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Functional Linear Models for Zero-Inflated Count Data with 
Application to Modeling Hospitalizations in Patients on Dialysis
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aDepartment of Biostatistics, University of California, Los Angeles

bDivision of Nephrology, Department of Medicine, University of California, Davis

cDepartment of Medicine, University of California, Irvine

dInstitute for Clinical and Translational Science, University of California, Irvine

Summary

We propose functional linear models for zero-inflated count data with a focus on the functional 

hurdle and functional zero-inflated Poisson (ZIP) models. While the hurdle model assumes the 

counts come from a mixture of a degenerate distribution at zero and a zero-truncated Poisson 

distribution, the ZIP model considers a mixture of a degenerate distribution at zero and a standard 

Poisson distribution. We extend the generalized functional linear model framework with a 

functional predictor and multiple cross-sectional predictors to model counts generated by a 

mixture distribution. We propose an estimation procedure for functional hurdle and ZIP models, 

called penalized reconstruction (PR), geared towards error-prone and sparsely observed 

longitudinal functional predictors. The approach relies on dimension reduction and pooling of 

information across subjects involving basis expansions and penalized maximum likelihood 

techniques. The developed functional hurdle model is applied to modeling hospitalizations within 

the first two years from initiation of dialysis, with a high percentage of zeros, in the 

Comprehensive Dialysis Study participants. Hospitalization counts are modeled as a function of 

sparse longitudinal measurements of serum albumin concentrations, patient demographics and 

comorbidities. Simulation studies are used to study finite sample properties of the proposed 

method and include comparisons with an adaptation of standard principal components regression 

(PCR).

Keywords

functional data analysis; end stage renal disease; hurdle model; sparse longitudinal design; United 
States Renal Data System; zero-inflated Poisson model

1 Introduction

Functional data analysis has rapidly expanded in recent years, providing a framework for 

analysis of data which are curves or functions [1]. Of particular interest are regression 
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models for outcomes with a functional covariate/predictor that varies over time (t) (e.g., [2]–

[6], among others). Generalized functional linear models (GFLM; [2]) have been proposed 

to relate a generalized scalar outcome, Y, to a functional predictor, X(t), along with cross-

sectional covariates, Z = (Z1, …, Zp),

(1)

where μ = E{Y|X(t), Z}. The regression coefficient function, β(t), can be interpreted as a 

weight function, capturing the variation over the support (t) of the functional predictor that is 

associated with the outcome.

For count outcomes, such as the number of hospitalizations during an observation period, 

the standard Poisson distribution does not fit well when there are excess zeros. For example, 

in the Comprehensive Dialysis Study (CDS; [7]), which is used to illustrate the proposed 

methods (in Section 5), 53% of patients were not hospitalized during the study follow-up 

period. Useful models for counts with excess zeros include the hurdle model [8]–[11] and 

the zero-inflated Poisson (ZIP) model [12]. As we will detail in the proposed functional 

hurdle model specification, in Section 2, each patient on dialysis has an individual-specific 

probability of having a hospitalization that depends on the functional predictor X(t) and 

baseline covariates Zr; thus, a binomial probability model governs the binary outcome 

process of having zero vs. a positive number of hospitalizations. Once the realization is 

positive, the hurdle is crossed and the conditional distribution of positive counts of the 

number of hospitalizations is modeled as a zero-truncated Poisson distribution. Given all 

patients on dialysis are at some level for risk of hospitalization, the functional hurdle model 

is conceptually preferable; however, the ZIP model is particularly relevant in other 

applications where the counts arise from mixing a standard Poisson process with a 

degenerate process at zero, producing “structural” zeros (e.g., abstainers in drug abuse, 

smoking or sexual behavioral studies).

In this work, we propose functional hurdle and ZIP models to relate a zero-inflated count 

outcome (number of hospitalizations) to a functional predictor, specifically, albumin 

concentrations sampled during the first two years of dialysis, a life-sustaining treatment for 

individuals with end-stage renal disease. Albumin concentrations are associated with 

hospitalizations and death in patients on dialysis ([13], Chapter 3). Our proposed functional 

regression models for zero-inflated count data are also aimed towards sparsely sampled 

functional predictors, which are common in longitudinal data. For example, in the CDS, 

serum collection was scheduled quarterly within the first two years after the start of dialysis; 

however, albumin measurements were sparse with the total number of measurements per 

subject ranging from 1 to 5, due to incomplete serum collection.

We note that common estimation techniques proposed for GFLMs rely on basis expansion 

of the functional predictor X(t) and coefficient function β(t) for dimension reduction, 

followed by least squares, maximum likelihood or penalized maximum likelihood estimation 

[14]–[16]. Cardot and Sarda [17] and Long [18] propose spline basis for expanding X(t) and 

β(t) followed by penalized maximum likelihood for densely observed functional data. Müller 
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and Stadtmüller [19] expand both X(t) and β(t) on the functional principal components basis 

of X(t), followed by weighted least squares estimation. We will refer to this approach as 

functional principal components regression (PCR). Goldsmith et al. [20] argue that the few 

functional principal components chosen in applications may not be an adequate basis choice 

to expand β(t), since β(t) may not lie in the space spanned by the principal components 

functions of the functional predictor. Hence, they propose to expand the functional predictor 

on its functional principal components basis, and to model the functional regression function 

as penalized splines. They suggest the use of a large number of basis functions in both 

expansions and introduce regularization by using restricted maximum likelihood in an 

associated mixed effects model for the choice of the smoothing parameter. As is used in 

other functional regression models, their proposal is geared towards sparsely sampled 

functional predictor processes observed with additive measurement error via the use of 

functional principal components analysis [21]–[25].

