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Over the past 20 years, very few agents have been approved for the treatment of brain tumors. Recent studies have highlighted some
of the challenges in assessing activity in novel agents for the treatment of brain tumors. This paper reviews some of the key challenges
related to assessment of tumor response to therapy in adult high-grade gliomas and discusses the strengths and limitations of im-
aging-based endpoints. Although overall survival is considered the “gold standard” endpoint in the field of oncology, progression-free
survival and response rate are endpoints that hold great value in neuro-oncology. Particular focus is given to advancements made
since the January 2006 Brain Tumor Endpoints Workshop, including the development of Response Assessment in Neuro-Oncology
criteria, the value of T2/fluid-attenuated inversion recovery, use of objective response rates and progression-free survival in clinical

trials, and the evaluation of pseudoprogression, pseudoresponse, and inflammatory response in radiographic images.

Keywords: clinical trials, endpoints, MRI, RANO, response assessment.

Need for Radiographic Measures of Tumor
Response to Therapy

Approximately 327 000 new primary brain or CNS tumors are di-
agnosed each year in the United States, which constitutes ~21
people per 100 000.! Of these newly diagnosed tumors, ~28%
are gliomas, which constitute 80% of all malignant tumors." Glio-
blastoma multiforme (GBM), the most common and aggressive
type of glioma, is the focal point in this document for 2 reasons.
First, it is the most commmon and aggressive form of malignant gli-
oma, accounting for 54% of all gliomas and 45% of all malignant
primary brain and CNS tumors,* thus it is a high priority area for
therapeutic development. Second, GBM is one of the most com-
plex, adaptive, and drug-resistant brain tumors. Therefore, im-
provements to drug development and measurement of tumor
response to therapy in GBM may provide added benefits to
other types of brain tumors.

GBM carries a dismal prognosis, with a median survival of
around 14 months,? and fewer than 10% of patients survive be-
yond 5 years after diagnosis.> Despite the modest increase in sur-
vival observed with the addition of temozolomide to radiotherapy,

this dismal prognosis has not changed substantially in the past 30
years. Currently, the standard of care for newly diagnosed GBM pa-
tients consists of maximum safe surgical resection, followed by ra-
diotherapy plus concomitant and adjuvant temozolomide. At
recurrence, however, very few therapeutic options exist. A careful
review of the clinical trials from 2006-2012 involving recurrent
GBM has shown that only a minority of patients are eligible for a
second surgery or reirradiation. At relapse, temozolomide-
pretreated patients show progression-free survival (PFS) rates at 6
months of 20%-30% with nitrosoureas, temozolomide rechal-
lenge, or bevacizumab.* Thus, there is an urgent need for drug de-
velopment in the setting of recurrent GBM.

Although overall survival (OS) is considered the gold standard
for determining whether a cancer treatment is effective, in cer-
tain situations OS may not directly reflect the impact of a specific
regimen because of potential confounding effects of prognostic
factors, additional therapies, and other factors. Therefore, PFS
and in particular response rate (RR) are considered valuable end-
points for isolating the relative value of a given treatment.” Deter-
mining response and progression using surrogate measures of
tumor burden, however, suffers from issues associated with
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imaging characteristics (enhancement), measurement variability,
false positives, and discordance in radiographic interpretation be-
tween observers.® Therefore, there is a need for refinement of re-
sponse assessment in neuro-oncology with the objective of
minimizing intrinsic errors and enhancing the accuracy of predict-
ing true response to a particular therapy.

Brief History of Glioma Response Assessment

MRI used with the addition of contrast agents that shorten T1 re-
laxation time constants is the standard for detection, delineation,
and response assessment of brain tumors. Using this approach,
the tumor region becomes bright on T1-weighted images due
to the passing of contrast agent out of abnormal vasculature,
through the blood-brain barrier, and into the extracellular
space.” Thus, regions of hyperintensity (brightness) on post-
contrast T1-weighted images are thought to reflect the most ag-
gressive portion of the tumor, which has subsequently been
confirmed with biopsy observations.®®

