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 Whole-brain structural and functional connectivity networks can be assessed using 

diffusion-weighted MRI (DW-MRI) and functional MRI (fMRI), respectively. When the brain is 

parcellated into its constituent subregions, specific methods quantify the relative connectivity 

strengths between pairs of regions. The calculation of connectivity between all pairs of regions 

produces a connectivity matrix. With such a matrix, mathematical methods from graph theory 

characterize the network for global properties of integration, segregation, and robustness. At the 

regional level, these methods quantify specific properties such as connection density, 

convergence, and isolation. In this work, we apply these methods to understand how the 

possession of the Apolipoprotein E ε4 allele, the primary genetic risk factor for late-onset 

Alzheimer’s Disease (AD), contributes to global and local alterations of structural and functional 

connectivity. In Chapter 2, we find that DW-MRI-based fiber tractography networks in aging 

APOE-4 carriers exhibit accelerated negative correlations between age and clustering 

coefficient, a measure of local axonal connection density. This trend occurs simultaneously with 

reductions in global cortical thickness and decrease performance on episodic memory tests. In 

a highly similar population, we examined fMRI-based functional connectivity networks during 
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performance on an episodic memory task (Chapter 3). APOE-4 carriers demonstrated reduced 

activation during memory encoding in the entorhinal cortex, a locus of early disease change in 

Alzheimer’s disease. The degree of activation in this region correlated with the amount of 

functional brain integration, suggesting a global basis for local alterations in neuronal activity. In 

Chapter 4, we assessed hippocampal functional and structural connectivity during episodic 

memory consolidation in healthy young adults. Results indicate that elevated functional 

connectivity in a hippocampal-cortical network was important for the process of consolidation. 

The structural connections of this network all traversed the parahippocamal gyrus, an area of 

known structural atrophy in individuals at genetic risk for AD. In Chapter 5 we describe a web-

based tool for the public sharing and analysis of brain connectivity matrices, and then apply it to 

reveal substantial differences in the topology of whole brain structural and functional networks. 

Finally, Chapter 6 contains a model of cortico-hippocampal connectivity that unifies the findings 

from these studies. 
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Chapter 1 
 

Introduction 
 

The hippocampus and surrounding structures in the medial temporal lobe (MTL) are 

essential for episodic memory encoding and retrieval (Squire et al., 2004). The specialized role 

of the hippocampus in the formation of memories based on multisensory input is largely 

explained by its connectivity with the cerebral cortex. Cortical systems such as the visual 

processing network have a hierarchical connectivity pattern, aggregates input at progressively 

fewer number of regions, converging at the top of the hierarchy in the entorhinal cortex. This 

extrahippocampal area acts as a gateway that funnels inputs from the cortex into the 

hippocampus (Felleman and Van Essen, 1991).   

Variations in the functional and structural properties of the MTL relate to individual 

variations in memory capability that result from intrinsic individual differences (Wig et al., 2008), 

normal aging , and disease processes such as Alzheimer’s Disease (AD) (Greicius et al., 2004) 

(Salat et al., 2010). MTL structures are of particular interest in AD for two primary reasons: 1) 

episodic memory is the hallmark impairment in AD and 2) the earliest signs of cellular pathology 

in AD appear in the MTL (Braak and Braak, 1991; Gómez-Isla et al., 1996). The evolving 

understanding of AD indicates a network-based process of degeneration (Delbeuck et al., 2003) 

(Raj et al., 2012) with potential origins in the MTL (De Calignon et al., 2012). It is critical to 

investigate the earliest changes in MTL connectivity that occur in individuals with high risk for 

AD, as conferred by aging and genetic risk, in order to understand fundamental disease 

processes and develop highly sensitive biomarkers. 

Recent advances in magnetic resonance imaging (MRI) hardware and pulse sequence 

development have enabled characterization of brain structure and function at improved spatial 

and temporal resolutions with higher signal to noise ratio and better tissue-type contrast. In 

parallel, rapidly advancing statistical and mathematical methods have enabled the assessment 

of brain connectivity, both functionally through blood-oxygen level dependent (BOLD) signal 
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covariations across the brain, and structurally through the detection of continuous streamlines of 

water diffusion parallel to myelinated fiber sheaths in the brain’s white matter. These 

developments have enabled the characterization of the macroscale connectivity of an 

individual’s brain possible within an hour-long MRI scanning session. Following is a description 

of these different MRI-based modalities and how they are used to quantify structural and 

functional brain connectivity within individuals. These measures are then compared across 

individuals to assess differences that appear to be driven by factors such as genetic variability 

and/or aging (see Chapters 2 and 3) and contribute to individual performance differences on 

psychological tests of memory performance (see Chapters 2 and 4). 

 

DTI and Structural Network Analysis 

Diffusion-weighted MRI is a technique that exploits the properties of water diffusion in 

different types of brain tissue to observe microstructural properties. The most common version 

of diffusion weighted MRI today is Diffusion Tensor Imaging, or DTI. Using modern 3T MRI 

scanners and DTI pulse sequences, one can obtain a highly accurate image of the brain’s white 

matter. DTI tractography is a method for systematically tracking similar orientations of diffusion 

throughout the brain’s white matter. The fiber bundles derived from DTI tractography are striking 

reproductions of known brain anatomical structures including the corpus callosum, corticospinal 

tract, corona radiata, arcute fasciculus, cingulum bundle, and so forth. Viewing software enables 

virtual dissections, isolation of specific bundles or subsets of fibers, and calculation of statistics 

regarding a track group’s mean FA, mean length, or density of fibers. However, these analyses 

cannot reveal anything about global properties of fiber connectivity. 

To deal with this problem, Patrick Hagmann and colleagues adapted a method to 

quantify global connectivity patterns from Diffusion Spectrum Imaging (a high-powered variant 

of DTI) tractography and analyze them in their seminal 2008 publication (Hagmann et al., 2008). 

For a group of five subjects, they obtained DSI and structural T1 scans. The structural scans 
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were analyzed with the Freesurfer software package (http://surfer.nmr.mgh.harvard.edu/) to 

obtain cortical parcellations (Fischl and Dale, 2000). These cortical regions were registered to 

DSI space. Next, all fibers were counted that connected any pair of regions. These track count 

were tabulated in a matrix, the structural connectivity matrix. 

Structural connectivity matrices can equivalently be obtained with DTI tractography and 

fiber counting between brain regions derived either from a cortical parcellation or an atlas. 

These connectivity matrices, also known as graphs, describe the strength of connection 

between any pair of regions. These matrices are typically analyzed using graph theory, a branch 

of mathematics with methods to formally analyze a pattern of connections (“edges”) between 

different entities (“nodes”). Specific regional and global metrics measure the local and global 

efficiency of information processing by quantifying the density of connections between regions 

and the distance over which information must transfer. This analysis technique has been 

increasingly employed in neuroimaging studies to characterize structural and functional brain 

networks (Bullmore and Sporns, 2009). Network-based measures of structural and functional 

brain connectivity are more sensitive to alterations that are not apparent in gross structure (e.g. 

cortical thickness or white matter integrity) because they consider each region’s integration into 

the global unit rather than as an independent entity. Convergent evidence from these studies 

(Iturria-Medina et al., 2008) indicates that brain networks exhibit small worldness, a balance of 

two properties: high local efficiency, a dense clustering of connections among physically 

adjacent regions, and high global efficiency, a relatively short distance information must travel 

between any two nodes in the network. Small worldness is always calculated with respect to a 

network with an equivalent number of nodes and edges but a random wiring pattern. 

It is hypothesized that the small-world configuration is an optimum reached by natural 

selection to balance functional segregation and integration, minimize metabolic cost, and 

maintain tolerance to injury or disease (Sporns, 2010). Recent studies suggest that the human 

brain has been optimized for nearly maximal cost efficiency (Bassett et al., 2010) and that 
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various neurological diseases may shift the brain towards suboptimal cost efficiency (Bassett et 

al., 2009). Individual variations in the white matter integrity of these networks have been shown 

to predict episodic long-term memory performance in older individuals (Charlton et al., 2010). 

 

fMRI and Functional Connectivity 

The coupling of blood oxygenation changes between different brain regions in fMRI data 

is known as functional connectivity. The degree of functional connectivity between two regions 

is statistically quantified by correlating the regional BOLD intensity timeseries’. It has been 

shown that the degree of functional connectivity between regions correlates with more direct 

neuronal measures of communication (Lee et al., 2010), relates to the degree of structural 

connectivity between the regions (Honey et al., 2009), and is predictive of variations in behavior 

(Hampson et al., 2006). The two main divisions in functional connectivity experimentation are 

resting state and task-based fMRI. Resting state fMRI is as simple as it sounds: a subject sits 

passively in the scanner while a BOLD scan sequence runs. The subject is typically instructed 

to rest passively but remain awake, either with eyes closed or open and fixating on a target. The 

researcher analyzes these data by selecting a seed region of interest, obtaining the mean 

regional timeseries, and searching for other regions whose timeseries’ significantly correlate. 

Alternatively, data-driven methods like Independent Component Analysis (ICA) detect spatial 

sets of regions that are maximally correlated with each other and maximally independent of the 

remaining regions in the brain. These different methods have converged on the finding that 

there are distinct networks within the brain that are spatially distributed, intrinsically active, and 

statistically semi-independent (anti-correlated in some cases). The most well characterized 

network is the default mode network, a set of brain regions whose activity tends to increase 

when an individual is internally focused and decrease when the subject orients attention 

externally. This network, originally described by Greicius and colleagues (Greicius et al., 2003), 

has many semi-overlapping formulations but is generally agreed to include the retrosplenial 
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cortex/posterior cingulate, medial prefrontal cortex, and angular gyrus. A number of other 

coherent functional networks have subsequently discovered including the executive (Corbetta 

and Shulman, 2002), salience (Seeley et al., 2007), motor (Power et al., 2011), and vision 

subnetworks. One remarkable finding regarding these networks is there is a high spatial 

correspondence between these networks at rest with and during active task performance, 

suggesting that even the resting brain is highly “active” (Smith et al., 2009). 

Another application of seed-based resting state fMRI is to obtain the functional 

connectivity matrix, analogous to the structural connectivity matrix described above. To obtain a 

functional connectivity matrix, a set of brain regions are registered to an individual’s BOLD scan 

to obtain a regional mean timeseries. The statistical correlation coefficients between all pairs of 

regional timeseries’ are stored in a matrix that describes the connection “strength” between any 

two regions. Graph theory methods are applied to assess these functional networks for global 

integration, local modularity, to assess which nodes in the network serve as communication 

hubs. Analysis of such networks has revealed the same characteristic balance of global and 

local connectivity, the so-called small worldness (Achard and Bullmore, 2007). These networks 

have proven sensitive in detecting developmental trajectories that reshape the pattern of 

functional connectivity (Dosenbach et al., 2010) and clinical abnormalities such as reduced 

modularity in schizophrenia patients (Alexander-Bloch et al., 2010). 

Task-based functional connectivity methods have been developed to assess changes in 

connectivity patterns that occur when an individual performs a specific behavior. While 

correlations in regional activity do suggest communication, more sophisticated approaches are 

required to infer causal interactions and/or condition-specific modulations. Friston and 

colleagues have been responsible for the development of many of these techniques, among 

them Psychphysiological Interactions (PPI) (Friston et al., 1997). PPI is a method for detecting 

interactions between regions that are greater during one phase of a task than another. 

Specifically it looks for regional interactions over and above their co-activation to the task. This 
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method detects task-specific modulations of regional interaction, though the directionality of this 

connection cannot be inferred. The analysis of directional causal interactions in fMRI data is 

termed effective connectivity. Structural Equation Modeling (SEM) is one such method for 

testing the network structure of functional activity among a set of regions (Büchel and Friston, 

1997) (Stein et al., 2007). The experimenter hypothesizes a specific connectivity graph 

(including directional connections) and obtains a statistic that reports how well the data fit that 

graph. They next compare between subjects or conditions to infer differences in functional 

network structure. Individual differences in resting state functional connectivity networks are 

known to relate to differences in memory ability in normal adults (Wig et al., 2008). Furthermore, 

memory-related subnetworks involving the hippocampus demonstrate specific impairment 

during episodic memory retrieval in individuals with mild cognitive impairment (Bai et al., 2009), 

supporting the specificity of this technique for probing compromised memory systems. 

 

APOE and Alzheimer’s Disease 

Among individuals aged 60 and above, the likelihood of developing late-onset (non-

familial) Alzheimer’s Disease (AD) starts at 1% and increases two-fold every five years. Though 

progression of the disease is sporadic, the most typical cognitive symptoms are episodic 

memory deficits, language disturbances, and visuospatial problems. The current set of criteria 

developed by the NINCDS-ADRDA classify subjects in definite (clinical diagnosis and 

histological confirmation), probable (typical clinical syndrome with histological confirmation), or 

possible (atypical clinical symptoms with no alternative diagnoses). 

While old age is the primary risk factor for developing AD, the disease also has known 

genetic risk factors, the primary one being the apolipoprotein E (APOE) epsilon 4 allele. 15-20% 

of the population carries at least one e4 allele. Individuals in this group are three to four times 

more likely to develop AD and have a younger mean age of onset than do carriers of the e3 

allele (Corder et al., 1993). 
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The apoe protein mobilizes and transports cholesterol and lipids, vital materials for the 

synthesis of new cell membranes and the repair of existing cell membranes in the brain. apoe 

has also recently been shown to catalyze the degradation of amyloid-beta (Aβ) fragments (Jiang 

et al., 2008). The ε2, e3, and e4 variants of APOE have progressively decreased efficiency for 

both cholesterol transport and Aβ clearance (Mann et al., 2004). Myelin has the highest 

cholesterolconcentration of any tissue in the central nervous system, making it particularly 

sensitive to different APOE isoforms. Structural and functional studies of e4 carriers and non-

carriers have revealed numerous brain differences across the lifespan (Bookheimer and 

Burggren, 2009). e4 carriers have also been shown to exhibit earlier signs of cognitive decline 

with aging (Caselli et al., 2004). Convergent evidence suggests that age-related brain changes 

in e4 carriers precede any associated cognitive decline (Caselli et al., 2004). Because older, 

cognitively normal e4 carriers possess an interaction of the two main AD risk factors, they are a 

critical target for identifying neuroimaging biomarkers of AD risk. 

 

Structural Alterations in APOE/AD 

Alzheimer disease is characterized by the accumulation of Aβ plaques and neurofibrillary 

tangles distributed throughout both gray and white matter in the brain. These changes begin in a 

silent preclinical phase that can last for decades before cognitive symptoms appear (Johnson et 

al., 2007). The MTL is typically the first region to exhibit cortical atrophy. Within the MTL, the 

entorhinal cortex appears to significantly thin before other subregions of hippocampal area have 

been affected in cognitively normal e4 carriers (Burggren et al., 2008; Reiman et al., 1998). 

Though the cause of this thinning remains unclear, there is evidence that reduced myelination of 

entorhinal afferents may results in cortical isolation and eventual atrophy (Salat et al., 2010). 

These efferent fibers are among the late-myelinating brain regions that have been demonstrated 

to exhibit early AD sensitivity. Association cortices begin myelinating later in lifespan than do 

sensory/motor core regions and have significantly less dense myelination (Braak and Braak, 
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1996). Oligodendrocytes in late-myelinating regions have a slower turnover rate and less 

capacity for myelin repair. The MTL, orbitomedial prefrontal cortex, and posterior cingulate have 

all been shown to exhibit increased white matter degradation in subjects at-risk for AD vs. 

normally aging adults (Bartzokis et al., 2007a). Additionally, e4 carriers have an accelerated rate 

of white matter degradation in late-myelinating regions of the brain, including the frontal lobe 

(Bartzokis et al., 2006). Bartzokis and colleagues employed an internet analogy to describe how 

white matter serves to increase axonal “bandwidth”, citing that myelination increasing action 

potential speed 10-fold and decreasing the refractory period 34-fold (Bartzokis et al., 2008). 

 

Functional Disruptions in APOE/AD 

Task-based fMRI studies of e3 and e4 carriers have produced mixed results 

(Trachtenberg et al., 2010). Older, cognitively normal e4 carriers have shown increased fMRI 

activation during verbal episodic encoding and retrieval (Bookheimer et al., 2000) (Bondi et al., 

2005) (Han et al., 2007), though this finding has not been strictly reproduced (Filippini et al., 

2011). The subjects in Bookheimer et al.’s study performed a verbal episodic memory task (the 

same task used in this proposal) and demonstrated increased activation in the left hippocampal 

area, left prefrontal cortex, inferior and superior parietal lobes and anterior cingulate gyrus in e4 

carriers vs. non-carriers. They found that initial increases in activation were reduced two years 

later. Specifically, decreases in mean percent signal change in the left hippocampal area 

correlated with decreased composite memory scores based on a complete neuropsychological 

battery (Braskie et al., 2009). These results align with the compensation hypothesis, which 

proposes that these pre-symptomatic increases in net activation may be a compensatory effect 

whereby additional cortical areas are recruited in order to augment the reduced processing 

capacity of affected networks (Han and Bondi, 2008). We hypothesize that disconnectivity 

between canonical episodic memory regions may initiate the process of compensation and 

ultimately result in decreased performance. 
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The majority of rs-fMRI studies in subjects with genetic risk for AD have focused on the 

default mode network (DMN). Filippini and colleagues found that young APOE e4 carriers 

(mean age=25) had higher default mode network coherence during rs-fMRI (Filippini et al., 

2009). Fleisher and colleagues found that in older subjects, at-risk subjects (e4 carriers with a 

family history of AD) had stronger correlation between a seed in the posterior cingulate and 

several other nodes in the DMN (Fleisher et al., 2009). Sheline and colleagues focused on 

healthy e4 carriers without significant Ab deposition and reported altered patterns of resting-

state functional connectivity with precuneus (Sheline et al., 2010a), finding both increases and 

decreases. In Chapter 3, we perform both task-based and pseudo-resting state analyses with 

the subjects in this study and systematically compare our results with these previous studies. 

 

Global Network Disruptions in AD 

A growing body of recent research suggests that disconnection is a major component of 

AD symptoms (Delbeuck et al., 2003). This makes AD and AD genetic risk particularly 

amenable to study with complex brain network analysis, a methodology for quantifying the 

brain’s communication integration, efficiency, and robustness. Our DTI-based network analyses 

in healthy e4 carriers (Chapter 2) was the first such analysis. However, a recent network-based 

DTI tractography analysis of AD patients assessed characteristic path length, a measure of the 

average distance information must transfer between brain regions. In general, a shorter average 

distance for information to transfer is considered more efficient, given that there is a more 

metabolic and structural cost required to transmit information over a longer distance. In that 

study, AD patients had significantly higher characteristic path length than control individuals, 

indicating reduced global efficiency (Lo et al., 2010). He and colleagues examined structural 

networks in AD patients derived from cortical thickness regional correlations. They assessed the 

clustering, a measurement of how tightly interconnected regions are. They also quantified the 

ratio of clustering to path length, or “small worldness”, a measure of the balance between local 
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and global integration. The AD patients had higher local clustering and longer global path 

length, indicative of an altered small-world architecture (He et al., 2008). Resting state fMRI 

studies of AD patients have consistently revealed network deficits including reduced functional 

activity in the default mode network (Greicius et al., 2004), a loss of small world properties in 

whole brain functional connectivity networks (Supekar et al., 2008), and reduced functional 

connectivity of distributed memory networks in the hippocampus and prefrontal cortex resulting 

in impaired global integration (Grady et al., 2001). Default mode network hubs in the posterior 

cingulate, precuneus and medial prefrontal cortex have also been shown to exhibit a striking 

overlap with the sites of greatest Aβ deposition in AD (Buckner et al., 2009). Patients with Mild 

Cognitive Impairment (MCI), a stage that often precedes Alzheimer’s Disease, have also 

demonstrated connectivity deficits including reduced structural and functional integration of the 

hippocampus and posterior cingulate with the rest of the brain (Zhou et al., 2008). Resting state 

fMRI studies among older, cognitively normal individuals carrying the e4 allele have shown 

patterns of both higher and lower functional connectivity with respect to non-carriers. Thus, 

while specific alterations in structural and functional connectivity emerge in Alzheimer’s 

Disease, it is clear that risk factors like the e4 allele impact connectivity differences long before 

disease symptoms manifest. 

 

Data Sharing and Neuroinformatics 

 In addition to the rapid developments in hardware, software, and analysis methods that 

have taken place in neuroimaging, one additional advancement is noteworthy: the cultural shift 

towards broad data sharing (Milham, 2012). Broad efforts are now underway to collect and 

publicly share very large multimodal MRI datasets. Among these are the 1000 Functional 

Connectomes project for studying functional connectivity (Biswal et al., 2010), the Human 

Connectome Project for studying structural and functional brain connectivity 

(http://www.humanconnectome.org/), the Alzheimer’s Neuroimaging Initiative (http://www.adni-
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info.org/) for characterizing structural brain changes related to Alzheimer’s Disease. In Chapter 

5, we discuss the development of a website that serves as a repository and web-based analysis 

engine for connectivity matrices derived from structural and functional neuroimaging data. This 

tool allows for the access and rapid assessment of datasets of interest and contains data from 

individuals with multiple diseases/disorders including Alzheimer’s Disease, Autism Spectrum 

Disorder, and Attention Deficit Hyperactivity Disorder. The connectivity matrices derived from all 

the studies in this dissertation have already been or will be publicly shared there in the future. 
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Chapter 2 

Brain Network Local Interconnectivity Loss in Aging APOE-4 Carriers1 

Jesse A. Brown, Kevin H. Terashima, Alison C. Burggren, Linda M. Ercoli, Karen J. Miller, Gary 
W. Small and Susan Y. Bookheimer 
 
Abstract 

Old age and possession of the APOE-4 allele are the two main risk factors for 

developing later onset Alzheimer’s disease (AD). Carriers of the APOE-4 allele have known 

differences in intrinsic functional brain network activity across the lifespan. These individuals 

also demonstrate specific regional differences in gray and white matter gross structure. 

However, the relationship of these variations to whole brain structural network connectivity 

remains unclear. We performed diffusion tensor imaging (DTI), T1 structural imaging, and 

cognitive testing on aging APOE-4 non-carriers (n=30; mean age=63.8+/-8.3) and APOE-4 

carriers (n=25; mean age=60.8+/-9.7). Fiber tractography was used to derive whole brain 

structural graphs and graph theory was applied to assess structural network properties. Network 

communication efficiency was determined for each network by quantifying local 

interconnectivity, global integration, and the balance between these – the small worldness. 

Relative to non-carriers, APOE-4 carriers demonstrated an accelerated age-related loss of 

mean local interconnectivity (r=-.64, p=<.01) and regional local interconnectivity declines in the 

precuneus (r=-.69), medial orbitofrontal cortex (r=-.6), and lateral parietal cortex (r=-.62). APOE-

4 carriers also showed significant age-related loss in mean cortical thickness (r=-.44, p<.05). 

Cognitively, APOE-4 carriers had significant negative correlations of age and performance on 

two episodic memory tasks (p<.05). This genotype-specific pattern of structural connectivity 

change with age thus appears related to changes in gross cortical structure (i.e. cortical 

thickness) and cognition, potentially affecting the rate and/or spatial distribution of AD-related 
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pathology. 

 

Introduction 

Although increasing age is the primary risk factor for developing Alzheimer’s disease (AD), 

the disease also has known genetic risk factors. The sole confirmed genetic variant is the 

apolipoprotein E epsilon 4 allele (APOE-4) (Naj et al., 2011) of which 15-20% of the Caucasian 

population carries at least one copy. Individuals in this group are three to four times more likely 

to develop AD and have a younger mean age at onset than APOE-4 non-carriers (Corder et al., 

1993). The APOE protein functions as the principal cholesterol transporter in the brain and 

affects diverse cellular processes including development, plasticity, and repair in both gray and 

white matter (Mahley, 1988). Neuroimaging studies of APOE-4 carriers and APOE-4 non-

carriers (APOE-4 NCs) have revealed numerous structural and functional brain differences 

across the lifespan (Bookheimer and Burggren, 2009). While APOE-4 carriers have been shown 

to exhibit earlier signs of cognitive decline with aging (Caselli et al., 2004), some genotype-

specific brain differences appear before cognitive decline (Reiman et al., 2005) (Small et al., 

2000) (Small et al., 2009) (Bookheimer et al., 2000). APOE-4 carriers aged 60 and above are at 

elevated risk for developing AD (Corder et al., 1993) and are thus a critical target for identifying 

neuroimaging biomarkers of AD risk that accompany cognitive decline associated with disease 

risk. 

