inter-processor communications with the matrix-vector product

routine as detailed above produces values at the shared vector entries that are

equal to the sum of the contributions of all the subdomains. This is identical to

what a sequential algorithm would produce. As a result, to parallelize a sequential

LS, only operations such as norm, inner product, and matrix-vector product need

to be replaced by their parallel counterparts, without changing the main algorithm.

5.1.3 Implementation

Generally the ordering of unknowns is determined by the mesh generator

rather than the LS itself. Hence, the linear system of equations that is received by

the LS typically has a random order. In order to benefit from ordered data struc-

ture, data passed through the interface to the LS must be mapped. This operation

has a negligible computational cost for vectors as it requires O(ni) operations on

each processor.

Denoting bi as the unordered input and xi
s as the ordered output, the data

mapping at the interface to the LS is as follows:

do p = 1, · · · , ni

bi
s
(Mi(p))← bi(p)

do p = 1, · · · , ni

xi(p)← xi
s
(Mi(p))

All the computations inside the LS are now performed on the sorted data and no

extra mappings are required.

Mapping the matrix Ai is more costly as the number of non-zeros, ni
nz,

is generally much larger than ni. This extra computational cost may be avoided

by adopting a specialized compressed sparse row (CSR) format [117]. Given an

unsorted array of non-zero values on processor i, the matrix Ai, an unsorted array

of indices of the first nonzero element of each row, I i, and an unsorted array of

the column indices of each entry of Ai, J i, the sorted pointers are calculated as

do p = 1, · · · , ni

ps ←Mi(p)
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Ii
s
(1, ps)← Ii(p)

Ii
s
(2, ps)← Ii(p+ 1)− 1

do p = 1, · · · , ni
nz

J i
s
(p)←Mi(J i(p))

Here I is(1, p) and I is(2, p) point to the first and last element of row p, and J i
s(p) is

the column index in the sorted format. With this transformation, there is no need

to map Ai, as the matrix-vector product yi
s = Aixi

s may be expressed as:

yi
s
← 0

do ps = 1, · · · , ni

do q = Ii
s
(1, ps), · · · , Iis(2, ps)

yi
s
(ps)← yi

s
(ps) +Ai(q)xi

s
(J i

s
(q)) ,

which is similar to a conventional sparse matrix-vector product.

Remarks:

1. The operator I i
s acts in the sorted domain and produces an unsorted codomain,

while J i
s operates on the unsorted domain and produces a sorted codomain.

2. Since M
i depends on the mesh connectivity and partitioning, Mi, I i

s, and

J i
s are calculated only when the mesh or partitioning are changed. To solve

multiple linear systems of equations that are based on the same mesh, as is

the case of time dependent simulations, the LS is initialized only once by

calculating M
i, I i

s, and J i
s, and called each time with different Ai and bi.

In this case, the extra cost associated with the LS initialization is typically

negligible compared to the cost of the entire simulation.

3. Only M
i, I i

s, and J i
s need to be stored, resulting in no additional significant

memory requirements.

4. In the case of multiple degrees-of-freedom per node, Ai and bi may be allo-

cated with an extra dimension that can be unrolled in operators for improved

performance.
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5.2 Results

The proposed algorithms are implemented in an efficient in-house LS writ-

ten in Fortran that contains several iterative methods, such as conjugate gradi-

ent [125], generalized minimum residual (GMRES) [120], and a specialized algo-

rithm for solving the linear system of equations obtained from the FE discretization

of the Navier–Stokes equations of incompressible flows [126]. This LS is used in

several studies that involve solving Navier–Stokes and advection–diffusion equa-

tions [59, 80, 33, 127]. In-house MUPFES solver is used to form the linear systems

of equations, i.e., for constructing Ai, I i, J i, bi, and ai. The results are verified for

mathematical consistency by checking that all algebraic operations yield identical

results for the parallel code and its serial counterpart. All the test cases were run

on the Kraken machine at the university of Tennessee using an allocation from

XSEDE program. Kraken is a massively parallel processing machine that uses 2.6

GHz AMD Opteron processors with 1.33 Gbytes of memory per core. There are

in total 9,408 computing nodes and 112,896 computing cores. Compute nodes are

interconnected via a Cray SeaStar2+ router [128]. Kraken’s default MPI library

was employed in our computations.

Three models are considered: small, medium, and large. The small model is

a 3D cylinder that is meshed with 25K linear tetrahedral elements, producing 5.5K

nodes and 81K non-zero entries in A (see Figure 5.3-(a)). The medium model is a

2D duct that is meshed with 14K bi-quadratic quadrilateral elements, producing

55K nodes and 890K non-zero entries in A (see Figure 5.3-(b)). The largest model

is a 3D patient-specific aorta model from [41] that is meshed with 2.7M linear

tetrahedral elements, producing 510K nodes and 7.4M non-zero entries in A (see

Figure 5.3-(c)). The models are selected such that the number of unknowns varies

by about one order of magnitude from case to case. The models are partitioned

using ParMetis [129]. The number of partitions is chosen to be a power of two,

that is, np = 2i i ∈ {0, · · · , 11}.
To examine the influence of the compiler on the performance of the proposed

method, we consider the small model, and use pgi, Intel, and gnu compilers to

generate three separate executables. One hundred sparse matrix-vector products
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(a) (b) (c)

Figure 5.3: Test cases: (a) 3D cylindrical model with np=8 and n=5.5K, (b) 2D
model of a duct with np=16 and n=55K, and (c) 3D aortic model with np=32 and
n=510K.

are performed for each case, and the results are presented in Figure 5.4. The

results show that all compilers give a similar performance when running in serial.

However, as the number of processors is increased, the pgi compiler gives the least

consistent performance. Based on this study, the Intel compiler is chosen for the

rest of the computations presented in this chapter.

To test the performance of present method, we compare the ordered data

structure (ODS) with PETSc library [123], a Cray PETSc 3.2.00 release equiv-

alent to a 3.2-p5 release by the Argonne National Laboratory. Since there are

inconsistencies between implementation of iterative algorithms, only basic alge-

braic operations, matrix-vector product and vector norm, are considered in this

comparison. To test the performance of the matrix-vector product operation us-

ing the new data structures, one hundred matrix-vector products using all three

models were computed and ttot was measured. ttot is defined as the sum of all pro-

cessors’ computation and communication time. The speedup is calculated using

the formula ttot |np=1 (ttot)
−1 np. The results presented in Figure 5.5 indicate that

the present method significantly outperforms PETSc. While at a lower number of

processors the communication overhead is negligible and speedup is close to ideal,
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Figure 5.4: Influence of the compiler on the performance of the sparse matrix-
vector product. One hundred matrix-vector products were performed, and program
execution time ttot is plotted versus the number of processors employed. The time
ttot is measured as the sum of all processor wall clock times. Fortran compilers
from pgi, Intel, and gnu, versions 11.9-0, 12.1.2, and 4.6.2, respectively, were used.
These are the default compilers on Kraken at the present time. While gnu and
Intel compilers gave very similar performance, the pgi compiler produced the least
consistent results.
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Figure 5.5: Speedup in matrix vector product versus number of processors using
matrices with (a) n = 5.5K, (b) n = 55K, (c) n = 510K (Figure 5.3). PETSc
refers to the Cray PETSc 3.2.00 release equivalent to 3.2-p5 release by Argonne
National Laboratory. ODS (ordered data structure) refers to the present method.
In all cases, the introduced method performs significantly better than PETSc at a
higher number of processors.

at a higher number of processors the communications overhead presents a major

computational cost and leads to saturation. In all cases the present method gave

better speedup than PETSc. For the largest model the saturation was delayed for

the present method: The highest speedup was achieved for np = 128, compared to

PETSc’s np = 64.

To compare the methods in terms of minimal time to completion of a matrix-

vector product operation, the cases of np =8, 16, and 64 are considered for the

small, medium, and large model, respectively (see Table 5.1). These correspond

to near-peak performance of both methods (see Figure 5.5). The results show that

by increasing the problem size the difference between the peak performance of the

present method and PETSc also increases: The higher the number of partitions,

the better ODS performs relative to PETSc. The improvement for the small,

medium, and large model is 65%, 177%, and 516%, respectively.
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Figure 5.6: The total cost of initialization, i.e. computing M
i, I i

s, J i
s, and

communication data structure for the models shown in Figure 5.3. Solid lines are
initialization cost and dotted lines are a single matrix-vector product cost, shown
here as the reference.

Table 5.1: Performance of PETSc and presented method (ODS), for the three
problem sizes (based on Figure 5.5). ttot is the total cost of computing a single
matrix-vector product.

Case np n ttot (ms)
PETSc ODS

a 8 5.5K 0.51 0.31
b 16 55K 9.7 3.5
c 64 510K 561 91

The initialization costs, that is, the costs of calculating M
i, I i

s, J
i
s, and

constructing the data structures for inter-processor communications, are plotted in

Figure 5.6. The initialization costs may be up to 30 times higher than performing a

single matrix-vector product. However, these costs increase almost linearly with np,

resulting in wall-clock time that is almost independent of the number of processors.

For the three cases considered in this study, the initialization stage always took

less than 0.1 s in wall-clock time, which is negligible, especially for time-dependent

problems.
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Figure 5.7: The parallel efficiency of the matrix-vector product versus the number
of partitions for the models shown in Figure 5.3.

Parallel efficiency of the matrix-vector product, defined as the percentage

ratio of the time spent on floating-point operations to the total time ttot is cal-

culated for the present method, and the results are plotted in Figure 5.7. As

expected, there is a sharp drop in efficiency as np increases. The minimum total

time for performing a matrix-vector product (i.e., the peak performance) generally

occurs before parallel efficiency drops below 50%.

The theoretical reduction in the number of floating point operations in a

vector inner product, obtained by ODS, is equal to ni − ni
o in partition i. Hence,

the relative saving can be calculated as

(

np
∑

i=1

ni

)−1 np
∑

i=1

(ni − ni
o), (5.22)

which is plotted in Figure 5.8. Increasing the number of partitions increases the

number of nodes on the boundaries of partitions and leads to more significant

savings. At peak performance (for np reported in Table 5.1), this translates to

approximately a 10% reduction in computations for all the test cases.

To test the performance of presented method when it is incorporated into a
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Figure 5.8: Theoretical saving in norm and dot product calculation, i.e. 1 −
(
∑np

i=1 n
i
)−1

n, versus the number of partitions for the models shown in Figure 5.3.

PDE solver, blood flow in the aorta model (Figure 5.3-(c)) is simulated. Blood flow

governing equations (Navier-Stockes) are reduced to a system of linear equations

using finite-element method and an implicit time integration scheme [65, 66, 67].

The resulting linear system has four degrees of freedom per node, one for pressure

and three for velocity. Hence, vectors and matrices containing floating values are

allocated with an extra dimensions. A Schur complement is formed by decompos-

ing matrix A to four blocks, allowing velocity and pressure to be solved seperately

at the linear solver level. Based on physiological values, resistance boundary con-

dition is imposed at all outlets and steady inflow boundary condition is imposed

at the inlet (See Chapter 2). In presence of resistance boundary conditions, the

specialized preconditioner discussed in Chapter 4 is employed to improve conver-

gence rate of the iterative solver. The time step size is set to 1 ms and simulation

is continued for 10 time step.

The cost of simulating one time step along with parallel speedup is shown

in Figure 5.9. This figure shows a good scalability of presented method upto

64 processors, in which ni ≈ 8k. Increasing np from 64 to 100, reduces parallel
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Figure 5.9: The aorta model fluid-flow simulation cost and parallel speedup.
Red/dash-dot curve (corresponding to the left y-axis) shows the cost, which is
calculated as the total CPUT time per each time step. Blue/solid curve (corre-
sponding to the right y-axis) is the parallel speedup. Ideal speedup is shown by a
blue/dotted line.

efficiency from 72% to 57%. Despite this drop in efficiency, simulation wall-clock

time decreases by 19% when increasing np from 64 to 100.
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Figure 5.10: Simulation results of the aorta model. Velocity is shown at several
slices with volumetric rendering of pressure (left), velocity magnitude (center), and
vorticity magnitude (right).



Chapter 6

A Non-discrete Method for

Computation of RT

Cardiovascular simulations typically require post processing analysis to de-

termine hemodynamic parameters of clinical or physiological significance. These

include, among others, WSS and strain, energy loss, oscillatory shear index, flow

distribution, and particle RT. While most of these can be directly computed from

the flow field, particle RT calculations currently require additional post processing

simulations.

RT and WSS are known to be linked to thrombus formation, which is a

serious clinical issue in numerous pediatric and adult cardiovascular disease appli-

cations, including stroke, embolism, myocardial infarction, bypass graft failure, de-

vice design, and congenital heart disease. Thrombus formation is a multi-factorial

process involving complex chemistry, vascular biology, and hemodynamics. These

complexities underscore the need for simpler hemodynamic surrogates to assess

thrombotic risk.

High WSS is known to cause platelet activation, hemolysis, and endothelial

cell damage and is associated with thrombotic risk [130, 131, 132]. Red blood

cell damage has been reported for WSS values in range of 120 to 300 (dyne/cm2)

[133, 134, 135]. On the other hand, recirculation regions associated with lower

WSS and high RT, in combination with previous exposure to high shear stress, may

also increase the risk of thrombus formation [37, 38]. Many prior studies report

120
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WSS as an important parameter for comparison of different anatomies and clinical

scenarios [31, 32, 17, 78]. This measure partly accounts for the time-history of red

blood cell exposure to altered shear conditions. In this context, RT calculation is

a measure of the degree of fluid entrapment in a specific region, providing a time

scale for the thrombus formation process to occur.

RT calculation is a non-trivial problem with numerous previous definitions

proposed in the literature, each of which produces different values. To obtain a

measure of RT in a region of interest, most prior studies have proposed a discrete

formulation in which particles are released in the flow and their locations are

traced over time [39, 40, 41, 42, 43]. RT is then calculated based on the time

each individual particle spends in the region of interest. RT results obtained from

these approaches depend on the number of particles used, often requiring a large

number of particles to obtain a smooth spatial distribution. Results can also be

highly effected by seeding location, which is typically upstream of the region of

interest, inside the region of interest, or at the model inlet [39, 40, 42]. Typically,

several particle-tracking simulations are needed for pulsatile flow conditions, since

the particle initiation time (e.g. relative to the cardiac cycle) affects the results

of the RT calculation [39, 40]. To mitigate this drawback, particles are often

continuously released at the inflow boundary, however the spatial distribution of

seeded particles may not follow the non-uniform velocity distribution at the inlet

[42].

Another drawback of discrete methods is mesh dependency. Because it is

often necessary to calculate the time that particles spend inside individual mesh

elements, results may depend on the mesh orientation relative to streamlines in

the flow. For example, a particle may spend longer in an element that is oriented

in the direction of the flow, as shown schematically in Figure 6.1, producing an

artificially higher value of RT. This drawback is more critical for adapted meshes

with anisotropic elements. Additionally, particle methods typically require special

treatment for particles close to the wall, for example by adding a small wall-

normal velocity to prevent particles from getting stuck on the no-slip boundary.

In this chapter we offer an alternative approach that avoids the need for large
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Figure 6.1: Schematic of two possible element orientations. Using a discrete
approach, the top orientation produces an artificially higher value of RT compared
to the bottom orientation of element abcd.

particle numbers with uncertain temporal and spatial resolution, and allows for a

continuous and mesh-independent representation of RT.

Non-discrete methods for RT calculation were first introduced for environ-

mental engineering with applications in sedimentation and biology. These method

are based on the solution of an advection-diffusion equation with a non-zero source

term [136, 137]. There are currently a number of competing definitions of RT in

the cardiovascular simulation literature, with no clear consensus. To track con-

trast agent, Rayz et al. solved an advection equation with a zero source term

[138]. Narracott et al. calculated RT to model clot formation in a stenosis using

an advection-diffusion equation with a non-zero source term [139]. In that study a
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non-zero source term was used for the entire computational domain and dye was

advected from the inlet, so the value of RT depended on the distance from the

model inlet to the region of interest. In this chapter, we start from two intuitive

definitions for RT and go on to develop new non-discrete methods that attempt

to address the drawbacks of prior methods. Because we rely on a continuous so-

lution of an advection-diffusion problem, this new method is not limited by the

spatial and temporal resolution requirements of particle based methods. Since

the present method does not rely on the elements for calculating RT, apart from

numerical accuracy of the original solution, the formulation of this method is mesh-

independent. This approach also allows one to capture the diffusion process in the

boundaries of a region of interest. We also show that for special cases RT can be

directly obtained from the velocity field without extra post-processing simulations.

We also show that the value obtained from this approach provides a lower bound

for the RT value calculated from the advection-diffusion problem.

In previous studies, WSS and RT have been viewed as independent sur-

rogates for thrombotic risk. However, it is clear that these quantities are not

physically independent. To quantify the relationship between RT and WSS, a

range of clinical scenarios is considered and the correlation between measures of

RT and WSS is reported.

6.1 RT calculation

In this section, starting with both existing and slightly modified RT defi-

nitions, a mathematical model is constructed and then simplified to obtain a new

formulation for calculating RT. We consider two approaches for calculating RT in a

region of interest. In the first, we solve an advection-diffusion equation to compute

temporally and spatially averaged RT for fluid inside a region of interest. In the

second, we calculate the temporally and spatially averaged RT for fluid entering

and leaving a region of interest using a control volume approach. In other words, in

the first method we examine fluid inside a certain region of interest and calculate

the time it has stayed in that region, while in the second method we examine the
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Figure 6.2: 2D schematic of region of interest Ωτ in the computational domain
Ω. A single Lagrangian particle originating at X is shown at three locations, each
with different time derivative.

boundaries of the region of interest and examine the RT of the fluid passing over

these boundaries.

As shown in Figure 6.2, we denote the time a fluid particle has been in the

region of interest, Ωτ ⊂ R
nsd, by τ(x, t) : Ω × R

+ → R
+, in which R

+ = R ≥ 0.

For fluid that has never entered the region of interest, τ = 0. As soon as a

fluid particle enters the region of interest, τ is incremented in time. Hence in a

Lagrangian framework
dτ

dt

∣

∣

∣

∣

X

= H(x), (6.1)

where X ∈ Ω is the origin of a fluid particle and H(x) : Ω→ {0, 1} is defined as

H(x) :=

{

1 x ∈ Ωτ

0 x /∈ Ωτ .
(6.2)

This definition is identical to the formulation in [136], if Ωτ = Ω or H = 1 is

assumed. Note that with this assumption τ(x) varies with the distance of point

x from the inlet. Since we generally wish to calculate RT in a specific region of

interest, we assume Ωτ 6= Ω. Defining the operator L(τ ;u) : R+ × R
nsd → R as
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follows

L :=
∂τ

∂t
+ u · ∇τ −∇ · κ∇τ −H, (6.3)

and accounting for diffusion, Equation (6.1) in an Eulerian framework is

L(τ ;u) = 0. (6.4)

To derive Equation (6.4), it is assumed that there are enough particles to use a

continuum mechanics formulation. Also it is assumed that particles follow the

pathlines in the flow or ∂x
∂t

= u. In Equation (6.3), u(x, t) = {u | u(·, t) ∈
H1(Ω)nsd, t ∈ R

+, u(x, t + T ) = u(x, t)}, is a periodic velocity field obtained

from solving the Navier-Stokes equations in the 3D domain, and κ is the physical

diffusion coefficient. In this study, the physical diffusion coefficient is set to zero

because it is negligible.

Equation (6.4) is an advection-diffusion equation with a non-zero source

term that is solved in a post-processing step to find τ . This PDE equation

can be solved using various numerical methods, including a FE approach. Us-

ing a FE method, we find τ ∈ Sh such that for all q ∈ Sh, in which Sh =

{s | s(·, t) ∈ H1(Ω), t ∈ (0, nT ], s = 0 on Γg}, the following stabilized weak form

holds [140]

∫

Ω

q · (∂τ
∂t

+ u · ∇τ) dΩ +

∫

Ω

∇q · κ̃∇τ dΩ +
∑

e

∫

Ωe

∇q · uτmL dΩ = 0, (6.5)

where n ∈ N is the number of simulated cycles and τm ∈ R
+ and κ̃ ∈ R

+ are

defined as,

τm(x, t) :=
1

√

4/∆t2 + uTξu+ 3κ̃2ξ : ξ
, (6.6)

κ̃(x, t) := κ+ κDC = κ+
|L|

2
√

∇τTξ∇τ
, (6.7)

where ξ ∈ R
nsd×nsd is the Jacobian that maps between the parent and physical

domains [141], and κDC ∈ R
+ is a discontinuity capturing diffusion coefficient.

This residual based coefficient goes to zero as L goes to zero, and is minimally

intrusive where ∇τ is maximal. This is added to improve the solution by removing

the overshoot and undershoot adjacent to a jump in τ [140, 142]. The last term in
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Equation (6.5) is a non-linear function of τ , therefore multiple nonlinear iterations

are performed at each time step to obtain convergence (3 iterations are used in

our computations). A Dirichlet BC is imposed on inlets and outlets with backflow

and a Neumann BC with zero flux is imposed on the walls. The Dirichlet BC

is imposed on outlets with partial backflow to prevent any possible divergence of

the simulations or unrealistic solution. Note that in the studied scenarios since

advection is much stronger than diffusion, the imposed value on the outlets in the

presence of outward flow have a negligible effect on the interior solution.

The first measure of RT, RT1 ∈ R
+, is calculated by averaging τ over

Ωτ × ((n− 1)T, nT ] so that

RT1 =
1

T

∫ nT

(n−1)T

1

VΩτ

∫

Ωτ

τ(x, t)dΩdt, (6.8)

where

VΩτ
:=

∫

Ωτ

dΩ. (6.9)

The number of simulated cycles, n, is selected such that the transient part of the

solution is damped and τ is a periodic function of time. To ensure periodicity, RT1

is calculated from Equation (6.8) and the result is compared to its preceding cycle.

