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Abstract

On the k-Schur Positivity of k-Bandwidth LLT Polynomials

by

Christopher R. Miller

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Mark Haiman, Chair

Both LLT polynomials and k-Schur functions were derived from the study of Macdonald
polynomials, and have proved to be fruitful areas of study. A well-known conjecture due
to Haglund and Haiman states that k-bandwidth LLT polynomials expand positively into
k-Schur functions. This is trivial in the case k = 1 and has been recently proved for k = 2.
In this work, we present a proof for the case k = 3. In doing so, we introduce a new method
for establishing linear relations among LLT polynomials.
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Chapter 1

Introduction and Background

1.1 Introduction

An open problem in the study k-Schur functions is to prove that k-bandwidth LLT poly-
nomials expand positively into k-Schur functions. This conjecture is sometimes known as
the Haglund-Haiman conjecture. Since Macdonald polynomials indexed by k-bounded par-
titions are known to expand positively into k-bandwidth LLT polynomials [1], a proof of
the Haglund-Hamain conjecture is sufficient to prove the k-Schur positivity of Macdonald
polynomials. This conjecture has been verified combinatorially in the case that k = 1 [2]
and k = 2 [3]. Here we present a combinatorial proof in the case that k = 3.

After introducing the relevant background, this work has three parts. In the first part,
we provide a new method (Theorem 2.2.1, Lemma 2.3.1) for proving identities among LLT
polynomials. A common sort of decomposition will be

G~λ(X; q) = qmG~µ(X; q) + qnG~ν(X; q) (1.1)

where ~µ and ~ν are derived from ~λ, and m,n are integers. Each relation in fact describes
infinitely many equalities of LLT polynomials, and for this reason we call them LLT equiva-
lence relations. We verify one LLT equivalence relation for every ordered pair of 3-bandwidth
skew partitions, and present them in appendix A.

In the second part, we use these identities of LLT polynomials to prove that 3-bandwidth
LLT polynomials can be written as N[q, q−1]-linear combination of LLT polynomials for which
there is no possible decomposition (Theorem 3.1.9). For this reason, we call these special
LLT polynomials 3-indecomposables. This part relies heavily on the equations derived in
the previous section, and is essentially a collection of proofs by induction.

Finally, the third part of this work show that these 3-indecomposables are 3-Schur func-
tions (Lemma 3.3.1). This proof come in two parts. First, we use a theorem of Haiman
and Grojnowski to show that these 3-indecomposable LLT polynomials are generalized Hall-
Littlewood polynomials (Lemma 3.2.1). Then a theorem of Lam and Morse realizes these
particular generalized Hall-Littlewood polynomials as 3-Schur functions (Lemma 3.3.1).
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Together, this proves that 3-bandwidth LLT polynomials are N[q, q−1]-linear combina-
tions of 3-Schur functions. Since 3-Schur functions have a monic term, this is sufficient to
prove k-Schur positivity.

1.2 Partitions and Tableaux

A partition of n ∈ N is a sequence of nonnegative integers λ = (λ1, λ2, . . .) such that∑∞
i=1 λi = n and λi ≥ λi+1 for all i. We will write λ ` n to denote a partition of n. Since a

partition necessarily has only a finite number of nonzero entries, we often use the notation
λ = (λ1, λ2, . . . , λ`), where λ` is the last nonzero term. The number ` = `(λ) is sometimes
called the length of the partition. We will interchangeably use the cell-wise notation, which
defines a partition λ as a set {(i, j) | 1 ≤ i ≤ `(λ), 1 ≤ j ≤ λi}. As the name suggests,
elements of these sets are called cells.

If λ and µ are a pair of partitions such that λi ≥ µi for all i, then we define the skew
partition λ/µ as the set difference λr µ = {(i, j) | 1 ≤ i ≤ `(λ), µi < j ≤ λi}. Given a cell
x = (i, j) ∈ λ, the content of the cell is an integer c(x) = j − i. Cells with the same content
are said to fall on the same content line.

A Young tableau of shape λ is a function T : λ/µ → N labeling the cells that is in-
creasing along columns, and weakly increasing along rows, i.e. T (i, j) < T (i + 1, j) and
T (i, j) ≤ T (i, j + 1) for all i, j. This is known as the semistandard condition, and we will
also refer to these tableaux as semistandard tableaux. The weight of a semistandard tableau
w(T ) is a sequence (w1(T ), w2(T ), . . .) such that wi(T ) is the multiplicity of i in T . If
w(T ) = (1, 1, . . . , 1, 0 . . .) then T is said to be a standard tableau. Semistandard tabelaux
of shape λ and weight µ comprise a set SSYT(λ, µ), and such standard tableaux are de-
noted SYT(λ, µ). We will often make reference to the sets SSYT(λ) = ∪µSSYT(λ, µ) and
SYT(λ) = ∪µSYT(λ, µ).

Given a semistandard tableau T , the monomial xT is defined to be x
w1(T )
1 x

w2(T )
2 · · · , and

the Schur function sλ(X) = sλ(x1, x2, . . .) by

sλ(X) =
∑

T∈SSYT(λ)

xT (1.2)

Allowing Λ to denote the ring of symmetric functions in the alphabet X = x1 +x2 + · · · ,
it is a classical theorem that sλ(X) is a symmetric function [4].

1.3 d-cores and Ribbon Tableaux

A d-ribbon is a connected skew partition that contains no 2×2 box, and has d many cells.
Given a cell x ∈ λ, the hook of x = (a, b) counts the number of cells above x or to to its right,
including x. In notation, hook(x) = hook(a, b) = |{(i, b) ∈ λ | i ≥ a}|+ |{(a, j) ∈ λ | j > b}|.
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A partition λ is said to be a d-core if there does not exist µ such that λ/µ is a d-ribbon.
Equivalently, λ is a d-core if there does not exist x ∈ λ such that d divides hook(x) [5].

Figure 1.1: Some examples of 4-cores

Given a partition λ, we can consider a sequence {λ(i)}i=1 of partitions produced by
repeatedly removing d-ribbons. In other words, λ(1) = λ and λ(i)/λ(i+1) is well defined and a
d-ribbon for all i. Since λ(i+1) has strictly fewer cells than λ(i), this process terminates with a
partition from which no d-ribbon can be removed; by definition a d-core. So we can rewrite
the sequence as λ(1), λ(2), . . . , λ(D), where λ(D) is a d-core. It is a fundamental theorem that
λ(D) is independent of the sequence of ribbons removed [5]. This justifies defining a function
cored(λ) = λ(D) which returns the unique d-core that results from removing d-ribbons from
λ. In Figure 1.2 we see an example of stripping away ribbons to produce a d-core, with
λ = (6, 6, 6, 5) and cored(λ) = (2, 1).

Figure 1.2: A sequence or partitions produced by removing ribbons.

Suppose that λ and µ are a pair of partitions such that there exists a sequence λ =
(λ(1), λ(2), . . . , λ(P )) where λ(i)/λ(i+1) is a d-ribbon for all i and λ(P ) = µ. Then λ/µ is said
to be d-tileable. It is a fact that λ/µ is d-tileable if and only if cored(λ) = cored(µ).

The head of a ribbon is the cell with greatest content (i.e. the bottom-right) and the
tail is the cell with least content (i.e. top-left). If a skew shape λ/µ is tileable by d-ribbons
such that the head of each ribbon is directly above no other cell, then λ/µ is said to be
a horizontal d-ribbon strip. A semistandard d-ribbon tableau of shape λ/µ and weight ν is
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a function T : λ/µ → N such that the cells labeled i form a horizontal d-ribbon strip for
all i, and T is nondecreasing along columns and rows. The weight of a d-ribbon tableau is
a sequence w(T ) = (w1(T ), w2(T ), . . .) such that wi(T ) = |{x ∈ λ/µ | T (x) = i}|/d. We
denote the set of all d-ribbon tableaux of shape λ/µ and weight ν by Tabd(λ/µ, ν), and the
set of all d ribbon tableaux of shape λ/µ by Tabd(λ/µ). We note that when d = 1, the
definition of d-ribbon tableau is the same as for a semistandard Young Tableau.

1 3 3 3 3

1 1 1 2 2 2

1 1 2 2 2

1 1 2 2

3

1

1 2 2

Figure 1.3: A ribbon tableau drawn two different ways

Figure 1.3 is an example of the above definitions. It is a 4-ribbon tableau of shape λ/µ
where λ = (6, 6, 6, 5) and µ = (2, 1). We know immediately that λ/µ is 4-tileable, because
core4(λ) = core4(µ) = (2, 1), as was shown in Figure 1.2. Figure 1.3 displays a ribbon tableau
of weight (2, 2, 1).

It is a fact that every horizontal d-ribbon tableau can be tiled by d-ribbons in exactly
one way that respects the horizontal strip condition [6, Definition 4]. Thus a semistandard
d-ribbon tableau comes naturally tiled by d-ribbons. We will abuse notation and write R ∈ T
to denote a ribbon within a semistandard d-ribbon tableau.

Given a d-tileable skew partition λ/µ and a cell x ∈ λ/µ, we define the adjusted content
c̃d(x) to be the unique integer such that c(x) = c̃d(x) · d + r where 1 ≤ r ≤ d. When it is
unambiguous, we will write c̃(x) in place of c̃d(x).

1.4 Multiskew Partitions and d-Quotients

A multiskew partition is a finite sequence of skew partitions. The length of a multiskew
partition is the number of entries. Given two multiskew partitions with the same length
~λ = (λ(1), λ(2), . . . , λ(d)) and ~µ = (µ(1), µ(2), . . . , µ(d)) whose entries are all straight shapes

such that µ(i) ⊆ λ(i), we will sometimes write ~λ/~µ to denote the sequence of skew partitions
(λ(1)/µ(1), λ(2)/µ(2), . . . , λ(d)/µ(d)). We will always use superscripts to index the entries of a
multiskew partition to distinguish them from the parts of a partition. We will interchange-
ably treat ~λ as a sequence of skew partitions, and as a disjoint union of cells ~λ = tiλ(i)

A semistandard multiskew tableau of shape ~λ and weight ν is a function ~T : tiλ(i) → N
such that the restriction to each skew partition Tλ(i) : λ(i) → N is a semistandard Young
tableau. The weight of a a multiskew tableau is the sum of the weights of each restriction:
w(~T ) =

∑
iw(Tλ(i)). We will denote the set of multiskew tableau of shape ~λ and weight µ

by SSYT(~λ, µ), and the set of all multiskew tableau with fixed shape by SSYT(~λ).
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There is an important relationship between d-tileable partitions and multiskew partitions
of length d. Further, this relationship descends to the level of tableaux, and asserts a corre-
spondence between semistandard d-ribbon tableaux and semistandard multiskew tableau of
a fixed shape and weight. We will call this map quotd, and describe it now.

The map quotd was first given by Stanton and White [7] as a bijection quotd : Tabd(λ/µ)→
SSYT(~β) such that for every weight ν, the restriction quotd |ν : Tabd(λ/µ, ν)→ SSYT(~β, ν)
is bijective.

We will define quotd on the level of tableaux, where it is more intuitive. Let S ∈
Tabd(λ/µ, ν) be a d-ribbon tableau. Then to each ribbon R ∈ S, we can assign the content
of its head c(hR), which decomposes as c(hR) = c̃(hR) · d + iR where 1 ≤ iR ≤ d. So for
each ribbon R ∈ S, we collect the following tuple of information: (iR, c̃(hR), S(hR)). We

simultaneously produce ~β and T = quotd(S) ∈ SSYT(~β, ν). The pair (~β, T ) is defined by
the following properties.

• β(i) has one cell for each ribbon R ∈ T such that iR = i.

• For each such ribbon R ∈ T , the corresponding cell x ∈ β satisfies c(x) = c̃(hR) and
T (x) = S(hR).

This defines a tableau as a collection of cells with assigned content and weight. If λ/µ
is connected, then β(i) is unique for all i, up to diagonal translation within the plane. It is
a theorem that the multiskew partition ~β depends only on λ/µ, and not on the particular
ribbon tableau S.

We end this section with an example of the map quotd seen in Figure 1.4.

-3 -2 -1 0 1 2

3

3 4

5

1

1 2 2

Figure 1.4: A ribbon tableau drawn with content.

Here λ = (6, 6, 6, 5) and µ = (2, 1), We will see that ~β = ((2, 2)/(1, 1), ∅, (1)/(0), (2, 2)/(2)).
The weight ν is (2, 2, 1). Since the d-ribbon tableau T has 5 ribbons, there are 5 tuples to
consider:

(iR, c̃(hR), T (hR)) = (1, 0, 3), (1, 1, 2), (3, 0, 1), (4,−1, 1), (4, 0, 2)

We can read off the following:

• β(1) has two cells x1, x2 such that c(x1) = 0, T (x1) = 3, c(x2) = 1, and T (x2) = 2.
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• β(2) has no cells.

• β(3) has one cell x3 such that c(x3) = 0 and weight T (x3) = 1.

• β(4) has two cells x4, x5 such that c(x4) = −1, T (x4) = 1, c(x5) = 0, and T (x5) = 2.

There is a unique multiskew tableau that meets these conditions, it is displayed in Figure
1.5.

Tβ(1) =

0

1

3

2

Tβ(2) =

-1

0 1 Tβ(3) =

0

1

Tβ(4) =

-1 0

1 2

Figure 1.5: An example of quotd(λ/µ) = ~β.

We often prefer to write multiskew tableaux and or partitions within a single plane,
as in Figure 1.6. This notation will be especially useful when we define new variant LLT
polynomials in the next section.

T =

-1 0

1

1 2

1

3

2

~β =

-1 0

1

Figure 1.6: An alternative way to draw T and ~β in a single plane.

1.5 LLT Polynomials

Lascoux, Leclerc and Thibon introduced what are now called LLT polynomials in 1997 [8],
where they were defined in terms of ribbon tableaux. LLT polynomials were famously used
to expand Macdonald polynomials [1], and are themselves known to be Schur positive [9]
[10]. Every LLT polynomial is a q-analog of a product of Schur functions.
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We will introduce two definitions of LLT polynomials, and show they are essentially
equivalent. The first definition is given by a sum over d-ribbon tableaux, the second by a
sum over multiskew tableaux.

We define the spin of a ribbon R to be S(R) = height(R)−1
2

, where height(R) is the
number of rows occupied by the ribbon. We can extend this definition to a d-ribbon tableau
T ∈ Tabd(λ/µ) by S(T ) =

∑
R∈T S(R). For example, the ribbon tableau in Figure 1.3 has

spin 4.
Using spin, we can define the combinatorial LLT polynomials [10]:

G
(d)
λ/µ(X;u) =

∑
T∈Tabd(λ/µ)

u2·S(T )xT (1.3)

In fact these are not quite the spin symmetric functions defined by Lascoux, Leclerc and
Thibon, who have the same formula but substitute q = u2 [8].

There is another way to describe LLT polynomials in terms of multiskew partitions. Let
~β = (β(1), β(2), . . . , β(d)) be a multiskew partition, and let T ∈ SSYT(~β). Then we count
inversions by the number of pairs of cells (x, y) ∈ β(i) × β(j) where T (x) > T (y) and either

• c(x) = c(y)− 1 and i > j or

• c(x) = c(y) and i < j.

We say that the values (T (x), T (y)) form an inversion, and that the cells x, y form an
attacking pair. We denote the number of inversions in a multiskew tableau T by inv(T ).
In Figure, 1.6 the multiskew tableau T has inv(T ) = 2. Inversion counting can be refor-
mulated by considering the content reading word. The content reading word of a multiskew
tableau T is formed by writing down the entries of T by reading to the northeast along
content lines, leaving entries for blanks. For example Figure 1.6 has content reading word
w = ( , , , 1, 3, , 1, 2, 2, , , ). Since T is a 4-tuple, we count inversions by looking for
inversions in w such that the indices of the entries differ by less than 4. In w, this leaves
us with the pairs (3, 1) and (3, 2), which are the same pairs that appear in the standard
formulation.

