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ABSTRACT OF THE DISSERTATION

Computational models on cell migration

by

Danying Shao

Doctor of Philosophy in Physics (Biophysics)

University of California, San Diego, 2011

Herbert Levine, Chair

Cell migration is one of the most intriguing areas in cell biology and has

attracted many interdisciplinary studies. It is regulated by complex biochemical

signaling networks and comprises many mechanical processes, including protrusion,

adhesion, translocation of the cell body and retraction of the rear.

This dissertation starts with the signaling pathway that senses external

chemoattractant, specifically, the Ras pathway (Chapter 2). We found that the

response of an activated Ras shows near perfect adaptation. We attempted to fit

the results using mathematical models for the two possible simple network topolo-

gies that can provide perfect adaptation. Only one, the incoherent feedforward

network, is able to accurately describe the experimental results. This analysis re-
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vealed that adaptation in this Ras pathway is achieved through the proportional

activation of upstream components and not through negative feedback loops.

From Chapter 3 to Chapter 5, we integrated chemical reactions inside the

cell with the mechanical process of cell migration. In Chapter 3, we set up a frame-

work, based on phase field method, to describe the cell shape and the chemical

reactions in a moving cell. Under this framework, we developed a computational

model on cell morphodynamics in Chapter 4. Our model incorporates the mem-

brane bending force and the surface tension and enforces a constant area. Further-

more, it implements a cross linked actin filament field and an actin bundle field

that are responsible for the protrusion and retraction forces, respectively. The

model was successfully applied to fish keratocytes and Dictystelium cells.

In Chapter 5, we studied the coupling between adhesion mechanism and

actin flow in keratocytes. The adhesion mechanism incorporated both the grip-

ping mode and the slipping mode. The model-predicted maps of actin flow, sub-

strate stress and the alignment between the two are quantitatively consistent with

experimental observations. Furthermore, we explored the phase diagram of cell

migration by varying myosin II and adhesion strength. Our model suggested that

the pattern of the actin flow inside the cell, the cell velocity and the cell shape

are determined by the integration of actin polymerization, myosin contraction, the

adhesion and membrane forces.
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Chapter 1

Introduction

The science of cell biology has evolved dramatically during the last decades.

With the development in technology, biologists are no longer satisfied with qual-

itative data, but strive for innovative quantitative experiment. Meanwhile, many

researchers from other fields, including physics, mathematics and computational

science, have been lured by the complexity of biological systems. They bring in

various analysis methods, modeling and simulation techniques, and more impor-

tantly, different perspectives. The interdisciplinary research has produced fruitful

results and revealed many underlying mechanisms of biological systems.

Cell migration refers to the translocation of cells. It is one of the most in-

triguing areas in cell biology and has attracted many interdisciplinary studies. It is

a fundamental process in many biological systems, for example, the development of

embryos, wound healing and the inflammatory response. Inappropriate migration

may cause severe diseases, such as immunosuppresion, defective wound repair, or

tumor dissemination [64, 72]. The studies on cell migration may focus on different

levels. The complexity of cell migration fosters multi-scale studies, from molecular

scale, to whole cell scale, and up to the colony scale. I focus on the cell scale.

1.1 Signaling pathways

During migration, the cell presents a front-rear polarity. Molecules with

distinct functions have different distributions between the front and the back. De-

1
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pending on the cell type, some cells, such as Keratocytes, can polarize sponta-

neously in the absence of external cues. In other cells, polarity may be dictated

by the extracellular environment. For example, the Dictyostelium cells are able to

sense gradients of chemoattractants (the extracellular chemical signals) and move

towards their source. This process is called chemotaxis, which is regulated by

signal transduction pathways that senses and amplifies the gradient of external

chemoattractant [43].

Chapter 2 studies the Ras signaling pathway. It has been found that Ras

plays an essential role in regulating Dictyostelium chemotaxis, but the mechanisms

that regulate Ras activity during chemotaxis are not well understood [15]. We

used a microfluidic device to observe the dynamics of Ras activity. Following

a change in external input, Ras goes through a transient response and returns

to a fixed base-level, a phenomenon called adaptation. Adaptation in signaling

systems often involves negative feedback loops and plays a crucial role in eukaryotic

chemotaxis. We determined the dynamical response of a eukaryotic chemotaxis

pathway immediately downstream from G protein-coupled receptors following a

uniform change in chemoattractant concentration. We found that the response of

an activated Ras shows near perfect adaptation. We attempted to fit the results

using mathematical models for the two possible simple network topologies that

can provide perfect adaptation. Only one, the incoherent feedforward network, is

able to accurately describe the experimental results. This analysis revealed that

adaptation in this Ras pathway is achieved through the proportional activation

of upstream components and not through negative feedback loops. Furthermore,

these results are consistent with a local excitation/global inhibition mechanism for

gradient sensing, possibly with a RasGAP as a global inhibitor.

Multiple signaling pathways are initiated and organized at the cell surface.

They intertwine with each other and form a signaling network, which is tightly

regulated during cell migration. The signaling networks coordinate various me-

chanical events, including cell protrusion, adhesion, translocation of the cell body

and retraction of the rear [10].
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1.2 Mechanical events during cell migration

Previous studies have identified several molecular components in each event

and many mathematical models have been proposed to explain a specific event. For

example, cell protrusion is powered by actin polymerization. The actin filament (F-

actin) is a polar structure with a barbed end pointing towards the cell membrane.

It polymerizes by adding ATP-bound monomers to the barbed end, generating a

protrusion force.

The mathematical models for actin polymerization generally falls into three

categories: 1) the barbed ends are persistently attached to the cell membrane; 2)

the barbed ends fluctuate freely; or 3) some barbed ends are attached while others

are free. The model predicted relationship between the force generated by actin

protrusion and the elongation rate was then compared with the experimental data

[23].

Another interesting question concerns how the cell pulls up its rear (the

retraction event). In keratocytes, it is believed that myosin II collapses the actin

network and transforms it to parallel bundles [65]. In addition, cell adhesion, the

interaction between cells or between cell and extracellular matrix (ECM), also

attracts intensive studies [35]. Various models have been proposed for the force

generation and turnover dynamics of adhesion sites [10, 13, 17].

1.3 Integrated modeling on cell migration

Cell migration is governed by various biochemical and mechanical events.

The speed of cell motion and the deformation of cells during migration are deter-

mined by the interaction of all those events. Despite the current knowledge of each

event, how the events are coordinated and combined is poorly understood.

1.3.1 Literature review

Cell migration has attracted many modeling efforts. There are several 2D

Monte Carlo Models. In the minimal model [83], Satyanarayana and Baumgaertner
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treated the polymerizing and depolymerizing of the actin filaments as a stochas-

tic process. Here, F-actin was immobile, assumably due to the strong adhesion,

representing the necessary force to break the symmetry and push the cell forward.

The cell membrane was represented by a flexible non-self-avoiding ring that went

through random walk. They predicted a optimal value of the fraction of F-actin for

cell speed. Maree et al. also constructed a 2D stochastic model where the protru-

sion rate was dependent on the density of the barbed end [59]. Their model further

incorporated the dynamics of Cdc42, Rac and Rho. A similar model was advanced

in Satulovsky et al [82]. In this paper, focal adhesion sites formed stochastically

at protrusive perimeter points and disassembled stochastically. Note that focal

adhesions were modeled as point constraints of cell retraction and retraction was

inhibited when a perimeter point hit a focal adhesion. These models were gen-

erally based on phenomenal rules. Although they were able to give shapes that

assembled real cells, these models lacked a solid interpretation of the underlying

physical processes.

Another category of efforts is to write down the various forces involved

during cell migration, translate these forces into local velocity, and then evolve the

cell shape conformably using level set method or phase field method. For example,

Yang et al. used level set to model the cellular deformation[104]. They considered

the protrusion pressure, retraction pressure, volume penalty and tension force, and

the total pressure was written as

Ptotal = Ppro + Pret + Pvol + Pten.

The membrane velocity was determined by the dashpot-spring model. Specifically,

the viscous cytoplasm was modeled as dashpot, and the viscoelastic cytoskeleton

which connected cytoplasm to the membrane was modeled as paralleled springs.

These two parts were then linked in series. Note that the velocity was only defined

on the membrane, and was extended to other places by nearest neighbor method.

The cell membrane were updated according to the equation

∂φ

∂t
+ v · ∇φ = 0,

where φ is the level set field, v is the local velocity. To keep the profile of the
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interface, that is to prevent the interface from becoming steep or flat, the level set

potential has to be re-initialized at each iteration

∂φ

∂t
= S(|∇φ| − 1),

where S = 1 indicates the inside of the cell and S = −1 the outside of the

cell. However, they failed to get the right cell deformation with constant pressure.

Instead, they simulated backwards, form cell morphologies to get the time-course

of the pressure. In addition, in their model, the PIP3, which controlled protrusion

and retraction strengths, was simply proportional to external cAMP level.

Misbah’s group have used phase field method to simulate vesicles’ defor-

mation and tumbling [9, 8]. They used fluid dynamics to calculate the velocity

field

ǫ
∂v

∂t
= ∇ · σ −∇p + Fc + Fζ ,

where σ = η(φ)[∇v + (∇v)T ], p is the pressure, Fc is the curvature tern, Fζ

conserves local mass. And the phase field φ is determined by

∂φ

∂t
= −v · ∇φ + Γ(∇2φ−

1

4ǫ2
g′(φ) + c|∇φ|)

The second term here is to restrict the profile of the interface automatically. Note

that they modeled vesicles as incompressible fluid ∇ · v = 0. Although reasonable

for rigid vesicles, this assumption may not be valid for cells.

Du’s group also employed phase field method to study the three-dimensional

deformation of a vesicle membrane, but in an different approach [24]. They devel-

oped an energetic variational formulation to give an effective Eulerian description.

Under the elastic bending energy, with prescribed bulk volume and surface area,

they studied both the static and the dynamic deformations. Lowengrub et al.

extended the model and studied the multi-component vesicles [56]. To describe

two different components of the vesicle membrane, they added another layer of

phase field. They successfully simulated the processes of spinodal decomposition,

coarsening, budding, and fission. Du’s group recently started taking account of

the substrate adhesion [107]. Most of these phase field models were applied to

vesicles and could not be used to model cell migration directly. Several important
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factors that were not present in vesicle models include, to name a few, the chemical

reactions and the mechanical properties of actin network.

With the improvement of imaging technology, the actin flow was observed

and quantitative velocity field was mapped. Mathematicians started to model this

interesting phenomenon. Larripa and Mogilner suggested a one dimensional actin

flow gel model [51]. The actin network was described by Kelvin-Voight model

– a spring in parallel with a dashpot. The gel’s deformation was calculated by

displacement u(x, t) = x′(x, t) − x0, where x is the coordinate of the unperturbed

material point. Then

β
∂u

∂t
= h

∂σ

∂x

The left hand side was the viscous drag force from adhesion, while the right hand

side described various stresses, including elastic, viscous and bundle stresses

σ = E
∂u

∂x
+ µ

∂2u

∂x∂t
+ T.

The strength of the stresses was related to the F-actin density and the actin-bound

myosin density, which were modeled by a set of chemical reaction equations.

Their model predicted that the front half of the cell had a graded retro-

grade flow of actin network. However, the maximum speed at leading edge was

approximate equal to the cell speed, which contradicted the experiment result that

retrograde flow was less than 1/10 of cell speed. Some of their model assumptions

were questionable. First of all, the gel’s deformation equation requires that elastic

strain be small compared to unity. During the cell migration, the actin network

continuously deforms and the displacement u(x,t) could be rather large. Thus, the

above assumption is unlikely to be true during cell migration. Actually, Mogilner’s

group turned to viscoelastic fluid models in the later works (see below). Secondly,

in the model, the cell’s forward movement resulted from the actin assembly rate

vp and depolymerization rate vd. However, both vp and vd were hand woven and

not generated from the physical forces. This brings up the question of momentum

conservation during the cell migration. Aside from the centripetal actin flow, the

model did not answer the deep question–how the adhesion coupled actomyosin

machine drives the cell forward. Besides, the asymmetric distribution of actin and
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myosin in the model was enforced by the arbitrary boundary conditions and the

adhesion was simplified as a viscous drag.

In the two dimensional viscoelastic flow model presented in [79], both the

cell geometry and the cell speed were prescribed stationary and outside the model.

The velocity of actin network in the lab frame u followed

ρ
∂u

∂t
= ∇ · [(1 − α)η(∇u + (∇u)T ) + τ ] + ∇ · τmyo + Fadh

where the the stress tensile followed Maxwell model

τ + λ(
∂τ

∂t
+ u · ∇τ − τ · ∇u− (∇u)T · τ) = αη(∇u + (∇u)T ).

Note that when λ = 0, it would come back to Navier-Stokes equation which applies

to newtonian fluid. The graded F-actin density was again forced by boundary

conditions. And myosin was modeled in two states: one was bounded to the F-

actin, and the other was free. Myosin could transfer between the two states and

only the bound myosin could generate the contractile stress. They also prescribed

a nonuniform adhesion strength field, which was larger along the leading edge and

at the sides, in order to mimic the real cell condition.

In the later models [3, 99], the cell shape became an output produced from

the model. The boundary velocity was a function of the protrusion rate and the

actin flow velocity. However, the protrusion rate was again modeled in a phenom-

enal fashion. The work in [3] investigated the effects of different adhesion strength

to the cell shape. Note the adhesion in their model was purely frictional. In the

paper [99], they suggested four different minimal mechanisms for cell migration: 1)

myosin contraction-driven motility; 2) G-actin transport-limited motility model;

3)Rac/Rho-regulated motility; and 4)microtubule-based transport of vesicles to

the leading edge limits the rate of protrusion. They suggested that these models,

alone or in combination, might serve to drive the cell forward.

The above models included the cell membrane and the cytoskeleton that

hosted F-actin. A more complicated model also took account of the cytsol [22, 41].

It is sometimes called Reaction Interpenetrative Flow (RIF) model. In this model,

the cell membrane serves as the boundary to control flux and conduct stress. The

cytoskeleton, the same as before, is viscoelastic and generates active force through
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myosin. The cytosol is modeled as flow and may convert to the cytoskeleton

through the polymerization/depolymerization process

G− actin ⇋ F − actin.