The response criteria proposed by Macdonald and colleagues™®
in 1990 attempted to improve upon earlier response assessments,
including the Levin criteria®* and the World Health Organization
systemic oncology response criteria, which used bidirectional mea-
surements,'? by accounting for corticosteroid use and changes in
neurologic status. Similar to its predecessors and the Response
Evaluation Criteria in Solid Tumors (RECIST),*® the “Macdonald crite-
ria” used measurements of contrast-enhancing tumor burden to
determine tumor response and progression, categorizing response
into 4 categories: complete response, partial response, stable dis-
ease, and progressive disease. For nearly 20 years the Macdonald
criterig, based on contrast enhancement as a surrogate of tumor
burden, were used for the evaluation of new therapies. The Mac-
donald criteria were effectively used for the approval of temozolo-
mide in recurrent anaplastic astrocytoma, where there was a
response rate of 35% (8% complete response, 27% partial re-
sponse) in a single-arm trial. The Macdonald criteria also allowed
for the identification of the chemotherapy responsiveness of ana-
plastic oligodendroglioma, which was subsequently confirmed in
0S benefit in phase III trials.***

In an effort to acknowledge the need for new agents to treat
brain tumors and to address methodological challenges associat-
ed with brain tumor clinical trial design, the FDA cosponsored a
public workshop on brain tumor clinical trial endpoints with the
American Association for Cancer Research and the American So-
ciety of Clinical Oncology in January 2006. This workshop focused
on clinical trial endpoints intended to support the approval of new
drugs for brain cancer and sought debate on the analytic validity
of the instrument (eg, imaging or patient-reported outcomes)
and on how well individual endpoints reflect clinical benefit. Sev-
eral issues were discussed and conclusions made:

(1) Objective response: Objective response rates can be reliably
assessed in single-arm studies, but the magnitude of re-
sponse is important given interreviewer variability.

(2) Time to event endpoints (PFS): Need to be evaluated within
randomized studies. Future consideration would be given to
a landmark-based PFS (ie, 6-mo PFS) if it could be established
as areliable surrogate endpoint, or one that is reasonably like-
ly to predict clinical benefit.

What Is New Since 2006 and What Is the
Status of Brain Tumor Imaging Today?

Over the last 10 years, the routine implementation of newer im-
aging techniques, including T2-weighted fluid-attenuated inver-
sion recovery (FLAIR) MRL'®” which allows for better
visualization of vasogenic edema, surgical and radiation-induced
gliosis and infiltrating tumor, and new therapies that drastically
change vascular permeability (eg, anti-angiogenic agents and
immunotherapies) resulted in the need to evolve the Macdonald
response criteria."®'° The largest differences between these new,
evolving response criteria and the standard Macdonald criteria re-
volve mainly around the identification of nonenhancing, infiltra-
tive tumor.”® Although contrast-enhancing tumor is thought to
represent the most aggressive portion of the tumor,®? and a
large percentage of high-grade gliomas have a significant en-
hancing component,®! these tumors are known to contain pro-
portions of both neovascularized and infiltrative tumor,???* and
the relative proportions are thought to reflect different biological
phenotypes.?>?*?° In addition to containing nonenhancing
tumor at presentation, a substantial proportion of treated tumors
can have nonenhancing tumor progression,?%2° and progression
of nonenhancing tumor can lead to neurologic decline. These is-
sues, combined with the high incidence of “pseudoresponse” dur-
ing anti-angiogenic therapy, drove the need for reevaluation of
the response criteria in neuro-oncology. The inclusion of evaluat-
ing nonenhancing parts of the tumor would be particularly valu-
able if overall tumor burden (and ultimately patient benefit)
would improve prediction of overall outcome better than changes
in contrast enhancement. In 2010, the Response Assessment in
Neuro-Oncology (RANO) criteria were developed®’ to comprehen-
sively reform the Macdonald criteria using the evolving principles
and conditions outlined in previous work.'®#~2° Although one of
the main changes was the inclusion of the evaluation of nonen-
hancing tumor progression, RANO also attempted to correct a
number of deficiencies in the Macdonald criteria. These included
definitions of measurable and nonmeasurable disease, defini-
tions of progression for patients being considered for enrollment
into clinical trials, recommendations to address pseudoprogres-
sion (PsP) and pseudoresponse, the requirement of confirmatory
scans for response, and recommendations for dealing with pa-
tients with equivocal imaging changes. The details of the current
RANO criteria and other modifications to RANO are now well doc-
umented in various review articles.?®~>* Importantly, inherent
within RANO is the ability to be fluid and adjust the criteria to
new and evolving data.

