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Abstract
A unique optofluidic lab-on-a-chip device that can measure optically encoded forward scattering
signals has been demonstrated. From the design of the spatial pattern, the position and velocity of
each cell in the flow can be detected and then a spatial cell distribution over the cross section of
the channel can be generated. According to the forward scattering intensity and position
information of cells, a data-mining method, support vector machines (SVMs), is applied for cell
classification. With the help of SVMs, the multi-dimensional analysis can be performed to
significantly increase all figures of merit for cell classification.
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1. Introduction
The detection and classification of biological cells with high performance tools are used for
clinical diagnosis of diseases [1–7]. Today most of biomedical test instruments for cell
assays are set up in hospitals or medical institutes. For large populations living in areas
where such medical infrastructure is lacking, timely diagnosis and monitoring of patent
conditions becomes difficult and impractical. Point-of-care is widely recognized by the
global health care community as a promising approach to address the above concern. The
successful implementation of the point-of-care relies on the availability of low cost, easy-to-
operate, and accurate medical equipment suitable for point-of-care clinics. Lab-on-a-chip
devices possess some inherent merits for point-of-care applications so have become the foci
of biomedical device research. For clinical tests, samples such as blood and bodily fluids
(saliva, sputum, and urine) are easy to acquire with minimum invasiveness (compared with
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biopsy) and have great values in disease diagnosis and measurements of patients’ health
conditions. Therefore a large number of lab-on-a-chip devices for point-of-care applications
are microfluidic devices for cell-based and molecular-based assays. A wide range of
physical mechanisms including acoustic [8], magnetic [9], optical [10, 11] and electrical
[12] effects on the biological objects have been integrated into microfluidic devices to
manipulate cells and bioparticles in a similar fashion to a flow cytometer. However, most
lab-on-a-chip devices today require cell labelling for cell detection, classification, and
isolation from the mixture of analytes [13]. The procedures of cell labelling are usually time-
consuming, hard to control, and expensive because of the high cost of reagents (e.g.
fluorescently labelled anti-bodies). Also, the equipment used to detect the labelled signals is
usually highly sophisticated, involving complex optics, laser sources, and sensitive
photodetectors such as photomultiplier tubes (PMTs) [14]. Both the complicated and costly
sample preparation procedures and the sophisticated instrument impose serious constraints
on the use of such devices in point-of-care clinics. Therefore, a few groups, including ours,
have moved our attention to devices that can function without cell labelling. The challenge
for label-free cell-based assay is low sensitivity and specificity. Compromises in either area
lead to high false positive and false negative rates, which greatly diminishes the device
efficacy for point-of-care devices.

To achieve label-free cell detection and classification in high accuracy, we recently invented
a method of using a spatial mask to encode the scattering signals of beads or cells in
microfluidic channels [15, 16]. We demonstrated that the optical-encoding method enables
us to detect forward scattering (FS) and large angle scattering (LAS) signals as well as the
velocity and position of each individual cell according to its hydrodynamic behaviours
governed by parameters such as cell volume, cell shape, and in particular, cell stiffness [17].
Thus without cell labelling, we have developed a method to measure many cell properties
that can be used as biomarkers for cell classification (e.g. live and dead cells, red blood cells
and white blood cells, subclasses of white blood cells such as lymphocytes and neutrophils).

This approach appears to be highly promising, with a demonstrated ability to detect
neutropenia (low neutrophil counts) for patients undergoing chemotherapy. However, to
explore the full potential of the technique for point-of-care clinics, we will need efficient cell
classification algorithms to improve the detection accuracy and expand its application to
more diseases and health parameters. In this article, we apply a supervised computer
learning method to enhance the performance for cell classification. Support vector machine
(SVM) [18–21] is one of the most powerful computer learning tools for bioinfomatics
analysis. SVMs are computer-learning algorithms that use the prior knowledge to classify
the unknown events. For cell classification, SVMs employ a kernel function and use existing
information in the database to form a training model. After the training routine, SVMs are
able to classify samples under test by their type. In addition, SVMs are able to operate in a
multi-dimensional feature space to achieve higher accuracy in cell classification. Combining
the SVM classification method with the encoding method of the lab-on-a-chip microfluidic
device, the device performance can be significantly improved for unlabelled biological
detection.

