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Word Embedding Distance Does not Predict Word Reading Time
Stefan L. Frank (s.frank@let.ru.nl)

Centre for Language Studies, Radboud University
P.O. Box 9103, 6500 HD Nijmegen, The Netherlands

Abstract

It has been claimed that larger semantic distance between the
words of a sentence, as quantified by a distributional seman-
tics model, increases both N400 size and word-reading time.
The current study shows that the reading-time effect disap-
pears when word surprisal is factored out, suggesting that the
earlier findings were caused by a confound between semantic
distance and surprisal. This absence of a behavioural effect
of semantic distance (in the presence of a strong neurophysi-
ological effect) may be due to methodological differences be-
tween eye-tracking and EEG experiments, but it can also be
interpreted as evidence that eye movements are optimized for
reading efficiency.

Keywords: reading; eye tracking; N400; distributional seman-
tics; semantic distance; word surprisal

Introduction
An open question in the study of human language process-
ing is to what extent mere semantic similarity among words
within a sentence or text affects the comprehension process.
Results from controlled experiments are inconclusive. On the
one hand, there is ample evidence for effects on the N400
event-related brain potential (ERP) component: Reading a
word that is semantically related to words in the preced-
ing context decreases N400 size, relative to when the con-
text words are not meaning related (Camblin, Gordon, &
Swaab, 2007; Metusalem et al., 2012; Paczynski & Kuper-
berg, 2012). A number of behavioural experiments, however,
failed to find corresponding effects on word-reading time
(Gordon, Hendrick, Johnson, & Lee, 2006; Traxler, Foss,
Seely, Kaup, & Morris, 2000). In contrast, two studies that
analysed reading times on naturalistic texts (instead of tak-
ing a controlled experimental approach) did find that words
are read faster when they have stronger semantic relatedness
to earlier words in the text (Mitchell, Lapata, Demberg, &
Keller, 2010; Pynte, New, & Kennedy, 2008). In those stud-
ies, semantic relatedness measures were obtained from a dis-
tributional semantics model, which assigns numerical vectors
to words on the basis of the words’ co-occurrence patterns in
large text corpora. These vector representations are known as
word embeddings in the computational linguistics literature.
Words that tends to occur in similar contexts receive simi-
lar embeddings. Consequently, distances between the words’
embedding vectors correspond to semantic distances between
the corresponding words.

If semantically related words tend to co-occur, a word’s
occurrence can (to some extent) be predicted from the pres-
ence of related words. Consequently, if one wants to claim
that the reading process on word wt is affected by the word’s
semantic relatedness to the preceding words (w1, . . . ,wt−1),
it is crucial to factor out any effect of the predictability of

wt from its previous context. Otherwise, apparent effects of
relatedness could in fact be due to word predictability in-
stead. Frank and Willems (in press) recently showed that
N400 effects of semantic distance (as quantified by a dis-
tributional semantics model) remain when factoring out the
words’ (un)predictability as quantified by their surprisal (i.e.,
− logP(wt |w1, . . . ,wt−1)), leaving no room for a confound
between predictability and semantic distance. The current
paper will show that the same is not true for reading times:
Effects of semantic similarity on reading times for naturalis-
tic materials, of the type reported by Mitchell et al. (2010) and
Pynte et al. (2008), disappear when surprisal is factored out,
provided that surprisal is computed by a powerful enough lan-
guage model. Hence, semantic similarity between the words
of a sentence or text affects N400 size but not reading time.

Method
Eye-tracking Data
Word-reading times were extracted from two published sets
of eye-tracking data: The UCL corpus (Frank, Monsalve,
Thompson, & Vigliocco, 2013) and the English Dundee cor-
pus (Kennedy & Pynte, 2005). The UCL corpus comprises
data from 42 native English speakers reading 205 individ-
ual sentences sampled from three unpublished novels; the
Dundee corpus has 10 participants reading newspaper editori-
als. Frank and Willems (in press) demonstrated strong N400
effects of semantic distance (over and above the effect of sur-
prisal) for the sentences of the UCL corpus. Mitchell et al.
(2010) reported reading-time effects of semantic distance in
the Dundee data, and similar results by Pynte et al. (2008)
were based on the French part of the Dundee corpus, also
comprising newspaper texts.