Neuronal atrophy is known to follow a characteristic trajectory in AD, originating in temporal, 

parietal, and limbic cortices and eventually spreading to frontal regions (Thompson et al., 2003). 

A growing body of recent research has demonstrated that disconnection between regions is a 

major component of AD, resulting in specific cognitive deficits such as episodic memory loss 

(Delbeuck et al., 2003). White matter degradation is concomitant with gray matter loss in AD, 

typically originating in regions which undergo myelination late in development (Stricker et al., 

2009) (Salat et al., 2010). This loss of axonal myelination reduces the fidelity of communication 
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between brain regions (Bartzokis et al., 2007b), adversely affecting neuronal synchrony (Stam 

et al., 2007). This makes AD and AD genetic risk particularly amenable to study with complex 

brain network analysis, a methodology for quantifying the brain’s communication integration, 

efficiency, and robustness (Rubinov and Sporns, 2010).  

Diffusion Tensor Imaging (DTI) tractography quantifies the density of white matter-insulated 

axonal bundles that connect different regions of the brain. It is a primary method for 

characterizing the brain’s white matter or “structural” network (Hagmann et al., 2008). Structural 

brain networks inferred from DTI tractography can be reduced to connectivity matrices or 

“graphs” that describe the strength of connection between any pair of brain regions. These 

matrices are typically analyzed using graph theory, a branch of mathematics with methods to 

formally analyze a pattern of connections (“edges”) between different entities (“nodes”). Specific 

regional and global metrics measure the local and global efficiency of information processing by 

quantifying the density of connections between regions and the distance over which information 

must transfer. This analysis technique has been increasingly employed in neuroimaging studies 

to characterize both structural and functional brain networks (Bullmore and Sporns, 2009). 

Network-based measures of structural and functional brain connectivity can be more sensitive to 

alterations that are not apparent in gross structure (e.g. cortical thickness or white matter 

integrity) because they consider each region’s integration into the global unit rather than as an 

independent entity. Convergent evidence from these studies (Iturria-Medina et al., 2008) 

(Achard and Bullmore, 2007) indicates that brain networks exhibit small worldness, a balance of 

two properties: high local clustering, a dense interconnectivity among physically adjacent 

regions, and high global efficiency, a relatively short distance information must travel between 

any two nodes in the network. 

Several independent lines of evidence implicate reduced network connectivity in AD. A 

recent network-based DTI tractography analysis of AD patients by Lo and colleagues (Lo et al., 

2010) assessed characteristic path length, a measure of the average distance information must 
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transfer between brain regions. In general, a network in which there is a shorter average 

distance for information to transfer is considered more efficient, given that there is a more 

metabolic and structural cost required to transmit information over a longer distance. Lo et al. 

found that AD patients had significantly higher characteristic path length than control individuals, 

indicating reduced global efficiency. Resting state fMRI connectivity studies of AD patients have 

also consistently revealed network deficits. Reduced functional connectivity in the brain’s default 

mode network (DMN) is a hallmark of AD (Greicius et al., 2004). This network is comprised of 

the posterior cingulate, medial prefrontal cortex, lateral inferior parietal cortex, lateral inferior 

temporal cortex, anterior cingulate, medial temporal lobe, and precuneus (Margulies et al., 

2009) (Mevel et al., 2011). The DMN is highly metabolically active, particularly when an 

individual has internally focused attention, such as during episodic memory retrieval (Raichle et 

al., 2001) (Kim et al., 2010). Importantly, DMN hubs in the posterior cingulate, precuneus and 

medial prefrontal cortex have also been shown to exhibit a striking overlap with the sites of 

greatest Aβ deposition in AD (Buckner et al., 2009). A resting state fMRI study in AD patients 

investigating whole brain functional connectivity networks revealed a loss of both local and 

global integration (Supekar et al., 2008). Patients with Mild Cognitive Impairment (MCI), a stage 

that often precedes Alzheimer’s Disease, have also demonstrated connectivity deficits including 

reduced structural and functional integration of the hippocampus and posterior cingulate with 

the rest of the brain (Zhou et al., 2008). 

In cognitively normal APOE-4 carriers, structural brain connectivity has primarily been 

assessed looking at gross measures of white matter integrity such as fractional anisotropy (FA) 

and apparent diffusion coefficient (ADC). In older APOE-4 carriers, age-related decreases in 

myelination (Bartzokis et al., 2006) and FA (Ryan et al., 2011)  have been observed that are 

more rapid than non-carriers, particularly in the frontal and temporal lobes. There is substantial 

evidence that older APOE-4 carriers perform worse than non-carriers on episodic memory tests 

(Tuminello and Han, 2011). Regardless of the mechanism, it is clear that AD risk factors like the 
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APOE-4 allele impact brain structural and functional differences long before AD symptoms 

manifest. 

Here we used diffusion tensor imaging (DTI) and a hybrid probabilistic/deterministic 

tractography approach to characterize fiber network topology in aging, cognitively normal 

subjects with genetic risk for AD. We analyzed the fiber networks of APOE-4 non-carriers and 

APOE-4 carriers for path length, clustering, and small worldness in order to assess local and 

global variations in network topology that may be associated with cognitive decline and precede 

the conversion AD. 

 

Results 

Cognitive Performance 

 Cognitive scores on all neuropsychological tests were compared for APOE-4 carriers 

and non-carriers using two-sample two-tailed t-tests (Table 1). No significant between-group 

differences were found with the exception of the Mini-Mental State Exam (MMSE). However, 

when MMSE was included as a covariate in subsequent statistical analyses it did not affect any 

statistical results. Relationships between age and cognitive performance were tested in two 

ways. First, within genotype group, partial correlations were calculated between age and each 

neuropsychological measure, controlling for gender, years of education, and family history of 

dementia. Second, a stepwise regression was run, starting with a model of APOE status (carrier 

or non-carrier), gender, age, APOE x age interaction, years of education, and family history of 

dementia (yes or no). APOE-4 carriers exhibited significant age-related cognitive declines on 

the Wechsler memory scale, logical memory delayed recall portion (Delay Total LM; partial r=-

.44, p=.038) and Rey Osterrith Complex Figure, delayed recall (Delay ROF; partial r=-.57, 

p=.005) (Figure S1). APOE-4 non-carriers had no significant age-related declines on these 

tests. The stepwise regression found the APOE x age interaction to be significant for both the 

Delay Total LM (p=.015) and Delay ROF (p=.001) tests. 
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Characteristic 
(mean±SD) 

APOE-4 NC APOE-4 P APOE-4 NC 
Partial 
Correlation 
with Age 

APOE-4  
Partial 
Correlation with 
Age 

Age (years) 63.8 +/- 8.3 60.8 +/- 9.7 0.22   
Age range 45-76 43-78    
Number 
(Males/Females) 

30 (10/20) 25 (12/13)    

Education (years) 16.7 +/- 1.8 17.5 +/- 3.3 0.33   
Family History 
(yes/no) 

21/9 16/9    

      
MMSE (score range 
0-30) 

29.4 +/- .9 28.6 +/- 1.2 0.01* r=-.41, p=.07 r=-.14, p=.55 

WMS LM Delay (0-
50) 

29.1 +/- 7.1 27.1 +/- 9.2 0.45 r=-.09, p=.66 r=-.45, p=.038* 

Buschke CLTR (0-
144) 

56.7 +/- 
39.7 

57.8 +/- 
34.2 

0.92 r=-.16, p=..44 r=-.36, p=.1 

Rey-O Delay (0-36) 12.9 +/- 7.2 13.8 +/- 7.1 0.68 r=-.03, p=.87 r=-.57, p=.005* 
WMS VP (0-32) 22.3 +/- 7.4 20.6 +/- 8.2 0.49 r=-.17, p=.38 r=.05, p=.8 
WAIS Digit Span 17.7 +/- 3.6 18.1 +/- 3.1 0.65 r=.21, p=.29 r=.1, p=.65 

 
 
Age Effects on Global Network Connectivity 

Structural connectivity matrices were analyzed for each subject in order to determine 

global structural network measures of global integration (characteristic path length), local 

interconnectivity (mean clustering coefficient), the balance of integration and interconnectivity 

(small worldness), and the total amount of fiber constituting the network (total network cost). 

These metrics were then assessed for genotype specific age-related changes. The partial 

correlation was calculated between all structural network metrics and age, controlling for 

gender, scanner, and total network cost. This ensured that differences in clustering coefficient 

between APOE-4 and APOE-4 non-carriers were not driven by differences in the total amount of 

Table 1: Subject characteristics. Partial correlations with age were controlled for gender, 
years of education, and family history of dementia. MMSE – Mini-Mental State Examination; 
WMS LM Delay – Wechsler memory scale, logical memory delayed recall portion; Buschke 
CLTR – Buschke-Fuld selective reminding test, consistent long-term retrieval section; Rey-O 
Delay – Rey Osterrith Complex Figure, delayed recall; WMS VP – Wechsler memory scale, 
verbal paired associations II; WAIS Digit Span – Wechsler Adult Intelligence Scale 3, digit 
span 
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axonal fibers between groups. The partial correlation of clustering coefficient and age was non-

significant for APOE-4 non-carriers (r=-.33 p=.09) and strongly negative for APOE-4 carriers (r=-

.63, p=.002) (Figure 1A). The stepwise regression model found that the APOE x age interaction 

was significant (p=.0005). 

The partial correlation between characteristic path length and age trended towards 

significance for APOE-4 non-carriers (r=.36, p=.08) but was non-significant for APOE-4 carriers 

(r=.21, p=.37). The stepwise regression found no significant APOE x age interaction for 

characteristic path length. 

To look at the combined effect of clustering coefficient and characteristic path length, 

small worldness (s) was assessed separately for the two groups. APOE-4 non-carriers showed 

a trend for a negative relationship between age and small worldness (r=-.26, p=.2) while APOE-

4 carriers showed a strong negative correlation (r=-.52, p=.012). However, stepwise regression 

did not find a significant APOE x age interaction for small worldness. 

 Finally, measurements of total network cost were compared to age. The partial 

correlation of age and total cost was significantly negative for APOE-4 non-carriers (r=-.44, 

p=.02) but not for APOE-4 non-carriers (r=-.-.31, p=.18). However, stepwise regression did not 

find a significant APOE x age interaction.  
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Figure 1: Mean clustering coefficient (MCC) and mean cortical thickness (MCT) residuals 
based on partial correlations with age plotted for APOE-4 noncarriers (APOE-3; blue) and 
APOE-4 carriers (red). Partial correlations controlled for gender, scanner, and in the MCC 
case only, total network cost. Both MCC and MCT had a significant interaction between 
APOE genotype (p  < .05). 
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Age Effects on Regional Network Connectivity 

 We next examined whether the relationship between age and network characteristics 

varied by region for APOE-4 carriers and non-carriers. The analysis was focused on regional 

clustering coefficients because mean clustering coefficient showed a global APOE x age 

interaction effect. For the model to predict regional clustering coefficient, the set of terms which 

stepwise regression found to best fit the mean clustering coefficient were used. This model 

included APOE, gender, APOE x age interaction, total cost, and scanner. At a FDR-corrected 

alpha of p=.05, several regions showed a significant interaction where APOE-4 carriers 

decreased more sharply than non-carriers: the right precuneus (p=.00006), right cuneus 

(p=.00007), left orbitofrontal cortex (p=.004), left supramarginal gyrus (p=.002), and right inferior 

temporal gyrus anteriorly (p=.0009) and posteriorly (p=.002) (Figure 2). At an exploratory 

threshold of p < .005 (uncorrected), additional regions displaying a potential APOE x age 

interaction included right subcallosal cortex (part of the ventromedial prefrontal cortex, p=.009), 

the, right middle temporal gyrus (p=.009), and right precentral gyrus (p=.009) (Figure 2). 
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Cortical Thickness 

The mean cortical thickness values were also examined in relationship to age for APOE-

4 carriers and non-carriers. APOE-4 carriers demonstrated a significant negative partial 

correlation between cortical thickness with age (r=-.44, p=.02) while non-carriers displayed no 

relationship (r=-.08, p=.64). Stepwise regression found a significant APOE x age interaction for 

cortical thickness (p=.03) (Figure 1B). 

Finally, the relationships between APOE genotype, cortical thickness, and structural 

network metrics were assessed. We ran the same stepwise regression model used in our 

previous analyses but added terms for a main effect of cortical thickness and an APOE x 

cortical thickness interaction. For clustering coefficient, the APOE x cortical thickness term was 

significant (p=.0001). This interaction was not significant for characteristic path length or small 

worldness (both p>.05). 

 

Discussion 

This study of axonal fiber networks found that aging APOE-4 carriers showed a 

significantly more negative relationship between local interconnectivity and age while than non-

carriers. APOE-4 carriers also exhibited a significant decrease in small worldness with age, 

though no significant interaction between APOE and age was detected. Neither APOE-4 

Figure 2 
A) DTI average weighted network with node radius corresponding to value of negative 
correlation of age with clustering coefficient for APOE-4 carriers. The width of each edge in 
the graph corresponds to the average fiber density between those regions. Nodes colored in 
yellow have significant negative APOE-4 x Age interactions for clustering coefficient (p <.05, 
FDR-corrected), nodes colored in red indicate the same measure at an exploratory threshold 
(p < .005, uncorrected). B) The same nodes from A) displayed on an anatomical brain model. 
Node abbreviations: AC: anterior cingulate,  PCNT: precentral gyrus, PCUN: precuneus, 
CUN: cuneus, ITGa: inferior temporal gyrus (anterior), ITGp: inferior temporal gyrus 
(posterior), MTGp: middle temporal gyrus (posterior), FORB: frontal orbital cortex, SUBC: 
subcallosal cortex (part of the ventromedial prefrontal cortex), SMGp: supramarginal gyrus 
(posterior). 
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carriers and non-carriers showed significant relationships between charateristic path length and 

age, indicating no major loss of global structural integration. Small worldness represents the 

balance of clustering coefficient (local interconnectivity) and characteristic path length (global 

integration) in a real network with respect to a random network. Here it appears that the APOE-

4 carrier age-related decline in small worldness observed here was driven primarily by the loss 

of local interconnectivity while global integration was relatively spared. 

APOE-4 carriers also showed significant cortical thinning with age. This decline 

paralleled the decrease in structural network local interconnectivity, suggesting a relationship 

between cortical thickness and the degree of local structural connectivity. Interestingly, there 

was a significant effect of APOE genotype x cortical thickness interaction on local 

interconnectivity: only APOE-4 carriers showed a significant relationship between cortical 

thickness and local interconnectivity. It is possible that the relationship between these two 

measures grows stronger as they decrease, which would help explain why only APOE-4 carriers 

showed this statistical association. Alternatively, the APOE-4 allele may contribute to a tighter 

relationship between these brain structural properties. The finding of cortical thinning with age in 

APOE-4 carriers is not without precedence, as a previous report (Espeseth et al., 2008) found 

that aging APOE-4 carriers have 1) higher cortical thickness when controlling for age and 2) a 

stronger age-related decrease in cortical thickness than non-carriers. However, it should be 

noted that in the current study the relationship of local interconnectivity and age was somewhat 

stronger than the decrease in cortical thickness, indicating some independence of these 

measures and the utility of both in detecting age-related changes that may precede the 

conversion to AD. 

The age-related decline in local interconnectivity amongst APOE-4 carriers in this study 

appeared to be especially driven by the younger subjects, who had the highest measurements 

of clustering coefficient. The relationship between high structural local connectivity and brain 

health in general is not entirely clear. The first study of DTI structural network properties and 
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intelligence found a positive relationship between IQ and clustering coefficient (Li et al., 2009). 

The APOE-4 carriers in the present study had significant negative relationships of performance 

and age on two different episodic memory tasks, supporting the notion that decreasing 

interconnectivity has negative behavioral consequences. Importantly, previous evidence does 

suggest higher connectivity in young APOE-4 carriers. A study of resting state fMRI patterns 

found healthy APOE-4 carriers in young adulthood exhibited greater DMN connectivity than 

non-carriers (Filippini et al., 2009). Similar studies in older APOE-4 carriers have shown a 

complex pattern of increased and decreased functional connectivity with respect to non-carriers 

(Fleisher et al., 2009) (Sheline et al., 2010b). Thus, there appears to be a unique age-related 

trajectory of connectivity change over development for APOE-4 carriers. Specifically, there is an 

apparent higher degree of connectivity early in life that declines more steeply across the age 

span. Interestingly, a similar pattern appears to hold for cognitive abilities associated with 

APOE-4. Several cognitive studies in healthy APOE-4 carriers and non-carriers have found 

better cognitive performance for young APOE-4 carriers (Mondadori et al., 2007) (Han et al., 

2007), a trend that reverses for APOE-4 carriers in their 50’s with declines in memory occurring 

the earliest (Caselli et al., 2009). This developmental trajectory has hypothesized as a case of 

antagonistic pleiotropy, in which the APOE-4 allele offers benefits during development and early 

adulthood at the expense of more rapid decline with aging (Tuminello and Han, 2011). 

Alternatively, local connectivity has been shown to reduce during development in the years 

when pruning is the dominant structural process (Hagmann et al., 2010) (Luo and O’Leary, 

2005), which may indicate that APOE-4 carriers undergo less pruning. Regardless of the 

potential benefit that higher local interconnectivity may provide, it is tempting to speculate that 

APOE-4 carrier-specific increases in metabolic activity within the default mode network may 

reflect higher structural local connectivity. This could conceivably contribute to increased 

amyloid production and aggregation over time (Buckner et al., 2009) (Bero et al., 2011). Though 

the underlying causes of these different developmental trajectories are currently unknown, it is 
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clear that the APOE-4 allele does not simply cause reduced anatomical connectivity and 

cognitive performance across the lifespan (Han and Bondi, 2008). Future structural network 

studies in developing and young individuals should shed light on the possibility of increased 

local interconnectivity in APOE-4 carriers. 

Many regions that are part of the default mode network showed a negative correlation 

between age local interconnectivity for APOE-4 carriers in this study; specifically, the right 

precuneus, left inferior parietal lobule (supramarginal gyrus), ventromedial and orbital prefrontal 

cortex, and anterior cingulate gyrus have all been cited as components of the DMN (Greicius et 

al., 2003) (Andrews-Hanna et al., 2010), though there is some heterogeneity in the precise 

definition of the DMN. Other regions with decreasing local connectivity over time such as the 

cuneus are not considered part of the DMN but are part of the brain’s structural core, 

anatomically connecting the medial anterior and posterior regions of the brain (Hagmann et al., 

2008). The majority of the regions that exhibited significant age-related declines in clustering are 

connected to one another. Because clustering coefficient is a measure of connectivity amongst 

a region’s first-degree neighbors, the implication is that there is less total connectivity within this 

network of regions with aging in APOE-4 carriers. These findings are consistent with prior 

studies showing decreased resting fMRI correlation between the medial prefrontal cortex, lateral 

parietal cortex, and posterior cingulate in older individuals harboring high amyloid burden 

(Hedden et al., 2009). In older individuals with subjective memory complaints, amyloid levels 

have also been associated with cortical thinning of the medial orbital frontal cortex, anterior 

cingulate, and precuneus (Chételat et al., 2010). Here we found that the combined impact of 

aging and genetic risk contributes to lower connectivity and cortical thickness within the DMN 

and other structural hubs as age increases. Furthermore, this decreased interconnectivity 

appears to have behavioral consequences, as APOE-4 carriers exhibited significant age-related 

reduction in episodic memory performance. This is consistent with the putative role of the DMN 
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in episodic memory retrieval (Kim et al., 2010) and suggests a potential link between anatomical 

and behavioral phenotypes. 

 A negative correlation between local interconnectivity and age was also observed for 

APOE-4 carriers in the inferior temporal (IT) lobe. This region is known to be affected early in 

the progression of AD, with MCI subjects demonstrating decreased synaptic density (Scheff et 

al., 2011), decreased cortical thickness (Wang et al., 2009), and decreased cortical volume in 

APOE-4 carriers with MCI (Tosun et al., 2010). There is also evidence of a APOE x age 

interaction on cortical thickness in healthy older APOE-4 carriers (Espeseth et al., 2008). 

 The use of DTI to construct a whole brain fiber network has known limitations. DTI is not 

ideal for detecting crossing fibers. Nonetheless, the DTI scan used in this study collected data in 

30 diffusion weighted directions, affording greater angular resolution than previous DTI 

tractography-based network analyses that have nonetheless produced anatomically accurate 

networks. Furthermore, we employed a hybrid probabilistic deterministic tractography method in 

order to improve sensitivity to the detection of crossing fibers. Finally, because four of the 

APOE-4 carriers were 4/4 homozygotes, local interconnectivity, cortical thickness, and two 

episodic memory test showing decline (Delay Total LM and Delay ROF) were tested in the 

same stepwise regression model after excluding the four homozygotes. All properites remained 

significantly negatively related to age, though the p value for cortical thickness was marginal 

(p=.05). This result indicates no significant additive effect of an additional e4 allele. 

 Here we examined axonal fiber networks in healthy aging APOE-4 carriers and non-

carriers and found APOE-4 carriers exhibited an accelerated negative correlation of local 

structural connections with age that paralleled reduced cortical thickness. Additionally, they 

demonstrated accelerated decrease of small worldness with age, suggesting a more rapid loss 

in the balance between global integration and local modularity of information processing. At the 

regional level, APOE-4 carriers were found to have age-related loss of interconnectivity among 

regions comprising the default mode network. APOE-4 carriers also demonstrated significant 
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decreases in performance with age on two different episodic memory tasks that are known to 

engage the affected regions. Genetic variations in the structure and function of these networks 

may contribute to differential rates of amyloid production with age and eventual impairment of 

brain communication efficiency. 

 

Methods 

Subject Inclusion and Imaging 

55 subjects were recruited from the UCLA Memory Clinic at the Semel Institute for 

Neuroscience and Human Behavior to participate in an ongoing, comprehensive study of aging 

and dementia. Subjects performed a diagnostic evaluation that consisted of physical and 

neurological examinations, a medical history assessment, genotyping for APOE, and 

neuropsychological testing. We excluded subjects on the basis of left-handedness, a history of 

neurological or psychiatric disorders, medication affecting cognition, alcohol or substance 

abuse, head trauma, epilepsy, arterial hypertension, or cardiovascular disease. Blood was 

drawn from each subject and genotyped for APOE (Foundas et al., 1997). Any subject who 

possessed at least one APOE-4 allele was categorized as an “APOE-4 carrier”; subjects 

homozygous for the APOE-3 allele were designated as “non-carriers” or equivalently, “APOE-4 

non-carriers”. All e2 carriers were excluded. The study included 30 APOE-4 non-carriers 

(average age: 63.8 +/- 8.3 years, range: 45-76; 20 female; education: 16.7 +/- 1.8 years; 21 with 

family history of dementia) and 25 APOE-4 carriers (average age: 60.8 +/- 9.7 years, range 43-

78; 12 female; 21 3/4s, 4 4/4s; education 17.5 +/- 3.3 years; 16 with family history of dementia). 

All subjects in these groups were without dementia, based on 1) MMSE score and 2) a 

composite neuropsychological test score. Subjects scored 27 or above on the MMSE with the 

exception of one subject who scored 26 but fell within the normal range on the remaining 

neuropsychological tests; analyses which excluded that subject found equivalent results. The 

neuropsychological battery included: 1) Wechsler memory scale, logical memory delayed recall 
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portion (WMS LM Delay), 2) Buschke-Fuld selective reminding test (Consistent Long Term 

Retrieval section; Buschke CLTR), 3) Rey Osterrith Complex Figure, delayed recall (Rey-O 

Delay), 4) Wechsler memory scale, verbal paired associations II (WMS VP), and 5) Wechsler 

Adult Intelligence Scale III digit span (WAIS Digit Span) (Table 1). All subjects collectively 

scored within one standard deviation of the age-adjusted average. All subjects received T1 

structural and 30-direction DTI scans. 

