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Abstract The normalised differential top quark-antiquark
production cross section is measured as a function of the jet
multiplicity in proton-proton collisions at a centre-of-mass
energy of 7 TeV at the LHC with the CMS detector. The mea-
surement is performed in both the dilepton and lepton+jets
decay channels using data corresponding to an integrated
luminosity of 5.0 fb−1. Using a procedure to associate jets to
decay products of the top quarks, the differential cross sec-
tion of the tt production is determined as a function of the
additional jet multiplicity in the lepton+jets channel. Fur-
thermore, the fraction of events with no additional jets is
measured in the dilepton channel, as a function of the thresh-
old on the jet transverse momentum. The measurements are
compared with predictions from perturbative quantum chro-
modynamics and no significant deviations are observed.

1 Introduction

Precise measurements of the top quark-antiquark (tt) produc-
tion cross section and top-quark properties performed at the
CERN Large Hadron Collider (LHC) provide crucial infor-
mation for testing the predictions of perturbative quantum
chromodynamics (QCD) at large energy scales and in pro-
cesses with multiparticle final states.

About half of the tt events are expected to be accompanied
by additional hard jets that do not originate from the decay of
the tt pair (tt +jets). In this paper, these jets will be referred to
as additional jets. These processes typically arise from either
initial- or final-state QCD radiation, providing an essential
handle to test the validity and completeness of higher-order
QCD calculations of processes leading to multijet events.
Calculations at next-to-leading order (NLO) are available for
tt production in association with one [1] or two [2] additional
jets. The correct description of tt +jets production is impor-
tant to the overall LHC physics program since it constitutes
an important background to processes with multijet final

∗ e-mail: cms-publication-committee-chair@cern.ch

states, such as associated Higgs-boson production with a tt
pair, with the Higgs boson decaying into a bb pair, or final
states predicted in supersymmetric theories. Anomalous pro-
duction of additional jets accompanying a tt pair could be a
sign of new physics beyond the standard model [3].

This paper presents studies of the tt production with addi-
tional jets in the final state using data collected in proton-
proton (pp) collisions with centre-of-mass energy

√
s =

7 TeV with the Compact Muon Solenoid (CMS) detector [4].
The analysis uses data recorded in 2011, corresponding to a
total integrated luminosity of 5.0 ± 0.1 fb−1. For the first
time, the tt cross section is measured differentially as a func-
tion of jet multiplicity and characterised both in terms of
the total number of jets in the event, as well as the num-
ber of additional jets with respect to the leading-order hard-
interaction final state. Kinematic properties of the additional
jets are also investigated. The results are corrected for detec-
tor effects and compared at particle level with theoretical
predictions obtained using different Monte Carlo (MC) event
generators.

The differential cross sections as a function of jet multi-
plicity are measured in both the dilepton (ee, µµ, and eµ) and
�+jets (� = e or µ) channels. For the dilepton channel, data
containing two oppositely charged leptons and at least two
jets in the final state are used, while for the �+jets channel,
data containing a single isolated lepton and at least three jets
are used. Following the analysis strategy applied to the mea-
surement of other tt differential cross sections [5], the results
are normalised to the inclusive cross section measured in
situ, eliminating systematic uncertainties related to the nor-
malisation. Lastly, the fraction of events that do not contain
additional jets (gap fraction), first measured by ATLAS [6],
is determined in the dilepton channel as a function of the
threshold on the transverse momentum (pT) of the leading
additional jet and of the scalar sum of the pT of all additional
jets.

The measurements are performed in the visible phase
space, defined as the kinematic region in which all selected
final-state objects are produced within the detector accep-

123



3014 Page 2 of 29 Eur. Phys. J. C (2014) 74:3014

tance. This avoids additional model uncertainties due to the
extrapolation of the measurements into experimentally inac-
cessible regions of phase space.

The paper is structured as follows. A brief description of
the CMS detector is provided in Sect. 2. Section 3 gives a
description of the event simulation, followed by details of
the object reconstruction and event selection in Sect. 4. A
discussion of the sources of systematic uncertainties is given
in Sect. 5. The measurement of the differential cross section
is presented as a function of the jet multiplicity in Sect. 6 and
as a function of the additional jet multiplicity in Sect. 7. The
study of the additional jet gap fraction is described in Sect. 8.
Finally, a summary is given in Sect. 9.

2 The CMS detector

The central feature of the CMS apparatus is a superconduct-
ing solenoid, 13 m in length and 6 m in diameter, which
provides an axial magnetic field of 3.8 T. The bore of the
solenoid is outfitted with various particle detection sys-
tems. Charged-particle trajectories are measured with sil-
icon pixel and strip trackers, covering 0 ≤ φ < 2π in
azimuth and |η| < 2.5 in pseudorapidity, where η is defined
as η = − ln[tan(θ/2)], with θ being the polar angle of the
trajectory of the particle with respect to the anticlockwise-
beam direction. A lead tungstate crystal electromagnetic
calorimeter (ECAL) and a brass/scintillator hadron calorime-
ter (HCAL) surround the tracking volume. The calorime-
try provides excellent resolution in energy for electrons
and hadrons within |η| < 3.0. Muons are measured up to
|η| < 2.4 using gas-ionisation detectors embedded in the
steel flux return yoke outside the solenoid. The detector is
nearly hermetic, providing accurate measurements of any
imbalance in momentum in the plane transverse to the beam
direction. The two-level trigger system selects most interest-
ing final states for further analysis. A detailed description of
the CMS detector can be found in Ref. [4].

3 Event simulation

The reference simulated tt sample used in the analysis is gen-
erated with the MadGraph (v. 5.1.1.0) matrix element gen-
erator [7], with up to three additional partons. The generated
events are subsequently processed using pythia (v. 6.424) [8]
to add parton showering using the MLM prescription [9] for
removing the overlap in phase space between the matrix ele-
ment and the parton shower approaches. The pythia Z2 tune
is used to describe the underlying event [10]. The top-quark
mass is assumed to be mt = 172.5 GeV. The proton struc-
ture is described by the CTEQ6L1 [11] parton distribution
functions (PDFs).