Let vn,s,m be the velocity of actin network/solution/membrane, and θn,s the

volume fraction of network/solution and θn + θs = 1 (according to mass conserva-

tion). The interchange between cytoskeleton and cytosol can be written as

∂θn
∂t

= −∇ · (θnvn) + J

∂θs
∂t

= −∇ · (θsvs) − J

∇ · (θnvn + θsvs) = 0

Here, J is the exchange rate between network and solution.

Mechanically, the Cytosol feels the viscous friction from the cytoskeleton

and the pressure shared with cytoskeleton, and follows Darcy’s law. As for the

cytoskeleton, in order to simplify the viscoelastic model, the elastic property was

separated from the viscous property.

However, the contribution from the extra complexity was limited according

to simple estimates. For example, the actin flow rate, ranging from zero to about

0.1µm/s, divided by the hydraulic permeability of the cytoskeleton, 0.01 µm3/(pN ·

s), gives the respective stress of about 10 pN/µm2. This is much smaller than the

myosin contractile stress in keratocyte, which is about 100 pN/µm2. Also, the

Deborah number De = λV/L ∼ 1s × 0.5µms−1/10µm ∼ 0.05 is small, so the

system is effectively viscous [79].

The work by Carlsson gave an analytic result of cell motion in one dimension

[12]. The most interesting point in this paper is that he treated the actin protrusion

as an active stress, similar to the myosin contractile stress, although in the opposite

sign. It provided us a uniform way to model the actin protrusion and myosin

contraction on a solid physics ground and avoid using a phenomenal protrusion

rate as described above.
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In addition, some models were extended from the actin polymerization mod-

els (see above), and thus more focused on the actin dynamics in the leading edge.

For example, the model in [111] separated the actin network into two regions: the

actomyosin gel which consists of cross-linked actin filaments, and the semiflexible

region at the leading edge. The velocity of the lamellipodium was then deter-

mined by the interactions between the actomyosin gel, the semiflexible region and

the adhesion. These models do not solve cell shapes.

1.3.2 Summary of my works on cell migration modeling

We aim to create a computational framework, based on phase field method,

that integrates all the essential events during cell migration. By comparing the

outputs, such as cell speed, cell shape, actin flow map and stress map, with exper-

iments, we’ll be able to verify the current understanding of individual processes

and reveal potential couplings between different events.

It presents us a great computational challenge since it is a moving bound-

ary problem. We use phase field method because it is both efficient and relatively

easy to implement. Phase field method has been previously applied to solidifica-

tion [75], crack propagation [47], viscous fingering [30] and diffusional problems

in complicated geometries [28, 49]. In cell biology, it’s been used to simulate the

deformation of membranes [9, 8, 24] and the chemical reactions in a stationary cell

[49]. In Chapter 3, I introduced the setup of the phase field method and applied it

to a simple case - vesicles with fixed volume and area. I also extended the method

to describe the chemical reactions in a moving cell. This chapter is a preparation

for Chapter 4 and Chapter 5.

In Chapter 4, we developed a computational model for cell morphodynam-

ics. Our model incorporates the membrane bending force and the surface tension

and enforces a constant area. Furthermore, it implements a cross linked actin fil-

ament field and an actin bundle field that are responsible for the protrusion and

retraction forces, respectively. We first applied it to fish keratocytes. The model

predicts steady state cell shapes with a wide range of aspect ratios, depending on

system parameters. Moreover, we find that the dependence of the cell speed on this
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aspect ratio matches experimentally observed data. We then applied the model to

Dictyostelium cells and simulated the crawling process guided by patches.

In Chapter 5, we studied the coupling between adhesion mechanism and

actin flow. The adhesion mechanism incorporated both the gripping mode and

the slipping mode. The model-predicted maps of actin flow, substrate stress and

the alignment between the two are quantitatively consistent with experimental

observations. Furthermore, we explored the phase diagram of cell migration by

varying myosin II and adhesion strength. Our model suggested that the pattern

of the actin flow inside the cell, the cell velocity and the cell shape are determined

by the integration of actin polymerization, myosin contraction, the adhesion and

membrane forces.



Chapter 2

Incoherent feedforward control

governs adaptation of activated

Ras in a eukaryotic chemotaxis

pathway

2.1 Introduction

Many biological systems that exhibit perfect adaptation employ an integral

control strategy in which a buffering component of the signaling network integrates

the difference between the response and desired basal level. This difference is then

fed back to achieve perfect adaptation through negative regulation. Examples in-

clude: bacterial chemotaxis [2, 6, 26, 106], yeast osmo-regulation [67], and calcium

homeostasis in mammals [25]. Integral control, however, is not the only way to

accomplish perfect adaptation. A systematic computational analysis of a three-

node network revealed that a second network topology can achieve robust perfect

adaptation [4, 58]. This topology employs an incoherent feedforward mechanism

[87] in which two nodes of the network are activated proportionally by the input

stimulus. These two nodes then act on the third node with opposite effects (i.e.,

one activates and one inhibits), leading to a transient response that adapts per-

11
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fectly. To date, no clear examples of biological networks that use the incoherent

feedforward strategy have been identified. This is perhaps surprising since it can

be shown that networks that contain incoherent feedforward loops perform better

than networks that employ integral control [58]. Eukaryotic cells can respond to

steep or shallow chemoattractant gradients over a wide range of chemoattractant

concentrations [32, 89]. Not surprisingly, it has been suggested that adaptation

is a key component of eukaryotic chemotaxis and is essential for gradient sensing

[54, 62, 70, 108]. Indeed, many downstream biochemical components involved in

the chemotaxis pathways display adaptive behavior [94, 102, 110]. The precise

mechanism of this adaptation, however, is not clear although it has been shown

that it occurs downstream from the chemoattractant receptor s and coupled het-

erotrimeric G proteins [43]. Furthermore, even though many components of the

chemotactic pathways have been described, the precise mechanisms of gradient

sensing are not fully understood. A number of models for the initial response to

gradients have been proposed, most of which contain a global inhibitor that pro-

vides communication between the different parts of the cell [7, 54, 55, 73, 77, 70].

It remains a challenge to distinguish between the different proposed mechanisms

in the absence of quantitative data for the kinetics of the underlying pathways.

2.2 Experimental results

To measure the adaptation kinetics of a eukaryotic chemotaxis signaling

pathway, we exposed cells of the social amoeba Dictyostelium discoideum to sudden

uniform (global) increases and decreases in the concentration of the chemoattrac-

tant cAMP using a microfluidic device (Figure 2.1A) and examined the dynamics

of activated Ras, Ras-GTP. For this, we used the Ras binding domain of human

Raf1 (RBD-GFP) as a reporter, which preferentially measures activated RasG,

the upstream activator of PI3K [46, 80, 108]. Ras proteins are molecular switches

that bind to and activate downstream effectors when in their activated GTP- but

not GDP-bound state, with different Ras proteins activating a range of effectors.

Ras proteins are activated by RasGEFs (guanine nucleotide exchange factors),
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which exchange Ras-bound GDP for GTP, and are inactivated by a slow, intrin-

sic GTPase activity which can be stimulated > 103 fold by RasGAPs (GTPase

activating proteins). In unstimulated cells, RasG-GDP is distributed uniformly

along the plasma membrane. Following the sudden exposure to a chemotactic

gradient, RasG is rapidly and locally activated within seconds at the front of the

cell [80]. This is followed by the Ras-GTP-dependent activation of PI3K and the

translocation of PI(3,4,5)P3-binding PH domains to the sites of RasG activation

[33, 60, 69, 80]. Activation of RasG, and a second Ras, RasC, at the leading edge is

the earliest measurable signaling event in a sequence of spatially-localized cellular

redistributions of signaling molecules that eventually lead to chemotactic motility

[14, 76, 80, 90].

Using a microfluidic device, we switched the chemoattractant concentration

in the medium surrounding the cells within <1 second (Figure 2.1B). Multiple cells

were imaged every 0.63 s using spinning disk confocal microscopy and the dynamics

of activated Ras was followed by the translocation of RBD-GFP to the cell cortex

(Figure 2.1C). We quantified the dynamics of Ras-GTP by selecting a cytosolic re-

gion of interest and measured the RBD-GFP intensity as a function of time. Figure

2.1D shows a typical time course of the cytosolic fluorescence intensity, I(t), nor-

malized by the average cytosolic intensity before cAMP stimulation and corrected

for bleaching (see material and methods). Prior to a change in the chemoattractant

concentration, RBD-GFP is uniformly distributed in the cytosol, with a low, basal

level at the plasma membrane. Following an increase in chemoattractant, RBD-

GFP translocalizes rapidly to the cell membrane by binding Ras-GTP, reaching a

maximum at ∼ 3 s. This is followed by a more gradual return to the cytosol where

the RBD-GFP intensity returns to its basal level in <35 s. We have verified that

the intensity of membrane-associated RBD-GFP is inversely related to cytosolic

RBD-GFP fluorescence, further illustrating the translocation of RBD-GFP from

cytosol to the membrane and back (Figure 2.2).

We quantified the degree of adaptation of Ras-GTP by exposing previ-

ously unstimulated cells to different chemoattractant concentrations, ranging from

1.0×10−2 to 1.0×103 nM. The results for the 5 highest concentrations are shown in
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Figure 2.1: Sudden change in uniform chemoattractant results in a transient re-
sponse of RBD-GFP to the membrane. (A) Drawing of channels of the microfluidic
device employed in our experiments. (B) The concentration in a test chamber of
the device is switched within 1 sec, as demonstrated by recording the fluorescence
intensity of a dye. (C) Images of a Dictyostelium cell undergoing a sudden in-
crease in cAMP concentration at t=0 sec. (D) The cytosolic fluorescence intensity
of RBD-GFP, normalized by the fluorescent intensity before stimulation and cor-
rected for bleaching, as a function of time following a sudden 1 µM cAMP increase
at t=0 sec. The amplitude of the maximum response, Ipeak, and its time point,
Tpeak, are recorded for each experiment.
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Figure 2.2: The cytosolic (red line) and the membrane fluorescence intensity
following a sudden increase in chemoattractant concentration at t=0 sec.

Figure 2.3A and represent the average response of n=60 cells from three different

experiments. The response increases for increasing concentrations and saturates by

1 µM. Furthermore, the peak time, Tpeak, defined as the time from the addition of

the stimulus to the peak of the response, decreases with increasing concentration,

consistent with previous experiments on the kinetics of PIP3, a signaling compo-

nent downstream from activated Ras [101]. As shown (Figure 2.3B), by 35 s, the

normalized RBD-GFP level has returned to the pre-stimulus level for all chemoat-

tractant concentrations, indicating that Ras-GTP adaptation is near perfect over

a wide range of stimuli.

To further quantify the adaptation kinetics of Ras-GTP, we exposed cells

to a constant chemoattractant concentration for 10 min, followed by a sudden

increase in chemoattractant concentration. We computed the response (maximum

decrease in cytosolic RBD-GFP fluoresence), Ipeak, which reflects the translocation

of the reporter to the membrane. These values were normalized by the maximum

response in naive (not pre-treated) cells following a 1 µM stimulus. The results

are shown in Figure 2.3C for four different levels of pre-stimulation (0, 1, 10 and
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Figure 2.3: Ras response adapts over a large range of concentrations. (A) The
RBD-GFP cytosolic fluorescence intensity I(t) as a function of time for different
levels of stimulation. (B) The cytosolic fluorescence intensity of RBD-GFP after
35 s as a function of the cAMP concentration. (C) The RBD-GFP dose-response
curves for different pre-treatment concentrations. The symbols are the experi-
mental results while the solid lines are the results of our numerical simulations
using the incoherent feedforward network. The error bars here, and elsewhere
in this paper, represent the standard deviation. (D) The time of the maximum
RBD-GFP response for different pre-stimulation and stimulation levels of cAMP
(experiments: symbols, simulations: solid lines). (E) and (F), I(t) as a function of
time following a sudden increase (at 15 s) and a sudden decrease (at 75 s) of cAMP
concentration. The symbols correspond to the experimental results while the solid
lines represent our numerical results. In E, the concentration increased from 0 to
0.2 nM, then decreased back to 0 nM. In F, cells were exposed to 100 nM, followed
by a sudden increase to 1 µM and a subsequent drop back to 100 nM. (G) The
dose response curve for untreated cells following a sudden increase of cAMP with
(red) and without latrunculin B (black). (H) The peak time of the response as a
function of cAMP concentration with (red line) and without latrunculin B (black
line).
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100 nM). Cells that were not pre-treated with cAMP were able to respond to a

chemoattractant increase that spanned 3-4 orders of magnitude with an EC50 of

approximately 0.25 nM. Furthermore, even cells that were pre-treated with 100 nM

showed a significant response to a sudden increase in stimulus. Figure 2.3D shows

Tpeak, which, for the four different pre-stimulus levels, decreases for increasing

chemoattractant.

Finally, we also examined the Ras-GTP kinetics in cells that were exposed

to a sudden increase and a subsequent sudden decrease in cAMP. The results

for two of these experiments are shown in Figure 2.3E and F. In Figure 2.3E,

the concentration went from 0 nM to 0.2 nM and back to 0 nM. As before, the

cytosolic RBD-GFP fluorescence decreased (due to translocation of the reporter to

the cortex) following the increase in chemoattractant, while the decrease in cAMP

concentration led to a rapid increase in the cytosolic RBD-GFP fluorescence and

a subsequent slow return to the basal level. Figure 2.3F shows the results of a

similar experiment where the concentrations changed from 100 nM to 1000 nM

and back to 100 nM. Compared to the experiment in Figure 2.3E, the return to

basal level after the decrease in cAMP concentration is markedly faster.

Previous studies identified a number of feedback loops that involve activated

RasG, PI3K, and F-actin polymerization [15, 29, 71, 80, 81]. To determine the

role of the F-actin feedback loop in the observed adaptation, we treated cells

with 15 µM latrunculin B to block F-actin polymerization. Again, we found that

the cytosolic RBD-GFP levels return to basal levels following a sudden change

in chemoattractant concentration, indicating adaptation was not affected (Figure

2.4). Furthermore, latrunculin B treatment does not have a significant effect upon

either the dose response curve (Figure 2.3G) or the characteristic response time

(Figure 2.3H). These results show that RasG adaptation does not involve feedback

loops containing actin and that the signaling network responsible for the observed

perfect adaptation is upstream from F-actin polymerization.
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Figure 2.4: The RBD-GFP cytosolic fluorescence intensity I(t) as a function of
time for different levels of stimulation in cells treated with latrunculin B.