Anti-angiogenic Therapy, Pseudoresponse, and
Infiltrative Tumor Recurrence

Clinical studies examining the efficacy of anti-angiogenic agents
in patients with GBM note a dramatic reduction in the amount of
contrast enhancement,®~“* translating into very high response
rates with bevacizumab (28%-38%,“ 63%,“® and 57%"’) and
cediranib** (~50%) compared with response rates of 10% or
less using irinotecan at recurrence.*®~>! These response rates
tend to translate into prolonged PFS but into only a modest chan-
ge in OS compared with historical series.***> It was hypothesized
that this was due to the use of the Macdonald response criteria,
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which are based primarily on change in contrast enhancement
and not on change in actual tumor size assessment. Therefore,
the phenomenon of pseudoresponse,” in which contrast agent
uptake is reduced due to changes in vascular permeability inde-
pendent of antitumor effect, potentially represents a significant
limitation for early response assessment of anti-angiogenic treat-
ments in recurrent GBM. The awareness of this phenomenon is
also the reason for the need to control steroid dose when calling
response or progression.

In addition to increased response rates, studies examining
tumor relapse/progression while on anti-angiogenic agents note
a tendency for growth of nonenhancing, infiltrative tumor prior to
emergence or increase of contrast enhancement.>® Approximately
30%-40% of patients are estimated to experience nonenhancing
tumor progression prior to changes in contrast enhancement.?® In
one study 40% of patients treated with bevacizumab experienced
nonenhancing tumor progression, including a subgroup of 21% of
patients with circumscribed T2 progression who had an especially
poor median survival of 5 months, comparable to patients who
never responded to bevacizumab.>*

This observation is further supported by preclinical®* and clin-
ical®>~>’ evidence showing that escape from anti-angiogenic
therapy results in tumor invasion into normal brain and upregu-
lation of genes associated with invasion, including those associ-
ated with metalloproteinases and insulin-like growth factor
binding protein-2. Utilizing a modified Macdonald criteria that in-
tegrated qualitative changes in nonenhancing tumor into the re-
sponse criteria, the BRAIN study (AVF3708g) provided response
rate data,*>>® confirmed in NCI06-C-0064E,*> which led to the
accelerated approval of bevacizumab for recurrent/progressive
glioblastoma. Additionally in the BRAIN study, independent radi-
ology review of objective response utilizing modified Macdonald
criteria incorporating change in nonenhancing tumor was similar
to the determination by an independent radiologic evaluation by
the FDA: 28.2% versus 25.9% (Table 2). These observations
helped consolidate incorporation of a definition for nonenhancing
tumor progression into the current RANO criteria. This was, how-
ever, inserted as a qualitative change, without a quantitative
threshold for progressive disease or partial response because of
the often complex irregular shape of T2/FLAIR abnormalities
making routine measurement an issue.

Clinical and Biological Evidence for Incorporating
FLAIR Into RANO

Currently, accurate assessment of nonenhancing tumor burden
and tumor progression is the most difficult, time-consuming,
and expensive portion of RANO evaluation, even though this is
to be rated on a subjective scale. While evaluation of nonenhanc-
ing tumor burden has been incorporated into a number of regis-
tration trials, there remains debate as to whether it provides
added value. A bevacizumab-irinotecan study reported by Gal-
lego Perez-Larraya et al?® indicated that RECIST, Macdonald,
and RANO had similar estimates of response rate. Also, despite
1/3 of patients experiencing nonenhancing tumor progression
during stable or improved contrast enhancement,?® there was
no significant difference in PFS (RANO median PFS ¥%11.7 wk com-
pared with Macdonald PFS % 12.7 wk). Regardless, incorporation
of nonenhancing tumor progression did not translate into a sig-
nificant difference in PFS, and all measures of PFS (including

those based on T1 with contrast) were shown to correlate with
0S.2 Similar findings were recently reported by Schaub et al*®
in a small study of 26 patients showing that recurrence of nonen-
hancing tumor did not necessarily predict shorter survival. Addi-
tionally, a recent study by Radbruch et al®® showed that ~24% of
their 144 patients had T2 recurrence that preceded recurrence via
contrast enhancement when T2 progression was defined as
. 15% increase in bidirectional measurements on T2-weighted
images. Of these patients, 62% had contrast enhancement on
the subsequent follow-up.®®

Consistent with the hypotheses that T2/FLAIR progression is of
limited value to predict patient benefit and that early measures of
tumor progression via contrast enhancement are still a surrogate
of survival even in the presence of anti-angiogenic therapy, recent
results from ACRIN-6677/RTOG-0625, a prospective, randomized,
phase II multicenter trial by Boxerman et al®! compared bevaci-
zumab with either irinotecan or temozolomide treatment in re-
current GBM. This study demonstrated that response rate at 8
and 16 weeks measured using the Macdonald criteria or 3D en-
hancing volumes using a central reader paradigm predicted 0S
in recurrent GBM treated with bevacizumab, whereas T2/FLAIR
progression rates alone did not predict 0S.5?