The MadGraph generator is used to simulate W+jets and
Z/γ ∗+jets production. Single-top-quark events (s-, t-, and
tW-channels) are simulated using powheg (r1380) [12–15].
Diboson (WW, WZ, and ZZ) and QCD multijet events are
simulated using pythia.

Additional tt and W+jets MadGraph samples are gen-
erated using different choices for the common factorisation
and renormalisation scale (μ2

F = μ2
R = Q2) and for the jet-

parton matching threshold. These are used to determine the
systematic uncertainties due to model uncertainties and for
comparisons with the measured distributions. The nominal
Q2 scale is defined as m2

t +∑
p2

T(jet). This is varied between
4Q2 and Q2/4. For the reference MadGraph sample, a jet-
parton matching threshold of 20 GeV is chosen, while for
the up and down variations, thresholds of 40 and 10 GeV are
used, respectively.

In addition to MadGraph, samples of tt events are
generated with powheg and mc@nlo (v. 3.41) [16]. The
CTEQ6M [11] PDF set is used in both cases. Both powheg

and mc@nlo match calculations to full NLO accuracy with
parton shower MC generators. For powheg, pythia is cho-
sen for hadronisation and parton shower simulation, with the
same Z2 tune utilised for other samples. For mc@nlo, her-

wig (v. 6.520) [17] with the default tune is used.
For comparison with the measured distributions, the event

yields in the simulated samples are normalised to an inte-
grated luminosity of 5.0 fb−1 according to their theoretical
cross sections. These are taken from next-to-next-to-leading-
order (NNLO) (W+jets and Z/γ ∗+jets), NLO plus next-to-
next-to-leading-log (NNLL) (single-top-quark s- [18], t- [19]
and tW-channels [20]), NLO (diboson [21]), and leading-
order (LO) (QCD multijet [8]) calculations. For the sim-
ulated tt sample, the full NNLO+NNLL calculation, per-
formed with the Top++ 2.0 program [22], is used. The PDF
and αS uncertainties are estimated using the PDF4LHC pre-
scription [23,24] with the MSTW2008nnlo68cl [25], CT10
NNLO [26,27], and NNPDF2.3 5f FFN [28] PDF sets, and
added in quadrature to the scale uncertainty to obtain a tt
production cross section of 177.3+10.1

−10.8 pb (for a top-quark
mass value of 172.5 GeV).

All generated samples are passed through a full detector
simulation using Geant4 [29], and the number of additional
pp collisions (pileup) is matched to the real distribution as
inferred from data.

4 Event reconstruction and selection

The event selection is based on the reconstruction of the tt
decay products. The top quark decays almost exclusively into
a W boson and a b quark. Only the subsequent decays of one
or both W bosons to a charged lepton and a neutrino are
considered here. Candidate events are required to contain
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the corresponding reconstructed objects: isolated leptons and
jets. The requirement of the presence of jets associated with
b quarks or antiquarks (b jets) is used to increase the purity
of the selected sample. The selection has been optimised
independently in each channel to maximise the signal content
and background rejection.

4.1 Lepton, jet, and missing transverse energy
reconstruction

Events are reconstructed using a particle-flow (PF) tech-
nique [30,31], in which signals from all CMS sub-detectors
are combined to identify and reconstruct the individual par-
ticle candidates produced in the pp collision. The recon-
structed particles include muons, electrons, photons, charged
hadrons, and neutral hadrons. Charged particles are required
to originate from the primary collision vertex, defined as
the vertex with the highest sum of transverse momenta of
all reconstructed tracks associated to it. Therefore, charged
hadron candidates from pileup events, i.e. originating from
a vertex other than the one of the hard interaction, are
removed before jet clustering on an event-by-event basis.
Subsequently, the remaining neutral-hadron pileup com-
ponent is subtracted at the level of jet energy correction
[32].

Electron candidates are reconstructed from a combina-
tion of their track and energy deposition in the ECAL [33].
In the dilepton channel, they are required to have a trans-
verse momentum pT > 20 GeV, while in the �+jets channel
they are required to have pT > 30 GeV. In both cases they
are required to be reconstructed within |η| < 2.4, and elec-
trons from identified photon conversions are rejected. As an
additional quality criterion, a relative isolation variable Irel

is computed. This is defined as the sum of the pT of all neu-
tral and charged reconstructed PF candidates inside a cone
around the lepton (excluding the lepton itself) in theη-φ plane
with radius 	R ≡ √

(	η)2 + (	φ)2 < 0.3, divided by the
pT of the lepton. In the dilepton (e+jets) channel, electrons
are selected as isolated if Irel < 0.12 (0.10).

Muon candidates are reconstructed from tracks that can
be matched between the silicon tracker and the muon sys-
tem [34]. They are required to have a transverse momentum
pT > 20 GeV within the pseudorapidity interval |η| < 2.4 in
the dilepton channel, and to have pT > 30 GeV and |η| < 2.1
in the �+jets channel. Isolated muon candidates are selected
by demanding a relative isolation of Irel < 0.20 (0.125) in
the dilepton (μ+jets) channel.

Jets are reconstructed by clustering the particle-flow can-
didates [35] using the anti-kT algorithm with a distance
parameter of 0.5 [36,37]. An offset correction is applied
to take into account the extra energy clustered in jets due
to pileup, using the FastJet algorithm [38] based on aver-
age pileup energy density in the event. The raw jet energies

are corrected to establish a relative uniform response of the
calorimeter in η and a calibrated absolute response in pT. Jet
energy corrections are derived from the simulation, and are
confirmed with in situ measurements with the energy balance
of dijet and photon+jet events [35]. Jets are selected within
|η| < 2.4 and with pT > 30 (35) GeV in the dilepton (�+jets)
channel.

Jets originating from b quarks or antiquarks are identified
with the Combined Secondary Vertex algorithm [39], which
provides a b-tagging discriminant by combining secondary
vertices and track-based lifetime information. The chosen
working point used in the dilepton channel corresponds to
an efficiency for tagging a b jet of about 80–85 %, while
the probability to misidentify light-flavour or gluon jets as
b jets (mistag rate) is around 10 %. In the �+jets channel, a
tighter requirement is applied, corresponding to a b-tagging
efficiency of about 65–70 % with a mistag rate of 1 %. The
probability to misidentify a c jet as b jet is about 40 % and
20 % for the working points used in the dilepton and �+jets
channels respectively [39].