Four measures of reading time will be investigated: first-
fixation duration, first-pass duration (the sum of fixation du-
rations on a word before the first fixation on any other word),
right-bounded reading time (the sum of fixation durations on
a word before the first fixation on a later word), and go-past
reading time (the sum of fixations on all words from the first
fixation on the current word until the first fixation on a later
word). These four measures, in this order, have been argued
to reflect increasingly late cognitive processes (Clifton Jr.,
Staub, & Rayner, 2007; Gordon et al., 2006).

Models
Each content word of the UCL and Dundee corpora was as-
signed a measure of semantic distance to preceding content
words, as well as five estimates of word surprisal. The dis-
tributional semantics and surprisal models were trained on
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the first slice of the ENCOW14 web corpus (Schäfer, 2015),
comprising 644.5M word tokens of 2.81M types.

Semantic Distance Word embeddings were generated by
the word2vec skipgram model (Mikolov, Chen, Corrado, &
Dean, 2013), which is basically a feedforward neural net-
work with one hidden layer. The network learns to associate
each input word wt to the k words immediately preceding and
following (i.e., the sequence wt−k, . . . ,wt−1,wt+1, . . . ,wt+k).
After training the network, the vector of connection weights
from each input unit to the 300-unit hidden layer forms the
embedding for the word corresponding to the input unit. The
‘window size’ parameter was set to k = 5 in the current appli-
cation of the model.

As explained in the Introduction, the distance between two
word vectors quantifies the semantic distance between the
two words. A common distance measure used in distribu-
tional semantics is the cosine of the angle between the vec-
tors. Here, we require a measure for the distance between the
current word’s embedding ~wt and its entire previous context
(not just a single word). The vector representing the combi-
nation of content words from the previous context is defined
as simply the sum of the words’ individual vectors. Thus, the
relevant distance measure becomes

semdist(t) =−cos

(
~wt , ∑

w∈At

~w

)
, (1)

where At is a collection of content words that precede wt in
the sentence or text. For the individual sentences of the UCL
corpus, At contains all content words preceding wt in the sen-
tence. For the full texts of the Dundee corpus, At contains the
four content words immediately preceding wt in the text (if
wt is among the text’s first four content words, At will contain
correspondingly fewer words). If At is empty, word wt has
no semantic distance. Semantic distance values on the UCL
corpus were identical to those used by Frank and Willems (in
press) to analyse N400 ERP effects.

Surprisal Word surprisal was computed by n-gram lan-
guage models, which simplify the full conditional probabil-
ity P(wt |w1, . . . ,wt−1) to P(wt |wt−n+1, . . . ,wt−1), that is, only
the n− 1 previous words are taken into account when esti-
mating the occurrence probability of wt . Model order n was
varied from n = 2 to n = 5, and the model was generated by
SRILM (Stolcke, 2002) with modified Kneser-Ney smooth-
ing (Chen & Goodman, 1999).

The semantic distance measure defined above is sensitive
to content words beyond the n−1 previous words that matter
to an n-gram model. If semantic distance correlates with sur-
prisal, this could yield apparent effects of semantic distance
that are in fact due to unpredictability resulting from words
outside of the n-gram window. To control for this, a ‘skip-
bigram’ language model (SBLM) was used to obtain a fifth
set of surprisal values:

Psblm(wt |At) =
1
|At | ∑

wi∈At

P(wt |wi) =
1
|At | ∑

wi∈At

P(wi,wt)

P(wi)
,

with At as defined as in Equation 1 and |At | the number of
words in At . P(wt |wi) denotes the probability that wt occurs
within a distance of 15 words after occurrence of wi. That is,
the preceding content words wi ∈ At are taken as independent
cues to the occurrence of wt , whose skip-bigram probability
is computed by averaging over these individual cues.