We use inv to define another type of LLT polynomials. Haiman and Grojnowski call
these the new variant LLT polynomials [10]:

G~β(X; q) =
∑

T∈SSYT(~β)

qinv(T )xT . (1.4)

It is worth noting that setting q = 1 results in a product of Schur functions: G~β(X; 1) =∏d
i=1 sλ(i) . This is the easiest way to see that LLT polynomials are a q-analog of a product

of Schur functions.
The combinatorial LLT polynomials and the new variant LLT polynomials are related

by the map quotd : Tabd(λ/µ)→ SSYT(~β) defined in Section 1.4. On the level of tableaux,
quotd satisfies the following.
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S∗(λ/µ)− S(T ) = inv(quotd(T ))− inv∗(~β) (1.5)

where S∗(λ/µ) = max{S(T ) | T ∈ Tabd(λ/µ)} and inv∗(~β) = min{inv(T ) | T ∈
SSYT(~β)} [11]. We derive that

G
(d)
λ/µ(X;u) =

∑
T∈Tabd(λ/µ)

u2·S(T )xT

=
∑

T∈Tabd(λ/µ)

qS(T )xT

=
∑

T∈Tabd(λ/µ)

qS
∗(λ/µ)−inv(quotd(T ))+inv∗(~β)xT

=qc
∑

T∈Tabd(λ/µ)

q− inv(quotd(T ))xT

=qc
∑

T∈SSYT(~β)

q− inv(T )xT

=qcG~β(X; q−1)

(1.6)

where c = S∗(λ/µ) + inv∗(~β). Rearranging, we see that

G~β(X; q) = ueG
(d)
λ/µ(X;u−1) (1.7)

where q = u2 and e = 2 · S∗(λ/µ) + 2 · inv∗(quotd(λ/µ)) depends only on the shape λ/µ.
There is an alternative formulation of the inversion statistic due to Schilling, Shimozono,
and White. Their statistic inv′ satisfies inv′(quotd(T )) = S∗(T )−S(T ), which can be useful
in some settings [12]. Nonetheless, we will use inv as defined in this thesis originally.

We end this section with an example. Consider the d-tileable skew partition in λ/µ in

Figure 1.3 and the multiskew partition ~β in Figure 1.6. We calculate

• G(d)
λ/µ(X;u) = u2s(2,1,1,1) + u4s(2,2,1) + (u6 + u4)s(3,1,1) + u6s(3,2) + u8s(4,1)

• G~β(X; q) = q5s(2,1,1,1) + q4s(2,2,1) + (q4 + q3)s(3,1,1) + q3s(3,2) + q2s(4,1)

and note that u12G
(d)
λ/µ(X;u−1) = G~β(X; q).

1.6 k-Schur functions

In 2000, the study of q, t-Kostka polynomials led Lapointe, Lascoux, and Morse to the
conjecture that a filtration of the space Λt of graded symmetric functions can be used to derive
a refinement of Macdonald Positivity [13]. This filtration is given by Λ

(1)
t ⊂ Λ

(2)
t ⊂ · · · ⊂ Λt,
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where Λ
(k)
t is the span of {Hλ(X; t)}λ∈Pk , Hλ(X; t) is a Hall-Littlewood polynomial, and

Pk = {λ|λ1 ≤ k}, the set of k-bounded partitions. The space Λ
(k)
t can also be identified as

the span of {sλ[ x
1−q ]}λ∈Pk

For each space Λ
(k)
t they conjectured that there is a basis {s(k)λ (X; t)}λ1≤k satisfying the

following.

1. Hλ(X; q; t) =
∑
µ∈Pk

K
(k)
µλ (q; t)s

(k)
µ (X; t) where K

(k)
µλ (q; t) ∈ N[q; t] and λ ∈ Pk

2. s
(k)
λ (X; t) =

∑
µ∈Pk+1

b
(k,k+1)
λ,µ (t)s

(k+1)
µ (X; t) where b

(k,k+1)
λ,µ ∈ N[t] and λ ∈ Pk

The first statement claims that Macdonald polynomials can be expanded positively in
these bases. The second holds that each basis vector s

(k)
λ (X; t) expands positively in the

subsequent basis {s(k+1)
λ }λ∈Pk+1

. These conjectured symmetric functions s
(k)
λ (X; t) are called

k-Schur functions.
At current, there are four conjecturally equivalent definitions of k-Schur functions. Each

has its own merits, and we recommend that the interested reader look to [5] for more informa-

tion. For all definitions, it is known that s
(k)
λ (X; t) = sλ(X) when k > |λ|. If the k-branching

rule holds (Property 2), then iterative application shows that all k-Schur functions are Schur
positive, with coefficients in N[t]. Further, if Macdonald polynomials are k-Schur positive
(Property 1), then we can conclude Macdonald positivity. It is unsurprising, then, that
k-Schur functions are a very active area of study.

We will use a symmetric operator definition, as in [13][14]. Given a k-bounded partition

λ, the k-Schur functions s
(k)
λ (X; t) can be defined recursively as follows

s
(k)
λ (X; t) = Tλ1Bλ1s

(k)
(λ2,λ3,...)

(X; t) where s
(k)
() (X; t) = 1. (1.8)

We must define the operators Tn andBn to make sense of this. The operatorBn appears in
the construction of the Hall-Littlewood symmetric functions, and is called a vertex operator.
It is defined by

Bn =
∑
i=0

si+n[X]si[X(t− 1)]⊥ (1.9)

where f⊥ is the adjoint of f with respect to the Hall inner product. This definition
generalizes to partitions by the following:

Bλ =
∏

1≤i<j≤`(λ)

(1− teij)Bλ1Bλ2 · · ·Bλ` (1.10)

where eijBλ1 · · ·Bλ` = Bλ1 · · ·Bλi+1 · · ·Bλj−1 · · ·Bλ` .
In order to define the operator Tn, we must first make sense of what is called the k-

split basis. Given a k-bounded partition λ, we define the k-split of λ to be the sequence of
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λ = λ1 = λ2 = λ3 =

Figure 1.7: A 4 bounded partition and its 4-split

partitions λ→k = (λ1, λ2, . . . λr), where the entries concatenate to form λ, and every entry
other than λr has largest hook equal to k. See Figure 1.7 for an example.

Given a k-bounded partition λ and its k-split λ→k = (λ1, λ2, . . . λr), we can define the
k-split polynomials.

Skλ = Bλ1S(λ2,...,λr) with Sk() = 1 (1.11)

The set {Sλ}λ1≤k is provably a basis for Λ
(k)
t , and is usually called the k-split basis. Due

to this fact, it is sufficient to define the operator Tn on the k-split basis:

TnS
k
λ =

{
Skλ if λ1 = n
0 if λ1 6= n

(1.12)

We end this section by computing s
(4)
3,3,2,1(X; t) as a demonstration.

s
(4)
() (X; t) = 1

s
(4)
(1)(X; t) = T1B1s

(4)
() (X; t)

= s(1)

s
(4)
(2,1)(X; t) = T2B2s

(4)
(1)(X; t)

= s(2,1)

s
(4)
(3,2,1)(X; t) = T3B3s

(4)
(2,1)(X; t)

= s(3,2,1) + ts(4,2)

s
(4)
(3,3,2,1)(X; t) = T3B3s

(4)
(3,2,1)(X; t)

= s(3,3,2,1) + ts(4,3,1,1) + ts(4,3,2)

+ t2s(4,4,1) + t2s(5,3,1) + t3s(5,4)

(1.13)

1.7 Haglund-Haiman Conjecture

In his 2006 ICM talk, Haiman announced a conjecture stating that certain LLT polynomials
are k-Schur positive. This conjecture can be stated in two ways, depending on the definition
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one uses for LLT polynomials. We will state the conjecture in both settings, and show that
they are equivalent.

Conjecture 1.7.1. Let λ/µ be a skew partition. If there exist d, k, r ∈ N such the content
of every cell in λ/µ is contained in the interval [r, r + dk − 1], then

u−2h ·G(d)
λ/µ(X;u) =

∑
λ

Kλ(q)s
(k)
λ (X; q) (1.14)

where u2 = q, Kλ ∈ N[q] and h = S∗(λ/µ) = min{s(T ) | T ∈ Tabd(λ/µ)}.

In other words, if the contents of a d-ribbon partition are in an interval of diagonal width
dk, then the corresponding combinatorial LLT polynomial is k-Schur positive. The term
u−2h appears only to ensure that the coefficients u−2h ·G(k)

λ/µ(X;u)〈xλ〉 are polynomials in q,
and in particular have no fractional exponents. We will refer to this as the Haglund-Haiman
conjecture.

We are interested in an equivalent statement about new variant LLT polynomials.

Conjecture 1.7.2. Let ~β be a multiskew partition. If there exists k, r ∈ N such that c(x) ∈
[r, k + r − 1] for all x ∈ ~β then

ωG~β(X; q) =
∑
λ

Kλ(q)s
(k)
λ (X; q) (1.15)

where Kλ(q) ∈ N[q] and ω is the involution on Λ such that ωsλ = sλ′.

In other words, if there are only k many consecutive contents occupied by the cells of ~β,
then the corresponding new variant LLT polynomial is k-Schur positive, after being acted on
by ω. Multiskew partitions satisfying this restriction on content are said to be k-bandwidth,
as in Figure 1.8. In the remainder of this section, we will show that Conjecture 1.7.1 and
Conjecture 1.7.2 are equivalent.

Figure 1.8: 2-bandwidth, 3-bandwidth and 4-bandwidth multiskew partitions.
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Lemma 1.7.3. The Haglund-Haiman conjecture is equivalent to the following: If ~β is a
k-bandwidth multiskew partition, then there exists m ∈ N such that

qm · G~β(X; q−1) =
∑
λ

Kλ(q)s
(k)
λ (q) (1.16)

where Kλ(q) ∈ N[q].

Proof. The equivalence of these two conjectures can be derived form the map quotd described
in a previous section. We first check that the restrictions on content are preserved by
quotd. Let λ/µ be a d-tileable partition such that the content of every cell falls in the range

[r, r + dk − 1 + (d − 1)]. Since G
(k)
λ/µ(X;u) is independent of the position of λ/µ within the

plane, we can translate λ/µ to have content entirely within the interval [1, dk + (d − 1)].
The map quotd only considers the contents of the heads of ribbons in tilings of λ/µ, which
have content in the range [1, dk]. Then the adjusted contents c̃(x) fall within the interval
[0, k− 1] for all x ∈ λ/µ. We conclude that d-tileable skew partitions in the content interval
[1, dk + (d− 1)] are in bijection with multiskew partitions in the interval [0, k − 1].

Now we must conclude that Equation 1.7.3 holds. From a Equation 1.7, we see that for
any h

u−2h ·G(d)
λ/µ(X;u) = u−2hu−eG~β(X; q−1) = q

−e−2h
2 G~β(X; q−1) (1.17)

where e = e(λ/µ) and ~β = quotd(λ/µ). Thus G~β(X; q−1) and G
(d)
λ/µ(X;u) are the same

up to a power of u. The degree of both sides is minimized when h = S∗(λ/µ).

We see that if u−2S∗(λ/µ) · G(d)
λ/µ(X;u) is k-Schur positive, then there exists m ∈ Z such

that qm · G~β(X; q−1) is k-Schur positive. To see the converse, suppose there exists m such

that qm · G~β(X; q−1) is k-Schur positive. We may assume that m is minimal, meaning that

qm · G~β(X; q−1) = u−2S∗(λ/µ) ·G(d)
λ/µ(X;u). Thus u−2S∗(λ/µ) ·G(d)

λ/µ(X;u) is k-Schur positive.

In the next lemma, we must make sense of how the automorphism ω acts on LLT polyno-
mials indexed by multiskew partitions. Recall that for any partitions λ, we have ωsλ = sλ′ ,
where λ′ is the transpose of λ.

Lemma 1.7.4. Let ~β be a multiskew partition. Then ωG~β(X; q) = qIGω0
~β′(X; q−1), where β′

denotes the entry-wise transpose of β, ω0 is the permutation whose action is to reverse the
order of all the entries in ~β and I = I(~β) is the number of pairs of cells in ~β that form an
attacking pair.

Proof. Haglund, Haiman, Loehr and Ulyanov [11] tell us how ω acts on LLT polynomials
that are indexed by d-tileable skew parititons:

ωG
(d)
λ/µ(X;u) = u(d−1)|λ/µ|/dG

(d)
λ′/µ′(X;u−1) (1.18)

Further, we have that
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G~β(X; q) = ueG
(k)
λ/µ(X;u−1) (1.19)

where ~β = quotd(λ/µ) and e = e(λ/µ) = 2 · S∗(λ/µ) + 2 · inv∗(~β). So,

ωG~β(X; q−1) = ωu−e(λ/µ) ·G(d)
λ/µ(X;u)

= u−e(λ/µ)u(d−1)|λ/µ|/d ·G(d)
λ′/µ′(X;u−1)

= u−e(λ/µ)u(d−1)|λ/µ|/du−e(λ
′/µ′) · ue(λ′/µ′)G(d)

λ′/µ′(X;u−1)

= u−e(λ/µ)u(d−1)|λ/µ|/du−e(λ
′/µ′) · Gω0

~β′(X; q)

= u−[e(λ/µ)+e(λ
′/µ′)]u(d−1)|λ/µ|/d · Gω0

~β′(X; q)

(1.20)

We have used the fact that quotd(λ′/µ′) = ω0
~β′, which we will prove later in this section.

For now, we seek to simplify the term e(λ/µ) + e(λ′/µ′). Let T ∈ Tabd(λ/µ) be a d-ribbon
tableau such that S(T ) = S∗(λ/µ). Without loss of generality, we may assume that T is
standard. Then the transpose T ′ is also a standard ribbon tableau but for the transposed
shape λ′/µ′. It is clear that the spin S(T ′) can be compute directly from T by interchanging
the height and width or the ribbons. More formally, define the width of a ribbon width(R)

to be the number of columns it occupies, so that S(T ′) =
∑
R∈T

width(R)−1
2

.

Since the sum of the height and width of a ribbon is d+ 1, it is clear that S(U) + S(U ′)
is constant for all U ∈ Tabd(λ/µ). Since T maximizes S on Tabd(λ/µ), we have that S(T ′)
minimizes S on Tabd(λ

′/µ′). Thus S(T ′) = S∗(λ
′/µ′).

e(λ/µ) + e(λ′/µ′) = 2 · S∗(λ/µ) + 2 · inv∗(quotd(λ/µ)) + 2 · S∗(λ′/µ′) + 2 · inv∗(quotd(λ′/µ′))

= 2 · S(T ) + 2 · inv(quotd(T )) + 2 · S(T ′) + 2 · inv(quotd(T ′))

= 2 · S(T ) + 2 · S(T ′) + 2 · inv(quotd(T )) + 2 · inv(quotd(T ′))

=
∑
R∈T

[height(R)− 1] +
∑
R∈T

[width(R)− 1]

+ 2 · inv(quotd(T )) + 2 · inv(quotd(T ′))

=
∑
R∈T

(height(R) + width(r)− 2) + 2 · inv(quotd(T )) + 2 · inv(quotd(T ′))

=
∑
R∈T

(d− 1) + 2 · inv(quotd(T )) + 2 · inv(quotd(T ′))

= (|λ/µ|/d)(d− 1) + [2 · inv(quotd(T )) + 2 · inv(quotd(T ′))]

(1.21)

Now we need only simplify the term 2 · inv(quotd(T )) + 2 · inv(quotd(T ′)). The map

d-quotient: Tabd(λ/µ)→ ~β takes a ribbon whose head has content p · d + r and sends it to
a cell in the rth position with content p.
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We would like to see what happens when we apply quotd to the transpose of a ribbon
tableau. Recall that quotd assigns a ribbon whose head has content p · d + r to a cell in
the rth position with content p. In the previous section, we have forced the residues to
fall in the interval [1, d]. Here, the proofs are much cleaner if we instead keep the residues
in the interval [0, d − 1] and zero-index our multiskew partitions. We note that these two
different notions of quotd result in different multiskew partitions, but their corresponding
LLT polynomials are identical. For more detail, see Definition 3.1.1 and Proposition 3.1.2

Let R be a ribbon in T whose head has content pd+ r with r ∈ [0, d− 1]. Then the same
ribbon in T ′ has a tail with content −pd− r, and a head with content −pd− r + (d− 1) =
(−p) · d + (d − r − 1). We see that, instead of being sent to the cell with content p in
position r, the transposed ribbon is sent to the cell with content −p in position (d− 1)− r.
Thus, quotd(T ′) can be computed from quotd(T ) by reversing the order of the entries and
taking transposes of each. In other words, quotd(T ′) = ω0 quotd(T )′, where ω0 ∈ Sn is
the longest word. Since T was standard, there is no issue maintaining the semistandard
condition. Since T ′ ∈ Tabd(λ

′/µ′) and quotd is defined on skew partitions, we also have that
quotd(λ′/µ′) = ω0β

′, thus completing the proof of Equation 1.20.