The missing transverse energy (Emiss
T ) is defined as the

magnitude of the sum of the momenta of all reconstructed
PF candidates in the plane transverse to the beams.

4.2 Event selection

Dilepton events are collected using combinations of triggers
which require two leptons fulfilling pT and isolation criteria.
During reconstruction, events are selected if they contain at
least two isolated leptons (electrons or muons) of opposite
charge and at least two jets, of which at least one is identified
as a b jet. Events with a lepton pair invariant mass smaller
than 12 GeV are removed in order to suppress events from
heavy-flavour resonance decays. In the ee and µµ channels,
the dilepton invariant mass is required to be outside a Z-boson
mass window of 91 ± 15 GeV (Z-boson veto), and Emiss

T is
required to be larger than 30 GeV.

A kinematic reconstruction method [5] is used to deter-
mine the kinematic properties of the tt pair and to identify
the two b jets originating from the decay of the top quark
and antiquark. In the kinematic reconstruction the follow-
ing constraints are imposed: the Emiss

T originated entirely
from the two neutrinos; the reconstructed W-boson invari-
ant mass of 80.4 GeV [40] and the equality of the recon-
structed top quark and antiquark masses. The remaining
ambiguities are resolved by prioritising those event solutions
with two or one b-tagged jets over solutions using untagged
jets. Finally, among the physical solutions, the solutions are
ranked according to how the neutrino energies match with a
simulated neutrino energy spectrum and the highest ranked
one is chosen. The kinematic reconstruction yields no valid
solution for about 11 % of the events. These are excluded
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from further analysis. A possible bias due to rejected solu-
tions has been studied and found to be negligible.

In the e+jets channel, events are triggered by an isolated
electron with pT > 25 GeV and at least three jets with pT >

30 GeV. Events in the μ+jets channel are triggered by the
presence of an isolated muon with pT > 24 GeV fulfilling
η requirements. Only triggered events that have exactly one
high-pT isolated lepton are retained in the analysis. In the
e+jets channel, events are rejected if any additional electron
is found with pT > 20 GeV, |η| < 2.5, and relative isolation
Irel < 0.20. In the μ+jets channel, events are rejected if
any electron candidate with pT > 15 GeV, |η| < 2.5 and
Irel < 0.20 is reconstructed. In both �+jets channels events
with additional muons with pT > 10 GeV, |η| < 2.5, and
relative isolation Irel < 0.20 are rejected. The presence of
at least three reconstructed jets is required. At least two of
them are required to be b-tagged.

Only tt events from the decay channel under study are con-
sidered as signal. All other tt events are considered as back-
ground, including those containing leptons from τ decays,
which are the dominant contribution to this background.

4.3 Background estimation

After the full event selection is applied, the dominant back-
ground in the eμ channel comes from other tt decay modes,
estimated using simulation. In the ee and µµ channels, it
arises from Z/γ ∗+jets production. The normalisation of this
background contribution is derived from data using the events
rejected by the Z-boson veto, scaled by the ratio of events
failing and passing this selection estimated in simulation
(Rout/in) [41]. The number of Z/γ ∗+jets → ee/µµ events
near the Z-boson peak, N in

Z/γ ∗ , is given by the number of

all events failing the Z-boson veto, N in, after subtracting the
contamination from non-Z/γ ∗+jets processes. This contribu-
tion is extracted from eμ events passing the same selection,
N in

eµ, and corrected for the differences between the electron
and muon identification efficiencies using a correction factor
k. The Z/γ ∗+jets contribution is thus given by

N out = Rout/in N in
Z/γ ∗ = Rout/in(N in − 0.5k N in

eµ) (1)

The factor k is estimated from k2 = Neµ/Nee (Neµ/Nµµ)
for the Z/γ ∗ → e+e− (µ+µ−)+jets contribution, respec-
tively. Here Nee (Nµµ) is the number of ee (µµ) events in
the Z-boson region, without the requirement on Emiss

T . The
remaining backgrounds, including single-top-quark, W+jets,
diboson, and QCD multijet events are estimated from simu-
lation.

In the �+jets channel, the main background contributions
arise from W+jets and QCD multijet events, which are greatly
suppressed by the b-tagging requirement. A procedure based

on control samples in data is used to extract the QCD multijet
background. The leptons in QCD multijet events are expected
to be less isolated than leptons from other processes. Thus,
inverting the selection on the lepton relative isolation pro-
vides a relatively pure sample of QCD multijet events in
data. Events passing the standard event selection but with an
Irel between 0.3 and 1.0, and with at least one b-tagged jet are
selected. The sample is divided in two: the sideband region
(one b jet) and the signal region (≥2 b jets). The shape of the
QCD multijet background is taken from the signal region, and
the normalisation is determined from the sideband region. In
the sideband region, the Emiss

T distribution of the QCD mul-
tijet model, other sources of background (determined from
simulation), and the tt signal are fitted to data. The resulting
scaling of QCD multijet background is applied to the QCD
multijet shape from the signal region.

Since the initial state of LHC collision is enriched in up
quarks with respect to down quarks, more W bosons are
produced with positive charge than negative charge. In lep-
tonic W-boson decays, this translates into a lepton charge
asymmetry A. Therefore, a difference between the num-
ber of events with a positively charged lepton and those
with a negatively charged lepton (	±) is observed. In data,
this quantity (	±data) is proportional to the number of
W+jets events when assuming that only the charge asym-
metry from W-boson production is significant. The charge
asymmetry has been measured by CMS [42] and found
to be well described by the simulation, thus the simulated
value can be used to extract the number of W+jets events
from data: N data

W+jets = 	 ±data /A. The correction factor on
the W+jets normalisation, calculated before any b-tagging
requirement, is between 0.81 and 0.92 depending on the W
decay channel and the jet selection. Subsequently, b-tagging
is applied to obtain the number of W+jets events in the signal
region.