The required word-pair probabilities P(wi,wt) are esti-
mated from co-occurrence frequencies in the training corpus,
using the Simple Good-Turing smoothing method (Gale &
Sampson, 1995) to estimate the total probability of all unseen
pairs. This total probability P0 is divided over the unseen
pairs (v,w) in proportion to P(v)P(w), that is, the probability
of each particular unseen pair (v,w) is given by:

P(v,w) =
P0P(v)P(w)

1−∑(v′,w′)∈S P(v′)P(w′)
,

where S is the set of all ordered word pairs observed in the
training data within a 15-word distance from each other.

Relation between semantic distance and surprisal Ta-
ble 1 shows there indeed exists a positive confound between
surprisal and semantic distance, which grows stronger as the
language model is able to use words from further back in the
context.

Frank and Willems (in press) interpolate the 5-gram and
skip-bigram models to minimize average surprisal over the
UCL corpus and show empirically that the semantic distances
do not contain information that can be used to further improve
this interpolated language model. Hence, if the semantic dis-
tances account for variance in human reading difficulty mea-
sures over and above what is already explained by the sur-
prisal values, this cannot be attributed to a confound between
semantic relatedness and predictability but must be due to the
effect of semantic relatedness itself.

Data Analysis
Linear mixed-effects regression models were fitted to the log-
transformed reading times using as covariates: word position
in the sentence, word length (number of characters), word
log-frequency in ENCOW14, and a binary factor indicating
whether or not the previous word was fixated. To account for
the possibility that reading-time effects appear shortly after
the point at which they originate (so-called spillover effects),
the previous word’s length and log-frequency were also in-
cluded. All two-way interactions between these six factors
were also present.

Table 1: Correlation coefficients between semantic distance
and surprisal values.

Language model
Data set 2-gram 3-gram 4-gram 5-gram SBLM
UCL .19 .26 .27 .27 .29
Dundee .05 .18 .20 .21 .26
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The main factor of interest was the word’s semantic dis-
tance measure. Separate analyses were run using the current
and previous word’s semantic distance; the latter capturing
potential spillover.1 In addition to a control condition without
any surprisal measure in the regression, five separate analy-
ses were run including n-gram surprisal with n = 2,3,4,5, or
both 5-gram and SBLM surprisal (always for both the current
and previous word).

Random effects in the regression model were the by-
subject and by-word intercept, and by-subject slopes of se-
mantic distance and any surprisal measure that was included
as a fixed effect.

Regression models were fitted to each of the four reading
time measures from both data sets, making a total of 96 anal-
yses: 4 reading time measures × 2 corpora × 2 semantic dis-
tance measures (of current or previous word) × (5 surprisal
measures + 1 control). Words were excluded from analysis
if they were not fixated, were attached to punctuation, con-
tained any non-letter or more than one capital letter, or were
the first or last word on a line.

Results
Figure 1 displays the estimated regression coefficient (i.e., ef-
fect size) of the semantic distance predictor in each of the
96 fitted regression models. Note that effect sizes cannot
be compared between the analyses investigating the current
versus previous word’s semantic distance. This is because
these analyses apply to different sets of words: All content
words when the current word’s semantic distance is used, but
the words directly following content words (including many
function words) when the previous word’s semantic distance
is the variable under investigation. The same holds for the
estimated regression coefficients of the surprisal predictors,
plotted in Figure 2.2

For the UCL corpus, none of the semantic distance effects
reach statistical significance. For the Dundee corpus, there is
a clear effect of semantic distance in the expected (i.e., pos-
itive) direction when surprisal is not factored out, and it re-
mains present for later reading time measures when surprisal
takes only very local context into account (i.e., under a bi-
gram model).