We propose an estimation procedure for functional hurdle and ZIP models with a sparsely 

observed functional predictor process, similar to the measurements of albumin concentration 

in the CDS, potentially observed with measurement error. These are novel developments, 

particularly within the context of sparse designs, because sparse data are commonly 

encountered in longitudinal studies, where repeated measurements are available on each 

subject for a small total number of measurements (i.e., infrequent) at a set of subject-specific 

time points (i.e., irregular). Using spline basis directly in the expansions of the predictor 

process and regression coefficient function, as proposed by Cardot and Sarda [17] and Long 

[18], is not feasible in sparse data applications. Hence, our proposed estimation procedure 

adds a reconstruction step which makes spline basis expansion feasible. The proposed 

penalized reconstruction (PR) method begins by reconstructing the sparse longitudinal 

measurements on the predictor process on a dense grid via functional principal components 

analysis. The regression functions are then expanded on spline basis and coefficients in the 

expansion are estimated via penalized maximum likelihood using the reconstructed 

functional predictor. After basis expansions, Goldsmith et al. [20] induce regularization by 

using random coefficients and carrying out estimation in an associated generalized mixed 

effects model. We consider penalized likelihood estimation instead, because it extends to 

hurdle and ZIP modeling for zero-inflated counts more conveniently and avoids the 

computational challenges of fitting a hurdle or a ZIP model with a large number of random 

effects.

Specification of the functional hurdle and ZIP models are proposed in Section 2. Section 3 

details the proposed estimation method (PR) for functional hurdle and ZIP models, as well 

as its applicability to generalized functional linear models (1). Because the estimation 

machinery developed in this paper is applicable for a generalized outcome, such as a binary 

outcome, in the GFLM model (1), we unified the presentation of the proposed estimation 

approach so that it is applicable to the GFLM generally. For comparison, we also describe 

an extension of PCR estimation in Section 3. Simulation studies examining the relative 

efficacy of the proposed estimation procedure and an extension of PCR are described in 

Section 4. We illustrate the proposed method with the aforementioned CDS data, where we 

utilized the functional hurdle model to examine the relationship between hospitalization and 
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a functional covariate, serum albumin concentration, together with baseline covariates 

(Section 5). We conclude with a brief discussion in Section 6.

2 Functional Hurdle and ZIP Models for Zero-Inflated Count Data

We introduce the functional hurdle and ZIP models for zero-inflated count data. We begin 

with the functional hurdle model; the functional ZIP model development will proceed 

similarly. The hurdle process models a count response, Yi, as arising from a point mass at 

zero and a zero-truncated Poisson process. More precisely, the proposed hurdle distribution 

for modeling a count response, Yi, that depends on a functional predictor Xi(t), in addition to 

baseline predictors Zri, is

(2)

where the probability of having a positive count, namely pi = Pr{Yi > 0|Xi(t), Zri} (i.e., the 

parameter in the binary process), and the Poisson process rate λi of the positive counts (i.e., 

the parameter of the zero-truncated Poisson process) are modeled simultaneously. Choices 

of link functions, g1(·) and g2(·), are needed to connect the functional predictor Xi(t) and the 

baseline covariates Zri to the Bernoulli probability (pi) and Poisson rate (λi). More 

specifically,

(3)

where g1(pi) = log{pi/(1 − pi)} is the common logistic link function and and g2(·) = log(λi) 

the log-link function. The above formulation of the functional hurdle model (2–3) considers 

the same functional and baseline predictors in modeling the binary and zero-truncated 

Poisson processes for our application; however, the model can easily be extended to include 

different predictors for the two processes.

As introduced in Section 1, the key quantities of interest in (3), with respect to the functional 

predictor X(t), are β(t) and γ(t). In the CDS data application, the regression coefficient 

function β(t) in (3) captures variation during the time regions of the albumin trajectory after 

the initiation of dialysis that is associated with the likelihood of having zero vs. a positive 

number of hospitalizations. Similarly, γ(t) highlights the time regions that contribute to the 

count (or rate) of hospitalizations. Also, note that the different coefficients, namely {αr} and 

{ζr}, allow flexibility for accommodating the fact that potentially different baseline 

predictors are associated with binary and zero-truncated Poisson processes in (3): for 

example, a prior history of congestive heart failure may be associated with having zero vs. a 

positive number of hospitalizations, but may not be associated with the zero-truncated 

Poisson count process for the subsequent count (or rate) of hospitalization.
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In contrast to the hurdle model, the ZIP regression model assumes that the counts arise from 

mixing a standard Poisson process with a degenerate process at zero; thus, leading to 

observed excess zeros beyond the expected amount under a standard Poisson distribution 

alone. This mixture with a degenerate distribution at zero implies that a subset of 

observations originates from a subpopulation (or state) that can only have zero counts 

(known as “structural” zeros); the remaining zeros come from the Poisson subpopulation. 