In addition, a heavy-flavour correction must be applied on
the W+jets sample to account for the differences observed
between data and simulation [43]. Using the matching
between selected jets and generated partons, simulated events
are classified as containing at least one b jet (W+bX), at least
one c jet and no b jets (W+cX), or containing neither b jets
nor c jets (W+light quarks). The rate of W+bX events is mul-
tiplied by 2 ±1 and the rate of W+cX events is multiplied by
1+1.0
−0.5. No correction is applied to W+light-jets events. These

correction factors are calculated in [43] in a phase space
which is close to the one used in the analysis. The uncer-
tainties in the correction factors are taken into account as
systematic uncertainties. The total number of W+jets events
is modified to conserve this number when applying the heavy-
flavour corrections. The remaining backgrounds, originating
from single-top-quark, diboson, and Z/γ ∗+jets processes,
are small and their contributions are estimated using simula-
tion.
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Fig. 1 Number of reconstructed jets (left) and jet pT spectrum (right)
after event selection in the dilepton channel for jets with pT > 30 GeV
(top), and in the �+jets channel for jets with pT > 35 GeV (bottom). The

hatched band represents the combined effect of all sources of systematic
uncertainty

The multiplicity and the pT distributions of the selected
reconstructed jets are shown for the dilepton and �+jets chan-
nels in Fig. 1. Good agreement for the jet multiplicity is
observed between data and simulation for up to 5 (6) jets in
the dilepton (�+jets) channels. For higher jet multiplicities,
the simulation predicts slightly more events than observed in
data. The modelling of the jet pT spectrum in data is shifted
towards smaller values, covered by the systematic uncertain-
ties. The uncertainty from all systematic sources, which are
described in Sect. 5, is determined by estimating their effect
on both the normalisation and the shape. The size of these
global uncertainties does not reflect those in the final mea-

surements, since they are normalised and, therefore, only
affected by shape uncertainties.

5 Systematic uncertainties

Systematic uncertainties in the measurement arise from
detector effects, background modelling, and theoretical
assumptions. Each systematic uncertainty is investigated sep-
arately and estimated for each bin of the measurement by
varying the corresponding efficiency, resolution, or scale
within its uncertainty. For each variation, the measured nor-
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malised differential cross section is recalculated, and the dif-
ference between the varied result and the nominal result in
each bin is taken as systematic uncertainty. The overall uncer-
tainty in the measurement is obtained by adding all contri-
butions in quadrature. The sources of systematic uncertainty,
described below, are assumed to be uncorrelated.

– Jet energy The impact of the jet energy scale (JES) [35] is
determined by varying the pT of all jets by the JES uncer-
tainty, which is typically below 3 %. The uncertainty due
to the jet energy resolution (JER) [44] is estimated by
varying the nominal value by ±1σ .

– tt model uncertainties Uncertainties originating from
theoretical assumptions on the renormalisation and fac-
torisation scales, the jet-parton matching threshold, the
hadronisation model, and the colour reconnection mod-
elling [45], are determined by repeating the analysis,
replacing the reference MadGraph signal simulation
by other simulation samples. In particular, the impact of
the former sources is assessed with MadGraph samples
with the renormalisation and factorisation scales simul-
taneously varied from the nominal Q2 values to 4Q2 and
Q2/4 and with jet-parton matching threshold varied to 40
and 10 GeV. The uncertainties from ambiguities in mod-
eling colour reconnection effects are estimated by com-
paring simulations of an underlying event tune including
colour reconnection to a tune without it (the Perugia 2011
and Perugia 2011 noCR tunes described in [46]). The
hadronisation model uncertainty is estimated by com-
paring samples simulated with powheg and mc@nlo,
using pythia and herwig, respectively, for hadronisa-
tion. The uncertainty arising from the PDFs is assessed
by reweighting the tt signal sample according to the 44
CTEQ66 error PDF sets, at 90 % confidence level. The
effects of these variations are added in quadrature.

– Background The uncertainty due to the normalisation of
the backgrounds that are taken from simulation is deter-
mined by varying the cross section by ±30 % [47,48].
This takes into account the uncertainty in the predicted
cross section and all other sources of systematic uncer-
tainty.
In the dilepton channels, the contribution from Z/γ ∗+jets
processes as determined from data is varied in normali-
sation by ±30 % [41].
In the �+jets channels, the uncertainty in the W+jets back-
ground arises from the contamination of other processes
with a lepton charge asymmetry when extracting the rate
from data, and from the uncertainty in the heavy-flavour
correction factors. The rate uncertainty is estimated to
range from 10 to 20 %, depending on the channel. The
model uncertainty is estimated using samples with varied
renormalisation and factorisation scales and jet-parton

matching threshold.
The QCD multijet background modelling uncertainty
arises from the choice of the relative isolation require-
ment on the anti-isolated lepton used for the extraction
of the background from data, the influence of the contam-
ination from other processes on the shape, and the extrap-
olation from the sideband to the signal region. The total
uncertainty is about 15 % to more than 100 %, depending
on the channel.

– Other systematic uncertainties The uncertainty asso-
ciated with the pileup model is determined by varying
the minimum bias cross section within its uncertainty
of ±8 %. Other uncertainties taken into account origi-
nate from lepton trigger, isolation, and identification effi-
ciencies; b-jet tagging efficiency and misidentification
probability; integrated luminosity [49]; and the kinematic
reconstruction algorithm used in the dilepton channels.

In the dilepton channels, the total systematic uncertainty
is about 3 % at low jet multiplicities, and increases to about
20 % in the bins with at least five jets. In the �+jets channels,
the total systematic uncertainty is about 6 % at the lowest jet
multiplicity, and increases to 34 % for events with at least 8
jets.

The dominant systematic uncertainties for both dilepton
and �+jets channels arise from the JES (with typical values
from 2 to 20 %, depending on the jet multiplicity bin and
cross section measurement) and the signal model including
hadronisation, renormalisation and factorisation scales and
jet-parton matching threshold (from 3 to 30 %). The typi-
cal systematic uncertainty due to JER ranges from 0.2 to
3 %, b-tagging from 0.3 to 2 %, pileup from 0.1 to 1.4 %, and
background normalisation from 1.6 to 3.8 %. The uncertainty
from other sources is below 0.5 %. The remaining uncertain-
ties on the model arise from PDF and colour reconnection,
varying from 0.1 to 1.5 % and from 1 to 5.8 %, respectively.
In all channels, the systematic uncertainty for larger jet mul-
tiplicities is dominated by the statistical uncertainty of the
simulated samples that are used for the evaluation of mod-
elling uncertainties.