If we let x, y be a pair of cells in ~β and U any standard multiskew tableau of shape ~β,
then U(x) > U(y) or U(y) > U(x). In any case, the same inequality holds for the same
pair of cells in w0U

′. So if x, y form an attacking pair, then either U or w0U
′ will yield an

inversion from this pair. Letting U = quotd(T ), we have that inv(quotd(T ))+inv(quotd(T ′))

counts the number of attacking pairs in ~β, which we will call I = I(~β).
We compute

e(λ/µ) + e(λ′/µ′) = (|λ/µ|/d)(d− 1) + 2 · inv(quotd(T )) + 2 · inv(quotd(T ′))

= (|λ/µ|/d)(d− 1) + 2 · I(~β)
(1.22)

so that

ωG~β(X; q−1) = u−[e(λ/µ)+e(λ
′/µ′)]u(d−1)|λ/µ|/dGω0

~β′(X; q)

= u−[(|λ/µ|/d)(d−1)+2·I]u(d−1)|λ/µ|/dGω0
~β′(X; q)

= u−2IGω0
~β′(X; q)

= q−IGω0
~β′(X; q)

(1.23)

Substituting q 7→ q−1 establishes the lemma.

We end this section with a proof that Conjecture 1.7.1 and Conjecture 1.7.2 are equiva-
lent.

Proof. From Lemma 1.7.3, we see that the statement of the Haglund-Haiman conjecture is
that for any k-bandwidth multiskew partition ~β there exists m such that qm · G~β(X; q−1) is
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k-Schur positive. Recall that the term qm only exists to ensure that all of the coefficients
qm · G~β(X; q−1)〈xλ〉 are polynomials in q. From Lemma 1.7.4, we have

qI · G~β(X; q−1) = ωGω0
~β′(X; q) (1.24)

It is clear that qI · G~β(X; q−1)〈xλ〉 is a polynomial in q for all λ. So we have resolved the
Haglund-Haiman conjecture to showing that ωGω0

~β′(X; q) is k-Schur positive for k-bandwidth

multiskew parititons β. Since that the map ~β 7→ ω0
~β′ preserves the k-bandwidth property

and is an involution on the set of multiskew partitions, we see that the Haglund-Haiman
conjecture is equivalent to proving the k-Schur positivity of ωGβ(X; q) for any k-bandwidth
partition β.

1.8 Generalized Hall-Littlewood Polynomials

Our connection between k-Schur functions and LLT polynomials comes from generalized
Hall-Littlewood polynomials. A theorem of Haiman and Grojnowski proves that in some
cases, LLT polynomials actually are generalized Hall-Littlewood polynomials [10]. As we
will see in Proposition 1.8.2 and Lemma 3.3.1, some generalized Hall-Littlewood polynomials
are are provably k-Schur positive.

A generalized Hall-Littlewood polynomial P~λ is indexed by a tuple of straight shape par-

titions ~λ = (λ(1), . . . , λ(d)). Given ~λ, we define these polynomials as

P~λ(X; q) = Bλ(1) · · ·Bλ(d)(1) (1.25)

where B
(i)
λ is a vertex operator as in Equation 1.10. If λ(i) is a single part for all i and ~λ

concatenates to make a single partition, then P~λ = Hλ(X; t), a Hall-Littlewood polynomial.
Lapointe and Morse prove an important property of k-Schur functions that will help us to
relate them to generalized Hall-Littlewood polynomials. We will refer to it as the k-rectangle
property.

Theorem 1.8.1 (k-rectangle property). [6, Theorem 26] If µ, ν, λ are partitions where λ =
(µ, ν) and µ`(µ) > r ≥ ν1, then

Brk+1−rs
(k)
λ (X; t) = t|µ|−`(µ)rs

(k)

(µ,rk+1−r,ν)
(1.26)

This theorem allows us to build up k-Schur functions by acting on the left with operators
Bλ, so long as λ is a rectangle with greatest hook equal to k.

As an example of the efficacy of this theorem, consider the following proposition.

Proposition 1.8.2. Fix k ∈ N. If ~λ is such that every entry is a k-rectangle and the
concatenation of these partitions is also a partition λ, then

P~λ(X; q) = s
(k)
λ (X; q) (1.27)
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Proof. Since ~λ concatenates to form a single partition, it must be the case that λ(i) forms
a sequence of rectangles of nonincreasing width. In particular we can write our sequence
of operators as Bλ(1) · · ·Bλ(d)(1) = B

r
k+1−r1
1

· · ·B
r
k+1−rd
d

(1) where ri is a weakly decreasing
sequence.

Since the rectangles become larger in the order of application, we have Brk+1−rs
(k)
ν (X; t) =

s
(k)

(rk+1−r,ν)
. This follows from the fact that µ = ∅ in the notation used in the previous theorem.

So the application of these operators is quite nice, and results in a single k-Schur function.

A corollary of 1.8.1 is that all k-Schur functions can be built out a finite set of k-Schur
functions whose indexing partition does not contain any k-rectangle. This is called a k-
irreducible. This is done by applying a sequence of operators indexed by k-rectangles to said
k-irreducibles. It is shown in [6] that for each k, there are exactly k! such k-irreducibles.

We would like to relate this theory to the theory of LLT polynomials. This connection is
made in a theorem from Haiman and Grojnowski, originally conjectured by Shimozono and
Weyman [15].

Theorem 1.8.3. [10, Theorem 7.15] Let λ = (mr1
1 , . . . ,m

rk
k ) where m1 ≥ · · · ≥ mk. Let

~β/~γ be a multiskew partition such that β(i)/γ(i) is a translation of mri
i , the southeast corners

of the rectangles β(i)/γ(i) have weakly decreasing content, and the southwest corners have
weakly increasing content. Then there is an integer m such that

Pλ(X; q−1) = qmG~β/~γ(X; q) (1.28)
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Chapter 2

LLT-equivalence

2.1 What is LLT-equivalence?

In this section we explore the ways in which LLT polynomials with different indexing mul-
tiskew partitions can be related to one another. Our motivation comes from the recent work
of Lee [3] who introduced so called ‘local linearity relations’ for LLT polynomials indexed by
partitions consisting of single cells.

Definition 2.1.1. Let ~λ and ~λ′ be multi-skew partitions. We will say they are LLT-equivalent
if G(~λ,~µ)(X; q) = G(~λ′,~µ)(X; q) for all multi-skew partitions ~µ.

LLT-equivalence is a powerful property, because it allows us to identify complicated LLT
polynomials with potentially simpler ones. We first demonstrate an example of this definition
in Figure 2.1. There are two multiskew partitions, each drawn with content lines. It does
not matter what the precise values of the content lines are, except that they must be the
same for both multiskew partitions. In some cases, we will assume without loss of generality
that the content lines correspond to contents 0, 1 and 2.

~λ = ~λ′ =

Figure 2.1: LLT-equivalent multiskew partitions

The multi-skew partitions in Figure 2.1 are in fact LLT-equivalent. So G~λ(X; q) =
G~λ′(X; q). Further, we can append any multiskew partition ~µ, as in Figure 2.2, and the
result will satisy G(~λ,~µ)(X; q) = G(~λ′,~µ)(X; q).
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(~λ, ~µ) = (~λ′, ~µ) =

Figure 2.2: A pair satisfying G(~λ,~µ)(X; q) = G(~λ′,~µ)(X; q)

While a pair of LLT-equivalent multiskew partitions necessarily yield the same LLT
polynomial, the converse does not hold. To see this, we produce mutliskew partitions ~λ,
~λ′ and ~µ such that G~λ(X; q) = G~λ′(X; q) but G(~λ,~µ)(X; q) 6= G(~λ′,~µ)(X; q). Figures 2.3 and
2.4 demonstrate such an example, and prove that LLT-equivalence is stronger than simple
equality of LLT polynomials.

~λ = ~λ′ =

Figure 2.3: A pair satisfying G~λ(X; q) = G~λ′(X; q)

(~λ, ~µ) = (~λ′, ~µ) =

Figure 2.4: Here, G(~λ,~µ)(X; q) 6= G(~λ′,~µ)(X; q)

In Figure 2.3, we have that G~λ(X; q) = s(2,1)(X) by definition, and G~λ′(X; q) = s(2,1)(X)

due to the Littlewood-Richardson rule. In Figure 2.4, inv∗(~λ, ~µ) = 0, while inv∗(~λ
′, ~µ) = 1.

So it’s easy to see that G(~λ,~µ)(X; q) 6= G(~λ′,~µ)(X; q). Thus ~λ and ~λ′ are not LLT-equivalent.
We extend the above definition to LLT-equivalence of sums of LLT polynomials.

Definition 2.1.2. Let
∑

i ai(q)
~λ(i) and

∑
j bj(q)~ν(j) be N[q]-linear combinations of multiskew

partitions. They are said to be LLT-equivalent if∑
i

ai(q)G(~λ(i),~µ)(X; q) =
∑
j

bj(q)G(~ν(j),~µ)(X; q) (2.1)

for every multiskew partition µ.
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A typical use of this type of statement is to decompose one LLT polynomial as an N[q]-
linear combination of other LLT polynomials. In Figures 2.5 and 2.6, we display one such
example from the literature, due to Lee [3].

~λ(1) = ~ν(1) = ~ν(2) =

Figure 2.5: Multiskew Partitions for Local Linearity Relations

In Figure 2.5, we define three multiskew partitions ~λ(1), ~ν(1) and ~ν(2). These satisfy the
equation

(q + 1)G~λ(1)(X; q) = G~ν(1)(X; q) + q G~ν(2)(X; q) (2.2)

and further, they satisfy (q + 1)G(~λ(1),~µ)(X; q) = G(~ν(1),~µ)(X; q) + q G(~ν(2),~µ)(X; q) for any mul-

tiskew partition µ. So we can say that (q + 1)~λ(1) and ~ν(1) + q ~ν(2) are LLT-equivalent. We
will prove this fact at the end of this chapter, since Lee’s proof only applies to the case
that ~µ is a sequence of single-celled partitions. We will often abuse notation and write that
N[q]-combinations of multiskew partitions are equal to denote that they are LLT-equivalent.
See Figure 2.6 for example.

(q + 1) = + q

Figure 2.6: Local Linearity Relations

Identifying LLT-equivalent multiskew partitions is useful because they allow us to rewrite
complicated LLT polynomials as a combination of simpler terms. This will help us to deduce
the Schur and k-Schur expansions of a large class of LLT polynomials from the expansions
of a small subset.

We present in the next section a sufficient condition to prove LLT-equivalence.

2.2 LLT-equivalence techniques

A sufficient condition for the LLT-equivalence of a pair of multiskew parititons is to identify a
weight, inversion, and content-preserving bijection between their corresponding semistandard
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multiskew tableaux. In notation, we would prove that there exists a bijection f : SSYT(~λ)→
SSYT(~λ′) satisfying the following properties. We use bag notation *X+ to denote a multiset.

1. w(T ) = w(f(T ))

2. For every content c0, *T (x) | x ∈ ~λ and c(x) = c0+ = *T ′(x) | x ∈ ~λ′ and c(x) = c0+

3. inv(T ) = inv(f(T ))

Property 2 is the most technical of these. Consider the set of all cells in ~λ on the diagonal
with content c0. Together, the weights of these cells form a multiset. Property 2 is equivalent
to saying that for any c0, the cells of content c0 in ~λ and ~λ′ yield the same multiset of weights.
One can think of a bijection having this property as preserving the weight along diagonals.
In fact, Property 2 implies Property 1 for this reason.

We will prove that this definition is sufficient to determine LLT-equivalence. We will first
need the fact that inv decomposes into components. Given a concatenated pair of multiskew
partitions ~β = (~λ, ~µ) and a multiskew tableau T ∈ SSYT(~β) = SSYT(~λ)×SSYT(~µ), consider

the restrictions T~λ ∈ SSYT(~λ) and T~µ ∈ SSYT(~µ). Then inv(T ) = inv(T~λ) + inv(T~µ) +

ĩnv(T~λ, T~µ), where ĩnv(T~λ, T~µ) counts the number of inversions between pairs of cells in ~λ×~λ′.
We see Figure 2.7 for a visual, where we have ~λ = ((3), (2)) and ~µ = ((3)/(1)). We

compute inversions: inv(T ) = 4, inv(T~λ) = 2, inv(T~µ) = 0. That leaves ĩnv(T~λ, T~µ) = 2,
which corresponds to the two pairs (6, 4) and (4, 2).

T =

4 5

3 6

1 2 2

T~λ =
3 6

1 2 2

T~µ =

4 5

Figure 2.7: Some multiskew tableaux

If f : SSYT(~λ) → SSYT(~λ′) is weight, content and inversion preserving bijection and

T ∈ SSYT(~λ) × SSYT(~µ), then ĩnv(T~λ, T~µ) = ĩnv(f(T~λ), T~µ). This is due to the fact that

ĩnv(T~λ, T~µ) can be computed from the multisets *(T~λ(x), c(x)) | x ∈ ~λ+ and *(T~µ(x), c(x)) |
x ∈ ~µ+, which are preserved by f due to Property 2. For some intuition, consider the

inversions (6, 4) and (4, 2) that make up ĩnv(T~λ, T~µ) in 2.7. These pairs would still contribute

to ĩnv(T~λ, T~µ) if the cells were translated to other parts of their corresponding multiskew
partition with the same content. In general, we are taking advantage of the fact that all
of the cells in ~λ come from skew partitions with smaller index than the cells in ~µ do. This
means that whether or not a pair forms an inversion depends only on their contents and
weights, both of which are preserved by f .
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Let ~λ,~λ′. Suppose that there exists a weight, content and inversion-preserving bijection
between SSYT(~λ) and SSYT(~λ′).

G(~λ,~µ)(X; q) =
∑

T∈SSYT(~λ,~µ)

xT qinv(T )

=
∑

T~λ∈SSYT(~λ)

∑
T~µ∈SSYT(~µ)

xT~λxT~µqinv(T~λ)+inv(T~µ)+ĩnv(T~λ,T~µ)

=
∑

T~λ∈SSYT(~λ)

∑
T~µ∈SSYT(~µ)

xf(T~λ)xT~µqinv(f(T~λ))+inv(T~µ)+ĩnv(f(T~λ),T~µ)

=
∑

T~λ′∈SSYT(~λ′)

∑
T~µ∈SSYT(~µ)

xT~λ′xT~µqinv(f(T~λ′ ))+inv(T~µ)+ĩnv(f(T~λ′ ),T~µ)

=
∑

T∈SSYT(~λ′,~µ)

xT qinv(T )

= G(~λ′,~µ)(X; q)

(2.3)

Thus we have concluded that ~λ and ~λ′ are LLT-equivalent. This offers a path towards
proving that large collections of multiskew partitions are LLT-equivalent. Perhaps it is
possible to produce weight, content and inversion-preserving bijections in some systematic
way. This is the direction that Lee followed in [3], where he established the local linearity
relations.

Unfortunately it is generally very hard to prove that these bijections exists between
multiskew partitions, though there are some easy cases. In Figure 2.8 we have plotted a pair
of multiskew partitions that are provably LLT-equivalent.