The second measure of RT, RT2, is calculated based only on the particles

that are entering and leaving Ωτ . We define Γo(t) = {x | x ∈ ∂Ωτ , u · n ≥ 0} and
Γi(t) = {x | x ∈ ∂Ωτ , u · n < 0}, in which n(x) is the outward normal vector to

Ωτ . Note that Γi ∪ Γo = ∂Ωτ and Γi ∩ Γo = {} and the total time spent in Ωτ by

the fluid is equal to the increase in τ from Γi to Γo. We let Q̄ ∈ R
+ be the average

flow into Ωτ in time T , so that the continuity equation gives

Q̄ :=
1

T

∫ nT

(n−1)T

∫

Γo(t)

u · n dΓdt. (6.10)

Considering a non-uniform distribution of τ and u over ∂Ωτ , we have

RT2 :=
1

TQ̄

∫ nT

(n−1)T

[∫

Γo(t)

τ |u · n| dΓ−
∫

Γi(t)

τ |u · n| dΓ−
∫

∂Ωτ

κ∇τ · n dΓ

]

dt,

(6.11)

which is a temporally and spatially weighted average of the increase in τ from Γi
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to Γo. Considering the definition of Γi and Γo,

RT2 =
1

TQ̄

∫ nT

(n−1)T

∫

∂Ωτ

(τu− κ∇τ) · n dΓdt. (6.12)

Integrating Equation (6.4) over Ωτ × [(n− 1)T, nT ] gives

∫

Ωτ

(τ(x, nT )− τ(x, (n− 1)T )) dΩ

+

∫ nT

(n−1)T

∫

Ωτ

(u · ∇τ −∇ · κ∇τ −H) dΩdt = 0. (6.13)

The first integral in Equation (6.13) vanishes due to cyclic periodicity, as is typ-

ically the case in cardiovascular simulations. Integrating H and applying the di-

vergence theorem to the second integral gives

∫ nT

(n−1)T

∫

∂Ωτ

(τu− κ∇τ) · n dΓdt−
∫ nT

(n−1)T

∫

Ωτ

(τ∇ · u) dΩdt = VΩτ
T. (6.14)

Considering the continuity equation, the second integral in Equation (6.14) is zero,

hence,
∫ nT

(n−1)T

∫

∂Ωτ

(τu− κ∇τ) · n dΓdt = VΩτ
T. (6.15)

From Equations (6.12) and (6.15),

RT2 =
VΩτ

Q̄
. (6.16)

This result is a very simple formula for calculating RT, which requires measuring

only the volume of a region interest, VΩτ
, and the average flow passing through the

boundaries of the region of interest in a cycle, Q̄. This result is identical to the

definition of flushing time that has applications in environmental flows [143, 144].

Note that this measure of RT does not require solving the advection-diffusion

problem and can be directly calculated from the velocity field at the boundaries of

the region of interest, i.e. all u(x, t) such that x ∈ ∂Ωτ . Since the incompressibility

assumption was used to derive Equation (6.15), Equation (6.16) is only valid for

incompressible flows, while Equation (6.8) can be used for compressible flows as

well. In the case of Ωτ = Ωτ (t), as is the case in fluid-structure interaction (FSI)

problems using the arbitrary Lagrangian-Eulerian method, it can be shown that
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Figure 6.3: Schematic of a single topological manifold, S, which encloses a flow
streamline. Velocity at each section, u(s), cross section area, δA(s), flow rate, δQ,
and its extents, x(s), s ∈ [0, l], are shown. Note there is no transport across Γt.

the above result holds if u is replaced with u − û and ∂τ
∂t

is calculated on the

referential domain, in which û is the referential domain velocity [100]. In this

case, VΩτ
is time dependent in RT1 calculation (Equation (6.8)) and time average

of VΩτ
is used in RT2 calculation (Equation (6.16)) [76].

6.1.1 RT1 and RT2 relationship

Although the definitions of RT1 and RT2 are distinct, they are strongly

related. Here we show that RT2 can be used as a lower bound for RT1.

lemma 1: Let τ be zero at Γi, then:

inf τ(x, t) ≥ 0 ∀ x ∈ Ω. (6.17)

Proof: Integrating Equation (6.1) in time with H ≥ 0 directly produces

this result.

lemma 2: For a non-diffusive steady flow, in which κ = 0 and u = u(x), in

a manifold defined by S(s) = {x|x(s) ∈ Ωs ⊂ Ωτ , s ∈ [0, l], dx
ds

= u(s)
‖u‖

, u · n =

0 on Γt} the following relation holds: RT2 ≤ 2RT1.

Proof: A schematic of a topological manifold is shown in Figure 6.3. Equa-

tion (6.4) in a non-diffusive steady flow is

u · ∇τ = H. (6.18)
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Integrating Equation (6.18) on a manifold gives

∫ s

0

u · ∇τδAds∗ =
∫ s

0

δAds∗, (6.19)

which after integration by parts and applying the continuity relationship gives

(τ(s)− τ(0))uδA =

∫ s

0

δAds∗ (6.20)

and since uδA = δQ is constant along s,

δA(s) = δQ
dτ

ds
. (6.21)

Simplifying Equation (6.8) for a manifold with the above properties and using a

steady flow assumption gives

RT1 =

[∫ l

0

δAds

]−1 ∫ l

0

τδAds. (6.22)

After evaluating Equations (6.20), (6.21) and (6.22) we have

RT1 =
δQ

δQ (τ(l)− τ(0))

∫ l

0

τ
dτ

ds
ds, (6.23)

which after integration is

RT1 =
1

2
(τ(l) + τ(0)) . (6.24)

Now Equation (6.16) for a steady flow on a manifold is

RT2 =
1

δQ

∫ l

0

δAds, (6.25)

which with Equation (6.20) reduces to

RT2 = τ(l)− τ(0). (6.26)

Since based on lemma 1, τ(0) ≥ 0, the proof is complete. Note that if x(0) ∈ Γi,

τ(0) = 0 and RT2 = 2RT1.

lemma 3: If for i = 1, 2 and Ωi ⊂ Ωτ , Ω1 ∩ Ω2 = {} the following is true:

RT i
2 ≤ 2RT i

1, then for Ωt = Ω1 ∪ Ω2, RT t
2 ≤ 2RT t

1 is also true.
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Proof: By breaking the integral in Equation (6.8) into two sub domains, it

can be shown that

RT t
1 =

RT 1
1 VΩ1 +RT 2

1 VΩ2

VΩ1 + VΩ2

, (6.27)

and from Equation (6.16), it can be shown that

RT t
2 = (VΩ1 + VΩ2)

(

VΩ1

RT 1
2

+
VΩ2

RT 2
2

)−1

. (6.28)

Defining

k :=
RT 1

2

RT 2
2

, (6.29)

then

0 ≤ (k − 1)2, (6.30)

and since k ∈ R
+ we have

2 ≤ k +
1

k
, (6.31)

and hence

2 ≤ RT 1
2

RT 2
2

+
RT 2

2

RT 1
2

. (6.32)

Multiplying Equation (6.32) by VΩ1VΩ2 and adding V 2
Ω1 + V 2

Ω2 to both sides of the

above inequality gives

V 2
Ω1 + 2VΩ1VΩ2 + V 2

Ω2 ≤ V 2
Ω1 + V 2

Ω2 + VΩ1VΩ2

(

RT 1
2

RT 2
2

+
RT 2

2

RT 1
2

)

. (6.33)

Rearranging, we have

(VΩ1 + VΩ2)2 ≤
(

VΩ1

RT 1
2

+
VΩ2

RT 2
2

)

(

VΩ1RT 1
2 + VΩ2RT 2

2

)

, (6.34)

and hence from Equation (6.28)

(VΩ1 + VΩ2)RT t
2 ≤

(

VΩ1RT 1
2 + VΩ2RT 2

2

)

(6.35)

and since RT i
2 ≤ 2RT i

1

VΩ1RT 1
2 + VΩ2RT 2

2 ≤ 2
(

VΩ1RT 1
1 + VΩ2RT 2

1

)

, (6.36)

and hence from Equation (6.27)

VΩ1RT 1
2 + VΩ2RT 2

2 ≤ 2 (VΩ1 + VΩ2)RT t
1. (6.37)
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Comparing Equations (6.35) and (6.37) gives

RT t
2 ≤ 2RT t

1. (6.38)

Proposition: For a steady non-diffusive flow, RT2 ≤ 2RT1 on Ωτ .

Proof: Let us divide Ωτ into n manifolds such that

Ωτ =
n
⋃

i=1

Ωi, (6.39)

and

Ωi ∩ Ωj = {}, i 6= j, 1 ≤ i, j ≤ n. (6.40)

Note that, Equation (6.39) does not impose any extra assumptions since there is

no upper bound imposed on n and Ωi can be selected as an infinitesimal volume

that satisfies lemma 2. From lemma 2 for each Ωi,

RT i
2 ≤ 2RT i

1, on Ωi, 1 ≤ i ≤ n. (6.41)

Defining

Ω̄1 := Ω1, (6.42)

and

Ω̄k := Ω̄k−1 ∪ Ωk, 1 < k ≤ n, (6.43)

and using lemma 3, we have the following

RT k
2 ≤ 2RT k

1 , on Ω̄k. (6.44)

Since

Ω̄n = Ωτ , (6.45)

we have

RT2 ≤ 2RT1, on Ωτ , (6.46)

which completes the proof. Physically, the ratio RT2

RT1
is an indicator of the degree

of flow disturbance. In a completely unidirectional flow, which is associated with

a single manifold, this ratio is equal to two, where as in a highly disturbed flow

with mixing it is closer to zero.
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6.1.2 Point-wise RT

A point-wise definition of RT can be extracted from RT2 by reducing the

volume of the region of interest, VΩτ
, to an infinitesimal value. However, RT2

goes to zero as VΩτ
goes to zero, which is expected from a physical point of view.

Therefore, to define a point-wise measure of RT that is independent from the

volume, we define RT per unit length, RTx(x), i.e. the time required for a fluid

particle to travel a unit length from any given point in the direction of flow. One

might find this analogous to the normalization of RT or exposure time by the

volume in discrete methods [39, 40, 42]. Considering the schematic shown in Figure

6.4 and Equations (6.9), (6.10), (6.16) and setting n = u

‖u‖
gives

RTx(x) =

[

1

T

∫ nT

(n−1)T

‖u(x, t)‖dt
]−1

, x ∈ Ω− Γw, (6.47)

in which Γw is the wall boundary, where u = 0 and RTx is not defined. As expected,

the value of the point-wise RT reduces to the inverse of the velocity magnitude at

that point.

dl

u

Figure 6.4: Schematic of a finite element considered for point-wise RT calculation.
Note that the selected element is aligned with the direction of flow, i.e. n = u

‖u‖
.

τ absolute value depends on the distance of a parcel of fluid from the inflow

of the computational domain. To remove this independence, one can calculate the
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gradient of τ . To analyze this vector field in a steady and non-diffusive flow, we

rewriting Equation 6.4 as

u · ∇τ = H. (6.48)

Hence, while the gradient of τ in the direction of u is zero outside of the region

of interest, is proportional to ‖u‖−1 inside the region of interest. Therefore, by

computing the gradient of τ a vector field is produced that its component in the

streamwise direction is zero outside of region of interest and is equal to RTx inside

the region of interest. The normal component of ∇τ represents the changes in

fluid entrapment moving across different layers of the flow. While the streamwise

component is large in lower velocity regions, the normal component is dominant in

regions of recirculation. In [77], the 2-norm of this vector field is reported, hence

combining the contribution of both components into a single scalar field. This

allowed for identification of hot spots of high RT gradient that can be compared

with regions of developing thrombus.

6.2 Test cases

To demonstrate the application of the proposed RT definitions and deter-

mine their relationship to WSS and flow structures, three scenarios are considered

in this section: 1) A 2D flow over a cavity 2) flow through an idealized model of

a single ventricle heart patient simulated with a multidomain method and 3) flow

in a patient specific model of coronary aneurysms caused by Kawasaki disease.

The results that are obtained directly from the velocity field, including

WSS, RT2, RTx are calculated numerically based on previously computed velocity

data. To solve Equation (6.5) and obtain RT1, an in-house FE code is used.

6.2.1 Flow over a cavity

In this case study, we consider a 2D model of a cavity in cross flow. This

example is designed to demonstrate the behavior of different measures of RT in a

strong recirculating flow.
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The computational domain, Ω, is an ensemble of a 2×2 cm cavity attached

to a 5×0.5 cm duct (Figure 6.5-a). The fluid viscosity and density are 1.82×10−4

g/(s cm) and 1.18×10−3 g/cm3, respectively. At the inlet, a uniform velocity (77.1

cm/s) is prescribed and zero traction is imposed at the outlet. Based on the cavity

dimension this produces Re = 1000. A uniform bilinear mesh with a size of 0.5

mm is used that produces 2600 elements and 2751 nodes. Two regions of interest

are considered: 1) Ωτ = Ω and 2) Ωτ = Ωc (see Figure 6.5-a). This is to show the

sensitivity of RT1 and RT2 to the region of interest selection.

Figure 6.5: Flow over a 2D cavity, a) The mesh and dimensions of the compu-
tational domain, b) flow streamlines are plotted on top of τ contours, obtained
from solving Equation (6.5), c) velocity magnitude contours, and d) RTx contours.
While τ is very high at the central recirculation regions, RTx fails to identify this
region. The velocity streamlines are roughly perpendicular to ∇τ inside the cavity.

Flow is stagnant at the bottom corners and vorticity is high in the middle,

trapping the fluid inside the cavity (Figure 6.5). This caused τ to be in the range

of 50 s in the center and bottom corners of the cavity, as compared to τ ≈ 0.05

s in the duct. This shows that recirculation regions may produce much higher

τ compared to regions with uni-directional flow. For this case RTx, which only
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depends on the local velocity value, is only high at the corners and fails to predict

high RT for the central region.

RT1 and RT2 are calculated for the cavity only (Ωc) and the entire compu-

tational domain (Ω), with results summarized in Table 6.1. RT2, which is directly

proportional to Q̄, differs significantly between these two regions of interest. Due

to much higher τ inside the cavity,
∫

Ωτ
τdΩ is almost the same between two regions

of interest, causing RT1 only to scale with the area of the region of interest. As a

result, the RT2

RT1
ratio is increased by a factor of 23, by selecting cavity as the region

of interest instead of the entire domain.

Table 6.1: Simulation results for the cavity model. Results are reported for two
regions of interest: the cavity only (Ωτ = Ω), and the entire computational domain
(Ωτ = Ωc). Note the sensitivity of RT2 to the region of interest selection.

Ωτ VΩτ
(cm2) Q̄ (cm2/s)

∫

Ωτ
τdΩ (cm2s) RT1 (s) RT2 (s) RT2

RT1

Ω 6.5 38.56 135.9 20.90 0.17 0.008
Ωc 4.0 0.627 135.5 33.87 6.38 0.188

6.2.2 Single ventricle patients

In this case study we explore the RT formulation in an idealized post sur-

gical anatomy that was presented in Section 2.4.4, with one or two systemic-to-

pulmonary connections (Figure 6.6). Three basic geometries were constructed to

include (Figure 6.6): (A) a distal MBTS and a patent ductus arteriosus (PDA),

(B) a proximal MBTS and a PDA, and (C) a proximal MBTS and a central shunt

(CS).

While the flow in the shunt is always unidirectional, flow stagnation can

occur in the PA segment due to flow competition from the MBTS and the PDA/CS.

Depending on the diameter of the PDA/CS, the flow in this region can be stagnant,

directed toward the right PA, or directed toward the left PA. Ten geometries were

constructed for cases (A) and (B) with PDA diameters of: 0.0 (no PDA), 2.0,

3.5, 4.0, and 5.0 mm. Three geometries were constructed for case (C) with the

CS diameters of: 2.0, 3.0, and 4.0 mm. For cases (A) and (B) two values of the

PVR were simulated. In all models, the MBTS was slightly curved to make it

perpendicular the PA. In total, 23 cases were simulated and compared.
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Figure 6.6: Representative anatomies used in this study: (a) distal MBTS and a
4.0 mm PDA, (b) proximal MBTS and a 3.0 mm PDA, and (c) proximal MBTS
and a 4.0 mm CS. The PA segment (the red region between CS/PDA and MBTS)
and the MBTS (the blue region) are used to compare RT and WSS results.

Flow simulations were performed using a multidomain approach following

the framework discussed in Chapter 2 and using the LPN shown in Figure 2.11. In

this case all outlets are coupled Neumann boundaries and the inlet, i.e. the AA, is

a coupled Dirichlet boundary. Due to the presence of reversed flow at the outlets,

backflow stabilization method was adopted in these simulations (Section 3.1.1).

The specialized preconditioning method, bi-partitioned algorithm, and sorted data

structure were also adopted, achieving significant improvements in computational

cost efficiency compared to standard methods (see Chapters 4 and 5). The method

described in Appendix D is used for WSS calculation.

Two regions of interest are considered: a segment of the PA between the

MBTS and PDA/CS and the MBTS (red and blue regions in Figure 6.6, respec-

tively). The two regions of interest are selected based on the dramatic difference in

their hemodynamics and their potential clinical significance. The flow inside the

MBTS is unidirectional for the entire cardiac cycle, since blood flows to the lower

pressure pulmonary arteries from the higher pressure systemic side. In the PA

segment, however, there is flow competition between the MBTS and PDA/CS and

the flow direction is highly dependent on the diameter of the PDA/CS. The flow at

the core of this region is stagnant for the midrange PDA/CS diameters with highly

unsteady recirculation regions close to the MBTS and PDA/CS anastomoses.

The advection-diffusion problem was solved using the same FE method time

integration and spatial discretization scheme as the Navier-Stokes solver. In these
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simulations T was the length of the cardiac cycle and the time step size was set

to 5 × 10−4 s. The normalized difference between the results of the second and

subsequent cycles was on the order of 10−7, demonstrating that cyclic convergence

was obtained after two cycles.

RT1 and RT2 were calculated (Equations (6.8) and (6.16)) for these two

regions and WSS was spatially averaged over the walls (Table 6.2).

Table 6.2: Comparison between RT and WSS. PA-Seg denotes the region between
the PDA and MBTS and BT denotes the region in the MBTS (see red and blue
regions in Figure 6.6). D is the diameter of the PDA/CS, withD = 0 corresponding
to the single MBTS case. Geom denotes the choice of geometries shown in Figure
6.6. PVR is the pulmonary vascular bed resistance (N denotes normal PVR and
H denotes one fold increase in PVR).

Case D Geom/PVR RT1 (ms) RT2 (ms) WSS (cgs)

PA-Seg BT PA-Seg BT PA-Seg BT

01 0.0 A/N 30.4 4.3 48.0 8.4 98.9 267
02 0.0 A/H 32.4 4.5 51.7 8.9 91.9 252
03 0.0 B/N 28.4 4.3 38.0 8.0 93.9 244
04 0.0 B/H 28.3 4.6 39.4 8.4 91.5 232
05 2.0 A/N 56.5 4.7 44.9 9.1 58.9 249
06 2.0 A/H 57.5 5.0 47.6 9.8 58.4 232
07 2.0 B/N 50.6 4.8 30.0 8.9 77.7 219
08 2.0 B/H 51.5 5.1 31.7 9.5 73.8 206
09 3.5 A/N 50.5 6.1 40.7 11.2 78.0 207
10 3.5 A/H 58.0 7.0 44.1 12.8 67.3 181
11 3.5 B/N 28.1 6.2 27.2 11.2 107.3 174
12 3.5 B/H 35.8 7.0 31.5 12.7 90.7 154
13 4.0 A/N 36.3 6.8 39.2 12.2 84.7 190
14 4.0 A/H 44.0 7.8 45.2 13.8 74.2 167
15 4.0 B/N 21.7 6.8 26.8 12.3 119.5 159
16 4.0 B/H 27.0 7.7 32.0 13.9 101.4 140
17 5.0 A/N 23.8 8.5 34.7 14.1 105.3 164
18 5.0 A/H 28.5 9.9 39.7 16.5 90.7 139
19 5.0 B/N 14.9 8.4 22.8 14.8 131.3 134
20 5.0 B/H 17.5 9.9 26.5 17.3 114.0 113
21 2.0 C/H 47.9 5.0 36.3 9.3 79.0 211
22 3.0 C/H 73.7 5.6 38.9 10.2 49.4 190
23 4.0 C/H 58.6 6.4 38.5 11.8 51.5 167

Due to the flow pulsatility, the spatial average of τ(x, t) becomes nearly
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periodic after the first cardiac cycle with a higher value during diastole and a lower

value during systole, as expected (Figure 6.7). Due to the unidirectional flow in

the MBTS, τ(x, t) varies almost linearly in the MBTS (Figure 6.8-a), starting

from zero at the proximal/systemic end and reaching approximately 2RT1 at the

distal/pulmonary end, producing a spatial average of RT1. Since τ(x, t) at the

distal end, i.e. Γo, is essentially equal to RT2, RT2 ≈ 2RT1 in the MBTS, which

is consistent with the results in the Table 6.2. However, looking at RT in the PA

section, this approximation is no longer true due to the presence of vortices near

the PA segment boundaries. This flow produces high τ(x, t) towards the center

despite higher flow rates at the boundaries (Figure 6.8-b), leading to higher RT1

and lower RT2. The
RT2

RT1
ratio is close to 2 in the MBTS and close to 1 in the PA

section. Consistent with Equation (6.46), the flow in the MBTS can be assumed

to be a single manifold, while the flow in the PA section is recirculating and is

composed of several manifolds.

Figure 6.7: Time variation of spatial average τ in the PA section for the case
with 3.0 mm CS. The shaded area is equal to RT1.
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Figure 6.8: (a) Spatial distribution of time averaged τ in the MBTS. Note the
linear distribution due to the unidirectional flow. (b) Spatial distribution of time
averaged τ in the PA. Note the higher value at the center of the PA that leads to
higher RT1. Due to the high flow rates across the boundaries of the PA-Seg, RT2

has a lower value in this case. The proximal and distal ends of MBTS and flow
direction in the MBTS and PDA are shown.