The ZIP model was originally proposed by Lambert [12] for modeling counts of defective 

components in manufacturing processes, where structural zeros correspond to observations 

from a perfect manufacturing state that produces only perfect components. Other ZIP 

applications where subpopulations of structural zeros can be conceptualized include 

abstainers in drug abuse or sexual behavioral studies (e.g., [26]). ZIP regression models have 

been applied in a myriad of other applications, including abundance of rare species ([27], 

[28]), horticulture ([29]) and public health ([30], [31]) among others. With a functional 

predictor, analogous to the functional hurdle model (2–3), we propose a functional ZIP 

model given by

(4)

where pi and λi are related to the functional predictor Xi(t) and baseline covariates Zri via 

suitable link functions, as given in (3). In contrast to the functional hurdle model, β(t) in (3) 

for the functional ZIP model weighs the time regions of the functional predictor associated 

with the probability of arising from the Poisson subpopulation (pi or the probability of the 

perfect state 1 − pi, depending on the model parametrization). γ(t) weighs the time regions of 

X(t) which influence the counts in the Poisson count subpopulation.

3 Estimation

We propose an estimation procedure called penalized reconstruction (Section 3.1) for 

generalized functional linear, hurdle and ZIP models. For comparison, we also describe a 

standard principal components regression (PCR) adaption for the proposed models. Both 

estimation procedures include a dimension reduction step, achieved by basis expansion, 

followed by penalized maximum likelihood or maximum likelihood estimation. The 

penalized reconstruction (PR) approach begins with a reconstruction of the functional 

predictor process, X(t), based on sparse longitudinal data. Finally, the regression function, 

β(t), is expanded on spline basis functions.

3.1 Penalized Reconstruction

Step 0: Reconstruction of the Predictor Trajectories from Sparse Longitudinal 
Data—The observed predictor trajectories Xi(t) for i = 1, …, n subjects in model (3), are 

assumed to be square integrable realizations of the random smooth process X. Sparse data 

(e.g., infrequent and irregular data), as illustrated by the CDS data outlined in the 

Introduction section, is characterized by subject-specific random observation times Tij ∈ [0, 

T], for j = 1, …, Ni and a small total number of repeated measurements Ni. We also assume 
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additive measurement error on the functional predictor, i.e., Xij = Xi(Tij) + εij, where εij are 

i.i.d. measurement errors with mean zero and finite variance.

Reconstruction of the predictor trajectories is based on the Karhunen-Loéve expansion for 

the observed process for subject i,

(5)

where ξiv is the vth functional principal component score playing the role of random effects 

with E(ξv) = 0 and var(ξv) = ρv, and ψv(t) is the vth eigenfunction. Quantities in (5), namely 

μX(t), ξiv and τv(t), will be obtained based on estimation of the moments of the underlying 

smooth random process X; specifically, the mean function μX(t) and auto-covariance 

function, denoted GXX(s, t). Moments are obtained via smoothing, which pools information 

from all subjects. The mean function estimate, μ̂
X(t), is obtained by smoothing the 

aggregated data (Tij, Xij) for i = 1, …, n, j = 1, …, Ni with local linear fitting. Next, the raw 

auto-covariances are computed as GXX,i(Tij, Tij′) = {Xij − μ̂
X(Tij)}{Xij′ − μ̂

X(Tij′)}. These raw 

estimates are fed into a two dimensional local least squares algorithm to obtain the final 

smooth estimates ĜXX. The effects of the additive measurement error can be eliminated by 

excluding the diagonal raw auto-covariance elements GXX,i(Tij, Tij), i = 1, …, n and k = 1, 

…, Ni in the two-dimensional smoothing step. In addition, the non-negative definiteness of 

the estimated auto-covariance matrix can be guaranteed by excluding the negative estimates 

of the eigenvalues and corresponding eigenfunctions from the functional principal 

component decomposition of the auto-covariance operator, ĜXX. For details, the reader is 

referred to Şentürk and Müller [6]. For a computationally efficient bandwidth choice in the 

proposed one- and two-dimensional smoothing, we adopt the generalized cross-validation 

algorithm of Liu and Müller [32].

Once the moments are estimated, the eigenfunctions τv(t) are estimated through a functional 

principal component step applied to the discretization of the smooth auto-covariance 

estimator ĜXX. Subject-specific eigen-scores ξiv are recovered using Gaussian assumptions 

on all eigen-scores and measurement error, based on the conditional expectation E(ξiv|Ui, Ni, 

Ti), where Ui is the Ni × 1 observation vector Ui ≡ (Xi1, …, XiNi)
T with Xij = Xi(Tij) + εij and 

Ni and Ti = (Ti1, …, TiNi) are the total number of repeated measurements and the vector of 

observation time points for subject i, respectively. (The reader is referred to [22], [33], [6] 

and [24] where the explicit expression of ξ̂
iv and its derivation is provided.) Based on (5), 

the functional predictor is reconstructed as ; we do this 

for an equidistant dense grid of time points tj, j = 1, …, N. The number K of eigen-

components included can be chosen by various criteria; we utilize the fraction of variance 

explained, similar to Crainiceanu, Staicu and Di [5].