Preliminary results from Huang et al®? using the BRAIN trial
dataset with 160 evaluable patients showed that the RANO crite-
ria reduced median PFS by an average of 1.3 months (5.52 mo
with Macdonald; 4.21 mo with RANO; log-rank, P¥.0423) but
produced no significant difference in overall RR. Tumor progres-
sion by Macdonald and RANO at 2, 4, and 6 months predicted
0OS, but the difference between the 2 criteria was not statistically
significant.

Itis not clear whether any observed differences in PFS between
Macdonald and RANO criteria may account for very different pa-
tient reported outcomes and neuropsychological testing data
from the 2 phase III trials evaluating the role of bevacizumab
in newly diagnosed GBM, AVAglio and RTOG-0825. One potential
explanation for the decline in patient reported outcomes and
neuropsychological function observed in patients enrolled in
RTOG-0825, but not in AVAglio, may be that RTOG-0825 did not
include assessment of nonenhancing progression, allowing pa-
tients to stay on study longer while they were in fact progressing.
Evaluation of the RTOG and other datasets using RANO should
help determine the potential utility of nonenhancing tumor pro-
gression as a measure of a clinically relevant change in neurologic
functioning. If true, this would support the evaluation of T2/FLAIR
images as part of outcome assessment.

Biologically, there is some preclinical and clinical evidence to
suggest that anti-angiogenic therapy results in a more “infiltrative
phenotype”*~>7; however, other studies have compelling evi-
dence to suggest that this is not unique to anti-angiogenic ther-

63-65 and hypothesize that this is an inherent phenotype to
the tumor that exists prior to anti-angiogenic therapy, and/or
this phenotype may be relatively common among recurrent
GBM regardless of therapy. Additionally, studies examining pre-
clinical response to anti-angiogenic therapy have tangentially
noted that prolonged therapy eventually results in reactivation
of angiogenesis through upregulation of pro-angiogenic path-
ways or autocrine vascular endothelial growth factor signaling.>*
In summary, the literature suggests that progression may be first
via nonenhancing tumor, but tumors will eventually relapse on
anti-angiogenic therapy and manifest as an increase in contrast
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enhancement. Nonenhancing tumor may become apparent prior
to changes in contrast enhancement in an individual patient, but
this lag is only ~1 to 2 months on average. There remains signi-
ficant debate in the field regarding whether this contributes to a
substantial difference in PFS, whether it should be evaluated as
part of the standard imaging criteria moving forward, and what
criteria (improved correlation with 0S?) should be used to decide
on that issue.

Treatment-Related Changes, the Inflammatory
Response, and Pseudoprogression

During cytotoxic or radiation therapy, damage to epithelial
cells®®” and local tissue inflammation are believed to result in
edema and abnormal vessel permeability, which in turn can
cause an increase in edema on T2-weighted images and/or
new or increased contrast enhancement on MRI or CT.%%77° This
process of treatment-related early increases in contrast enhance-
ment mimicking tumor progression (ie, PsP) can be defined as
subacute radiographic changes mimicking tumor progression,
but in retrospect is likely associated with tissue damage, remod-
eling, and/or inflammatory response. Although the precise mech-
anisms of radiation-induced CNS changes are not completely
understood to date and are quite complex,”! many consider
PsP to represent a part of a continuum of treatment-related
changes ranging from early subacute inflammation to frank
radionecrosis that typically occurs only months after the end of
radiotherapy.®® This hypothesis is supported by a study by Cham-
berlain et al’? in which 7 of 15 patients (51%) who went to sur-
gery after recurring prior to 6 months following radiotherapy were
shown to have histopathological signs of radiation necrosis with
no evidence of tumor. Described as early as the early 1990s by
Fiegler et al,®® Watne et al,”® and Griebel et al,”® differentiation
of PsP from true tumor progression continues to be one of the
major diagnostic challenges in the response assessment of ma-
lignant gliomas. It also has implications for treatment at relapse,
in which the resolution of PsP may suggest activity of inactive
agents.”*