The results of Table 6.2 are summarized in Figure 6.9. The 3.0 mm CS and

3.5 mm PDA cases had the highest RT in the PA, confirming the presence of a

stagnation region between the MBTS and PDA at mid-range diameters. Increasing

the PDA diameter beyond 3.5 mm reduces RT in the PA because an imbalance

between the PDA/CS and the MBTS flow leads to flow through the PA segment.

Since the PA flow rate is lower for the higher PVR cases, RT is higher in the PA

and MBTS for these cases.
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Figure 6.9: RT1, RT2, and WSS in the PA segment and in the MBTS as a function
of PDA diameter. See Table 6.2 for notation details.
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Examining the general trends in Figure 6.9, RT1 and RT2 are generally di-

rectly related while RT1 and RT2 are anti-correlated with WSS. To quantify this

relation more directly, we computed the correlation between these three parame-

ters, which is defined as,

R(x,y) =

[

∑

i

(xi − x̄)2
∑

i

(yi − ȳ)2

]− 1
2
∑

i

(xi − x̄)(yi − ȳ), (6.49)

(Figure 6.10). Good correlation was obtained between RT1 and WSS in both

regions of interest, which are associated with different hemodynamics. However,

the slope of the correlations in the MBTS and PA segment is not the same. As

discussed before, RT1 and RT2 are strongly correlated in the MBTS, but poorly

correlated in the PA segment.
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Figure 6.10: Correlation between RT1, RT2, and WSS measured in the MBTS
(blue) and in the PA-Seg (red). Dashed lines are the best correlated lines. RBT

and RPA are the correlation values between parameters in corresponding region
and Rtot is the correlation between parameters calculated based on all the data
points from both regions.

6.2.3 Kawasaki disease

In our third case study, we consider a patient specific model of coronary

aneurysms caused by Kawasaki disease. Kawasaki disease is the leading cause of

acquired heart disease in children, resulting in coronary artery aneurysms in up

to 25% of untreated patients. Patients with aneurysms are at a higher risk of

thrombosis formation inside the aneurysms, which can lead to myocardial infarc-

tion and sudden death [145, 146]. Regions of low WSS and high particle RTs in the
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aneurysm are hypothesized to be an indicator for higher risk of thrombus forma-

tion. Clinicians treating Kawasaki disease patients currently use aneurysm diam-

eter as the primary determinant of thrombotic risk, according to AHA guidelines.

Aneurysm diameter is typically measured using CT imaging, and patients with

diameters >8 mm are treated with anticoagulation therapy. Clinicians are thus

often faced with a difficult decision to treat otherwise normal healthy patients with

aggressive anticoagulation therapy or to treat with anti-platelet therapy alone and

accept the risk of possible myocardial infarction. While aneurysms can be imaged

to obtain detailed anatomical information, there are currently no available clinical

tools to predict the risk of coronary artery thrombosis or myocardial infarction.

Simulations can provide critical hemodynamic information linked to thrombotic

risk, including WSS, RT, and oscillatory shear index, which are difficult or impos-

sible to obtain from standard imaging modalities.

Our previous work revealed markedly abnormal hemodynamic conditions

compared to normal control, including low WSS and high particle RT, in a case

study of a 10 year old male Kawasaki disease patient (Figure 6.11) [41]. Subse-

quently, hemodynamic simulations in a group of Kawasaki disease patients with

aneurysms have demonstrated better correlations between simulated WSS and par-

ticle RT and incidence of thrombosis compared to using aneurysm diameter alone

[77]. Here, we use the previous results from one patient to compute RT using the

proposed method, and compare to prior discrete model calculations.

For RT calculations, the formerly used mesh and reported velocity are used

[41]. Model construction, simulation, and adaptive meshing methods are described

in our prior work. The maximum diameter of the left anterior descending coronary

artery (LAD) and right coronary artery (RCA) were 1.14 and 1.08 cm, respectively.

The mesh contained over 3.5 million tetrahedral elements with a 0.2 mm minimum

element size. A BC that is specifically designed for the coronary arteries was used

and an implicit method was used to couple BCs to the 3D domain [51]. Flow

simulation was continued for six cardiac cycles, with a time step size of 1 ms.

Regions of interest are colored red and blue in Figure 6.11. Due to the

higher RTs, the advection-diffusion solver required 6 cycles to obtain converged
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solution with a time step size of 1 ms.

RCA

LAD

Figure 6.11: The regions of interest, Ωτ , are indicated by red and blue on the
right. The tagged surface for calculating RT2 in the red region is outlined by a
brighter color on the left. u ·n is evaluated on these boundaries to calculate RT2.

High RT is predicted for aneurysmal regions closer to the wall and the

middle section of the LAD, where the flow is changing direction (Figure 6.12).

Due to the lower velocities and recirculating flow, RT values were higher in this

model compared to the second case study (Figure 6.8). Cumulative exposure time

(CET), which is calculated with a discrete method, was used previously to quantify

RT in the LAD and RCA [41]. CET has units of time per unit volume, hence a

quantitative comparison can not be made between CET and RTx. Qualitatively,

however, CET and RTx are similarly high in the low velocity regions. CET has

an advective effect and predicts higher values in the distal RCA, despite the high

velocity in that region (Figure 6.12-(b)). Although 10M particles were released

in each cardiac cycle, the CET contours remain pixelated with a large variation

between two adjacent elements. To compare simulation costs, the full blood flow

simulations took 26 hours on 60 processors, the CET calculation took 2-3 days

on a single processor, and the advection-diffusion simulation took 8 hours on a
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single processor [41]. This indicates the lower computational cost of the proposed

method, though simulation times for both CET and the proposed method could

be improved through parallelization.

Figure 6.12: (a) Time-averaged velocity, local RT, RTx, and τ in the LAD and
RCA. Regions of high RTx are associated with regions of low velocity. Note the
linear distribution of τ in the downstream branches due to the unidirectional flow.
(b) Velocity and CET using a discrete method taken from prior work [41]. Note
the continuous distribution of RT measures obtained using the proposed method.

The RT2

RT1
ratio is larger in the RCA compared to the LAD, indicating less

flow disturbance in the RCA (Table 6.3). This can be linked to more uniform

variation of τ along the RCA compared to the LAD.
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Table 6.3: RT1 and RT2 in the LAD and RCA. The regions of interest and the
model are shown in Figure 6.11.

Ωτ RT1 RT2
RT2

RT1

LAD 1.178 0.988 0.839
RCA 0.817 1.077 1.318

6.3 Discussion

Clot formation is a gradual process, requiring regions of trapped fluid for

platelet aggregation to occur. RT is a measure which is sought to identify regions

with trapped fluid, thus acting as a surrogate quantitative measure of the like-

lihood of clot formation. Since there is currently no universal definition of RT,

we proposed two intuitive definitions (RT1 and RT2) to quantify RT in a given

region of interest. Considering τ as the time that particles are inside the region

of interest, RT1 is the average of τ over the region of interest. Physically, this is

equivalent to the average in time that particles have been in a region of interest.

RT2 is calculated by averaging τ over the boundaries of the region of interest. This

can be interpreted as the average of the time that particles leaving the region of

interest, have been in that region. This measure reduces to RTx by reducing the

size of region of interest to a point and normalizing it with a characteristic length.

In that sense, RTx is a spatial comparative measure of RT at a point, which is

directly proportional to the inverse of the velocity norm.

In this study, a non-discrete method was formulated for RT calculations

using an Eulerian framework. A time-dependant advection-diffusion equation was

solved to compute RT1 or a control volume technique was used to compute RT2

based on boundary fluxes on the region of interest. As a result this method ac-

counts for diffusivity and in our experience requires less computational cost and

complexity compared to discrete methods. With the present approach, the same

numerical framework used in the flow solver can be used to calculate RT. Extend-

ing the proposed method to an FSI application with a moving domain will only

require including the referential domain velocity in the advective term, hence min-

imal implementation effort is required. The presented formulation is not based on
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the calculation of RT or exposure time in individual elements, hence this method

can be applied accurately to an anisotropic mesh with a wide range of element

sizes. We note that discrete methods have been used effectively in computing

Lagrangian coherent structures (LCS) derived from dynamical systems theory for

improved understanding of unsteady flow structures. Previous methods have used

LCS in the cardiovascular setting to characterize flow in aneurysms and for assess-

ing thrombotic risk [147, 148].

We have shown that local representation of RT is directly related to the local

velocity. RT2 was shown to be a lower bound for 2RT1 in steady non-diffusive flow,

however this relation also held for all unsteady cases we considered. Extension

of the presented proof to unsteady diffusive flows is left as a subject for future

studies. The applicability of this method was shown in a 2D recirculating flow and

two representative clinical scenarios, including multiple geometries associated with

a first stage single ventricle repair, and a coronary artery aneurysm in a Kawasaki

disease patient.

The FE framework used in this work for solving the advection-diffusion

equation requires stabilization that is standard to all FE methods for fluid. In

practice this translates to the accuracy of the solution, τ , that among other factors

depends on the mesh quality, time step size, and Peclet number. In the presented

formulation, τ typically lives in the same discrete space as velocity, linking its

numerical accuracy to the Navier-Stokes equations solution quality. In other words,

by reducing the mesh size and reducing the error of the Navier-Stokes solution

(which is the transport of momentum), the error of the advection-diffusion equation

solution also reduces (which is the transport of τ).

The main purpose of calculating RT is to identify recirculation regions that

trap fluid for extended times. Selecting a region of interest that contains a recir-

culation region produces locally high τ , leading to high RT1. The value of RT2,

on the other hand, is determined only by the flow through the boundaries, re-

gardless of the hemodynamic behavior within the domain. This indicates RT2 is

more sensitive to the selected region geometry and may not adequately capture a

recirculation region if Ωτ is not selected properly. Hence, although RT2 has the
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advantage of negligible computational cost, RT1 was found to be a more physically

consistent measure of RT. Likewise, RTx, which is calculated only based on local

quantities, fails to capture recirculation regions that depend on the global spatial

characteristics of the flow.

In this study we observed good correlation between WSS and RT1 in the

single ventricle example. This is consistent with previous in-vivo and experimental

studies, which reported an inverse correlation between WSS and RT [149, 150]. In

the MBTS, due to the unidirectional flow, there was a strong correlation between

RT1 and RT2, hence also between WSS and RT2. However, in the PA segment,

there were many structures in the flow and the flow direction changed with the

PDA/CS diameter. Hence the strong correlation between WSS and RT1 is less

obvious. This suggests high RT can also be directly linked to low WSS regions,

and hence either of these two parameters may be useful for evaluating a clinical

scenario. Since WSS and RT scale differently with vessel diameter, viscosity, and

the length of the region of interest, WSS and RT1 are not correlated in the two

different regions of interest considered in the first clinical scenario (Rtot is not close

to -1 in Figure 6.10). We observed this correlation in a single case study, hence

before any generalization this result must be confirmed by further studies in the

future.

In the third case study on Kawasaki disease, the proposed measures of RT

offer a promising means to obtain surrogates for thrombotic risk that could be used

to improve patient selection for anticoagulation therapy. The decision whether

to put a patient on anticoagulation medication is a serious one, particularly in

children. Our results have demonstrated that the proposed RT methods produce

smooth solutions with relatively modest computational effort.

Thrombus formation is a complex process, and recent advances in modeling

the chemistry of the coagulation cascade are highly promising [131]. However, there

remains a need for surrogates of thrombotic risk that can be obtained directly from

the flow field. Because RT1 measures the time that a fluid particle spends in a

given region, it may be a better surrogate for local platelet aggregation time than

RT2, which lacks those local information.
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Chapter 7

Optimization of Shunt Placement

In Chapter 1, we saw that the stage-one or Norwood procedure is performed

in children diagnosed with hypoplastic left heart syndrome and other single ven-

tricle conditions [3, 4]. These infants typically undergo a series of three surgical

procedures starting immediately after birth with stage-one palliation. In this pro-

cedure, performed within the first few days of life, a single functional ventricle is

committed to providing systemic perfusion, and the pulmonary blood flow is de-

rived from a shunt (so-called MBTS) between the brachiocephalic artery and the

PA (Figure 7.1).

In this circulatory arrangement, instead of being in-series, the systemic and

pulmonary blood flow are in parallel. It is of critical importance to maintain a

delicate balance in this parallel arrangement to provide sufficient blood supply to

both systemic and pulmonary circulation. Either too much or too little pulmonary

blood flow can lead to inadequate oxygenation [13, 14, 15]. Pulmonary flow rate

is directly linked to the MBTS geometry, which itself has a significant effect on

both cardiac output and OD [16]. MBTS diameter, which is typically between 3

to 4 mm, is chosen pre-operatively based on patient condition, weight, and other

clinical factors [151].

On the other hand, during cardiac diastole, when the coronary arteries are

perfused in normal subjects, in patients with the Norwood circulation, there is a

runoff of blood into the pulmonary arterial bed, leading to reduced coronary per-

fusion [13]. This steal of coronary perfusion by the shunt is due to the lower PVR,

149
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Figure 7.1: Schematic of Modified MBTS anatomy [1].

relative to systemic vascular resistance, and can lead to myocardial ischemia [14].

Thus, maintaining sufficient blood flow to the coronary arteries during diastole,

along with balanced flow between systemic and pulmonary beds, are critical to the

survival of these patients.

In this chapter, we systematically optimize several shunt geometric parame-

ters for clinically important variables, such as coronary and systemic OD. In doing

so, we must choose a suitable optimization method. Several methods have been

used in prior work for cardiovascular optimization. Adjoint methods has been

used to find the optimal anastomosis configuration in a coronary artery bypass

graph [152]. Sensitivity-based (i.e. gradient) optimization has been carried out

with steady and unsteady flows to study the effect of fluid constitutive model on

the optimal results [153, 154]. Also, numerical optimization has been used to im-

prove efficiency of blood pump design processes [155]. In this study, due to the

high computational cost of each multidomain simulation and a lack of objective

function gradient information, an effective derivative-free optimization algorithm,

called the Surrogate Management Framework (SMF), is used [156, 157, 158]. This
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framework has been previously applied to cardiovascular and single ventricle appli-

cations [31, 32]. The Norwood circulation represents an ideal substrate for appli-

cation of these methods, since they are non-intrusive and the problem has a larger

set of flexible design parameters. By optimizing for coronary OD, we attempt to

mitigate an important potential drawback of the MBTS procedure. An informal

survey of multiple clinical experts led us to define the following potential design

parameters to investigate in this study: shunt diameter, anastomosis locations of

the shunt on both the brachiocephalic and PA, and angles of attachment points.

This study thus explored primarily the influence of the shunt diameter, but also the

influence of the angle and attachment points, which had not been examined previ-

ously. As for the optimization targets, maximizing OD was of highest priority for

all experts. Optimizing for cardiac output and pulmonary-to-systemic flow ratio

were less important, and there was no real consensus on their target value. Hence,

in this study we concentrate on maximizing OD, while reporting other important

parameters noted by the clinicians such as cardiac output, pulmonary-to-systemic

flow ratio, and pressures of systemic and pulmonary sides.

The chapter is arranged as follows: We briefly review the optimization

algorithm and present the selected objective function formulations. Results of

the optimization with three objective functions, systemic OD, coronary OD and a

combination of the two, are presented. The shunt diameter, anastomosis locations

and angles are chosen as design parameters. The optimal geometry results are

compared to three standard shunt geometries that are commonly used in clinical

practice. The simulation results are verified by comparing them with the reported

results in the literature. Finally, we discuss implications of shunt placement for

coronary flow and OD, and present a brief sensitivity study.

7.1 Methods

The general optimization framework used in this chapter is shown in Fig-

ure 7.2. Starting with a set of shape design parameters, the shunt geometry is

analytically specified and automatically inserted into the rest of the model. The



152

dimensions of the rest of the idealized model are based on angiograms of a group of

typical stage one patients during catheterization exam. A multidomain simulation

is carried out to obtain the time dependant velocity and pressure inside the 3D

model. The objective function is calculated in a post-processing step from the sim-

ulation output. Based on the objective function values, the surrogate management

framework is used to obtain a new set of design parameters. This process contin-

ues until the design converges to an optimal value in the design space. The entire

algorithm, including model construction, mesh generation and coupled simulation,

is fully automated, which facilitates multiple function evaluations in a reasonable

time on a parallel computer.

The FE framework, described in Section 2.1, is used for discretization of

Navier-Stokes equations in space and time and obtaining the linear system of

equations. As described in Section 3.1.1, we make use of stabilized formulation

to prevent divergence due to the the presence of backflow (for example, the AA

coupled to the heart model will experience massive inward flow during systole).

The LPN used in this work is described in Section 2.4.4 and shown in Figure 2.11

(see Appendix B for LPN values). In these simulations, Neumann BC is imposed

at the AA. Also, for the mesh sensitivity study see Section 2.4.4 and for the model

construction techniques see Section 2.3.

The time step size for the 3D solver is set to 5 × 10−4 s. The non-linear

iterations are continued until the normalized residual is less than 5 × 10−4 or the

number of iterations exceeds 8.

7.1.1 Optimization method

The amount of systemic and coronary OD is a significant factor that should

be considered for determining the best shunt geometry. As detailed in Appendix

C, OD can be calculated using

OD(d) = Q̄s(d)Cao(d) = Q̄s(d)Cp −
VO2

Q̄s(d)

Q̄p(d)
, (7.1)

in which OD, VO2
, Qp, and Qs are the OD to the body, the oxygen consumption

by the body, blood flow to the pulmonary and systemic arteries. In Equation
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Figure 7.2: Overall framework for optimization.
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(7.1), except for VO2
and Cp, all other parameters are assumed to be a function

of the design parameters, d = {d1, d2, ..., dnd
} where nd is the number of design

parameters. Note, the systemic flow rate, Qs, includes the flow to the coronary

arteries.

Q̄i is the time average flow rate of the surface i in a cardiac cycle, and

Q̄i(d) =
1

T

∫ kT

(k−1)T

Qi(d, t)dt, (7.2)

where T is the cardiac cycle period and k is the number of simulated cycles. The

above should satisfy,

2 ≤ k ≤ kmax,
∣

∣

∣

∣

COk(d)− COk−1(d)

COk(d)

∣

∣

∣

∣

≤ ǫ, (7.3)

where kmax is the upper limit for the number of cardiac cycles to be simulated and

COk is the cardiac output of cycle k, i.e. COk = Q̄p + Q̄s. The values of kmax and

ǫ in Equation (7.3) are set to 5 and 0.1%, respectively. In most of the objective

function evaluations, the second constraint in Equation (7.3) is satisfied after 3 to

4 cycles.

Defining the objective function as the ratio of available oxygen to consumed

oxygen (or its inverse if J should be minimized), we can write,

1

J1(d)
=

OD(d)

VO2

=

(

Cp

VO2

− 1

Q̄p(d)

)

Q̄s(d). (7.4)

Similar to Equation (7.4), the objective function for coronary OD (ODcor), J2, can

be obtained from Equation (7.1) by replacing Q̄s with coronary flow rate, Q̄cor,

1

J2(d)
=

ODcor(d)

VO2

=

(

Cp

VO2

− 1

Q̄p(d)

)

Q̄cor(d). (7.5)

Using the following change of variables,

α(d) =
Q̄p(d)

Q̄s(d)
, (7.6)

Equation (7.4) can be rewritten as,

OD(d) =
CpCO(d)

1 + α(d)
− VO2

α(d)
. (7.7)
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The partial derivative of Equation (7.7) with respect to α is,

∂OD

∂α
=

Cp

1 + α

∂CO

∂α
− CpCO

(1 + α)2
+

VO2

α2
. (7.8)

Thus, using Equation (7.8) to maximize OD with respect to Q̄p/Q̄s, while keeping

CO fixed, gives,
Q̄p

Q̄s

∣

∣

∣

∣

opt

=

√

VO2
√

CpCO −
√

VO2

. (7.9)

From Equations (7.9) and (7.7),

√

CpCO =
√
OD +

√

VO2
. (7.10)

Equation (7.10) provides the relationship between CO and OD when the Q̄p/Q̄s

is optimum. In other words, this equation gives the minimum required theoreti-

cal cardiac output for delivering a certain amount of oxygen to the body for the

Norwood anatomy. One may rewrite Equation (7.9) based on (7.10) to obtain,

Q̄p

Q̄s

∣

∣

∣

∣

opt

=

√

VO2

OD
. (7.11)

Note that this equation is obtained provided Equation (7.10) holds and CO is fixed.

Hence, although cardiac output does not appear in this equation, the optimum

Q̄p/Q̄s is related to cardiac output via OD. Enforcing the condition Cs ≥ 0 leads

to OD ≥ VO2
, hence from Equation (7.11), the optimal Q̄p/Q̄s is always less than

one.

When choosing an optimization algorithm for this problem, there are sev-

eral considerations. First, each objective function evaluation in the optimization

routine corresponds to k cardiac cycle simulations of the coupled 3D-0D systems,

which is very costly (approximately 1 hour on a parallel 56 × 2.4 GHz proces-

sor machine). Second, gradient information for the coupled system is not readily

available, and using a finite difference method for obtaining the gradient of the

objective function is vulnerable to numerical errors. Finally, it is desirable to

choose an algorithm with a known mathematical convergence theory. With all of

these considerations, the surrogate management framework (SMF) was chosen for

optimization in this problem following our previous work [32, 157, 159].
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In the SMF algorithm, a Kriging surrogate function (see for example [157])

is constructed from the known objective function values. This function is updated

each time a new point in the parameter space is evaluated by doing a coupled

simulation. The SMF algorithm consists of two basic steps: a search and a poll.

In the search step, optimization is performed on the surrogate function to identify

minimizing points, with minimal computational cost. This step is done to improve

the convergence rate of the optimization algorithm toward the optimum point.