As is clear from Figure 2, words with higher surprisal take
longer to read, as is well known from the literature (e.g. Mon-
salve, Frank, & Vigliocco, 2012; Smith & Levy, 2013). Sur-
prisal computed by the novel SBLM language model has
an effect over and above 5-gram surprisal, at least for the
Dundee corpus, which means that it is not merely the local,

1If both the current and previous word’s semantic distance had
been included as factors in a single regression model, this would
have greatly reduced the amount of usable data because both adja-
cent words would have to be content words.

2The displayed coefficients for current (previous) surprisal come
from the regression model that includes current (previous) semantic
distance. Consequently, exactly the same set of words was involved
in estimating the coefficients for the surprisal and semantic distance
measures, even though surprisal (unlike semantic distance) is also
defined for function words.

4-word context that is is taken into account when generating
expectations about upcoming words. Rather, long-distance
co-occurrence patterns between content words matter as well.

There are a few noticeable difference between the results
for the UCL and Dundee data sets, which mirror differences
in the text materials of these two corpora. Surprisal effects
appear to be more reliable in the Dundee data, in that the zero
point falls further outside the confidence intervals. This can
simply be explained by the Dundee data set being much larger
than the UCL data set (134,203 versus 18,178 data points).
Interestingly, the UCL corpus results show larger effect sizes
(i.e., larger coefficients) which is probably due to these ma-
terials having been specifically designed for language model
evaluation. Compared to the Dundee corpus texts, the UCL
corpus sentences contain fewer low-frequency words (for
which surprisal is hard to estimate reliably) and can com-
prehended more easily without relying on world knowledge
(which the language models do not incorporate). Finally, the
fact that the SBLM model explained unique variance in read-
ing times from the Dundee corpus only can be explained by
the fact that this corpus consists of full texts as opposed to the
UCL corpus’s individual sentences. Compared to individual
sentences, full texts will contain more content words outside
of the 5-gram window, making the SBLM model more influ-
ential.

Discussion
Results on the Dundee corpus showed significant, positive ef-
fects of semantic distance on all four reading time measures
when surprisal was not taken into account. However, fac-
toring out surprisal as computed by anything more powerful
than a bigram model made the effects of semantic distance
disappear. Apparently, these effects were due to a confound
between semantic distance and surprisal, that is, a word is less
likely to appear if it has weaker semantic relatedness to earlier
words. It was actually a word’s unpredictability, rather than
its semantic content per se, that resulted in increased reading
time.

Indeed, the findings by Pynte et al. (2008) and Mitchell
et al. (2010), on the French and English Dundee corpus, re-
spectively, can be attributed to confounds between semantic
relatedness and predictability. Pynte et al. (2008) did not fac-
tor out surprisal (or even simple transitional probabilities be-
tween words) in their analysis of the effect of semantic dis-
tance. Mitchell and Lapata’s (2009) goal was to show that in-
corporating semantic distance measures from their own ‘sim-
ple semantic space model’ (as well as from a Latent Dirichlet
Allocation Topics model; Griffiths, Steyvers, & Tenenbaum,
2007) reduces perplexity of a combined n-gram and proba-
bilistic phrase-structure grammar. That is, taking these se-
mantic measures into account improves the language model.
Consequently, the improved fit to reading time could be due
merely to more accurate next-word prediction rather than to
semantic similarity per se.

The UCL corpus results showed no effect of semantic dis-
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Figure 1: Regression coefficients (with 95% confidence intervals) of semantic distance predictor, when factoring out different
measures of surprisal. The leftmost two panels display results on the UCL corpus; the Dundee corpus results are shown in the
rightmost panels. The 2nd and 4th panel show the coefficient of the previous word’s semantic distance. Reading time measures
are indicated by FF (first fixation), FP (first pass), RB (right-bounded), and GP (go-past).
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Figure 2: Regression coefficients (with 95% confidence intervals) of surprisal predictor, when factoring out semantic distance.
“5-gram*” refers to the effect of 5-gram surprisal when SBLM-surprisal is also included as a regressor, and “sblm” refers to
the effect of SBLM-surprisal over and above 5-gram surprisal. The leftmost two panels display results on the UCL corpus; the
Dundee corpus results are shown in the rightmost panels. The 2nd and 4th panel show the coefficient of the previous word’s
semantic distance. Reading time measures are indicated by FF (first fixation), FP (first pass), RB (right-bounded), and GP
(go-past).
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tance on reading times whatsoever, even when surprisal was
not taken into account. This is remarkable considering that
Frank and Willems (in press) found that N400 effects of the
very same semantic distance values are of similar size as –
and independent from – the effect of surprisal as computed
by an interpolated 5-gram and skip-bigram language model.
This discrepancy between neurophysiological and behavioral
effects is consistent with findings from the controlled experi-
mental studies mentioned in the Introduction. But how can it
be explained?