40 subjects were scanned on a 3T Siemens Allegra and 25 subjects were scanned on a 

Siemens 3T Trio. DTI was run with single shot echo-planar sequences with the following 

parameters (Trio differences in parentheses): 30 diffusion weighted volumes with gradient 

vectors taken from the ICBM protocol (Jones et al., 1999), 5 B0 volumes (1), b=800s/mm2 

(1000), axial slicing, TR=7300ms (7000ms), TE=95ms (86ms), k-space matrix=96x96, slice 

thickness=2.5mm, 55 slices with no gap, field of view=240mm2, voxel size=2.5mm3. Subjects 

also received T1-weighted Magnetization-prepared Rapid Gradient Echo (MP-RAGE) scans 

with the following parameters: sagittal slicing, TR=2300ms (1900ms), TE=2.93ms (2.26), 

matrix=192x192 (256x224), slice thickness=1mm, 160 slices with no gap (176), field of 

view=256mm2 (218x250), flip angle=8° (9°), voxel size=1mm3. In order to control for scanner 

specific differences, scanner was included as a dummy covariate in all subsequent statistical 

analyses. 

 

DTI Processing and Tractography 

Scans were processed using programs from the FMRIB Software Library (FSL; 

www.fmrib.ox.ac.uk/fsl/). Raw DTI images were first corrected for eddy current distortions using 

a 12 degree-of-freedom affine registration to the first B0 volume. Diffusion tensors were then 

estimated at each voxel and fractional anisotropy (FA) images were created. The probability 

distribution of fiber direction(s) in each voxel was estimated using BEDPOSTX, configured to 

allow for up to two crossing fibers within each voxel (Behrens et al., 2007). The dyads for the 
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first and second vectors of diffusion direction within each voxel were used for tractography. 

Typically these dyads are used as the input to a probabilistic tractography program. However, 

probabilistic estimates of structural connectivity can be difficult to interpret when building a 

connectivity matrix. For this reason, we used these dyad vectors as the input for deterministic 

tractography using the fiber assignment by continuous tracking (FACT) algorithm in Diffusion 

Toolkit (Mori and Van Zijl, 2002) (Wang et al., 2007). Whole brain tractography was carried out 

propagating fibers from each voxel with a maximum turn angle of 50°. Fibers were smoothed 

using a spline filter and all fibers shorter than 5mm were excluded. In order to obtain each 

subject’s connectivity matrix, the brain was partitioned into 110 regions using the Harvard-

Oxford subcortical and cortical probabilistic atlases. Regions included 16 subcortical structures 

(excluding the midbrain) and 47 cortical regions from each hemisphere (Supplementary Table 

1). All masks were then transformed to subject diffusion space (SI for details). Each regional 

mask was thresholded below the 10% probability level, which allowed the inclusion of the 

gray/white matter interface. Next, the set of fibers connecting each region were counted. A fiber 

was defined as connecting two regions if one fiber endpoint lay within one region and the other 

endpoint lay within the other region. This process was repeated using all 110 regions as seeds 

in order to derive a whole brain connectivity matrix, using custom software written for this 

purpose (UCLA Multimodal Connectivity Package; http://github.com/jbrown81/umcp). To control 

for false positives, any region-region pair with less than 3 connecting fibers had its connection 

strength set to 0. 

 

Network Construction 

Network metrics for each subject were quantified using the Brain Connectivity Toolbox 

(http://sites.google.com/a/brain-connectivity-toolbox.net/bct/metrics). All analyses used weighted 

networks in order to calculate the node strengths, clustering coefficients, characteristic path 

lengths, betweenness centrality, and small worldness. Deterministic tractography resulted in a 
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discrete number of fibers connecting any two brain regions. Because the regions from the 

Harvard Oxford Atlas varied in volume (450mm3 - 46800mm3), the fiber counts had to be 

adjusted for the unequal number of seed voxels in each region. The fiber connectivity metric 

between two regions was therefore scaled by the mean of the two regions’ volumes. This step 

had the additional benefit of correcting for individual variations in brain size with finer accuracy 

than can be achieved with a global correction for brain volume. Connectivity matrices resulted 

and ranged between 16.1% and 23.7% of regions connected. These individual variations in 

connection “density” had no significant relationship to any neuropsychological measure and 

declined with age at nearly equal rates in the APOE-4 carriers and non-carriers. We sought to 

compare subject networks at their intrinsic densities, rather than artificially removing 

connections to force equivalent density (Zalesky et al., 2010), and therefore did not perform 

thresholding. To control for individual differences in density, total network cost was included as 

a covariate in all statistical analyses. In order to account for the white matter “fidelity”, each 

connection weight was scaled by the averaged fractional anisotropy (FA) for all fibers 

comprising that connection. 

 

Network Metrics 

All analyses were performed on weighted fiber networks. The formulas used to quantify all 

metrics are described in detail elsewhere (Rubinov and Sporns, 2010) and implementations of 

these from the Brain Connectivity Toolbox were used. For details on metrics calculated in this 

study, see the Supplementary Material.  

 

Cortical Thickness 

 Cortical thickness values were obtained based on the analysis of the MP-RAGE scans 

using the Freesurfer package (http://surfer.nmr.mgh.harvard.edu) (Fischl and Dale, 2000). 

Specifically, the recon-all program was used to normalize image intensities, skull strip, and 
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automatically delineate the white matter and pial (gray matter) surfaces based on the use of 

intensity gradients to optimally place the borders between tissue types. The distance between 

the surfaces was measured for ~220000 vertex pairs per subject. The average of these 

thickness measures was used as the measurement of mean cortical thickness for each subject. 

 

Statistical Analysis 

All age-related analyses calculated Pearson’s partial correlation coefficient (and the 

associated p value) between age and the global/regional network metric of interest, separately 

for APOE-4 carriers and non-carriers, after controlling for the effects of gender, scanner, and 

total network cost for structural network metrics. To assess between group differences, we used 

a stepwise regression model that began with terms for APOE genotype (carrier/non-carrier), 

gender, age, APOE x age interaction, years of education, family history of dementia (yes/no). 

For all scanning-related metrics, we included a dummy variable for scanner (Allegra/Trio). For 

structural network metrics, we included a total network cost term to account for the individual 

differences in fiber volume. The stepwise regression procedure returns the subset of terms that 

produce the most accurate linear regression model, along with their associated p-values. For 

behavioral measures and global network measures, a p-value of .05 was used to determine 

significant correlation. For regional network measures, the p-values for a given measure were 

adjusted to correct for multiple comparisons using a false discovery rate (FDR) procedure with a 

q value of .05. Regional network measures were predicted with a robust regression model that 

downweighted outlying observations. Because education and family history were not significant 

in any of the regression models tested, they were excluded from the partial correlation tests. 

 
 
Supplementary Material 
Subcortical  
'left thalamus'     
'left caudate'     
'left putamen'     
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'left pallidum'     
'left hippocampus'     
'left amygdala'     
'left accumbens'     
'right thalamus'     
'right caudate'     
'right putamen'     
'right pallidum'     
'right hippocampus'     
'right amygdala'     
'right accumbens'     
Cortical  
'left frontal pole'    
'right frontal pole'    
'left insular cortex'    
'right insular cortex'    
'left superior frontal gyrus'   
'right superior frontal gyrus'   
'left middle frontal gyrus'   
'right middle frontal gyrus'   
'left inferior frontal gyrus, pars triangularis' 
'right inferior frontal gyrus, pars triangularis' 
'left inferior frontal gyrus, pars opercularis' 
'right inferior frontal gyrus, pars opercularis' 
'left precentral gyrus'    
'right precentral gyrus'    
'left temporal pole'    
'right temporal pole'    
'left superior temporal gyrus, anterior division' 
'right superior temporal gyrus, anterior division' 
'left superior temporal gyrus, posterior division' 
'right superior temporal gyrus, posterior division' 
'left middle temporal gyrus, anterior division' 
'right middle temporal gyrus, anterior division' 
'left middle temporal gyrus, posterior division' 
'right middle temporal gyrus, posterior division' 
'left middle temporal gyrus, temporooccipital part' 
'right middle temporal gyrus, temporooccipital part' 
'left inferior temporal gyrus, anterior division' 
'right inferior temporal gyrus, anterior division' 
'left inferior temporal gyrus, posterior division' 
'right inferior temporal gyrus, posterior division' 
'left inferior temporal gyrus, temporooccipital part' 
'right inferior temporal gyrus, temporooccipital part' 
'left postcentral gyrus'    
'right postcentral gyrus'    
'left superior parietal lobule'   
'right superior parietal lobule'   
'left supramarginal gyrus, anterior division'  
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'right supramarginal gyrus, anterior division'  
'left supramarginal gyrus, posterior division'  
'right supramarginal gyrus, posterior division'  
'left angular gyrus'    
'right angular gyrus'    
'left lateral occipital cortex, superior division' 
'right lateral occipital cortex, superior division' 
'left lateral occipital cortex, inferior division' 
'right lateral occipital cortex, inferior division' 
'left intracalcarine cortex'    
'right intracalcarine cortex'    
'left frontal medial cortex'   
'right frontal medial cortex'   
'left juxtapositional lobule cortex'   
'right juxtapositional lobule cortex'   
'left subcallosal cortex'    
'right subcallosal cortex'    
'left paracingulate gyrus'    
'right paracingulate gyrus'    
'left cingulate gyrus, anterior division'  
'right cingulate gyrus, anterior division'  
'left cingulate gyrus, posterior division'  
'right cingulate gyrus, posterior division'  
'left precuneous cortex'    
'right precuneous cortex'    
'left cuneal cortex'    
'right cuneal cortex'    
'left frontal orbital cortex'   
'right frontal orbital cortex'   
'left parahippocampal gyrus, anterior division'  
'right parahippocampal gyrus, anterior division'  
'left parahippocampal gyrus, posterior division'  
'right parahippocampal gyrus, posterior division'  
'left lingual gyrus'    
'right lingual gyrus'    
'left temporal fusiform cortex, anterior division' 
'right temporal fusiform cortex, anterior division' 
'left temporal fusiform cortex, posterior division' 
'right temporal fusiform cortex, posterior division' 
'left temporal occipital fusiform cortex'  
'right temporal occipital fusiform cortex'  
'left occipital fusiform cortex'   
'right occipital fusiform cortex'   
'left frontal opercular cortex'   
'right frontal opercular cortex'   
'left central opercular cortex'   
'right central opercular cortex'   
'left parietal opercular cortex'   
'right parietal opercular cortex'   
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'left planum polare'    
'right planum polare'    
'left heschl's gyrus'    
'right heschl's gyrus'    
'left planum temporale'    
'right planum temporale'    
'left supracalcarine cortex'    
'right supracalcarine cortex'    
'left occipital pole'    
'right occipital pole'    

 
 
 

 
APOE-4 NC APOE-4 
Left Angular Gyrus Left Insular Cortex 
Left Precuneus Right Insular Cortex 
Left Superior Temporal Gyrus (Posterior) Left Posterior Cingulate 
Left Intracalcarine Cortex Right Cuneal Cortex 
Right Supramarginal Gyrus (Posterior) Left Temporal Pole 
Left Posterior Cingulate Right Temporal Pole 
Left Insular Cortex Right Intracalcarine Cortex 
Left Supramarginal Gyrus (Posterior) Right Posterior Cingulate 
Right Insular Cortex Right Precuneus 
Left Lateral Occipital Cortex (Superior) Left Supramarginal Gyrus (Posterior) 
Right Intracalcarine Cortex Right Frontal Orbital Cortex 
Left Middle Temporal Gyrus 
(Temporooccipital) 

Right Lingual Gyrus 

 
 
Lobe Regions APOE-4 NC Age 

Correlation 
APOE-4 Age 
Correlation 

Parietal inferior parietal, precuneus, 
superior parietal, 
supramarginal 

r=-.41, p=.07 r=-.58, p=.007 

Temporal bank of superior temporal 
sulcus, entorhinal, inferior 
temporal, middle temporal, 
parahippocampal, superior 
temporal, temporal pole, 
transverse temporal, 
fusiform 

r=.04, p=.85 r=.18, p=.44 

Frontal caudal middle frontal, lateral 
orbitofrontal, medial 
orbitofrontal, pars 

r=-.39, p=.09 r=-.62, p=.003 

Table S1 
List of the 110 regions from the Harvard-Oxford Subcortical and Cortical Atlases. 

Table S2 
Top 12 regions with highest combined rank for strength, betweenness centrality, and regional 
short path length for APOE-4 non-carriers (APOE-4 NC) and APOE-4 carriers. 
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opercularis, pars orbitalis, 
pars triangularis, rostral 
middle frontal, superior 
frontal, frontal pole 

Occipital cuneus, lateral occipital, 
pericalcarine, lingual 

r=-.16, p=.5 r=-.43, p=.06 

Limbic posterior cingulate, isthmus 
of cingulate, anterior 
cingulate 

r=.04, p=.85 r=-.33, p=.15 

 

 

Table S3 
Regions from Freesurfer cortical thickness analysis included in each lobe, along with the 
correlation of lobe thickness with age separately for APOE-4 non-carriers (APOE-4 NC) and 
APOE-4 carriers. 
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Supplemental Text 

DTI Registration 

Regional masks were transformed to each subject’s diffusion space using a multistage 

registration process. First, the high-resolution structural image (MPRAGE) was skull stripped 

using BET. Next, the FA image was affine registered to the MPRAGE using 12 DOF and a 

mutual information cost function using FSL’s Linear Image Registration Tool (FLIRT). The 

MPRAGE was then affine registered to the MNI152 brain using 12 DOF and a correlation ratio 

cost function. These two transformation matrices were multiplied and inverted in order to obtain 

the standard space-to-diffusion space transformation matrix. 

Network Metric Details 

Given a weighted connectivity matrix, strength was calculated as the total weight of 

connections to a given node. To calculate cost, for each region-region connection the product of 

fiber count (i.e. connection weight, wij), average fiber length (lij), and average fiber FA (faij) and 

was taken. The sum of all region-region costs was computed to derive the total network cost: 

! 

wijl ij" faij  

For each node, the subgraph was defined as the subset of connections between the node and 

its first-degree neighbors. The clustering coefficient for a node was calculated as the ratio of the 

number of actual connections among the neighbors in the subgraph to the number of possible 

connections, scaled by the edge weights. 

In order to calculate path lengths within the networks, the distance matrix was first 

Figure S1 
Wechsler memory scale (logical memory delayed recall portion; WMS LM Delay), Rey 
Osterrith Complex Figure (delayed recall; Rey-O Delay), and Buschke-Fuld selective 
reminding test (consistent long-term retrieval section; Buschke CLTR) residuals based on 
partial correlations with age plotted for APOE-4 noncarriers (APOE-3; blue) and APOE-4 
carriers (red). Partial correlations controlled for gender. Both WMS LM Delay and Rey-O 
delay had a significant interaction between APOE genotype (p  < .05). 
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defined. Distance was defined in two parts: first, the inverse of fiber density between two 

regions was calculated, with the rationale that a denser connection enables more 

communication and is equivalent to a shorter distance. Second, this distance was scaled by the 

actual average length of fibers connecting the regions. This allowed the quantification of 

network path lengths in terms of true physical distance. Shortest paths were determined 

between all pairs of nodes (e.g. node A and node B) in the network by finding the shortest 

distance between node A and B. This was done using Djikstra’s algorithm, which finds all 

possible paths between A and B that travel through a unique, non-looping set of other nodes. 

These paths are then sorted by distance, where distance is the product of the connection weight 

for each jump between nodes along the path and the anatomical distance between those nodes. 

Characteristic path length measured the average shortest path length in the network. 

Small worldness for a network was calculated with respect to a set of equivalent “null” 

random networks that have the same sum of weights as the real network but have been 

randomly rewired. For each subject’s structural network, we calculated 1000 random networks 

for comparison. Normalized clustering coefficient was calculated as the ratio of the clustering 

coefficient from the real network to the average clustering coefficient of the 1000 random 

networks. Normalized characteristic path length was calculated in the same fashion. Small 

worldness was quantified as the ratio of normalized clustering coefficient and normalized 

characteristic path length.  

 

Network measures were calculated with the Brain Connectivity Toolbox which is based 

on formulas described elsewhere (Rubinov and Sporns, 2010). Briefly, strength was calculated 

as: 

 where wij is the weight between nodes i and j. 

Clustering coefficient was calculated as: 

! 

ki = wij"
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 where all w are weights and k is the number of nodes in the 

local, first-degree neighborhood. 

Characteristic path length was calculated as: 

where dij is the path weight between any nodes i and j in the network that 

pass through the specified node. The average of these path weights is the average path weight 

for the node. The average of the average path weights for each node is the characteristic path 

length.
 

Normalized clustering coefficient (l) was calculated as: 

! 

" = CCreal
CCrandom    

where CCrandom is the mean CC from the 1000 random networks. 

Normalized characteristic path length (g) was then: 

 

! 

" = CPLreal
CPLrandom  where again CPLrandom is the mean from 1000 random networks 

Finally, small worldness (s) was the ratio: 

 

A small world network has no isolated nodes, λ>>1, γ~=1, and σ > 1.2. 

 

Graph Visualization 

Network graphs were rendered using matplotlib (http://matplotlib.sourceforge.net), and 

networkX (http://networkx.lanl.gov). 

 

 

! 

C = 1
n

(wij wihw jh )
1/3"

ki (ki #1)"

! 

L = 1
n

d ij"
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Chapter 3 
 

Adaptive Modularity of Memory Encoding Networks Predicts APOE-4 Dependent 
Hippocampal Activity Reduction 

 
Introduction 

Among the risk factors for developing late-onset Alzheimer’s Disease (AD), two stand 

out above the rest: old age and possession of at least one copy of the APOE e4 (APOE-4) 

allelic variant (Corder et al., 1993). The study of aging APOE-4 carriers with respect to non-

carriers is critical for unraveling the interactive effect of aging and genetics on AD biomarkers. 

The most well-established MRI-based biomarker is structural atrophy in the medial temporal 

lobe (MTL) (DeCarli et al., 2007) (Desikan et al., 2009), including the hippocampus and 

entorhinal cortex. Reduced hippocampal volume and ERC thicknesses in individuals with mild 

cognitive impairment (MCI) are predictive of cognitive decline and eventual conversion to AD 

(Devanand et al., 2007). Aging APOE-4 carriers also exhibit cortical thinning in the ERC and 

neighboring structures that relate to declines in AD-compromised cognitive domains such as 

episodic memory encoding (Burggren et al., 2008) (Burggren et al., 2011). 

At a cellular level, the entorhinal cortex (ERC) is one of the first brain regions to exhibit 

pathological changes in Alzheimer’s Disease (AD) (Braak and Braak, 1991) (Gómez-Isla et al., 

1996). This periallocortical region serves as the primary source of input to the hippocampus, 

aggregating cortical input from the neighboring perirhinal and parahippocampal cortices, which 

themselves receive a wide swath of inputs from unimodal and polymodal regions in the 

frontal/temporal/parietal lobes and retrosplenial cortex (Squire et al., 2004). Recent rodent 

studies demonstrated that exogenous human tau protein genetically expressed in the entorhinal 

cortex layer II eventually appeared in the hippocampus and cingulate cortex and resulted in 

synaptic loss (De Calignon et al., 2012), supporting the ERCs central role in disease 

propagation. 



	
   49	
  

In healthy humans, resting state fMRI (rsfMRI) functional connectivity (FC) has shown 

that the hippocampal formation couples with the default mode network (DMN) in its 

ventral/anterior aspect (Andrews-Hanna et al., 2010). The DMN is of primary interest in AD 

because of its reduced functional coherence with disease progression (Greicius et al., 2004) 

(Damoiseaux et al., 2012a), its correspondence with the pattern of amyloid-beta deposition in 

AD (Buckner et al., 2009), and its involvement in episodic memory encoding and retrieval (Kim 

et al., 2010) (Sestieri et al., 2011). 

APOE-4 carriers have demonstrated complex alterations in FC. The most well 

established finding is altered functional connectivity in the DMN (Sheline et al., 2010b) 

(Machulda MM, 2011) (Damoiseaux et al., 2012b) (Filippini et al., 2009), although the detected 

directions of that change (increase or decrease) have been variable. These factors are likely 

driven by age, gender, and other demographic variations. Meanwhile, task-based differences in 

APOE-4 carriers have been equally variable in their findings. During memory encoding, both 

increases and decreases in activity in the medial temporal lobe have been reported 

(Bookheimer et al., 2000) (Dickerson et al., 2005) (Suthana et al., 2010) (Filippini et al., 2011) 

(Adamson et al., 2011). 

While rsfMRI has been a valuable tool for mapping altered functional networks in 

individuals with AD or AD risk, functional connectivity is an ongoing, dynamic process that is 

constantly reconfiguring in the service of specific cognitive functions (Bassett et al., 2011b; 

Ekman et al., 2012) (Fornito et al., 2012). Given the domain-specific impairments caused by AD, 

the measurement of functional activity and connectivity during relevant tasks may be more 

sensitive to perturbed dynamics caused by the disease in its preclinical stage. 

Here we examined ERC fMRI activity and whole brain connectivity in aging APOE-4 

carriers and non-carriers during an episodic memory encoding task and assessed the 

relationship between them. 
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Materials and Methods 

Patient Enrollment 

Aging adults were recruited to the UCLA Aging and Memory Center as part of an 

ongoing study on aging and dementia. All subjects included in the current study had no history 

of neurological or psychiatric disorder. Subjects were also excluded on the basis of left-

handedness, significant brain trauma/abnormality, substantial substance abuse, epilepsy, 

arterial hypertension, or cardiovascular disease. Subjects completed a neuropsychological 

battery that included tests in the domains of working memory, long-term memory, and executive 

functioning. Based on the outcome of these tests, subjects were given a clinical diagnosis of 

age-normal performance, mild cognitive impairment, or probable Alzheimer’s Disease. Only 

probable AD subjects were excluded from this study. Blood was drawn from each subject and 

assessed for APOE genotype using the procedure described in (Suthana et al., 2010). The 

study includes x 3/3 carriers, x 2/3, x 3/4, and x4/4. All statistical tests were performed with the 

exclusion of e2 carriers and found to remain statistically significant. Subject demographics and 

neuropsychological performance are listed in table 1. 

 
 
Characteristic APOE-4 carriers (N=19/21) APOE-4 non-carriers 

(N=19) 
Age 64.5 +/- 8.8 (64.5 +/-9.7) 59.6 +/- 7.7 
Age range 47-79 (47-79) 46-78 
Homozygotes 3 (3) 17** 
Gender 10F/9M (11F/10M) 13F/6M 
Family history of 
dementia 

10 (12) 9 

Years of education 17.1 +/- 2.6 (16.8 +/- 2.8) 15.7 +/-2.2 
MMSE* 28.3 +/- .9 (28.4 +/- 1.5) 29.3 +/- .9 
WMS LM delay 25.5 +/- 7.3 (25.8 +/- 7.3) 28.4 +/- 7.7 
Buschke CLTR 63.1 +/- 40.6 (61.1 +/- 38.9) 74.3 +/- 35.5 
Rey-O delay 13.7 +/- 4.7 (13.5 +/- 5.3) 15.8 +/- 6.8 
Total VP 20.2 +/- 7.4 (20.2 +/- 7.2) 21.5 +/- 7.4 
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Imaging Procedure 

Subjects underwent MRI scanning on a Siemens Allegra 3T scanner at the University of 

California, Los Angeles Ahmanson-Lovelace Brain Mapping Center that included the following 

sequences: 1) a Whole Brain (WB) T1-weighted structural scan (MP-RAGE; sagittal slicing, 

TR=2300 ms, TE =2.93 ms, matrix=192 × 192, 160 slices with no gap, field of view = 256 mm2, 

flip angle = 8°, and voxel size = 1mm3), 2) a whole-brain fMRI scan while performing an 

unrelated-words associative episodic memory encoding and retrieval task (described in 

Experimental Design), 3) a high resolution T2-weighted fast-spin echo structural scan of the 

bilateral medial temporal lobes with an oblique coronal prescription, oriented perpendicular to 

the long access of the hippocampus (Hippocampal High Resolution, HHR; TR = 5200 ms, TE = 

105 ms, matrix size = 512 × 512, 19 slices with no gap, voxel size: 0.39 × 0.39 × 3 mm), 4) a 

high resolution fMRI echo-planar scan with the same prescription as in 2) (TR = 3000 ms, TE = 

39 ms, 19 slices with no gap, voxel size = 1.6 × 1.6 × 3 mm) while performing the same task as 

in 2), and 5) a HHR scan with the bandwidth matched to the HHR fMRI (TR = 5000 ms, TE = 66 

ms, 19 slices with no gap, voxel size = 1.6 × 1.6 × 3 mm). The order of 2 and 4 was randomized 

across subjects. After assessing data quality and ensuring proper compliance with the task, a 

total of 43 subjects with HHR fMRI data were included in the analysis, 41 of whom also had WB 

data. 