2.3 Mathematical models on Ras pathway

This finding, combined with previous experimental results that demonstrate

that adaptation occurs downstream from the receptors [43], motivated us to con-

struct a mathematical model for adaptation that only contained Ras-GTP, Ras-

GEF, and RasGAP. To determine which network topology is consistent with our

experimental data, we constructed models that incorporate the two known three-

node network topologies that can produce perfect adaptation (Figure 2.5A and B)

[4, 58]. In the incoherent feedforward topology, Figure 2.5A, both the RasGEF

and the RasGAP are activated by the chemoattractant signal acting through the

receptors R. Since RasGEF and RasGAP activate and inhibit Ras respectively,

this network can have the properties of ultrasensitivity described by Goldbeter

and Koshland [36]. In the integral control topology, Figure 2.5B, the output of

the model, Ras-GTP, is fed back using the RasGAP as a buffering node. In both

models, the external stimulus is translated into an internal response through the

binding of the chemoattractant cAMP to the receptors.
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Figure 2.5: Only one possible network topology is consistent with the experi-
mental data. (A) The incoherent feedforward model of Ras adaptation considered
in this study. (B) An implementation of the integral control topology. (C) The
response of the integral control network, normalized to the pre-stimulus level of
RBD-GFP concentration, for different levels of chemoattractant stimulation. (D)
A typical time course of the RasGAP, RasGEF, and Ras-GTP for the incoherent
feedforward model following a sudden increase in chemoattractant at 0 s. (E) The
full dynamical response of RBD-GFP in the experiments (symbols) and in the
fitted model (solid lines) for two different concentration increases.
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If we assume that the cytosolic concentration of all components is uniform,

we can cast the incoherent feed forward model and the integral control model in

terms of a set of coupled ordinary differential equations (ODEs). These equations,

which describe the dynamics of the concentrations of the components, can then be

easily integrated to determine the dynamics of the various components in response

to various temporal patterns of the stimulus. For the incoherent feedforward model,

the equations take on the form:

dR1

dt
= kR1(cAMP + r1)(R

tot
1 −R1) − k−R1R1

dR2

dt
= kR2(cAMP + r2)(R

tot
2 −R2) − k−R2R2

R = R1 + R2

dGEF

dt
= kGEFR− k−GEFGEF

dGAP

dt
= kGAPR− k−GAPGAP

dRasGTP

dt
= kRasGEF (Rastot −RasGTP ) − k−RasGAP RasGTP

dRBDcyt

dt
= koff

RBD(RBDtot −RBDcyt) − kon
RBDRasGTPRBDcyt

The first two equations describe the binding process of the external chemoat-

tractant, cAMP, to the two receptor populations, R1 and R2. One population has

a large Kd value and one has a small Kd value. The downstream activity of the

bound receptors is assumed to be the same for both populations, such that the ef-

fective input in the equations for the downstream components is simply the sum, R.

Also, we have allowed for the possibility of constitutive activation, parameterized

through r1 and r2. The fourth and fifth equations describe the first order activation

and deactivation of RasGEF and RasGAP (denoted for brevity by GEF and GAP),

while the sixth equation models the dynamics of activated Ras, denoted here as

RasGTP. The total concentration of Ras is given by Rastot. The final equation

describes the cytosolic reporter molecule RBD-GFP, denoted by RBDcyt. Its total

concentration is RBDtot and it binds membrane-bound activated Ras, leading to
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a removal from the cytosol, and is removed from the membrane with simple first

order kinetics.

The equations for the integral control model are identical to the ones above,

with the equation for RasGAP replaced by

dGAP

dt
= kGAPRasGTP − k−GAP .

This form of the equations contains a zero-order term, and can be derived from the

full Michaelis-Menten kinetic equations assuming saturation conditions. In fact,

the full Michaelis-Menten kinetics equation for GAP can be written as

dGAP

dt
= kGAPRasGTP (1 −GAP )

K1 + (1 −GAP )
− k−GAP

GAP

K2 + GAP

where K1 and K2 are the Michaelis constants. When K1 << 1 − GAP and

K2 << GAP , this equation can be approximated by the zero order kinetics as

above, while for K1 << 1−GAP and K2 >> GAP , it is described by a first order

equation. We have verified through direct simulations that the system with full

Michaelis-Menten kinetics shows quantitatively similar behavior (Figure 2.6). In

particular, it also displays a return to the basal level that becomes progressively

slower as the stimulus strength is increased. This is shown in the figure below,

where we plot I(t) for three different values of the cAMP stimulus (parameter

values: K1=K2=0.0001).

2.4 Data fitting

To compare the dynamic response of the two topologies to the experimental

results, we performed mathematical fits using a subset of the experimental data.

We chose 21 discrete experimental points that best characterize the experimental

data set. Specifically, we chose 5 points from the dose response curve for the

non-pretreated cells but excluded the response of non-pretreated cells to a 1 µM

stimulus since we have used this value to normalize our results. Furthermore,

we picked the 3 points of the dose-response curve for cells pretreated with 100

nM cAMP (Figure 2.3C). The fit also uses the equivalent 8 points of the time
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Figure 2.6: Integral control model with full Michaelis-Menten kinetics shows
quantitatively similar behavior.

response curves (Figure 2.3D). Note that to avoid overfitting the data, used only

two data sets from Figure 2.3C and D (non-pretreated cells and cells pretreated

with 100 nM). The resulting 16 points were supplemented by 5 points from the 2

experiments shown in Figure 2.3E and F (0 to 0.2 nM, followed by 0 nM and 100

nM to 1 µM, followed by 100 nM). These are the peak amplitudes, estimated to

be 1.0905 and 1.1196, and peak times, taken to be 19.5 sec and 8 sec, following

a decrease in the cAMP concentration. Finally, the last point used in our fit was

the amplitude of the response 60 sec after a change in concentration from 0.2 nM

to 0, estimated to be equal to 1 (Figure 2.3E).

Our model contains 18 parameters, of which we fixed 9: we chose the off

rates of the 2 receptors populations to be equal to the values found in single

molecule experiments [91]: k−R1=0.16 s−1 and k−R2=1.1 s−1. Furthermore, we

fixed kR1 and kR2 by taking the disassociation constant for the high affinity re-

ceptor population to be 60 nM and for the low affinity population to be 450 nM,

consistent with experimental values [93]. We further reduced the number of free

parameters by noticing that kGEF does not affect the kinetics of GEF activation
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and is only related to the amount of GEF, which translates into the strength of

Ras activation. Since kRas has the same role to regulate the Ras activation, we

simply took kGEF=0.1 k−GEF . Similarly, we fixed kGAP = 0.1k−GAP . Moreover,

since k−GAP should always be smaller than k−GEF , and since the system is pri-

marily sensitive to the ratio of the 2 parameters, we used with ln(k−GEF/k−GAP )

instead of k−GAP as a fitting parameter. Finally, we normalized the Ras and RBD

concentration so that Rastot = 1 and RBDtot = 1. The model equations were in-

tegrated in time until a steady state was obtained. The resulting numerical values

of the N=21 fit points, xsim
i , were then compared to the experimental values, xexp

i ,

using the following error function

E =
1

N

21
∑

i=1

(

xsim
i − xexp

i

σexp
i

)2

,

where σexp
i (i=1, 2, · · · , 21) are standard deviations of the experimental data for

each fit point. The task is to search for the parameter set k that minimizes E:

k = arg min
k

(E).

In sum, we used 21 data points to constrain the 8 free model parame-

ters. Since the resulting 9-dimensional parameter space can have numerous local

minima, we chose simulated annealing as our method of fitting. Unlike other algo-

rithms, simulated annealing samples a large region of parameters space and do not

reject parameter choices that do not improve the fit [74]. This is done via assigning

an artificial temperature and “cooling” the system. Specifically, we started from a

high temperature (T=3000), performed 100 parameter searches at each iteration

and reduced the temperature by 10% after each iteration. Our program ended

when the step size in the parameter space became smaller than a defined cut-off

small or when the temperature has been decreased for 100 times, whichever comes

first. To enlarge the searchable area in parameter space, we started the program

from different initial conditions. The resulting parameters, corresponding to a fit

with E=0.12, are shown in Table 2.1. We have also performed fits using different

experimental data points and slightly different versions of the model equations.

For example, in one fit we have used all the data from Figure 2.3C-F while in an-

other fit we excluded the possibility of constitutive activation of the receptors (i.e.,
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Table 2.1: Model parameters in feedforward model

parameter value
Rtot

1 0.1
Rtot

2 0.9
kR1 0.00267 nM−1sec−1

k−R1 0.16 sec−1

kR2 0.00244 nM−1sec−1

k−R2 1.1 sec−1

r1 0.012 nM
r2 0.115 nM
kGEF 0.04 sec−1

k−GEF 0.4 sec−1

kGAP 0.01 sec−1

k−GAP 0.1 sec−1

Rastot 1
kRas 390 sec−1

k−Ras 3126 sec−1

RBDtot 1

koff
RBD 0.53 sec−1

kon
RBD 1.0 sec−1

r1=0 and r2=0). These fits were found to still duplicate the experimental data

well, with an error function that was less that 0.3. Furthermore, the parameters

that were selected were always close to the ones shown in Table 2.1, indicating that

our fitting is not highly sensitive to the choice of fit points or the specific details

of the model. This is not surprising, since the experimental data put significant

constraints on the possible range of the parameters. In particular, the observed

transient depletion of the cytosol following an increase in chemoattractant requires

that k−GEF is always larger than k−GAP . Furthermore, k−GAP determines the time

scale of the return to basal level and is thus constrained by the experimentally

observed values. Also, the peak amplitude of the response limits the allowed ratios

of k−GAP and k−GEF . Finally, the fraction of low affinity receptors, Rtot
2 , needs to

be large since there is a significant response in cells pre-treated with 100 nM.
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2.5 Response time in the two adaptation models

Our simulation results indicate that the integral control mechanism is in-

compatible with our experimental results. In particular, this mechanism displays

a significant dependence of the adaptation kinetics on the size of the stimulus step.

This is shown in Figure 2.5C, where we plot the response of our integral feedback

model to a range of stimulus steps. Contrary to our experimental results, for small

concentration increases this network leads to oscillations and, more importantly,

the time to reach the basal level increases markedly as the step size increases.

 

Figure 2.7: The response time for the incoherent feedforward model (black line),
the integral control model (red line), and found in the experiments (symbols) as a
function of the chemoattractant step size.

The results of the best fit using the incoherent feedforward network are

shown as solid lines in Figure 2.3C and D. In contrast to the integral control

topology, the RBD-GFP level in the incoherent feedforward model can respond

to a wide range of chemoattractant stimuli and adapts quickly. Specifically, this

network topology is able to respond quickly even when the stimulus is large. Fur-

thermore, the numerical results track the experimental data well for all stimulus

strengths, including the data sets that were not explicitly fitted. The model pa-
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rameters obtained by our fitting procedure are listed in Table 2.1.

To better illustrate the difference between the incoherent feedforward model

and the integral control model, we defined the response time for both models as

the time between the half-peak value during the rise phase and the half-peak

value during the decay phase of the response. In the integral control model, this

response time increases as the stimulus size is increased (red line, Figure 2.7). In

contrast, the response time decreases for increasing step sizes in the incoherent

feedforward model (black line, Figure 2.7), consistent with experimental results

(symbols, Figure 2.7).

A closer inspection of the results of our fitting procedure reveals that the

RasGEF activation kinetics is faster than that of the RasGAP. This is to be ex-

pected since a positive Ras-GTP response following an increase in cAMP requires

that the activation step initially is larger than the de-activation step. Eventually,

the RasGAP kinetics catches up, resulting in a steady-state Ras-GTP level that

is independent of the stimulus strength. The kinetics of our model components

is shown in Figure 2.5D where we plot RasGAP, RasGEF, and Ras-GTP as a

function of time, following a sudden increase in chemoattractant concentration. In

Figure 2.5E, we plot the full dynamical response in our simulations together with

experimental results for two jumps in the chemoattractant concentration. Finally,

our simulation results for the two experiments in which the concentration is in-

creased and then subsequently decreased are shown as solid lines in Figure 2.3E

and F. The agreement between the experiments and the simulations is excellent

for the entire time course of the experiments.

2.6 Other topologies with negative feedback

Additionally, other ways to implement integral control are also incompat-

ible with the experimental data. All possible three-node topologies containing a

negative feedback loop are shown in Figure 2.8, including ones that are biologically

not plausible. The topologies shown in Figure 2.8B-F differ slightly from the core

topology discussed above and shown in Figure 2.8. In the topologies of Figure
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Figure 2.8: All possible integral control topologies (A-F). The dynamics of topol-
ogy B and C is qualitatively similar to the one depicted in A and discussed in
the main text. The qualitative dynamics of topology D-F is shown in G and the
corresponding dose-response curves are plotted in H.

2.8A-C, either RasGEF or activated Ras activates RasGAP which, in turn, ex-

erts a negative feedback. Through explicit numerical simulations, we have verified

that these three topologies are inconsistent with the experiments for the reasons
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described in the main text: the timescale of the return to basal level following an

increase in cAMP is proportional to the magnitude of the stimulus. We will give

an analytical argument to this effect below. The topologies of Figure 2.8D-F are

characterized by the existence of an inhibitory coupling between either RasGEF

or activated Ras and RasGAP. The feedback loop is closed through a positive link

between RasGAP and RasGEF or activated Ras. These topologies are also incon-

sistent with the experimental findings. In particular, as we will explain in further

detail below, for large values of the stimulus, Ras-GTP saturates and remains close

to its maximal value for a prolonged period of time (Figure 2.8G). This would result

in experiments with a prolonged plateau in the RBD-GFP intensity. Furthermore,

the fact that Ras-GTP saturates makes it impossible to obtain the dynamic range

observed in the dose-response experiments. Specifically, it is possible to obtain a

dose-response curve that is close to the experimental one for untreated cells. How-

ever, since for large values of the concentration Ras-GTP is saturated, the response

to a stimulus increase for cells that were pre-treated with a large chemoattractant

concentration is very small. This is shown in Figure 2.8H, in which we plot the

dose-response curves for different values of initial chemoattractant concentrations.