2. Materials and Methods
2.1 Design of optical-coding microfluidic devices

To optically encode forward scattering (FS) signals produced by flowing cells in a
microfluidic channel, we designed a spatial mask pattern containing four transparent
trapezoidal slits that allow laser to pass through for collecting scattering signals. The four-
slit mask was formed by deposition and lift-off of the metal film (100 nm Ti and 200 nm
Au) on a glass slide. Each trapezoidal slit has base lengths of 50 µm and 100 µm. Four slits
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were alternatively arranged with a separation of 50 µm to form a 450-µm sensing area as
shown in Figure 1. Depending on the pathways of particles in flow, the scattering signals of
particles were encoded by the spatial mask and exhibited distinct waveforms in time
domain, which were able to retrieve the space information within the microfluidic channel.
The main microfluidic device with a straight channel of 5 cm in length has one inlet and one
outlet. As shown in Figure 1, the microfluidic channel is with the width of 100 µm and the
height of 45 µm for the entire device. The spatial mask was aligned with the microfluidic
channel and placed at the downstream position of 4.5 cm from the inlet. A PIN silicon
photoreceiver was optimally placed to collect the 5~10 degree FS signals. The position of
particles along the direction of channel width, defined as x-axis, is determined by the width
ratio of the first peak (W1) to the second peak (W2) of each processed event, confirmed by
the width ratio of W4 to W3. The velocity of particles is calculated by the total length of
sensing area, 450µm, divided by the duration of passing through the pattern. Furthermore,
given the channel dimensions, the position along the direction of channel height, defined as
y-axis, can be calculated by the velocity and x-axis position of the particle using the
characteristic parabolic velocity profile for a laminar flow within the microfluidic channel.

2.2 Theory of Support Vector Machines (SVMs)
For cell classification, the ideal scenario is to establish a classifier that divides all
components into well-defined groups. However, a classifier with a clear boundary rarely
exists for biological samples because of inevitable variations within the class. Increasing the
dimensions of feature space can improve the performance for sample classification under
such situations. One can expand those inseparable cases into a higher-dimensional feature
space using the appropriate expression information. By doing so, it becomes more likely to
define the hyperplane for cell classification. However, traditional learning methods in
higher-dimensional feature space are usually accompanied with overfitting problems
because artificially separated hyperplanes might find trivial solutions.

The algorithms of SVMs create a classifier that gives rise to a maximal margin while
avoiding the overfitting problem at the same time. The simplest way for classification is to
find a linear separating hyperplane, shown in Figure 2(a). Assume an expression vector x to
each data point, SVMs would have a decision function d(x,w,b)=w•x+b, where • means dot
product, w is the normal vector to the hyperplane, and b is a scalar called bias factor.
Because the output of d(x,w,b) is a scalar, the indicator function, F, is defined as the sign of
d(x,w,b) that indicates which group (class) each data point belongs to. The optimal
canonical hyperplane with functional margin of 1 is the contour where the decision function
is equal to zero, i.e. d(x,w,b)=w•x+b=0, and the separating margin, γ, for both sides from
the hyperplane is maximal, i.e. 2γ =2/∥w∥. The principle of SVMs is to maximize the
separating margin to ensure every data point is distant from the decision boundary by at least
γ. After the hyperplane of SVMs is defined, an unknown vector xN is classified according to
the value of indication function, F, defined as the sign of d(xN,w,b).