Figure 2.8: A pair of partitions that are provably LLT-equivalent

We prove LLT-equivalence by establishing an appropriate bijection between their semi-
standard Young tableaux. The bijection f is displayed in Figure 2.9, where it is assumed
that a ≥ b ≥ c and d ≥ e. Since there are still many possible relations among the entries,
the bijection breaks down into three cases.

1. a ≥ d

2. a < d and b ≥ e
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3. a < d and b < e

It is obvious from Figure 2.9 that f is content and weight-preserving. It is less obvious
that f is inversion-preserving, or even a bijection. Both of these facts follow from a more
general analysis of multiskew partitions indexed by horizontal strips, which we defer to the
appendix. For now, consider the tableau T that satisfies (a, b, c, d, e) = (3, 2, 2, 5, 2). If we
want to compute f(T ), then we are in Case 2. Before applying the bijection, we see that T
has only one inversion: (5, 3). After applying the bijection, we compute that f(T ) still has
only one inversion: (5, 2). So the number of inversions is preserved, and this will be the case
for all tableaux.

e d

c b a

↓ f

e d a

c b

e b a

c d

c b a

e d

if a ≥ d if a < d and b ≥ e if a < d and b < e

Figure 2.9: A weight, content, and inversion-preserving bijection.

We are often interested in relationships among LLT polynomials that are more com-
plicated than simple equality. We can establish LLT-equivalence relations by producing
bijections that are not inversion-preserving, but are up to a constant. If we replace Property
3 with the statement inv(T ) = inv(f(T )) + C for some fixed C ∈ Z, then we can show that

qC~λ and ~λ′ are LLT-equivalent. The proof of this fact is essentially identical to the previous
case, and follows from the more general proof of Theorem 2.2.1 at the end of this section. In
Figure 2.10, we have a pair of multiskew partitions that yield the LLT-equivalence q~λ = ~λ′.
They are simple enough that we can produce a weight and content preserving bijection be-
tween their semistandard young tableaux, and also show that it preserves inversions up to a
constant.
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~λ = ~λ′ =

Figure 2.10: A pair of multiskew partitions that are provably LLT-equivalent up to a power
of q

We display the corresponding bijection g in Figure 2.11. The reader may prove that this
function is indeed a bijection, and that it increases the number of inversions by 1 for any
input. We will prove this as part of a more general analysis in the appendix. The bijection
splits into three cases, depending on the relative values of the entries in the columns. We
can describe an arbitrary tableau by allowing a > b > c to be the entries in the first column
and d > e to be the entries in the second. Then the bijection breaks into three cases:

1. a > d

2. a ≤ d and b > e

3. a ≤ d and b ≤ e

For example, if T is a tableau satisfying (a, b, c, d, e) = (3, 2, 1, 5, 4), then applying g puts
us in Case 3. There is one inversion in T : (5, 1). We compute that there are two inversions
in g(T ): (4, 1) and (5, 2). So we see that the number of inversion has increased by exactly
one, which will always be the case. Since this bijection clearly preserves content and weight,
g establishes that the multiskew partitions are LLT-equivalent up to a power of q.

In full generality, we would like to have a method for proving that pairs of N[q]-linear
combinations of multiskew partitions are LLT-equivalent. This will also be achievable by an
appropriate weight, content and inversion-preserving bijection. We again use bag notation
*X+ to denote multisets.

Theorem 2.2.1. Let
∑
i

qri~λ(i) and
∑
j

qsj~ν(j) be N[q]-linear combinations of multiskew parti-

tions. Then they are LLT-equivalent if there exists a bijection f :
⊔
i

SSYT(~λ(i))→
⊔
j

SSYT(~ν(j))

that has the following properties.

1. If (T ′, j) = f(T, i), then w(T ) = w(T ′).

2. If (T ′, j) = f(T, i), then for any content c0, *T (x) | x ∈ sh(T ) and c(x) = c0+ =
*T ′(x) | x ∈ sh(T ′) and c(x) = c0+ .

3. If (T ′, j) = f(T, i), then inv(T ′) + sj = inv(T ) + ri.
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d

a e

b

b

↓

a

d

e

b

c

a

b

e

d

c

a

b

c

d

e

if a > d if a ≤ d and b > e if a ≤ d and b ≤ e

Figure 2.11: A weight and content-preserving bijection that increases the number of inver-
sions by 1.

Here we have used the notation (T, i) to represent the tableau T ∈ SSYT(~λ(i)) and to
distinguish it from other copies of T that appear in the domain. In other words,

⊔
i

{T |

T ∈ SSYT(~λ(i))} =
⋃
i

{(T, i) | T ∈ SSYT(~λ(i))}. We will refer to functions that meet these

conditions as inversion-preserving, even though they only preserve the inversions up to a
constant.

Proof. Given f as described, we define Dij = SSYT(~λ(i)) ∩ f−1(SSYT(~ν(j))) and fij = f |Dij
for all i, j. This collection of functions should be thought of as the restriction of the bijection
f to the components of its domain and codomain. Observe that for T ∈ Dij, f(T ) = fij(T )
and inv(T ) = inv(f(T )) − ri + sj. Let ~µ by an arbitrary multiskew partition. We wish to
show that

∑
i

qriG(~λ(i),~µ)(X; q) =
∑
j

qsjG(~ν(j),~µ)(X; q).
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∑
i

qriG(~λ(i),~µ)(X; q) =
∑
i

qri
∑

T∈SSYT(~λ(i),~µ)

xT qinv(T )

=
∑
i

qri
∑

T~λ∈SSYT(~λ(i))

∑
T~µ∈SSYT(~µ)

xT~λxT~µqinv(T~λ)+inv(T~µ)+ĩnv(T~λ,T~µ)

=
∑
i

qri
∑
j

∑
T~λ∈Dij

∑
T~µ∈SSYT(~µ)

xT~λxT~µqinv(T~λ)+inv(T~µ)+ĩnv(T~λ,T~µ)

=
∑
i

qri
∑
j

∑
T~λ∈Dij

∑
T~µ∈SSYT(~µ)

xfij(T~λ)xT~µqinv(fij(T~λ))+sj−ri+inv(T~µ)+ĩnv(fij(T~λ),T~µ)

=
∑
i

∑
j

∑
T~λ∈Dij

∑
T~µ∈SSYT(~µ)

xfij(T~λ)xT~µqinv(fij(T~λ))+sj+inv(T~µ)+ĩnv(fij(T~λ),T~µ)

=
∑
j

∑
i

∑
T ′
~λ
∈f(Dij)

∑
T~µ∈SSYT(~µ)

xT
′
~λxT~µqinv(T

′
~λ
)+sj+inv(T~µ)+ĩnv(T ′~λ

,T~µ)

=
∑
j

∑
T ′
~λ
∈SSYT(~ν(j))

∑
T~µ∈SSYT(~µ)

xT
′
~λxT~µqinv(T

′
~λ
)+sj+inv(T~µ)+ĩnv(T ′~λ

,T~µ)

=
∑
j

∑
T ′∈SSYT(~ν(j),~µ)

xT
′
qinv(T

′)

=
∑
j

qsjG(~ν(j),~µ)(X; q)

(2.4)

Thus we have proved that the LLT polynomials are identical for any concatenated se-
quence ~µ, and that

∑
i

qri~λ(i) and
∑
j

qsj~ν(j) are LLT-equivalent.

Since the sums
∑
i

qri~λ(i) and
∑
j

qsj~ν(j) in the previous theorem can have repeated mul-

tiskew parititons, this type of weight, content and inversion-preserving bijection can be used
to show that any N[q]-linear combination of multiskew partitions are LLT-equivalent. In
particular, one could produce an explicit bijection that proves the LLT-equivalence of the
local linearity relations in Figure 2.2. Lee’s original proof [3][Theorem 3.4] uses alternative
methods, and only holds for multiskew partitions where every partition is a single cell. We
would like to have a bijection as in 2.2.1, which would prove LLT-equivalence entirely.

2.3 LLT-equivalence by computational means

In this section we will lay out a computational method for verifying LLT-equivalence of
N[q]-linear combinations of multiskew partitions. In particular, we will prove the existence
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of weight, content, and inversion-preserving bijections between the appropriate collections
of semistandard Young tableaux.

Lemma 2.3.1. Let
∑
i

qri~λ(i) and
∑
j

qsj~ν(j) be N[q]-linear combinations of multiskew par-

titions. If there exist content and inversion-preserving bijections fα :
⊔
i

SSYT(~λ(i), α) →⊔
j

SSYT(~ν(j), α) for all left-justified compositions α, then
∑
i

qri~λ(i) and
∑
j

qsj~ν(j) are LLT-

equivalent.

We will say that a sequence {ai} is left-justified if there exists k such that a1, a2, . . . ak
are nonzero but ak+1, ak+2, . . . are zero.

Proof. Suppose {fα} is as described. We wish to construct a function f :
⊔
i

SSYT(~λ(i)) →⊔
j

SSYT(~ν(j)) that is weight, content, and inversion preserving. We will define f on an

arbitrary tableau (T, I) ∈
⊔
i

SSYT(~λ(i)). To make this proof more readable, we will write T

instead of (T, i) when there is no ambiguity. The weight of T is an arbitrary composition
w(T ) = (w1(T ), w2(T ), . . .). Let {ai}ki=1 be the sequence of indices such that wai(T ) 6= 0.
Since {ai} is an increasing sequence, this defines an invertible function gw(T ) : N→ N by

gw(T )(i) =

{
ai if ≤ k

0 otherwise

Recalling that a tableau is properly defined as a function, we produce a new tableau:
g−1w(T ) ◦ T . We think of this tableau as being essentially the same as T , but with all entries
rescaled to be as small as possible. See Figure 2.12 for an example.

T =

4

8 9

2 2

6

5

g−1w(T ) ◦ T =

2

5 6

1 1

4

3

Figure 2.12: A tableau T and its rescaled image under g−1w(T )

This function g−1w(T ) ◦ T tableau has two important properties.

• The weight of g−1w(T ) ◦ T is left-justified.
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• The relative order of the entries is preserved. In particular, T (x) ≥ T (y) if and only if
g−1w(T ) ◦ T (x) ≥ g−1w(T ) ◦ T (y).

Since w(g−1w(T ) ◦T ) is a left-justified sequence, there exists a weight, inversion, and content

preserving bijection fα :
⊔
i

SSYT(~λ(i), α)→
⊔
j

SSYT(~ν(j), α), where α = w(g−1w(T ) ◦ T ).

We define the function f :
⊔
i

SSYT(~λ(i))→
⊔
j

SSYT(~ν(j)) by

f(T ) = gw(T ) ◦ fα ◦ g−1w(T ) ◦ T (2.5)

Where α = w(g−1w(T ) ◦ T ). We must prove that f is weight, content, and inversion-
preserving.

We first see that f is weight preserving. If T has weight w(T ) = (w1(T ), w2(T ), . . .), then
g−1w(T ) ◦ T has weight (wa1(T ), wa2(T ), . . . , wak(T ), 0, . . .), where {wai}ki=1 are the nonzero

entries of w(T ). By definition, fα ◦ g−1w(T ) ◦ T has the same weight as g−1w(T ) ◦ T . Since gw(T )

and g−1w(T ) have the inverse effect on weight, we see that gw(T ) ◦ fα ◦ g−1w(T ) ◦ T has weight

(w1(T ), w2(T ), . . .).
To see that f is content-preserving, we must show that *(T (x), c(x))|x ∈ sh(T )+ =

*(f(T )(x), c(x))|x ∈ sh(f(T ))+ for any tableau T . Equivalently, we fix any content p and
show that

*T (x)|x ∈ sh(T ) and c(x) = p+ = *f(T )(x)|x ∈ sh(f(T )) and c(x) = p + . (2.6)

We first note that *g−1w(T ) ◦ T (x)|x ∈ sh(T ) and c(x) = p+ = *fα ◦ g−1w(T ) ◦ T (x)|x ∈
sh(T ) and c(x) = p+, because fα is content-preserving by definition. Since these sets are the
same, so are their images under gw(T ). Thus equation 2.6 holds.

We must see that f is inversion preserving. Since gw(T ) preserves the relative order of
the entries of T , it is sufficient to see the effect of fα on the inversion count. Let (T, i) ∈
SSYT(~λ(i)) ∩ f−1(SSYT(~ν(j))). Then inv(fα ◦ g−1w(T ) ◦ T ) = inv(g−1w(T ) ◦ T ) + ri − sj. So,

inv(f(T )) = inv(T ) + ri − sj, and we conclude that f is inversion-preserving.

If α is a composition of n, then SSYT(~λ, α) is nonempty if and only if n is also the size of λ.

So
⊔
i

SSYT(~λ(i)) is nonempty if and only if one of the multiskew partitions ~λ(1), ~λ(2), . . . , ~λ(l)

has a size n. For any n, there are only finitely many left-justified compositions, thus there
are only finitely many left-justified compositions α such that

⊔
i

SSYT(~λ(i), α) is nonempty.

So this theorem allows us to systematically produce weight, content and inversion-preserving
bijections. Thus we can prove that combinations of multiskew partitions are LLT-equivalent.
We proceed with an example by proving Lee’s local linearity relations, as in Figure 2.6.
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Lee’s theorem is that (q + 1)~λ(1) = ~λ(2) + q~λ(3). Each multiskew partition has size 3, so
we are only interested in compositions of 3. Thus we need only find content and inversion-
preserving bijections

fα : SSYT(~λ(1), α) t SSYT(~λ(1), α)→ SSYT(~λ(2), α) t SSYT(~λ(3), α) (2.7)

for α ∈ {(1, 1, 1), (2, 1, 0), (1, 2, 0), (3, 0, 0)}. Since there are only finitely many such mul-
tiskew tableaux, we can confirm that a bijection exists via computer search, which it does.
Since Lee’s theorem was original formulated in the setting of unicellular partitions, this com-
putation in fact results in a slightly stronger statement allowing for arbitrary skew partitions
to be appended.

This method of establishing LLT-equivalence relations will be especially useful for us in
the next section, where we establish relations among all pairs of 3-bandwidth skew partitions.

We end this section with a related conjecture.

Conjecture 2.3.2. Let
∑
i

qri~λ(i) and
∑
j

qsj~ν(j) be N[q]-linear combinations of multiskew par-

titions, and let uc be a partition that this a single with content c ∈ Z. Then
∑
i

qri~λ(i) and∑
j

qsj~ν(j) are LLT-equivalent if and only if for all c ∈ Z,
∑
i

qriG(~λ(i),uc)(X; q) =
∑
j

qrjG(~ν(j),uc)(X; q).

(2.8)

The guiding principle behind this conjecture is that LLT polynomials can be distinguished
by identifying the content lines on which they differ. In particular, if this conjecture holds
and there are two multiskew partitions that are not LLT-equivalent, then there should exist
a single-celled partition that, when appended, produces differing LLT polynomials. See for
example Figure 2.3 and Figure 2.4.

We note that if the content c is outside the interval of contents occupied by a multiskew
partition ~λ, then G(~λ,uc)(X; q) = G(~λ)(X; q)s(1)(X; q). Thus all but finitely many values of c
will result in the same LLT polynomial, and it is unnecessary to confirm equality for all c.

If verified, this conjecture will yield a much simpler method for determining the LLT
equivalence of multiskew partitions.
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Chapter 3

k-Schur Positivity for k=3

In this section we seek to establish the k-Schur positivity ofk-bandwidth LLT polynomials
for k = 3. This will come in three steps:

1. Using LLT-equivalence, we will determine that all LLT polynomials are N[q, q−1]-linear
combinations of LLT polynomials whose indices are drawn from a special set. These
special LLT polynomials cannot be expanded into simpler terms, so we will call them
3-indecomposable, or indecomposable when there is no ambiguity.

2. Using a result of Haiman and Grojnowski, we will show that these 3-indecomposable
LLT polynomials are in fact generalized Hall-Littlewood polynomials after applying ω.