Clearly, there is a very small response of cells pre-treated with 100 nM (blue line)

to increases in chemoattractant, inconsistent with the experimental results.

2.7 Analytical analysis of the incoherent feedfor-

ward and the integral control topologies

The core of the incoherent feedforward model can be represented by Figure

2.9A, where the input signal S activates both A and B, which control the dynamics

of the output X. The equations describing this core motif can be written as
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dA

dt
= kaS − k−aA (2.1)

dB

dt
= kbS − k−bB (2.2)

dX

dt
= kxA(1 −X) − k−xBX. (2.3)

where we normalized the X equation by the total amount of X. The steady state

values of A and B depend on S,

A0 =
ka
k−a

S,B0 =
kb
k−b

S,

while the steady state level of X is

X0 =
kxA0

kxA0 + k−xB0

.

Thus, since both A0 and B0 depend linearly on S, X0 will be independent of S. A

linear stability analysis for the steady state of the system can be carried out. The

growth mode λ is given by the solution of the following eigenvalue problem:

∣

∣

∣

∣

∣

∣

∣

∣

−k−a − λ 0 0

0 −k−b − λ 0

kx(1 −X0) −k−xX0 −kxA0 − k−xB0 − λ

∣

∣

∣

∣

∣

∣

∣

∣

= 0

These eigenvalues are always real and negative, demonstrating that the

steady state is linearly stable and that X does not exhibit oscillations.

The kinetics of X depends on the amount of A and B present. For small

values of S, both A and B are small and the kinetics of X is slow. That is, Eqn.(2.1)

and Eqn.(2.2) are much faster than Eqn.(2.3) and we can approximate A and B

by their quasi-steady state values:

A ∼
ka
k−a

S,B ∼
kb
k−b

S.

Then, Eqn.(2.3) can be written as

1

S

dX

dt
=

kxka
k−a

(1 −X) −
k−xkb
k−b

X
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Thus, the timescale of recovery for X, τ , is inversely proportional to the

signal strength, τ ∼ 1/S. On the other hand, when S is large, Eqn.(2.3) equilibrates

quickly and

X ∼
kxA

kxA + k−xB
.

Since both A and B are linearly dependent on S,

A =
ka
k−a

S(1 − e−k
−at)

and

B =
kb
k−b

S(1 − e−k
−bt),

we find that the kinetics of X are independent of S.

 

Figure 2.9: (A) Basic motifs of incoherent feedforward model. (B) and (C)
Integral control (negative feedback) model. S is the input signal, and X is the
output.

The integral control models, with negative feedback, can be represented

by two core motifs. For analytical convenience, we assume that the activation of

activator A is fast compared to the timescales for B and X. Then, these motives

reduces to two-node topologies and in the first one (Figure 2.9B), the buffering

node is activated by X and deactivates X:

dX

dt
= kxS(1 −X) − k−xBX (2.4)

dB

dt
= kbX − k−b (2.5)

The zero-order terms in these equations, and in the ones for the second

motif below were chosen to facilitate the analytical treatment and can be derived
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in certain limits of the full Michaelis-Menten kinetic equations. We have verified

through numerical simulations that the system with full Michaelis-Menten dynam-

ics shows qualitatively similar behavior.

The steady state levels can be easily found to be

X0 =
k−b

kb

and

B0 =
kxS(1 −X0)

k−xX0

.

A linearization around these steady state values gives as the growth modes:

∣

∣

∣

∣

∣

−kxS − k−xB0 − λ −k−xX0

kb −λ

∣

∣

∣

∣

∣

= 0 ⇒ λ2 + (kxS + k−xB0)λ + k−xk−b = 0.

Imaginary values for these modes will result in oscillations in the value of

X for constant S. To avoid these oscillations, one has to choose k−b small enough.

When Eqn. (2.4) is much faster than Eqn. (2.5), we can approximate B by

its quasi-steady state value

B ∼
kxS(1 −X)

k−xX

. Then,
dB

dt
= −

kxS

k−xX2

dX

dt
= kbX − k−b

and

S
dX

dt
= −

k−x

kx
X2(kbX − k−b)

Thus, the recovery time scale increases with S: τ ∼ S , inconsistent with

the experimental results.

In the second motif (Figure 2.9C), the buffering node B activates X and is

deactivated by X. Since B is not activated by the signal, we will assume a constant

constitutive activation. To obtain a non-trivial dynamics, it is necessary to have

activation of B in the absence of a signal, leading to the following set of equations:

dX

dt
= kx(S + c)B(1 −X) − k−xX (2.6)

dB

dt
= kb − k−bX (2.7)
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with steady-state values

X0 =
kb
k−b

and

B0 =
k−x

kb
k
−b

kx(S + c)(1 − kb
k
−b

)
.

The linear stability is found by solving

∣

∣

∣

∣

∣

∣

− k
−x

1−
kb
k
−b

− λ kx(S + c)(1 − kb
k
−b

)

−k−b −λ

∣

∣

∣

∣

∣

∣

= 0

leading to

λ2 +
k−x

1 − kb
k
−b

λ + kx(S + c)(k−b − kb) = 0.

Thus, again, the kinetics of the buffering node B, characterized by k−b, needs to

be slow to avoid oscillations. Then, Eqn. (2.6) will equilibrate quickly, and

X ≈
kx(S + c)B

kx(S + c)B + k−x

.

For large values of S, X reaches its peak Xpeak ∼ 1 (Figure 2.8G) and remains

saturated for a prolonged period. During this time, the decay rate of B is about

dB

dt
≈ kb − k−b,

leading to

dX

dt
≈

kxk−x(S + c)

[kx(S + c)B + k−x]2
dB

dt
≈

kxk−x(S + c)

[kx(S + c)B0 + k−x]2
(kb − k−b).

Therefore, the decay of X right after Xpeak gets slower when S increases.

2.8 Inclusion of two receptors

Previous studies have identified several species of receptors with different

binding affinities for cAMP [93]. Thus, we include two types of receptors in our

models, one with a high affinity (R1, dissociation constant K1
d=60 nM) and one

with a low affinity (R2, K
2
d=450 nM). We assume that the two types of receptors
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Figure 2.10: Numerical dose response curves for cells with only low affinity
(Kd=450 nM; red dashed lines) or only high affinity (Kd=60 nM; blue dotted
lines) receptors. Shown are the results without any pre-stimulus and with a 100
nM pre-stimulus. The solid curves are shown for comparison and represent the
simulations results of the mixed receptor population described in the main text.
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activate downstream components in an identical fashion. Numerical fits with only

one receptor population result in dose-response curves that are less accurate. This

is demonstrated in Figure 2.10, in which we show the results of our simulations if

only the low affinity (dashed lines) or the high affinity receptor population (dotted

lines) is included. As a comparison, we have also plotted our simulations results

for the two-population receptor model. Inclusion of only the low affinity receptors

leads to a reduced response for small values of the stimulus in the non-pretreated

cells. The effect of only high affinity receptors is more dramatic, as it increases

the response at low values in the non-pretreated cells. Furthermore, it greatly

reduces the response in cells that are pretreated with 100 nM cAMP. We have

also calculated the Akaike’s information criterion, AIC, a measure of the relative

goodness of fit. This criterion is expressed as

AIC = 2k + ξ2,

where k is the number of fitting parameters. We found the following values for

this criterion: AIC=20.5 (for the model with both receptor populations), AIC=31

(with only the Kd=60 nM receptors), and AIC=17.5 (with only the Kd=450 nM

receptors). This indicates that a model with either both or only the low affinity

receptors gives a better a fit than the model with only the high affinity receptors.

2.9 Effect of potential positive feedbacks

In addition, we have verified that including a feedback from Ras to RasGEF,

as suggested in previous studies [20], does not change the qualitative results of the

model (Figure 2.11). Specifically, we changed the GEF equation to

dGEF

dt
= kGEFR(1 +

afbRas

Kfb + Ras
) − k−GEFGEF

where the feedback strength is determined through the parameter afb. Again,

the time scale for the return to basal level increases as the stimulus strength is

increased, as shown in the figure below (parameter values: afb=10 and Kfb=0.1).
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Figure 2.11: Including a feedback from Ras to RasGEF does not change the
qualitative results of the model
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Figure 2.12: Predicted behavior of GAP mutants. cAMP concentration is 1nM.
The solid curve represents the wild type cell, while the dashed curve is for the
GAP-mutant. In simulation, the parameter k−Ras is decreased by 100 folds for the
mutant.

2.10 Prolonged response in GAP mutants

To study the behavior of GAP mutant, we decrease the parameter k−Ras,

which captures the inhibition strength of GAP, by 100 folds. The response in

the feedforward model is prolonged (see Figure 2.12) which is consistent with

experimental observation [108]. However, the response in the integral control model

is also prolonged in the similar way, so the behavior of GAP mutants cannot

distinguish the two models.

2.11 Spatially extended models

A spatially extended version of the adaptation model can be formulated in

a straightforward manner. In this spatially extended version of the LEGI model,

both GAP and RBDcyt diffuse in the cytosol with diffusion constants DGAP and
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Figure 2.13: The evolution of cytosolic RBD-GFP in response to a sudden in-
crease in chemoattractant from 0 to 1 µM.

DRBD, respectively. The above equations for the receptors and GEF are unchanged

while the remaining equations now describe the concentration in the cytosol and

on the membrane in terms of partial different equations (PDEs):

dGAPmem

dt
= kon

GAPGAP cyt − k−GAPGAPmem

∂GAP cyt

∂t
= DGAP∇

2GAP cyt

dRasGTP

dt
= kRasGEF (Rastot −RasGTP ) − k−RasGAPmemRasGTP

dRBDmem

dt
= kon

RBDRasGTPRBDcyt − koff
RBDRBDmem

∂RBDcyt

∂t
= DRBD∇

2RBDcyt



38

These equations need to be supplemented with the boundary conditions

DGAP

∂GAP cyt

∂n
= kGAPR− kon

GAPGAP cyt

DRBD

∂RBDcyt

∂n
= −kon

RBDRasGTPRBDcyt + koff
RBDRBDmem

where n is the normal to the cell membrane.

We have simulated these equations, representing a spatially extended im-

plementation of the Local Excitation, Global Inhibition (LEGI) model, using a

disk-shaped cell with radius R=5 µm (Figure 2.13). The resulting RBDcyt dy-

namics, following an increase in cAMP, is shown in Figure 2.14 as symbols. The

corresponding RBDcyt dynamics for the case where the cytosolic RBD-GFP con-

centration is assumed to be uniform and the equations can be described by ODEs

is plotted as a solid line. A comparison reveals that both models display the same

quantitative behavior. Of course, this result is not surprising since, as long as

DRBD is large enough, the spatial variations of RBDcyt will be negligible. This

result is also consistent with our experimental finding that changing the cytosolic

region in which we measure the fluorescence intensity does not appreciably alter

our results.

2.12 Discussion

Our study examines the initial response to changes in uniform chemoat-

tractant stimuli using a combined experimental and theoretical approach. We did

not consider possible responses with longer time scales, including the formation of

Ras patches and cell polarization. We find that the response of activated RasG

adapts perfectly for a large range of cAMP stimuli, in particular for stimuli less

than 1 µM. The inclusion of GEF saturation in our model can account for the

possibe deviation from perfect adaptation for very large stimuli. We also find that

the peak time of the response of activated RasG decreases with increasing stimu-

lus concentration. This is consistent with previous experiments on the kinetics of

membrane-bound PIP3, a signaling component downstream from activated Ras,

which showed that the peak value for PIP3 is reached faster for a high value of



39

 

Figure 2.14: The cytosolic RBD-GFP, normalized by RBDcyt before simulation,
as a function of time following a sudden increase in chemoattractant from 0 to 1
µM for the spatially uniform model governed by ODEs (solid line) and the spatially
extended model described by PDEs (symbols). The common parameters for both
models are given in Table 2.1 while the additional parameters for the spatially
extended model are: DGAP = 30µm2/s, DRBD = 10µm2/s, kon

GAP = 3µm/s.

cAMP stimulus (100 nM) that for a low value of cAMP (1 nM) [101]. Our com-

bined experimental and theoretical analysis suggests that adaptation in the RasG

signaling pathway does not rely on integral control mechanisms that contain neg-

ative feedback loops. Instead, and unlike any other biological systems analyzed to

date, adaptation is achieved through the simultaneous activation of an activator

and inhibitor. In the model we have analyzed here, the signal directly activates

RasGEF and RasGAP and variants of the incoherent feedforward topology (Figure

2.15) will give similar results. Of course, an alternate possibility is that adapta-

tion is achieved downstream from the receptors and upstream from RasGEF. The

output of this adaptation module, containing unknown components, would then

activate RasGEF while RasGAP is constitutively active. In either case, our net-

work is consistent with the Local Excitation, Global Inhibition (LEGI) model [70]

for gradient sensing that postulates that the response to an external chemoat-
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Figure 2.15: Theoretically possible implementations, including ones that are
biologically not plausible, of the incoherent feedforward model. The topology in A
is the one we employ in this study.

tractant signal is governed by an intracellular membrane-bound activator and an

inhibitor that is diffusing throughout the cell. Such a gradient sensing model can

convert the external gradient of bound receptors into an internal gradient, espe-

cially if it is coupled to a module that further amplifies the internal asymmetry

[38, 100]. Our model suggests that the activator RasGEF is the local, membrane

bound component while the inhibitor RasGAP is the diffusive cytosolic component.

This is consistent with previous results showing that the RasG-GAP Dictyostelium

NF1 is an essential and uniformly distributed component of the directional sensing

mechanism and that in the absence of NF1, cells are unable to effectively sense the

chemoattractant gradient’s direction and exhibit extended RasG activation [108].