 

Experimental Design 

Table 1: Demographic characteristics. Measures show mean +/- standard deviation. 
Measures in parentheses are after inclusion of additional two subjects for high resolution only 
scans. Abbreviations: Rey-O delay, Rey–Osterrith Complex Figure, delayed recall; WMS LM 
delay, Wechsler memory scale, logical memory delayed recall portion; WMS VP, Wechsler 
memory scale, verbal paired associations II. *: p < .05. **: two non-carriers possessed one 
APOE-2 allele. 
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The fMRI task instructed subjects to learn the association of unrelated pairs of words 

displayed simultaneously (e.g. “jazz” and “beast” or “clock” and “green”). During each encoding 

block of the task, subjects were shown seven pairs. This was followed by a 30 second baseline 

block during which the subject was shown a symbol (“+” or “o”) in the center of the screen and 

instructed to press a button every time the symbol changed. This was followed by a retrieval 

block where the subject was shown a single word and asked to silently recall the second word. 

They were instructed to press a button if they did recall the unseen word in the pair. Six blocks 

of encoding and retrieval were completed. Subjects were tested on these word pairs 

immediately after the scan in order to check accurate recall. Prior to the scan, subjects were 

trained on the identical task with different word pairs in order to familiarize them with the task 

and to assess memory performance. 

 

Image Analysis – Structural 

In order to define precise, subject-specific MTL subregions, we used a manual 

segmenting technique that has been previously described in detail (Suthana et al., 2010; Zeineh 

et al., 2000). Briefly, HHR structural scans were traced for gray matter, white matter, and CSF. 

Landmarks at boundaries were used to demarcate regions of interest (ROIs) for CA1, 

CA2/3/Dentate Gyrus (CA2/3/DG, which could not be resolved further), entorhinal cortex (ERC), 

perirhinal cortex (PRC), parahippocampal cortex (PHC), and subiculum (SUB). Example ROIs 

for one subject are shown in Figure 1. The CA1, CA2/3/DG, and SUB were further divided into 

anterior and posterior portions corresponding to the head and body/tail of the hippocampus, 

respectively. Because these regions were defined in the same field of view as the HHR fMRI 

scan, ROIs were aligned to the functional image with a 6 degree-of-freedom transform and 

downsampled to HHR fMRI resolution using the FMRIB Software Library’s Linear Image 

Registration Tool (FLIRT; all FSL tools described and available at 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). Cortical thickness for each subregion was also determined 
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using a procedure described in (Burggren et al., 2008) that measured the maximal distance 

between boundary gray and non-gray matter pixels within each ROI and then averaged all such 

measurements within an ROI. 

Registration between the HHR structural scan and the WB fMRI scan was the most 

critical to this experiment. We used a multi-stage registration: 1) HHR structural to WB structural 

(6 DOF, using a bounding box covering the majority of the brain in coronal sections in order to 

compensate for the limited field of view), 2) WB structural to WB matched bandwidth (Echo-

planar imaging-optimized Boundary Based Registration in FSL), 3) WB matched bandwidth to 

WB functional (6 DOF). All scans were skull stripped using FSL BET. For parsimony, only linear 

registrations were applied. 

 

Functional pre-processing 

Whole brain fMRI data was analyzed for functional activation using FSL FEAT. Data was 

corrected for motion using MCFLIRT, smoothed using a Gaussian kernel (5mm FWHM), and 

skull stripped. In order to make the task fMRI results and the pseudo resting results maximally 

similar, additional preprocessing was applied. Data were bandpass filtered between .08 and 

.009 Hz in order to eliminate high and low frequency artifacts while preserving BOLD 

fluctuations at the timescales of interest, including task activations. Core white matter (WM) and 

CSF masks were defined on the MNI152 template brain, registered to WB structural spaced, 

and masked by subject-specific WM and CSF masks created using FSL FAST with a threshold 

of .9. These masks were registered to the WB fMRI and average timeseries were obtained for 

WM and CSF. These parameters, their temporal derivatives, and the motion parameters from 

MCFLIRT were all statistically regressed from the data. 

High resolution data were skull stripped using BET, motion corrected using MCFLIRT, 

high pass filtered and spatially smoothed using a Gaussian kernel of 3mm FWHM. With the 

resultant images, the transform to the matched bandwidth scan was performed using FLIRT 
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with a 3 DOF transform. A combined transformation matrix between HHR functional, matched 

bandwidth, and structural space was then calculated and inverted in order to register all hand 

traced ROIs into subject functional space. 

 

Functional activity  

Single-subject analysis was performed in FEAT using a general linear model that 

included regressors for encoding and retrieval, both convolved with a double-gamma shaped 

hemodynamic response function. This model was then run for each subject without 

thresholding, which was reserved for the group level analysis. Group level analysis was also 

performed with FEAT, using the FLAME-1 modeling option with cluster thresholding using Z=2.0 

and p=.05. A pre-thresholding mask was used that included cortical gray matter, subcortical 

nuclei, and the cerebellum was created using the FSL Harvard-Oxford cortical/subcortical atlas 

the the FSL MNI152 cerebellum atlas. 

 

High resolution data were analyzed using custom code written in MATLAB and Python. Task 

waveforms were convolved with the canonical HRF using the SPM functions spm_get_bf and 

spm_Volterra (http://www.fil.ion.ucl.ac.uk/spm/). For each MTL ROI, the mean timeseries was 

extracted and regressed against a model with HRF-convolved variables for encoding and 

retrieval. Beta parameter estimates were stored for each (subject x ROI) and used for all 

subsequent analyses. 

 

Functional connectivity 

The next step was to obtain whole brain functional task-specific networks. This allowed 

the application of graph theory tools to assess the importance of various brain regions within the 

whole brain network. To do this, first a whole brain cortical and subcortical fMRI atlas derived 

from healthy adults (described in (Brown et al., 2012) was registered to each subject’s WB fMRI 
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scan. This set of atlas ROIs (A-ROIs) were combined with the custom MTL ROIs and any A-

ROIs that overlapped MTL-ROIs by more than 5% were excluded. This resulted in a set of 180 

regions.  

Task-specific functional networks have been assessed in a variety of ways. A simple 

method is to assess the correlation of different regions during blocks of interest. The 

shortcoming of this method is that it fails to account for other sources contributing to covariation, 

including independent coactivation or physiological driving inputs. For this reason, we performed 

an exhaustive PPI that used each of the 180 ROIs as the seed. A general psychophysiological 

interaction (gPPI) approach was used to test for task-specific modulations of connectivity. We 

used the standard method for PPI analysis (O’Reilly et al., 2012) but extended it to use the 

whole brain set of ROIs. In MATLAB, regressors were constructed for the HRF-convolved 

psychological task (e.g. encoding), the seed timeseries for each ROI (the physiological term), 

and the interaction of the convolved task (psych) and the ROI timeseries (phys). We extended 

this approach to a gPPI (McLaren et al., 2012) by including regressors for the other 

psychological task (retrieval) and its interaction with the seed. This method has been shown to 

improve specificity and sensitivity in PPI modeling. This model was then regressed against each 

of the remaining 179 ROI timeseries. The resultant t-statistics for the encoding and retrieval 

interactions were stored in 180x180 task PPI matrices. This is highly similar to the cPPI method 

described by Fornito and colleagues (Fornito et al., 2012). The residuals of each PPI model 

were stored and used in order to calculate the “pseudo resting state” correlations between each 

pair of regions after controlling for the effect of task (i.e. task controlled) (Fair et al., 2007). 

The 180x180 PPI matrices were treated as graphs and analyzed with the Brain 

Connectivity Toolbox (BCT; https://sites.google.com/site/bctnet/). Networks were first assessed 

in the conventional fashion, thresholding to keep the top 10% strongest edges and then 

binarizing the edges to form an adjacency matrix. These networks were assessed for global 

efficiency (Eglob), which is calculated in two parts. First, the path length of the shortest path 
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between any two nodes in the network is stored in a distance matrix. Eglob is the grand mean of 

the inverse distance matrix, with longer distances indicating less efficiency. Mean clustering 

coefficient (MCC) was also calculated. For any given node, the clustering coefficient is the ratio 

of triangles to unconnected triples involving the node. The MCC is simply the mean across all 

nodes. Specific formulas for these measures are located elsewhere (Rubinov and Sporns, 

2010). Next, unthresholded networks were assessed for modularity, regional strength, and 

regional participation. Specifically, modules were determined using unthresholded PPI 

connectivity matrices with positive and negative weights, using the formula and software 

described in (Rubinov and Sporns, 2011). This method respects the true character and full 

distribution of functional connectivity strengths and does not require the application of any 

artificial threshold or binarization. Each node was assigned to exactly one functional module 

using the Louvain method and function in the BCT (Blondel et al., 2008). Because this method 

is heuristic and may lead to slightly different partitions on different runs, we devised a strategy to 

obtain the most representative partition. For each network, 100 runs of the modularity 

assessment were performed. The similarity of each of these community assignments to every 

other was assessed using the normalized mutual information (Meilă, 2007), which assesses the 

joint probability of nodes occurring within the same module in different partitions. This similarity 

matrix was subjected to “meta-module” detection using the Louvain algorithm in order to find the 

different subsets of partitions. Each subset was ranked using the formula: 

mean(Q)+size(subset) / std(Q) 

The rationale was to select the subset that occurred most frequently, scaling that measure by 

the goodness of the partitions (the average Q) and the variability of that goodness (the standard 

deviation of Q). Once a subset had been selected, the partition with the maximum Q value 

within that subset was selected as optimal. 

Group-level networks were determined using a modularity consistency method 

described by Fornito and colleagues (Fornito et al., 2012). Each pair of ROIs was assessed for 
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the frequency with which they appeared in the same module across subjects. The sum of these 

co-ocurrences for each pair of ROIs was stored in a 180x180 consistency matrix G. G was then 

analyzed for meta-module detection, using the same method described above. The modules in 

this meta-network describe the consistency with which ROIs are paired together in the 

functional network across subjects. It is a common way to obtain a group-level description of 

functional subnetworks and their interactions, either during rest or during a task (Van den 

Heuvel et al., 2008). 

 

Results 

Medial temporal lobe high resolution functional activity 

Medial temporal lobe activity was first assessed during memory encoding. The encoding 

portion was emphasized because of our previous findings that hippocampal subregion activity 

varies in APOE-4 carriers (Suthana et al., 2010). Activity was measured for the encoding blocks 

vs. the baseline in the left and right CA1, CA2/3/DG, ERC, PHC, PRC, and SUB. When all 

subjects were combined, significant mean activity (p < .01) was observed in the bilateral anterior 

CA1, bilateral anterior CA2/3/DG, left ERC, bilateral PRC, and left anterior SUB. This indicated 

a significant engagement of the hippocampus in the service of encoding, primarily in its anterior 

subregions as has been shown to be a general trend for encoding (Kühn and Gallinat, 2013). 

Next, a statistical model was constructed to test for the effect of APOE-4 status on MTL 

encoding activity. The 7 factor demographic model included continuous variables for age and 

years of education, categorical variables for APOE, gender, and family history of dementia, and 

interactions for APOE x age and APOE x gender. The only significant main effect of APOE was 

on activity in the left ERC (t=-2.26, p=.03) and right ERC (t=-2.41, p=.02), which also 

demonstrated a significant APOE x age interactions (left ERC t=-2.24, p=.03) (right ERC t=2.43, 

p=.02) The effect resulted from greater activity in APOE-4 non-carriers than carriers. The 

interaction was driven by a reduction of activity with age in carriers (left: r=-.44, right: r=-.43) 
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with respect to carriers (left: r=.16, right r=.13). This agreed with previous reports of memory-

related decreases in hippocampal activation in non-carriers, a pattern not observed in carriers 

(Nichols et al., 2012). 

 

 

 
 
Whole brain functional activity 

The same model was used to test for differences between APOE-4 carriers and non-

carriers in whole brain activity during the encoding task. A significant activation cluster was 

found in the left MTL, with peak voxels at (-20, -30, -22) (Z=2.87) and (-24, -30, -14) (Z=2.97) 

Figure 1: Medial temporal lobe regions of interest (ROIs) for one subject, registered to the 
whole brain structural scan. Left and right hemisphere hand-traced ROIs are shown 
simultaneously. Center box shows zoomed front view of left medial temporal lobe structures. 
Regional identities are color-coded and specified in the legend. 
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(Figure 2). According to the Juelich Histological Atlas included in FSL View, the maximum 

probability regions for these voxels were the left entorhinal cortex and left subiculum, 

respectively. For subsequent analyses of ERC encoding activity, the parameter estimates for 

the encoding vs. baseline contrast were extracted from the peak voxel in the ERC (-20, -30, -

22). 

 
 
 

 

 
 
Whole brain functional network topology 

Figure 2: Whole brain functional activation during the encoding task. APOE-4 carriers 
demonstrated significantly lower activity in left MTL subregions including the entorhinal 
cortex and subiculum. 
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We next investigated how whole brain networks reconfigured during the different phases 

of the episodic memory task. During encoding, the group-level consistency matrix contained 

three different modules (Figure 3A). The first encoding module (module 1) was a sensory motor 

network incorporating the pre/post-central gyrus and dorsal anterior cingulate. Module 2 

included regions from the fronto-parietal external attention system and the posterior/ventral 

DMN. 

Module 3 contained regions from the medial and lateral temporal lobe, occipital cortex, posterior 

cingulate, and ventral/medial prefrontal cortex. With respect to canonical intrinsic connectivity 

networks, the most novel aspect of this configuration was the coupling of visual areas with the 

MTL/posterior cingulate. 

The task-controlled group network also contained four modules, largely consistent in 

both membership and topological organization with known functional networks detected during 

rsfMRI (Power et al., 2011). They included module 1, the sensory-motor network; module 2, a 

default mode/external awareness network; module 3, a primary/higher order visual network; and 

module 4, containing inferior, anterior, and medial temporal lobe, and ventral/medial prefrontal 

areas (the “anterior” DMN) (Figure 3B). The main differences in module membership between 

the encoding and rest networks involved switching of the medial temporal lobe and 

subcomponents of the default mode network. The encoding network had lower mean clustering 

coefficient (.42 vs. .67), lower modularity (.38 vs. .62), greater global efficiency (.57 vs. .52), and 

longer average Euclidean distance between connected nodes (56.9mm vs. 52.7mm), all 

indicative of greater global integration. 

 

Whole brain global network properties 

Individual subject PPI networks were next compared for potential individual variability 

that may be determined by APOE status, age, or other demographic factors. Three global 

network properties were assessed from encoding and task-controlled networks: global efficiency 
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(Eglob), mean clustering coefficient (MCC), and the modularity (Q). Eglob and MCC were based on 

networks thresholded to keep the strongest 10% of edges, while the Q was calculated on 

unthresholded networks that included positive and negative weights. Thresholding was 

performed because Eglob and MCC are only meaningful in a network that is sparsely connected. 

Each subject’s network was fully connected at 10% density. Q is calculated on a fully connected 

network. Each of these measures were tested against the 7 factor demographic model. For 

encoding networks, Eglob was significantly lower for APOE-4 carriers (p=.006), decreased with 

age (p=.003), and demonstrated an APOE x age interaction (p=.004). The interaction was a 

more negative correlation of age and Eglob for non-carriers, mirroring the trend observed in the 

HHR fMRI results. MCC was marginally lower in APOE-4 carriers (p=.049). Q did not 

demonstrate an APOE or age effect but was significantly lower for individuals with a family 

history of dementia (p=.01). For task-controlled networks, Eglob was significantly lower with age 

and was insignificant but trended to be lower in APOE-4 carriers (p=.052) and to have an APOE 

x age interaction (p=.06). 
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Relationship of MTL activity and whole brain connectivity 

We next sought to determine potential sources of differential activity in the left ERC. We 

hypothesized that task-specific whole brain network properties may best explain the variation of 

the MTL subregion activity across genotype and age. Specifically, we expected that modularity-

based properties would be critical, given the highly distinct reconfigurations apparent at the 

group level. First, we tested the relationship of each global network measure to the left ERC 

encoding activity. Q had a significant negative relationship with ERC activity (r=-.48, p=.001; 

Figure 4A). When controlling for age, this affect remained (r=-.5). Neither of the other global 

Figure 3: The functional modularity of the whole brain network during A) memory encoding 
(top row) and B) after statistically removing the effects of task (bottom row). The first column 
displays the top view with the back of the brain at the bottom. The second column shows a 
side view with the back of the brain on the left. The third column shows a spring-embedded 
plot displayed in 2D-space. Networks are at the group level and have been thresholded to 
display only strongest 2/12% of connections for top/side and spring-embedded, respecitvely. 
Regional abbreviations are defined by the Harvard Oxford cortical and subcortical atlases, 
except for the 18 MTL ROIs which are defined in the text. 
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measures had any positive or negative relationship. As a test of the specificity of this finding, Q 

was correlated with a randomly selected voxel in the right postcentral gyrus. The activity of the 

voxel at (52, -14, 52) had a non-significant correlation with Q (r=-.15, p=.35). Thus, greater 

functional modularity during encoding occurred in tandem with lower entorhinal activity. In order 

to confirm that this relationship was specific to encoding, we tested the pseudo resting state (i.e. 

task-controlled) global network properties against ERC activity and did not find any significant 

relationships. 

With the knowledge that modularity was the property that best predicted ERC activity, 

we probed nodal network measures that may specifically related to ERC activity. We focused on 

one basic property, connection strength, and two properties related to modularity, the 

participation coefficient and within/between module Z-scores. In all cases, we ran two separate 

tests, one for positive connections and one for negative connections. We limited the analysis to 

nodes within encoding module 1, containing the MTL and occipital cortex. For positive strength, 

the left lateral inferior occipital cortex was significantly predictive of ERC activity (r=.53; this and 

all subsequent results survived false discovery rate correction for multiple comparisons; Figure 

4B). For negative strength, the left lateral inferior occipital cortex (r=-.55), left lateral superior 

occipital cortex (r=-.44), and left parahippocampal cortex (r=-.55) all had negative correlations 

with ERC activity. For positive between module Z-score, the right lateral inferior occipital cortex 

(r=.48) and right temporal pole (r=-.47) predicted ERC activity in opposite directions. For 

negative between module Z-score, the left putamen (r=.5), left orbitofrontal cortex (r=.52), left 

temporal pole (r=.5), and right temporal pole (r=.5) all positively related to ERC activity, while left 

lateral superior occipital cortex (r=-.37) and left lateral inferior occipital cortex (r=-.44) negatively 

correlated. The overall pattern that emerged was a positive relationship of the ERC to medial 

temporal and occipital regions (Figure 5B) and a reciprocal relationship with anterior temporal 

and ventral prefrontal areas (Figure 5C). 
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Figure 4: The correlation of modularity (Q) and left entorhinal cortex (ERC) activity in the 
whole brain fMRI scan during memory encoding (r=-.48, p=.001). Q is a measure of the 
separability of the network into subsets of nodes that are densely interconnected with one 
another and sparsely connected to the rest of the network, and ranges between 0 and 1. 
ERC activity is the parameter estimate from the associative memory encoding vs. baseline 
contrast (units are arbitrary). 

Figure 5: The functional connectivity patterns of specific regions of interest during memory 
encoding. The left side of each image corresponds to the right side of the brain. A) shows the 
top 15% of connections from the left entorhinal cortex. B) shows the top 10% of connections 
from the left lateral inferior/superior occipital cortices and right lateral inferior occipital cortex. 
C) shows the top 7% of connections from the left/right temporal poles, the left frontal orbital 
cortex, and the left putamen. All of the regions in B) and C) had specific network properties 
that were highly predictive of left ERC encoding activity. 
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Entorhinal cortex thickness 

Left entorhinal cortex thickness measurements were also evaluated using the 7 factor 

demographic model. In this subject pool, no significant differences were apparent. The only 

trend was for a reduction in thickness with age (p=.07). 

 

Discussion 

The entorhinal cortex is a locus of early abnormality in the course Alzheimer’s disease. 

Here we examined ERC activity in individuals at genetic risk for AD and detected consistent 

reductions in functional activity during memory encoding that were dependent on APOE-4 

genotype and exacerbated by age. A task-based network analysis revealed that the ERC 

adaptively coupled with visual regions in the service of memory encoding. Within this “visual 

memory” module, reduced connectivity of specific higher-order visual regions occurred in 

tandem with lower ERC activity. In a module containing ventral and medial prefrontal and 

anterior temporal areas, greater extra-modular connectivity was highly related to lower ERC 

activity. At the global level, higher ERC activity occurred in the presence of less distinct 

functional modules. 

Layer II of the ERC is one of the first brain regions where neurofibrillary changes appear 

in the earliest stages of Alzheimer’s Disease (Braak and Braak, 1991) (Gómez-Isla et al., 1996). 

In aging individuals at genetic risk for AD, based on possession of at least one APOE-4 allele, 

ERC demonstrates reductions in cortical thickness that are predictive of subsequent decline in 

memory encoding (Burggren et al., 2011), indicating that structural alterations in this region 

have specific functional consequences. Previous studies of entorhinal and hippocampal 

functional activity during memory encoding in APOE-4 carriers have reported varied results 

(Bookheimer et al., 2000) (Dickerson et al., 2005) (Suthana et al., 2010) (Filippini et al., 2011) 

(Adamson et al., 2011). A multitude of factors have affected the variable findings in the 
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literature. The nature of the encoding task - whether it involves single items or associations, and 

whether these stimuli are verbal, pictorial, or spatial – will influence which hippocampal 

subregions are engaged, and which hemisphere is predominantly involved. Evidence that 

extrahippocampal MTL areas are engaged in the association of items (Kirwan and Stark, 2004) 

supports the use of the associative memory task in this study.  The delineation of hippocampal 

subregions is also variable, based on either an anatomical atlas, an automated parcellation 

program on a whole brain structural scan, or hand drawing ROIs on whole brain or high 

resolution structural scans. The use of high resolution scans to create customized, subject 

specific ROIs assured high anatomical specificity in the current study. Furthermore, the 

confirmation of decreased entorhinal encoding activity in APOE-4 carriers in two independent 

runs of the same task, using whole brain and high-resolution MTL fMRI sequences with different 

parameters, supports the consistency of this finding. Finally, studies of APOE’s affect on MTL 

memory encoding activity have been influenced by the varying composition of the subject pools. 

The choice to study only cognitively normal individuals, to expand that pool to non-demented 

individuals, and how to stratify individuals by APOE status (including hetero/homozygotes and 

possession of an APOE-2 allele; see (Trachtenberg et al., 2012)) and age (limiting the age 

range, looking at age correlations or APOE x age interactions (Brown et al., 2011)), will all 

naturally affect the outcome. We chose to use a large age range and a model that included 

terms for APOE, age, and APOE x age interaction. This enabled the detection of lower APOE-4 

specific activity in ERC, and in addition, an interactive effect of APOE status and age in line with 

previous reports (Nichols et al., 2012). Such a design requires the inclusion of older subjects 

and is thus very difficult to only include cognitively normal individuals. Furthermore, it may be 

argued that cognitively normal individuals in there mid-70s are atypical in their cognitive 

resilience. 