In general, data might not be classified linearly because of the mislabelled events in the
database or inexistence of linear classifiers. The former issue can be addressed by
introducing a soft margin that allows some data points to be in the wrong side of hyperplane
[18]. For the latter problem, as illustrated in Figure 2 (b), a nonlinear classifier has to be
defined to maximize the separating margin, by using an adequate kernel function, K(xi, xj).
Since SVM algorithms were originally based on a linear machine learning technique,
introducing a nonlinear kernel function is an effective route to address the problem without
changing the fundamental computation algorithms. In this case, the decision function should
be substituted with the designed kernel functions that enable the SVM algorithms to achieve
the nonlinear hyperplane with maximal margin. The nonlinear hyperplane is especially
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important for classification in a multi-dimensional feature space, as shown in Figure 2(c).
Once the analysis is conducted in n-dimensional feature space, the (n-1)-dimensional
hyperplane is needed. The nonlinear kernel functions exist in various forms such as
polynomial, hyperbolic tangent, inverse multi-quadratic and Gaussian radial basis function
(RBF). In this article, we employ a Gaussian RBF kernel K(xi, xj) = exp (−γ∥xi- xj∥2)
because it has a smaller number of hyper-parameters to allow for less complex model
selection and higher accuracy for our applications.

2.3 Device Fabrication and System Setup
Microfluidic devices with the designed dimensions were fabricated by curing a pre-polymer
mixture comprised of polydimethylsiloxane (PDMS) (Sylgard 184, Dow Corning, MI) and a
curing agent with the ratio of 10 to 1 on a silicon master which had the patterned feature
using conventional soft-lithography methods. After peeling the PDMS film off from the
silicon mold master, holes were punched on the PDMS replicate to create inlets and outlets
of microfluidic devices. The Ti/Au film was sputtered on a cleaned glass slide to form a
spatial mask by using lift-off process. After an oxygen plasma treatment, the PDMS and
glass slide were bonded to form the microfluidic channels. A 488nm wavelength laser
(40mW, Spectra-physics) was used as the optical source for scattering measurements. A pair
of silicon photoreceivers (PDA36A, Thorlabs) was used to detect FS and LAS signals. A
syringe pump (Pump 11 Elite, Harvard Apparatus, PA) was used to introduce the sample
flow with the designed flux. After acquiring the scattering signals of samples, digital signal
processing (DSP) was employed to filter noise and extract events. For each experiment, only
one type of beads or cells was introduced into microfluidic devices for the interrogation.

To characterize optical-coding devices with selected cell types, we have prepared samples
with breast cancer cells (MCF-7 cells) and white blood cells (WBCs). MCF-7 cells were
cultured in the growth medium in a humidified incubator at 37°C in 5% CO2 and then fixed
with paraformaldehyde prior to the experiment. Whole blood samples used to produce WBC
samples were purchased from the blood bank. To prepare WBC samples, whole blood was
lysed with commercial lysing buffer (eBioscience, CA). The buffer solution used to re-
suspend cells in this study consists of 10mM ethylenediaminetetraacetic acid (EDTA), 1%
bovine serum albumin (BSA), and 1X phosphate buffered saline (PBS).

We trained the SVMs to recognize expression data, including FS, positions of x-axis and
positions of y-axis. These factors were recorded from beads or biological cells, thus
representing the true behaviours of samples flowing in the microfluidic channel. In the
training procedure, two-thirds of the data were used to establish the hyperplane and the
remaining one third of data were tested for the accuracy. Afterwards, we used data from
several separate runs of experiment to repeatedly test the algorithm. The open source SVMs
software [22] was used in the present work.