To mathematically ensure convergence, the poll step is performed, in which the

objective function is evaluated on a set of points in positive spanning directions

around the current optimum point. A set of positive spanning directions is defined

as a set of vectors for which none of the vectors in that set can be constructed by

non-negative combination of other vectors from the same set [160, 157].

We define a mesh in the parameter space with equal nodal distances, i.e.

homogeneous mesh size, which in this instance includes 11 nodes in each direc-

tion. The algorithm starts with a search step, and continues searching as long as

improved points are found. An unsuccessful search step, i.e. when a search step

fails to improve the objective function, is followed by a poll step, in which a set

of neighboring mesh points are evaluated. An unsuccessful poll step is followed by

parameter space mesh refinement, and another search step. Thus, the mesh size

is reduced when the current optimal point cannot be further improved by moving

in the positive spanning directions. Mesh refinement is performed until the user

defined refinement criteria (1/32 of the initial mesh size in this work) is achieved

and optimization is terminated, as shown in the last block of Figure 7.2.

If the poll step fails to identify an improved point, then the current best

point is a mesh local optimizer and the parameter space mesh is refined. As the

algorithm progresses, a series of successively finer meshes will be generated, each

producing a mesh local optimizer. It is the convergence of the series of mesh local

optimizer points that guarantees convergence to a local minimum of the function.

Using mesh adaptive direct search, the series of poll steps will generate a dense

set of poll directions, and this further strengthens the convergence of the method

for the case of constrained optimization. Please see [159, 32, 160, 161] for more
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details in this regard.

7.1.2 Parameterization

Starting with a set of design parameters, the solid model is constructed

using an automated script. The set of design parameters, which includes the shunt

diameter, the shunt anastomosis angles and locations, is shown in Figure 7.3.

The anastomosis angles between the shunt and both the PA and brachio-

cephalic artery (BA) can be decomposed into four angles, i.e. two angles for each

point A and B in Figure 7.3. Let us denote the position and tangent vectors of

the centerline of the branch I with, rI(s) and tI(s), where s ∈ [0, 1] is the non-

dimensional parameter that moves the point position and tangent vectors along

the vessel centerline. Given the position of the points A and B, i.e. rPA(sA) and

rBA(sB) a local coordinate system with unit vectors [ξ1, ξ2, ξ3] can be specified for

these two points,

ξ1 =
rBA(sB)− rPA(sA)

‖rBA(sB)− rPA(sA)‖
,

ξ2 =
tPA(sA)× ξ1
‖tPA(sA)× ξ1‖

,

ξ3 = ξ1 × ξ2. (7.12)

In the local coordinate system, the in-plane, θi, and out-of-plane, θo, angles for the

two points A and B are defined as,

θi,p = cos−1

(

ts(sp) · ξ3
‖ts(sp)‖

)

, p ∈ {A,B},

θo,p = cos−1

(

ts(sp) · ξ2
‖ts(sp)‖

)

, p ∈ {A,B}. (7.13)

where ts =
∂rs

∂s
is the tangent vector to the shunt centerline, shown by a dashed

line in Figure 7.3.

Using Equations (7.12)-(7.13), and given anastomosis angles and locations

as the optimization parameters, a 3D spline is analytically specified between points

A and B representing the centerline of the shunt. Based on the shunt diameter,

which is another optimization parameter, shunt segments are specified and a solid
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Figure 7.3: Shunt parameterization. Shunt diameter, two anastomoses locations
and anastomosis angle are used as the design parameters. Anastomosis angles at
each point are decomposed into two in-plane θi, and out-of-plane θo angles. The
extend of anastomosis points sliding path are shown (rPA(sA), sA ∈ [0, 1] for point
A and rBA(sB), sB ∈ [0, 1] for point B). In this figure, points A and B are at the
middle, i.e. sA = 0.5 and sB = 0.5.
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Table 7.1: The list of design parameters used in this study with their minimum
and maximum bounds.

Name symbol min max

shunt diameter Dsh 2.5 4.0
Out-of-plane angle between shunt-PA cot(θo,A) -1.0 1.0
PA and shunt anastomosis location sA 0.0 1.0
PA and shunt anastomosis location sB 0.0 1.0

representation of the shunt is created by lofting the segments together. The seg-

ments of the other branches are then loaded and their corresponding solid vessels

are created. A complete solid model is then created by unioning the shunt and the

rest of the vessels. Because the brachiocephalic and pulmonary vessel radii exceed

that of the shunt, we have not encountered problems with the union operation.

However, if the shunt is very skewed, it can intersect with the AA. When this

occurs, these models are thrown out (the corresponding point from the parameter

space is excluded from the objective function defined space) in the next stage.

This process is performed using a customized in-house version of the open source

Simvascular software package [70].

As shown in Table 7.1, the set of four design parameters used in this study

are: shunt diameter, out-of-plane angle of shunt-PA anastomosis, and two anasto-

moses locations, i.e. d = {Dsh, cot(θo,A), sA, sB} ∈
{[2.5, 4.0], [−1.0, 1.0], [0.0, 1.0], [0.0, 1.0]}, nd = 4. Note that rPA(sA), and rBA(sB)

are specified based on the two latter parameters. The distance between rPA(sA =

0) and rPA(sA = 1) along the PA is 26 mm, hence the distance of point A from

sA = 1 (in Figure 7.3 the point on PA behind the AA) can be approximated by

26 − 26sA in mm. Similarly, the distance between rBA(sB = 0) and rBA(sB = 1)

along the BA is 17 mm, hence the distance of point B from sB = 0 (in Figure 7.3

where BA is attached to the AA) can be approximated by 17sB in mm. Due to

surgical constraints and small effect of the other anastomosis angles on the objec-

tive function, θi,A, θi,B, and θo,B are not considered as design parameters and are

set to π/2.
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7.2 Results

7.2.1 Systemic OD objective function

The first case we consider is an optimization to find the minimum of J1

(Equation (7.4)). The results show that the shunt diameter has the most significant

effect on the objective function, i.e. the changes in J1 with the shunt diameter are

higher than changes due to the anastomosis angle or locations.

The numerical error in the objective function is proportional to changes

in the objective function. So to isolate the effect on the objective function from

changes in the shunt diameter versus changes in the anastomosis angle or loca-

tions, three separate optimizations are performed. First, we perform optimization

with respect to the shunt diameter to estimate the globally optimal shunt diam-

eter. Second, keeping the optimized shunt diameter fixed, we optimize for the

anastomosis angle and locations, i.e. d = {cot(θo,A), sA, sB}. Third, we set the

anastomosis angle and locations to the optimized values from the previous step,

and perform optimization for the shunt diameter to check that the new optimal

shunt diameter is close to the first optimal result.

The history of the objective function versus number of function evalua-

tions is shown in Figure 7.4-(a). In this optimization, the design parameters are

anastomosis angle and locations, with shunt diameter fixed to 3.2 mm.

From the objective function history in Figure 7.4-(a), the optimum PA out-

of-plane anastomosis angle (θo,A) is 76◦, the distance between point A and the

point behind AA (sA = 1 in Figure 7.3) is 23 mm, and the distance between point

B and the aortic arch (sB = 0 in Figure 7.3) is 2 mm. Hence, the optimum shunt

to BA anastomosis location is close to the aortic arch. The optimum shunt to PA

anastomosis is inclined toward the right PA, which sends more shunt flow to the

right PA.

Having the optimum anastomosis angle and locations, the next optimization

is done with respect to the shunt diameter. The value of the objective function at a

fixed anastomosis angle and locations, J1
∣

∣

θo,A,rPA(sA),rBA(sB) , versus shunt diameter

is plotted in Figure 7.5. The fixed parameters are equal to the optimal values
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Figure 7.4: Reduction in objective functions versus the optimization history.
The set of parameters shown next to each optimal point are design parameters,
d = {cot(θo,A), sA, sB}. (a) J1 optimization history. The shunt diameter is fixed to
3.20 mm in this optimization. (b) J2 optimization history (0.045J2 is plotted here).
The shunt diameter is fixed to 3.41 mm in this optimization. (b) J3 optimization
history. The shunt diameter is fixed to 3.36 mm in this optimization.

obtained from the previous optimization.

This final optimum geometry is shown in Figure 7.6-(a). At the optimum

point, Dsh = 3.25 mm, the ratio of OD to oxygen consumption by the body is

1/J1 = 3.72. From Equation (7.10) the minimum required theoretical cardiac

output for this amount of OD is 2.04 L/min. This cardiac output, which occurs at

Q̄p/Q̄s = 0.519, is 4.8% less than the CO corresponding to J1 (from simulation),

which occurs at Q̄p/Q̄s = 0.814. Clearly using a shunt that provides Q̄p/Q̄s =

0.519 will lead to a CO much less than 2.04 L/min, due to the direct relation

between pulmonary resistance and cardiac output [16]. Hence, the optimal Q̄p/Q̄s

is shifted toward a higher value, which leads to higher OD resulted from a higher

CO (Equation (7.7)). This shows the impact of the relation between CO and

Q̄p/Q̄s on the optimal result. Depending on the physiologic response of the heart

to the downstream resistance, deriving Equations (7.9) to (7.11) while neglecting

that relation, produces an unrealistic outcome.

In Figure 7.4-(a), J1 for the worst combination of anastomosis angle and

location is 1.8% higher than the best combination, while in Figure 7.5, J1 for

the worst shunt diameter is 6% higher than the optimal diameter. This shows

the higher impact of shunt diameter on J1 compared to the three other design

parameters combined. Considering a 10% variation of J2 in Figure 7.5, this figure
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Figure 7.5: Variation of objective function versus the shunt diameter while fixing
the other design parameters, i.e. {cot(θo,A), sA, sB} = 0.25, 0.1, 0.11.

implies higher impact of shunt diameter on J2 (coronary OD) compared to J1

(systemic OD).

7.2.2 Coronary OD objective function

Following the procedure of the previous section, a shunt diameter of 3.41

mm was found to be optimal for coronary OD. The time history of this optimization

is shown in Figure 7.4-(b). The best set of design parameters, i.e. anastomosis

angle and locations, are shown in this figure.

As shown in this figure, the optimal set of design parameters is found early

during optimization and remaining attempts to decrease J2 failed. The optimum

PA out-of-plane anastomosis angle (θo,A) is the same as before, i.e. 76◦, while the

optimum shunt and BA anastomosis location is far from the aortic arch and the

optimum shunt and PA attachment point is closer to the middle of the PA. The

distance between point A and the point behind AA (sA = 1 in Figure 7.3) is 14

mm and the distance between point B and the aortic arch (sB = 0 in Figure 7.3)

is 9 mm. This optimized geometry is shown in Figure 7.6-(b).
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(a) (b)

(c) (d)

Figure 7.6: The time-averaged WSS over a cardiac cycle for: (a) The optimal
geometry for systemic OD, J1. (b) The optimal geometry for coronary OD, J2. (c)
The optimal geometry for combined systemic and coronary OD, J3. (d) The stan-
dard geometry with a shunt diameter of 3.5 mm (the typical post MBTS surgery ge-
ometry). The two optimal geometries are optimized for the Dsh, cot(θo,A), rPA(sA),
and rBA(sB).
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7.2.3 Combined objective function

To obtain a design that will balance the two competing objectives discussed

above, we now consider a case in which we optimize for a combined objective

function. Despite the fact that J1 and J2 are normalized values, they have different

physical meanings and numerical values, and can not be simply added together

without devising a proper method. A popular method is to use a weighted sum

of J1 and J2 with different weight factors. Here, the minimum values of J1 and J2

are used as weighting factors, to obtain similar magnitude contributions from both

objective functions in the combined objective function J3. Hence, the combined

objective function is defined by,

J3 =
J1
J1opt

+
J2
J2opt

, (7.14)

where J1opt and J2opt are the optimal values of J1 and J2, found from our previous

optimizations (i.e. 0.26866 and 3.7717), respectively. Physically, this definition

leads to an optimal geometry that equally weights the importance of both systemic

and coronary OD.

Analogous to the previous cases, a new optimization has been performed

with this new objective function. The objective function history is shown in Figure

7.4-(c). From an initial optimization, the shunt diameter is fixed to 3.36 mm in

this optimization. This diameter was found to be the final optimal shunt diameter

for J3. The optimum PA out-of-plane anastomosis angle (θo,A) is 104
◦, the distance

between point A and the point behind AA (sA = 1 in Figure 7.3) is 11 mm, and

the distance between point B and the aortic arch (sB = 0 in Figure 7.3) is 4

mm. In comparison with the two previous optimal geometries, the optimal shunt

diameter and BA anastomosis point for J3 are between the two former ones. The

final optimized geometry is shown in Figure 7.6-(c).

7.2.4 Comparison of Results

To contrast the differences between the pre- and post-optimization results,

a set of standard shunt geometries are considered along with the two optimal

geometries identified in the previous sections. For the standard geometries a
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Figure 7.7: The pressure-volume loop of the single ventricle for the standard
geometries with 3.0, 3.5, and 4.0 mm shunt.

set of typical design parameters is used for anastomosis angle and locations: an

anastomosis angle of π/2 to produce a straight shunt, a PA anastomosis loca-

tion in the middle of the PA and a BA anastomosis close to the aortic arch, i.e.

{cot(θo,A), sA, sB} = 0.0, 0.5, 0.18. Three shunt diameters, 3.0, 3.5, and 4.0 mm

are selected for the standard geometries. Note that these are currently the only

clinically available diameters that shunt grafts are fabricated in. The anatomy

with a 3.5 mm shunt is shown in Figure 7.6-(d).

As found in previous work, the shunt resistance affects the total vascular

resistance, which in turns affect the cardiac output [16]. To more clearly see this

effect, the pressure-volume loop of the single ventricle chamber is shown in Figure

7.7 for the three standard geometries.

A large shunt diameter leads to decreased total vascular resistance, which

results in higher cardiac output. This is deduced from Figure 7.7 by comparing the

stroke volume, Vmax−Vmin. The peak ventricular pressure of the implemented heart

model, on the other hand, does not seem to be a function of vascular resistance.

The area inside the pressure-volume loop shows that an increase in the shunt
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Table 7.2: Comparison between the three optimized (J1, J2, and J3) and three
standard geometries (S1 to S3). dA is the distance between point A and a point
on PA behind the AA, i.e. sA = 1 in Figure 7.3. dB is the distance between point
B and the aortic arch, i.e. sB = 0 in Figure 7.3. η is the efficiency defined as the
ratio of AA energy flux to the sum of all other branches energy fluxes. Q̄cor, Q̄s,
Q̄p, and CO are coronary, systemic, pulmonary, and AA (cardiac output) average
flow rates, respectively. Sats and Satao are the percentage oxygen saturations in
the systemic veins (weighted average of superior and inferior vena cava) and aorta,
respectively. OD and ODcor are the systemic and coronary OD, respectively.
∗
Sats=100 Cs

1.34Hb

Parameter Unit J1 J2 J3 S1 S2 S3

Dsh mm 3.25 3.41 3.36 3.00 3.50 4.00
dA mm 23.0 14.0 11.0 13.0 13.0 13.0
dB mm 2.0 9.0 4.0 3.0 3.0 3.0
η % 47.8 45.1 47.2 49.0 44.4 40.8

Q̄cor mL/min 83.1 81.2 82.7 85.4 79.6 74.1
Q̄s L/min 1.18 1.12 1.16 1.21 1.11 1.02
Q̄p L/min 0.96 1.08 1.01 0.88 1.12 1.33
CO L/min 2.14 2.20 2.17 2.09 2.23 2.35

Q̄p/Q̄s - 0.81 0.97 0.87 0.73 1.00 1.30
Sat∗s % 53.9 55.5 54.7 52.1 56.2 57.6
Satao % 73.7 76.4 74.8 71.4 77.1 80.1
OD mLO2

/s 3.25 3.20 3.25 3.23 3.22 3.07
ODcor mLO2

/s 0.229 0.232 0.232 0.228 0.231 0.223

diameter leads to increased heart load.

The important physiological parameters for the three optimized geometries

and the three standard geometries (S1 to S3) are presented in Table 7.2.

Table 7.2 shows that, as expected, the optimum geometry when considering

systemic OD as the objective function, has the highest OD compared to the other

cases, but it has lower coronary OD compared to the J2 case and the 3.5 mm shunt

case. The smaller shunt diameter outperforms the bigger shunt diameters in terms

of systemic OD, while in terms of coronary OD the 3.5 mm shunt is better than

the 3.0 mm shunt. This is in agreement with the optimization results, where the

J1 optimal shunt diameter is smaller than the J2 optimal shunt diameter. This

smaller shunt increases the average pressure in the aorta, which increases coronary

flow rate. Hence, coronary perfusion is slightly higher for J1 compared to J2.
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However, the total coronary OD, as expected, is higher for J2 compared to J1,

due to the higher aortic oxygen saturation. It is interesting to see that the third

optimization (J3) has produced a geometry for which the OD to the systemic and

coronary arteries is (up to the reported significant digits) the same as the J1 and

J2 optimal geometries, respectively. For this geometry, the values of Q̄p, Q̄s, and

Q̄cor (hence Q̄p/Q̄s, Sats, and Satao) are between those of J1 and J2. However, the

combination of these parameters has produced the same optimal OD as J1 and

the same ODcor as J2. This results suggest that an optimal geometry for systemic

OD can be altered to obtain a higher coronary OD without significantly hindering

systemic OD.

Despite the fact that the intrinsic resistance has an inverse relationship with

the shunt diameter, the efficiency, which is defined as the ratio of input to output

energy flux, has an inverse relationship with the shunt diameter or the shunt flow.

This is because highest energy dissipation occurs in the shunt and at the two

anastomoses points. This is clearly shown in Figure 7.8. In this figure the sum of

dynamic and static pressures in Bernoulli’s equation is plotted across a slice in the

shunt for the two optimal geometries (J1 and J2). At the BA anastomosis, flow

must change direction to enter the shunt and accelerate to a much higher velocity,

and this is concurrent with a significant reduction of total pressure (approximately

15 mmHg). This is also the case for the impinging jet produced by the high flow

velocity coming from the shunt to the PA that reduces the total pressure by 30

mmHg.

Compared to the previous study [25], in which MBTS hemodynamics was

studied using a multidomain approach, in this work a new implicit method for

coupling the LPN with the 3D domain is developed. The results from these two

studies are compared for verification purposes. Previously reported results from

[25] are shown in Table 7.3 (R1 to R3) along with results from Table 7.2 (S1 to

S3). Considering the differences between the 3D solvers (FE versus finite volume),

LPN, meshes, numerics, and geometries compared to the previously reported cases,

differences in results of corresponding anatomies are within acceptable limits. Both

sets of cases show similar trends for Qs, Qp, CO, etc. versus the shunt diameter.
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(a) (b)

Figure 7.8: Total pressure (1 mmHg = 133.3 Pa) in the shunt for: (a) the optimum
geometry for systemic OD and (b) optimum geometry for coronary OD.

Table 7.3: Comparison between the three standard geometries from the current
study (S1 to S3) and previously reported values (R1 to R3) from [25]. See Table
7.2 for the parameters definitions.

Case Dsh Q̄cor Q̄s Q̄p CO Q̄p/Q̄s

S1 3.00 0.0854 1.21 0.88 2.09 0.726
R1 3.00 0.082 1.234 0.889 2.123 0.720
S2 3.50 0.0796 1.11 1.12 2.23 1.004
R2 3.50 0.076 1.136 1.139 2.275 1.003
S3 4.00 0.0741 1.02 1.33 2.35 1.302
R3 4.00 0.071 1.059 1.328 2.387 1.254
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Table 7.4: Sensitivity of the optimal results to the design parameters. J2 is the
base geometry and four other geometries (U1 to U4) are considered for sensitivity
analysis. θo,A is out-of-plane angle between the shunt and PA in degrees (see Figure
7.3). See Table 7.2 for the definition of other parameters.

Parameter Unit J2 U1 U2 U3 U4

Dsh mm 3.41 3.50 3.41 3.41 3.41
dA mm 14.0 14.0 12.0 14.0 14.0
dB mm 9.0 9.0 9.0 7.0 9.0
θo,A ◦ 76.0 76.0 76.0 76.0 90.0
η % 45.1 44.6 45.6 46.2 44.6

Q̄cor mL/min 81.2 80.2 81.1 80.9 79.7
Q̄s L/min 1.12 1.11 1.13 1.13 1.11
Q̄p L/min 1.08 1.11 1.06 1.05 1.11
CO L/min 2.20 2.22 2.19 2.19 2.22

Q̄p/Q̄s - 0.97 0.99 0.94 0.93 1.00
Sat∗s % 55.5 55.9 55.2 55.2 55.9
Satao % 76.4 76.9 75.9 75.8 77.0
OD mLO2

/s 3.20 3.20 3.20 3.22 3.19
ODcor mLO2

/s 0.232 0.231 0.231 0.230 0.230

To quantify sensitivity of the optimal results and relative significance of the

design parameters, four extra simulations are performed. In each of these, only one

of the design parameters is changed by a small increment, to isolate its effect from

the others. The optimal geometry for the J2 case is a baseline for this study. The

value of parameters used for each simulation and the results are shown in Table

7.4.