Step 1: Dimension Reduction via Basis Expansion—Next we consider the 

expansion of the coefficient function β(t) for the functional predictor in a generalized 

functional linear model (1), functional hurdle model (3) or functional ZIP model using a set 
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of spline basis functions. More specifically, we consider , where ϕu(t) 

is taken to be truncated power series spline basis. Thus, 

 with  representing the knots. The exact 

number of basis functions used Kb is not important as long as Kb is large. In applications we 

take Kb = 20. The position of the knots in the truncated power spline basis is also not 

particularly important and is taken at the quantiles of the distribution of tj. Expansion for γ(t) 

in a functional hurdle (3) or ZIP model follows similarly to the above expansion for β(t). 

That is, , where θϑ(t) is also the truncated power series spline basis.

Using the above basis expansion, combined with the reconstructed predictor process X ̃
i(t),

(6)

where b = (b1, …, bKb)T and Wi is a 1 × Kb vector with the uth entry equal to ∫ Xĩ(t)ϕu(t)dt. 

For sparse longitudinal data, direct estimation of ∫ Xi(t)ϕu(t)dt is not feasible, since there is 

only a small number of total measurements over time available per subject. Hence, the 

proposed PR approach addresses this challenge by first reconstructing Xi(t) on a dense grid 

of time points so that Wi can be feasibly estimated, via approximating the integral ∫ 

X̃
i(t)ϕu(t)dt. The expansion for γ(t) proceeds similarly as for β(t) above; thus, we have, 

analogous to (6) ∫ X̃
i(t)γ(t)dt = Wia, where a = (a1, …, aKa)T and now the uth entry of Wi is 

∫ X̃
i(t)θu(t)dt, u = 1, …, Ka.

Using the expansion in (6), the generalized functional linear model (1) can be approximated 

by a generalized linear model:

(7)

That is, g(μi) ≈ (1n, W, Z)(β0, b, α)T with n × (1 + Kb + p) design matrix, (1n, W, Z), and 

parameter vector (β0, b, α)T, where b = (b1, …, bKb)T, α = (α1, …, αp)T, 1n is a n × 1 vector 

of ones, n × Kb matrix W = (W1, …, Wn)T, n × p matrix of predictors Z = (Z1, …, Zp), and Zr 

= (Zr1, …, Zrn)T.

The functional hurdle and ZIP models for zero-inflated counts given in (3) and (4), 

respectively, can be similarly expanded and approximated by

(8)

(9)

Şentürk et al. Page 7

Stat Med. Author manuscript; available in PMC 2014 November 30.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



The design matrix, (1n, W, Z), and parameter vector, (β0, b, α)T, in the binary part (8) are 

defined analogously as detailed above for the generalized functional linear model. Similarly, 

for the zero-truncated Poisson part (9), the design matrix is (1n, W, Z) and parameter vector 

is (γ0, a, ζ)T, where a = (a1, …, aKa)T and ζ = (ζ1, …, ζp)T.

Step 2: Penalized Maximum Likelihood—We propose to estimate the coefficient 

functions, β(t) and γ(t), using the induced generalized linear model, as well as the the 

induced hurdle and ZIP models, with estimated Wi by penalized maximum likelihood. A 

common and effective penalization approach used in functional data analysis to regularize 

smoothness of the regression functions is to penalize the second derivative of the regression 

functions. First, for the generalized linear model given in (1) and (7), we estimate the 

parameter vector (β0, b, α) by maximizing the penalized log-likelihood

where ℓ(·) is an appropriately chosen log-likelihood corresponding to a generalized outcome 

(e.g. Bernoulli, Poisson etc. form an exponential family) and δ is the regularization 

parameter. Thus, using the basis expansion of β(t) as described in step 1, we rewrite the 

second (penalty) term above as

where R is the matrix with (u, u′)th entry is equal to . Hence, the penalized 

likelihood to be maximized is ℓGLM(β0, b, α, Ŵ, Z) = ℓ(β0, b, α, Ŵ, Z) − δb′Rb.

Next, we derive the penalized likelihood for the functional hurdle model described by (3), 

(8) and (9). For this, we estimate the parameter vectors (β0, b, α) and (γ0, a, ζ) by 

maximizing the penalized likelihood, denoted by

where, similar to the generalized linear model case above,

ℓbin.(β0, b, α, Ŵ, Z) and ℓpos.(γ0, a, ζ, Ŵ, Z) correspond to the log-likelihood portions for the 

binary and zero-truncated Poisson processes, respectively, of the hurdle distribution (2) for a 

count response Yi; which through direct calculations yield ℓbin.(β0, b, α, Ŵ, Z) = ΣYi=0log{1 

− pi(β0, b, α, Ŵ, Z)} + ΣYi0log{pi(β0, b, α, Ŵ, Z)} and ℓpos.(γ0, a, ζ, Ŵ, Z) = 
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ΣYi0[Yilog{λi(γ0, a, ζ, Ŵ, Z)} − λi(γ0, a, ζ, Ŵ, Z) − log{1−e−λi(γ0,a,ζ,Ŵ,Z)} − log(Yi!)]. Note 

that because the likelihood ℓHurdle(·) factors into separate log-likelihood terms for (β0, b, α) 

and (γ0, a, ζ), namely Δbin. and Δpos., they can be efficiently maximized separately. 