3. Results and Discussion
Using a knowledge-based algorithm to assist the classification of cells, we first trained
SVMs to establish the hyperplane. To set up the database, data from MCF-7 cells and white
blood cells (WBCs) were collected separately at a flow rate of 75 μL/min (Reynolds
number=16.8). Figure 3(a) shows the superimposed contour plot of x-axis position versus
forward scattering intensity of MCF-7 cells and WBCs. In general, MCF-7 cells have a
larger diameter and produce stronger forward scattering signals than WBCs because of their
larger number of scattering centers. Fluid dynamically, larger particles inside the
microchannel experience a stronger lift force that drives the particles closer to the center of
the microchannel [15, 23]. This lift force is given as FL=ρG2CLd4, where ρ is the density of
fluid, G is the fluid shear rate (G = 2Uf/H), CL is the lift coefficient (which for
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microchannels remains constant when Re<100), and d is the particle diameter. As observed,
the x- position of MCF-7 cells is closer to the centerline (i.e. 50μm) than the x- position of
WBCs. Furthermore, due to the parabolic velocity profile within microfluidic channels, the
y-position of particles can be calculated according to the parabolic relation, υ(x, y) =
υMax(x) [1− (y/h)2], where υ(x, y) is the velocity at a specific position, υMax(x) is the
velocity at position x and the middle of the channel (i.e., at y=0) obtained from the
COMSOL simulation results, and h is the half-height of the channel, 22.5 μm in this study.
Figure 3(b) and (c) shows the spatial distribution contour plots of WBCs and MCF-7 cells
on the x-y plane, respectively. It is found that in the y–direction, a small yet clear separation
between MCF-7 cells and WBCs is present, by a distance of 1.19 μm. This spatial
separation in y-axis is attributed to different lift forces due to differences in cell size and cell
stiffness. Since MCF-7 cells are larger and softer than most WBCs, both factors drive
MCF-7 cells closer to the center of the channel in the y-direction [17, 24]. In the
microfluidic channels, softer cells are more easily deformed into shapes that follow the
streamline more closely, yielding a smaller velocity difference across the cells than stiffer
cells[25]. As a result, softer cells experience a weaker drag force than stiffer cells, moving
farther away from the channel wall and gaining a faster speed. In this manner, cell deformity
becomes an effective biomarker for cell classification in the microfluidic channel.

The scattering signals from cells have been detected in many microfluidic devices.
However, because of large variations of the signals and lack of effective methods to relate
the scattering signals to the cell properties, scattering signals have not been used as a reliable
method for cell classification. With the optical-coding microfluidic devices, the distribution
of cells over the cross section of the microfluidic channel is explored to allow the multi-
dimensional analysis by SVM analysis. Although SVMs have been widely used for
bioinformatics, it is the first time the method is used to achieve accurate cell identification.
SVMs can automatically create the separating boundary to classify and enumerate cells for
different populations, which reduces the error by manual gating. The prediction performance
of SVMs is judged by seven indicators: true positive (TP), true negative (TN), false positive
(FP), false negative (FN), accuracy, sensitivity and specificity. The key figures of merit are
accuracy, sensitivity and specificity defined as follow,

(1)

(2)

(3)

The outcomes of SVMs analysis are summarized in Table 1. The total events of MCF-7 cells
and WBCs are 842 and 2324, respectively. For each parameter (FS, x-position, y-position),
SVM analysis was performed on three separate trails. When we used FS as the only
parameter for SVMs, the average values of sensitivity and accuracy are ~56.86% and
87.96%, although the specificity value (a measure of true negative rate) is very high:
99.26%.

Adding the parameter of x-axis position to the SVM analysis slightly increases the
sensitivity to ~59.93%. This modest contribution suggests that although MCF-7 cells have
larger FS intensity and more focused to the center position in the x-axis, these effects are
insufficient for highly accurate cell classification. In contrast, adding the third parameter (y-
position) to the SVMs significantly increases the accuracy and sensitivity up to 93.95% and
85.87%, respectively, while maintaining a high value of specificity (98.32%). The results

Wu et al. Page 5

Sens Actuators B Chem. Author manuscript; available in PMC 2014 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



demonstrated that expanding the hyperplane to higher dimensions can significantly improve
the performance for cell classification. The 2-dimensional and 3-dimensional hyperplanes
are illustrated in figures 4 (a) and (b), where the hyperplane in figure 4 (b) is established
using about one-third of data points for clarity in visual illustration. The minor
misclassification of SVMs might result from the size variation between MCF-7 and WBCs
cells, resulting unresolved parameters. However, these results still demonstrate the efficacy
of SVM algorithms with optically encoded forward scattering signals from a lab-on-a-chip
microfluidic device.