Further, our results argue that the RasG-GAP is not constitutively active but is

activated in response to chemoattractant stimulation and that this activation of

both the RasGEF and the RasGAP is essential for gradient sensing and adaptation.
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2.14 Appendix

Materials and methods. Transformed KAx-3 cells carrying an extrachro-

mosomal construct in which the regulatory region of Actin 15 drives a fusion of

GFP to the Ras binding domain of Raf were grown in suspension in HL5 medium.

When exponentially growing cells reached 1−3×106 cells/ml, they were harvested

by centrifugation, washed in phosphate buffer, and resuspended in phosphate buffer

at 5 × 106 cells/ml. Shaken cells were starved for 1 h before addition of pulses of

30 nM cAMP every 6 min for 5 h.



Chapter 3

Applying phase field method to

cell biology

3.1 Introduction

Phase field method is an effective tool to solve moving boundary problems.It

has been successfully applied to wide ranging problems such as solidification [75],

crack propagation [47], viscous fingering [30] and diffusional problems in compli-

cated geometries [28, 49].

To describe a cell, phase field method introduces an auxiliary field φ. We

define the free energy

F [φ] =

∫

1

ǫ
[
(ǫ|∇φ|2)

2
+ G]dr,

where ǫ
3

characterizes the width of the sharp interface and it must satisfy

∆x <
ǫ

3
≪ r.

Here ∆x is the grid size in the computing space, and r is the cell size. Previous

study has proved that ǫ does not have to be too large over ∆x and ǫ
3
> 2∆x is

able to produce results to sufficient precision [49]. G is a double well potential (see

Figure 3.1)

G = 18φ2(1 − φ)2.

G has two minima φ = 0 and φ = 1, which can be used to distinguish the cell

from the environment. For example, let φ = 1 denote the interior of the cell and

42
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Figure 3.1: Double well potential for the phase field.

φ = 0 the external area. The diffuse layer separating the interior from the exterior

marks the membrane location. The dynamics of the cell is governed by equations

that couple this field to the actual physical degrees of freedom. Importantly, this

technique does not require the explicit tracking of this boundary. The phase field

method presented in this chapter will be used in Chapter 4 and Chapter 5.

3.2 Interface energy

Consider a simple case, where a vesicle only possesses the interface energy.

From variational relation, we get

ǫ
∂φ

∂t
= −

δF [φ]

δφ

In one dimension, the right hand side can be calculated as

δF

δφ
= ǫ

∫

∇φ
∇δφ

δφ
dx′ +

1

ǫ

∫

G′[φ(x′)]
δφ(x′)

δφ(x)
dx′

= −ǫ

∫

∇2φ
δφ(x′)

δφ(x)
dx′ +

1

ǫ
G′

= −ǫ∇2φ +
1

ǫ
G′

Therefore,

ǫ
∂φ

∂t
= ǫ∇2φ−

1

ǫ
G′
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Figure 3.2: Phase field for a one dimensional vesicle.

At stationary state, the above equation equals zero, and its solution is

φ =
1

2
+

1

2
tanh

3d

ǫ
,

where d is the signed distance from the nearest boundary (d > 0: inside the cell;

d < 0: outside the cell). Figure 3.2 illustrates a stationary one-dimension vesicle.

However, if we move from one dimension to two dimension, the vesicle with

only the interface energy will shrink. Actually,

∇φ = n̂
∂φ

∂n

∇2φ = n̂ ·
∂

∂n
(n̂

∂φ

∂n
) =

∂2φ

∂n2
+

∂φ

∂n
(∇ · n̂)

ǫ
∂φ

∂t
= ǫ

∂2φ

∂n2
−

G′

ǫ
+ ǫ

∂φ

∂n
(∇ · n̂) = 0 − ǫc|∇φ|

with curvature c = −∇ · ( ∇φ

|∇φ|
). As long as the curvature is positive, the circle

will shrink, and the shrinking speed v ∼ ǫ2c [9]. To get a stationary vesicle, the

interface energy must be balanced. For example [8],

ǫ
∂φ

∂t
= ǫ∇2φ−

G′

ǫ
+ ǫc|∇φ|
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3.3 Vesicle shapes with fixed area and volume

This work was inspired by Seifert’s theoretical work on fluid membranes

and vesicles [85]. Consider a vesicle with fixed area A0, fixed volume V0 and

spontaneous curvature c0, its free energy can be written as

F [φ] = FB[φ] + FV [φ] + FA[φ]

Here, the volume energy is described by

FV [φ] =
MV

2
(V − V0)

2

where

V =

∫

φdr.

Thus, the prescribed volume V = V0 gives the minimum volume energy.

Similarly, the area energy can be written as

FA[φ] =
MA

2
(A− A0)

2

where

A =

∫

[
ǫ

2
|∇φ|2 +

1

ǫ
G]dr.

The bending energy takes the form

FB[φ] =
bN
2

∮

(c− c0)
2dA

Since

ǫ∇2φ−
1

ǫ
G′ = −ǫc|∇φ|

The above equation is actually

FB[φ] =
bN
2

∫

1

ǫ
[ǫ∇2φ−

1

ǫ
G′ + c06φ(1 − φ)]2dr

From the variational relation, we then get the evolution of φ

ǫ
∂φ

∂t
= −

δF [φ]

δφ

The right hand side can be expanded as

δFV [φ]

δφ
= MV (V − V0)
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δFA[φ]

δφ
= −MA(A− A0)(ǫ∇

2φ−
1

ǫ
G′)

δFB[φ]

δφ
= ∇2w −

1

ǫ2
G′′w +

c0
ǫ

6(1 − 2φ)w

where

w = bN(ǫ∇2φ−
1

ǫ
G′ + 6φ(1 − φ)c0).

Note that we need to solve a 4th order partial differential equation, which is com-

putationally intense. We use ADI ( Alternating Directional Implicit) method (see

Appendix).
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Figure 3.3: Different vesicle shapes controlled by the prescribed curvature c0 and
volume V0.

Given different combinations of the prescribed volume and curvature, the

vesicle may take different shapes. In Figure 3.3, for example, the cell transforms

from the stomach shape to the prolate shape as the prescribed volume increases
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when other conditions remain unchanged. Similar behavior has actually been

observed in red blood cells [85].

3.4 Chemical reactions in a moving cell

A typical reaction diffusion equation usually takes the form

∂A

∂t
= D∇2A + f

where D is the diffusion coefficient, and f is the reaction function. The phase field

implementation of the above equation is

∂

∂t
(φA) = D∇ · (φ∇A) + φf

It has been proved that the boundary condition that no flux traverses across the

membrane is satisfied [49]:

D
∂A

∂n
|a(t) = −

da

dt
A + O(ǫ)

Here a(t) is the moving boundary.

Since we consider actin flow in the cell later in Chapter 5, we further couple

the reaction-diffusion equation to the flow field u:

∂

∂t
(φA) = −∇ · (uφA) + D∇ · (φ∇A) + φf

3.5 Appendix

The explicit way to numerically solve differential equations is

dy

dx
= f(y, t)

yi+1 = yi + f(yi, ti)h,

where h is the time step size, and i=0,1,. . . ,N is the step index.

An improved version is the adapted Euler method which is in fact a expectation-

correction method
k1 = f(yi, ti)h

k2 = f(yi + k1, ti + h)h

yi+1 = yi + 1
2
(k1 + k2)
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However, the explicit method requires small time steps. To keep it stable,

the time step must satisfy

∆t <
∆x2

2
.

As a result, explicit method usually consumes much computing time.

The implicit method is usually more stable than the explicit method,

yi+1 = yi + f(yi+1, ti+1)h.

Crank-Nicolson method is a combination of the explicit method and implicit

method

yi+1 = yi +
f(yi, ti) + f(yi+1, ti+1)

2
h

It is unconditionally stable, but may leads to oscillations if time step is too large.

Both the implicit method and the Crank-Nicolson method are more difficult

to implement than the explicit method because they require the inversion of matrix.

The equation describing the evolution of phase field reduces to a 4th order

differential equation.
∂φ

∂t
+ ∇4φ = F (φ)

We employ the method in [98] and use the 2nd order backward differentiation

formula. The time differential is

∂φ

∂t
=

3φn+1 − 4φn + φn−1

2∆t
,

and hence
3φn+1 − 4φn + φn−1

2∆t
+ ∇4φn+1 = F (φn+1).

That is

(I +
2

3
∆t∇4)φn+1 =

4

3
φn −

1

3
φn−1 +

2

3
∆tF (φ̃n+1).

Note that I + 2
3
∆t∇4 = LxLy + 4

3
∆t∂xxyy −

4
9
∆t2∂xxxx∂yyyy , where

Lx = I +
2

3
∆t∂xxxx , Ly = I +

2

3
∆t∂yyyy .

Therefore,

LxLyφ
n+1 =

4

3
φn −

1

3
φn−1 −

4

3
∆t∂xxyy φ̃

n+1 +
4

9
∆t2∂xxxx∂yyyy φ̃

n+1 +
2

3
∆tF (φ̃n+1)
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Let v = φn+1 − φ̃n+1,

Lxq = −
2

3
(φn − φn−1) −

2

3
∆t∇4φ̃n+1 +

2

3
∆tF (φ̃n+1)

Lyv = q

φn+1 = φ̃n+1 + v

We further apply pseudo-linear factorization

Lxq = −
1

3
(3φ̃n+1 − 4φn + φn−1) −

2

3
∆t∇4φ̃n+1 +

2

3
∆tF (φ̃n+1)

Lyv = q

φn+1 = φ̃n+1 + v.

ũn+1 is an estimate for un+1 and is updated through multiple iterations. Let

ũn+1
0 = 2un − un−1, then for k=0, 1, . . .

ũn+1
k+1 = un+1

k

Note that Lx and Ly can be easily inverted through LU-decomposition.



Chapter 4

Computational model for cell

morphodynamics

4.1 Introduction

Many eukaryotic cells can move using a crawling motion during which the

front of the cell is extended by the polymerization of an actin filaments network.

Forces applied to the substrate are mediated through adhesion and the detachment

of the back of the cell is regulated by myosin and other proteins [63]. The modeling

of this type of cell movement is a complex undertaking for several different rea-

sons. First of all, the underlying signaling pathways responsible for controlling the

movement are often poorly understood. For example, in eukaryotic chemotaxis,

where cells are guided by chemical gradients, it is still unclear how cells determine

their direction [42]. Furthermore, the forces that are generated during cell motion

are most often not quantified, although recent experiments have started to address

the cell-substrate interaction [21]. Lastly, cell movement is a dynamic process, in-

volving cell membrane deformations and retractions that require a computational

modeling strategy that can handle deformable boundaries. Not surprisingly, only

a limited number of studies have attempted to address morphodynamics, the cell

shape dynamics during movement (for a review, see [63]).

In this paper, we construct a quantitative model for cell shape dynamics

50
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during motion based on the phase-field method. We apply it to the specific case of

the motion of epithelial keratocytes. These cells extend a thin lamellipodium at the

front and sides, with a bulbous cell body attached at the back [48]. Importantly,

these cells can maintain rapid and persistent gliding motion over several cell lengths

in the absence of external stimuli [27, 53, 95].

4.2 Model

We model the keratocyte as a two dimensional sheet with a fixed area A0,

although the extension to three dimensions is straightforward (albeit computa-

tionally expensive). The phase field takes on φ = 1 in the interior of the cell

and φ = 0 represents the cell exterior. The shape of the cell membrane is de-

termined by the interactions of various forces, including the surface tension, the

bending force and the pressure that constrains the cell area, as in vesicles. We

do not fix the cell perimeter, allowing the amount of membrane to change due to

either the smoothing out of small-scale wrinkles or due to endo/exocytosis. We

also consider the protrusion force from cross-linked actin filaments, the contraction

force from the actin bundles and the effective friction due to cells’ adhesion and

attachment/detachment from the substrates.

The surface energy is proportional to the cell’s perimeter L and can be

implemented in the phase field formulations as [24, 57]

Hten = γL = γ

∫

(
ǫ

2
|∇φ|2 +

G

ǫ
)dr,

where γ is the surface tension, ǫ is the parameter controlling the width of the cell

boundary and where

G(φ) = 18φ2(1 − φ)2

is a double well potential with minima at φ = 0 and φ = 1. The area density of

surface tension force is derived as follows:

F∗
ten = −

δHten

δR
=

δHten

δφ
∇φ = −γ(ǫ∇2φ−

G′

ǫ
)∇φ

This area density can be converted into a line density using

F∗
tendr = Ftendl = Ftenǫ|∇φ|2dr.
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Thus

Ften = −γ(∇2φ−
G′

ǫ2
)
∇φ

|∇φ|2
.

This can also be seen by noting that the expression in brackets will vanish identi-

cally for thin planar interfaces if the phase field free energy

F [φ] =

∫

1

ǫ
[
(ǫ|∇φ|)2

2
+ G]dr

is minimized, and hence picks up its leading term from considering the expansion

for a slightly curved thin interface with normal n̂ and curvature c:

∇2φ ≃ (n̂ · ∇)2 φ + cn̂ · ∇φ.

Therefore, the tension force follows

Ften = −γcn̂.

This is consistent with the Young-Laplace equation, which states that the net

component of the surface tension forces is normal to the surface and proportional

to the local curvature.

Helfrich [40] modeled the bending energy as

Hbend =
κ

2

∮

c2dl

where κ is the bending rigidity and where l denotes the arclength along the perime-

ter. This term can be implemented as [24, 57]

Hbend =
κ

2

∫

1

ǫ
[ǫ∇2φ−

1

ǫ
G′]2dr

Note that we have taken the spontaneous curvature to be 0. We then derive the

bending force’s area density and convert it into a line density as above:

Fbend = κ(∇2 −
G′′

ǫ2
)(∇2φ−

G′

ǫ2
)
∇φ

|∇φ|2

We have verified that this expression is identical to the one employed by Biben

and Misbah [9].
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Experiments show that the cell area A =
∫

φdr is conserved during defor-

mation and movement [48]; the same study indicates that perimeter is not highly

conserved. Thus we introduce a constraint term:

Farea = −MA(A− A0)n̂ = MA(

∫

φdr− A0)
∇φ

|∇φ|

where MA is large and where A0 is the prescribed area.

The coupling of the actin-myosin system provides a differential extension

/ retraction force for the cell membrane and thus generates the cell’s movement.