3. We will show that these generalized Hall-Littlewood polynomials are in fact 3-Schur
functions.

Let’s see this in a bit more detail:

G~λ(X; q) =
∑
i

qriG~µ(i)(X; q) (expand into indecomposables)

ωG~λ(X; q) =
∑
i

qriωG~µ(i)(X; q)

=
∑
i

qriqsiP~νi(X; q) (indecomposables are generalized Hall-Littlewood polynomials)

=
∑
i

qri+sis
(3)
~νi

(X; q) (these generalized Hall-Littlewood polynomials are 3-Schur functions)

(3.1)

This confirms that ωG~λ(X; q) can be written as an N[q, q−1]-linear combination of 3-
Schur functions. Since every k-Schur function has a monic term and all of the coefficients of
ωG~λ(X; q) are polynomials in q, this is sufficient to determine that all coefficients qri+si in
the above expansion are positive powers. Thus ωG~λ(X; q) is 3-Schur positive.
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We will also refer to the the indexing multiskew partitions of 3-indecomposable LLT
polynomials as 3-indecomposable. There are a few choices that can be made for the collection
of 3-indecomposable multiskew partitions, but we will fix here an unambiguous definition.

Definition 3.0.1. A 3-bandwidth multiskew partition ~λ is said to be indecomposable if it can
be written as (~λinit, ~λhor, ~λsquare, ~λvert), where

• ~λhor is a sequence of 3-rectangles that are connected horizontal strips

• ~λsquare is a sequence of 3-rectangles that are 2x2 squares.

• ~λvert is a sequence of 3-rectangles that are connected vertical strips

and ~λinit is any of the following:

• empty.

• a single skew partition containing one cell having content 0.

• a horizontal domino occupying the content interval [0, 1] and then a vertical domino
occupying the same content interval.

Here a domino is any connected skew partition of size two, and we assume that all ccells
have content in the interval [0, 2]

Intuitively, a multiskew partition is 3-indecomposable if it consists of a sequence of three
rectangles preceded by a multiskew partition ~λinit. In Figure 3.1 we see all of the possible
multiskew partitions ~λinit.

Figure 3.1: All multiskew vectors ~λinit.

In the first section, we will show that all 3-bandwidth LLT polynomials can be expanded
as N[q, q−1]-linear combination of indecomposables.
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3.1 Three-bandwidth LLT polynomials expand into

indecomposables

This section relies heavily on the methods established in Section 2.3. We will establish a
number of LLT-equivalence relations for 3-bandwidth multiskew partitions.

First, we must explain a nice property of LLT polynomials that we will call cycling.

Definition 3.1.1. If ~λ = (λ(1)/µ(1), λ(2)/µ(2), . . . , λ(d)/µ(d)), then we define the cycling op-
erator by

cycle(~λ) = (κ(λ(d)/µ(d)), λ(1)/µ(1), . . . , λ(d−1)/µ(d−1)) (3.2)

where κ(λ(d)/µ(d)) is a skew partition with the same shape as λ(d)/µ(d) but all of the contents

are increased by 1. Formally, κ(λ(d)/µ(d)) = (λ
(d)
1 +1, λ

(d)
2 +1, . . . , λ

(d)

`(λ(d))
+1, λ

(d)

`(λ(d))+1
, . . .)/(µ

(d)
1 +

1, µ
(d)
2 + 1, . . . , µ

(d)

`(λ(d))
+ 1, µ

(d)

`(λ(d))+1
, . . .).

Intuitively, cycling increments each partition to the next entry. Since the last partition
has no subsequent entry, it instead increments to the front, but also the content of every
cell increases. See Figure 3.2 Note that this process is invertible, allowing that we identify
multiskew partitions that are diagonal translations of one-another. Following the Stanton-
White correspondence, one can see that this action corresponds precisely to increasing the
content of every cell in a d-tileable partition by 1. This is left as an exercise to the reader,
and is an alternative way to prove the following proposition.

~λ = cycle(~λ) =

Figure 3.2: An example of cycling

Proposition 3.1.2. If ~λ is a multiskew partition, then G~λ(X; q) = Gcycle(~λ)(X; q).

Proof. Observe that cycling descends to a bijection on semistandard tableaux by rotating
the entries the same way it rotates the cells. Additionally, this map preserves the content
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reading word, so that inv(T ) = inv(cycle(T )) for any tableau T . Thus

G~λ(X; q) =
∑

T∈SSYT(~λ)

qinv(T )xT

=
∑

T∈SSYT(~λ)

qinv(cycle(T ))xcycle(T )

=
∑

T ′∈cycle(SSYT(~λ))

qinv(T
′)xT

′

=
∑

T ′∈SSYT(cycle(~λ))

qinv(T
′)xT

′

= Gcycle(~λ)(X; q)

(3.3)

We can use this fact to derive a consequence of LLT-equivalence.

Proposition 3.1.3. Let
∑

i ai(q)
~λ(i) and

∑
j bj(q)~ν(j) be LLT-equivalent N[q]-linear combi-

nations of multiskew partitions. If ~γ and ~µ are multiskew partitions, then∑
i

ai(q)G(~γ,~λ(i),~µ)(X; q) =
∑
j

bj(q)G(~γ,~ν(j),~µ)(X; q). (3.4)

Proof. If ~γ = (γ(1)/τ (1), γ(2)/τ (2), . . . , γ(g)/τ (g)), then we can compute

cycle−g(~γ,~λ(i), ~µ) = (~λ(i), ~µ, κ
−1(γ(1)/τ (1)), κ−1(γ(2)/τ (2)), . . . , κ−1(γ(g)/τ (g))) (3.5)

where κ−1(γ/τ) = (γ1, γ1, γ2, γ3, . . . , )/(γ1, τ1, τ2, τ3, . . .). This is effectively an inverse to
the map κ in Definition 3.1.2, since we identify skew partitions that are the same shape and
have cell-wise the same content. Note that κ−1 decreases the content of each cell by at most
one.

If we use the shorthand κ−1(~γ) = (κ−1(γ(1)/τ (1)), κ−1(γ(2)/τ (2)), . . . , κ−1(γ(g)/τ (g))), then
LLT-equivalence tells us that∑

i

ai(q)G(~λ(i),~µ,κ−1(~γ)) =
∑
j

ai(q)G(~ν(j),~µ,κ−1(~γ)) (3.6)

since ~λ(i) and ~ν(j) are the leftmost multiskew partitions in each summand. Putting this
together yields the desired equation.
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∑
i

ai(q)G(~γ,~λ(i),~µ)(X; q) =
∑
i

ai(q)Gcycle−k(~γ,~λ(i),~µ)(X; q)

=
∑
i

ai(q)G(~λ(i),~µ,κ−1(~γ))(X; q)

=
∑
j

ai(q)G(~ν(j),~µ,κ−1(~γ))(X; q)

=
∑
j

bj(q)Gcycle−k(~γ,~ν(j),~µ)(X; q)

=
∑
j

bj(q)G(~γ,~ν(j),~µ)(X; q)

(3.7)

The point of this theorem is largely to simplify notation, because now we don’t need
to cycle our multiskew partitions before using LLT-equivalence. The intuition behind the
theorem is that LLT-equivalence is actually a statement about arbitrary sequences of skew
partitions appended before or after the multiskew partitions of interest.

The method outlined in the previous section can be used to validate LLT-equivalence
relations. We find that these equations often take on the form

(λ(1), λ(2)) = qm(λ(2), λ(1)) (3.8)

where m is some integer. We will say that such pairs of skew partitions λ(1), λ(2) are
commuting. These pairs are of interest to us, because they allow us to rearrange the entries
of multiskew partitions while keeping essentially the same LLT polynomial. We display all
the commuting relations in the table in appendix A, which is read as follows: If λ(1) and
λ(2) satisfy equation 3.8, then m can be found in row λ(1) and column λ(2) in the table in
appendix A.

~λ = = →

Figure 3.3: An LLT-equivalence relation and cycling

In Figure 3.3 we have an example of commuting partitions. If ~λ = (λ(1), λ(2), λ(3)), then
λ(1) and λ(2) are commuting. We look at row λ(1) and column λ(2) in the table in appendix
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A to find the LLT-equivalence relation (λ(1), λ(2)) = q(λ(2), λ(1)). Every entry in the table in
appendix A corresponds to such an equation. But there are also many empty cells in the
table, which correspond to pairs that do not commute. In each of these cases, there is a
decomposition of the corresponding LLT polynomial as a sum of several LLT polynomials.
These are written out in appendix A as well.

In Figure 3.3, we also introduce some notation. Here an equality (=) refers to LLT-
equivalence, and an arrow (→) refers to either the operator cycle or the operator cycle−1.
Since LLT-equivalence and cycling both preserve LLT polynomials up to a power of q, this
notation really demonstrates to us how LLT polynomials decompose. We will ignore every-
where powers of q, because in our proofs we are only trying to establish the existence of
N[q, q−1]-linear combinations, we do not care about what exactly these coefficients are. We
will also simplify our proofs by making the arbitrary choice that all of our skew partitions
have content in the interval [0, 2] unless otherwise stated. We will use these relations to de-
compose any LLT polynomial into a sum of polynomials whose multiskew partitions pairwise
commute.

Lemma 3.1.4. Let ~λ be any 3-bandwidth multiskew partition. Then G~λ can be written as a
N[q, q−1]-linear combination of LLT polynomials indexed by multiskew partitions ~ν such that
for every i, j, ν(i) and ν(j) commute.

Proof. Recall that a 3-rectangle is a rectangular partition occupying three content lines. We
proceed by strong induction on the number n of indices i such that λ(i) is not a 3-rectangle.

If n = 0, then ~λ consists entirely of 3-rectangles. Note from the table in appendix A that
3-rectangles commute with every skew partition. Thus all of the entries pairwise commute.

If n = 1, then ~λ must have exactly 1 entry which is not a 3-rectangle. Note from table A
that this skew partition necessarily commutes with every other skew partition, because all
the rest are 3-rectangles, which commute with every skew partition.

We assume the lemma for the case that there are n skew partitions that are not 3-
rectangles.

Suppose there are n + 1 many skew partitions that do not commute with at least one
other skew partition. Let {ai}d−n−1i=0 be the set such that λ(ai) commutes with all the entries

of ~λ. Let {bi}n+1
i=0 be the complementary indices. By moving those commuting partitions to

the right, we see that there exists m ∈ Z such that G~λ = qm · G
(λ(b1),...,λ(bn+1),λ(a1),...λ(ad−n−1))

.

By definition, λ(b1) does not commute with some entry of {λ(bi)}n+1
i=1 . Let bk be the smallest

such index. Then λ(b1) commutes with λ(bj) for j ∈ [1, k − 1]. Thus there exists m ∈ Z such
that G~λ = qm · G

(λ(b2),...,λ(b1),λ(bk),...λ(bn+1),λ(a1),...λ(ad−n−1))
. In particular, there are two adjacent

terms λ(b1), λ(bk). Thus we see it is sufficient to consider the case where there is an adjacent
pair of skew partitions that do not commute.

Reindexing and relabeling, suppose there are n + 1 many skew partitions in ~λ that are
not 3-rectangles. Without loss of generality we can assume that there is an adjacent pair
with indices k and k+1 that do not commute with each other. Neither can be a 3-rectangle,
as 3-rectangles commute with all skew partitions. We see appendix A for an LLT-equivalent
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decomposition of this pair, and note that all pairs decompose into a sum of two terms. There
are two cases, which depend on both the pair of skew partitions, and the two terms in the
sum.

Case 1. Both terms in the sum have at most one entry that is not a 3-rectangle. In this case,
we have a decomposition that replaces a multiskew partition containing n + 1 entries
that are not 3-rectangles with two terms, each containing either n− 1 or n entries that
are not 3-rectangles. This case is complete by induction.

Case 2a. One partition in the pair is a skew hook shape, and that other is a straight hook shape.
This occurs in just two situations, see for example Figure 3.4.

= +

Figure 3.4: A decomposition of two hook shapes.

Case 2b. One partition in the pair is a skew hook shape or straight hook shape, and the other is
a single cell with content 1. This occurs in just four situations, see for example Figure
3.5.

= +

Figure 3.5: A decomposition of a single cell and a hook shape.

In either Case 2a or Case 2b there are two terms in the decomposition. One of these
terms yields n−1 many entries that are not 3-rectangles, so we can ignore it. The other term
is of interest: it yields n+ 1 entries that are not 3-rectangles, which offers no improvement.
But we can proceed as above to permute the entries of this multiskew partition so that two
non-commuting skew partitions are adjacent, and repeat this inductive step. Note that the
processes in Case 2a and Case 2b remove either one or two hook shapes. After repeatedly
rearranging and decomposing, either all skew partitions will commute or there will be no
more hook shapes and we will be in Case 1, resulting in a decrease in the number of entries
that are not 3-rectangles and the completion of this proof.
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We note that the decomposition described here uses only the LLT-equivalence relations
in Appendix A. This fact can be used to strengthen the statement of Lemma 3.1.4, but we
will not use this. Instead we note that the number of cells in each content line must be
constant across all multiskew partitions considered in such a decomposition. While this is in
fact true of all LLT-equivalence relations, perhaps the quickest way to see this is to observe
that all of the relations in Appendix A have this property.

Lemma 3.1.5. Let ~λ be any sequence of 3-bandwidth skew partitions. Then G~λ can be written
as an N[q, q−1]-linear combination of LLT polynomials indexed by multiskew partitions such
that all entries pairwise commute, and each skew partition occupies the content interval
[2], [1, 2], or [0, 2].

Proof. Following Lemma 3.1.4, we may assume without loss of generality that the entries of ~λ
pairwise commute. Then the partitions may be reorganized such ~λ = (~λ[2], ~λ[1,2], ~λ[0,2], ~λ[0,1], ~λ[0], ~λ[1]),
where

• ~λ[2] consists of partitions occupying the content interval content [2]

• ~λ[1,2] consists of partitions occupying the content interval content [1, 2]

• ~λ[0,2] consists of partitions occupying the content interval content [0, 2]

• ~λ[0,1] consists of partitions occupying the content interval content [0, 1]

• ~λ[0] consists of partitions occupying the content interval content [0]

• ~λ[1] consists of partitions occupying the content interval content [1]

Since this is every possible content interval, this form is general, and we will call it
commuting form. In Figure 3.6 we see two examples of multiskew partitions in commuting
form.

So we assume that ~λ is in commuting form. We proceed by cycling. Recall that cycling a
multiskew partiton preserves the corresponding LLT polynomial, and increases the content
of all of the cells of the last skew partition, while repositioning it to be the leading skew
partition. We apply cycle a many times, where is the number of entries of ~λ that are also in
~λ[0,1], ~λ[0] or ~λ[1]. Then cyclea(~λ) is of the following form.

1. Partitions occupying contents [1, 2]

2. Partitions occupying content [1]

3. Partitions occupying content [2]

4. Partitions occupying contents [1, 2]
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~λ[1]

~λ[0]

~λ[0,1]

~λ[0,2]

~λ[1,2]

~λ[2]

= or

Figure 3.6: Mutliskew partitions in commuting form

5. Partitions occupying contents [0, 2]

It is uncertain whether or not the entries of cyclea(~λ) actually pairwise commute. So

we proceed as in Lemma 3.1.4 and write cyclea(~λ) as a sum of terms where the multiskew
partitions pairwise commute. Picking any one, we are back to the start of this proof. Call
this new multiskew partition ~γ. Since the expansion from Lemma 3.1.4 preserves the number
of boxes on each content line, the overall content of ~γ is greater than the overall content of
~λ. Formally, we let c(~λ) be the sum of the contents of all cells in all entries of ~λ. Then it

is clear that c(~γ) = c(cyclea(~λ)) ≥ c(~λ) + a, since cycling increases the overall content by at
least one.