Results of Table 7.4 confirm that the second optimization has converged to a

local optimum, because cases U1 through U4 have produced lower ODcor compared

to the J2 case. Considering the magnitude of design parameters changes, changes

in OD and ODcor are minimal compared to the shunt diameter and the PA-shunt

anastomosis location. This can be explained by considering the insignificant 2.5%

difference in the shunt diameter, when comparing the U1 and J2 cases. Also,

moving the shunt-PA anastomosis point along the PA (case U2 versus J2) mainly

changes the flow distribution to the right PA and left PA, and has a minor effect

on the OD. The aortic flow steal effect is deducible from U3 case results, in which

the BA-shunt anastomosis point has moved toward the aorta compared to the J2
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Figure 7.9: The effect of the shunt-PA anastomosis angle on the flow streamlines.
For J1 and J3 due to the slight out-of-plane angle, there is helical streamlines, while
for the U4 anatomy, the shunt is perpendicular to the PA and there is a rapid change
in the flow direction.

geometry. In this case, Q̄cor is lower and the systemic OD has increased, compared

to the J2 case. Considering the U4 case and all other optimal geometries (J1 to J3),

all optimal geometries have a shunt that is connected to the PA with a moderate

angle, and U4, which has a perpendicular shunt to the PA, has the lowest OD

and ODcor among all cases in Table 7.4. As shown in Figure 7.9, helical vortices

are generated inside the PA for moderate shunt angles (optimal geometries), while

there is a sudden 90◦ change in the direction of flow for a shunt perpendicular to the

PA (case U4). Also, the shunt length is directly related to the anastomosis angle

and is shorter for a straight shunt. Hence, the U4 anatomy with 90◦ anastomosis

angle has a lower pulmonary resistance and higher Q̄p. The results of this case

are very similar to the U1 case, in which shunt diameter is higher than in the J2

anatomy.

The time-averaged pressure and volume-rendered velocity contours of the

two first optimized geometries are shown in Figures 7.10 and 7.11, respectively.

The time traces of outlet pressures and flow rates are also plotted for each outlet

in mmHg and cm3/s, respectively. The solid lines in the plots correspond to J1, i.e.
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the optimum case for systemic OD, and the dashed lines in the plots correspond

to J2. The presence of capacitors coupled to the boundaries of the 3D domain,

which models distensibility of the vessels, has produced pressure oscillation at the

outlets. Comparing the time traces of pressure and flow rate, the highest differences

in pressure and flow rate correspond to the right common carotid artery (RCCA)

and left PA outlets.

By moving the BA-shunt anastomosis point from the proximal position (J1)

of RCCA to the distal position (J2), the flow to the RCCA has reduced, specifically

at peak flow. This is because in the J1 anatomy, most of the blood to the shunt

is supplied directly from the aorta and there is no significant pressure drop in the

proximal part of the BA (where the RCCA is attached to the BA). On the other

hand, since the blood to the shunt, which is approximately half of the cardiac

output, must pass through the BA for the J2 anatomy, velocity and dissipation

are high, both leading to a lower pressure in the proximal part of the BA for this

anatomy. This reduces the blood flow and pressure of the RCCA branch.

Since the shunt diameter is smaller for J1 compared to J2, the average

shunt flow is lower (see Table 7.2). This lower shunt flow is compensated for in

the right PA by changes in attachment angle between the shunt and the PA in J1

compared to J2. As a result, both have almost the same average flow rate and

pressure. But for the left PA, these two effects, i.e. lower shunt flow rate and angle

of attachment between the PA and the shunt, both decrease the flow rate. This

significant reduction in blood flow reduces the left PA pressure as well.

7.3 Discussion

Automated shape optimization was performed using a fully coupled mul-

tidomain approach. This extended previous work using an LPN for the stage-one

simulation performed in [25, 26] by considering additional geometric variables and

using a systematic design optimization algorithm. The shunt diameter, anastomo-

sis angle and locations are optimized by allowing for automated parameterization

and insertion of different grafts into the model. A derivative-free optimization al-
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Figure 7.10: Time-averaged pressure contours of the J2 and J1 geometries. Pres-
sure time variation of outlets are plotted in mmHg (1 mmHg = 133.3 Pa). The
solid line in these plots corresponds to the systemic OD optimum geometry (right)
and the dashed line corresponds to the coronary OD optimum geometry (left).
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Figure 7.11: Volume rendered time-averaged velocity magnitude of the two op-
timum geometries. Flow rate variations of each output are plotted in cm3/s. The
solid line in these plots corresponds to the systemic OD optimum geometry (right)
and the dashed line corresponds to the coronary OD optimum geometry (left).
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gorithm with known convergence theory was coupled to the flow solver to explore

the shunt design space.

In Equations (7.4) and (7.5) the value of the objective function depends on

the flow rate, and hence on the total cardiac output. Therefore, it is essential to

have a multidomain model for MBTS optimization that can predict the behavior of

the heart in order to provide a more accurate perspective about the physiological

responses of patients to different surgical options. This has been accomplished in

this study through the coupling of the 3D domain to the LPN of the heart, thus

predicting the variation of cardiac output and producing a more realistic result.

Neglecting the relationship between cardiac output and shunt geometry can lead

to results that are clinically unexpected. Considering Equation (7.11), which has

been found based on a fixed cardiac output assumption, and setting OD to a

typical value of 3.5VO2
= 3.06mLO2

/s produces Q̄p/Q̄s = 0.572, which is lower

than what is produced by typical shunts. By adopting the multidomain approach,

comparing the numerical optimization with the theoretical optimum keeping CO

fixed, we saw that the dependence of CO on shunt geometry shifts the optimal

Q̄p/Q̄s to a higher value (i.e. closer to 1.0). This is because the larger shunt allows

Q̄p to approach unity with Q̄s, leading to higher cardiac output and better OD. It

is worth mentioning that the same optimization without a multidomain approach,

(i.e. with a fixed cardiac output and Windkessel model [29] for the outlets) would

produce a shunt diameter of less than 3.0 mm, which is highly inconsistent with

the range of shunt diameters commonly in use by the surgical community.

Our results show that a shunt that is attached to the BA close to the aorta

functions better at delivering oxygen to the systemic arteries than to the coronary

arteries. This can be explained by considering that a shunt close to the aortic arch

can exacerbate the siphoning of aortic blood into the pulmonary circulation during

diastole, which in turn, diminishes flow into the coronary arteries. On the other

hand, the optimal geometry for coronary OD had a BA-shunt anastomosis point

further from the aortic arch compared to the BA-RCCA anastomosis. This caused

a significant reduction in RCCA flow, which in turn improves coronary perfusion by

reducing the diastolic runoff into the shunt from the aorta. Consequently, despite
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the fact that the optimal coronary OD geometry has a larger shunt compared to the

optimal systemic OD geometry, the coronary perfusion is almost the same (Figure

7.11). The larger shunt in the J2 anatomy, on the other hand, has increased the

pulmonary flow rate, which has increased aortic saturation and coronary OD.

Optimization with a combined objective function, i.e. J3, showed that it is

feasible to find an intermediate geometry that has an OD to systemic arteries very

close to J1 and OD to the coronary arteries very close to J2, hence achieving the

best of both optimal anatomies in a single anatomy. This was possible because the

decrease in systemic perfusion was compensated by increase in aortic saturation,

when comparing J3 with J1; and lower aortic saturation was compensated by higher

coronary perfusion, when comparing J3 with J2.

All the optimal anatomies have a shunt that is connected with a tilt and

slight shift apart from the center line of the PA. Comparing this with a shunt

perpendicular to the PA, the flow in the latter geometry has a sharp turn in

anastomosis point, while helical streamlines are observed inside the PA for the

former optimal geometries.

Since the shunt diameter is only clinically available in discrete sizes, a set of

simulations was done with the postoperative anatomy using those available shunt

sizes. The results show that pulmonary perfusion, oxygen saturation in the aorta

and systemic veins, and cardiac output are directly related to the shunt diameter,

while systemic perfusion and efficiency are inversely proportional to the shunt

diameter. The relationship between these parameters and the shunt diameter can

be explained by the changes in the total pulmonary resistance, i.e. the sum of

the pulmonary bed and the shunt resistances. Higher total pulmonary resistance

reduces pulmonary flow and allows for a higher portion of cardiac output to be

delivered to the systemic and coronary arteries. The decrease of the pulmonary

blood flow reduces PA oxygen saturation, since VO2
and Cp are fixed. Since the PA

and aorta have the same saturation in the MBTS anatomy, the aortic saturation

decreases, which reduces systemic veins saturation in the studied cases. This occurs

because the decrease in aortic saturation for a smaller shunt is dominant compared

to the increase in systemic flow rate.
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In quantifying OD to either the systemic or coronary arteries, the same

monotonic relationship to the shunt diameter is no longer valid. Among the three

simulated shunt diameters, the 3.0 mm shunt has the highest systemic OD, but

this trend is not expected to continue with decreasing shunt diameter. Of the two

parameters that contribute to the OD, the systemic blood flow, in contrast to the

aortic saturation, decreases with increasing shunt diameter, and the maximum OD

occurs in a midrange shunt size. The simulation results of the two optimized and

three standard geometries therefore show that a smaller diameter results in better

systemic OD.

The results from this work confirm previous findings that shunt diameter

has the largest impact on system dynamics in the MBTS anatomy [19]. Most

in the surgical community currently make decisions based on shunt size alone,

forming a relatively straight connection between the brachiocephalic and the right

PA. However, this work highlights the fact that the location of shunt placement

and it’s anastomosis angles also have impact on clinically important parameters.

While still not as important as the shunt size, these additional factors are shown

to have potential importance for ensuring adequate coronary flow.

There is an additional rigid wall assumption in this study, however there are

several justifications for this assumption. Firstly, the distensibility of the branches

is partially accounted for by inserting a capacitor next to the all outlets. Secondly,

the aim of this work is optimization, in which we compare among a set of different

geometries. Since there is only variation in shunt geometry, which is very stiff, the

resulting error should be minimal. Thirdly, doing an FSI simulation requires addi-

tional assumptions about the wall properties, thickness, and constitutive equation,

thereby introducing additional uncertainty to the simulations. Fourthly, as we

will show in the next chapter, distensible wall compared to rigid wall assumption

has little effect on the flow distribution and pressure tracings. Since the multido-

main simulation results, hence optimization results, solely depends on these two

parameters, the effect of a rigid wall assumption on the results is presumed to be

minimal.

Due to the physical constraints of commercially available shunt sizes used
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in surgery, there is a limitation in implementation of an absolute optimal shunt

geometry. However, this study suggests a potential benefit if a greater range of

shunt diameters could be manufactured.

The choice of optimal shunt size may also be a function of patient specific

parameters such as weight. Additional clinical studies are warranted to collect

the appropriate data on geometry and LPN parameters as a function of patient

condition.

Like other non-convex optimization methods, the method used in this work

only guarantees convergence to a local minimum of the objective function. The

only way to guarantee global optimization of a non-convex function is for a method

to evaluate every point in the design space, which is infeasible for the current

computationally expensive problem.

Acknowledgements

We gratefully acknowledge Dr. Jeffrey A. Feinstein, Dr. Vishal Nigam, and

Dr. Adam Dorfman for their valuable assistance regarding objective function and

design parameters selection.

This chapter, in full, is a reprint of the material as it appears in Opti-

mization of shunt placement for the Norwood surgery using multi-domain model-

ing in Journal of Biomechanical Engineering, 134(5), 051002, 2012. Authors are

M. Esmaily-Moghadam, F. Migliavacca, I. Vignon-Clementel, T-Y. Hsia, and A.

Marsden. The dissertation author was the primary investigator and author of this

paper.



Chapter 8

Simulations of Multiple

Systemic-to-pulmonary

connections

Neonates have a natural systemic-to-pulmonary connection through the

PDA which normally closes after birth. Shunt placement introduces a new systemic-

to-pulmonary connection in stage one surgery, however subsequent graft failure can

be caused by thrombus formation, blocking the pulmonary circulation leading to

hypoxia and sudden death [14]. Because of these significant risks, some institu-

tions have used multiple shunt insertion to supply the PA from more than one

source [44, 45]. In these cases, in addition to inserting a MBTS between the bra-

chiocephalic artery and the right PA, the PDA may be kept open or a CS may

be inserted between the PA and the aorta. This practice has been motivated by

the perceived need for a spare connection that can prevent total blockage of the

pulmonary circulation in the case of shunt blockage due to thrombosis. While this

concept appears at the outset to have little downside, we hypothesize that there

are are several potentially negative implications of multiple shunts that may lead

to undesirable hemodynamics. In this chapter we hypothesize that multiple shunts

are unfavorable because 1) flow competition between the two shunts may increase

the risk of thrombus formation, and 2) pulmonary over-circulation may reduce OD.

We tested the above hypothesis by comparing two sets of surgical inter-

178
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ventions in simulations: anatomies with single and multiple shunts. In Chapter 7,

anatomies with a single MBTS have been studied using multiscale approach. Prior

multiscale studies have described the effects of shunt diameter on pulmonary and

systemic saturations, pulmonary-to-systemic flow rates, OD, cardiac output, and

other clinically relevant parameters, but have not compared surgical approaches

with single versus multiple shunts [16, 19, 80, 86, 25]. Here, we compared surgi-

cal approaches by generating parameterized 3D models with single and multiple

shunts. We systematically varied the PDA diameter to span a wide range of val-

ues, resulting in dramatic variation in total pulmonary resistance, leading in turn

to global changes in the circulatory system. This situation exemplifies the need

for multiscale modeling, which allows one to capture the coupled dynamics of the

vascular system in a closed loop as the 3D anatomical model is modified. Follow-

ing the framework introduced in Chapter 2, a LPN is coupled to a 3D flow solver,

generating BCs that capture the physiologic response to anatomical changes. Ad-

ditionally, to explore the validity of our rigid-wall assumption, a FSI simulation

was also performed, representing an advance over prior studies which primarily

used open loop configurations and/or rigid wall assumptions.

By automatically parameterizing shunt geometries in the 3D model, we con-

sidered a range of PDA and CS diameters, PVR, and MBTS positions. In total,

we compared 23 cases by quantifying OD, pulmonary-to-systemic flow ratio, car-

diac output, heart load, and oxygen saturation in systemic and pulmonary arteries

and veins. Though we did not directly model the complex biochemistry of the

thrombus formation process, we compared WSS, WSS gradients (WSSG), oscilla-

tory shear index (OSI), and RT in segments of the PA and MBTS as surrogates

for thrombotic risk. Recirculation regions are associated with high RT, which in

combination with high shear stress history may increase the risk of thrombus for-

mation [37]. The new non-discrete method that was introduced in Chapter 6 is

used for measuring RT. Modeling incorporated realistic patient data and clinically

realistic values, and performance of surgical scenarios with single versus multiple

shunts was compared using the above metrics of thrombotic risk and physiologic

response.
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8.1 Methods

The model construction process and simulations methods are fully described

in Section 6.2.2. Anatomies with five PDA diameters were considered, 0.0 mm (no

PDA), 2.0 mm, 3.5 mm, 4.0 mm, and 5.0 mm. In total, 10 different anatomies

were constructed, including these five PDA diameters along with a 3.5 mm prox-

imal or distal MBTS. To compare post-stage one and pre-stage two conditions,

20 simulations were performed, coupling each of the 10 models to an LPN with

normal and high PVR. In addition, 3 cases with CS diameters of 2.0, 3.0, and 4.0

mm were studied, using high PVR and a proximal MBTS.

The multidomain formulation (Chapter 2), the backflow stabilization method

(Section 3.1.1), bi-partitioned and preconditioning methods (Chapter 6), and sorted

data structure (Chapter 5) techniques were employed for multidomain simulations.

A rigid wall assumption was used, since, as discussed in Section 8.2, the effect of

wall distensibility on the solution was shown to be negligible. The LPN shown in

Figure 2.11 was adopted. Connecting a capacitor directly to the AA can cause

non-physiological regurgitant flow at the AA inlet. Therefore, our model directly

connected the AA to a diode, and the eliminated capacitor was distributed over

the rest of the domain to obtain a physiological pressure oscillation between systole

and diastole (see Appendix B for the LPN values).

The total excessive blood volume in the LPN was preserved temporally to

improve cyclic convergence and accuracy, using

P (t)← P (t) +
V (0)− V (t)

C ·C C, (8.1)

V (t) = C · P (t), (8.2)

where P (t), C, and V (t) are pressures in the capacitors, capacitance values, and

the total blood volume in the LPN, respectively. For the heart chambers, C
HC

was

set to 1 and P
HC

was set to its volume. Note that the inner product of Equation

(8.1) with C produces the initial total blood volume, V (0).

The Eulerian approach developed in Chapter 6 is adopted to obtain a mea-

sure of RT, in which the exposure time inside the region of interest is calculated by

solving an advection-diffusion equation [127]. Hence, the RT and flow calculations
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were performed concurrently by solving an extra scalar equation. Here, the first

measure of RT is calculated for all simulations using Equation (6.9).

For fluid flow simulations, non-linear iterations continued until the nor-

malized residual was less than 5 × 10−4 or the number of iterations exceeded 8.

Reducing the residual below 5 × 10−4 did not have any significant effect on the

results. WSS, WSSG, OSI, and OD are calculated as a post-processing step using

the formulation presented in Appendices D and C.

8.2 FSI simulation of the MBTS anatomy

To evaluate the effect of wall distensibility on the results reported in this

chapter as well as Chapters 7 and 9 simulations results, flow in a model with

a 3.5 mm single proximal MBTS was simulated using both rigid-wall and FSI

formulations. For the FSI simulation, the wall was modeled as a nonlinear St.

Venant-Kirchhoff elastic solid, allowing for large deformation [162]. To prevent

oscillation of the structure and include the effect of surrounding tissues, a damping

term was added to the formulation [163]. Different material properties were used

for the MBTS and the rest of the vasculature. The MBTS was modeled as a Gore-

Tex conduit with density of 3.3 g/cm3, Young’s modulus of 4× 109 g/(s2cm), and

Poisson’s ratio of 0.49 [164]. In all other vessels, density, Young’s modulus and,

Poisson’s ratio were 1.06 g/cm3, 5×107 g/(s2cm), and 0.49, respectively [165, 164].

The closed-loop LPN described in Section 2.4.4 was used to prescribe inlet and

outlet BCs for the FSI simulation, with identical parameter values. Since blood

can accumulate in the 3D geometry due to vessel expansion, the total excessive

blood volume was corrected at the beginning of each cardiac cycle, using Equation

(8.2).

Variable wall thickness was calculated following the method proposed in

[166, 164]. Using this method, the wall thickness at the inlet and outlets was as-

sumed to be 10% of the vessel diameter. To obtain the interior thickness, a Laplace

equation was solved with the inlet and outlet thicknesses imposed as Dirichlet BCs.

The solution of the Laplace equation, a scalar field, was used to prescribe the local
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thickness (Figure 8.1). Using the thickness at each nodal point and the normal

vector to the wall, triangular surface elements were extruded to generate wedge

elements. In this manner, the fluid and structure meshes match at the interface

and the solid domain is three dimensional, with stress and strain varying within

the vessel wall. To prevent overlapping wall elements at the corners, thickness was

reduced by an order of magnitude and stiffness and density were adjusted accord-

ingly. Note that the model used in this section was modified to accommodate for

the wall thickness and is slightly different from the 3.5 mm proximal MBTS model

that is used in the following sections.

An arbitrary Lagrangian-Eulerian method was used to formulate the FSI

problem [100], employing a quasi-direct FSI solution strategy [167] in which the

fluid and structure solutions are computed in a monolithic fashion. Elastic mesh

moving was employed with the aid of Jacobian-based stiffening [168, 169]. The

computations were performed without re-meshing for ten cycles.

Thickness (mm)

1.00.25

T
hickness

nSolid

Fluid

Figure 8.1: Wall thickness is calculated by solving the Laplace equation (left
figure). Then the wall of the fluid domain mesh is extruded in the normal direction
to generate the solid domain mesh, i.e. vasculature wall (middle and right figures).

Figure 8.2 shows the geometry at peak systole. The MBTS was not de-

formed due to its stiffer material properties, however, other vessels were deformed

to a greater or lesser degree depending on their proximity to the aortic root.
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Figure 8.2: Deformation of the vessel walls at the peak systole.

The rigid-wall and FSI simulation results are compared in Table 8.1, with

a maximum difference of 3% in pulmonary-to-systemic flow ratio. All differences

can be directly linked to the higher cardiac output in the FSI case, producing

higher saturations, OD, and pressures. However, due to the PA expansion, RT

is increased and WSS is decreased in the FSI case. Because all differences were

extremely small, it was determined that rigid-wall simulations were sufficient for

the present application and would not affect the final conclusions of the study.

Table 8.1: Comparison between the rigid-wall and FSI simulation results, using
the model with single MBTS 8.1.

parameter Unit Rigid FSI Difference (%)

Cardiac output L/min 2.634 2.702 2.6
pulmonary-to-systemic flow ratio - 0.947 0.974 2.9

Aortic saturation - 79.8 80.6 1.0
OD mLO2

/s 4.046 4.158 2.8
Coronary OD mLO2

/s 0.304 0.308 1.3
Aortic pressure mmHg 98.60 99.07 0.5

Pulmonary pressure mmHg 12.66 13.00 2.7
RT in the PA ms 26.5 26.7 0.8
WSS in the PA g/(s2cm) 81.65 81.44 -0.2
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8.3 Results

The single MBTS resulted in the highest systemic and coronary OD, as

shown in Table 8.2. Adding an extra shunt caused pulmonary hyperperfusion

and systemic hypoperfusion, leading to higher saturations, but lower OD (Figure

8.3). In the worst case, with a distal MBTS and normal PVR, adding a 5.0 mm

PDA reduced OD by 10%. As was the case with the proximal MBTS, higher

PVR increased the systemic flow rate. Increasing the systemic flow rate generally

improved OD, though in an exception, coronary OD was reduced when the MBTS

position was moved from distal to proximal. The proximal position leads to blood

steal from the aorta hindering coronary perfusion during diastole. As a result,

the change in the coronary perfusion is dominated by the change in saturation,

leading to lower coronary OD [80]. Inclusion of a CS resulted in similar global

hemodynamics compared to the case with an equivalent PDA diameter. Hence, the

systemic-to-pulmonary resistance is not affected significantly by the anastomosis

location of the second shunt, as long as the diameter of the second shunt is kept

fixed.
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Table 8.2: Comparison between the anatomies. Case defines the distal (D) or
proximal (P) MBTS (Figure 6.6), high (R) or normal (N) PVR, and central shunt
(C) (e.g. DN means a distal MBTS with normal PVR and CPR denotes the central
shunt simulation with high PVR and proximal MBTS. D is the PDA/CS diameters
in mm. MBTS diameter is set 3.5 mm in all simulations. HL is the heart load in
Joules per cardiac cycle. Q̄cor, Q̄s, Q̄p, and CO are coronary, systemic, pulmonary,
and AA (cardiac output) average flow rates, respectively. Q̄cor is in mL/min and
the rest are in L/min. Sats and Satao are the oxygen saturations in the systemic
veins (weighted average of superior and inferior vena cava) and aorta, respectively.
OD is the systemic OD in mLO2

/s. ODcor is the coronary OD in µLO2
/s.