Specifically, at the leading edge of the cell, the actin filaments form a highly cross-

linked network and the polymerization of actin filaments pushes the cell membrane

forward. At the back of the cell actin filaments reorganize and align into bundles

which, with the help of the molecular motor myosin-II, generate retraction forces

[52, 65]. Despite intensive studies on the actin-myosin system, the detailed mech-

anisms underlying this system are still quantitatively uncertain. We will therefore

proceed phenomenologically and assume that the protrusion and retraction force

is simply proportional to the concentration of cross-linked actin filaments, denoted

by V , and the concentration of actin bundles, denoted by W :

Fprot = αV n̂ = −αV
∇φ

|∇φ|
;Fretr = −βWn̂ = βW

∇φ

|∇φ|

where α and β are coefficients that determine the magnitude of the protrusion and

retraction forces. The cross-linked actin filaments grow at a constant rate a while

both filaments and bundles depolarize with rates c and e, respectively, and diffuse

inside the cell [95]. Furthermore, some of the filaments align parallel to each other

and form actin bundles and we assume that preexisting actin bundles help this

alignment of actin filaments, leading to a non-linear coupling term. The resulting

dynamical equations for V and W can be coupled to the phase field in a consistent

way [49]:

∂(φV )

∂t
= φ(a− bV W 2 − cV ) + DV∇ · (φ∇V )

∂(φW )

∂t
= φ(bV W 2 − eW ) + DW∇ · (φ∇W )

Note that the inclusion of these forces extends work by others [57, 8, 24, 11]

who focused on vesicles. Our model does not include, however, a coupling to the
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dynamics of the surrounding fluid as in recent work by Misbah and collaborators

[8].

When keratocytes slide over the substrate, the adhesiveness between the

cells and substrate, along with the attachment and detachment of cells from the

substrate can be viewed as an effective friction that is proportional to the local

speed [51]:

Ffr = −τv.

At quasi-steady state (neglecting inertia), the total force is approximately zero

Ftot = Ften + Fbend + Farea + Fprot + Fretr + Ffr = 0

and since the evolution of phase field φ follows

∂φ

∂t
= −v · ∇φ,

we get the final equation for φ:

τ
∂φ

∂t
= −κ(∇2 −

G′′

ǫ2
)(∇2φ−

G′

ǫ2
) + γ(∇2φ−

G′

ǫ2
)

−MA(

∫

φdr− A0)|∇φ| + (αV − βW )|∇φ|

Physically, this means that the friction force on the cell is balanced by the active

protrusion and retraction forces, which are transmitted from the substrate onto

the cell via adhesion complexes [31]. Thus, the total force from the substrate onto

the cell vanishes, as can be explicitly checked for our computed solutions. In our

model, as in real locomoting objects, the action of the active elements are not

merely internal, but instead are coupled to the external surroundings (here the

substrate) and can cause non-zero momentum transfer.

This fourth order nonlinear partial differential equation was solved using an

alternating direction implicit scheme and a second order backward differentiation

formula.

4.3 Computational method

We used a 600×200 rectangular grid with grid size of 0.1 µm and time step

of ∆t = 10−4s. To cut the computing time, we move the computational box with
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Table 4.1: Model parameters on cell morphodynamics

Description Value
γ surface tension 1.0 pN
κ bending rigidity 1.0 pNµm2

α coefficient of F-actin extension 0.1 pN/µm
β coefficient of myosinII retraction 0.2 pN/µm
MA area constraint 1.0 pN/µm3

A0 prescribed area 50.24 µm2

ǫ 3 times boundary width 1.0 µm
τ friction coefficient 2.62 pNs/µm2

a actin filament growth rate 0.084s−1

b actin filaments transform to bundles 1.146s−1

c filament depolarization rate 0.0764s−1

e bundle depolarization rate 0.107s−1

DV diffusion coefficient of actin filaments 0.382µm2/s
DW diffusion coefficient of actin bundles 0.0764µm2/s

the cell’s centroid such that the boundary of this box is at least 25 grids points

away from the cell membrane. We have verified that taking a larger computational

box does not change the quantitative results. To further reduce the computational

costs, we have parallelized the algorithm and the final code required approximately

4 hours on 4 CPUs for 200 s, which was long enough to reach a steady state.

4.4 Results

Our two-dimensional simulation parameters are obtained from measured

three dimensional values by assuming a cell height of 0.1µm. For example, the

surface tension parameter in the simulations is derived from the measured value

γexp by the conversion γ = 0.1µm · γexp. Experimental values for this parameter

and for the bending rigidity are, to our knowledge, not available for keratocytes

and we have taken values reported by shear flow experiments using Dictyostelium

cells [88]: γexp ∼ 10pN/µm and κexp ∼ 10pNµm. Note that the surface tension

value is much lower than the values reported using micropipette aspiration [19, 78]

and that this discrepancy has been attributed to the role of the cytoskeleton [61].

Indeed, results obtained [109] using micropipette aspiration for cells in which actin
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Figure 4.1: (A) Snapshots of the numerical evolution of a cell shape. The phase
field is shown in a color scale with the interior of the cell (φ = 1) plotted as red
and the exterior of the cell (φ = 0) plotted in blue. The resulting distributions of
V and W are shown in B and C, respectively.

polymerization has been abolished give values that are close to the one reported

in Ref. [88]. Other values of the simulation parameters can be found in Table 1

and it is important to note that we can obtain similar qualitative results for a wide

range of parameters.

A typical simulation started with a circular stationary cell with radius r0 =

4.0µm, V=1.1 and W=0 uniformly. Since our reaction-diffusion system is linearly

stable, we break the symmetry by assigning a spatially varying concentration field

for W . For example, we can take W = W0y for y < 0 and W = 0 otherwise, where

y is a randomly chosen direction and y=0 is at the cell’s center. Simulations show

that different asymmetric initial conditions lead to the same steady state. Due to
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Figure 4.2: Snapshots of three steady state solutions of our model for a =
0.069s−1 (A), a = 0.084s−1 (B) and a = 0.107s−1 (C). The corresponding aspect
ratios and cell speeds are S = 1.41 and v = 0.12µm/s, S = 1.92 and v = 0.19µm/s,
and S = 2.79 and v = 0.27µm/s. (D) Cell speed as a function of the aspect ratio.
The solid line is our simulation result, the dots are experimental results from [48]
and the dashed curve is the prediction from the simple model in [48]. The three
circles correspond to A, B, and C.

the asymmetric distribution of W , the cell will retract from the edge with highest

W and will start to move. As the cell moves forward, actin bundles are sequestered

at the rear and its concentration is increased through the positive feedback loop

while the cell’s leading edge is characterized by a high concentration of cross linked

actin filaments. A final steady state is reached when the cell has a stationary shape

with a constant speed and stationary distributions of V and W . An example is

shown in Figure 4.1A for the particular set of parameter values of Table 1. The

cell’s area changed by less than 0.1% throughout the process. Figgure 4.1B and C

show the steady state distribution of V and W .

To obtain different cell shapes and speeds we changed the value of growth

rate a. The different cell shapes can be quantified by the aspect ratio S, defined

as the ratio of the cell width and the cell length. When the growth rate a is small,
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the amount of V and W is limited and the cell has little asymmetry. Therefore,

the cell is nearly circular and moves slowly. Increasing the value of a corresponds

to increasing the amount of both filaments network and bundle, providing larger

driving forces for cell movement, and hence increases the cell’s speed and aspect

ratio. In Figure 4.2A-C we plot the steady state solution of several cells with

increasing speeds and aspect ratios.

Due to the coupling between the V and W field and the corresponding

protrusion and retraction forces, there is a monotone relationship between the

aspect ratio and the speed of the cell: the cell moves faster for larger aspect ratios.

This is shown in Figure 4.2D where we plot the speed as a function of the aspect

ratio in our simulations (solid line). The cells shown in Figure 4.2A-C correspond

to the circles. As a comparison, we have also plotted the experimental results (dots)

and the prediction of a simple model (dashed line) from Ref. [48]. This simple

model does not compute the actual cell shape or the cell dynamics and determines

the cell’s speed based solely on the actin distribution. This is in contrast to our

model, which explicitly provides the shape of the cell and requires a retraction

mechanism, provided here by the W field. Furthermore, our simulation results,

unlike the simple model, predict a zero velocity for S = 1. This corresponds to the

case where the cross linked actin filaments and bundles concentration is distributed

uniformly in the cell. Thus, there is no asymmetry and the cell will not move. To

fit the results of our method we simply varied the friction coefficient and found

that the value of τ given in the table gave the best fit to the experimental data.

Clearly, the experimental data exhibits a large amount of variability, precluding a

comparative quantitative analysis of the fits provided by the two models. Further

progress would therefore depend on reducing this variability (if possible) by more

tight protocols or on extending the model to allow for some degree of cell-to-cell

parameter variability.
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Figure 4.3: Simulated crawling of the Dictyostelium cell.

4.5 Application to Dictyostelium cells

Dictyostelium cells are quite different from Keratocyte cells. They can

sense chemoattractant, organize patches and extend pseudopods to find the way

forwards. Suppose that the chemoattractant concentration increase from top to

bottom and the cell can amplify the external gradient to a step function through

certain signaling pathways. We started with a rounded cell with one patch at

the bottom (Figure 4.3). The patch (labeled in red spot) was replaced every one

minute at a random place at the front half of the cell. Our simulation shows that

although the cell does not go straightly downwards, it gradually descends.

4.6 Discussion

In summary, we have presented a phase field description of motile cell

shapes. This method has a main advantage that it is able to find cell shapes

without the need for an explicit boundary tracking algorithm. The development

of this method puts us in an excellent position to start addressing the coupling

between intra-cellular dynamics and cell motion. A framework of the type pro-

posed here is a necessary prerequisite for this future investigation. Finally, we are

currently investigating the application of our ideas to other cell types in general,
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and chemotaxing cells in particular. There, the cells receive external signals that

are translated into internal chemical cues [50, 55]. Formulating models in which

these internal cues generate significant cell deformations has been proved to be

challenging [105]. Indeed, the coupling of models describing the internal pathways

with cell motion is a difficult task, but one for which our method should be well

suited.
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Chapter 5

Coupling actin flow and adhesion

mechanism during cell migration

5.1 Introduction

In many eukaryotic cells, the migration is powered by the actin-myosin

system [72] and assisted by the adhesion between cells and substrates [31]. At

the cell’s leading edge, the cross-linked actin filaments polymerize by adding actin

monomers to their barbed ends, a process known as “tread-milling”; while at

the back of the cell, myosin II binds to the bundled actin filaments and exerts

contractile stress.

The active stresses generated by the actin-myosin system are transmitted

to the substrates through adhesion sites [31, 34, 44]. Nascent adhesion sites are

formed near the front of the cell, grow into focal adhesions and gradually dissemble

as the cell advances [1, 16, 34]. Many studies have indicated that the forces exerted

by the adhesion sites could be in two different modes. One is called the gripping

mode, where the adhesion sites act like engaged clutches and link the actin network

tightly to the substrates. When the clutch is disengaged, the adhesion site trans-

formed into the slipping mode, exerting frictional drag [13, 45]. More recently,

Verkhovsky’s group analyzed the relationship between actin flow and substrate

stress[31]. They found that the substrate stress was not always aligned with the
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actin flow and the magnitude of the stress did not follow that of the flow velocity

monotonically, indicating that slipping mode alone was insufficient to explain the

adhesion mechanism.

Recent experiments have examined the movement of actin network with

respect to the substrate, called actin flow [3, 18, 31, 45, 92]. Small retrograde flow

of the actin network has been observed at the leading edge, while the trailing part

of the cell is taken up by anterograde actin flow at lager speed. The pattern of

the actin flow, along with cell velocity and cell shape, is controlled by various fac-

tors, including actin polymerization, myosin contraction, adhesion, and membrane

forces. For example, it has been reported that cell migration is most efficient at

a medium strength of adhesion [3]. Similarly, myosin II might also have biphasic

effect on cell velocity [45].

adhesion

(gripping)

F-actin

protrusion

myosin 

contraction

membrane 

tension and 

bending

adhesion

(slipping)

actin flow

Figure 5.1: Schematic diagram of the migration model.

Cell migration has been modeled from various perspectives. On the whole

cell level, some pioneer works modeled the actin network as a strip of gel using

Kelvin-Voight model and obtained one dimensional map of actin flow [37, 51].

Rubinstein et al. studied the viscoelastic flow in a presumed 2D cell geometry

[79]. In later studies, the cell periphery was updated according to a phenomenal

function of protrusion rate [3, 99]. Our previous phase field model implemented

physical forces along the cell membrane and obtained cell shape and speed by

[86]. More recently, Carlsson et al. treated the actin polymerization as an active
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stress. Contrary to the contractile stress caused by myosin II, actin polymerization

generates expansive stress. He further analyzed how the distribution of active

stresses and adhesion strength contribute to cell motility in 1D [12]. However, all

the above works modeled adhesion as pure frictional drag, and didn’t consider the

gripping mode of adhesion sites. Also, they ignored the dynamics of adhesion sites.

Aside from the whole cell models, adhesion dynamics and its gripping effect were

studied in isolated context [10, 13, 17].

We built a comprehensive model on cell migration. The moving bound-

ary of the cell was solved by the phase field method. In the model, both myosin

II contraction and actin polymerization were treated as active stress as in [12].

Moreover, the adhesion sites could switch between the gripping mode and the slip-

ping mode, and their dynamics were integrated with actin flow. We also included

tension forces and bending forces at the membrane. The model explained the de-

coupling of actin flow direction and substrate stress direction in the central part of

the cell. Furthermore, we explored the collective effect of myosin II and gripping

strength on cell motility and cell shape.