6 Normalised differential cross section as a function
of jet multiplicity

The differential tt production cross section as a function of the
jet multiplicity is measured from the number of signal events
after background subtraction and correction for the detector
efficiencies and acceptances. The estimated number of back-
ground events arising from processes other that tt production
(Nnon tt BG) is directly subtracted from the number of events
in data (N ). The contribution from other tt decay modes is
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Table 1 Normalised differential tt production cross section as a func-
tion of the jet multiplicity for jets with pT > 30 GeV in the dilep-
ton channel. The statistical, systematic, and total uncertainties are also
shown. The main experimental and model systematic uncertainties are

displayed: JES and the combination of renormalisation and factorisa-
tion scales, jet-parton matching threshold, and hadronisation (in the
table “Q2/Match./Had.”)

Njets 1/σ dσ/dNjets Stat. (%) Exp. Syst. (%) Model Syst. (%) Total (%)

JES Other Q2/Match./Had. Other

2 0.600 1.2 1.4 0.6 0.5 1.6 2.5

3 0.273 3.3 2.3 2.8 5.4 1.6 7.2

4 0.096 5.1 6.3 3.4 2.8 1.6 9.3

5 0.025 10.1 7.9 3.0 17.4 1.9 24.0

≥6 0.0013 23.8 14.2 2.8 24.3 2.1 37.1

Table 2 Normalised differential tt production cross section as a func-
tion of the jet multiplicity for jets with pT > 60 GeV in the dilep-
ton channel. The statistical, systematic, and total uncertainties are also
shown. The main experimental and model systematic uncertainties are

displayed: JES and the combination of renormalisation and factorisa-
tion scales, jet-parton matching threshold, and hadronisation (in the
table “Q2/Match./Had.”)

Njets 1/σ dσ/dNjets Stat. (%) Exp. Syst. (%) Model Syst. (%) Total (%)

JES Other Q2/Match./Had. Other

0 0.158 3.4 7.0 5.7 2.7 1.6 10.1

1 0.397 4.0 4.9 2.0 3.3 1.9 7.6

2 0.350 2.6 3.2 3.3 3.5 1.7 6.6

3 0.079 5.2 3.4 3.0 5.8 1.6 9.2

4 0.0127 13.9 5.4 3.5 15.8 1.7 22.1

5 0.0020 30.9 4.8 3.6 15.5 1.6 35.1

≥6 0.00012 57.1 4.7 16.7 38.7 2.9 69.4

taken into account by correcting N–Nnon tt BG with the sig-
nal fraction, defined as the ratio of the number of selected tt
signal events to the total number of selected tt events. This
avoids the dependence on the inclusive tt cross section used
for normalisation. The normalised differential cross section
is derived by scaling to the total integrated luminosity and by
dividing the corrected number of events by the cross section
measured in situ for the same phase space. Because of the
normalisation, those systematic uncertainties that are corre-
lated across all bins of the measurement, and therefore only
affect the normalisation, cancel out. In order to avoid addi-
tional uncertainties due to the extrapolation of the measure-
ment outside of the phase space region probed experimen-
tally, the differential cross section is determined in a visible
phase space defined at the particle level by the kinematic and
geometrical acceptance of the final-state leptons and jets.

The visible phase space at particle level is defined as fol-
lows. The charged leptons from the tt decays are selected
with |η| < 2.4 in dilepton events and |η| < 2.5 (2.1) in
e+jets (μ+jets) final states, pT > 20 (30) GeV in the dilep-
ton (�+jets) channels. A jet is defined at the particle level in
a similar way as described in Sect. 4 for the reconstructed
jets, by applying the anti-kT clustering algorithm to all stable

particles (including neutrinos not coming from the hard inter-
action). Particle-level jets are rejected if the selected leptons
are within a cone of 	R = 0.4 with respect to the jet, to
avoid counting leptons misidentified as jets. A jet is defined
as a b jet if it contains the decay products of a b hadron.
The two b jets from the tt decay have to fulfill the kinematic
requirements |η| < 2.4 and pT > 30 (35) GeV in the dilep-
ton (�+jets) events. In the �+jets channels, a third jet with the
same properties is also required.

Effects from trigger and detector efficiencies and resolu-
tions, leading to migrations of events across bin boundaries
and statistical correlations among neighbouring bins, are cor-
rected by using a regularised unfolding method [5,50,51]. A
response matrix that accounts for migrations and efficiencies
is calculated from simulated tt events using the reference
MadGraph sample. The event migration in each bin is con-
trolled by the purity (number of events reconstructed and gen-
erated in one bin divided by the total number of reconstructed
events in that bin) and the stability (number of events recon-
structed and generated in one bin divided by the total number
of generated events in that bin). In these measurements, the
purity and stability in the bins is typically 60 % or higher. The
generalised inverse of the response matrix is used to obtain
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Fig. 2 Normalised differential tt production cross section as a func-
tion of the jet multiplicity for jets with pT >30 GeV (top) and pT >

60 GeV (bottom) in the dilepton channel. The measurements are com-
pared to predictions from MadGraph+pythia, powheg+pythia, and
mc@nlo+herwig (left), as well as from MadGraph with varied renor-

malisation and factorisation scales, and jet-parton matching threshold
(right). The inner (outer) error bars indicate the statistical (combined
statistical and systematic) uncertainty. The shaded band corresponds to
the combined statistical and systematic uncertainty

the unfolded distribution from the measured distribution by
applying a χ2 technique. To avoid non-physical fluctuations,
a smoothing prescription (regularisation) is applied [5,52].
The unfolded data are subsequently corrected to take into
account the acceptance in the particle level phase space.