Case D HL Qcor Qs Qp CO Qp/Qs Sats Satao OD ODcor

DN 0.0 0.89 103. 1.36 1.32 2.68 0.971 63.2 80.4 4.10 310
DR 0.0 0.88 104. 1.39 1.25 2.64 0.905 62.5 79.4 4.12 310
PN 0.0 0.86 104. 1.40 1.27 2.67 0.907 62.9 79.6 4.17 309
PR 0.0 0.85 105. 1.42 1.21 2.63 0.849 62.2 78.6 4.18 309
DN 2.0 0.94 97.0 1.28 1.63 2.92 1.272 65.5 83.7 4.02 304
DR 2.0 0.92 99.2 1.32 1.52 2.84 1.157 65.0 82.7 4.08 307
PN 2.0 0.92 98.5 1.32 1.57 2.90 1.188 65.5 83.2 4.12 307
PR 2.0 0.90 100. 1.35 1.48 2.83 1.092 64.9 82.2 4.16 308
DN 3.5 1.06 87.6 1.15 2.36 3.50 2.052 67.8 88.1 3.79 289
DR 3.5 1.01 90.7 1.21 2.13 3.33 1.767 67.7 87.0 3.93 296
PN 3.5 1.04 88.2 1.18 2.35 3.53 1.989 68.3 88.1 3.89 291
PR 3.5 1.00 92.1 1.24 2.11 3.35 1.706 68.1 87.0 4.03 300
DN 4.0 1.10 85.7 1.12 2.59 3.71 2.303 68.2 89.0 3.74 286
DR 4.0 1.04 89.0 1.18 2.30 3.48 1.955 68.0 87.9 3.88 293
PN 4.0 1.08 86.5 1.15 2.57 3.72 2.234 68.7 88.9 3.83 288
PR 4.0 1.03 90.6 1.23 2.27 3.50 1.854 68.7 87.7 4.03 298
DN 5.0 1.16 82.6 1.09 2.99 4.07 2.747 68.7 90.2 3.67 279
DR 5.0 1.08 87.1 1.17 2.59 3.76 2.216 69.0 89.0 3.90 290
PN 5.0 1.16 83.7 1.13 2.99 4.13 2.639 69.6 90.2 3.83 283
PR 5.0 1.07 87.7 1.19 2.60 3.78 2.190 69.3 89.0 3.95 292
CPR 2.0 0.90 99.5 1.35 1.49 2.83 1.103 65.0 82.3 4.15 307
CPR 3.0 0.96 94.0 1.28 1.85 3.13 1.450 67.1 85.4 4.08 301
CPR 4.0 1.03 90.0 1.24 2.26 3.50 1.827 68.8 87.7 4.06 295
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Figure 8.3: Systemic (top plot) and coronary OD (bottom plot) for proximal
(solid) and distal (dashed) MBTS and normal PVR (black) and high PVR (red)
versus PDA/CS diameter. Note the single MBTS corresponds to DPDA = 0. The
results of three simulations with CS are shown with red circles, in which DPDA

denotes CS diameter.

The velocity vectors inside the PA are shown for different configurations in

Figure 8.4 for normal (top) and high (bottom) values of PVR. The flow distribution

was nearly symmetric in the models with a single MBTS. However, the right PA

flow rate increased with increasing PDA diameter. Elevated flow stagnation was

found in the region between the PDA and MBTS for the 2 mm PDA cases, while

the flow was directed toward the right PA for the 4 mm PDA cases.
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Figure 8.4: Time averaged velocity field in normal PVR (top row) and high PVR
(bottom row), and a single proximal MBTS (left column), a proximal MBTS and
a 2 mm PDA (middle column), and a proximal MBTS and a 4 mm PDA (right
column).

The cycle-averaged pressure contours and corresponding spatially averaged

pressure in the PA segment and MBTS are shown in Figure 8.5. Contrary to the

PA, the average pressure in the aorta was not significantly affected by changes

in PVR. Increasing the PDA/CS diameter increased the PA pressure, due to the

higher flow rate to the pulmonary vascular bed, and reduced the AA pressure, due

to the reduction in the total resistance. On the other hand, the pressure levels in

the PA and AA were unaffected by the locations of the second pulmonary blood

source (i.e. PDA versus CS).
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Figure 8.5: (a) Pressure contours for normal PVR (top row) and high PVR
(bottom row), and a single proximal MBTS (left column), a proximal MBTS and
a 2 mm PDA (middle column) cases, and a proximal MBTS and a 4 mm PDA
(right column). (b) Averaged pressure in the PA outlets (top plot) and in the AA
(bottom plot). See Figure 8.3 caption for more details.

The 3D simulations were post-processed using Equations (D.5), (D.8), and

(D.9), and the results are shown in Table 8.3. The tabulated pressures were aver-

aged temporally and spatially over the PA and AA outlet and inlet surfaces. RT,

WSS, OSI, and WSSG were spatially averaged either over a segment of PA wall

(between the MBTS and PDA) or over the MBTS wall (see Figure 6.6).
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Table 8.3: Comparison between the pulmonary and aortic pressures (mmHg), RT
(ms), WSS (g/(s2cm)), OSI (%), and WSSG (g/(s2cm2)) of the studied anatomies.
PAs denoted the region between the PDA and MBTS and BT denotes the region
in the MBTS (see red and blue regions in Figure 6.6). See Table 8.2 caption for
the other notations.

Case D P RT WSS OSI WSSG
PA AA PAs BT PAs BT PAs BT PAs BT

DN 0.0 13.4 96.4 30.4 4.3 98.9 267 2.77 1.10 256 491
DR 0.0 21.7 97.3 32.4 4.5 91.9 252 2.17 0.99 235 460
PN 0.0 12.9 96.8 28.4 4.3 93.9 244 2.52 1.50 270 547
PR 0.0 20.9 97.8 28.3 4.6 91.5 232 2.75 1.56 268 525
DN 2.0 15.8 91.4 56.5 4.7 58.9 249 9.39 1.07 248 469
DR 2.0 25.7 93.1 57.5 5.0 58.4 232 8.09 1.06 241 439
PN 2.0 15.3 92.5 50.6 4.8 77.7 219 13.70 1.67 380 503
PR 2.0 24.9 93.8 51.5 5.1 73.8 206 11.66 1.70 339 477
DN 3.5 21.2 83.2 50.5 6.1 78.0 207 6.52 1.38 293 424
DR 3.5 34.5 85.8 58.0 7.0 67.3 181 6.92 1.58 266 377
PN 3.5 21.1 84.0 28.1 6.2 107.3 174 6.60 2.17 433 443
PR 3.5 34.2 86.9 35.8 7.0 90.7 154 10.39 2.31 385 397
DN 4.0 22.9 81.6 36.3 6.8 84.7 190 6.98 1.73 283 408
DR 4.0 37.0 84.6 44.0 7.8 74.2 167 7.64 1.82 255 358
PN 4.0 22.7 82.5 21.7 6.8 119.5 159 10.49 2.47 438 433
PR 4.0 36.7 85.4 27.0 7.7 101.4 140 9.65 2.54 378 381
DN 5.0 25.8 79.3 23.8 8.5 105.3 164 5.80 2.28 308 376
DR 5.0 41.2 82.6 28.5 9.9 90.7 139 6.59 2.41 266 328
PN 5.0 25.8 80.0 14.9 8.4 131.3 134 7.52 3.01 428 391
PR 5.0 41.2 83.4 17.5 9.9 114.0 113 8.56 3.09 366 329
CPR 2.0 25.1 93.3 47.9 5.0 79.0 211 5.91 1.76 256 493
CPR 3.0 30.4 88.6 73.7 5.6 49.4 190 15.78 1.90 242 460
CPR 4.0 36.3 84.8 58.6 6.4 51.5 167 11.56 2.16 224 422

The 3.0 mm CS and 3.5mm PDA cases had the highest RT in the PA

(Figure 8.6). RT in the PA for the anatomy with a 3.0 mm CS was 160% higher

compared to the anatomy with a single MBTS. For this particular case, WSS was

46% lower and OSI was 473% higher in the PA compared to the single MBTS,

indicating disturbed and chaotic flow. This is in agreement with Figure 8.4, which

indicates the presence of a stagnation region between the MBTS and PDA at mid

range diameters. Increasing the PDA diameter beyond 3.5 mm reduced the RT in

the PA, because an imbalance between the PDA/CS and the MBTS flow led to
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increased flow through the PA segment. Since the PA flow rate was lower for the

higher PVR cases, the RT was higher in the PA and MBTS.
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Figure 8.6: (a) RT contours for normal PVR (top row) and high PVR (bottom
row), and a single proximal MBTS (left column), a proximal MBTS and a 2 mm
PDA (middle column), and a proximal MBTS and a 4 mm PDA (right column).
(b) Spatially averaged RT in the PA segment (top plot) and in the MBTS (bottom
plot). See Figure 8.3 caption for more details.

Increasing the PDA/CS diameter decreased the flow rate in the MBTS and

consequently WSS in the MBTS (Figure 8.7). Placing the MBTS more proximally

and/or increasing PVR also reduced both the MBTS flow rate and WSS. The WSS

in the PA segment did not vary monotonically with the PDA/CS size. Depending

on the momentum balance between the PDA/CS and MBTS, the flow was stagnant

with low WSS (2 mm PDA case), or flow was unidirectional with high WSS (5 mm

PDA case). In the PA segment, similar to the MBTS, lower WSS was observed

at higher PVR due to the lower PA flow rate. Also, the proximal shunt generally

produced higher WSS in the PA compared to the distal shunt.
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Figure 8.7: (a) WSS contours for normal PVR (top row) and high PVR (bottom
row), and a single proximal MBTS (left column), a proximal MBTS and a 2 mm
PDA (middle column), and a proximal MBTS and a 4 mm PDA (right column). (b)
Spatially averaged WSS in the PA segment (top plot) and in the MBTS (bottom
plot). See Figure 8.3 caption for more details.

Similar to the WSS results, higher PVR and/or larger PDA/CS led to lower

WSSG due to the lower MBTS flow rate (Figure 8.8). The flow in the PA decreased

as a result of increasing PVR, leading to decreased WSSG. These results suggest

that a distal MBTS produces a more uniform flow, hence lower WSSG in the PA

segment and MBTS. Differences in WSSG in the PA segment at different PDA/CS

sizes depend on the uniformity and magnitude of WSS in the PA segment.
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Figure 8.8: (a) WSSG contours for normal PVR (top row) and high PVR (bottom
row), and a single proximal MBTS (left column), a proximal MBTS and a 2 mm
PDA (middle column), and a proximal MBTS and a 4 mm PDA (right column).
(b) Spatially averaged WSSG in the PA segment (top plot) and in the MBTS
(bottom plot). See Figure 8.3 caption for more details.

Low OSI in the MBTS, with a maximum of 3.14%, compared to 15.8% in

the PA segment indicates a unidirectional flow in the MBTS (Figure 8.9). OSI in

the PA segment correlated with the flow balance between the PDA/CS and MBTS

and increased with a dominant PDA/CS or MBTS flow. Similar to WSS, more

proximal shunt placement led to a higher OSI.
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Figure 8.9: (a) OSI contours for normal PVR (top row) and high PVR (bottom
row), and a single proximal MBTS (left column), a proximal MBTS and a 2 mm
PDA (middle column), and a proximal MBTS and a 4 mm PDA (right column).
(b) Spatially averaged OSI in the PA segment (top plot) and in the MBTS (bottom
plot). See Figure 8.3 caption for more details.

8.4 Discussion

A multiscale approach was used to simulate hemodynamics and physiology

in models with single versus multiple systemic-to-pulmonary connections. The

multiscale approach enabled predictions of global circulatory parameters, such as

OD and cardiac workload, that are relevant to clinical decision-making and sur-

gical planning. We simultaneously captured these global changes together with

corresponding hemodynamic changes in the 3D domain, including WSS, WSSG,

RT, and OSI. Because local hemodynamics are influenced by changes in the 0D

domain, employing efficient 3D-0D coupling is essential to obtain a physiologically

realistic model, allowing for more accurate predictions. To examine the effect of

wall distensibility, a closed-loop FSI simulation was also performed using the same

framework. Results confirmed that a rigid-wall assumption was sufficient for this

study since the shunt, which primarily effects the hemodynamic outcome of the

surgery, behave as a nearly rigid vessel. In summary, the results of this chapter

suggest:
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1. Pulmonary flow rate is higher with a distal MBTS compared to a proximal

MBTS, which can be explained by the sharp turning of flow at the systemic

anastomosis point in the proximal MBTS anatomy. This rapid change in flow

direction reduces the momentum of flow perfused into the shunt, leading to

reduced pulmonary flow. This reduction is consistently observed for the

distal MBTS configuration with different PDA diameters in Table 8.2.

2. The distal MBTS configuration produces higher coronary OD at low Qp/Qs

compared to the proximal configuration, while in all other cases a proximal

MBTS produces higher OD. In the presence of a PDA/CS any increase in

the pulmonary flow rate decreases OD because of pulmonary over-circulation.

In general, OD to the systemic and coronary arteries is reduced by reducing

PVR, increasing PDA/CS size, and moving the shunt to a distal position.

3. Results are generally independent of PVR when varying PDA size or shunt

positioning. Comparing the simulation results of the normal and high PVR

cases, pulmonary flow rates decrease while systemic and coronary flow rates

increase. At low pulmonary flow rates, changes in PVR produce insignificant

changes in systemic and coronary OD because a large portion of overall pul-

monary resistance is created by the shunts, and OD is less sensitive to Qp/Qs.

However, for higher PDA sizes, increasing PVR has a more pronounced effect

on pulmonary flow rate, leading to higher OD.

4. The 3.5 mm PDA and 3.0 mm CS in combination with 3.5 mm MBTS are

associated with the highest RT. The balance of flow momentum between the

MBTS and PDA/CS generates a region between the PDA/CS and MBTS

with low velocity, low WSS, high OSI, and high RT. However, as PDA/CS

diameter is increased, flow in the PA becomes dominated by flow from the

PDA/CS, hence flow stagnation is not observed, RT and OSI are reduced

and WSS is increased. In general, the CS produces higher RT in the PA

compare to a similar-sized PDA, due to increased stagnant flow in the PA

caused by the anastomosis angle between the CS and PA that is opposite to

that of the PDA and PA.
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Effect of WSS and WSSG on local morphologic changes has been studied in

[130, 131, 132]. The use of multiple shunts led to a competitive flow situation inside

the PA, producing a region with high RT, especially with lower PDA diameters.

WSS was lower in models with large PDAs; nevertheless the WSS values in the

shunts are sufficient for triggering platelet activation when compared with reported

values of WSS for platelet activation (ranging from 120 to 300 g/(s2cm) [133, 134,

135]). A combination of a flow stagnation region in the PA with higher WSSG

and OSI, accompanied by sufficiently high WSS in the shunts is likely conductive

of platelet activation and thrombus formation.

This study identified two concerning findings related to the use of multiple

shunts that warrant further clinical study. First, local hemodynamic parameters,

which are used here as a surrogate for assessment of thrombotic risk, suggest in-

creased thrombotic risk in anatomies with small PDA/CS diameter. Second, insuf-

ficient systemic and coronary OD was observed in anatomies with larger PDA/CS

diameter. Together, these findings indicate that the use of multiple shunts is detri-

mental because it may increase thrombotic risk, while at the same time offering

no benefit in terms of OD. Since OD directly relates to pulmonary flow rate, a

single shunt with a larger diameter was shown to be a preferable means to provide

the same pulmonary flow rate, avoiding issues of flow competition that arise with

multiple shunts. The single shunt arrangement was shown in this study to have

fewer adverse effects of local hemodynamic parameters, and thus likely reduced

thrombotic risk, compared to the multiple shunt arrangement. In addition, the

perceived benefit of introducing redundancy by using multiple shunts is compro-

mised for two reasons. First, the individual thrombotic risks in each shunt are

highly correlated, because thrombus formation relies on the production and trans-

port of key chemical factors (e.g. thrombin) that accumulate in the blood, thereby

increasing the thrombotic risk in the entire circulation and in neighboring shunts.

Second, a multiple shunt configuration that is optimized for OD will become sub-

optimal when one of the shunts is blocked. This cannot be avoided by an initial

configuration with multiple larger diameter shunts, as this leads to pulmonary hy-

perperfusion. For these reasons, our simulation results indicate that the use of
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multiple shunts has potential to worsen a patients physiological condition, while

increasing their risk of thrombosis. These findings should be corroborated by clin-

ical studies comparing differences in patient outcomes with multiple versus single

shunt configurations.

We recognize several limitations of the present study. First, this study

examined a limited number of parameters, while in actual clinical scenarios there

is significant inter-patient variability and likely a wider range of parameters that

could effect hemodynamic conditions. Second, this study examined parameter

changes independently, while in actual clinical scenarios hemodynamic parameters

are often tightly linked together. For example, hematocrit level is affected by

the level of oxygenation but also effects blood viscosity. Hence, in practice, OD,

which itself depends on the cardiac output, can also effect cardiac output in a

feedback loop. Third, this study used an idealized geometric model. While we do

not expect changes in overall trends, it is possible that use of a patient specific

model could effect local hemodynamic quantities. Despite these limitations, the

simulation framework presented here enabled systematic comparison of different

surgical strategies and testing of our hypothesis without confounding variables that

would typically appear in a clinical study.
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Chapter 9

The Assisted Bidirectional Glenn

The first stage of single ventricle repair is usually performed within days of

birth and often involves inserting a shunt to connect the systemic and pulmonary

circulations in order to create a circulation that enables adequate oxygenation

[3, 4]. Such a SPS, which is often a 3 to 3.5 mm modified MBTS connecting

the brachiocephalic artery to the PA (Figure 9.1), becomes the sole source of

pulmonary blood flow [5, 6]. This physiology is well known to carry the highest

mortality and morbidity in the life of a single ventricle patient [7]. There are a

number of factors that contribute to the challenges with patient management and

the delicate physiology of patients with SPS.

Major drawbacks of the MBTS can be summarized as follows. First, the

SPS-dependent circulation must maintain a delicate balance between pulmonary

and systemic perfusion. Too much pulmonary blood flow may lead to heart failure

and too little may result in unacceptable cyanosis or inadequate oxygenation [13,

14, 15]. Growth and remodeling magnifies this problem, since the SPS does not

grow with the rest of the vasculature. Second, thrombosis is a significant risk.

As the SPS provides the only source of pulmonary blood flow, there is a risk

of sudden death due to clot formation in the SPS and blockage of pulmonary

blood flow. Third, high load on the single functional ventricle may lead to higher

risk of heart failure. In an SPS-dependent circulation, the single ventricle must

operate at systemic pressure level and pump twice as much blood (to both systemic

and pulmonary beds) compared to a normal left ventricle. Fourth, OD to end

197
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organs, including brain, liver, and heart, is suboptimal in this circulation. Due to

the obligatory mixing of oxygenated and deoxygenated blood in the atrium, the

systemic oxygen saturation is reduced compared to a normal infant. Fifth, during

cardiac diastole, when the coronary arteries are normally perfused, there is runoff

into the pulmonary arterial bed through the SPS, leading to siphoning of coronary

perfusion from the myocardium [13]. This steal of coronary flow together with

lowered systemic saturation can lead to myocardial ischemia [14].

Patients who survive the above issues with the MBTS physiology reach

the second stage repair, in which the superior vena-cava (SVC) is connected to

the PA in a BGLN or Hemi-Fontan operation (Figure 9.1). The BGLN mitigates

most of the aforementioned issues and is associated with much lower mortality

compared to the MBTS. As a result, to achieve a more stable and safer physiology

it is desirable to perform the BGLN as soon as possible. While the BGLN is a

viable stage-two operation, it has been established in early clinical experiences that

premature Glenn palliation results in poor clinical outcomes and high mortality

rates.

In 50s, Glenn investigated the option of using venous return to augment

the pulmonary blood flow in certain congenital anomalies. He performed several

experiments on animals to examine long term outcome of this surgery and ensure

all SVC flow can bypass the right side of the heart while the SVC elevated pressure

is within the tolerance of subjects. Based on those studies, he hypothesized that

a 13-17 mmHg pressure is sufficient for pulmonary perfusion but insufficient for

producing peripheral edema [170, 171]. He observed 4X drop in PVR three month

after the surgery that lead to reduced chance of varicosities and development of

collateral venous circulation. His first clinical application on a 7-year-old boy was

successful with marked improvement in exercise tolerance, oxygen saturation, and

hematocrit levels [8].

Following Glenn’s animal study and first clinical trial success in 50s, there

was multiple clinical trial of cava-pulmonary anastomosis in 60s, which included

patients from few-days-old to over 20-years-old [170, 171]. Post surgical high SVC

pressure leading to headache and edema was controlled in these patients using
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azygos vein. Azygos vein contribute a significant share of cava blood flow, which

after creation of cava-pulmonary shunt would serve as a venous collateral. As a

result, SVC pressure was controlled by interrupting or preserving azygos vein in

a SVC-RPA anastomosis. To keep SVC pressure low in children under 6 month

old, while PVR is reducing, azygos vein was kept patent for a week after surgery.

Delayed ligation of azygos vein was achieved by looping a silk suture around the

vessel and bring it out through the incision and tying it after a week [172]. A

patent azygos in presence of SVC-RPA anastomosis, however, lowered the PA flow

and the efficiency of the anastomosis, therefore was only practiced when necessary

[173].