Maximization of Δbin. represents fitting a penalized logistic regression to binary data 

 and maximization of Δpos. represents fitting a penalized zero-truncated 

Poisson model to the positive counts , where  denotes the indicator function 

for event A.

For fitting the functional ZIP model (4), the penalized functional ZIP log-likelihood is

where

The functional ZIP (log−) likelihood, ℓZIP(·), does not separate and needs to be maximized 

jointly to simultaneously estimate all model parameters, (β0, b, α, γ0, a, ζ). We note that for 

simplicity of notation, the functional ZIP model is represented using the same model 

parameters notation as those used in the functional hurdle model above.

The regularization parameter d in the functional generalized linear model is chosen by multi-

fold cross-validation (CV). The CV error is normalized with the variance of the prediction:

(10)

where  denotes the mean predicted value for the ith subject in left-out group j. The 

regularization parameters δ1 and δ2 in the functional hurdle model are chosen by two 

separate one-dimensional grid searches with μ̂
i = eη̂i/(1 + eη̂i), V(μ̂

i) = μ̂
i(1 − μ̂

i), and 

 for the logistic part; similarly, for the Poisson part μ̂
i = λ̂

i/(1 − 

e−λ̂i), λ̂
i = eη̂i, , and 

These separate regularizations for the functional hurdle model components are applicable 

since the likelihood, ℓHurdle(·), factors. However, for the functional ZIP model, a two 

dimensional grid search is needed for the choice of δ1 and δ2 where μ̂
i = p̂iλ̂

i, 

, p̂i = eη̂1i/(1 + eη̂1i), λ̂
i = eη̂2i,  and 

. Recall that Wi is estimated directly via approximation of the 
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integral ∫ Xĩ(t)ϕu(t)dt, where X̃
i(t) for cross-validation is reconstructed based on the 

population mean and eigenfunctions estimated with subjects in the jth group excluded.

3.2 Standard Principal Components Regression

Step 1: Dimension Reduction via Basis Expansions—For subsequent comparative 

simulation studies with the proposed method PR, we also adapt the standard principal 

components regression (PCR). Briefly, PCR expands both the longitudinal predictor X(t) and 

the functional coefficient β(t) on a few PC functions of X(t), denoted by ψv(t):

(11)

where ξiv = ∫{Xi(t) − μX(t)}ψv(t)dt and the number of PCs, K, is typically small (e.g., two to 

three components). In applications, we utilize the fraction of variance explained in choosing 

K. For the functional hurdle or ZIP models . Using (11),

(12)

where ξi = (ξi1, …, ξiK)T, b = (b1, …, bK)T and μ̃ is a 1 × K vector with the vth entry equal to 

∫ μX(t)ψv(t)dt. Eigenscores ξi and μ̃ are estimated based on the functional PCs expansions 

outlined in Section 3.1 step 0. Using similar basis expansions as in (11) for the coefficient 

function γ(t), we have . The generalized functional linear model 

reduces to  and the 

functional hurdle model reduces to  and 

.

Step 2: Maximum Likelihood—As the number of functional PCs basis functions used is 

small, PCR uses maximum likelihood without penalization, where the likelihoods for the 

corresponding models are as outlined in Section 3.1 step 2.

4 Simulation Studies

4.1 Simulation Design

We carry out three simulation studies to evaluate the performance of the proposed 

estimation algorithm, PR, and also to compare its performance to the more conventional 

approach of PCR for 1) generalized functional linear models, 2) functional hurdle and 3) ZIP 

models under sparse and denser longitudinal designs. Moderate and larger sample sizes of n 

= 200 and n = 400 are used. In all three studies, estimation of the moments of the predictor 

processes including the bivariate smoothing procedures and the choice of appropriate 

bandwidths in the functional principal components decompositions are carried out with the 

publicly available software package PACE (http://anson.ucdavis.edu/~ntyang/PACE; [22], 

[33], [4]). The number of functional principal components basis functions used in the 
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expansions for the PCR and the reconstruction step of PR are chosen by the fraction of 

variance explained. The number of components are selected that explain at least 90% and 

85% of the variation in the longitudinal predictor for sparse and denser longitudinal designs, 

respectively, similar to [20]. This criterion typically selects one to three functional principal 

components basis functions, where the most common value selected is two.

In all three simulation studies, the covariate process X is generated according to 

, where the functional principal component scores ξiv are 

simulated from independent normals with means zero and variances equal to 5/v2, μX(t) = 2 

sin(πt/2),  for 0 ≤ t ≤ 1. The predictor trajectories are assumed to be 

observed with measurement error. They are simulated independently from a Gaussian 

distribution with zero mean and variance equal to 0.7. The cross-sectional covariate Zi is 

simulated from a Gaussian distribution with zero mean and variance equal to 2. The number 

of repeated measurements for n = 200 and 400 subjects are chosen randomly from [1, 15] 

and [15, 30] with equal probabilities for sparse and denser designs, respectively. The 

observation times Tij for each subject are randomly selected for the longitudinal covariate 

from the time interval [0, 1]. Reported results for all simulations (Section 4.2 below) are 

based on 200 Monte-Carlo runs. Further details of the three simulation cases are as follows.