The true incidence of PsP during standard therapy with radia-
tion/temozolomide is unclear. This limitation is primarily due to
the small number of studies on PsP, along with the small number
of patients evaluated in these studies. Further, the definition of
early progression and PsP are highly variable across studies, and
there is an increasing tendency to treat patients at the first signs
of radiographic progression, leading to increasing difficulty in ver-
ifying whether PsP has indeed occurred. Studies have estimated
the occurrence of PsP to range anywhere from 3% to 35% in pa-
tients treated with radiochemotherapy’?7“~8° (Table 1).”° The
rate of PsP incidence is believed to increase with increasing radi-
ation dose and timing®® and the addition of concurrent chemo-
therapy.”®’” In one of the first well-designed systematic studies
involving PsP, de Wit and colleagues’* described a 9% incidence
of PsP in patients with malignant gliomas treated with radiation
only as part of a phase III clinical trial. This is consistent with a
large retrospective evaluation by Ruben et al,®” which noted inci-
dences of radiation necrosis of 2.9%, 5.1%, 9.3%, and 13.3% at 6,
12, 24, and 36 months, respectively, after radiotherapy in 352 gli-
oma patients. However, in a study by Taal et al”” examining radi-
ation therapy with the addition of temozolomide, the incidence
of PsP was estimated at around 21% of patients. This higher

proportion of PsP in patients treated with radiochemotherapy
was also verified by a large study by Brandes et al’® involving
103 patients, ~31% of whom showed characteristics of PsP.

Advanced imaging techniques have shown some promise in
differentiating PsP from true tumor recurrence in recurrent malig-
nant gliomas. For example, studies have shown that relative cere-
bral blood volume estimated using dynamic susceptibility
contrast perfusion MRI is elevated in tumor progression com-
pared with PsP.88~91 However, the particular threshold recom-
mended for best stratification varies widely (from 0.71 to 2.6)
and appears highly dependent on acquisition parameters, post-
processing, and how the measurements are performed (eg,
spherical regions of interest vs contoured enhancing tumor).
Additionally, PET imaging of neutral amino acids including
[*1C-methyl]-methionine (**C-MET), L-1-[*'C]-tyrosine (*'C-TYR),
0-(2-[*®F]-fluoroethyl)-L-tyrosine (*8F-FET), and 3,4-dihydroxy-
6-['8F]-fluoro-L-phenylalanine (*®F-FDOPA) has shown the ability
to identify treatment-related changes from tumor growth.? Al-
though this is promising, large trials with standardized image ac-
quisition are necessary to properly verify the added value of
advanced imaging in terms of differentiating PsP from recurrent
disease.

Conclusions

In general, changes in contrast enhancement follow change in
tumor burden in recurrent glioblastoma, with a few exceptions.
First, contrast enhancement is altered by changes in corticoste-
roid dose. This is mitigated by the RANO requirements for stable
steroid dosage at baseline and limiting objective response deter-
mination if steroid dose is increased. Second, increased contrast
uptake on scans obtained during the first 12 weeks postradiother-
apy may reflect only treatment-related changes, reducing the
ability for contrast enhancement to serve as an accurate surro-
gate for tumor burden in this situation. This is mitigated by the
RANO requirement that limits enrollment of patients into recur-
rent studies who have progressive lesions 12 weeks or later
following external beam radiotherapy. (Important to note, how-
ever, is that several studies have suggested that PsP can occur
several months after the end of radiotherapy. Hence, this criteria
does not fully mitigate PsP as a potential confounding factor.)
Third, the RANO criteria require that durable response be demon-
strated on subsequent MRI scans in order to identify true re-
sponse from a transient permeability effect. Lastly, the use of
agents that directly impact vascular permeability (eg, anti-
vascular endothelial growth factor therapies) may also reduce
the accuracy of contrast enhancement as a surrogate for tumor
burden in recurrent glioblastoma. This is currently mitigated by
the RANO requirement of nonenhancing tumor evaluation; how-
ever, it is conceivable that the overall RR threshold for determin-
ing success may need to be adjusted for these agents.
Additionally, there is significant uncertainty regarding the
value of nonenhancing tumor assessment via T2/FLAIR images
in recurrent glioblastoma. While 30%-40% of tumors initially
develop nonenhancing tumor after anti-vascular endothelial
growth factor therapies, most tumors subsequently develop en-
hancing disease that may be more easily measured. Currently,
quantitative evaluation of nonenhancing tumor is not performed,
leading to concerns regarding the reproducibility of determining
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nonenhancing tumor progression with no specific guidelines.
Evaluation of nonenhancing tumor remains intuitively meaning-
ful; however, there is little evidence in the current literature to
support the added value of nonenhancing tumor assessment.
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