Sachs reported 20 cases of end-to-side RPA-SVC anastomosis that was only

performed on patients with PA pressure of less that 10 mmHg [172]. They reported

7 death in total. This includes 5 death out of 6 children under one year of age.

One remaining patient in this age group reported to be in good condition after 5

years. They experienced 80% of short term survival and 40% long term survival

on patients with a SPS [2]. This short-term higher survival rates with SPS also

has been reported by others at that time. Although, there were no follow up

failure of cava-pulmonary anastomosis, this short-term results was a good reason

for choosing SPS for children under one year of age.

A collection of 537 cases in which SVC-RPA shunt was employed clearly

shows higher mortality in younger patients (Table 9.1) [174]. In general, if largest

group of patients are considered in this study, cava-pulmonary shunt was mostly

beneficial in patients with transposition of great vessels with pulmonary stenosis or

TGV-PS (16% mortality), then tetralogy of Fallot or TOF (25% mortality), then

tricuspid atresia (35% mortality), and then Ebstein’s anomaly (53% mortality). In

this study, there are indications that in infants with cava-pulmonary connection,

pulmonary insufficiency can be a larger thread as compared to high SVC pressure.

In the set of patients with TGV-PS, there were 6 patients who had a SPS or PDA

along with cava-pulmonary connection. All those patient survived the surgery.

In particular, 12 out of 88 TOF patients had arterial shunt in addition to cava-

pulmonary connection. Unfortunately the mortality rate for this subset of patients
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Table 9.1: The effect of age on mortality following a RPA-SVC connection. Data
assembled from [174]. The results highly discourages this surgery for patients
under six months old.

Age (months) Under 1 1-6 6-12 12-24 Over 24

Mortality (%) 86 50 32 23 18
Number of cases 50 121 68 71 227

is not reported, however this anomaly is the only case that had lower mortality for

age less than 6 months as compared to age less than 2 years (30% versus 42%).

Like other anomalities mortality was much lower (16%) for TOF patients older

that 2 years.

The above early clinical studies reported low pulmonary perfusion, low

upper-body oxygenation and SVC syndrome in infants with the SVC-RPA con-

nection, which is also of concern in patients with the BGLN. Because of the higher

PVR in the neonatal period, the BGLN is typically performed at about 4-6 months

of age, after the PVR has dropped. This begs the question if there is a way to

help single ventricle patients pass the critical first few months after birth, without

exposing them to the higher risk of MBTS physiology. In this study we present

a novel surgical approach that we call the Assisted Bidirectional Glenn (ABG),

which may provide an answer to this question. The main idea is to assist the ve-

nous return and increase the pulmonary perfusion by adding an SPS to the BGLN

surgery. Based on the ejector pump concept from fluid mechanics, SVC flow is

assisted by the higher energy SPS flow relying on Venturi effect to avoid a large in-

crease in SVC pressure. This results in a radically different surgical approach that

could remove the aforementioned MBTS drawbacks, and potentially reduces the

number of surgeries from three to two. This novel surgery, which to the best our

knowledge never been tried or simulated before, could be performed immediately

after birth, and combines the benefits of both the MBTS and BGLN procedures.

In this initial study to evaluate the ABG concept, we adopt a multiscale

simulation framework which avoids the ethical issues of clinical and animal studies

on a radically new surgical procedure. Multiscale modeling has been used exten-

sively to study the circulation of single ventricle heart patients [25, 21, 80, 175].

This framework poses no danger to patients and allows apple-to-apple comparison
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of multiple surgical options while keeping the circulatory parameters unchanged.

The adopted framework accounts for the dynamic interplay between the local

hemodynamic changes in large vessels in different surgical options and the rest

of circulatory system and the heart in a LPN, including blocks for upper and lower

body and kidneys. The ABG anatomy is modeled and its performance is com-

pared to the MBTS and BGLN anatomies by examining saturations, flow rates,

OD, heart load, and pressure levels. Based on prior clinical studies, we discuss the

clinical significance of the results and the possible advantages and drawbacks of

the ABG, as well as future directions.

9.1 Proposed surgery: ABG

In the ABG (Figure 9.1), the SVC is connected to the PA as in the BGLN

procedure and, additionally, a shunt is inserted between the systemic circulation

and the SVC. In essence, ABG is a hybrid of the BGLN and the MBTS, in which

the pulmonary perfusion is partly supplied through the SVC and partly through

the SPS. Draining the SVC into the PA reduces mixing of oxygenated and deoxy-

genated blood in the atrium. This concept allows for the same level of pulmonary

flow rate as in the MBTS to be obtained with a lower level of SPS flow. As a re-

sult, we hypothesize that oxygen saturation and OD will be improved while cardiac

output and heart load are reduced.

From a fluid mechanics perspective, flow in the systemic circulation has

high energy content because of its high pressure. In the MBTS, this energy is

dissipated through the SPS and its pressure is reduced to the level of the pulmonary

circulation to avoid pulmonary hyperperfusion. In the ABG, however, we propose

that this energy can be harvested to pump SVC flow using the concept of an

ejector pump. As shown in Figure 9.2, a flow with high energy content (aortic flow)

can be used to pump (‘assist’) a low energy content flow (SVC flow) and elevate

the pressure at the outlet (PA flow). This elevated pressure is used to supply

sufficient blood to the PA, while keeping SVC pressure low. Therefore, compared

to the BGLN, we hypothesize that pulmonary perfusion could be enhanced and
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Figure 9.1: The idealized models of the MBTS, ABG, and BGLN are shown at
the top row. In these anatomies, aortic arch including AA and descending aorta
(DA), coronary arteries (CA), PA, SVC, Blalock-Taussig shunt (BT), and upper
branches including brachiocephalic artery (BA) and right common carotid artery
(RCCA) are shown. The circulation schematics are shown at the bottom row.
Qp, Qs, Qlb, and Qub denote pulmonary, systemic, lower body, and upper body
flow rates. Cs, Cp, Cao denote systemic vein, pulmonary vein, and aortic oxygen
concentrations. The color used in the circulation schematics represent the level of
oxygen concentration.
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Figure 9.2: A schematic of an industrial ejector pump. This device transfers the
energy of flow with higher pressure to the flow with lower pressure, hence elevating
the pressure at the outlet. Based on the same concept, flow through the SVC
can be assisted by flow through the shunt to obtain a higher pressure at the PA
without increasing SVC pressure.

subsequent respiratory complications in subjects with high PVR such as lack of

pulmonary circulation growth, hypercapnia, and increased physiologic lung dead

space could be potentially avoided.

Designing an ejector pump relies on reducing the pressure of the high-

energy-content flow to the same level as the low-energy-content flow, while main-

taining the desired flow rates. This is accomplished by using a nozzle that increases

the velocity and decreases the pressure of the high-energy-content flow using the

Venturi effect. In the actual surgery, there are several potential means to accom-

plish this. In this study, we explore the use of a shunt with a clip, since this can

be implemented using current techniques. The kinetic energy of the high velocity

flow is converted to pressure (potential energy) in the diffuser section of the ejector

pump. Ideally, the SVC vessel may be used for this purpose, however to construct

an anastomosis between the SPS and SVC that is surgically feasible, a simplified

geometry is considered in this study.

9.1.1 Multidomain simulations

The multiscale framework presented in Chapter 2 is adopted in this study

to couple local hemodynamics to a closed loop model of the circulatory physiology.
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In this framework, the computational domain is decomposed into: 1) a 3D model

of the large vessels where the Navier-Stokes equations are solved and 2) a 0D LPN

representing the behavior of the heart and closed loop circulation .

The adopted LPN is based on the prior studies of the MBTS circulation in

Chapters 7 and 8. Separate blocks model the upper body, lower body, pulmonary

bed, coronary circulation, and the heart. These blocks are partitioned into arterial

bed, capillary bed, and venous bed sections. Component values are obtained from

a prior study that incorporated clinical catheterization and angiographic data from

28 Norwood patients [16]. Upper body venous return is directly connected to the

SVC in the ABG and BGLN LPNs (Figure 9.3). To avoid regurgitant flow a

coupled Dirichlet boundary is imposed at the AA. The total excess blood volume

in the LPN is preserved temporally to improve cyclic convergence and accuracy,

using Equation 8.2. To mimic the auto-regulation mechanism, the total excess

blood volume is adjusted among different simulations to keep aortic pressures fixed.

The 3D idealized geometric models are constructed based on the former

study of MBTS (Figure 9.1). Models includes the SPS, the SVC, the aortic arch,

four upper branches, two coronary arteries, and the PAs. A 3.5 mm shunt is used in

the MBTS geometry. The SVC diameter is assumed to be 4.5 mm. Two SPS-SVC

anastomosis are considered for the ABG model: an straight shunt (denoted by

ABGS) and a clipped shunt (denoted by ABG) (Figure 9.3). Note that the ABG

with a clipped shunt is the model we refer to as ABG in the following sections.

The LPN obtained from Section Section 2.4.4 is used to simulate pre-stage two

condition (representing few month old patients). To model pre-stage one condition

(newborn patients), three times higher PVR (21 Wood units or mmHg·min/L) is

considered. In total eight simulations are performed with the important results

reported in the next section.

For the 3D domain, we assume an incompressible Newtonian fluid and rigid

walls. The time step size of the 3D solver is set to 0.5 ms. The OD is calculated

based on the flow rates and average oxygen consumption (see Appendix C). For

more details on the numerical methods, model construction process, and mesh

convergence study see Chapters 2-5.
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Figure 9.3: LPN coupled to the ABG anatomy. See Figure 2.11 for abbreviation.
Two geometries, clipped and straight, are shown for the SPS. Pulmonary flow is
supplied through the SVC and the SPS, which is anastomosed to the BA and the
SVC.
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Figure 9.4: MBTS, BGLN, ABG heart load, OD, pulmonary flow rate, systemic
oxygen saturation, and SVC pressure at normal (white) and high (gray) PVR.

9.2 Results

Comparing the results of ABGS and ABG from Table 9.2 shows that using

an straight SPS sends too much blood to the pulmonary circulation, producing a

high SVC pressure, low upper body perfusion, low OD, and high heart load. By

constraining the SPS, less flow is drawn from the systemic circulation and OD and

heart load are improved. This also produces a jet along the SVC flow direction

and slightly assists drainage of upper body circulation into the pulmonary arteries

by lowering SVC pressure.

The ABG cardiac output and heart load are comparable to BGLN and are

significantly lower than MBTS (Figure 9.4). The ABG has the highest OD among

all cases regardless of PVR, while BGLN delivers more oxygen than MBTS only at

normal PVR. Pulmonary flow rate (Qp) in BGLN is twice lower than MBTS and

ABG Qp is the median of BGLN and MBTS. The ABG has the highest systemic

oxygen saturation compared to MBTS and BGLN, with BGLN saturation being

slightly higher than MBTS. The SVC pressure is approximately 2 mmHg in MBTS

and it varies between 6-11 mmHg in BGLN and 8-15 mmHg in ABG, depending

on the PVR.

The nozzle effect of clipped SPS is shown in Figure 9.5. The systemic

pressure, either at systole or diastole, is reduced to the level of SVC pressure at

the clipped section of SPS. A low pressure zone is observed inside the SVC at the

entrainment region. The reduced pressure is transformed to the kinetic energy,

as there is a high velocity flow being ejected into the SVC from the SPS. The
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Table 9.2: Simulations results of different surgical options at normal (N = 2.3
woods) and high (H = 6.9 woods) PVR. BTS, GLN, ABGs, ABG denote MBTS,
bidirectional Glenn, ABG with a straight shunt, and ABG with a clipped shunt
procedures, respectively. OD, ODcor, and ODub are the systemic, coronary, and
upper body OD in mLO2

/s, respectively. HL is approximately load on the single
ventricle. Q̄cor, Q̄lb, Q̄ub Q̄s, Q̄p, and CO are coronary, lower body, upper body,
systemic, pulmonary, and AA (cardiac output) average flow rates, respectively.
P̄ao, P̄svc, and P̄pa are aortic, SVC and PA average pressure, respectively. Satsvc,
Satao, and Sativc are the percentage oxygen saturations in the SVC, aorta, and
IVC, respectively.

Unit BTS GLN ABGs ABG BTS GLN ABGs ABG

PVR - N N N N H H H H
OD mLO2

/s 2.96 3.25 3.32 3.38 2.92 2.79 2.87 3.07
ODcor mLO2

/s 0.22 0.24 0.27 0.26 0.22 0.22 0.26 0.25
ODub mLO2

/s 1.30 1.39 1.28 1.41 1.28 1.11 0.92 1.16
HL N·m/min 28.0 12.5 20.9 15.0 26.7 10.5 16.6 13.6
CO L/min 2.01 1.17 1.63 1.31 1.93 1.06 1.43 1.23

Q̄p/Q̄s - 0.85 0.43 0.98 0.58 0.71 0.40 0.90 0.54
Q̄s L/min 1.09 1.17 1.03 1.13 1.13 1.06 0.92 1.06
Q̄p L/min 0.92 0.50 1.01 0.65 0.80 0.42 0.82 0.57
Q̄lb L/min 0.61 0.67 0.63 0.66 0.63 0.64 0.62 0.66
Q̄ub L/min 0.48 0.50 0.39 0.47 0.50 0.42 0.29 0.40
Q̄cor mL/min 8.16 8.71 8.43 8.65 8.42 8.29 8.20 8.64
P̄ao mmHg 52.1 54.6 55.0 55.2 53.7 51.8 52.9 54.9
P̄svc mmHg 2.5 6.0 12.3 7.9 2.4 11.1 21.5 14.9
P̄pa mmHg 8.1 4.7 9.0 6.2 17.9 10.1 19.1 13.5
Satao % 72.7 74.5 86.4 80.1 68.9 70.3 83.8 77.4
Satsvc % 48.2 51.1 56.9 55.2 45.5 42.5 44.1 48.2
Sativc % 53.7 57.1 68.0 62.4 50.5 52.0 65.0 59.8
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Figure 9.5: Pressure, velocity, and total pressure at a slice of SVC and SPS. These
are based on ABG simulation results with normal PVR at diastole and systole.

total pressure of this flow, which is calculated based on Bernoulli’s equation, is

preserved before its impingement to the SVC intima. At the impingement, there is

a stagnation region with high pressure and high velocity gradient that dissipate the

energy of the jet. This reduces the available energy and pumping capacity and leads

to a higher SVC pressure. By using a more acute anastomosis angle, entrainment

region can be extended and more energy can be transformed to the SVC flow.

Also, energy can be transformed in a shorted distance by increasing the contact

area between the jet flow and the surrounding flow. This can be accomplished by

using a nozzle with a higher aspect ratio or constricting the SVC at the downstream

of the anastomosis. Also, pressure can be recovered more efficiently by having a

diffuser-shaped SVC, similar to an industrial ejector pump (Figure 9.2).
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9.3 Discussion

There are a number of serious deficiencies associated with the MBTS phys-

iology that keep mortality rates as high as 21% and make the MBTS much higher

risk than the subsequent BGLN and Fontan procedures. This underscores the need

for an alternative to the MBTS.

Based on the presented results, the ABG offers following possible advan-

tages. First, the entire upper body venous return is directed to the PAs and the

SPS flow rate is reduced compared to the MBTS circulation. This leads to early

volume unloading of the single ventricle and improves its mechanical efficiency.

Second, the deoxygenated blood from the upper body will no longer mix with the

oxygenated blood in the right atrium. This leads to higher systemic saturation

compared to the MBTS. Systemic saturation is also higher than the BGLN due to

higher pulmonary flow rate. Third, lower SPS flow rate is associated with higher

diastolic pressure in the aorta. Due to the higher diastolic pressure and systemic

saturation, the ABG produces the highest coronary OD as well. Fourth, the ABG

could be converted to the BGLN by occluding the SPS via a catheter at a later

time. This would obviate the need for the second stage open-chest surgery. Fifth,

having two sources of pulmonary flow in the ABG reduces the risk of total blockage

of pulmonary circulation by thrombus formation. The SPS is highly susceptible

to thrombus formation due to high levels of WSS and pressure drop. The SVC,

however, is generally a patent connection based on autopsy reports of patients with

RPA-SVC anastomosis. Therefore, blockage of the SPS in the ABG will merely

cause a transition to the BGLN circulation, while blockage of the SPS in the MBTS

generally results in sudden death.

Even considering all the above mentioned benefits, there remains an open

question as to whether the ABG is a viable approach for patients under six months

of age. Considering the historical clinical experience demonstrating high mortal-

ity associated with the BGLN in this age group, one naturally must ask whether

the ABG would result in similar clinical outcomes. This question can be studied

from several perspectives. First, the aforementioned clinical reports in 1960s im-

plemented a traditional SVC-RPA anastomosis that differed from the ABG and
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the BGLN in terms of SVC pressure, upper body flow rate, and lung perfusion

[174, 172, 176]. Draining SVC flow into a single lung lobe compared to both lobes

could generate much higher SVC pressure and lower upper-body and lung perfu-

sion. Second, there are multiple potential causes of high mortality in newborns

with cavopulmonary connection and the ABG shares only some of those draw-

backs with the BGLN. Three main possible causes for high mortality in newborns

with cavopulmonary connection are: a) low OD, b) low pulmonary flow rate and

respiratory complications, and c) high SVC pressure.

Simulation results show that OD in the BGLN is lowest in the neonatal

stage and exceeds the OD of the MBTS as PVR drops. Considering the mortality

rate and OD of the BGLN and MBTS shows they have inverse trends at different

age groups. Insufficient OD, specifically to the upper body, in the BGLN at high

PVR is caused by impaired upper body flow rate and hypoxemia. In the ABG,

however, the low upper-body flow rate is accompanied by high systemic saturation.

As a result, the ABG produces OD rates that are as high or higher than the MBTS

and BGLN.

Low pulmonary flow rate and respiratory complication can also be consid-

ered as a main cause of death in newborn with cavopulmonary connections. In a

study in early 70s, Hunt reported 46 patients with RPA-SVC anastomosis whom

18 of them were under 6 months of age [176]. There were 10 death in infants under

6 months of age, half due to the respiratory complication. They also reported lower

tolerance to exercise in patients with caval anastomosis as compared to those with

SPS. This is explained by the independence of SVC blood flow rate and exercise

level [176]. Having a SPS provides a variable blood flow rate with exercise that

may obviate this complication.

Also, the respiratory failure forms the majority of infants (53 patients out

of 129) with post-surgical complication in another study [177]. The respiratory

failure is characterized by excessive work of breathing and fatigue, hypercapnia,

hypoxemia, high physiologic dead space-tidal volume and a PA pressure larger that

0.75% of aortic pressure. Hypercapnia, which leads to pulmonary vasoconstriction

and hypertension, is due to elevated PaCO2 and low PaO2 in the pulmonary arter-



211

ies. Also it has been argued that patients with impaired pulmonary blood flow also

have decreased lung capacitance, significant ventilation-perfusion inequalities, and

increased physiologic dead space [177]. Therefore, the risk of respiratory failure

may be reduced by the oxygen saturation improvement and the pulmonary blood

flow increase in the ABG as compared to the BGLN.

There are also other instances in literature that supports this hypothesis.

Brouchow reported a clinical trial of cava-pulmonary anastomosis to a 4-day-old

patient with tetralogy of Fallot and pulmonary atresia [178]. He reported that

the patient did fairly well for 4 months, when increasing signs of SVC syndrome

and increasing cyanosis and hematocrit slowly developed. Patient died due to the

cardiac arrest at the age of sixteen month during second surgery, which was an

attempt to increase pulmonary blood flow. They reported a widely open SVC-PA

and closed PDA at autopsy. They postulated that the closure of the PDA after

4 months reduced pulmonary blood flow, leading to hypoxemia, polycythemia,

and increased blood viscosity. As a result of increased PVR, the flow through

anastomosis reduced and signs of sever SVC syndrome appeared leading to a non-

functional connection [178]. Based on their argument, this is the low pulmonary

blood flow that initiated a chain reaction of low oxygenation, higher hematocrit

level, higher blood viscosity, increased PVR, and even lower pulmonary blood flow.

This chain can be avoided all together by having sufficient pulmonary blood flow

to begin with.

Simulation results show that SVC pressure can be as high as 15 mmHg

in the ABG at high PVR, while it is less than 3 and 12 mmHg in the MBTS

and BGLN, respectively. High SVC pressure is an important parameter that is

hypothesized to cause cerebral hemorrhage and peripheral edema. To mitigate

SVC pressure increase in the ABG, we used high velocity SPS flow to pump SVC

flow to the PA. The two SPS geometries, considered in this study, are basic designs

intended for technical feasibility, but not yet fully optimized from the point of

view of fluid mechanics. For maximal recovery, it is essential to reduce viscous

dissipation by using a minimal length for the shunt, a diffuser-shaped SVC, and a

proper anastomosis angle and cross section. A wide range of SPS designs could be
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considered in the future that may lead to lower SVC pressure.

Using a straight shunt in the ABGS removes the jet effect and can be

considered to be a variation of BGLN with accessory pulmonary flow, which has

been studied extensively in clinical [179, 180, 181, 182] as well as computational

and in vitro settings [182]. These studies in general show, consistent with the

present study, higher saturation levels, higher pulmonary flow rate, higher SVC

pressure, and higher cardiac load in the presence of accessory flow. Assuming the

added shunt in the ABGS is comparable to the BGLN with accessory flow, we

showed that clipping the shunt in the ABG offers an advantage by lowering SVC

pressure and heart load. The reported mortality and morbidity rates in patients

with accessory flow differs among institutions. Van de Wal et al. reported no

influence on the survival rate in a study of 205 patients with an average age of 5.6

years, McElihinney et al. reported higher, yet statistically insignificant, mortality

in a study of 160 patients with an average age of 7.8 months, and Mainwaring

et al. reported higher mortality in study of 149 patients with an average age of

10 months [179, 180, 181]. Earlier completion of Fontan was reported in patients

with accessory flow and it is argued that if hepatic-factor is important for the

prevention of pulmonary arteriovenous malformation, having accessory pulsatile

flow might represent an advantage [179]. Also it has been suggested accessory flow

may improve exercise tolerance by providing a variable pulmonary flow [176].
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Chapter 10

Conclusion and Future Directions

10.1 Concluding remarks

We presented a framework for coupling an arbitrary, user-defined LPN to a

discretized 3D FE domain, which exhibits the stability of monolithic approaches,

while maintaining the flexibility and modularity of a partitioned approach. Two

types of coupled boundaries, i.e. ‘Neumann’ and ‘Dirichlet’ BCs, were discussed.