Generalized functional linear model—The regression parameters are β0(t) = 1, β(t) = 

−t2 and α = 0.8. The response variable Yi are simulated from a Bernoulli distribution with 

mean pi = E{Yi|Xi(t), Zi} = g−1{β0 + ∫β(t)Xi(t) + αZi}, where g−1(ηi) = eηi/(1 + eηi).

Functional hurdle model—The regression parameters are β0(t) = −1, γ0 = 1, β(t) = t, γ(t) 

= t2/2, α = 0.5 and ζ = 0.5. The functional hurdle model is simulated from

where g1(pi) = β0 + ∫ β(t)Xi(t)dt + αZi and g2(λi) = γ0 + ∫ γ(t)Xi(t)dt + ζZi with a logistic link 

function g1(·) and a log-link g2(·).

Functional ZIP model—The regression parameters are taken to be β0(t) = −1, γ0 = 1, β(t) 

= t, γ(t) = t2/2, α = 0.5 and ζ= 0.5. The functional ZIP model is simulated from

where pi and λi are related to the predictors in the same way as described for the functional 

hurdle model.

Preliminary simulation studies were carried out to select the optimal regularization 

parameters for PR at each of the three simulation settings. Results from the main simulation 
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studies reported in Section 4.2 use the independently selected regularization values from the 

preliminary simulation studies and are summarized in the Appendix. To study the 

performance of the proposed estimation method for the regression parameters and the 

regression function, we use relative mean squared deviation error (ME):

For functional hurdle and ZIP models, MEγ, MEγ0 and MEζ are defined similarly.

4.2 Simulation Results

The cross-sectional medians and the 5% and 95% cross-sectional percentiles of the 

estimated regression functions β(t) and γ(t) from PR are given in Figure 1 for the functional 

hurdle model at n = 200 sparse design. The medians from PCR are also given. For PR, the 

median regression function estimates track the true regression functions. The (median) PCR 

estimates deviate more from the true regression functions relative to the proposed estimates.

The performance of the two methods with respect to the relative mean squared deviation 

error (ME) are summarized in more details in Tables 1, 2 and 3 from the generalized 

functional linear model, functional hurdle and functional ZIP models, respectively. More 

specifically, the median, 25% and 75% percentiles of ME are provided for PR and PCR over 

all three simulation cases (generalized functional linear model, functional hurdle model and 

functional ZIP model). There are several conclusions that can be drawn. First, the proposed 

PR method provides considerable efficiency gains over the standard PCR in all simulations 

and consistently for each sample size and design setting, especially for the regression 

functions β(t) and γ(t) compared to other constant model parameters β0, α, γ0 and ζ. The gain 

of the proposed approach over PCR is most substantial in estimation of the binary part of the 

functional ZIP model; ME for the constant model parameters are large for PCR. Poor 

relative performance of PCR is due to its sensitivity to the number of principal components 

selected, since it does not include any regularization, unlike PR. As Goldsmith et al. [20] 

also point out, the few principal components used in applications of the PCR method may be 

a poor basis choice for the regression functions if they do not lie in the space spanned by the 

relatively few principal components. This is also displayed in Figure 1 where the linear and 

quadratic underlying regression functions are not represented well by the lower dimensional 

estimated sinusoidal principal components functions. As expected ME becomes smaller for 

denser designs and for larger sample sizes.

5 Application to Data from the Comprehensive Dialysis Study

The Comprehensive Dialysis Study [7] is a prospective cohort study of end-stage renal 

disease patients where longitudinal serum samples within the first two years of dialysis were 

collected on 266 patients who newly initiated dialysis in the US between 2005 and 2007. To 

illustrate the proposed methods, we model hospitalization counts within the first two years 

of dialysis as a function of serum albumin concentrations, which is a sparsely sampled 

longitudinal predictor process. Baseline covariates of interest include age at the initiation of 
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dialysis, gender, body mass index and comorbidities (diabetes, peripheral vascular disease 

and congestive heart failure). Hospitalization data on CDS study participants were obtained 

from United States Renal Data System (USRDS). For our modeling, we used serum albumin 

concentrations and the number of hospitalizations between 100 and 550 days after the 

initiation of dialysis, since the minimum time to first serum collection was approximately 

3.4 months and most serum measurements were collected between [100, 550] days after the 

initiation of dialysis. Hence the analysis cohort consists of 228 patients, where the number 

of longitudinal serum albumin concentration measurements range from 1 to 5 per subject 

and the number of hospitalizations range from 0 to 16 with 53% zeros. We choose to focus 

on the functional hurdle model for the CDS data since all patients are conceptually at some 

positive risk of hospitalization and it is difficult to conceptualize a subpopulation of dialysis 

patients from a “perfect state” who have no chance of being hospitalized. We use the 

proposed functional hurdle model to jointly model the binary process of having zero vs. a 

positive number of hospitalizations and the number/count of hospitalizations for those 

patients who have at least one hospitalization.