In order to understand how ERC activity differences related to broader brain states, it 

was critical to 1) have subjects perform a task that would engage the areas of earliest potential 
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compromise, 2) adapt a method that assesses functional connectivity in a task setting over and 

above task co-activity, 3) use whole-brain complex network analysis to detect downstream 

connectivity differences that track with alterations at the disease locus (Zhou et al., 2012). The 

use of the PPI method with a set of whole brain ROIs, including subject-specific MTL 

subregions, allowed us to evaluate a basic functional property of interest, ERC activity, in the 

context of task-specific network reconfigurations at the whole brain level.  

We observed adaptive coupling of the MTL and occipital cortex into a coherent module 

during memory encoding in this study, in line with previous reports of task-driven modulations of 

visual functional connectivity (Chadick and Gazzaley, 2011). Effortful memory encoding also 

elicited a global reduction in modularity and an increase in global efficiency, indicative of a more 

globally integrated network. Similar affects have been observed in working memory tasks 

(Kitzbichler et al., 2011). However, this is to our knowledge the first direct linkage between 

global complex network properties during a task and the degree of activation. At a regional 

level, we focused on nodes within module 1 because of its inclusion of the MTL, our primary 

region of interest. The network-wide connectivity strengths of lateral occipital and 

parahippocampal areas were most positively related to ERC activity. It should be specified that 

our interpretation of positive vs. negative functional connections is that a positive correlation 

between positive functional connectivity and ERC activity is equivalent to a negative correlation 

of negative functional connectivity and ERC activity. While the interpretation of negative 

functional connectivity remains controversial, it does appear to have physiological origin and 

relevance (Chang and Glover, 2009) and to relate specifically to the degree of functional activity 

(Gee et al., 2013). Regions whose between-module functional connectivity negatively related to 

ERC activity included the bilateral temporal poles, left orbitofrontal cortex, and putamen. These 

areas bear correspondence to the salience network (Seeley et al., 2007), which has been 

shown to exhibit enhanced connectivity in the face of decreased default mode connectivity in 

APOE (Machulda MM, 2011) and AD (Zhou et al., 2010). One potential mechanism is that 
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increased intermodular connectivity of this network inhibits DMN connectivity and subsequently 

reduces ERC activity. 

Here we report that non-demented aging APOE-4 carriers exhibit consistent reduced 

activity during associative episodic memory encoding in the left entorhinal cortex. Assessment 

of the whole brain task-specific encoding network revealed decreased modularity and increased 

global integration with respect to task-controlled pseudo resting state networks. Critically, 

greater reductions in modularity co-occurred in individuals with higher ERC activity. Posterior 

regions in the lateral occipital and medial temporal lobes had a positive influence on ERC 

activity, while anterior regions in the temporal lobe and ventral prefrontal cortex had a negative 

influence. This work helps contextualize MTL activity alterations, a promising potential 

biomarker for AD risk, and emphasizes the importance of exploring task-driven alterations of 

functional connectivity networks in relevant cognitive domains. 
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Chapter 4 
	
  

Hippocampal-centered network increases memory consolidation-dependent functional 
connectivity via parahippocampal axonal pathways 

	
  
Introduction 

Hippocampal interaction with the cortex is required for the consolidation of declarative 

episodic memory (Frankland and Bontempi, 2005). Declarative memory traces that are initially 

stored primarily in the hippocampus become more cortically mediated over the timescale of 

hours to days. This process of transfer involves a dialogue between the hippocampus and 

specific cortical areas, both during quiescent periods after learning (Logothetis et al., 2012) 

(Tambini et al., 2010) and during sleep (Ji and Wilson, 2007).  

The identity of the engaged cortical regions during these consolidation phases is 

dependent on the class of stimuli, the nature of the task (e.g. single-item vs. association), and 

the degree of initial encoding. It is well established that modality-specific cortical areas do 

demonstrate elevated functional connectivity with the hippocampus in idle periods following 

task, including the parahippocampal gyrus for scenes, the fusiform face area for faces (Tambini 

et al., 2010), the sensory cortex for textures, and the olfactory cortex for scents. In addition to 

these modality-specific reactivations, the medial prefrontal cortex (mPFC) is vital for the 

consolidation of such memories. fMRI studies in humans have demonstrated that persistent 

mPFC-hippocampal connectivity after a task persists and is related to the degree of recall 

(Kesteren et al., 2010). Rodent studies have revealed post-task replay of memory sequences in 

the prefrontal cortex during sleep (Euston et al., 2007). Evidence suggests that with time, 

episodes become less hippocampally dependent as the burden is shifted to the mPFC to 

orchestrate subsequent recall (Takashima et al., 2006) (Frankland and Bontempi, 2006) 

(Takashima et al., 2009). 

While the functional connectivity of the hippocampal and cortical areas involved in 

episodic memory consolidation are well characterized, less is known about the axonal circuitry 
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that enables such information transfer. Sensory-specific hierarchies are known to converge in 

the parahippocampal and entorhinal cortices (Felleman and Van Essen, 1991), serving as a 

gateway into the hippocampus where subsequent binding, pattern separation, and pattern 

completion can occur. The primary outputs from the medial temporal lobe are the fornix, the 

cingulum bundle, and the uncinate fasciculus. The structural integrity of the fornix in particular 

has been linked to episodic memory ability (Metzler-Baddeley et al., 2012). Simultaneously, it is 

known that the MTL is a node in the ventral/posterior aspect of the default mode network, 

coupling most closely with the retrosplenial cortex, inferior parietal lobule, and ventromedial 

prefrontal cortex (Andrews-Hanna et al., 2010). However, it is not clear which structural pathway 

is predominantly responsible for hippocampal-medial prefrontal communication in service of 

memory consolidation in humans. Furthermore, how individual variability in this circuitry 

constrain the degree of functional connectivity or memory performance is unknown. 

To better understand the effects of new memory encoding on functional connectivity, we 

assessed associative episodic memory encoding during a face/place association fMRI task. We 

evaluated changes in resting state functional connectivity before and after the task. We 

examined early consolidation interactions between the hippocampus, medial prefrontal cortex, 

and modality-specific brain regions with regard to free recall memory performance 24 hours 

later. The structural network topology of these areas was used to triangulate the episodic 

memory consolidation network and test for individual differences in functional and structural 

connectivity that predicted performance. 

 

Results 

Task performance 

 Following a 24 hour delay, On the free recall task, subjects recalled 5.6 +/- 5.5 items 

(range 0-19). On the cued recollection task, subjects recalled 7 +/- 4.9 items (range 0-16). On 

the cued recognition task, subjects recalled 26.5 +/- 9.4 items (range 11-40). While a floor effect 
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was observed for the free recall and cued recollection tasks, cued recollection performance 

indicated significant successful encoding. Therefore, subsequent analyses focus on the cued 

recognition performance unless otherwise specified. 

 

fMRI encoding activity 

Based on our a priori anatomical hypotheses, BOLD activity was assessed in the 

bilateral hippocampal area, using a mask combined from all regions in our group functional atlas 

(see Methods) whose center of mass had a maximal probability of being in the hippocampus or 

parahippocampal gyrus, based on the Harvard/Oxford probabilistic atlas. We contrasted activity 

for different event types, focusing on two conditions: cued-recognitions hits vs. misses during 1) 

stimulus presentation of the face/place association and 2) post-stimulus fixation on a point. Our 

inclusion of the post-stimulus period allowed for elaborative encoding of the items and allowed 

us to examine immediate post-stimulus effects that may relate to consolidation (Ben-Yakov and 

Dudai, 2011). Within the bilateral hippocampal ROI, in the post-stimulus hits > misses contrast, 

a cluster of 14 contiguous voxels with all Z > 2.0 (p < .05) was detected in the right 

hippocampus (Figure 1). Smaller clusters (< 10 voxels) were found in the left hippocampus and 

right extra-hippocampal area. 
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Hippocampal rsfMRI connectivity changes and memory performance 

We next examined changes in idle functional connectivity between the pre-task and 

post-task rsfMRI scans. The post – pre correlations coefficient changes between the right 

hippocampus and the remaining 198 brain regions changed by an average of by an average of 

r=-.02 +/- .07 . When the connectivity change index was linearly correlated with cued recognition 

score, five regions displayed a correlation coefficient greater than r=.7 (p < .005): the left 

parietal operculum (r=.7, p=.004), left temporal occipital fusiform cortex (r=.69, p.004), right 

lingual gyrus (r=.74, p=.002), right superior temporal gyrus posteriorly (r=.71, p=.003), and the 

left frontal orbital cortex (r=.7, p=.004) (Figure 2). Two of these regions were highly modality-

specific, the left fusiform cortex and right lingual gyrus. This confirmed our hypothesis of post-

task functional connectivity alterations being predictive of later performance. Additionally, the 

significant relationship between altered right hippocampal/orbitofrontal connectivity and 

Figure 1: Functional activation map for cued recognition hits vs. misses. Whole brain 
data were masked with a bilateral hippocampal area masks. Unthresholded Z-statistic map is 
shown. 
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recognition score indicated a role for this connection in consolidation of the associations. This 

set of regions is henceforth identified as the recognition consolidation network (RCN). 
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Structural connectivity of the recogniton consolidation network 

The subset of regions with memory-specific functional connectivity alterations were next 

examined for their structural connectivity. The group-level structural connectivity matrix was 

used to determine the shortest path between the right hippocampus and each of the five RCN 

ROIs. This subnetwork (Figure 3) contained the right parahippocampal gyrus as a highly central 

hub. 

 

 
 
 

 

Figure 2: Functional connectivity change (FCΔ) between a post-task rsfMRI and pre-
task rsfMRI. These measures were calculated for functional connections between the right 
hippocampus and other brain ROIs. The correlation of FCΔ and episodic memory cued 
recognition score on a test 24 hours later was calculated and was significantly positive for 
regions including the a) left fusiform gyrus, b) right lingual gyrus, and c) left orbital frontal 
cortex. 

Figure 3: The structural subnetwork for the set of regions functionally involved in 
recognition consolidation. The hippocampus is shown in blue and the five remaining 
nodes in the network are shown in green. Also included are the intermediate nodes along 
structural shortest paths between the hippocampus and each of the other five nodes in the 
recognition consolidation network. Abbreviations (L=left, R=right): POC: parietal operculum, 
T: thalamus, STGpd: superior temporal gyrus posterior division, H: hippocampus, LG: lingual 
gyrus, TOFC: temporal occipital fusiform cortex, PGpd: parahippocampal gyrus posterior 
division, PP: planum polare, FOC: frontal orbital cortex.  
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Structural connectivity/behavior relationships 

Finally we assessed what constraints individual variations in structural connection 

strength may place on memory performance. First, the direct connection strengths between 

each of the RCN ROIs were assessed. Only three of these pairs of these regions were directly 

connected in all subjects (parietal operculum/fusiform gyrus, parietal operculum/frontal orbital 

cortex, and orbital cortex/lingual gyrus). Using the fiber count as a measure of connection 

strength, these counts were correlated with recognition score but no significant relationships 

were found. 

Next, the shortest path weights for the paths between the hippocampus and the 5 RCN 

ROIs were summed for each subject. Five “net path weight” measures were obtained per 

subject, where the net weight was simply the sum of fibers for each edge along a given path. 

These were net path weights were linearly correlated with recognition score but were not found 

to be significant (r=.39, p=.15). 

 

Thus, while the structural paths were informative regarding the topology of the RCN, the 

individual variations in connection strength within this network were not predictive of behavior. 

 

Discussion 

We assessed the role that changes in resting state functional connectivity may have on 

associative episodic memory consolidation. We indexed consolidation by administering a cued 

recollection test 24 hours after the encoding task was performed. While consolidation and 

hippocampal-cortical transfer are known to occur on longer timescales (days to weeks; 

Frankland and Bontempi, 2006), evidence from this study suggests that memory servicing 

interactions between the hippocampus and cortex begin in the idle periods immediately 

following a learning episode. 
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Previous studies in humans have reported similar post-task alterations in functional 

connectivity being predictive of subsequent retrieval (Tambini et al., 2010). Tambini and 

colleagues used a similar task associating faces with places or objects and found that increases 

in post-task hippocampal FC with the lateral occipital cortex were important for recognition on a 

memory task immediately following the scan session. In that case, while an effect on 

subsequent memory was apparent, it was not determined whether the hippocampal-cortical 

interactions were of a consolidative nature. We delayed the memory test for a sufficiently long 

interval to eliminate any short-term memory effects (Takashima et al., 2009). 

Importantly, the hippocampus also showed active engagement during the encoding task 

for subsequently recognized associations. Associative memory typically requires the 

hippocampus more than extra hippocampal structures, which tend to engage more in single 

item encoding (Davachi and Wagner, 2002). As a further support for the associative role of the 

hippocampus, two of the regions for which it displayed most elevated FCΔ were the lingual 

gyrus and the fusiform gyrus. The lingual gyrus has been associated with the parahippocampal 

gyrus in the visual processing of places, specifically buildings (Gorno-Tempini and Price, 2001), 

which constituted the majority of our “place” stimuli. Meanwhile, the fusiform gyrus is a key 

component of the system for facial recognition (Kanwisher et al., 1997). 

We also detected that FCΔ increases between the hippocampus and the OFC were 

predictive of subsequent recall. The orbitofrontal cortex has previously been shown to interact 

with the hippocampus during the encoding of novel objects (Ranganath et al., 2005) and 

associations involving faces (Tsukiura and Cabeza, 2008). Here the association was with the 

lateral OFC, which is known from connectivity studies in primates to be a convergence zone for 

limbic and heteromodal association areas (Elliott et al., 2000) and may be involved in the active 

retrieval of information from posterior association areas (Petrides, 1996). 
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The structural integration of this subnetwork of regions was investigated using DSI 

tractography and graph theory. Direct connectivity between the six areas of the RCN was 

relatively sparse (3 out of 18 possible pairs). We therefore calculated the shortest paths 

between our primary region of interest, the hippocampus, and the remaining nodes. All of the 

shortest pathways traversed the parahippocampal gyrus. This finding is consistent with existing 

neuroanatomic literature. From primate neuroanatomy studies, it is known that most cortical 

input to the hippocampus stems from the parahippocampal gyrus via the entorinal cortex, acting 

as a gateway (Squire et al., 2004). We tested various properties of structural connectivity at the 

individual level for potential relationships to performance on the cued recognition test (see 

Results) but did not detect any within this subnetwork. It may be that basic tests like ours exhibit 

more variability than do more rigorous tests of stable cognitive traits, like those that have 

revealed relationships between structural connectivity and IQ (Li et al., 2009) and risk-seeking 

behavior (Cohen et al., 2009). Connectivity between the hippocampus and the orbitofrontal 

cortex involves the uncinate fasiculus, whose pathway converged largely with the shortest path 

we detected between these regions. A study by Metzler-Baddeley and colleagues (Metzler-

Baddeley et al., 2012) found a relationship between the fractional anisotropy of the uncinate 

fasciculus in aging individuals and performance on an object-location paired associate learning 

task similar to the one used here. Our method was able to triangulate the uncinate as a likely 

pathway binding part of this network. Graph theory and shortest pathway detection is likely to be 

a more sensitive method for detecting connectivity between areas that may not have fibers from 

fiber tractography directly connecting them.  

It remains to be seen whether the post-task alterations in functional connectivity are 

indicative of a) memory performance at more delayed points and b) later hippocampal 

independence when retrieving the episode. It is possible that they are residual fluctuations 

among regions that were previously engaged in the task, in which case their nature would be 

more biophysical than psychological. We also did not detect any relationship between functional 
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connectivity of the medial prefrontal cortex and the hippocampus with consolidation, as was our 

hypothesis. Instead we found that hippocampal-lateral prefrontal (orbitofrontal) connectivity was 

predictive of memory performance. Previous work has indicated a role for OFC in the 

processing of the semantic aspects of memory encoding. Given that subjects in our task were 

instructed to actively form an association between each place and person, such elaboration may 

well engage this cortical area.  

 

Methods 

Subjects 

Healthy young subjects were recruited from the University of Caifornia Los Angeles 

(UCLA) community to participate in this experiment. All subjects provided written informed 

consent for the study which was approved by the UCLA Institutional Review Board. 15 right-

handed subjects, 8 male/7 female, mean age 25.5 +/- 3 years (range 21.9-31.5) participated in 

the study.  

 

Experimental Design 

Subjects participated in the study on two consecutive days. On day 1, subjects were first 

familiarized with a set of 45 recognizable faces (e.g. Barack Obama, Kim Kardashian, Leonardo 

DiCaprio) and 45 recognizable places (e.g. Eiffel Tower, Golden Gate Bridge, Taj Mahal) 

outside of the scanner. Two familiarization tasks were administered. In the first task, the subject 

would be shown a single 200x200 image of a face or place without any identifying text and 

prompted, 'How well do you recognize this person?', to which they were instructed to select one 

of four possible replies from 'Not at all, Vaguely, Pretty Well, Instantly.' This was completed for 

all 90 subjects. In the second task, they were shown the same set of 90 images in a different 

sequence, along with the name of the object above the object, and instructed to ‘Type the name 

exactly as it appears.’ The purpose of these tasks were to 1) assess subject familiarity with the 
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stimuli and 2) to train them on the specific handles associated with each stimulus for a surprise 

free recall test the following day. 

 

Inside the scanner, subjects underwent fMRI scanning while performing the memory association 

task. Subjects were told they were playing a game called ‘Traveling with the Stars,’ where they 

would be seeing a pair of one person at one place. They were asked to try and remember the 

association but were not informed of any subsequent memory test. Each person place pair 

appeared side by side with the name of each printed directly below the image. The left/right 

position of faces and places was pseudo-randomized to approximately half in each position. The 

pairing of places and faces was randomly assigned when the experiment was created and was 

subsequently kept constant for all subjects, in order to assure that any common semantic 

associations between people and places were maximally similar across subjects. The 

presentation order was randomized for each subject and also randomized with respect to the 

presentation order during training. Stimuli appeared on the screen for 5 seconds, followed by a 

5 second period of fixation on a dot in the center of the screen. This was followed by a baseline 

task were the subject was shown a single digit in the middle of the display between 1-8 and 

instructed to press button 1 on the button box for odd digits and button 2 for even digits. This 

simple but active baseline was intended to enhance the ability to detect memory encoding-

related activation (Stark and Squire, 2001). The task was self-paced and the duration was 

jittered to exponentially decay from a maximum of 10s (mean=9.4 +/- .6s). This sequence 

continued until the subject had been shown all 45 pairs. 

In addition to the fMRI task, subjects also received a resting state fMRI scan both before 

and after the task. They were instructed to keep their eyes open, blinking normally, and fixate on 

a green dot in the center of the screen with a gray background. Each resting state scan lasted 

8:30. 
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The final fMRI task was a functional localizer intended to map out the brain regions of 

maximal activation during the viewing of faces and places, specifically the fusiform face area 

(FFA; Kanwisher et al., 1997) and the parahippocampal place area (PPA; Epstein and 

Kanwisher, 1998). In order to maximize the similarity to the task, different famous faces were 

selected (e.g. David Beckham, Penelope Cruz) and “famous looking” places were selected from 

an online database (http://cvcl.mit.edu/database.htm) based on characteristics of ornate or 

striking architecture. As a control, subjects were also shown images of common objects from an 

online database. There were seven blocks each of faces, places, and objects. Each block 

contained 14 total images, two of which were repeats of the previously shown image. Subjects 

were instructed to take mental note of when the same image appeared consecutively. Images 

were shown for .75s followed by a .25 second fixation. Blocks were separated by a 14s fixation. 

Block order was pseudo randomized and the total duration of the scan was 6:52. 

Subjects returned the following day, 24 +/- 2 hours following their initial visit. They were 

given a surprise test that consisted of the components. The first was a “free recall” written test in 

which they were instructed to write down as many person/place pairs as they could remember. 

Guessing was permitted but subjects were instructed to maintain a one-to-one mapping 

between people and places (ie no repeats). The identity of each correctly recalled pair was 

tallied, along with the total score. In the second portion, “cued recollection”, a computer test was 

administered in which one cue image would appear on the screen, either a previously seen face 

or place, along with its name. Next to it was a blank where the subject was instructed to type the 

corresponding face/place name if they recalled. The same guessing rules were explained. The 

percentage of faces and/or places was pseudo-randomized to be approximately balanced. In 

the third portion of the test, “cued recognition”, the subject was shown one face or place, along 

with its name, and beneath it five choices from the corresponding category (ie one face and five 

possible places). One of the five choices was always correct, and all five choices were selected 
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from the set of 45. This ensured that some choices were repeated though this set was pseudo-

randomized in order for each item to appear approximately (5*22)/45= 2 times. 

 

MRI Acquisition Parameters 

All scanning was conducted at the UCLA Staglin IMHRO Center for Cognitive 

Neuroscience on a Siemens 3T Tim Trio scanner using a Siemens 12-channel head coil. All 

fMRI data were acquired with a T2*-weighted sequence with TR=2000ms, TE=30ms, voxel 

size=3mm3, FoV=192x192, 36 slices with slice thickness=3mm and a .75 mm gap, flip angle=78 

degrees. Scan prescription was oriented obliquely to be approximately parallel with the base of 

the temporal lobes. The pre-task and post-task rsfMRI scans lasted for 8:30. The task fMRI had 

a duration of ~16:30, depending on the length of the jitter. The localizer scan had a duration of 

7:00. 

Diffusion spectrum imaging (DSI) data were acquired using a twice-refocused spin-echo 

EPI sequence with 257 diffusion encoding directions. A half sphere scheme with 5 q-values was 

used (TR=9200ms, TE=156ms, voxel size=2.5mm3, FoV=236x236, 48 slices, maximum b-

value=7000s/mm2). A T1-weighted MP-RAGE anatomical scan was collected with TR=1900ms, 

TE=2.26ms, voxel size=1mm3, FoV=256x246, flip angle=9 degrees. Finally, a T2-weighted 

sequence coplanar and matched in bandwidth to the fMRI sequence was obtained 

(TR=5000ms, TE=34ms, 36 slices, voxel size=3x3x3.75mm). 

 

MRI Preprocessing 

Resting state fMRI were processed with tools from the FMRIB Software Library (FSL; 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). Resting state data were skull stripped using BET and motion 

corrected using MCFLIRT. Next spatial smoothing was applied with a 6mm FWHM Gaussian 

kernel. The first five volumes were dropped in order to allow for scanner equilibration. Data were 

bandpass temporal filtered between .08-.009 Hz to isolate low-frequency fluctuations and 
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attenuate ultralow frequencies related to scanner drift and higher frequencies related to cardiac 

and respiratory fluctuations. Each subject’s anatomical scan was segmented into gray matter, 

white matter (WM), and CSF tissue-type masks using FSL FAST. These masks were registered 

to each subject’s functional scan and thresholded at a very high level in order to obtain high-

confidence “core” WM and CSF masks. Mean WM and CSF timeseries were calculated and 

statistically regressed out of the fMRI data, along with their temporal derivatives and the six 

motion parameters output by MCFLIRT. Denoised rsfMRI data were resampled to 4mm 

isotropic MNI152 standard space, via intermediate registration between the matched bandwidth 

T2 scan, the skull-stripped T1 structural scan, and standard space. 

Whole brain data was processed similarly up unto the point of bandpass filtering. 

Instead, only a high pass filter was used. No subject in any scan had more than 1.5mm of 

absolute motion. 