Thus we have a multi-step process that applies to any multiskew partition ~λ such that
the entries of ~λ pairwise commute:

1. Permute the entries of ~λ so that it’s in commuting form.

2. Let a be the number of entries in ~λ[0,1], ~λ[0] or ~λ[1], and compute cyclea(~λ).

3. Expand cyclea(~λ) into multiskew partitions whose entries pairwise commute.

4. Consider any one of the resulting multiskew partitions.

Each iteration of this process changes the class of relevant multiskew partitions to a class
of ones with larger overall content. Since all of our multiskew partitions are assumed to be
on the content lines 0, 1 and 2, the overall content of any multiskew partition is bounded
above by 2n, where n is the number of cells in the multiskew partition. So this process
must terminate. Moreover, repeated application of this process limits to a class of multiskew
partitions where all the skew partitions pairwise commute, but a = 0 in step 2. This
means that ~λ[0,1], ~λ[0] and ~λ[1] are all empty sequences. Thus the terminal class of multiskew

partitions are sequences of partitions that can be written as (~λ[2], ~λ[1,2], ~λ[0,2]), where
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• ~λ[2] consists of partitions occupying the content interval content [2].

• ~λ[1,2] consists of partitions occupying the content interval content [1, 2].

• ~λ[0,2] consists of partitions occupying the content interval content [0, 2].

This matches the form in the statement of this lemma, so we have completed the proof.

We will call the from in the statement of Lemma 3.1.5 expanding form.

Lemma 3.1.6. Let ~λ be any sequence of 3-bandwidth skew partitions. Then G~λ(X; q) can
be written as an N[q, q−1]-linear combination of LLT polynomials indexed by multiskew par-
titions that satisfy either of the following:

• A sequence of 3-rectangles and hook shapes such that all skew partitions pairwise com-
mute.

• A sequence of single cells with content 2, dominoes occupying the content interval [1, 2],
and 3-rectangles such that all skew partitions pairwise commute.

Proof. Following Lemma 3.1.4 and Lemma 3.1.5, it is sufficient to prove this lemma for an
arbitrary multiskew partition ~λ in expanding form.

If ~λ contains no entries that are hook shapes, then it has the desired form and we are
done. Otherwise, ~λ contains some hook shapes. Since all entries of ~λ pairwise commute,
we can assume that all hook shapes appear at the end of the sequence. There are only
two 3-bandwidth hook shape skew partitions. Up to translation they are γl = (2, 1) and
γr = (2, 2)/(1). Since γl and γr do not commute (see Appendix A), at most one of them

appears in ~λ.
We will continue by considering multiple cases. In each we will decompose ~λ into several

terms that have strictly fewer entries that are hook shapes while still being in expanding
form. Since ~λ is in expanding form, all of its entries pairwise commute. So without loss of
generality we can assume that ~λ = (~λ[2], ~λ[1,2], ~λrect, ~λhook), where

• ~λ[2] consists of partitions occupying the content interval content [2].

• ~λ[1,2] consists of partitions occupying the content interval content [1, 2].

• ~λrect consists of partitions that are 3-rectangles in the content interval content [0, 2].

• ~λhook consists of translations of either γl or γr with content in the interval [0, 2].
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Case 1: ~λ[2] is nonempty, and ~λhook contains one or more hook shapes γl. Then the last

entry of ~λ is γl and the first entry is a single cell with content 2. We proceed as in Figure
3.7.

~λhook
~λ[0,2]

~λ[1,2]
~λ[2]

→
~λhook

~λ[0,2]
~λ[1,2]

~λ[2]

=
~λhook

~λ[0,2]
~λ[1,2]

~λ[2]

+
~λhook

~λ[0,2]
~λ[1,2]

~λ[2]

Figure 3.7: Case 1

Figure 3.7 yields two multiskew partitions. The entries of the second multiskew partition
all pairwise commute, and they can be permuted to be in expanding form. The first multiskew
partition requires some more work, which we display in Figure 3.8.

~λhook
~λ[0,2]

~λ[1,2]
~λ[2]

=

~λhook
~λ[0,2]

~λ[1,2]
~λ[2]

→

~λhook
~λ[0,2]

~λ[1,2]
~λ[2]

Figure 3.8: Case 1 continued

The procedure in Figure 3.8 results in a multiskew partition that we will call ~λ′. The
next step is to consider further cases:

Case 1a: The subsequence ~λhook in ~λ′ is empty. In this case we are done, as all entries of
~λ′ pairwise commute and it is in expanding form.

Case 1b: The subsequence ~λhook in ~λ′ is nonempty. Since ~λ′ contains a vertical domino
with content in the interval [1, 2] and a hook shape γl, not all of its entries pairwise commute.
So we must proceed with one more expansion, which we display in Figure 3.9. The result of
this decomposition is two terms in which all the entries pairwise commute, so they can be
permuted to be in expanding form.
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~λhook

~λ[0,2]
~λ[1,2]

~λ[2]

=

~λhook

~λ[0,2]
~λ[1,2]

~λ[2]

=

~λhook

~λ[0,2]
~λ[1,2]

~λ[2]

+

~λhook

~λ[0,2]
~λ[1,2]

~λ[2]

Figure 3.9: Case 1b

The procedure in Case 1 replaces a multiskew partition in expanding form with several
multiskew partitions in expanding form, except the new ones have strictly fewer hook shapes
than the original. Thus we can apply this process iteratively until each multiskew partition
either has no hook shapes, or has no single cells with content 1. This leads us to the next
case.

Case 2: ~λ[2] is empty, ~λ[1,2] contains one or more horizontal dominos, and ~λhook contains

one or more hook shapes γl. Without loss of generality, the last entry of ~λ is a γl and the
first entry is a horizontal domino with content in the interval [1, 2]. Then we proceed as in
Figure 3.10.

~λhook
~λ[0,2]

~λ[1,2]

→
~λhook

~λ[0,2]
~λ[1,2]

=

~λhook
~λ[0,2]

~λ[1,2]

+

~λhook
~λ[0,2]

~λ[1,2]

Figure 3.10: Case 2

There are two terms in the decomposition in Figure 3.10, and we must write each in
terms of multiskew partitions in expanding form. The first term can be resolved to Case 1a
or Case 1b, as in Figure 3.11.
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~λhook
~λ[0,2]

~λ[1,2]

=

~λhook

~λ[0,2]
~λ[1,2]

→

~λhook

~λ[0,2]
~λ[1,2]

Figure 3.11: Case 2, term 1

The second term in the decomposition in Figure 3.10, requires more work, as seen in
Figure 3.12.

~λhook
~λ[0,2]

~λ[1,2]

=

~λhook

~λ[0,2]
~λ[1,2]

→

~λhook

~λ[0,2]
~λ[1,2]

Figure 3.12: Case 2, term 2

We call the last multiskew partition in Figure 3.12 ~λ′′. Then there are two cases, depend-
ing on how many hook shapes are in ~λ′′

Case 2a: The subsequence ~λhook in ~λ′′ is empty. Then we proceed as in Figure 3.13 to
put the multiskew partition into expanding form.

~λ[0,2]
~λ[1,2] = ~λ[0,2]

~λ[1,2]

→
~λ[0,2]

~λ[1,2]

Figure 3.13: Case 2a

Case 2b: The subsequence ~λhook in ~λ′′ is nonempty. Then we proceed as in Figure 3.14.
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~λhook

~λ[0,2]
~λ[1,2]

=

~λhook

~λ[0,2]
~λ[1,2]

=

~λhook

~λ[0,2]
~λ[1,2]

+

~λhook

~λ[0,2]
~λ[1,2]

Figure 3.14: Case 2b

The expansion in Figure 3.14 results in two multiskew partitions. The second is already
in expanding form, but the first needs to be touched up. We put this multiskew partition
into the form of Case 1b by following Figure 3.15.

~λhook

~λ[0,2]
~λ[1,2]

=

~λhook

~λ[0,2]
~λ[1,2]

→

~λhook

~λ[0,2]
~λ[1,2]

Figure 3.15: Case 2b continued

Both Case 1 and Case 2 expand a given multiskew partition in terms of others that have
strictly fewer hook shapes. By repeatedly applying each case, we are eventually left with
muliskew partitions in expanding form that satisfy ~λhook = ∅ or ~λ[2] = ~λ[1,2] = ∅. Thus every
multiskew partition can be expanded into of multiskew partitions of this type.

There are two additional cases that are left as exercises to the reader, since they are
essentially the same as the proofs presented here.

Case 3: ~λ[2] is nonempty, and ~λhook contains one or more hook shapes γr. See Figure 3.16

Case 4: ~λ[2] is empty, ~λ[1,2] contains one or more vertical dominos, and ~λhook contains one
or more hook shapes γr. See Figure 3.16.
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~λhook
~λ[0,2]

~λ[1,2]
~λ[2]

~λhook
~λ[0,2]

~λ[1,2]

Figure 3.16: Case 3 (left) and Case 4 (right)

The result of this lemma is that we need only consider multiskew partitions in expanding
form of two types: those with hook shapes, and those without. We will deal with each case
separately in the next two lemmas, and show that they can be simplified yet further.

Lemma 3.1.7. Let ~λ be a 3-bandwidth multiskew partition in expanding form that contains
no hook shapes. Then G~λ(X; q) can be written as a N[q, q−1]-linear combination of LLT
polynomials indexed by partitions satisfying any of the following:

• A sequence of 3-rectangles followed by at most one hook shape.

• A single cell with content 2 or a domino with content in the interval [1, 2] followed by
a sequence of 3-rectangles.

• A horizontal domino with content in the interval [1, 2] followed by a vertical domino
with content in the interval [1, 2] followed by a sequence of 3-rectangles.

Proof. Given ~λ as described, we first note that all entries of ~λ pairwise commute. Up to
a power of q, we can rearrange the terms and still obtain an LLT-equivalent multiskew
partition. Without loss of generality, we assume ~λ = (~λcell, ~λhor, ~λvert, ~λrect), where

• ~λcell is a sequence of single cells with content 2

• ~λhor is a sequence of horizontal dominoes with content in the interval [1, 2]

• ~λvert is a sequence of vertical dominoes with content in the interval [1, 2]

• ~λrect is a sequence of 3-rectangles with content in the interval [0, 2]

We will say that a multiskew partition of this form is in rectangular expanding form. See
Figure 3.17 for an example.
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~λrect
~λvert

~λhor
~λcell

= or

Figure 3.17: Rectangular expanding form

We will decompose multiskew partitions in rectangular expanding form into other mul-
tiskew partitions in rectangular expanding form, while reducing the number of entries that
are not 3-rectangless. As in the previous lemmas, we will follow an algorithm that has several
cases.

Case 1: ~λcell consists of more than one cell. Then we proceed as in Figure 3.18. We note
that this process reduces the number of entries that are not 3-rectangles by one. Further, all
entries in both multiskew partition pairwise commute, so the entries can be permuted into
expanding form.

~λrect
~λvert

~λhor

~λcell

→
~λrect

~λvert
~λhor

~λcell

=

~λrect
~λvert

~λhor

~λcell

=

~λrect
~λvert

~λhor

~λcell

+

~λrect
~λvert

~λhor

~λcell

Figure 3.18: Case 1

Case 2: ~λcell consists at most one cell, while ~λhor consists of more than one domino. Then
we proceed as in Figure 3.19.

~λrect
~λvert

~λhor

~λcell

=

~λrect
~λvert

~λhor
~λcell

→
~λrect

~λvert

~λhor
~λcell

=

~λrect
~λvert

~λhor
~λcell

=

~λrect
~λvert

~λhor
~λcell

+

~λrect
~λvert

~λhor
~λcell

Figure 3.19: Case 2

In Figure 3.19, we are left with two multiskew partitions. When compared to the original
multiskew partition ~λ, both have strictly fewer entries that are not 3-rectangles. In the first
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multiskew partition, all of the entries pairwise commute, and we can permute the entries
until it is in rectangular expanding form. The second multiskew partition can also be put
into rectangular expanding form, which we display in Figure 3.20.

~λrect
~λvert

~λhor
~λcell

=

~λrect

~λvert
~λhor

~λcell

→

~λrect

~λvert
~λhor

~λcell

Figure 3.20: Case 2 continued

Case 3: ~λcell and ~λhor both consist of at most one entry, while ~λvert consists of more than
one domino. Then we proceed as in Figure 3.21.

~λrect

~λvert

~λhor
~λcell

=

~λrect

~λvert
~λhor

~λcell

→
~λrect

~λvert
~λhor

~λcell

=

~λrect

~λvert
~λhor

~λcell

=

~λrect

~λvert
~λhor

~λcell

+

~λrect

~λvert
~λhor

~λcell

Figure 3.21: Case 3

In Figure 3.21, we are again left with two multiskew partitions. When compared to the
original multiskew partition ~λ, both have strictly fewer entries that are not 3-rectangles. The
first multiskew partition is already in rectangular expanding form. The second multiskew
partition can also be put into rectangular expanding form, which we see in Figure 3.22.

~λrect

~λvert
~λhor

~λcell

=

~λrect

~λvert
~λhor

~λcell

→

~λrect

~λvert
~λhor

~λcell

Figure 3.22: Case 3 continued
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We have described this algorithm over the three cases. This algorithm expands an
LLT polynomial into several LLT polynomials whose indexing multiskew partitions all have
strictly fewer entries that are not 3-rectangles, and it eventually terminates when there
are one or fewer entries in each of ~λcell, ~λhor and ~λvert. Note that the resulting multiskew
partitions are also in rectangular expanding form.

There are a few cases, depending on which of ~λcell, ~λhor and ~λvert are nonempty.
Case A: If ~λcell is empty, then there is at most one horizontal domino, at most one vertical

domino, and any number of 3-rectangles in the multiskew partition. This is one of the desired
forms, so we are done.

Case B: If ~λcell has one entry, but ~λhor and ~λvert are both empty. Then the multiskew
partition consists of just a single cell followed by 3-rectangles, which is also of the desired
form.

Case C: If ~λcell and ~λhor have one entry, but ~λvert is empty. Then we proceed as in Figure
3.23. The entries of the resulting multiskew partitions pairwise commute, and they can be
permuted to be in the desired form.

~λrect

→
~λrect =

~λrect

→
~λrect

=

~λrect

=

~λrect

+

~λrect

Figure 3.23: Case C

Case D: If ~λcell and ~λvert have one entry, but ~λhor is empty. Then we proceed as in Figure
3.24. The entries of the resulting multiskew partitions pairwise commute, and they can be
permuted to be in the desired form.

~λrect

→
~λrect

=

~λrect

→ ~λrect =

~λrect

=

~λrect

+

~λrect

Figure 3.24: Case D

Case E: If ~λcell, ~λvert and ~λhor all have one entry. Then we proceed as in Figure 3.25,
Figure 3.26 and Figure 3.27.
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~λrect

→
~λrect

=

~λrect

→
~λrect

=

~λrect

Figure 3.25: Case E

Figure 3.25 results in a single multiskew partition. We expand this multiskew partition
in Figure 3.26.

~λrect

=

~λrect

+

~λrect

Figure 3.26: Case E continued

Figure 3.26 results in two multiskew partitions. In the first, all entries pairwise commute,
and we can permute them to put the multiskew partition into the desired form. The second
multiskew partition requires more finesse, which we display in Figure 3.27.

~λrect

=

~λrect

+

~λrect

Figure 3.27: Case E continued

Figure 3.27 results in two multiskew partitions. In both, all entries pairwise commute,
and we can permute them to be in the desired form.

Thus we have expanded ~λ into mutliskew partitions of the desired form. Since ~λ was an
arbitrary multiskew partition in rectangular expanding form, this completes the proof.
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Lemma 3.1.8. Let ~λ be a 3-bandwidth multiskew partition in expanding form that consists
entirely of 3-rectangles and hook shapes. Then G~λ(X; q) can be written as an N[q, q−1]-linear
combination of LLT polynomials whose indexing multiskew partitions are any of the following:

• A sequence of 3-rectangles followed by at most one hook shape.

• A single cell with content 2 or a domino with content in the interval [1, 2] followed by
a sequence of 3-rectangles.

• A horizontal domino with content in the interval [1, 2] followed by a vertical domino
with content in the interval [1, 2] followed by a sequence of 3-rectangles.

Proof. We will assume in this proof that the hook shapes in ~λ are all translations γl = (2, 1).
The work is essentially the same in the case of γr = (2, 2)/(1, 0).

Since ~λ is in expanding form, all of the skew partitions pairwise commute. So without
loss of generality, we can assume that ~λ can be written as (~λrect, ~λhook), where

• ~λrect is a sequence of 3-rectangles with content in the interval [0, 2]

• ~λhook is a sequence of hook shapes with content in the interval [0, 2].