Longitudinal albumin trajectories are given in Figure 2 (c), where there seems to be no 

substantive trend in time for the mean albumin concentration. Estimated regression 

coefficients from the functional hurdle model PR fit are given in Table 4 and estimated 

regression functions from both the binary and zero-truncated Poisson parts are displayed in 

Figure 3, along with ±2 bootstrap error bands. One functional principal component 

explaining 95.3% of the variation is selected in the reconstruction step. The regularization 

parameters δ1 and δ2 for the binary and zero-truncated Poisson parts are chosen to be 1.5 

and .5, respectively, by multi-fold cross-validation. Bootstrap error bands are reported based 

on 200 bootstrap samples generated via resampling from subjects with replacement and 

using the same regularization parameters as selected in the original data set.

Among the cross-sectional covariates, baseline age at the initiation of dialysis is the only 

variable with an all positive error band for the binary process of having zero vs. a positive 

number of hospitalization(s). Older patients at the initiation of dialysis have a trending 

association with a higher probability of having a positive count of hospitalizations. Error 

bands for the regression function for effects of longitudinal albumin concentrations have 

sections that are away from zero for the binary process, but not on the zero-truncated 

Poisson process of the positive number of hospitalization counts. We note that although the 

CDS data provide a clear conceptual illustration of proposed methods, the sample size in the 

CDS study is a limitation for especially highlighting associations with multiple 

comorbidities, where the zero-truncated Poisson part of the hurdle model is fitted with even 

a smaller sample size (about half of the original sample size) since it considers only those 

patients with a positive hospitalization count. Nevertheless, the functional hurdle model still 

highlights trending associations with the binary part of the model. These associations are not 

detected with a Poisson functional linear model fit to the data (results are omitted). Figure 2 

(a) and (b) display the distributions of the linear predictor (ηi) from the binary part of the 

functional hurdle model fit and average albumin concentration levels respectively, for 

patients with (front) and without (back) a positive count of hospitalizations. The proposed 

functional hurdle model provides a mild separation for the two cohorts of patients with and 
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without hospitalizations, where lower average albumin concentrations are associated with a 

higher probability of having at least one hospitalization. This is consistent with prior studies 

associating lower serum albumin levels with a decline in glomerular filtration rate, a marker 

for advancing renal failure ([34]).

Results from the functional hurdle model are also consistent with cross-sectional model fits 

to the data, summarized in Table 5, where a cross-sectional hurdle model is used to regress 

the number of hospitalizations on albumin levels averaged throughout the entire study 

period along with baseline age, gender, body mass index and comorbidities. Age and 

average albumin levels are found significant for the binary process but not in the zero-

truncated Poisson part supporting the results from the functional hurdle model. Congestive 

heart failure is also found to be significantly associated with a higher probability of having 

at least one hospitalization in the cross-sectional hurdle model. Even though the functional 

and cross-sectional hurdle models agree on the major trends in the data, the functional 

hurdle model provides further insights to the relative associations of albumin concentrations 

from different time periods after initiation of dialysis with the probability of having at least 

one hospitalization. Note that even with the large bootstrap error bands, mainly due to small 

sample size, the decreasing trend in the estimated regression function β(t) in the binary part 

of the functional hurdle model (Figure 3 (a)) suggests stronger associations with albumin 

concentrations when patients have been on dialysis for a longer period of time and a higher 

probability of having at least one hospitalization within two years of dialysis initiation. This 

illustrates an important feature of the functional hurdle or ZIP models; they offer additional 

insights over their cross-sectional counterparts through the regression functions that 

highlight time regions in the support of the predictor process that are associated with the 

binary and count parts of the models.

Finally note that in the current analysis, the hospitalization count (response) and albumin 

concentrations (functional predictor) are obtained over the same time domain. This is 

because most hospitalizations occur during the first 2 years after the initiation of dialysis and 

in our application the functional predictor is also recorded over this same time period. Hence 

regression relations should be strictly interpreted as an association. However, our proposed 

model may be applied to clinical data where the predictor domain (time period) precedes the 

time period where the counts (outcome) are measured. For example other studies may 

consider the association between functional markers/predictors of hospitalization (whether 

using serum albumin, a marker of kidney function or C-reactive protein, a marker of 

inflammation etc.) in the year prior to dialysis/ESRD with hospitalization counts within two 

years after initiation of dialysis in Chronic Kidney Disease (CKD) stage 3 and 4 patients. 

Such results would be informative to explore clinical functional predictors/markers during 

CKD management that potentially may be associated with future reduced hospitalization 

risk (e.g., during the first 1–2 years of dialysis).

6 Discussion

Functional hurdle and ZIP models are proposed as extensions of generalized functional 

linear models for modeling mixture distributions of counts with excess zeros. The proposed 

models retain interpretations of a functional linear model through the functional regression 
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coefficients over their cross-sectional hurdle and ZIP counterparts, while accommodating a 

mixture distribution for the response with excess zeros. The proposed estimation approach 

PR, as well as the extension of the standard PCR approach considered are all designed to 

handle sparse longitudinal data observed with measurement error. This is due to the 

functional principal components decompositions utilized in both algorithms that pool 

information across all subjects in addressing sparsity issues and use smoothing to adjust for 

measurement error ([6], [24], [22], [33]). While functional principal components analysis 

provides a parsimonious framework in the analysis of a single functional process, in 

regression contexts PCR may not provide adequate representation of the regression 

functions of interest especially when they do not lie in the lower dimensional space spanned 

by the few principal components selected in applications. Instead, the proposed approach 

that uses larger numbers of basis functions coupled with penalization leads to substantial 

improvements in efficiency. These current findings are consistent with prior discussion in 

the literature in the context of generalized functional linear models ([20]).