 

fMRI Analysis 

Denoised fMRI data were subjected to functional parcellation using the spatially 

constrained spectral clustering method (Craddock et al., 2012). This method is a purely data-

driven way to obtain an arbitrary number of functionally homogenous, roughly equally sized 

regions of interest that are maximally consistent across subjects. This method is preferred to 

anatomical parcellation methods which may include large anatomical areas such as the 

precuneus or anterior cingulate that are known have functionally independent dissociations 

within them (Margulies et al., 2009; Shirer et al., 2012). We input all 15 subjects’ pre-task and 

post-task scans (30 total) in order to obtain a functional atlas that was tailored to our 

experimental conditions, while enforcing group consistency to eliminate behaviorally driven 

differences. We used similarity of each voxels’ timeseries (tcorr) as the similarity measure. We 

also used a mask covering the cortical gray matter and subcortical areas as defined by the 

Harvard-Oxford cortical/subcortical atlas distributed with FSL. We obtained a set of 199 cortical 
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and subcortical ROIs with an average size of ~7000mm3. For each scan, the average timeseries 

from each ROI was obtained and the Pearson correlation coefficient between each pair of ROIs 

was plugged into a 199x199 functional connectivity matrix. The functional connectivity change 

(FCΔ) measure was calculated by subtracting the post – pre FC matrices. 

Whole brain fMRI were statistically analyzed using FSL FEAT. Regressors were 

produced for each subject’s correct and incorrect responses on the free recall, cued 

recollection, and cued recognition tests. For each of the three task types, single subject 

analyses were run looking at contrasts of correct events vs. baseline, incorrect events vs. 

baseline, all events vs. baseline, and correct events vs. incorrect events, both during stimulus 

presentation and post-stimulus fixation. Analysis here employed a pre-thresholding mask of the 

bilateral hippocampus using masks of hippocampus and parahippocampal gyrus. Z-statistic 

parametric maps were analyzed for contiguous cluster with Z > 2.0 (p < .05). 

 

DSI Analysis 

All DSI analysis was performed using DSI Studio (http://dsi-studio.labsolver.org/). Data 

were reconstructed using the GQI method and a half-sphere scheme with an eight-fold 

orientation distribution function tessellation for modeling diffusion within each voxel. 3 potential 

fibers were resolved per voxel. Fiber tracking was run with the default subject-specific fiber 

threshold with a maximum turn angle of 75 in order to detect near orthogonal fibers that have 

recently been characterized (Wedeen et al., 2012). A step size of .5mm was used with 80% 

smoothing, a minimum length of 10mm (4 voxels), sampling the main direction at the subvoxel 

level requesting 100000 streamlines, in order to ensure a constant count across subjects and 

search for relative differences in fiber density. 

The ROIs from the functional atlas were used as seeds for tractography. These standard 

space ROIs were registered to the generalized fractional anisotropy (GFA) map via the 

intermediate T1 structural scan. Once all 199 ROIs had been registered to subject-specific 
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diffusion space, they were dilated once using fslmaths. This ensured the inclusion of the 

gray/white matter interface where tractography estimates are more reliable (Wedeen et al., 

2008). Because of slight overlap in masks, they were subjected to a winner-take-all thresholding 

step, where the masks with the highest probability value in each voxel kept that voxel. ROIs 

maintained they homogenous volume throughout this process. For each pair of ROIs, the 

number of tractography streamlines that intersected both of them at any point were counted and 

plugged into a 199x199 structural connectivity (SC) matrix. 

 

Network Analysis 

SC matrices were assessed for shortest paths between the hippocampus and the five 

other regions in the recognition consolidation network using Dijkstra’s algorithm in NetworkX 

(http://networkx.github.com/). 

 

Statistical Analysis 

All relationships between neuroimaging measures and test scores were performed using 

linear corrleations in MATLAB (http://www.mathworks.com). 
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Chapter 5 

 
The UCLA Multimodal Connectivity Database:  A Web-Based Platform for Brain 

Connectivity Matrix Sharing and Analysis2 
 

Jesse A. Brown, Jeffrey D. Rudie, Anita Bandrowski, John D. Van Horn, Susan Y. Bookheimer 
 
 
Abstract 

Brain connectomics research has rapidly expanded using functional MRI (fMRI) and 

diffusion-weighted MRI (dwMRI). A common product of these varied analyses is a connectivity 

matrix (CM). A CM stores the connection strength between any two regions (“nodes”) in a brain 

network. This format is useful for several reasons: 1) it is highly distilled, with minimal data size 

and complexity, 2) graph theory can be applied to characterize the network’s topology, and 3) it 

retains sufficient information to capture individual differences such as age, gender, intelligence 

quotient, or disease state. Here we introduce the UCLA Multimodal Connectivity Database 

(http://umcd.humanconnectomeproject.org), an openly available website for brain network 

analysis and data sharing. The site is a repository for researchers to publicly share CMs derived 

from their data. The site also allows users to select any CM shared by another user, compute 

graph theoretical metrics on the site, visualize a report of results, or download the raw CM. To 

date, users have contributed over 2000 individual CMs, spanning different imaging modalities 

(fMRI, dwMRI) and disorders (Alzheimer’s, autism, Attention Deficit Hyperactive Disorder). To 

demonstrate the site’s functionality, whole brain functional and structural connectivity matrices 

are derived from 60 subjects’ (ages 26-45) resting state fMRI (rs-fMRI) and dwMRI data and 

uploaded to the site. The site is utilized to derive graph theory global and regional measures for 

the rs-fMRI and dwMRI networks. Global and nodal graph theoretical measures between 

functional and structural networks exhibit low correspondence. This example demonstrates how 

this tool can enhance the comparability of brain networks from different imaging modalities and 
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studies. The existence of this connectivity-based repository should foster broader data sharing 

and enable larger-scale meta analyses comparing networks across imaging modality, age 

group, and disease state. 

 

Introduction 

Successful neuroimaging data sharing efforts have taken a variety of organizational 

approaches, including top-down centralized strategies and bottom-up grassroots efforts. 

Centralized projects such as the Alzheimer's Disease Neuroimaging Initiative (ADNI; 

http://www.adni-info.org) begin by defining a targeted subject population, the type of imaging 

data to be included, and a set of criteria to ensure the quality and similarity of the data collection 

across multiple sites and scanners. Grassroots projects like the International Neuroimaging 

Datasharing Initiative (INDI; http://fcon_1000.projects.nitrc.org/index.html) are less restrictive 

and encourage the broad sharing of data across centers, subject pools, and scan types. Once 

data has been collected, it can be stored in a database where users can search and download 

desired data. This allows researchers to freely access the data, enabling them to apply their 

own preprocessing and run custom analyses. These sites typically collect image files in a 

specific format such as NiFTI or DICOM along with relevant meta-information about the data 

acquisition, the individual receiving the scan, and the study design. 

Another variety of neuroimaging databases store processed data and/or analysis results. 

The BrainMap database (http://brainmap.org) stores stereotaxic standard-space coordinates of 

activation peaks from fMRI and PET data analyses and associated metadata including the 

number of subjects, the subject disease state (healthy or diseased), the applied analysis 

techniques, the experimental paradigm, and the cognitive process under investigation (e.g. 

working memory) (Fox and Lancaster, 2002) (Laird et al., 2005). SUMS-DB is a database for 

sharing structural and functional brain mapping study results, also based on stereotaxic 

coordinates (http://sumsdb.wustl.edu). These databases foster meta-analyses by compiling 
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findings across studies into a common coordinate space, allowing users to probe for findings 

within a specific brain region or network. 

In between the extremes of stereotaxic foci and raw data repositories exist many 

intermediates of “processed” neuroimaging data. Processed data is beneficial in a shared data 

setting because it requires less analysis by subsequent users than raw data, while enabling 

more thorough re-analysis than a set of significant spatial coordinates does. One example of 

processed neuroimaging data that has been particularly useful in explaining brain connectivity 

properties is the “connectivity matrix” (CM). A typical connectivity analysis in a neuroimaging 

study measures the strength of connection between different brain regions. Connection strength 

definition is based on a variety of methods. In functional MRI (fMRI), the statistical correlation of 

BOLD intensity changes in two regions is commonly used as a measure of “functional 

connectivity”. In diffusion tensor imaging (DTI) and related diffusion-weighted MRI (dwMRI) 

modalities, the experimenter quantifies the density of axonal bundles or “structural connectivity” 

between two regions using fiber tractography methods. For neuroimaging experiments whose 

field of view is sufficiently large to cover the entire brain, one can determine the whole brain 

connectivity “graph” by portioning the brain into constituent regions and determining the direct 

connectivity between every pair of regions. In this graph representation of connectivity, the 

pattern of connections between nodes is stored in a CM where rows/columns in the matrix 

represent brain regions (nodes) and the matrix cell where these two regions intersect stores the 

connection strength between the two regions (edges). 

Graph theoretical analyses can be performed on a CM in order to characterize a 

network’s global integration, local interconnectivity, modularity, cost efficiency, and robustness 

to lesioning (Bullmore and Sporns, 2009) (Sporns, 2010). Analyses of CMs derived from 

structural and functional neuroimaging modalities have led to the recognition of a core set of 

structural hubs in the posterior cingulate and precuneus (Hagmann et al., 2008); the 

determination that functional network hubs coincide with the sites of greatest amyloid deposition 
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in Alzheimer’s Disease (Buckner et al., 2009); and the discovery that flexible reconfiguration of 

functional connectivity modules is critical for motor learning (Bassett et al., 2011b). CMs have 

been derived from structural and functional MRI data from the same subjects in several studies, 

indicating moderate correspondence of the structural and functional connectivity strength 

between regions (Honey et al., 2007) (Honey et al., 2009) (Hagmann et al., 2010). 

Connectivity matrices are a highly distilled representation of brain connectivity. Despite 

this reduction, they contain sufficient information to capture individual characteristics such as 

age (Dosenbach et al., 2010), gender (Yan et al., 2011), intelligence quotient (IQ) (Li et al., 

2009) (Van den Heuvel et al., 2009b), and disease state (Supekar et al., 2008) (Craddock et al., 

2009) (Lo et al., 2010). Graph theory adds to the utility of a connectivity matrix by quantifying 

how brain regions are integrated into a global unit, rather than how they act in isolation. A great 

deal of research effort and funding has been dedicated to describing the human connectome, 

which is at its essence a CM (Sporns et al., 2005). CMs are therefore an ideal product to 

compile and share with the community. Here we present the UCLA Multimodal Connectivity 

Database (UMCD henceforth; http://umcd.humanconnectomeproject.org), a website that allows 

CMs and meta-information to be uploaded and shared with the public. It provides a dynamic, 

sortable search engine for locating relevant datasets. It also provides a platform for graph theory 

analysis of any publicly shared CM, reporting basic graph properties, graph theoretical metrics, 

and interactive 3D/2D visualizations. 

 

 

Material and Methods 

The UCLA Multimodal Connectivity Database 

 The UMCD is a public website found at http://umcd.humanconnectomeproject.org. The 

site has five main options:  
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1) ‘Analyze a network’, where the user selects any publicly shared network, configures analysis 

parameters, and the initiates the network analysis (Figure 1). Once the analysis is complete, 

the user is redirected to a Results page (contents described below) 

2) ‘Compare networks’, similar to ‘Analyze’ but allows the user to select two networks to 

compare side by side 

3) ‘Lesion a network’, similar to ‘Analyze’, with the additional option to select any subset of 

regions in the chosen network to virtually ‘lesion’, setting all connections from the selected 

nodes to zero; the results of the analysis for the unlesioned and lesioned versions of the 

network are displayed side by side 

4) ‘Browse networks’, allows the user to view all available networks and keyword search for 

specific datasets or sort all datasets based on different criteria (Figure 2) 

5) ‘Upload a network’, where the user can upload data, either to share with the public or to keep 

private but compare to public data. (Figure 3) 
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Figure 1: The UCLA Multimodal Connectivity Database homepage, where a user can 
configure the analysis for any connectivity matrix publicly shared on the site. The user can 
select from any of the studies for which data has been publicly shared on this site with the 
‘Study Name’ dropdown menu. Once a study is selected, all the individual brain networks 
that have been shared for that study will appear in the ‘Network Name’ dropdown menu. 
After selecting an individual network to analyze, the user must specify a ‘Weighting scheme’ 
and ‘% of edges to include’ for the analysis, choose an orientation in which to render the 
analysis-based network images, and click ‘Analyze’. 



	
   97	
  

 

 

 
 
  

Figure 2: The ‘Browse All Data’ page. Studies are initially listed in the order in which they 
were shared by users. Any column can be sorted by clicking on the heading, allowing for 
example the grouping of all DTI studies, or the sorting of networks based on the age of the 
subject. The ‘Search’ field can be used to dynamically constrain which records from the 
database are shown. The ‘View/Download’ link takes the user to a ‘profile’ page for the 
individual network that contains more detailed information (see Figure 5). The ‘Analyze’ link 
takes the user to the ‘Analyze Network’ page with the ‘Study Name’ and ‘Network Name’ pre-
selected, allowing the user to run a network analysis simply by clicking ‘Analyze’. 
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The UMCD requires users to register with an email address and a password in order to 

share data. Once an account has been created, the user has the option to share data Publicly, 

in which case any site visitor can analyze or download the data, or Privately, allowing only the 

user to access this data when they are logged in. 

 

Design 

The UMCD is built with the web2py framework (http://web2py.com). This Python-based 

framework uses the Model-View-Controller (MVC) architecture. This enables the seamless 

Figure 3: The ‘Upload New Data’ page, where a user can upload a connectivity matrix. 
Descriptions of each field are included in the main text. 
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coupling of HTML pages with Python code and libraries for performing data analysis and 

visualization. The site uses a MySQL (http://www.mysql.com) database to store all data 

including user account information and shared data. The NetworkX Python library is used for all 

graph theory analyses (http://networkx.lanl.gov). This open source library has excellent 

documentation, an active community, and the ability to easily create network-based 

visualizations. These visualizations are rendered by passing custom NetworkX Graph objects 

from NetworkX to matplotlib (http://matplotlib.sourceforge.net), an extensive library for creating 

data visualizations in Python. All mathematical and statistical calculations use the numpy 

(http://numpy.scipy.org) and scipy (http://www.scipy.org) libraries. 

 

Analysis 

On the analysis page, the user can select any “Study Name” for which data has been 

shared. Once a Study Name has been selected, the individual connectivity matrices associated 

with that study name will become selectable in the “Network Name” dropdown. The user can 

select any Network Name. To conduct the network analysis, the user selects a Network Name 

and then must specify two variables: the Weighting Scheme, which can be binary (the default 

option) or weighted, specifying the % of edges to include, which can be any integer value 

between 0-100 (20 is the default option). An additional variable, Orientation, dictates the 

imaging plane in which the network figures will be rendered: axial (default), sagittal, or coronal 

view. Once all options are specified, the user clicks the Analyze button to run the network 

analysis. 

The analysis can take between 10 seconds to 3 minutes depending on the size of the 

network, the weighting scheme, and the threshold. When the analysis is complete, the results 

are displayed on the Analyzed Network page (Figure 4).  
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Meta-information for the network that has been analyzed appears at the top of the page and 

includes the Atlas (i.e. parcellation scheme), Imaging Modality, Subject Pool, Group Size, Age 

Range, Preprocessing Notes, and Funding Information. Next, a table displays the following 

Global Network Metrics: the Raw Connection Density (%), the Chosen Density (%), 

Characteristic Path Length, Mean Clustering Coefficient, Number of Components, Global 

Efficiency, Modularity (Q), and the small world attributes Gamma, Lambda, and Sigma. Each 

metric contains a tooltip with a brief description and a link to the NetworkX function used to 

calculate the measure or the reference from which the formula was taken. For a more complete 

description of the graph measures calculated on the UMCD, the reader is referred to (Bullmore 

and Sporns, 2009), (Rubinov and Sporns, 2010), and (Sporns, 2010). For each edge in the raw 

and thresholded networks, the edge weight mean and standard deviation are shown, along with 

the edge Euclidean length mean and standard deviations. 

The report contains a link to “View Regional Report” where the following nodal network 

measures appear in a table: full region name, degree, clustering coefficient, betweenness 

centrality, module membership, regional efficiency, and participation coefficient. These 

measures can also be downloaded by clicking “Download Regional Measures as .txt” which 

links to a tab-delimited text file containing all of these metrics. This file can be easily loaded into 

Matlab or other statistical software in order to perform offline statistical analysis. 

Figure 4: The appearance of the UMCD report based on the analysis of the NKI fcMRI 
group-average network, thresholded at 5% with weighted edges. A) The meta-information on 
the network and the global network metrics, including basic edge statistics, graph theory 
measures, and edge length measures, B) the connectivity matrix after thresholding, C) the 
region report, listing the graph theory measures for each node, D) the bar plot of node 
degree for each node, E) the interactive 3D network rendering from a top view with node 
color indicating module membership, F) 2D network plot with nodes laid out using the 
Fruchterman-Reingold force-directed algorithm, with node color indicating module 
membership, G) the 2D network plot from the top/axial view, with node radius indicating node 
degree, H) 2D network plot with node radius indicating betweenness centrality, I) 2D network 
plot with node radius indicating clustering coefficient. 



	
   102	
  

The network analysis report includes both three-dimensional and two-dimensional 

visualizations. The 3D network view is an interactive rendered ball-and-stick model of the 

network implemented using WebGL (Figure 2). The rendering engine is a modified version of 

the ChemDoodle Web Components javascript library (http://web.chemdoodle.com). The center 

of mass for each node in the network appears as a sphere whose radius corresponds to the 

specific network metric that is selected: degree, betweenness centrality, clustering coefficient, 

regional efficiency, or participation coefficient. For modularity, all radii are equal and the node 

color indicates module membership. Each non-zero connection in the network is shown as a 

cylinder directly connecting the two nodes, whose radius is constant (= 1) for a binary network 

analysis and is scaled for a weighted analysis. The number of displayed edges is capped in 

order to allow smooth rendering in the browser. Equivalent 2D figures are displayed for the 

same set of network measures, where again the node radius corresponds to the specific 

measure and the edge width corresponds to edge weight. For each 2D network measure, a bar 

graph shows the sorted distribution of values for each node in the network. 

The analysis also produces figures depicting the thresholded CM with a color bar 

corresponding to the range of weights in the network. The report displays the distribution of 

node degrees in the network in the Node Degree Histogram, which simply bins the degree of 

each node in the network. Another representation of the network is shown in the Spring 

Embedded Plot. This diagram collapses the connectivity structure of the network into two 

dimensions, where each node’s “nearness” to each other node is based on the degree of 

connectivity between them, based on the Fruchterman-Reingold force-directed algorithm 

implemented in NetworkX. Nodes that are in the same module have the same color. 

In order to compare two networks side by side, the user selects the networks on the 

Compare Networks page. After the two networks have been selected, the same set of options 

from the Analyze Network page – Weighting Scheme and % of edges to include – must be 
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specified for each network. Once the analysis is run, the same set of measures from the single 

network analysis are computed for each network. The results are displayed side by side. 

Users assess the impact of a virtual lesion on a network using the Lesion a Brain 

Network page. Once a network is selected, the user presses ‘Get Regions’ in order to display a 

checklist of all the brain regions in the given network. Any region that is checked will be 

‘lesioned’, meaning that all of the connections to this node from any other node in the network 

will be set to zero. The unlesioned and lesioned networks will then be analyzed and the results 

will be presented side by side in the exact same fashion as the Compare Networks results page. 

 

Data sharing 

Users share connectivity matrices on the Upload New Data page (Figure 2). To share 

data, the following are required: 1) Study Name, a succinct identifier for the location/purpose of 

the study, e.g. UCLA_ICBM, 2) Network Name, a succinct name for individual matrix to be 

uploaded, e.g. CONTROL_grpmean, 3) the uploader’s email address, 4) Region Names File, a 

text file listing the full name of each brain region in the network on separate lines, 5) Region 

Names Abbreviations File, a text file listing the abbreviated name of each region on separate 

lines, 6) Region XYZ Centers File, a text file with (X,Y,Z) coordinate for each region (preferably 

based on mm coordinates in MNI152 space), 7) Connectivity Matrix File, a tab-delimited text file 

containing the network CM, 8) Imaging Modality, and 9) Share, the sharing status of the data, 

which can be public (viewable and downloadable by any site visitor) or private (viewable only by 

the sharer of the data when they are logged in). Other requested meta-information includes the 

Scanner Device, Scan Parameters, Age Range Minimum and Maximum (the same for an 

individual subject, different for a group average), Gender, Subject Pool, Group Size, 

Preprocessing Notes, and Funding Source. Optional fields are also provided for specific imaging 

parameters for Magnetic Resonance (MR; field strength, MR TR, MR TE, MR Voxel Size, MR 

Field of View) and data processing steps for fMRI (Motion Correction, Skull Stripping, Temporal 
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Filtering, Spatial Smoothing, Slice Timing Correction, Intensity Normalization, EPI Unwarping, 

CSF Signal Regression, White Matter Signal Regression, Global Signal Regression), dwMRI 

(Number of Directions, Maximum b Value, Eddy Correction, Skull Stripping, Deterministic 

Tractography, Probabilistic Tractography), and structural MRI (sMRI; Skull Stripping, Intensity 

Normalization).  

Data can be shared either for one network at a time or for a set of matrices. In the case 

of a batch upload, the entries for each of the four required text files simply needs to be stacked 

vertically for as many networks as will be uploaded. For example, if the network size was 

100x100, the CM text file for six networks would be 600 rows by 100 columns. For the region 

names, region abbreviations, and region coordinates files, the list simply needs to be repeated 

as many times as there are networks. When performing a batch upload, the meta-information 

need only be entered once and all of the data can be uploaded with a single entry. 

Users search for data on the UMCD using the Browse All Data page (Figure 3). Each 

publicly shared network appears as a row where each column lists a different field describing 

that entry, as was specified on the Upload Data page when the data was shared. If a user has 

shared any data privately and is logged in, those data entries will also appear. The user may 

sort any column by clicking on the column header, allowing the user to group data by imaging 

modality or study name, for example. A search box allows the user to enter any term and 

dynamically display only the rows that contain that term, allowing rapid location of a dataset of 

interest. Any row has an option to View/Download, linking to an individual “profile” page for the 

network including the study and network name, the study and subject information, and links to 

download the raw CM (Figure 5). 
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If the user is logged in and accessing data they shared, they can also edit or delete the entry on 

this page. The profile page for each network also shows the number of times the network has 

been analyzed or downloaded, as a measure of interest the community has in this dataset. On 

the Browse Data page, each entry also has an Analyze link, which will take the user to the 

Analyze page with the form prefilled to run the analysis for this network. 

Users who wish to download all of the metadata or data for a study can do so on the 

Browse Studies page. The user downloads the metadata for a study as either a Comma 

Figure 5: The profile page for an individual connectivity matrix. All of the parameters 
specified by the sharer of the data  appears on this page. The connectivity matrix and 
associated files (region names/abbreviations/XYZ centers) can be downloaded by clicking 
the ‘file’ links. The number of times the network has been analyzed or downloaded by any 
user of the site are also shown. 
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Separated Value (CSV) or Javascript Object Notation (JSON) file using a URL of the format 

http://humanconnectomeproject.org/get_study_metadata.<filetype>/<studyname> where 

‘filetype’ is one of csv or json and ‘studyname’ is the study name provided by the individual who 

shared the data. The user downloads the connectivity matrices for a given study in a zip file, 

along with the region names, abbreviations, and XYZ centers, by accessing the URL 

http://humanconnectomeproject.org/get_study_data/<studyname>. 

At the time of writing, the UMCD has 2155 publicly available CMs. These include 1003 

functional connectivity MRI (fcMRI) matrices from the 1000 Functional Connectomes sample 

(Biswal et al., 2010), 522 fcMRI matrices from the ADHD200 sample 

(http://fcon_1000.projects.nitrc.org/indi/adhd200), 189 DTI matrices from the International 

Consortium for Brain Mapping dataset (http://www.loni.ucla.edu/ICBM), 175 fcMRI/DTI matrices 

from a study of autistic children (Rudie et al., under review), 55 DTI matrices from a study of 

aging and genetic risk for Alzheimer’s Disease (Brown et al., 2011), the 392 fcMRI/DTI matrices 

from the Nathan Kline Institute/Rockland sample on the International Neuroimaging Data-

Sharing Initiative site (INDI;  including the 60 subjects in the 26-45 age range and another 136 

subjects outside that range, from 4-85), and a small set of other miscellaneous contributions. All 

currently available matrices have largely complete metadata including subject demographics, 

scan parameters, and preprocessing notes. All currently available fMRI matrices are based on 

Pearson correlation of regional timeseries and all DTI matrices are based on tensor-based 

deterministic tractography. We anticipate that fMRI and dwMRI matrices from more diverse 

processing streams will eventually be shared on the site. 