One possible cause is the difference in stimuli presenta-
tion method. The eye-tracking methodology allows a natu-
ral reading processes whereas in most EEG reading studies,
words are presented one at a time for an unnaturally long du-
ration. The EEG data used by Frank and Willems (in press)
came from a study with word-length dependent presentations
durations of at least 627ms (Frank, Otten, Galli, & Vigliocco,
2015), which is much longer than fixation durations in natu-
ral reading. Wlotko and Federmeier (2015) showed that us-
ing more natural word presentation rates in an ERP reading
study can remove particular effects of semantic relatedness
on the N400. If semantic distance effects are delayed rela-
tive to surprisal effects, this could explain their absence in
reading times: By the time they would have appeared, any
effect has already been washed out by the processing of sev-
eral other words. Although Figure 1 indeed shows a trend for
the semantic distance effect to be somewhat stronger for the
later reading time measures (as was also found by Pynte et
al., 2008), the same is true for the surprisal effect (Figure 2)
so this cannot explain why reading times are insensitive to
semantic distance. Moreover, Frank and Willems (in press)
found fMRI effects of semantic distance (as quantified by dis-
tributional semantics) during normal speech comprehension,
indicating that the presence of a measurable neural response
does not rely on unnaturally slow presentation rates.

An alternative, and possibly more interesting explanation
of the difference between N400 and reading time effects is
that reading is optimized for speed (Smith & Levy, 2013).
Being faster on more predictable (i.e., lower surprisal) words
increases overall efficiency, whereas there is no reason to
be faster on merely semantically related words. Hence, we
would expect reading times to display effects of surprisal but
not of semantic distance. Other dependent variables from
eye-tracking, however, could show sensitivity to semantic
distance, and this is exactly what Van den Hoven, Hartung,
Burke, and Willems (2016) found in a recent analysis of data
from a Dutch narrative text reading eye-tracking study: Se-
mantic distance correlated with saccade distance and regres-
sion probability but not with reading time after factoring out
trigram surprisal. In contrast, the reason why the N400 shows
effects of both surprisal and semantic distance could be that
it forms an index of the difficulty of retrieving lexical infor-
mation from long-term memory (Brouwer, Fitz, & Hoeks,
2012; Kutas & Federmeier, 2000). As Frank and Willems
(in press) argue, this difficulty is reduced both by probabilis-

tic word prediction (surprisal) and by semantic similarity to
earlier words (word embedding distance).

Conclusion
The current results failed to replicate earlier findings of a pos-
itive correlation between reading times on naturalistic data
and semantic relatedness between words, as quantified by a
distributional semantics model. This apparent effect of se-
mantic relatedness appeared to be due to a confound with
word predictability. Of course, it is possible that an effect of
semantic distance reappears when using a different distribu-
tional semantics model, or a more sophisticated technique for
combining single word vectors into a sentence context vector
(Equation 1). However, it is equally true that improved sur-
prisal models may undo the work of more sophisticated word
embedding models. And crucially, the current distributional
semantics modelling choices were appropriate for predicting
reading times when surprisal was not taken into account, as
well as N400 sizes over and above surprisal, so they should
also have sufficed for revealing reading time effects of seman-
tic distance that are independent from surprisal, if there had
been any.
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Schäfer, R. (2015). Processing and querying large web cor-
pora with the COW14 architecture. In P. Bański, H. Biber,
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