The instability associated with backflow for the Neumann boundaries was ad-

dressed by adding an additional stabilization term to the formulation. In this

formulation, at each nonlinear iteration of the Navier-Stokes solver, flow rates of

Neumann boundaries and pressures of Dirichlet boundaries are sent from the 3D to

0D domain, where ODE’s are numerically integrated, and pressure or flow rate are

passed back to the 3D domain. By using a finite difference technique to evaluate

the 0D domain contribution to the tangent matrix of the 3D domain, a strongly

coupled implicit formulation is proposed to improve the stability and convergence

properties when using coupled Neumann boundaries. Good convergence properties

were shown when accounting only for the effect of each Neumann surface on its own

traction in the tangent matrix. Validating this framework against a Windkessel

analytical solution demonstrated its accuracy; and strong stability properties were

demonstrated through two case studies with closed-loop LPN.

We performed a quantitative comparison of three outlet treatment meth-

ods used to address the problem of numerical divergence due to backflow. Using

213
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identical numerics, models, and meshes, we compared the methods of outlet sta-

bilization, normal velocity constraint, and Lagrange profile constraints. We have

shown that the normal constraint can be safely used in the case of slight flow rever-

sal, producing a stable result with little impact on the flow physics. However, this

requires the constrained direction vector to be close to the direction of reversed

flow and that only the part of the outlet with flow reversal be constrained. Our

results showed that the Lagrange method, while often successful in stabilizing the

solution, suffered from high impact on the pressure field solution, high computa-

tional cost, and increased difficulty in both implementation and ease-of-use. While

results with highly tuned outlet flows matched very well with the stabilized method

results, a lack of tuning can produce drastically different results that are not con-

fined to the vicinity of the outlet. The stabilization method was shown to have the

highest robustness, and the least impact on the flow field, with no extra compu-

tational cost, and high ease of implementation and use. In addition, the stability

of this method is improved to include a wider range of time steps by adding only

a fraction of the convection term in our formulation. This implementation also

reduced the impact of this method on the pressure field. In overall, the addition of

an outlet stabilization term provides an accurate, robust, and easy-to-use method

that reliably prevents backflow divergence in numerical simulations of blood flow.

Bi-partitioned iterative algorithm was introduced for solving system of lin-

ear equations that are obtained from the FE discretization of Navier-Stokes equa-

tions. By dividing the solution space into two, i.e. velocity and pressure, a richer

space is obtained, guaranteeing improved convergence. The system of linear equa-

tions are solved block-by-block using a Schur compliment that is fully integrated

into the bi-partitioned algorithm. Also, a PC is introduced for problems containing

coupled Neumann BC, as those encountered in multidomain simulations. By deriv-

ing an analytical form for the proposed PC, implementation effort and evaluation

cost are minimized. We showed this PC closely approximates a block of the LHS

matrix, hence it can be efficiently used in the Schur compliment and bi-partitioned

algorithm. Through several examples we showed effectiveness of the bi-partitioned

algorithm combined with the PC, reducing the cost of solving system of linear



215

equations more than an order of magnitude in certain cases.

A method for iterative linear equation solvers was presented that allows

a systematic conversion of sequential algebraic operations, such as vector inner

product and matrix-vector product, to their parallel counterparts. Improved par-

allel performance is obtained by introducing a mapping that separates the shared

entries from its unshared entries. This allows one to combine non-blocking com-

munications with massive computations in matrix-vector products, and to avoid

performing repeated computations on the shared entries in a vector inner prod-

ucts. The initialization and use of the new data structures have minimal time and

memory requirements. The proposed method was tested on a varying number of

processors using three computational models of different size and complexity, and

showed superior performance to a well-known and commonly used iterative linear

algebra library.

A non-discrete method was introduced for calculating RT in a given region

of interest. The proposed method lacks drawbacks associated with Lagrangian

discrete methods, such as dependence of the results to the temporal and spatial

seeding points and mesh dependency. RT can be calculated based on the time a

parcel of fluid spends in a region of interest (RT1) or the time fluid exiting the

boundary has spent in the region of interest (RT2). Results show that RT2 is

more sensitive to the region of interest selection and this definition can lead to

misleadingly low values if a segment of the region of interest lies in a high velocity

region. The results show that WSS and RT1 values are inversely correlated in

different flow conditions. It was shown that in a steady flow RT2 provides a lower

bound for 2RT1.

The coupled LPN was used to predict the downstream and upstream be-

havior of an idealized postoperative MBTS model. By implementing the coupled

model into a fully automated optimization algorithm, the optimum shunt geome-

try, considering systemic and coronary OD as the objective function, was found.

Consistent with the clinicians consensus, the shunt diameter was the parameter

that had the most influence on the results, but we showed that attachment ge-

ometry of the shunt also has an impact. The results showed that a shunt with
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larger diameter and with a more distal anastomosis provides better coronary OD;

and the systemic OD is maximized with a shunt that is a smaller and connected

closer to the aorta. This was due to the fact that the coronary perfusion is almost

the same for the small proximal shunt and large distal shunt, while the oxygen

saturation is higher for the large shunt. This led to higher coronary OD for the

distal shunt. The former optimal systemic and coronary OD can be achieved in

a single anatomy if midrange values of shunt diameter and anastomosis point are

chosen compared to the two former optimal geometries.

Multidomain framework was employed to evaluate the circulatory arrange-

ment of stage-one patients with multiple systemic-to-pulmonary connections and

compare it with single MBTS. Simulation were designed to study the effect of PVR,

the MBTS positioning, the diameter of PDA, and existence of PDA or CS on a

set of parameters. The results showed that using multiple connections, moving the

MBTS to a distal position, increasing the diameter of PDA/CS, and lowering PVR

lead to pulmonary hyperfusion and OD reduction and lead to increased RT and

OSI and decreased WSS and WSSG in the MBTS. The flow condition inside the

PA highly depends on momentum of the MBTS and PDA/CS competing flows.

A unidirectional flow is observed in presence of a large PDA/CS or in anatomies

with only a single MBTS. A competing disturbed flow is observed in cases which

the MBTS and PDA/CS have similar sizes. We observed lower WSS and higher

RT, OSI, and WSSG in the PA in presence of competing flow and absence of uni-

directional flow. These results discouraged use of multiple systemic-to-pulmonary

connections, as it can either lower OD or increase RT in the PA, which is a surro-

gate for thrombotic risk assessment.

Considering the critical condition of stage-one patients and limited improve-

ment obtained from optimization of current surgical procedure, we proposed a new

surgery by combining stage-one and two surgeries. The key idea in this surgery is

to assist venous return by the high energy systemic flow, hence reducing venous re-

turn pressure while augmenting pulmonary perfusion and OD. The reason for high

mortality among patients who receive cavopulmonary connection in the neonatal

period is not fully understood. If low pulmonary perfusion and low oxygenation



217

are the leading causes, the ABG could have potential as a viable alternative to the

MBTS, as it could reduce the heart load and cardiac output significantly, provide

higher levels of oxygenation, add redundancy to sources of pulmonary blood flow

and reduce risk of mortality caused by blockage of SPS, and potentially reduce

the total number of palliative surgeries to two. High SVC pressure remains as

a concern in the ABG and future studies are required to address this potential

drawback.

10.2 Future directions

Multiscale behavior is observed in many physical and biological systems.

Numerical modeling of multiscale systems is still a challenging problem, as issues

of numerical stability, modularity, accuracy, and uncertainty need to be addressed.

The multiscale framework that was developed here treats high order (e.g. 3D)

and low order models as two separate domains, each solved independently using

different numerical schemes and coupled through a predetermined interface. Al-

though separating the domains offers the advantage of modularity, it also produces

instabilities and certain limitations associated with the interface between domains.

Integration of two domains into one, while respecting the scales of each domain,

could remove those drawbacks. This requires translating the lower order model

formulation into the higher order model formulation and using a unified numer-

ical scheme for both domains. More specifically, FE principals can be used to

formulate the lower order model and potentially implement an efficient space-time

formulation for both domains.

A deterministic multiscale modeling approach relies on achieving an accu-

rate representation of the lower order model based on physically acquirable data.

Given the physical measurements, currently there is no systematic approach to

obtain a unique lower order model. The current process is generally very time

consuming, involves trial and error, and most importantly depends on user deci-

sions. This produces results that are study-specific and imposes limits on com-

paring results of separate studies that aim at an identical problem. Performing
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a statistical analysis on such a study requires an automated tuning process that

is user-independent. Therefore, a deterministic framework can be developed that

systematically produces a multiscale model based on given physical measurements.

The automatic tuning process, on the other hand, generally requires running

multiple expensive simulations. The number of simulations grows rapidly as the

number of components in the lower order model increases. Cost-wise, it is generally

impractical to perform all of these simulations using the expensive high order

model. Hence, a surrogate for the high order model can be developed that is cheap

to evaluate and closely represents the actual model. To design this surrogate, the

governing physics of the high order model must be considered and components

that represents those physical principles must be chosen closely.

Considering the idealized LPN used in the study of stage-one surgery, un-

certainty analysis should be used in future work to quantify the sensitivity of the

results to variation in patient specific parameters. The adopted model for the

coronary artery did not take into account changes in elastance of the heart due to

reduced coronary flow. While the reduction in coronary flow is small in this study,

these effects should be investigated in future work. To design more comprehensive

future studies, a broader range of patients should be considered, and results should

be correlated with patient outcome statistics.

The ABG is an example of the application of multiscale modeling to test

radically different surgical concepts that would otherwise be ethically or techni-

cally infeasible. In the future, existing idealized models can be expanded to patient

specific models to test ABG under more realistic physiologic and geometrical con-

ditions. Optimization and uncertainty quantification tools will allow for refinement

of the SPS design and accuracy assessment. A more extensive LPN may be needed

to accurately capture the physiological response of the circulatory system to the

large variations imposed by drastically different surgeries. Based on these results,

in-vitro animal and clinical studies can be designed in future work. Adding a shunt

to a failing BGLN, as an alternative to take-down of the BGLN, seems the best

substrate for initial clinical trial of the ABG.

To reduce the SVC pressure in the ABG, it is possible to implant a mechan-
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ical device that replaces the connection of the SPS and SVC, thereby improving

efficiency of the connection as compared to a traditional surgical connection. The

idea is to fabricate a device with two inlets, i.e. a high and a low pressure inlet, and

one outlet, which are connected to the SPS, the SVC, and the PA, respectively,

similar to an industrial ejector pumps (Figure 10.1). The geometry of this device

can be optimized such that pressure is recovered more efficiently in the nozzle. In

comparison with common ventricular assist devices, the proposed device contains

no moving parts, no active mechanisms, and the entire device can be implanted

inside the patient. Hence, it lowers thrombotic risk, reduces patient management

complications, simplifies the design and testing of the device, and removes the

requirement of being in proximity of a source of energy at all time.

Outlet

Low pressure inlet

High pressure inlet

Figure 10.1: Isogeometric analysis of the implanted ejector pump in the ABG.
Three patches are employed to construct the high pressure inlet, connected to the
systemic circulation, low pressure inlet, connected to the SVC, and outlet nozzle,
connected to the PA.



Appendix A

Coupled Neumann Boundary

Stability Analysis

Here, we provide a possible explanation for the numerically observed diver-

gence of a simulation when a Neumann boundary is coupled to an inductor. In

this case, the coupled surface pressure at each Newton iteration must be updated

based on the flow rate,

P (k),n+1 = Pd + L
∆Q(k−1)

∆t
, (A.1)

where P (k),n+1 and Pd are the predicted pressure of the coupled surface for iteration

k and distal point pressure (see Figure 2.5). For infinitesimal changes, the following

linear relationship is assumed between pressure and flow rate, which models the

3D domain behavior,

∆Q(k−1) = −λ∆P (k−1). (A.2)

where, physically, λ is proportional to the reciprocal of vascular resistance. From

Equation (A.1) and (A.2),

P (k),n+1 = Pd −
Lλ

∆t

(

P (k−1),n+1 − Pn
)

. (A.3)

This equation is unstable for |Lλ/∆t| > 1. In practice, since λ 6= 0, the pressure

of the coupled surface will oscillate and rapidly diverge for small time step sizes.

Similarly for a Dirichlet boundary coupled to a capacitor, it can be shown that

Q(k),n+1 will be an unstable function of Q(k−1),n+1.
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Appendix B

Single Ventricle LPN Values

The values of the LPN (Figure 2.11) elements are shown in Table B.1.

Outside the heart model, all the resistances, capacitors, and inductances have linear

behavior. To model turbulence associated with the heart valves, two resistances

are included in the LPN, and the pressure drop through them is proportional to the

square of their flow rates. Heart chamber pressures are considered to be composed

of active and passive parts. The atrial pressure is modeled using,

Pa = AaEa(Va − Vau) + Pa0(e
Ka(Va−Vau ) − 1). (B.1)

Aa is modeled with a sinusoidal function which is non-zero during atrium contrac-

tion and Ea, Pa0 , Ka, and Vau are the constants of this model. The same model

is used for the ventricle, except the active pressure, i.e. the first term in Equation

(B.1), is replaced with a parabolic function,

Pv = Av[Ev1(Vv − Vvu) + Ev2(Vv − Vvu)
2] + Pv0(e

Kv(Vv−Vvu ) − 1). (B.2)

All the constants of the heart model along with the rest of LPN are shown in Table

B.1 and B.2.
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Table B.1: Figure 2.11 circulatory parameters values.

Block Parameter Value Unit

UBA
R 2.809 ×101 mmHg s/ml
C 4.430 ×10−2 ml/mmHg
L 2.138 ×10−2 mmHg s2/ml

UBB
R 6.451 ×10−1 mmHg s/ml
C 1.552 ×10−1 ml/mmHg

UBV
R 1.653 ×10−1 mmHg s/ml
C 2.039 ml/mmHg

PAB
R 8.338 ×10−1 mmHg s/ml
C 2.039 ×10−2 ml/mmHg

PVB
R 2.194 ×10−2 mmHg s/ml
C 4.438 ×10−1 ml/mmHg

LBA
R 7.022 mmHg s/ml
C 7.758 ×10−2 ml/mmHg
L 1.069 ×10−2 mmHg s2/ml

LBB
R 6.451 ×10−1 mmHg s/ml
C 7.758 ×10−2 ml/mmHg

LBV
R 1.653 ×10−1 mmHg s/ml
C 2.039 ml/mmHg

CA1
R 1.067 ×101 mmHg s/ml
C 1.944 ×10−3 ml/mmHg

CA2
R 1.067 ×101 mmHg s/ml
C 5.183 ×10−3 ml/mmHg

CB
R 2.135 ×101 mmHg s/ml
C 7.774 ×10−3 ml/mmHg

CV
R 1.067 ×101 mmHg s/ml
C 5.000 ×10−3 ml/mmHg
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Table B.2: Figure 2.11 heart parameters values. R̂tric and R̂ao are non-linear
resistances modeling the tricuspid and aortic valves, respectively. Rasd is atrial
septal defect resistance (resistance between left and right atria). Depending on
the type of BC imposed on AA, Cao (for Neumann BC, Chapters 2 and 7) or Lao

is used (for Dirichlet BC, Chapters 8 and 9), Continued.

Block Parameter Value Unit

LA/RA

Rasd 1.000 ×10−3 mmHg s/ml
Ea 7.350 mmHg/ml
Vau 1.000 ml
Pa0 1.700 ×10−1 mmHg
Ka 4.840 ×10−1 1/ml

SV

R̂tric 4.000 ×10−5 mmHg s2/ml2

Ev1 1.850 ×101 mmHg/ml
Ev2 -4.200 ×10−2 mmHg/ml2

Vvu 4.000 ml
Pv0 9.000 ×10−1 mmHg
Kv 6.200 ×10−2 1/ml

AA

R̂ao 4.000 ×10−4 mmHg s2/ml2

Rsv 9.000 ×10−2 mmHg s/ml
Cao 4.156 ×10−2 ml/mmHg
Lao 1.155 ×10−2 mmHg s2/ml



Appendix C

Calculation of Oxygen Delivery

Let VO2
, V lb

O2
, and V ub

O2
, be the total, lower body, and upper body oxygen

consumption, and Cp, Cao, Civc, and Csvc be the oxygen concentration in pulmonary

vein, aorta, IVC and SVC, respectively. We define,

r =
VO2 lb

VO2

, (C.1)

hence,

VO2ub = (1− r)VO2
. (C.2)

By definition the oxygen delivery is,

OD = CaoQs. (C.3)

From the conservation of oxygen [183],

VO2ub = Qub (Cao − Csvc) , (C.4)

that is true for all the studied anatomies. From Equations (C.2) and (C.4),

Csvc = Cao − (1− r)
VO2

Qub

, (C.5)

Considering a saturation of 98% for pulmonary veins and based on typical

clinical data obtained from catheterization exams [16], the Cp and VO2
are set to

0.22 mLO2
/mL and 0.874 mLO2

/s, respectively. We assume half of the total oxygen

is consumed by the upper body, i.e. r = 0.5.
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C.1 MBTS

Considering the conservation of oxygen in MBTS anatomy,

VO2
= Qp (Cp − Cao) , (C.6)

From Equations (C.3) and (C.6),

OD = QsCp −
Qs

Qp

VO2
, (C.7)

C.2 Glenn

Considering the conservation of oxygen in BGLN anatomy,

VO2
= Qp (Cp − Csvc) . (C.8)

In the BGLN anatomy, Qp is equal to Qub, hence from Equations (C.5) and (C.8),

Cao = Cp − r
VO2

Qp

. (C.9)

From Equations (C.3) and (C.9),

OD = QsCp − r
Qs

Qp

VO2
. (C.10)

C.3 ABG

Considering the conservation of oxygen in ABG anatomy,

VO2
= (Qp −Qub) (Cp − Cao) +Qub (Cp − Csvc) . (C.11)

Substituting for Csvc from Equation (C.5),

Cao = Cp − r
VO2

Qp

. (C.12)

Using Equations (C.3) and (C.12),

OD = QsCp − r
Qs

Qp

VO2
, (C.13)
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that is identical to BGLN result.

Oxygen delivery of MBTS, BGLN, and ABG only depends on Qp and Qs

(beside constant variables Cp, VO2
, and r). Systemic flow rate is sum of upper

and lower body flow rates, i.e. Qs = Qub + Qlb, which can be calculated after

simulations. Since the second term in right hand side of Equations (C.10) and

(C.13) are multiplied by r (that is less than one) as comparing to Equation (C.7),

at the same systemic and pulmonary flow rates, MBTS has always lower oxygen

delivery compared to the ABG and BGLN.

Note that to obtain oxygen delivery to a particular part of the body, flow

rate to that part is multiplied by Cao instead of Qs. For example coronary oxygen

delivery for ABG is,

ODcor = QcorCp − r
Qcor

Qp

VO2
, (C.14)



Appendix D

Calculation of Hemodynamic

Indices

D.1 WSS

WSS is calculated directly from velocity, using

σ(x, t) = µ(∇u+∇uT ), x ∈ Ω, (D.1)

τ e(x, t) = σn− (nTσn)n, x ∈ Γ, (D.2)

where µ, σ(x, t), n(x), and τ e(x, t) are fluid viscosity, stress tensor, outward

normal vector to wall, and tangential traction vector exerted on the wall at each

element. The following function maps the traction to the nodes

τ (x, t) = F(τ e), x ∈ Γ, (D.3)

where F(s(x, t)) ∈ R
m, s(x, t) ∈ R

m, is found such that for any test function

w(x, t) ∈ R
m the following holds:

∫

Γ

w · F dΓ =

∫

Γ

w · s dΓ. (D.4)

Equation (D.4) is a least squares problem which produces a linear system of equa-

tions with a mass matrix on the left hand side. Calculating traction directly
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from velocity, as described above, requires less mesh refinement to produce mesh-

independent results compared to using the traction obtained from the residual

vector of the discretized Navier-Stokes equations, as described in [184].

Time averaged WSS(x) is defined from the traction obtained from Equation

(D.3) using

WSS(x) =
1

T

∫ t0+T

t0

‖τ‖ dt, x ∈ Γ. (D.5)

D.2 WSSG

The unit vectors tangential, s1, and orthogonal, s2, to the time averaged

WSS vector defined at each element, are

s1 =

∫ t0+T

t0
τ e dt

∥

∥

∥

∫ t0+T

t0
τ e dt

∥

∥

∥

,

s2 = s1 × n. (D.6)

The approach for finding the WSS gradient is similar to that of WSS. However,

for bilinear shape functions, the second derivative of velocity is zero inside the

elements. Therefore the traction components obtained from Equation (D.2) are

decomposed into tangential and orthogonal directions, and then mapped to the

nodes using

τs1(x, t) = F(τ e · s1), x ∈ Γ,

τs2(x, t) = F(τ e · s2), x ∈ Γ. (D.7)

The time averaged WSSG(x) is then calculated as

WSSG(x) =
1

T
F
(∫ t0+T

t0

√

(s1 · ∇τs1)2 + (s2 · ∇τs2)2 dt
)

, x ∈ Γ. (D.8)

D.3 OSI

OSI(x) is directly calculated from the nodal traction [185, 186] as

OSI(x) =
1

2



1−

∥

∥

∥

∫ t0+T

t0
τ dt

∥

∥

∥

∫ t0+T

t0
‖τ‖ dt



 , x ∈ Γ. (D.9)
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