 

Interface with Neuroscience Information Framework 

In order to facilitate the search of connectivity for specific brain regions in data shared on the 

UMCD, it is important to interface with various catalogs and wider scope data sharing initiatives. 

The Neuroscience Information Framework (NIF; http://neuinfo.org) is a project supported by the 
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Blueprint for Neuroscience Research, a pan-NIH initiative with a stated goal of facilitating data 

discovery and sharing among scientists (Gardner et al., 2008). The NIF works with database 

partners to gather relevant data and facilitate its’ discovery by making data searchable via the 

user interface and web services. Since September of 2011, public UMCD data has been 

included in the NIF data index with brain region names aligned to NIF terminology. In order to 

compensate for brain region naming heterogeneity, regional name synonyms are aligned with 

the NIF standard ontology (NIFSTD). These data are searchable as a part of the NIF pan-

mammalian brain connectivity data set. The human MRI functional/structural connectivity can be 

viewed alongside rodent and monkey connectivity data 

(http://neuinfo.org/nif/nifgwt.html?query=nlx_83091). To keep data up to date, NIF ‘crawls’ the 

UMCD and to find new data on a monthly basis, and curators are prompted to evaluate new 

data as changes are detected. The current portal and web services are hit more than a million 

times a month, increasing the possibility of users discovering UMCD data. 

 

Guidelines for Data Sharing and Analysis 

Data Description and Connectivity Matrix Derivation 

To create a connectivity database that can maximize the research and clinical utility of 

the contributed data, it is essential to first define a set of best practices for deriving CMs. This 

section will discuss the procedure for deriving CMs from different neuroimaging modalities and 

the methodological issues that need to be addressed. We will limit the discussion to MRI 

modalities. For any MRI data shared on the UMCD, the parameters of the scan should be 

entered in the MR-specific fields and additional details should be noted in the Scan Parameters 

field on the Upload Data page (http://umcd.humanconnectomeproject.org/upload). This 

generally includes the magnetic field strength, repeat time (TR), echo time (TE), scan duration, 

field of view, voxel resolution, slice thickness/gap, and other modality-specific factors. 

 



	
   108	
  

fMRI Preprocessing 

When sharing fMRI-derived connectivity matrices on the UMCD, the user should list 

check boxes for all included preprocessing steps in the fMRI-specific fields and details should 

be noted in the Preprocessing Notes field. fMRI-specific preprocessing steps include motion 

correction, linear detrending, smoothing, statistical removal of nuisance variables from white 

matter, CSF and whole brain signal, and bandpass filtering. For each step, the user should also 

include which software program was used (FSL, SPM, AFNI, in house, etc.). Although 

preprocessing methods differ between laboratories, the UMCD does not enforce strict criteria 

regarding data processing in the interest of remaining open to a maximal number of 

contributions. Instead, the responsibility is placed with the contributor to ensure that their shared 

data has been carefully processed, and equally with the site user to use their own discretion for 

assessing data quality. 

When a subject performs a task during fMRI, networks are known to reconfigure to some 

degree based on the specific cognitive demands of the task (Shirer et al., 2012) (Mennes et al., 

2012) (Bassett et al., 2011b). When task-based functional connectivity matrices are submitted to 

the UMCD, they should be annotated with a description of the task design and the cognitive 

processes that the experimenter expected to engage. 

 

Diffusion-Weighted MRI Preprocessing 

When sharing dwMRI-derived CMs on the UMCD, the user should specify the scan type 

as DTI, HARDI (High Angular Resolution Diffusion Imaging), or DSI (Diffusion Spectrum 

Imaging). In the dwMRI-specific fields, the user should note the number of gradient directions 

included in the scan sequence along with the maximum b value, whether eddy correction was 

performed, and the tractography method (deterministic or probabilistic). In the Preprocessing 

Notes, the user should describe the software package used and preprocessing details including 

whether multiple dwMRI scans were acquired and averaged, how diffusion tensors/orientation 
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distribution functions were calculated, the tractography algorithm, any voxelwise masking 

criteria, and the maximal angular threshold allowed for fibers to turn between adjacent voxels. 

 

Parcellation Scheme/Choice of Atlas 

In order to obtain connection strengths between brain regions, the regions must first be 

defined. This task typically takes one of several routes. Structural parcellation takes a structural 

image and parcellates it with an algorithm that uses anatomical information in the image and 

prior models to determine cortical and subcortical regional boundaries. Common analysis 

packages for performing parcellation are Freesurfer (http://surfer.nmr.mgh.harvard.edu) and 

Automated Anatomical Labeling (AAL) (Tzourio-Mazoyer et al., 2002). Functional parcellation 

algorithms performed on fMRI data search for regions whose functional connectivity patterns 

are statistically similar in time and/or space (Craddock et al., 2012). A third strategy is to use 

predefined subregions of cortex/subcortex from a predefined atlas such as the Harvard-Oxford 

cortical/subcortical probabilistic atlas distributed with the FMRIB Software Library (FSL). The set 

of ROIs are normally spatially registered to the subject’s image space where connectivity is to 

be estimated. A fourth strategy is to use a set of meta-analytically defined coordinates in a 

standard stereotactic space (e.g. MNI152) based on sites of peak activation during behavioral 

tasks. Small regions of interest, typically spheres of 5-10mm radius, are created around each 

coordinate and used as seeds to calculate connectivity strength with the remaining spheres 

(Power et al., 2011). For any parcellation scheme, different tissue types may be included or 

excluded. fMRI-based analyses are typically uninterested in white matter signal and may use 

gray matter ROIs. Conversely, dwMRI studies are more focused on water diffusion in white 

matter and often use the gray/white matter interface as a starting point for tractography. In this 

case, ROIs may include portions of both gray and white matter. For atlas-based ROIs, region 

boundaries are commonly defined using probabilistic estimates rather than hard cutoffs. In this 

case, the user must decide a probability threshold above which to assign regional labels. 
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For submission to the UMCD, the user should note the atlas/software package used to 

parcellate the brain in the Atlas field and any masking operation that was performed for each 

ROI in the Preprocessing Notes field (e.g. gray matter, white matter, probability threshold). For 

each ROI, the (x, y, z) spatial coordinate describing its spatial location is also required in order 

to generate network renderings. The spatial center of mass is an ideal descriptive coordinate for 

an ROI. Users are strongly encouraged to use millimeter coordinates based in the Montreal 

Neurological Institute coordinate system after registering their ROIs to the MNI152 average 

brain. This is not strictly enforced and caution is warranted for any site user planning to compare 

connectivity loci across different datasets on the UMCD. 

 

General Connectivity Matrix Preprocessing 

Once a CM has been calculated, there are a variety of post-processing strategies that 

are specific to different imaging modalities, software packages, and laboratories. We urge those 

who share data on the UMCD to submit “raw” CMs. This precludes thresholding of edge weights 

below a certain weight cutoff, binarization of edges, or adjustment of weights to deal with issues 

of non-normal distribution and negative weights. Additionally, all current UMCD analyses 

assume that CMs are symmetric, meaning that the connection weight from node i to j is identical 

to the connection weight from j to i. The storage of raw data is necessary for subsequent 

downloaders of the data to make their own decisions about how to treat the data. 

 

General Connectivity Matrix Analysis 

 The only options the user can configure when running an analysis on the UMCD are the 

weighting scheme and the edge density. All graph measures calculated by the UMCD are 

interpretable for binary and weighted graphs. While the various arguments for using binary or 

weighted edges are beyond the scope of this paper, it is generally helpful to test both options 

when analyzing a network in order to see how different graph metrics will vary. The selected 
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edge density will also affect the resultant graph metrics. At very low edge densities the network 

is likely to become disconnected, in which case path length-based measures like characteristic 

path length and lambda cannot be calculated for the graph as a whole. Other measures like 

global efficiency, clustering coefficient, and modularity can be calculated for disconnected 

graphs. From an analysis perspective, previous work considers sparse graphs (with <= ~25% of 

edges connected) to have higher “signal to noise” ratio (Alexander-Bloch et al., 2010), 

preserving only the strongest connections in the network. On the other hand, because the 

choice of threshold is arbitrary, any chosen threshold may exclude some edges that correspond 

to true biological connections. Thus, it is important to assess graph metrics across a range of 

different thresholds to ensure that they are not an artifact of one specific threshold value. For 

these reasons, users are encouraged to test different permutations of weighting schemes and 

thresholds to assess how network characteristics may vary. 

There are important caveats with a general analysis pipeline like the UMCD. A graph is a 

very general representation of connectivity strengths in a network model of a system like the 

brain. Graphs derived from different types of data, such as fMRI and DTI-based graphs, may be 

more appropriate for certain network measures than others. For example, in functional graphs 

the edge weights are described based on a statistic, often the correlation coefficient. In this 

case, path length-based measures such as global efficiency may not be as meaningful as they 

are in a structural network, where the method determines physical connection densities. The 

UMCD does not attempt to stratify the networks based on the type of data from which they were 

derived. It will provide the same complete set of graph theory measures for any analysis. 

Additionally, most of the graph theory metrics calculated on the UMCD are “unnormalized” with 

respect to a random network. The only metrics that are calculated as ratios of the true network 

value to the “pseudo” value from a randomly wired network are gamma (normalized clustering 

coefficient) and lambda (normalized characteristic path length). Caution is urged to the user in 

interpreting graph measures to ensure they are used appropriately. 
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Connectivity Matrix Comparison 

 In order to compare CMs across studies in a meaningful way, all factors of each study’s 

data collection and analysis must be considered. The imaging modality, scanner, scan 

sequence, subject pool, and analysis methods will all obviously impact the CM. The regional 

names used for a given study will also be unique, dependent on the parcellation scheme or 

atlas that was used to define ROIs. In any attempt to compare CMs from different studies, the 

user should consider how similar the regions from the studies are. This is a two-pronged issue: 

first, the spatial position and extent of the ROIs may differ; second, the nomenclature may differ. 

The UMCD only requests a name and spatial coordinate for each ROI. This is an incomplete 

description, based on a practical design decision to reduce file storage size and complexity. 

However, this means that the similarity of ROIs across studies cannot be fully assessed. Each 

ROI is uploaded with its MNI stereotaxic coordinate, which can establish a coarse measure of 

spatial similarity in ROI coordinates across studies. The spacing of the full set of coordinates for 

a given CM can give an idea of the density and average size of each ROI, assuming ROIs are 

not overlapping. In order to find studies that have connectivity estimates for a given region, the 

user is encouraged use the NIF interface to the UMCD. There, a user could search for the 

inferior frontal gyrus, pars triangularis, or Brodmann Area 45, and obtain the same results based 

on their alignment in the NIFSTD. A more systematic attempt to maximally align all regional 

names from two different studies is outside the scope of the current work but has been 

addressed elsewhere (Imam et al., 2012) (Bug et al., 2008). Of course, full alignment of ROIs 

may not be possible if the studies differ in the number of regions, the size of the defined regions, 

or the set of regions that are excluded (e.g. subcortical nuclei). For all of these reasons, the user 

must carefully consider how comparable two datasets are, and carry this in mind when 

comparing data from different studies shared on the UMCD. 
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Example Analysis 

Here we perform an analysis based on publicly available DTI and rs-fMRI data from 60 

subjects that were part of the NKI/Rockland study available for download on INDI 

(http://fcon_1000.projects.nitrc.org/indi/pro/nki.html). 

 

Subjects 

The purpose of this study was to generate a large scale, extensively phenotyped dataset 

to explore brain/behavior relationships in healthy individuals. For the current study, we were 

interested in comparing functional and structural brain networks in healthy adults. We selected 

60 subjects from this sample for analysis, ranging in age from 26-45 years, mean=35.8 +/- 6.3. 

37 males and 23 females were included. Subjects underwent diagnostic psychiatric interviews, 

along with a battery of psychiatric, cognitive, and behavioral assessments. Full-scale 

intelligence quotient (FSIQ) was measured with the Wechsler Abbreviated Scale of Intelligence. 

The mean subject FSIQ was 104.1 +/- 12.5. 

 

MRI Scans 

Resting state fMRI was performed on a Siemens Trio 3T with acquisition time=10:55, 

TR=2500ms, TE=30ms, on 38 slices with a voxel size=3mm3. Diffusion tensor imaging had 

acquisition time=13:32, TR=10000ms, TE=91ms, on 58 slices with a voxel size=2mm3 along 64 

diffusion-weighted gradients with b=1000s/mm2. A magnetization prepared rapid gradient echo 

(MPRAGE) scan had either a longer sequence with acquisition time=10:42, TR=2500ms, 

TE=3.5ms on 192 slices with a voxel size=1mm3 or a shorter sequence with acquisition 

time=5:49, TR=2500ms, TE=3.5ms, on 192 slices with voxel size=1mm3. The raw data for these 

scans was accessed from http://fcon_1000.projects.nitrc.org/indi/pro/nki.html. 

 

rs-fMRI/DTI Processing 



	
   114	
  

Resting state fMRI data was preprocessed using the following pipeline: 1) corrected for 

differential slice timing using FMRIB Software Library’s (FSL) slicetimer, 2) rigid-body motion 

corrected each volume to the middle volume using FSL Motion Correction using FMRIB’s Linear 

Image Registration Tool (MCFLIRT), 3) stripped the skull using FSL Brain Extraction Tool 

(BET), 4) spatially smoothed the data with a Gaussian kernel with 5mm full-width half maximum, 

5) grand-mean scaled the entire 4D dataset, 6) band pass temporal filtered the data from .08-

.009Hz, 7) performed tissue-type segmentation of the MPRAGE using FSL FAST, 8) registered 

cerebrospinal fluid (CSF) and white matter (WM) masks to the first fMRI volume, 9) mask the 

CSF and WM masks with conservative ventricular and core white matter masks derived from 

the MNI152 atlas, 10) extracted mean timeseries from the core CSF, core WM, and whole brain, 

11) constructed a model that included timeseries for core CSF, core WM, whole brain signal, the 

six motion parameters, and all temporal derivatives, performed linear regression with this model 

on the data, and obtained the residuals, 12) ran motion scrubbing to identify TRs with a relative 

motion displacement greater than 0.5mm or a relative BOLD signal intensity change greater 

than .5% (Power et al., 2012), and 13) registered with FSL FLIRT to the MNI152 average brain 

with a 4mm3 voxel resolution in a three stage registration from fMRI > initial T2 structural > 

MPRAGE > MNI152.  The residual BOLD data was then analyzed using the spatially 

constrained spectral clustering method (Craddock et al., 2012) in order to derive 188 gray 

matter/subcortical/cerebellar ROIs that were spatially contiguous and maximally functionally 

homogenous across subjects. These ROIs ranged in volume from 28-180 voxels. No subjects 

had more than 100 TRs flagged by motion scrubbing and thus none were dropped from 

subsequent analysis. An average of 9 +/- 17 TRs were flagged for removal. After marking 

flagged TRs, the mean timeseries for each ROI was calculated and then correlated with all 

remaining ROI timeseries (excluding flagged TRs) to derive a 188x188 functional connectivity 

MRI (fcMRI) matrix. 
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DTI data was corrected for motion and eddy current distortions using FSL eddy_correct. 

The skull was stripped using FSL BET. Diffusion tensors were estimated using Diffusion Toolkit 

(http://trackvis.org/blog/tag/diffusion-toolkit/) and tractography was run using the fiber 

assignment by continuous tracking (FACT) algorithm (Mori and Van Zijl, 2002), with an angle 

threshold of 45 degrees. The fractional anisotropy (FA) map for each subject was registered to 

the MNI152 average brain in a two-stage registration from FA to MPRAGE using a mutual 

information cost function and 7 degrees of freedom, then from MPRAGE to MNI152 using a 

correlation ratio cost function and 12 degrees of freedom. The transformation matrices were 

combined and inverted. We then registered the 188 ROIs defined from the fMRI data in 

standard space to each subject’s DTI space. Masks were dilated by one voxel width in order to 

include the gray/white matter interface, and then thresholded in order to assign each voxel to 

only the ROI for which it had the highest intensity value (greatest likelihood of membership). For 

each ROI, all fibers were counted that intersected at least one voxel in the source ROI and at 

least one voxel in any target ROI using custom code 

(http://ccn.ucla.edu/wiki/index.php/UCLA_Multimodal_Connectivity_Package). In this way the 

188x188 structural CM was obtained. 

 

Function/Structure Weight Comparisons 

 Connection weights for functional and structural networks were correlated with each 

other across subjects using Matlab (The Mathworks, Natick, MA) in order to determine network 

similarity. 

 

Graph Theory 

All 120 matrices (60 functional + 60 structural) were uploaded to the UMCD. The 

individual networks are publicly shared on the site under the study name ‘NKI_Rockland.’ The 

network names are in the format ‘NKI_<subject_id>_<modality>’, e.g. ‘NKI_1013090_fcmri’ and 
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‘NKI_1013090_dti.’ For all fcMRI matrices, we also sought to examine the effect of global signal 

regression (GSR) on functional network topography and similarity to structural networks. GSR is 

a controversial step in fcMRI preprocessing. Proponents argue that this step controls for 

common, non-brain sources of variation that affect the entire image (Fox et al., 2009), while 

opponents have shown that this step may obscure the distribution of connectivity weights and 

introduce artifactual anticorrelations between networks (Murphy et al., 2009) (Saad et al., 2012). 

We therefore prepared a parallel set of CMs that were processed in identical fashion but without 

the GSR step. These matrices are labeled as, e.g. ‘NKI_1013090_fcmri_NoGSR.’ From these 

individual matrices, group-average functional and structural matrices were calculated. These 

group average matrices increase the stability of connectivity estimates between regions for a 

relatively homogenous group from a developmental/aging standpoint. The rationale was that 

individuals in the 26-45 age range are fully mature but have not yet experienced cognitive aging, 

placing them in the maximally “normal” adult age range. The group averages are named 

‘NKI_fcmri_avg_<age_range_min>_<age_range_max>’ and 

‘NKI_dti_avg_<age_range_min>_<age_range_max>’. Finally, in order to test the affect of global 

signal regression on the resultant networks, equivalent functional connectivity matrices without 

the global signal regression stepped are stored under the name 

‘NKI_fcmri_avg_<age_range_min>_<age_range_max>_NoGSR’. 

For the current study, the goal was to demonstrate the capacity of the UMCD to 

compare functional and structural CMs. Hence, only the NKI_dti_avg_26_45, 

NKI_fcmri_avg_26_45_GSR, and NKI_fcmri_avg_NoGSR matrices were analyzed. They are 

henceforth referred to as NKI_dti_avg, NKI_fcmri_avg_GSR, and NKI_fcmri_avg_NoGSR. 

These matrices were analyzed at two different edge density levels, 5% and 20%. The 5% 

threshold created sparser matrices that preserved only the strongest edges and highlighted 

different network modules. The DTI network was disconnected at a 5% threshold, preventing 

the computation of characteristic path length and small worldness. At the 20% threshold, all 
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networks were fully connected, allowing the computation of global path length-based measures. 

Matrices were also analyzed with two different weighting schemes, binary and weighted. For 

functional networks, edge weights spanned a range of -1 to 1, as dictated by the Pearson 

correlation formula. For structural networks, the fiber connection weights spanned four orders of 

magnitude (100-104). In cases like these where the distribution of weights for different matrices 

are significantly different, the binarization of network weights can significantly obscure the 

underlying connectivity patterns. However, binarization has advantages, including simpler graph 

theory calculations and a more straightforward randomization scheme (degree preserving 

rewiring) for determining null reference networks. We therefore found it pertinent to examine 

both weighted and binarized functional and structural networks. 

Each matrix was analyzed and all global/regional measures were downloaded from the 

UMCD and imported to Matlab. The adjusted Rand index was used to quantify the similarity of 

modularity partitions in individual functional vs. structural networks, where 0 indicates no 

agreement between nodes and 1 indicates total agreement between all nodes. 

 

Results 

Basic Graph Properties 

First, the similarity of functional and structural connection weights was assessed by 

Pearson correlation. For the NKI_fcmri_avg_GSR and NKI_dti_avg CMs, the edge weight 

correlation was r=.39 (all p < 10-5; Figure 6). When only considering regions with existent 

structural connections (> 1 fiber, averaged across the group), the edge weight correlation 

increased to r=.42. For the NKI_fcmri_avg_NoGSR and NKI_dti_avg, the edge weight 

correlation was r=.30 considering all connections. When limiting to only existent structural 

connections, the correlation increased slightly to r=.34. 
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Global Graph Theory Measures 

Next, the fcMRI and DTI networks were compared to one another using UMCD’s 

‘Compare Networks’ feature. The raw NKI_fcmri_avg_GSR network was 100% connected with 

an average edge weight of .017 +/- .199 (Table 1). The average Euclidean distance between 

ROI coordinates was 83.5 +/- 30.7mm. The raw NKI_fcmri_avg_NoGSR network was also 

100% connected, with a higher average edge weight of .28 +/- .17, as expected. The average 

Euclidean distance between ROIs was exactly the same as the GSR network, given that every 

ROI is connected in the raw CMs. The raw NKI_dti_avg network was 76.04% connected with an 

average edge weight of 56.56 +/- 156.10 and an average Euclidean distance of 76.85 +/- 

29.94mm. 

Network measures were assessed with binary edges at an edge density of 20% (Table 

1). The networks differed from each other for nearly every metric. The measures are listed here 

in the format (fcMRI GSR/NoGSR vs. DTI). The fcMRI network had greater characteristic path 

Figure 6: A) Correlation of functional and structural connectivity strengths for the group-
average 188x188 connectivity matrices, identified as NKI_fcmri_avg_GSR and NKI_dti_avg 
in the text. 



	
   119	
  

length (CPL; 2.00/2.06 vs. 1.96), lower clustering coefficient (CC; .57/.57 vs. .62), equivalent 

global efficiency (GE; .57/.56 vs .57), higher small worldness for GSR (2.42/1.71 vs. 1.81), 

higher gamma for GSR (2.72/1.92 vs. 1.95), higher lambda (1.12/1.12 vs. 1.08), and higher 

modularity (Q; .47/.39 vs .33). 

 
 
Measure NKI_fcmri_avg_GSR NKI_fcmri_avg_NoGSR NKI_dti_avg 
Raw Density 100% 100% 76.04% 
Raw Edge 
Weights 

.017 +/- .199 .28 _/- .17 56.56 +/- 156.10 

Raw Euclidean 
distance 

83.5 +/- 30.7mm 83.5 +/- 30.7mm 76.85 +/- 29.94mm 

Thresholded Edge 
Weights 

.33 +/- 14 .54 +/- .1 204.52 +/- 249.66 

Thresholded 
Euclidean 
distance 

59.55 +/- 30.41mm 61.19 +/- 29.84mm 50.43 +/- 22.74mm 

CPL 2.00 2.06 1.96 
MCC .57 .57 .62 
eGlob .57 .56 .57 
Modularity .47 .39 .33 
Small worldness 2.43 1.71 1.81 
Gamma 2.72 1.92 1.95 
Lambda 1.12 1.12 1.08 

 
 
Nodal Graph Theory Properties 

For the nodal measures, the Pearson correlations between functional and structural 

measures were calculated across the 188 nodes (Table 2). For binarized networks thresholded 

at 20%, the correlations were significant at a p-level of .01 for betweenness centrality (r=.19, 

p=.008) and participation coefficient (r=-.2, p=.005) and nearly significant for clustering 

coefficient (r=.18, p=.016), though the betweenness result was driven by outliers. The 

correlation was not significant for strength (r=-.06, p=.45) or regional efficiency (r=-.05, p=.54). 

For comparison, nodal measures were also correlated between the functional and structural 

networks for binary networks thresholded at 5% and weighted networks thresholded at 5% and 

Table 1: Basic network and global graph theory properties for the fcMRI networks 
with/without Global Signal Regression and the DTI network. 
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20% (Table 2). Each of the measures were also compared using the Spearman rank 

correlation. In no cases was the Spearman correlation coefficient substantially different from the 

Pearson correlation coefficient (mean difference in r: .015). 