The measured normalised differential cross sections are
consistent among the different dilepton and �+jets chan-
nels. The final results in the dilepton and �+jets channels are
obtained from the weighted average of the individual mea-
surements, using the statistical uncertainty as the weight. The
result from the combination of e+jets and μ+jets channels is
defined for the pseudorapidity range |η| < 2.1, i.e. according

to the selection criterion of the μ+jets channel. The difference
of this result to that for the pseudorapidity range |η| < 2.5
has been estimated to be less than 0.4 % in any of the bins of
the jet multiplicity distribution. In the combination, the dif-
ferences in the |η|-range between μ+jets and e+jets channels
are therefore neglected.

The normalised differential tt production cross section,
1/σ dσ/dNjets, as a function of the jet multiplicity, Njets, is
shown in Tables 1 and 2, and Fig. 2 for the dilepton channel
and jets with pT > 30 (60) GeV. For the �+jets channel it is
shown in Table 3 and Fig. 3 for jets with pT > 35 GeV. In
the tables, the experimental uncertainties are divided between
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Table 3 Normalised differential tt production cross section as a func-
tion of the jet multiplicity for jets with pT > 35 GeV in the �+jets chan-
nel. The statistical, systematic, and total uncertainties are also shown.
The main experimental and model systematic uncertainties are dis-

played: JES and the combination of renormalisation and factorisation
scales, jet-parton matching threshold, and hadronisation (in the table
“Q2/Match./Had.”)

Njets 1/σ dσ/dNjets Stat. (%) Exp. Syst. (%) Model Syst. (%) Total (%)

JES Other Q2/Match./Had. Other

3 0.453 0.9 3.8 2.2 3.8 1.3 6.1

4 0.372 1.2 1.8 1.8 3.2 1.4 4.5

5 0.130 2.7 5.6 2.0 7.5 1.8 10.2

6 0.0353 5.3 6.7 2.4 14.2 2.5 17.0

7 0.00841 10.5 10.7 3.3 19.1 4.3 24.9

≥8 0.00130 26.4 17.7 5.1 28.6 3.4 43.2

the dominant (JES) and other (JER, b-tagging, pileup, lepton
identification, isolation, and trigger efficiencies, background
contribution and integrated luminosity) contributions. The
model uncertainties are also divided between the dominant
(renormalisation and factorisation scales, jet-parton match-
ing threshold, and hadronisation) and other (PDF and colour
reconnection) contributions. The measurements are com-
pared to the predictions from MadGraph and powheg, both
interfaced with pythia, and from mc@nlo interfaced with
herwig.

The predictions from MadGraph+pythia and powheg

+pythia are found to provide a reasonable description of the
data. In contrast, mc@nlo+herwig generates fewer events
in bins with large jet multiplicities. The effect of the variation
of the renormalisation and factorisation scales and jet-parton
matching threshold in MadGraph+pythia is compared with
the reference MadGraph+pythia simulation. The choice of
lower values for both these parameters seems to provide a
worse description of the data for higher jet multiplicities.

7 Normalised differential cross section as a function
of the additional jet multiplicity

The normalised differential tt production cross section is also
determined as a function of the number of additional jets
accompanying the tt decays in the �+jets channel. This mea-
surement provides added value to the one presented in Sect. 6
by distinguishing jets from the tt decay products and jets
coming from additional QCD radiation. This is particularly
interesting in final states with many jets.

For this measurement, the event selection follows the pre-
scription discussed in Sect. 4, and requires at least four jets
(in order to perform a full event reconstruction later) with
pT > 30 GeV and |η| < 2.4. The pT requirement is lowered
to gain more data and reduce the statistical uncertainty. The
particle-level jets, defined as described in Sect. 6 but with

pT > 30 GeV, are counted as additional jets if their distance
to the tt decay products is 	R > 0.5. We consider the fol-
lowing objects as tt decay products: two b quarks, two light
quarks from the hadronically decaying W boson, and the
lepton from the leptonically decaying W boson; the neutrino
is not included. The simulated tt events are classified into
three categories according to the number of additional jets
(0, 1, and ≥2) selected according to this definition. Figure 4
illustrates the contributions of tt events with 0, 1, and ≥2
additional jets to the number of reconstructed jets in the sim-
ulation.

A full event reconstruction of the tt system is performed in
order to create a variable sensitive to additional jets, taking
into account all possible jet permutations. The most likely
permutation is determined using a χ2 minimisation, where
the χ2 is given by:

χ2 =
(

mrec
Whad − mtrue

Whad

σWhad

)2

+
(

mrec
thad − mtrue

thad

σthad

)2

+
(

mrec
tlep − mtrue

tlep

σtlep

)2

,

where mrec
thad and mrec

tlep are the reconstructed invariant masses
of the hadronically and the leptonically decaying top quark,
respectively, and mWhad is the reconstructed invariant mass of
the W boson from the hadronic top-quark decay. The param-
eters mtrue and σthad , σtlep , and σWhad are the mean value and
standard deviations of the reconstructed mass distributions
in the tt simulation. In each event, all jet permutations in
which only b-tagged jets are assigned to b quarks are consid-
ered. The permutation with the smallest χ2 value is chosen as
the best hypothesis. For events containing the same number
of reconstructed jets (Njets) the variable

√
χ2 provides good

discrimination between events classified as tt + 0, 1, and ≥2
additional jets. The discrimination power is due to the sensi-
tivity of the event reconstruction to the relation between Njets
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Fig. 3 Normalised differential tt production cross section as a function
of jet multiplicity for jets with pT > 35 GeV in the �+jets channel. The
measurement is compared to predictions from MadGraph+pythia,
powheg+pythia, and mc@nlo+herwig (top), as well as from Mad-

Graph with varied renormalisation and factorisation scales, and jet-
parton matching threshold (bottom). The inner (outer) error bars indi-
cate the statistical (combined statistical and systematic) uncertainty.
The shaded band corresponds to the combined statistical and system-
atic uncertainty

and the number of additional jets Nadd. jets. The best event

reconstruction, thus providing a smaller
√

χ2, is achieved if
the observation is close to Njets = 4 + Nadd. jets, where four
is the expected number of jets from the tt decay partons. For
instance, a tt + 1 additional jet event with Njets = 4 is likely

jetsN
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A
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0.2

0.3

0.4
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0.6
 + 0 add. Jetstt
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Lepton+Jets Combined

 = 7 TeVsCMS Simulation at

Fig. 4 Jet multiplicity distribution in simulated tt events in the �+jets
channel. The splitting into three categories, defined by the compatibility
of the selected particle level jets with the tt decay partons is also shown
(cf. Sect. 7)

to get a large
√

χ2 value because one of the four jets from
the tt decay partons is missing for a correct event reconstruc-
tion.