5.2 Model

The model system is the Keratocyte cell, which extends broad Lamellipo-

dia and has a stereotyped fan-like shape. The cell body is ignored in our model

since it’s been reported that lamellar fragments alone can retain the fan-like shape

and motility [96]. Because the lamellipodia is rather flat, we modeled in two di-

mensions. Note that extension to three dimensions is straight forward but much

more intensive in computation. The model is illustrated in Figure 5.1. The actin

network is treated as viscoelastic fluid [79]. At quasi steady state,

υ0∇ · [φ(∇u + ∇uT )] + ∇ · σmyo + ∇ · σpoly + Fadh + Fmem = 0

In the first term, the symmetrized strain rate tensor

∇u + ∇uT



64

is coupled with the phase field φ, where u denotes the velocity of actin flow. υ0

is the effective viscosity of actin network. The phase field can be viewed as an

indication of cell territory since it is constructed such that φ = 1 inside the cell

and φ = 0 outside the cell [8, 86]. The next two terms describe the active stresses

coming from myosin II and actin filaments respectively. Myosin II that is bounded

to the bundled actin network can generate contractile stress. We assume that the

contractile stress is isotropic and its magnitude is proportional to the myosin II

density ρm, and thus

σmyo = η0mφρmI.

Meanwhile, the polymerization of actin filaments generates expansive stress [12].

The expansive stress is probably confined to the cell periphery because the actin

filaments are oriented in such a way that their barbed ends, where the new actin

monomers are added, are close to the cell membrane and point outwards [72]. We

assume that the stress is normal to the membrane and increases linearly with the

cross linked F-actin density ρa. Let n̂ and t̂ be normal vector and tangential vector

with respect to cell boundary respectively. Under the coordinate system (n̂ , t̂),

σpoly = −η0aφρaδǫ

(

1 0

0 0

)

When transformed to the (x̂, ŷ) coordinate system, it comes

σpoly = −η0aφρaδǫ

(

x̂2 x̂ŷ

x̂ŷ ŷ2

)

Here, δǫ = ǫ(∇φ)2 labels the cell periphery, where ǫ is the characteristic width of

the phase field boundary.

Many studies have shown that the adhesion mechanism is more complex

than frictional drag and an intriguing solution is to treat the adhesion sites as

clutches [31, 45]. When the clutches are engaged, the adhesion sites are in the

gripping mode; and once disengaged, the adhesion sites switch to the slipping

mode. Moreover, evidences have shown that the adhesion sites are formed at the

front part of cell and nascent focal adhesions generate stronger propulsive forces

[1, 5]. Therefore, we modeled the adhesion part in the following way. Assume that
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there is always a small friction between the cell and the substrate with uniform

coefficient ξ. On top of that, each adhesion site is born in the gripping mode

at a random birthplace. The birthplace has a probability distribution density

proportional to the density of cross-linked actin filaments ρa, so that the nascent

adhesion sites concentrate at the front of the cell as ρa does. The gripping mode is

modeled as a spring with two ends. One end (with position x0) grips the substrate,

and doesn’t move. The other end (with position x) is connected to the actin

network, and thus travels with the actin flow at velocity u. The initial spring

length is set to zero. As the spring is stretched, it will exert an elastic force

Fgrip = −kgrip(x− x0),

where kgrip is the spring coefficient. The spring might break according to Bell’s

law

roff ∼ exp(|Fgrip|/F0),

where the breaking rate roff increases exponentially with the gripping force [10, 13].

Once the spring breaks, the end attached to the substrate is retreated and the

adhesion site switches to the slipping mode. The adhesion site now exerts frictional

force

Fslip = −kslipu.

Because the adhesion sites are growing [34] and larger substrate stress was observed

at the sides of the cell [31], we assume that both gripping coefficient kgrip and

slipping coefficient kslip increase linearly with the age of the adhesion site tadh, that

is

kgrip = k0
griptadh

and

kslip = k0
sliptadh.

The slipping site can go back to gripping mode with rate ron or die with rate rdie

(ron ≪ rdie). Additionally, the adhesion site is forced to die once it hits the cell

boundary (φ > 0.5). The dead site is reborn immediately and enters the next

cycle, such that the total amount of adhesion sites is fixed.
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The membrane forces, including tension force and bending force

Fmem = Ftension + Fbend,

can be formulated in the phase field framework [24, 86]:

Ftension = −γ(ǫ∇2φ−
G′

ǫ
)∇φ,

Fbend = κǫ(∇2 −
G′′

ǫ2
)(∇2φ−

G′

ǫ2
)∇φ.

Here, G = 18φ2(1 − φ)2 is the double well potential for the phase field.

It’s commonly accepted that the cross linked actin filaments occupy the

leading edge while myosin II is more concentrated near the tail during cell migration

[96]. To polarize the cell, we use a mass conserved reaction to describe the kinetics

of ρa [68, 66],

f(ρa, ρ
cyt
a ) = kb(

ρ2a
K2

a + ρ2a
+ ka)ρ

cyt
a − kcρa

The first term on the right hand side is the rate of polymerization which depends on

the cytosolic concentration of actin monomers ρcyta . Since the actin monomers are

small molecules and can diffuse fast, we assume that they are uniformly distributed

in the cell and thus

ρcyta = (ρtota −

∫

ρadx)/A,

where A is the total area of the cell. The second order Hill function accounts

for possible positive feedbacks in the polymerization process. The last term is

a simple depolymerization rate. We then couple the reaction to the convection

of actin network and added a slow diffusion. The phase field implementation is

[49, 86]:
∂

∂t
(φρa) = −∇ · (φρau) + Da∇ · (φ∇ρa) + φf(ρa, ρ

cyt
a )

Note that the reaction of ρa is independent of ρm here. Some studies have shown

that the myosin II is not indispensable in cell migration and cells treated with

myosin II inhibitor can still maintain their polarized shape and move forward

[31, 45].

The bounded myosin II travels with the actin flow [84] and diffuses with

coefficient Dm,
∂

∂t
(φρm) = −∇ · (φρmu) + Dm∇ · (φ∇ρm)
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Because the actin flow is slower than the cell speed at most part of the cell, or even

retrograde in the leading edge, the bound myosin II, which travels with the actin

flow, falls behind and is sequestered near the cell back. To further prevent myosin

II from diffusing into the leading edge, we assume that the diffusion of myosin II

is reduced when the density of cross linked actin network is high

Dm =
D0

m

1 + ρa/KD

.

Finally, we assume that the cell periphery should move at the same velocity

as the local velocity of actin flow, and update the phase field φ accordingly,

∂φ

∂t
= −u · ∇φ + Γ(ǫ∇2φ−

G′

ǫ
+ cǫ|∇φ|)

Note that the last term is added to stabilize the phase field interface, where c

denotes the local curvature

c = ∇ · n̂ = −∇ ·
∇φ

|∇φ|
,

and Γ is a Lagrangian multiplier [8].

The partial differential equations are computed on a 800 × 200 rectangle

with grid size of 0.2µm and time step ∆t = 10−4s. The force generated by each

adhesion site is distributed equally to the nearest four grids that encloses the site.

To reduce the computing time, we define a computation box that encloses the cell

such that the boundary of the cell is at least 18 grids away from the sides of the

box. The actin flow equation is solved by implicit scheme and the reaction diffusion

equations are calculated explicitly at locations where φ > 10−4. The parameters

are provided in Table 1.

5.3 Results

The simulation starts from a discoid cell with radius r0 = 10µm. Initially,

the myosin II is uniformly distributed with density [ρ0m]; while the cross linked

actin filaments only occupy the front half of the cell. The polymerization of actin

filaments pushes the cell forward and myosin II falls behind. As the myosin II
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Table 5.1: Model parameters on cell migration

Description Value

υ0 effective viscosity of actin flow 103pN·s/µm
η0m myosinII contraction coefficient 100pN · µm
η0a F-actin protrusion coefficient 560pN · µm2

F 0
grip characteristic gripping stress 0.1 ∼ 10Pa

k0
grip gripping coefficient 2.5Pa/(s·µm)

k0
slip slipping coefficient 0.25Pa/µm

ξ base friction coefficient 0.5Pa·s/µm
ron slipping to gripping rate 0.005s−1

roff gripping to slipping 0.002s−1

rdie death rate of slipping site 0.2s−1

ka base polymerization rate 0.01
kb F-actin polymerization rate 10s−1

Ka positive feedback threshold 1µm−2

kc F-actin depolymerization rate 10s−1

Da actin network diffusion coefficient 0.8µm2/s
D0

m max myosin diffusion coefficient 2µm2/s
KD myosin diffusion threshold 2µm−2

γ tension coefficient 20pN
κ bending coefficient 20pN · µm2

ρtota total amount of actin 800
[ρ0m] initial density of myosin II 0.2 ∼ 0.4µm−2

Nadh number of adhesion sites 1000
ǫ width of phase field 2µm
Γ lagrangian multiplier 0.4µm/s

gathers at the back of the cell, it produces contractile stress and retract the cell

rear. During the migration, the cell evolves and finally reaches a stationary fan-

like shape (Figure 5.2A) and a constant speed. Figure 5.2B and Figure 5.2C show

the steady state distribution of cross linked actin filaments and bounded myosinII

respectively.

5.3.1 Coupling of actin flow and stress

The map of the actin flow predicted by our model is shown in Figure 5.3A

and the y-direction actin velocity along the midline is plotted in Figure 5.3D for
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Figure 5.2: The snapshots of cell migration. (A) The cell evolves and reaches
a stationary shape with aspect ratio S = 2.6 and speed v = 0.14µm/s. (B) and
(C) The steady-state distributions of F-actin (B) and bounded myosinII (C). Here,
F 0
grip = 5 Pa and [ρ0m]=0.3 µm−2.
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better visualization. The actin network flows forward in most part of the cell with

increasing speed towards the back and the sides. However, the leading edge of

the cell is characterized by a retrograde flow with a small backwards velocity of

∼ 0.012µm/s. The retrograde flow is induced by myosin II contraction, the actin

polymerization and the membrane tension collectively. The sharp spike ahead of

the retrograde represents the forward movement of the cell boundary, which is

pushed by the polymerization of actin filaments. At steady state, the front and

the back boundaries move with the same velocity vfront = vback = vcell = 0.14µm/s.

The whole picture is consistent with previous experimental observations [45, 31].

It can be seen from figure 5.3D that the divide between the retrograde flow and

the anterograde flow has been shifted toward the leading edge. This is due to the

strong gripping stress exerted by the adhesion sites near the cell front.

Figure 5.3B illustrates the predicted substrate stress, which includes the

basel level friction between the cell and the substrate, the added friction from

slipping sites and the spring stress from gripping sites. we have checked that the

substrate stress sums up to zero at steady state. Note that the strongest stress lies

at the flanks of the cell as is observed in the experiment [31]. One reason is that

the actin flow here is fast. Moreover, the strength of the adhesion sites increases

as they grow [34]. Most adhesion sites start their journey from the leading edge.

When they reach the flanks of the cell, they have grown up and can exert stronger

stress. The stress drops near the trailing part of the cell simply because many

adhesion sites have died off before reaching here.

We further investigated the alignment between actin flow and substrate

stress. Let θ be the angle between the vector of actin flow and the vector of

substrate stress. The image of cosθ is shown in Figure 5.3C, and is in perfect

agreement with the experimental observation [31]. If the adhesion mechanism

were purely frictional drag, the substrate stress would be in the same direction as

the actin flow, that is θ = 0 and cosθ = 1 (red color). However, at the central

part of the cell, the substrate stress is not perfectly aligned with the actin flow

(cosθ < 1), or even opposite to the actin flow (cosθ = −1), indicating that the

slipping mode alone can not explain the whole picture. To reproduce the cosθ < 1
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region, we implemented an extra gripping mode with an elastic spring. The stress

no longer correlates with the flow velocity, but instead depends on the cumulated

stretch of the spring. For example, a gripping site is created at the leading edge

with retrograde flow. The sprint end bound to the actin network moves backwards

and thus the substrate feels a backwards stress. In the next moment, the actin

flow might switch its direction and moves forward, while the string is still stretched

backwards, resulting in the opposite alignment of actin flow and substrate stress

and cosθ = −1.

Figure 5.3E and F illustrate the distributions of gripping sites and slipping

sites respectively. The gripping sites concentrate in the front of the cell while

slipping sites are populated at the sides and back.

Figure 5.3: Comparative maps of actin flow and substrate stress. (A) The map
of actin flow. (B) The map of substrate stress. (C) The alignment of actin flow
and substrate stress, which is measured by the cosine of the angle between flow
vector and stress vector. (D) Actin flow along the y direction at the middle of the
cell as is indicated in (A). (E) Distribution of gripping sites. (F) Distribution of
slipping sites.
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5.3.2 Both myosin II and gripping strength effect cell ve-

locity and cell shape

To explore the cell motility under different conditions, we varied myosin

II level and the strength of gripping sites (Figure 5.4). Initially, the cell velocity

increases with gripping strength (Figure 5.4A), because the gripping sites anchor

the actin network to the substrate, stall the retrograde flow (Figure 5.4B) and help

to pull the cell back forward (Figure 5.4C). However, once the gripping stress be-

comes too strong, it reduces the anterograde flow and hinders the forward crawling

of the cell.
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Figure 5.4: Cell velocity is effected by both myosin II and gripping strength. (A)
Cell velocity. (B) and (C) Take the y-direction actin flow along the midline of the
cell and plot the maximum speed of retrograde flow (B) and the maximum speed of
anterograde flow (C). (D) The average gripping stress. (E) The percentage of the
adhesion sites that are in the gripping mode. Solid line represents [ρ0m] = 0.4µm−2

and dashed line [ρ0m] = 0.3µm−2.

Decreasing the level of myosin II will reduce both the retrograde flow and

anterograde flow (Figure 5.4B and C). This is consistent with the experimental

results that cells treated with blebbistatin (a myosin II inhibitor) have slower
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inward flow [97, 3]. However, the effect of myosin II contraction on cell velocity

is biphasic (Figure 5.4A). On one hand, higher level of myosin II, which generates

larger contractile stress, can expedite cell migration, as was analytically proved

in [12]. On the other hand, higher contractile stress requires stronger gripping

stress to anchor the cell’s front. If a large number of gripping sites fail and slip

back, the cell’s migration will become less efficient. In our model, higher level of

myosin II triggers stronger gripping stress (Figure 5.4D), as has been observed in

experiments [45, 97]. But it also pulls off more gripping sites (Figure 5.4E) and

thus reduces cell speed when F 0
grip is high.