 
 
 Binary, 5% Binary, 20% Weighted, 5% Weighted, 20% 
Strength -.02 (.83) -.06 (.45) -.02 (.83) -.06 (.45) 
Clustering 
Coefficient 
 

.09 (.2) .18 (.016) .12 (.11) .11 (.12) 

Betweenness 
Centrality 

.15 (.036) .19 (.008)* .14 (.06) .15 (.04) 

Regional Efficiency -.01 (.91) -.05 (.54) -.1 (.15) -.01 (.93) 
Participation 
Coefficient 

.15 (.04) -.2 (.005)* .15 (.04) .04 (.6) 

Adjusted Rand 
index 

.19 .09 .19 .12 

 

 
A side-by-side visual comparison of the networks revealed the fcMRI network had more 

bilateral connectivity (Figure 7 and 8), particularly in the motor and visual cortices. The average 

length of edges between nodes, as measured by Euclidean distance, was longer in the fcMRI 

network than the DTI network (Table 1). The nodes with the highest “hubness”, based on the 

combined rank of strength, betweenness centrality, and regional efficiency are shown in Table 

3. 

The functional network with GSR exhibited hubs in the temporal lobe, cingulate cortex, 

parietal lobe, and cerebellum. Without GSR, hubs were more apparent in occipital and temporal 

lobes. Structural hubs were found in the subcortical areas (thalamus, caudate, putamen, 

pallidum), medial temporal lobe, and insula. 

 
 
fcMRI w/ global signal 
regression, Binary 20% 

fcMRI w/out global signal 
regression, Binary 20% 

DTI, Binary 20% 

Right planum polare Left temporal occipital Left thalamus 

Table 2: Correlation of nodal fcMRI and DTI graph theory measures across all 188 nodes for 
the NKI_fcmri_avg_GSR and NKI_dti_avg networks. Values are mean r-value (p-value) 
except for the Rand index. * indicates significance at p < .01. 
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fusiform gyrus 
Right precuneus Right temporal occipital 

fusiform gyrus 
Right pallidum 

Cerebellum vermis VI Right anterior cingulate Right thalamus 
Right anterior middle 
temporal gyrus 

Left occipital fusiform 
gyrus 

Left pallidum 

Right posterior 
parahippocampal gyrus 

Right temporal pole Left posterior 
parahippocampal gyrus 

Left posterior cingulate Right precuneus Right putamen  
Right anterior cingulate Right superior lateral 

occipital cortex 
Right posterior 
parahippocampal gyrus 

Left posterior middle 
temporal 

Right temporooccipital 
inferior temporal gyrus 

Left insula 

Right paracingulate Right posterior superior 
temporal gyrus 

Left caudate 

Right posterior superior 
temporal gyrus 

Right planum polare Right hippocampus 

 

 
The strength, betweenness centrality, and modularity of each node for the 

NKI_fcmri_avg_GSR and NKI_dti networks, weighted and thresholded at 4% for visualization 

purposes, are displayed visually on the 2D network in Figure 7. fcMRI network nodes with high 

strength and betweenness centrality were spatially distributed while in the DTI network they 

tended to cluster in the subcortical nodes. The fcMRI modules corresponded to well 

characterized functional systems including the default mode network (turquoise), temporal lobe 

network (blue), fronto-parietal network (light blue), dorsal and ventral sensory-motor networks 

(blue and seafoam green), visual network (yellow), posterior parietal network (orange), 

subcortical network (line green), and cerebellar network (dark blue) (Power et al., 2011) (Tomasi 

and Volkow, 2011) (Figure 8). DTI modules corresponded to neighboring anatomical regions 

including the frontal lobe/anterior midline (blue), left temporal lobe/parietal lobe/subcortex 

(seaform green), right temporal lobe/parietal lobe (blue), right central midline/sensory-motor 

cortex/cingulate cortex (turquoise), occipital lobe/right posterior parietal/temporal lobe (light 

blue), and cerebellum (dark blue). 

Table 3: Regions with the highest combined rank for node strength, betweenness centrality, 
and regional efficiency, based on fcMRI/DTI networks binarized and thresholded to keep the 
20% strongest edges. 
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Figure 7: Two-dimensional network plots from fcMRI and DTI group average networks. 
Networks are viewed from a top/axial view with edge width proportional to connection 
strength and node radius/color related to the given network measure. For each network, the 
top 4% of weighted edges based on strength are shown. In the first row, the radius of each 
node is based on its connection strength. In the second row, the radius of each node is 
based on its betweenness centrality. The third row shows nodes grouped into different 
modules by color. 

Figure 8: Three-dimensional network renderings of the fcMRI and DTI group average 
networks, thresholded to show the top 4% of weighted edges based on connection strength. 
Node colors are based on module membership. The same networks are shown from a top 
view and a left side view. The fcMRI network shows modules agreeing with known functional 
networks, longer edge Euclidean lengths, and more bilateral connectivity. The DTI network 
shows more anatomically confined modules, shorter edge Euclidean lengths, and more local 
connectivity. 
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Discussion 

Data Sharing and Neuroinformatics 

The UMCD allows any user to publicly share brain connectivity matrices, run graph 

theory-based analyses on the website, and search available data across any imaging modality, 

demographic category, or disease status. The ability to archive these data in their complete 

form and make them publicly available should enable more extensive brain connectivity meta-

analyses. Here we illustrated the capability of the UMCD to compare functional (fMRI) and 

structural (DTI) CMs derived from the same set of subjects in order to assess similarities and 

differences in their connectivity patterns. 

The UMCD decreases the barrier to entry for performing a graph-theory based analysis 

of a CM. We emphasize that this platform is not primarily designed for statistical analysis. It is 

first and foremost a data sharing site. We provide graph theory based tools to allow users to 

explore and compare CMs of interest on the site. While we consider the richness of this 

environment to be beneficial, caution is warranted in the application and interpretation of graph 

theory measures from UMCD. As with any software package that provides quantitative data 

metrics, users are urged to thoroughly consider how these measures were calculated and 

whether they are appropriate to compare across individual, imaging modality, or study. 

MRI-based connectivity analyses offer hope in improving the ability of a clinician to 

diagnose a neurological disease or neuropsychiatric disorder. In order to achieve accurate 

diagnosis of individual patients, sensitivity and specificity of classification must be pushed to 

extremely high levels (Pepe et al., 2004). One obvious way to improve classification accuracy is 

to increase the number of training samples. Community-driven repositories are an effective 

strategy for rapidly aggregating large amounts of data from the international community (Van 

Horn et al., 2004) (Milham, 2012). These repositories have already been leveraged to build 

neuroimaging-based classifiers of neuropsychiatric disorders such as Attention Deficit 
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Hyperactive Disorder and evaluate their efficacy (Cheng et al., 2012; Colby et al., 2012; Eloyan 

et al., 2012). A downside of this strategy is the increased likelihood of data with suspect quality. 

While users are encouraged to share data on the UMCD only after publication, this is not strictly 

enforced. We leave the accessors of the data the responsibility of vetting data that they analyze 

on the UMCD or download for off-site use. 

 One aim of the neuroinformatics field is the integration of databases with one another 

into large federations (Akil et al., 2011). These efforts are dependent on the establishment of 

ontologies and the use of application programming interfaces (APIs). The Neuroscience 

Information Framework (NIF) is a semantic search engine that allows a user to search a broad 

set of databases spanning many species, recording methods, and laboratories (Gupta et al., 

2008). The UMCD connectivity data are regularly crawled by NIF as they are uploaded to the 

system, using the region names associated with each shared CM. This allows a NIF user to 

perform a connectivity-based meta-analysis at a broader scale. This is a challenging task 

because data from the various source databases catalogued by NIF are often customized to a 

particular technique and a particular species, rather than across species and techniques. While 

mapping Brodmann areas to corresponding cortical structures in rodents may be an ill-posed 

problem, even simple differences such as “cornu ammonis 1” versus “Hippocampal region, 

CA1” present a problem when comparing connectivity measures in different datasets. Note, 

these are two perfectly valid ways to describe the CA1 region and yet no computer will be able 

to find these terms together because they are not lexical variants unless the computer is told 

that these are in fact synonyms. Therefore, NIF superficially aligns brain region labels to the NIF 

standard ontology, the NIFSTD, where labels can be toggled for search and browsing. NIF also 

performs a search across all known synonyms per brain region, as it is unlikely that all data will 

be aligned at any one time. If users wish to investigate connectivity for a specific brain region 

based on data in the UMCD, they should first perform a search on the NIF system for that 
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region. Once relevant datasets have been identified, they can use the UMCD to further probe 

the connectivity of their region of interest in those datasets. 

 

Comparison of Functional and Structural Connectivity Matrices 

As a demonstration of the UMCD platform, we compared group-averaged functional and 

structural connectivity matrices from a group of 60 healthy subjects aged 26-45. Functional and 

structural graph theory-based studies have expanded in parallel in recent neuroimaging 

literature. Several studies have made direct comparisons of connectivity strengths in rs-fMRI 

and dwMRI data (Hagmann et al., 2008; Honey et al., 2009) but to our knowledge, none have 

systematically compared graph-theory based measures. We found that despite a positive 

correlation of functional and structural connectivity strengths, there was a low correspondence 

of global and nodal graph theory measures. For the connection weights of fcMRI and DTI 

networks, the correlation was moderate but statistically significant. The fcMRI network had 

greater characteristic path length (CPL; 2.00/2.06 vs. 1.96), lower clustering coefficient (CC; 

.57/.57 vs. .62), equivalent global efficiency (GE; .57/.56 vs .57), higher small worldness for 

GSR (2.42/1.71 vs. 1.81), higher gamma for GSR (2.72/1.92 vs. 1.95), higher lambda (1.12/1.12 

vs. 1.08), and higher modularity (Q; .47/.39 vs .33). The differences in modularity highlight the 

differences between these networks. The higher modularity in the fcMRI networks relates to the 

longer path length, as fcMRI networks are more spatially distributed. The DTI network has a 

more regular, lattice-like topology. Importantly, global signal regression exaggerates the 

differences between the fcMRI and DTI networks. Modularity and small worldness both increase 

drastically in fcMRI data with GSR applied, exaggerating the differences in global graph theory 

measures to between the fcMRI and DTI networks. This step may enhance within-module 

correlations while dampening between-module correlations. Surprisingly, the weight correlations 

for the fcMRI and DTI networks were more similar with GSR applied. Thus, while individual 
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functional and structural weights are more similar after GSR, global network properties become 

more dissimilar.  

DTI and fMRI have their own limitations for determining connectivity strengths. A tensor 

is a basic model of water diffusion that is insufficiently complex for describing the intersection of 

multiple fiber populations within a voxel (Wedeen et al., 2008). DTI tractography therefore has 

limited ability to detect crossing fibers. Alternative diffusion weighted imaging methods like DSI 

collect data with more gradient directions and larger b-values. This enables the modeling of 

diffusion as a more complex Orientation Distribution Function (ODF), which can better resolve 

the intravoxel crossing of fiber bundles. The corpus callosum can be difficult to fully resolve 

using DTI because of its crossing with the heavily myelinated corona radiata. Here we derived 

connectivity matrices from DTI tractography and thus may have slightly underestimated 

interhemispheric connectivity. Meanwhile, rs-fMRI functional connectivity robustly detects 

bilaterally symmetric functional connections (e.g. Damoiseaux et al., 2006). Future studies with 

DTI data, DSI data, and resting state fMRI data will be required to determine how variable the 

DTI/DSI interhemispheric connectivity measures are, and how these both relate to rs-fMRI 

connectivity strengths. 

The comparison of nodal measures from functional and structural networks revealed 

mostly non-significant correlations. Importantly, the relationship tended to be non-significant 

regardless of the weighting scheme or weight threshold, suggesting that these factors do not 

highly influence the network measures. The only significant finding was a negative correlation of 

nodal participation coefficients in binary networks at a 20% weight threshold. In order to probe 

the relationship deeper, we examined the effects of all structural regional measures – degree, 

clustering, betweenness, regional efficiency, and participation – on functional participation using 

hierarchical regression. The most significant model for predicting functional participation 

included structural clustering (p=3.15x10-6) and participation (2.61x10-7), both with negative 

coefficients. Thus, for binarized graphs thresholded at 20%, low structural diversity and sparse 
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local connectivity related to higher functional diversity. A structural “connector” region is one that 

is sparsely connected and bridges between different areas of the network. In these networks, 

structural connector regions tended to functionally interact with multiple different functional 

modules. 

Functional and structural modules had a low degree of correspondence in these 

networks. One explanation for the disparity between these network types is simply that brain 

structure and function are not isomorphic (Deco et al., 2011). While the structural connective 

backbone does provide the scaffolding upon which neuronal communication occurs, it may not 

substantially constrain the functional integration and segregation of brain networks. Structural 

fiber connections do exist between most intrinsic functional connectivity networks (Van den 

Heuvel et al., 2009a) but such connections do not necessarily imply a similar community 

structure. Resting state functional connectivity patterns have relatively high test-retest reliability 

across sessions, indicative of a stable resting state configuration (Shehzad et al., 2009). 

However, it has been demonstrated that nodes of the brain’s functional network exhibit 

characteristic macroscale reconfigurations in the service of motor tasks (Bassett et al., 2011b), 

visual perception (Ekman et al., 2012), and episodic memory (Shirer et al., 2012). It appears 

that certain brain regions may be more predisposed for task-related adaptation while others 

maintain more stable roles maintaining intrinsic connectivity (Mennes et al., 2012). Meanwhile, 

the brain’s structural macroscale connectivity is known to be largely static and reproducible on 

short timescales (days to weeks) (Bassett et al., 2011a) (Cammoun et al., 2012). The presence 

of an adaptive functional network on a static structural scaffold obviously indicates some 

divergence of structural and functional network properties. The aggregation of functional 

connectivity matrices across resting state and different tasks, when collected in parallel with 

structural connectivity matrices, should further our understanding of the constraints that 

structural connectivity places on functional integration and segregation. 
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Conclusion 

Here we introduced the UCLA Multimodal Connectivity Database, a web-based resource 

that is openly available for brain network analysis and data sharing. Within this framework, a 

user can share CMs derived from neuroimaging data or access the matrices that have been 

publicly shared by other users. The site allows the user to conduct a graph theory analysis of 

any shared CM and view a report of global and nodal graph theory metrics, 3D and 2D network 

visualizations, along with study/demographic information about the network. We hope that this 

website will encourage broader sharing of CMs, enabling large-scale meta-analyses of brain 

connectivity. 
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Chapter 6 
 

Conclusion 
 
 This work has investigated the activity and connectivity of brain circuitry involved in 

episodic memory processing in individuals at genetic risk for Alzheimer's Disease and healthy 

young adults. In Chapter 2, we reported that decreases in local structural connectivity in cortical 

regions were accelerated in APOE-4 carriers and were statistically correlated with episodic 

memory retrieval scores. In Chapter 3, we found that APOE-4 carriers had reduced functional 

activity in the left entorhinal cortex (ERC) during associative episodic memory encoding. ERC 

activity was negatively correlated with whole brain modularity during the task. In Chapter 4, a 

study of healthy young adults found increased right hippocampal activity during successfully 

encoded face/place associations. The degree of right hippocampal functional connectivity 

increase after the task with higher-order visual and prefrontal regions was predictive of 

individual performance on a cued recognition memory task 24 hours after encoding. The 

structural connections binding these regions all traversed the parahippocampal gyrus. In 

Chapter 5, a web-based tool for connectivity analysis was used to show differences in the 

topology of whole brain structural and functional connectivity networks. 

 The motivation behind the study of structural networks in Chapter 2 was to pinpoint 

connectivity alterations that may occur between cortical areas or between cortical and sub-

cortical areas. Hippocampal-cortical connectivity is of specific interest because AD-related 

impairments in episodic memory performance appear to be related to alterations in this circuitry 

(Salat et al., 2010). The hippocampus is known to functionally couple with the default mode 

network (Greicius et al., 2004), a set of brain regions that are critical for episodic memory 

encoding and retrieval (Andrews-Hanna et al., 2010; Kim et al., 2010). Cortico-cortical 

connectivity between regions of the default mode network is also critical for memory 

performance (Hampson et al., 2006) and degrades in AD (Damoiseaux et al., 2012a). Here we 

focus on connections 1) between cortical areas (anterior association, unimodal sensory, visual 
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and spatial, and posterior association), 2) between cortex and parahippocampal gyrus, 3) 

between parahippocampal gyrus (PHC) and entorhinal cortex, and 4) between entorhinal cortex 

and hippocampus (Figure 1). This model is a simplified version of that used by Libby and 

colleagues (Libby et al., 2012), which illustrates the convergence of cortical inputs in the PHC 

that then project to the ERC and finally to the hippocampus. 

 

 
 

 
 

 

The connections that demonstrate significant negative correlations with age in APOE-4 

carriers are primarily from anterior and posterior association areas (Figure 2). These regions 

include the precuneus, the orbitofrontal cortex, the supramarginal gyrus, and the inferior 

temporal gyrus. As discussed in Chapter 2, these regions have overlap with the default mode 

network. The detection of reduced local interconnectivity between these regions may relate to 

the differential connection patterns of these areas as opposed to medial temporal areas. 

Figure 1: A model of cortical-cortical and cortico-hippocampal connectivity. 
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Cortical regions tend to have a large number of connections to other cortical regions (Hagmann 

et al., 2008), while medial temporal areas are more anatomically isolated (Squire et al., 2004). 

As clustering coefficient is a measure of connectivity among a node’s first degree neighbors, it is 

likely to vary more for cortical regions that have a higher number of neighbors. Thus, this 

measure is likely to be more sensitive to alterations in cortico-cortical connectivity than cortico-

hippocampal connectivity. Given that the changes in cortico-cortical connectivity tracked with 

changes in cognitive performance, clustering coefficient may be less of a leading indicator of 

cognitive alteration than other biomarkers like CSF AB, CSF tau, or hippocampal atrophy (Jack 

Jr et al., 2013). 
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 In Chapter 3, we reported decreased entorhinal cortical activity during associative 

episodic memory encoding in APOE-4 carriers. On an individual basis, the amount of whole-

brain functional modularity negatively predicted the amount of entorhinal activity (Figure 3). In 

these whole-brain functional networks, lower modularity was related to higher global integration. 

There is evidence that effective performance of complex cognitive tasks requires greater global 

integration (Van den Heuvel et al., 2009b). It is conceivable that in individuals with reduced 

communication between functional brain networks (i.e. modules), reduced processing of task-

related stimuli is occurring, leading to reduced engagement of the ERC. 

 
 

 
 

Figure 2: Alterations in structural local interconnectivity in aging APOE-4 carriers. 
Anterior association and posterior association regions (red boxes) in the cortex displayed 
more negative correlations of clustering coefficient and age for APOE-4 carriers. The 
connections between these areas and the remaining cortical areas (red arrows) 
predominantly contributed to this effect. 
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When region-specific functional connectivity of the ERC during encoding was assessed, 

one broad trend was evident: functional connectivity between visual/spatial areas and the ERC 

positively predicted ERC activity, while connectivity between the ERC and anterior association 

areas negatively predicted ERC activity. One interpretation of this result is that increased activity 

of the default mode network and coupling with task-specific regions may be more beneficial to 

task performance (Chadick and Gazzaley, 2011) and drive higher ERC activity. However, in 

APOE-4 carriers, decreased activity in the default mode network may occur simultaneously with 

a corresponding increase of activity in the salience network (Machulda MM, 2011) (Seeley WW, 

2011). Increased salience activity may inhibit ERC activity, reducing the ability to encode new 

memories. Future work should examine the connectivity of the ERC with these functional brain 

networks during true resting state fMRI. This will help establish whether these connectivity 

alterations are intrinsic or are only evident during the performance of specific cognitive tasks. 

Given the simplicity of the memory task employed here, it is feasible to consider using it in a 

MRI-based biomarker assessment of AD risk. 

 In Chapter 5, we examined functional and structural connections of the hippocampus 

that enable episodic memory consolidation. AD is known to impair episodic memory 

performance in conjunction with hippocampal atrophy and structural isolation. We examined 

functional memory networks in order to clarify if specific brain regions are hubs in these 

networks in healthy individuals, and whether or not these regions converge with sites of known 

atrophy in AD. We designed a novel memory task called “Traveling with the Stars” that required 

Figure 3: Alterations in regional activity and global functional connectivity during 
memory encoding. The entorhinal cortex (red box) demonstrated reduced activity in APOE-
4 carriers. This effect was positively correlated with functional connectivity from visual/spatial 
cortical regions (red box and large red arrow) and negatively correlated with functional 
connectivity strength from anterior association cortical regions (green box and large green 
arrow). At a global level, increased modularity was predictive of decreased entorhinal activity, 
predominantly driven by a decreased number of intermodular cortico-cortical functional 
connections (small red arrows). 
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subjects to form a memory association between specific pairs of famous faces and famous 

places. They were given surprise memory tests 24 hours after memory encoding in order to 

assess memory consolidation as indexed by cued recognition performance. We found that 

during encoding, right hippocampal activity was higher for face/place pairs that were 

subsequently recognized versus those that were not (Figure 4). Previous studies have 

demonstrated predominant activation of the right hippocampus with respect to the left for 

pictorial versus verbal stimuli (Papanicolaou et al., 2002). The functional connectivity of the right 

hippocampus to the rest of the brain was examined both before and after the encoding task, in 

search of functional connectivity changes following a task that may predict the degree of 

individual memory performance. Indeed, increases in hippocampal functional connectivity to the 

fusiform gyrus, lingual gyrus, and orbitofrontal cortex were all positively correlated with the 

number of face/place pairs the subject correctly recognized. The fusiform and orbitofrontal 

cortex have both been previously implicated in the recognition of famous faces (Kanwisher et 

al., 1997) (Gorno-Tempini et al., 1998) while the lingual gyrus has demonstrated involvement in 

both face and place processing (Gorno-Tempini and Price, 2001). Functional connectivity 

changes in the idle moments following task are known to be related to immediate subsequent 

memory retrieval (Tambini et al., 2010) but here found that they are important for memory 

consolidation. 
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Figure 4: The episodic memory recognition consolidation network. During successfully 
encoded face/place memory associations, subjects demonstrated increased activity in the right 
hippocampus (green box). An assessment of post-task minus pre-task functional connectivity 
changes found that increased hippocampal connectivity to visual/spatial and anterior 
association areas (green boxes) predicted the level of individual memory performance on a 
cued recognition task administered 24 hours after encoding. The structural shortest-path 
connections of the hippocampus and associated cortical areas (green arrows) all traversed the 
parahippocampal gyrus (blue box). 
 

 
We examined the structural connectivity of this “recognition consolidation” network 

diffusion spectrum imaging (DSI) tractography. Graph theory-based shortest path assessment 

of whole-brain structural connectivity networks revealed that all structural paths to the 

hippocampus traversed the parahippocampal gyrus. This agreed with the model specified in 

Figure 4. This provides evidence that in humans, anatomical cortical projections converge in 

the parahippocampal gyrus, similar to the pattern observed in non-human primates (Squire et 

al., 2004). Importantly, we did not detect any direct structural connections between the 

hippocampus and the other regions in the recognition consolidation network. Graph-theory 

based shortest-path calculation was required to detect the structural connectivity. We suggest 
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that future studies assessing relationships of structural and functional connectivity employ graph 

theory to triangulate networks of interest. 

 No specific relationship between individual variations in structural connection density of 

these regions and memory performance was detected. It is possible that functional variability 

within this network is more predictive of individual performance differences than structural 

variability. The hub-like nature of the parahippocampal gyrus in this network has relevance for 

AD and AD-risk. There is consistent evidence of white matter atrophy in the parahippocampal 

gyrus in older APOE-4 carriers (Honea et al., 2009; Persson et al., 2006; Ryan et al., 2011). The 

current findings suggest that alterations in episodic memory consolidation in prodromal AD may 

relate to reductions of the structural and functional connectivity of the parahippocampal gyrus 

with cortical regions. 
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