The measurement of the fractions of tt events with 0, 1, and
≥2 additional jets is performed using a binned maximum-
likelihood fit of the

√
χ2 templates to data, simultaneously

in both �+jets channels. The normalisations of the signal tem-
plates (tt + 0, 1, and ≥2 additional jets) are free parameters in
the fit. For the normalisations of the background processes,
Gaussian constraints corresponding to the uncertainties of
the background predictions are applied. It has been verified
that the use of log-normal constraints gives similar results.
The result of the fit is shown in Fig. 5. The QCD multijet and
W+jets templates are estimated using the data-based methods
described in Sect. 4.

The normalisations for the three signal templates are
applied to the predicted differential cross section in the vis-
ible phase space, calculated using the simulated tt sample
from MadGraph+pythia. This phase space is defined as in
Sect. 6 with the requirement of four particle level jets with
pT > 30 GeV. This provides the differential cross section as
a function of the number of additional jets, which is finally
normalised to the total cross section measured in the same
phase space. The results are shown in Fig. 6 and summarised
in Table 4.

For each tt + additional jet template used in the maximum-
likelihood fit, a full correlation is assumed between the rate
of events that fulfill the particle-level selection and the rate
of events that do not. Therefore, a single template is used for
both parts.
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Fig. 5 Result of the simultaneous template fit to the
√

χ2 distribution in the �+jets channel. All templates are scaled to the resulting fit parameters

Including an additional template made from events that
are not inside the visible phase space leads to fit results that
are compatible within the estimated uncertainties. To check
the model dependency, the fit is repeated using simulated
data from mc@nlo+herwig and powheg+pythia instead
of MadGraph+pythia. The results are stable within the
uncertainties.

The sources of systematic uncertainties are the same as
those discussed in Sect. 5, except for the background nor-
malisations, which are constrained in the fit. Their effect
is propagated to the fit uncertainty, which is quoted as the
statistical uncertainty. The impact of the systematic uncer-
tainties on the extracted fractions of tt + 0, 1, and ≥2
additional jets is evaluated using pseudo-experiments. The
most important contributions to the systematic uncertainties
originate from JES (up to 7 %) and modelling uncertain-
ties: hadronisation (up to 6 %), jet-parton matching thresh-
old (up to 5 %), and renormalisation and factorisation scales
(up to 4 %).

The mc@nlo+herwig prediction produces fewer events
with ≥2 additional jets than data, which are well described by
MadGraph+pythia and powheg+pythia. The prediction

from MadGraph+pythia with lower renormalisation and
factorisation scales provides a worse description of the data.
These observations are in agreement with those presented in
Sect. 6.

8 Additional jet gap fraction

An alternative way to investigate the jet activity arising from
quark and gluon radiation produced in association with the
tt system is to determine the fraction of events that do not
contain additional jets above a given threshold. This measure-
ment is performed using events in the dilepton decay channel
after fulfilling the event reconstruction and selection require-
ments discussed in Sect. 4. The additional jets are defined as
those not assigned to the tt system by the kinematic recon-
struction described in Sect. 4.2.

A threshold observable, referred to as gap fraction [6], is
defined as:

f (pT) = N (pT)

Ntotal
, (2)
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Fig. 6 Normalised differential tt production cross section as a func-
tion of the number of additional jets in the �+jets channel. The
measurement is compared to predictions from MadGraph+pythia,
powheg+pythia, and mc@nlo+herwig (top), as well as from Mad-

Graph with varied renormalisation and factorisation scales, and jet-
parton matching threshold (bottom). The inner (outer) error bars indi-
cate the statistical (combined statistical and systematic) uncertainty.
The shaded band corresponds to the combined statistical and system-
atic uncertainty

where Ntotal is the number of selected events and N (pT)

is the number of events that do not contain additional jets
above a pT threshold in the whole pseudorapidity range
used in the analysis (|η| < 2.4). The pseudorapidity and
pT distributions of the first and second leading (in pT)
additional reconstructed jets are presented in Fig. 7. The
distributions show good agreement between data and the
simulation.

The veto can be extended beyond the additional leading
jet criteria by defining the gap fraction as

f (HT) = N (HT)

Ntotal
, (3)

where N (HT) is the number of events in which HT, the scalar
sum of the pT of the additional jets (with pT > 30 GeV), is
less than a certain threshold.

For each value of pT and HT thresholds, the gap fraction is
evaluated at particle level in the visible phase space defined
in Sect. 6. The additional jets at particle level are defined as
all jets within the kinematic acceptance not including the two
highest-pT b jets containing the decay products of different
b hadrons. They are required to fulfill the condition that they
are not within a cone of 	R = 0.4 from any of the two
isolated leptons, as described in Sect. 6.

Given the large purity of the selected events for any value
of pT and HT, a correction for detector effects is applied
following a simpler approach than the unfolding method used
in Sect. 6. Here, the ratio of the particle-level to the simulated
gap fraction distributions, obtained with the tt sample from
MadGraph, provides the correction which is applied to the
data.

The measured gap-fraction distribution is compared to
predictions from MadGraph+pythia, powheg+pythia,
and mc@nlo+herwig, and to the predictions from the
MadGraph samples with varied renormalisation and fac-
torisation scales and jet-parton matching threshold. In Fig. 8
the gap fraction is measured as a function of the pT of
the leading additional jet (left) and as a function of HT

(right), with the thresholds (defined at the abscissa where
the data point is shown) varied between 35 and 380 GeV.