Similarly, we investigated how cell shape changes with myosin II and grip-

ping strength (see Figure 5.5). The initial myosin II density is varied from 0.4µm−2

(top row), to 0.3µm−2 (middle row), and down to 0.2µm−2 (bottom row). The

gripping strength is tuned by the parameter F 0
grip, which is assigned 1 Pa for the

left column, 5 Pa for the middle column and 10 Pa for the right column. Note

that all the cell shapes shown in the diagram are stationary except the one in the

right-bottom corner, which keeps on oscillating. One feature in the cell shape is

the aspect ratio, which is defined as the ratio between the width and the length

of the cell. It measures how wide the cell is. When the gripping strength is low,

which corresponds to the left column, the aspect ratio decreases as the amount

of myosin II rises. This is due to the contracting effect of myosin II. As the grip-

ping strength is increased from left to right, cells with different levels of myosin

II behave differently. The cells with high level of myosin II (top row) become in-

creasingly wider since the flanks of the cells are anchored by the gripping sites and

are not easily pulled in by myosin contraction. However, the aspect ratio in the

middle row does not change monotonically with gripping strength. After reaching

a large aspect ratio of 2.6 in the middle frame, the cell becomes rounder when

gripping strength further increases. In fact, when gripping strength gets too big,

some adhesion sites stick to the substrate and do not turnover normally. Thus the

aspect ratio decreases and cell migration is hindered. Cells in the bottom row have

the lowest level of myosin II, and the gripping stress becomes very strong relative

to myosin contraction. Consequently, the trailing part of the cell cannot peel off
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the substrate efficiently. In sum, the overall diagram of cell shapes indicates that

the shape of the cell is determined by the joint effect of myosin contraction and

adhesion. This result is generally consistent with the experimental results [3], ex-

cept that cells with lower myosin activity and higher adhesion strength have noisy

periphery in experiment.
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Figure 5.5: The phase diagram of cell shapes controlled by myosinII activity
and gripping strength. The myosin activity is tuned by the initial concentration
of myosin II: [ρ0m] = 0.2µm−2 for bottom row, [ρ0m] = 0.3µm−2 for middle row,
and [ρ0m] = 0.4µm−2 for top row; while the gripping strength is tuned by F 0

grip:
F 0
grip = 1Pa (left column), F 0

grip = 5Pa (middle column) and F 0
grip = 10Pa (right

column).
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5.4 Discussion

We built a comprehensive model on crawling keratocyte, which integrated

actin polymerization, myosin contraction, adhesions and membrane forces. Many

previous models [3, 99] treated actin polymerization as a protrusion speed vp, and

updated the cell shape by a phenomenal function of vp. In contrary, we modeled

it as an active stress [12]. In this way, the effect from actin polymerization and

membrane tension can feed into the retrograde flow. Moreover, the cell boundary

can evolve naturally by following the local actin flow velocity that result from

various stresses.

Adhesion has long been modeled as a pure frictional drag, which cannot

explain the alignment of the actin flow and substrate stress in the central part of

the cell [31]. we incorporated the gripping mode into the adhesion mechanism and

added dynamics for adhesion sites. Our model successfully produced the maps

of actin flow, substrate stress and their alignment, and all the maps are in good

agreement with experimental observation.

we further investigated how cell behaves under various levels of myosin II

density and gripping strength. Simply put, the actin flow, cell velocity and the

cell shape are controlled by the collective effect of myosin II and gripping strength

rather by a single factor. Our model also suggested that there be an optimal level

of myosin II and gripping strength for cell motility.

Myosin II mutants have been studied intensively and multiple roles have

been proposed for myosin II. Aside from the well accepted function of contracting

actin network, it might also strengthen the adhesion sites. For example, it was

reported that cells treated with ML7 (a potent myosin II inhibitor) had less gelation

traction force and less focal adhesions [45]. When myosin II is reduced in our model,

although the gripping strength decreases, the number of gripping sites increases.

If myosinII were indeed able to stabilize griping sites, we could improve our model

by including that function, and the model predicted cell velocity would go higher

relative to the current result for cells with reduced myosin II.

The reaction diffusion equations have changed from previous work [86] such

that the cross linked actin network can polarize by its own. It agrees with the fact
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Figure 5.6: Illustration of computing space (c: center, l: left, r: right, u: up, d:
down, ul: upper-left, ur: upper-right, dl: lower-left, dr: lower-right).

that myosin II mutants can remain polarized and move forward. Under the new

model, we can study the effect of myosin II separately. However, the current

model still has some limitations. It is sensible to the total amount of rhoa. If

ρtota is outside a certain range, the cell can no longer polarize [68]. It’s possible

that there are extra pathways to control ρtota . Another possibility is that myosin II

might dissemble F-actin near the cell back, as was suggested in [97].

This chapter is based on the following paper:

D. Shao, W.J. Rappel and H. Levine. Coupling actin flow and adhesion

mechanism during cell migration. In preparation.

5.5 Appendix

5.5.1 Computational details

The partial differential equations are solved using finite difference method,

which is much easier to implement than finite element method. In the two dimen-

sional space, the grids are spaced ∆x in the x direction and ∆y in the y direction.
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The actin flow equation

υ0∇ · [φ(∇u + ∇uT )] + ∇ · σmyo + ∇ · σpoly + Fadh + Fmem = 0 (5.1)

can be written as

υ0∇ · [φ(∇u + ∇uT )]

= υ0(
∂

∂x
,
∂

∂y
)

(

2φ∂ux

∂x
φ∂ux

∂y
+ φ∂uy

∂x

φ∂uy

∂x
+ φ∂ux

∂y
2φ∂uy

∂y

)

= υ0[2
∂

∂x
(φ

∂ux

∂x
) +

∂

∂y
(φ

∂ux

∂y
) +

∂

∂y
(φ

∂uy

∂x
),

∂

∂x
(φ

∂uy

∂x
) + 2

∂

∂y
(φ

∂uy

∂y
) +

∂

∂x
(φ

∂ux

∂y
)]

Here ux denotes the x-component of the actin flow velocity u, while uy denotes

the y-component. We further use subscripts to label the positions relative to the

central grid (see Figure 5.6). The above equation becomes: in the x direction

υ0
∆x2

[(φl + φc)u
x
l − (φl + 2φc + φr)u

x
c + (φc + φr)u

x
r ]

+
υ0

2∆y2
[(φu + φc)u

x
u − (φu + 2φc + φd)u

x
c + (φc + φd)u

x
d]

+
υ0

4∆x∆y
[φd(u

y
dr − uy

dl) − φu(uy
ur − uy

ul)],

and in the y direction

υ0
2∆x2

[(φl + φc)u
y
l − (φl + 2φc + φr)u

y
c + (φc + φr)u

y
r ]

+
υ0

∆y2
[(φu + φc)u

y
u − (φu + 2φc + φd)u

y
c + (φc + φd)u

y
d]

+
υ0

4∆x∆y
[φr(u

x
dr − ux

ur) − φl(u
x
dl − uy

ul)]

Plug these into Eqn. 5.1, and write other terms in the similar way, we get

 Lx
xu

x + Lx
yu

x + F x
eff = 0 (5.2)

 Ly
xu

y + Ly
yu

y + F y
eff = 0 (5.3)

where Lx
x, Lx

y , Ly
x and Ly

y are the operators defined as

Lx
x =









υ0
∆x2 (φl + φc)

− υ0
∆x2 (φl + 2φc + φr) − ξ

υ0
∆x2 (φc + φr)
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Lx
y =









υ0
2∆y2

(φu + φc)

− υ0
2∆y2

(φu + 2φc + φd)

υ0
2∆y2

(φc + φd)









Ly
x =









υ0
2∆x2 (φl + φc)

− υ0
2∆x2 (φl + 2φc + φr) − ξ

υ0
2∆x2 (φc + φr)









Ly
y =









υ0
∆y2

(φu + φc)

− υ0
∆y2

(φu + 2φc + φd)

υ0
∆y2

(φc + φd)









and

F x
eff =

υ0
4∆x∆y

[φr(u
y
dr − uy

ur) − φl(u
y
dl − uy

ul)] + F x

F y
eff =

υ0
4∆x∆y

[φr(u
x
dr − ux

ur) − φl(u
x
dl − ux

ul)] + F y

Here F x and F y include the myosin II contraction, F-actin protrusion, and the

forces from the adhesion sites.

We use relaxation method to solve Eqn. 5.2 and Eqn. 5.3. That is, we solve

∂u

∂t
=  Lxu + Lyu + Feff (5.4)

for multiple iterations until we reach a steady state.

Eqn. 5.4 has operators in both x and y directions, and thus we use ADI

(Alternating Directional Implicit Method) method. We separate it into two steps

and solve one operator in each step. Specifically, Eqn. 5.4 can be implemented in

the Crank-Nicolson scheme

un+1 − un

∆t
= (Lx + Ly)

un + un+1

2
+ Feff

Let v = un+1 − un, then

(
I

∆t
−

1

2
Lx −

1

2
Ly)v = (Lx + Ly)u

n + Feff .

When ∆t is small,

I −
1

2
∆tLx −

1

2
∆tLy ∼ (I −

1

2
∆tLx)(I −

1

2
∆tLy)



79

We get

(I −
1

2
∆tLx)w = [(Lx + Ly)u + Feff ]∆t

(I −
1

2
∆tLy)v = w

Let η = 2
∆t
, then

(Lx − η)w = −2[(Lx + Ly)u + Feff ]∆t (5.5)

(Ly − η)v = −ηw (5.6)

Eqn. 5.5 and Eqn. 5.6 can be easily solved by LU decomposition. Then we

update un to un+1 using un+1 = un + v for each iteration.

Reaction-diffusion equations and the evolution equation for the phase-field

are solved using explicit method.



Chapter 6

Closing remarks

Cell migration is very complex. It consists of several modules, including

signaling pathways, actin polymerization, myosin contraction and adhesion. It can

also be modeled on different scales, for example, molecular scale, cellular scale, or

in between.

In Chapter 2, we studied the Ras adaptation under a uniform stimulus. Al-

though we got good response curves up to 35 seconds, the model did not capture

the response afterwards. In the experiment, a second peak was observed consis-

tently, which was probably due to the downstream feedback. In fact, there are

many other components in the signaling pathway where Ras resides. Above Ras,

there is G protein, which can activates multiple pathways. Downstream from Ras

are PI3K, PIP3, actin, etc. Moreover, the possible feedbacks between Ras, PI3K,

PIP3 and actin, along with the crosstalks with other signaling pathways compli-

cate the problem [15]. Therefore, One future direction is to gradually include those

components and get a better understanding of the overall picture.

One important function of the Ras pathway is to sense the external gradi-

ent. In fact, Dictyostelium cells are able to sense a gradient as shallow as 5 percent.

Moreover, it has been observed that Ras can amplify the external gradient dramat-

ically, which is not predicted by the vanilla model presented in Chapter 2. There

must be some extra mechanism to amplify the gradient, such as the ultra-sensitivity

mechanism. Future models can incorporate and test those mechanisms.

From Chapter 3 to Chapter 5, we built a framework that integrated chemical

80
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reactions, actomyosin mechanical engine and adhesions together based on the phase

field method. The phase field method is very powerful in solving moving boundary

problems, and has been successfully applied to vesicles. However, its potential was

not fully realized in the cell migration study. To build a framework based on the

phase field method, we cleared several obstacles out. For example, the boundary

conditions for a moving and deforming cell, including no flux of chemicals across

the boundary and zero net stress. Also the profile of the interface was maintained

consistently. Under this frame work, we managed to develop comprehensive models

on keratocytes and Dictyostelium cells.

Most previous models treated the adhesion mechanism as purely frictional

drag. In our model, the adhesion sites were either in the gripping mode (spring-like

force) or in the slipping mode (frictional drag). Our model was able to explain

the nonalignment in the central part of the cell, which was consistent with the

experimental observations. However, the detailed regulations on adhesion dynam-

ics need further clarification. For example, how the adhesion sites are regulated

by chemical signaling pathways, how they interact with the actin network, their

maturation process, and how the force is generated. Also, the substrate proper-

ties, such as rigidity, may also affect the effectiveness of cell migration, providing

another interesting topic.

The reaction diffusion equations were changed from Chapter 4 to Chapter

5. In the model of Chapter 4, the symmetry breaking was driven by myosin.

Once the cell started moving in a certain direction, myosin was left behind and

generated retraction forces. The distribution of F-actin was then determined by

myosin. If myosin were deleted from the system, the cell would lose its motility.

However, experiments have shown that mutants with myosin inhibited can still

move, indicating that F-actin has its own symmetry breaking mechanism. The

model in Chapter 5 was designed based on this conclusion. In this model, the total

amount of actin was conserved. Moreover, the ratio between the total amount of

actin and the cell area needs to fall in an intermediate range such that certain

percentage of actin was in the active state while the rest in the inactive state.

However, since the cell area may change during the migration, the actin/area ratio
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may change accordingly and slip out of the required range, and the cell will lose

its asymmetry. It’s possible that there exists some extra mechanism to control

the total area of the cell. Otherwise the cell needs some other symmetry breaking

mechanism. Given the complexity of the system, it’s very likely that cells employ

more than one regulatory mechanisms.

We had a hard time to get a stationary fan-like shape for keratocytes,

especially those with large aspect ratios. Actually, the model employing Chapter

4’s reaction-diffusion equations cannot give an aspect ratio larger than 1.8. The

accumulated myosin at the back of the cell tend to concave the membrane nearby.

Once the cell gets wider, myosin can easily diffuse into the front of cell and concave

the membrane along the leading edge, causing the cell to divide. Though this is

not the desired behavior in cell migration, it may be used to model mitosis in

eukaryotes and binary fission in prokaryotes.

There have been conflicting reports on the behavior of myosin mutants [3,

31, 45, 103, 97]. Our model predicted that the cell shape, cell speed and actin flow

were determined by the interaction of myosin and adhesion. Further collaboration

between modeling and experimental studies will foster a better understanding on

this topic.

In Chapter 4, we built a minimal model for Dictyostelium. That model

had a single patch and the patch’s birthplace distribution followed a simple delta

function. In the more realistic model [39], Hecht et al. used a couple of reaction

diffusion equations to regulate the patch signaling and modeled the phenomenon

of splitting of pseudopods. However, their model was defined only along the 1D

membrane. A future model combining the power of the phase field framework

and the biological details would help to unravel the mechanisms underlying the

chemotaxis of Dictyostelium cells.
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