Note that we also explored a second estimation approach, called dual penalized expansion 

(DPE) which relies on similar ideas as used in the approach by Goldsmith et al. [20] of 

decoupling the basis expansions of the predictor process and the regression coefficient 

function; that is, separate basis functions, namely, functional principal components basis and 

spline basis, are used in the expansions, respectively. Since DPE yielded very similar finite 

sample properties to the proposed approach, we now defer the development of DPE to our 

online supporting information file. Supporting information documentation also contains 

comparisons between finite sample performance of PR, PCR and DPE via simulations.

Goldsmith et al. ([35]) point to two separate sources of uncertainty in analysis of functional 

trajectories, the model-based uncertainty and uncertainty in the functional principal 

components decomposition. The bootstrap confidence intervals account for the uncertainty 

in the functional principal components decomposition but do not account for the model-

based uncertainty. Goldsmith et al. ([35]) are able to combine these two sources of 

uncertainty using iterated expectation and variance formulas in the context of forming 

prediction/confidence intervals for subject-specific curves based on a single functional 

process. Extensions to build valid inference procedures for the mean or regression functions 

in a functional regression model and the proposed functional ZIP and hurdle models and 

studying their finite sample properties are open problems.

Another important direction for future research is functional regression modeling with 

follow-up data truncated by death. Truncation by death is common in studies on geriatric 

populations; the loss of person-days due to truncation by death is about 5.03% of the total 

follow-up time for all patients in the CDS. Prior studies proposed careful analysis of targets 

of inference for longitudinal data truncated by death in the context of generalized linear 

models ([36], [37]) and generalized varying coefficient models ([38]); extensions of these 

work to functional regression is an important open problem. Finally our current work 

develops in great detail models for a single longitudinal predictor. Extensions to multiple 

longitudinal predictors would utilize similar ideas of dimension reduction and penalization. 

For identifiability issues in cases of higher dimensional longitudinal predictors, we refer 

readers to the recent work of Scheipl and Greven [39].
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Refer to Web version on PubMed Central for supplementary material.
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Appendix

Independent (separate) preliminary simulation studies were carried out to select the optimal 

regularization parameters for PR used for the main simulation studies of Section 4. Median d 

values minimizing CV error (10) across multiple runs for the generalized functional linear 

Şentürk et al. Page 17

Stat Med. Author manuscript; available in PMC 2014 November 30.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



model fits is 0.01 for both the sparse and denser designs at n = 200 and n = 400. The 

selected (δ1, δ2) regularization pairs for the functional hurdle model fits in the sparse design 

are (.1, .05) and (.05, .05), and they are (.075, .05) and (.05, .05) for the denser design at n = 

200 and n = 400, respectively. For the functional ZIP model, the values in the sparse and 

denser designs are both (.1, .05) for n = 200; they are (.1, .075) and (.1, .05) for n = 400.
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Figure 1. 
The cross-sectional medians (thick gray) and the 5% and 95% cross-sectional percentiles 

(dotted) of the estimated regression functions (a) β(t) and (b) γ(t) (solid) from PR over 200 

simulation runs for the functional hurdle model at n = 200 sparse design. Medians from PCR 

(dashed) are also given.
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Figure 2. 
(a) Histogram of the linear predictor ηi for patients who had no hospitalization (back in 

pink) and for patients who had a positive count of hospitalizations (front in purple), (b) 

histogram of average albumin level in the observation period for patients who had no 

hospitalization (back in pink) and for patients who had a positive count of hospitalizations 

(front in purple), (c) observed individual trajectories (dashed) and the smoothed estimate of 

the cross-sectional mean functions (thick solid) for longitudinal albumin concentrations.
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Figure 3. 
Estimated regression functions from the (a) binary and (b) zero-truncated Poisson parts of 

the functional hurdle model displaying the effects of albumin concentration on 

hospitalization counts. ±2 bootstrap error bands are given dashed, while a horizontal line at 

zero is given in gray for ease of interpretation.
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Table 5
Cross-sectional hurdle model results

Fitted values from a cross-sectional hurdle model for number of hospitalizations along with p-values for their 

significance. Model fits contain the average albumin values throughout the study (Avg-alb).

Binary Zero-truncated Poisson

Variable Estimate P-value Estimate P-value

Intercept 1.866 0.291 1.385 0.010

Age 0.029 0.012 −0.002 0.636

Body mass index −0.004 0.829 0.001 0.860

Diabetes 0.198 0.541 −0.069 0.489

Peripheral vascular disease 0.260 0.431 −0.079 0.458

Congestive heart failure 0.720 0.034 −0.162 0.146

Gender −0.509 0.088 −0.022 0.809

Avg-alb −1.087 0.007 −0.063 0.594

Stat Med. Author manuscript; available in PMC 2014 November 30.