4. Conclusions
Forward scattering is the most common and easiest to detect signal from biological cells, but
it has been a great challenge to extract biologically relevant information from the forward
scattering signal alone. Our unique optical coding technique produces forward scattering
signal that also contains information about cell speed and position, and such information is
closely related to cell properties such as cell size, cell shape, and cell stiffness. For the first
time to our knowledge, we have applied the SVMs method to perform multi-dimensional
analysis of the encoded forward scattering signals. The results have shown significant
enhancement in the accuracy, sensitivity, and specificity for cell classification. The
encouraging initial results suggest the potential value of combining the lab-on-a-chip
technology and SVMs data analysis method in point-of-care clinics.
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Highlight

Point-of-care is widely recognized by the global health care community as a promising
approach to address the above concern. The successful implementation of the point-of-
care relies on the availability of low cost, easy-to-operate, and accurate medical
equipment suitable for point-of-care clinics. To address these issues, we demonstrated an
optical-coding microfluidic device combined with the supporting vector machines
(SVMs) for clinical in-vitro diagnosis. In this study, breast cancer cells (MCF-7) and
human white blood cells are used to demonstrate the capability of our system. With the
help of SVMs, the multi-dimensional analysis can be performed to significantly increase
all figures of merit for cell classification. We show marked improvements in the
performance of cell classification, measured by the rates of sensitivity (85.87%),
specificity (98.32%), and accuracy (93.95%).
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Highlights

• An optical-coding microfluidic device combined with the supporting vector
machines (SVMs) for clinical in-vitro diagnosis is demonstrated.

• With the help of SVMs, multi-dimensional analysis is performed to enhance the
cell identification.

• Breast cancer cells and human white blood cells are used to demonstrate the
capability of our system.

• Significant improvements in the performance of cell classification, measured by
the rates of sensitivity, specificity, and accuracy, are shown.
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Figure 1.
A scheme of the optical-coding microfluidic channel. The beads or cells are interrogated
with a laser source. The laser light is encoded after passing through the sensing area to
provide the position information of beads or cells.
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Figure 2.
(a) A hyperplane formed by SVMs for a linear classification. A filled red circle represents
type I and a filled blue triangle represents type II. The thick line is the optimal hyperplane
for classification, with w being the normal vector of hyperplane. Two dashed lines are the
margins with a distance, γ, from the hyperplane. The condition γ= 1/∥w∥ is required to
achieve functional margin for the canonical hyperplane. (b) A nonlinear hyperplane formed
by SVMs with a nonlinear kernel function. (c) A nonlinear hyperplane in 3-dimensional
space represented the multi-parameter analysis using SVMs.
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Figure 3.
(a) The superimposed contour plot of x-axis position versus forward scattering intensity for
MCF-7 cells and white blood cells. The flow rate is at 75µL/min. (b) and (c) The spatial
distribution contour plots of white blood cells and MCF-7 cells on the cross section of the
half microchannel, respectively. Color bars in each figure represent the density of cell
distribution.
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Figure 4.
(a) The hyperplane created by SVMs for 2-parameter cell classification, using forward
scattering signals and position of cells along the x-axis. (b) The hyperplane created by
SVMs for 3-parameter cell classification with the information of cell positions along x- and
y-axes and the forward scattering intensity. This nonlinear hyperplane in 3-dimensional
space allows multi-parameter analysis to achieve higher accuracy for cell classification.
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