Table 4 Normalised differential tt production cross section as a func-
tion of the jet multiplicity for jets with pT > 30 GeV in the dilep-
ton channel. The statistical, systematic, and total uncertainties are also
shown. The main experimental and model systematic uncertainties are

displayed: JES and the combination of renormalisation and factorisa-
tion scales, jet-parton matching threshold, and hadronisation (in the
table “Q2/Match./Had.”)

Njets 1/σ dσ/dNadd. jets Stat. (%) Exp. Syst. (%) Model Syst. (%) Total (%)

JES Other Q2/Match./Had. Other

tt + 0 add. Jets 0.332 1.2 4.2 1.4 7.5 1.6 9.0

tt + 1 add. Jet 0.436 1.5 0.9 1.0 9.5 1.3 9.8

tt + ≥2 add. Jets 0.232 1.8 7.2 1.5 9.6 2.6 12.5
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Fig. 7 Distribution of the η (left) and the pT (right) of the first (top)
and second (bottom) leading additional reconstructed jets compared to
signal and background simulated samples. The error bars on the data

points indicate the statistical uncertainty. The hatched band represents
the combined effect of all sources of systematic uncertainty

The results are summarised in Tables 5 and 6, respectively.
The measurements are consistent among the three dilep-
ton channels. The gap fraction is lower as a function of
HT showing that the measurement is probing quark and
gluon emission beyond the first emission. The gap frac-
tion is better described by mc@nlo +herwig compared
to MadGraph+pythia and powheg+pythia. This result
is not incompatible with the observation described above,
because the gap fraction requires the jets to have a cer-
tain pT above the threshold, which does not imply neces-
sarily large jet multiplicities. Decreasing the renormalisa-
tion and factorisation scales or matching threshold in the

MadGraph sample worsens the agreement between data and
simulation.

The total systematic uncertainty is about 3.5 % for values
of the threshold (pT or HT) below 40 GeV, and decreases to
0.2 % for values of the thresholds above 200 GeV. Dominant
sources of systematic uncertainty arise from the uncertainty
in the JES and the background contamination, corresponding
to approximately 2 and 1 % systematic uncertainty, respec-
tively, for the smallest pT and HT values. Other sources with
smaller impact on the total uncertainty are the b-tagging effi-
ciency, JER, pileup, and the procedure used to correct the
data to particle level.
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Fig. 8 Measured gap fraction as a function of the additional jet pT

(left) and of HT = ∑
padd. jets

T (right) in the dilepton channels. Data are
compared to predictions from MadGraph+pythia, powheg+pythia,
and mc@nlo+herwig (top), as well as from MadGraph with var-

ied renormalisation and factorisation scales, and jet-parton matching
threshold (bottom). The error bars on the data points indicate the sta-
tistical uncertainty. The shaded band corresponds to the combined sta-
tistical and total systematic uncertainty (added in quadrature)

9 Summary

Measurements of the normalised differential tt production
cross section as a function of the number of jets in the dilep-
ton (ee, µµ, and eμ) and �+jets (e+jets, μ+jets) channels
are presented. The measurements are performed using a data
sample corresponding to an integrated luminosity of 5.0 fb−1

collected in pp collisions at
√

s = 7 TeV with the CMS detec-
tor. The results are presented in the visible phase space and
compared with predictions of perturbative quantum chromo-
dynamics from MadGraph and powheg interfaced with
pythia, and mc@nlo interfaced with herwig, as well as
MadGraph with varied renormalisation and factorisation
scales, and jet-parton matching threshold. The normalised

differential tt production cross section is also measured as
a function of the jets radiated in addition to the tt decay
products in the �+jets channel. The MadGraph+pythia

and powheg+pythia predictions describe the data well up
to high jet multiplicities, while mc@nlo+herwig predicts
fewer events with large number of jets. The gap fraction
is measured in dilepton events as a function of the pT of
the leading additional jet and the scalar sum of the pT of
the additional jets, and is also compared to different the-
oretical predictions. No significant deviations are observed
between data and simulation. The mc@nlo+herwig model
seems to more accurately describe the gap fraction for all
values of the thresholds compared to MadGraph+pythia

and powheg+pythia.
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Table 5 Measured gap fraction as a function of the additional jet pT.
The statistical, systematic, and total uncertainties are also shown

pT Threshold (GeV) Result Stat. (%) Syst. (%) Total (%)

35 0.64 1.7 3.5 3.9

45 0.70 1.4 2.6 3.0

55 0.74 1.3 2.4 2.7

65 0.77 1.2 2.0 2.3

75 0.80 1.1 1.6 2.0

85 0.82 1.0 1.4 1.8

95 0.84 1.0 1.4 1.7

110 0.87 0.9 1.1 1.4

130 0.89 0.8 0.8 1.1

150 0.92 0.7 0.8 1.1

170 0.93 0.6 0.6 0.8

190 0.95 0.6 0.5 0.7

210 0.96 0.5 0.5 0.7

230 0.96 0.4 0.5 0.6

250 0.97 0.4 0.4 0.6

270 0.98 0.4 0.4 0.5

300 0.98 0.3 0.3 0.5

340 0.99 0.3 0.3 0.4

380 0.99 0.2 0.2 0.3

Table 6 Measured gap fraction as a function of HT = ∑
padd. jets

T . The
statistical, systematic, and total uncertainties are also shown

HT Threshold (GeV) Result Stat. (%) Syst. (%) Total (%)

35 0.64 1.6 3.6 3.9

45 0.71 1.4 2.3 2.6

55 0.77 1.2 1.9 2.3

65 0.81 1.1 1.4 1.8

75 0.84 1.0 1.2 1.5

85 0.87 0.9 1.1 1.4

95 0.89 0.8 1.0 1.3

110 0.91 0.7 0.8 1.1

130 0.93 0.6 0.6 0.8

150 0.95 0.5 0.6 0.8

170 0.96 0.4 0.5 0.7

190 0.97 0.4 0.4 0.6

210 0.98 0.3 0.4 0.5

230 0.98 0.3 0.3 0.4

250 0.99 0.3 0.2 0.3

270 0.99 0.2 0.2 0.3

300 0.99 0.2 0.2 0.3

340 1.00 0.2 0.2 0.2

380 1.00 0.1 0.1 0.2
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