If ~λhook has only one entry, then ~λ is of the desired form, and we are done. Otherwise,
~λhook can be broken down into two components of equal or nearly equal size, which we will
call ~γ1 and ~γ2. If there are n hook shapes in ~λhook, then ~γ1 has dn

2
e entries and ~γ2 has bn

2
c

many entries, all of which are also hook shapes. In particular, ~γ1 has at most one more
element than ~γ2. We proceed by permuting the entries of ~λ and applying cycle−b

n
2
c as in

Figure 3.28. Here ~γ1, ~γ2 and ~λrect are each represented on a single content line, but actually
span the adjacent content lines as well. This observation is important, because this proof
will require us to use four content lines.

~γ2

~γ1

~λrect

=

~γ1

~λrect

~γ2

→

~γ2

~γ1

~λrect

Figure 3.28: Positioning hook shapes

We see in Appendix A that there are LLT-equivalence relations among hook shapes that
are translations of the same skew partition, but with differing content. This is precisely
the situation presented in Figure 3.28. We proceed with these LLT-equivalence relations in
Figure 3.29 by considering one hook shape from ~γ1 and one hook shape from ~γ2.
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~γ2

~γ1

~λrect

=

~γ2

~γ1
~λrect

=

~γ2

~γ1
~λrect

+

~γ2

~γ1
~λrect

+

~γ2

~γ1
~λrect

Figure 3.29: A decomposition of two hook shapes

The decomposition in Figure 3.29 results in three terms. We note that each term has
exactly two fewer hook shapes than the original multiskew partition. For this reason, we will
iteratively apply this decomposition until our multiskew partitions have either zero or one
hook shape. At each step, we will show that these multiskew partitions can be organized as
the following sequence:

• ~λhor, a sequence of horizontal dominoes with content in the interval [1, 2].

• ~λrect, a sequence of 3-rectangles with content in the interval [0, 2].

• ~γ1, a sequence of hook shapes with content in the interval [0, 2].

• ~γ2, a sequence of hook shapes with content in the interval [−1, 1].

• ~λvert, a sequence of vertical dominoes with content in the interval [−1, 0].

Since there are three terms, we need three figures. These can be seen in Figure 3.30,
Figure 3.31 and Figure 3.32.

~λvert
~γ2

~γ1
~λrect

~λhor

=

~λvert
~γ2

~γ1

~λrect
~λhor

→

~λvert
~γ2

~γ1

~λrect
~λhor

=

~λvert
~γ2

~γ1

~λrect

~λhor

Figure 3.30: The first term in the decomposition of two hook shapes.
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~λvert
~γ2

~γ1
~λrect

~λhor

=

~λvert
~γ2

~γ1

~λrect
~λhor

→

~λvert
~γ2

~γ1

~λrect
~λhor

=

~λvert
~γ2

~γ1
~λrect

~λhor

Figure 3.31: The second term in the decomposition of two hook shapes.

~λvert
~γ2

~γ1
~λrect

~λhor

=

~λvert

~γ2

~γ1

~λrect
~λhor

Figure 3.32: The third term in the decomposition of two hook shapes.

This process terminates when ~γ2 is empty. At this point, ~γ1 has either one or zero entries.
Regardless, we can cycle any such multiskew partition as in Figure 3.33. For emphasis, we
use superscripts to denote the content interval of the multiskew partitions.

~λ
[−1,0]
vert

~γ
[0,2]
1

~λ
[0,2]
rect

~λ
[1,2]
hor

→

~γ
[0,2]
1

~λ
[0,2]
rect

~λ
[1,2]
hor

~λ
[0,1]
vert

=

~λ
[0,1]
vert

~γ
[0,2]
1

~λ
[0,2]
rect

~λ
[1,2]
hor

→

~γ
[0,2]
1

~λ
[0,2]
rect

~λ
[1,2]
hor

~λ
[1,2]
vert

Figure 3.33: Straightening out the multiskew partitions

Formally, Figure 3.33 describes some multiskew partitions as the following sequence:
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• ~λvert, a sequence of vertical dominoes with content in the interval [1, 2].

• ~λhor, a sequence of horizontal dominoes with content in the interval [1, 2].

• ~λrect, a sequence of 3-rectangles with content in the interval [0, 2].

• ~γ1, a sequence consisting of one or zero hook shapes with content in the interval [0, 2].

We call any such multiskew partition ~λ′. There are a few cases, depending on which of
~λhor, ~λvert and ~γ1 are empty. In most cases, we will show that the ~λ′ can be decomposed
into terms that are all in rectangular expanding form, as defined in Lemma 3.1.7. Then they
must expand into terms of the desired form by the statement of this same lemma.

Case 1: ~γ1 is empty. So this multiskew partition consists of no hook shapes. Then
~λ′ = (~λvert, ~λhor, ~λrect) is in expanding form and contains no hook shapes. So the entries can
be permuted to put it into rectangular expanding form.

Case 2: ~γ1 is nonempty and ~λvert is also nonempty. Then we proceed as in Figure 3.9.
The decomposition yields two terms, neither contain any hook shapes. In both, all entries
pairwise commute and the entries can be permuted to be in rectangular expanding form.

Case 3: ~γ1 and ~λhor are nonempty, but ~λvert is empty. Then we proceed as in Figure 3.10,
which results in two terms. The first term can be put into rectangular expanding form via
the process in Figure 3.11. The second term can also be put into this form via the processes
in Figure 3.12 and Figure 3.13.

Case 4: ~γ1 is nonempty, but ~λhor are ~λvert empty. Then ~λ′ is a sequence of 3−rectangles
followed by a single hook shape. Thus, ~λ′ is in the desired form.

This leads us to the main theorem of this section.

Theorem 3.1.9. Let ~λ be any 3-bandwidth multiskew partition. Then G~λ(X; q) can be written
as a N[q, q−1]-linear combination of LLT polynomials indexed by multiskew partitions that
are all 3-indecomposable.

Proof. Let ~λ be any 3-bandwidth multiskew partition. Then by Lemma 3.1.6, G~λ(X; q)
can be written as an N[q, q−1]-linear combination of LLT polynomials indexed by multiskew
partitions that satisfy either of the following:

• A sequence of 3-rectangles and hook shapes such that all skew partitions pairwise
commute.

• A sequence of single cells with content 2, dominoes occupying the content interval [1, 2],
and 3-rectangles such that all skew partitions pairwise commute.

Let ~µ be any such multiskew partition. If ~µ meets the first condition, then we can apply
Lemma 3.1.7. If ~µ meets the second condition, then we can apply Lemma 3.1.8. The result is
that G~µ(X; q) can be written as an N[q, q−1]-linear combination of LLT polynomials indexed
by multiskew partition that satisfy any of the following conditions:
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1. A sequence of 3-rectangles.

2. A sequence of 3-rectangles followed by at most one hook shape.

3. A single cell with content 2 followed by a sequence of 3-rectangles.

4. A domino with content in the interval [1, 2] followed by a sequence of 3-rectangles.

5. A horizontal domino with content in the interval [1, 2] followed by a vertical domino
with content in the interval [1, 2] followed by a sequence of 3-rectangles.

Let ~ν be any such multiskew partition. It is clear that the entries of ~ν all pairwise com-
mute. If ~ν meets condition 1, then the entries can be permuted to yield an indecomposable
~λ where ~λinit is the empty partition.

Let ~ν be any such multiskew partition. It is clear that the entries of ~ν all pairwise com-
mute. If ~ν meets condition 2, then the entries can be permuted to yield an indecomposable
~λ where ~λinit is a hook shape.

If ~ν meets condition 3, then we can proceed as in Figure ?? to yield an indecomposable
~λ where ~λinit is a single cell with content 0.

~λrect → ~λrect = ~λrect → ~λrect = ~λrect

Figure 3.34: Cycling a single cell

If ~ν meets condition 4, then cycle−1(~ν) consists of 3-rectangles and a single domino with
content in the interval [0, 1]. Since all entries pairwise commute, we can permute the entries

to yield an indecomposable ~λ where ~λinit is a domino with content in the interval [0, 1].
If ~ν meets condition 5, then cycle−2(~ν) consists of 3-rectangles, a horizontal domino with

content in the interval [0, 1], and a vertical domino with content in the interval [0, 1]. Since
all of these entries pairwise commute, we can permute the entries to yield an indecomposable
~λ where ~λinit is a horizontal domino with content in the interval [0, 1] followed by a vertical
domino with content in the interval [0, 1].

This completes the proof.
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3.2 LLT polynomials indexed by indecomposables are

generalized Hall-Littlewood polynomials

Using a theorem of Grojnowski and Haiman, we prove that 3-indecomposable LLT polynomi-
als can be identified as generalized Hall-Littlewood polynomials after certain transformations.

Theorem 3.2.1. Let ~λ be a 3-indecomposable multiskew partition. Then there exists a se-
quence of partitions (µ(1), µ(2), . . . , µ(d)) and integer m such that qmωG~λ(X; q) = P(µ(1),µ(2),...,µ(d))(X; q),
a generalized Hall-Littlewood polynomial.

Proof. By definition, ~λ can be written as (~λinit, ~λhor, ~λsquare, ~λvert). In Lemma 1.7.4, we proved
that ωG~λ(X; q) = qmGω0

~λ′(X, q
−1) for some integer m, where ω0 is the permutation the

reverses the entries of ~λ′. We observe that

ω0
~λ′ = ω0(~λinit, ~λhor, ~λsquare, ~λvert)

′

= ω0(~λ
′
init,

~λ′hor,
~λ′square,

~λ′vert)

= (~λ′vert,
~λ′square,

~λ′hor, ω0
~λ′init)

(3.9)

The transpose of a 3-rectangle is another 3-rectangle. If we assume that all contents fall
within the interval [0, 2], then ~λ′init consists of either zero, one or two skew partitions, each

containing a cell with content 2. Additionally, ~λ′vert is a sequence of connected horizontal

strips, ~λ′square is a sequence of 2x2 squares, ~λ′hor is a sequence of connected vertical strips,

and ω0
~λ′init is any of the following:

• empty.

• a single skew partition containing a cell having content 2.

• a horizontal domino occupying the content interval [1, 2] and then a vertical domino
occupying the same content interval.

In each case, we will show that Gω0
~λ′(X, q

−1) is a generalized Hall-Littlewood polynomial.

We proceed as in [10], by considering ω0
~λ′ as a sequence of multiskew partitions ~β/~γ. In this

setting, ~β can be thought of as a sequence of partitions of length r1, r2, . . . , rd. If we let n be
the sum of these values, then we pick L = GLr1 ×GLr2 × · · · ×GLrd to be a Levi subgroup
of GLn. We let W be the Weyl group of G and WJ be the Weyl group of L.

We define X+(L) = {λ ∈ X|〈αi, λ〉 ≥ 0 ∀i ∈ J} to be the cone of dominant weights for the

Levi L. It is clear that ~β,~γ ∈ X+(L). We also define X++(L) = {λ ∈ X|〈αi, λ〉 > 0 ∀i ∈ J}
to be the set of regular and dominant weights for the Levi subgroup L ⊆ G. Lastly, we
define ρL = (ρr1 , ρr2 , . . . , ρrd) where ρr = (0,−1,−2, . . . , 1− r).

We say that a weight λ ∈ X++(L) is L-quasi-dominant [10] if
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X++(L) ∩ (λ+Q+) ∩ Conv(Wλ) = {λ} (3.10)

where Q+ is the positive root lattice, and Conv(Wλ) is the convex hull of all permutations
of λ.

We wish to show that Gω0
~λ′(X, q

−1) is a generalized Hall-Littlewood polynomial. Haiman

and Grojnowski prove that it is sufficient to check that ~β+ ρL and −ωJ0 (~γ+ ρL) are L-quasi-
dominant [10], where ωJ0 is the longest word in WJ . We will now show that these weights
are L-quasi-dominant.

Since we assume that ω0
~λ′ is within the content interval [0, 2], we can write down explicitly

what the entries are. Among the 3-rectangles, we have

• The horizontal strip 3-rectangles are (3)/(0)

• The square 3-rectangles are (3, 3)/(1, 1)

• The vertical strip 3-rectangles are (3, 3, 3)/(2, 2, 2)

Additionally, there are the entries of ω0
~λ′init, which are drawn from the following:

• The vertical domino is (3, 3)/(2, 2).

• The horizontal domino is (3)/(1).

• The single cell is (3)/(2).

• The straight hook shape γl is (3, 2)/(1, 1)

• The skew hook shape γr is (3, 3)/(2, 1).

Given this information, there are only a few options for ~β and ~γ. We will deal with each
case separately, and show that ~β + ρL and −ωJ) (~γ + ρL) are L-quasi-dominant.

Case 1: ω0
~λ′init is empty. In this case,

~β = ((3), . . . , (3), (3, 3), . . . (3, 3), (3, 3, 3), . . . , (3, 3, 3))

~β + ρL = ((3), . . . , (3), (3, 2), . . . (3, 2), (3, 2, 1), . . . , (3, 2, 1))
(3.11)

Let x ∈ X++(L)∩ ((β + ρL) +Q+)∩Conv(W (β + ρL)), then x ≥ (β + ρL) in dominance
order. Assume for contradiction that x > (β + ρL). Then there is some first entry where
x > (β + ρL). It must be at one of the positions {0, r1, r1 + r2, . . . , r1 + · · ·+ rk} to maintain
the strictly dominant property, because these indices point to the first entry of each tuple.
Since all of these entries are equal to 3, this means that x has an entry greater than 3. By
convexity, x 6∈ Conv(W (β+ρL)). Thus we have a contradiction and conclude that x = ~β+ρL,
so that (β + ρL) is L-quasi-dominant.
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We continue by considering ~γ. Here,

~γ = ((0), . . . , (0), (1, 1), . . . (1, 1), (2, 2, 2), . . . , (2, 2, 2))

−ωJ0 (~γ + ρL) = ((0), . . . , (0), (0,−1), . . . (0,−1), (0,−1,−2), . . . , (0,−1,−2))
(3.12)

The proof that −ωJ0 (~γ + ρL) is L-quasi-dominant is identical to the proof for ~β.

Case 2: ω0
~λ′init consists of one vertical domino. In this case,

~β = ((3), . . . , (3), (3, 3), . . . (3, 3), (3, 3, 3), . . . , (3, 3, 3), (3, 3))

~β + ρL = ((3), . . . , (3), (3, 2), . . . (3, 2), (3, 2, 1), . . . , (3, 2, 1), (3, 2))
(3.13)

The proof that ~β + ρL is L-quasi-dominant is the same as the proof in Case 1.

~γ = ((0), . . . , (0), (1, 1), . . . (1, 1), (2, 2, 2), . . . , (2, 2, 2), (2, 2))

−ωJ0 (~γ + ρL) = ((0), . . . , (0), (0,−1), . . . (0,−1), (0,−1,−2), . . . , (0,−1,−2), (−1,−2))

(3.14)

Let x ∈ X++(L)∩((−ωJ0 (~γ+ρL)+Q+)∩Conv(W (−ωJ0 (~γ+ρL)), then x ≥ −ωJ0 (~γ+ρL) in
dominance order. Assume for contradiction that x > −ωJ0 (~γ + ρL). Then there is some first
entry where x > −ωJ0 (~γ+ρL). It must be at one of the positions {0, r1, r1+r2, . . . , r1+· · ·+rk}.
If the first position where x > −ωJ0 (~γ + ρL) is in the set {0, r1, r1 + r2, . . . , r1 + · · ·+ rk−1},
then x has an entry greater than 0. By convexity, x 6∈ Conv(W (−ωJ0 (~γ + ρL)) yielding a
contradiction. If the first position where x > −ωJ0 (~γ + ρL) is r1 + · · · + rk, then x and
−ωJ0 (~γ + ρL) differ only in the final tuple. Since x ∈ (−ωJ0 (~γ + ρL) + Q+) and the final
tuple has 2 entries, this means that the final entry of x is smaller than the final entry
of −ωJ0 (~γ + ρL). So x contains an entry that is smaller than −2, again contradicting the
fact that x ∈ Conv(W (−ωJ0 (~γ + ρL))). Thus x = −ωJ0 (~γ + ρL), so that −ωJ0 (~γ + ρL) is
L-quasi-dominant.

Case 3: ω0
~λ′init consists of one horizontal domino. In this case,

~β = ((3), . . . , (3), (3, 3), . . . (3, 3), (3, 3, 3), . . . , (3, 3, 3), (3))

~β + ρL = ((3), . . . , (3), (3, 2), . . . (3, 2), (3, 2, 1), . . . , (3, 2, 1), (3))
(3.15)

The proof that ~β + ρL is L-quasi-dominant is the same as the proof in Case 1.

~γ = ((0), . . . , (0), (1, 1), . . . (1, 1), (2, 2, 2), . . . , (2, 2, 2), (1))

−ωJ0 (~γ + ρL) = ((0), . . . , (0), (0,−1), . . . (0,−1), (0,−1,−2), . . . , (0,−1,−2), (−1))
(3.16)
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Let x ∈ X++(L)∩ ((−ωJ0 (~γ+ ρL) +Q+)∩Conv(W (−ωJ0 (~γ+ ρL)), then x ≥ −ωJ0 (~γ+ ρL)
in dominance order. Assume for contradiction that x > −ωJ0 (~γ + ρL). Then there is some
first entry where x > −ωJ0 (~γ+ ρL). It must be at one of the positions {0, r1, r1 + r2, . . . , r1 +
· · · + rk}. Like in the previous cases, if the first position where x > −ωJ0 (~γ + ρL) is in
the set {0, r1, r1 + r2, . . . , r1 + · · · + rk−1}, then convexity is contradicted. The first entry
where x > ωJ0 (~γ + ρL) also cannot be r1 + · · · + rk, because this is the final entry, and
x ∈ ((−ωJ0 (~γ + ρL) +Q+).Thus we conclude that −ωJ0 (~γ + ρL) is L-quasi-dominant.

Case 4: ω0
~λ′init consists of one single cell. In this case, ~β is identical to Case 3, so the

proof that it is L-quasi-dominant is also identical to the proof in Case 1.

~γ = ((0), . . . , (0), (1, 1), . . . (1, 1), (2, 2, 2), . . . , (2, 2, 2), (2))

−ωJ0 (~γ + ρL) = ((0), . . . , (0), (0,−1), . . . (0,−1), (0,−1,−2), . . . , (0,−1,−2), (−2))
(3.17)

The proof that −ωJ0 (~γ + ρL) is L-quasi-dominant is the same as the proof in Case 3.

Case 5: ω0
~λ′init consists of one hook shape γl. In this case

~β = ((3), . . . , (3), (3, 3), . . . (3, 3), (3, 3, 3), . . . , (3, 3, 3), (3, 2))

~β + ρL = ((3), . . . , (3), (3, 2), . . . (3, 2), (3, 2, 1), . . . , (3, 2, 1), (3, 1))
(3.18)

Let x ∈ X++(L)∩ ((β + ρL) +Q+)∩Conv(W (β + ρL)), then x ≥ (β + ρL) in dominance
order. Assume for contradiction that x > (β + ρL). Then there is some first entry where
x > (β + ρL). As in previous cases, this position can only fall in the last tuple. The last
tuple has only two entries. If the first entry where x > −ωJ0 (β + ρL) is r1 + · · ·+ rk, then x
contains an entry greater than 3, contradicting convexity like before. The first entry where
x > β+ ρL cannot be r1 + · · ·+ rk + 1, because then x 6∈ ((β+ ρL) +Q+). Thus we conclude
that (β + ρL) is L-quasi-dominant.

~γ = ((0), . . . , (0), (1, 1), . . . (1, 1), (2, 2, 2), . . . , (2, 2, 2), (1, 1))

−ωJ0 (~γ + ρL) = ((0), . . . , (0), (0,−1), . . . (0,−1), (0,−1,−2), . . . , (0,−1,−2), (0,−1))

(3.19)

The the proof that −ωJ0 (~γ + ρL) is L-quasi-dominant is identical to the proof for ~β + ρL
in Case 1.

Case 6: ω0
~λ′init consists of one hook shape γr. In this case,

~β = ((3), . . . , (3), (3, 3), . . . (3, 3), (3, 3, 3), . . . , (3, 3, 3), (3, 3))

~β + ρL = ((3), . . . , (3), (3, 2), . . . (3, 2), (3, 2, 1), . . . , (3, 2, 1), (3, 2))
(3.20)

The proof that ~β + ρL is L-quasi-dominant is the same as the proof in Case 1.
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~γ = ((0), . . . , (0), (1, 1), . . . (1, 1), (2, 2, 2), . . . , (2, 2, 2), (2, 1))

−ωJ0 (~γ + ρL) = ((0), . . . , (0), (0,−1), . . . (0,−1), (0,−1,−2), . . . , (0,−1,−2), (0,−2))

(3.21)

The proof that −ωJ0 (~γ + ρL) is L-quasi-dominant is the same as the proof for β + ρL in
Case 5.

Case 7: ω0
~λ′init consists of one horizontal domino and one vertical domino. In this case,

~β = ((3), . . . , (3), (3, 3), . . . (3, 3), (3, 3, 3), . . . , (3, 3, 3), (3), (3, 3))

~β + ρL = ((3), . . . , (3), (3, 2), . . . (3, 2), (3, 2, 1), . . . , (3, 2, 1), (3), (3, 2))
(3.22)

The proof that ~β + ρL is L-quasi-dominant is the same as the proof in Case 1.

~γ = ((0), . . . , (0), (1, 1), . . . (1, 1), (2, 2, 2), . . . , (2, 2, 2), (1), (2, 2))

−ωJ0 (~γ + ρL) = ((0), . . . , (0), (0,−1), . . . (0,−1), (0,−1,−2), . . . , (0,−1,−2), (−1), (−1,−2))

(3.23)

Let x ∈ X++(L)∩((−ωJ0 (~γ+ρL)+Q+)∩Conv(W (−ωJ0 (~γ+ρL)), then x ≥ −ωJ0 (~γ+ρL) in
dominance order. Assume for contradiction that x > −ωJ0 (~γ + ρL). Then there is some first
entry where x > −ωJ0 (~γ+ρL). It must be at one of the positions {0, r1, r1+r2, . . . , r1+· · ·+rk}.
If the first position where x > −ωJ0 (~γ + ρL) is in the set {0, r1, r1 + r2, . . . , r1 + · · ·+ rk−2},
then x has an entry greater than 0. By convexity, x 6∈ Conv(W (−ωJ0 (~γ + ρL)) yielding a
contradiction.

So, x and −ωJ0 (~γ + ρL) can only differ in the last two tuples: ((−1), (−1,−2)). The
final entry of x cannot be smaller than the final entry of −ωJ0 (~γ + ρL), because that would
require x to have an entry smaller than −2, contradicting the convexity requirement. So we
are looking for a triple (a, b, c) ∈ ((−1,−1,−2) + Q+) such that (a, b, c) > (−1,−1,−2) in
dominance order, b > c and c ≥ −2. This is clearly impossible, so we conclude that no such
x exists, and −ωJ0 (~γ + ρL) is L-quasi-dominant.

We have concluded that in each case ~β + ρL and −ωJ0 (~γ + ρL) are L-quasi-dominant. So
from [10, Theorem 7.15] we see that

IndGL,q−1(χ~β(L)⊗ χ∗~γ(L)) = qmG~β/~γ(X; q)) (3.24)

Further, if (χ~β(L)⊗ χ∗~γ(L)) is irreducible then there exists µ ∈ X+(L) with

χµ(L) = χ~β(L)⊗ χ∗~γ(L) (3.25)

and we conclude that there exists m such that
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Pµ(X; q−1) = qmG~β/~γ(X; q). (3.26)

In any case, we would like to find a sequence µ such 3.25 holds. It is a well-known fact
that χ~γ(L)∗ = χ−ωJ0 ~γ(L). From the list of cases above, we see that if ω0λ

′
init 6= γr, then ~γ is

constant in every tuple. Thus ωJ0~γ = ~γ and χ~γ(L)∗ = χ−~γ(L).
Further, since χ−~γ(L) is also constant on every tuple,

~β = ((3), . . . , (3), (3, 3), . . . (3, 3), (3, 3, 3), . . . , (3, 3, 3), ~βinit)

~γ = ((0), . . . , (0), (1, 1), . . . (1, 1), (2, 2, 2), . . . , (2, 2, 2), ~γinit)

χµ = χ~β ⊗ χ
∗
~γ

µ = ~β − ~γ
= ((3), . . . , (3), (2, 2), . . . (2, 2), (1, 1, 1), . . . , (1, 1, 1), ~βinit − ~γinit)

(3.27)

In keeping with the cases above, here are the corresponding values of µ.

1. ((3),. . . , (3),(2,2),. . . ,(2,2),(1,1,1),. . . ,(1,1,1))

2. ((3),. . . , (3),(2,2),. . . ,(2,2),(1,1,1),. . . ,(1,1,1),(1,1))

3. ((3),. . . , (3),(2,2),. . . ,(2,2),(1,1,1),. . . ,(1,1,1),(2))

4. ((3),. . . , (3),(2,2),. . . ,(2,2),(1,1,1),. . . ,(1,1,1),(1))

5. ((3),. . . , (3),(2,2),. . . ,(2,2),(1,1,1),. . . ,(1,1,1),(2,1))

The last case involves results involves the skew shape γr, so we will have to be a bit
more careful when doing computations. For readability, we will condense sequences like
(3), . . . , (3) to simply (3). This does not change the proof. In this case,

~β = ((3), (3, 3), (3, 3, 3), (3, 3))

~γ = ((0), (1, 1), (2, 2, 2), (2, 1))

−ωJ0~γ = ((0), (−1,−1), (−2,−2,−2), (−1,−2))

= ((0), (−1,−1), (−2,−2,−2), (−2,−2)) + ((0), (0, 0), (0, 0, 0), (1, 0))

(3.28)

We see that

χ~β ⊗ χ
∗
~γ = χ((3),(3,3),(3,3,3),(3,3)) ⊗ χ((0),(−1,−1),(−2,−2,−2),(−2,−2)) ⊗ χ((0),(0,0),(0,0,0),(1,0))

= χ((3),(2,2),(1,1,1),(1,1)) ⊗ χ((0),(0,0),(0,0,0),(1,0))

= χ((3),(2,2),(1,1,1),(2,1))

(3.29)
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The last equality follows from a Pieri rule for gl2.
Thus we have proved that ~β + ρL and −ωJ0 (~γ + ρL) are both L-quasidominant, and that

there exists a sequence of straight shapes µ such that χµ(L) = χ~β(L)⊗ χ~γ(L)∗. For all such

triples (~β,~γ, µ), we conclude that there exists m such that

Pµ(X; q) = qmG~β/~γ(X; q−1). (3.30)

Thus we conclude that all LLT polynomials can be decomposed into generalized Hall-
Littlewood polynomials.

3.3 LLT polynomials indexed by indecomposables are

3-Schur functions

In the previous section, we concluded that 3-indecomposable LLT polynomials are general-
ized Hall-Littlewood polynomials, up to a power of q. The converse is certainly not always
true, and there is a relatively small class of generalized Hall-Littlewood polynomials that
are LLT polynomials. In the following theorem, we will show that all such generalized
Hall-Littlewood polynomials are 3-Schur functions.

Lemma 3.3.1. If ~λ is as in Lemma 3.2.1, then there exists m such that qmωG~λ(X; q) is a
3-Schur function.

Proof. From Lemma 3.2.1, we see that it is equivalent to consider the LLT polynomial
G~β/~γ(X; q−1), where ~β/~γ = ω0

~λ′.

In every case except one, all entries of ~β/~γ are translations of straight shape partitions.
In these cases, we have that there exists an integer m such that

Pµ(X; q) = qmG~β/~γ(X; q) (3.31)

where µ is a sequence of straight shape partitions such that the ith partition is a trans-
lation of the ith skew partition in ~β/~γ. There are only a few options for the form of µ:

• µ = ((3), . . . , (3), (2, 2), . . . , (2, 2), (1, 1, 1), . . . (1, 1, 1))

• µ = ((3), . . . , (3), (2, 2), . . . , (2, 2), (1, 1, 1), . . . (1, 1, 1), (1))

• µ = ((3), . . . , (3), (2, 2), . . . , (2, 2), (1, 1, 1), . . . (1, 1, 1), (1, 1))

• µ = ((3), . . . , (3), (2, 2), . . . , (2, 2), (1, 1, 1), . . . (1, 1, 1), (2))

• µ = ((3), . . . , (3), (2, 2), . . . , (2, 2), (1, 1, 1), . . . (1, 1, 1), (2, 1))

• µ = ((3), . . . , (3), (2, 2), . . . , (2, 2), (1, 1, 1), . . . (1, 1, 1), (2), (1, 1))
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All of these sequences have the same general form, which is a sequence of 3-rectangles
followed by one or two entries that are not 3-rectangles. If we label the sequence of parti-
tions that are not 3-rectangles as µirred, then the corresponding generalized Hall-Littlewood
polynomial is

Pµ(X; q) = B(3) · · ·B(3)B(2,2) · · ·B(2,2)B(1,1,1) · · ·B(1,1,1)Pµirred(X; q) (3.32)

From Theorem 1.8.1 in Section 1.8 we see that it is sufficient to determine that Pµirred(X; q)
is a 3-Schur function, because any raising operator Bλ where λ is a 3-rectangle transforms a
3-Schur function into another 3-Schur function, up to a power of q.

Using SAGE, we check that Pµirred is a 3-Schur function for each µirred.
If µirred = ∅, (1), (2), (1, 1), or (2, 1), then µ→3

irred = µirred, and Pµirred is a single 3-split
polynomial, a Schur function and a 3-Schur function.

So we have
P∅ = 1 = s

(3)
∅ (3.33)

P(1) = B(1)(1) = s(1) = s
(3)
(1) (3.34)

P(2) = B(2)(1) = s(2) = s
(3)
(2) (3.35)

P(1,1) = B(1,1)(1) = s(1,1) = s
(3)
(1,1) (3.36)

P(2,1) = B(2,1)(1) = s(2,1) = s
(3)
(2,1) (3.37)

P((2),(1,1)) = B(2)B(1,1)(1) = s(2,1,1) + ts(3,1) = s
(3)
(2,1,1) (3.38)

We note that this theorem has a close relationship with the formulation of k-Schur func-
tions given by Morse and Lapointe in [14]. In particular, they outline how we can produce
any k-Schur function by combining raising operators corresponding to k-rectangles with a
finite collection of partitions that are said to be k-irreducible. This theory is seen in our
work, where there are exactly 6 multiskew partitions that µirred can be, and an arbitrarily
large sequence of 3-rectangles. For this reason, we can produce any 3-Schur function as a
3-bandwidth LLT polynomial.
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This appendix contains LLT-equivalence statements, each of which was verified by a
computer search. For each pair of skew partitions, we compute an LLT-equivalent N[q]-
linear combination of multiskew partitions. We denote LLT-equivalence with an equals sign
(=). Because the LLT polynomial of a multiskew partition is invariant under translation
within the plane, we can assume that our 3-bandwidth partitions fall within the content
interval [0, 2].

The table here displays commuting pairs, which are skew partitions that satisfy (λ1, λ2) =
qm(λ2, λ1) for some integer m. In this case, m can be found in the row labeled by λ1 and
the column labeled by λ2. We have filled the skew partitions with their content, to make it
clear where they fall within the plane.

The gaps within the table correspond to pairs that do not commute. For each of these,
we produce an LLT-equivalent combination of multiskew partitions. Each page corresponds
to a row of the table. So the first page contains LLT-equivalence relations where the first
skew partition is a single cell with content two.

Finally, the last page contains two LLT-equivalence relations where the mulstiskew par-
titions cannot fit on three content lines. In this case, we think of content interval being
[−1, 2].
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Additional LLT-equivalance relations
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