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Abstract

Volatility Estimation Methods for High-Frequency and Bivariate Open, Close,

High, Low Prices

by

Georgi Dinolov

Statistical models of price volatility most commonly use low-frequency (daily,

weekly, or monthly) returns. However, despite their availability, two types of

financial data have not been extensively studied: high-frequency data where sam-

pling periods are on the order of seconds; and open, close, high, and low (OCHL)

data which incorporate intraperiod extremes.

The first part of this dissertation focuses on the development of a filtering-

based method for the estimation of volatility in high-frequency returns, which

contrasts currently popular averaging-based approaches. The second part of this

dissertation develops a foundational and novel method for likelihood-based esti-

mation for bivariate OCHL, an approach unfeasible until now.

In Chapter 2, we formulate a discrete-time Bayesian stochastic volatility model

for high-frequency stock-market data that directly accounts for microstructure

noise, and outline a Markov chain Monte Carlo algorithm for parameter estima-

tion. The methods described in this paper are designed to be coherent across all

sampling timescales, with the goal of estimating the latent log-volatility signal

from data collected at arbitrarily short sampling periods. In keeping with this

goal, we carefully develop a method for eliciting priors. The empirical results

derived from both simulated and real data show that directly accounting for mi-

crostructure noise in a state-space formulation allows for well-calibrated estimates

of the log-volatility process driving prices.

xii



In Chapter 3, we present and motivate the bivariate OCHL problem, enumer-

ate the fundamental limitations of some common out-of-the-box approaches, and

present a semidiscrete Galerkin numerical solver for computing the likelihood of

the observed data. In addition, we prove the consistency of maximum likelihood

estimates under the approximate density given by the solver.

Chapter 4 develops a closed-form, analytic solution to the OCHL likelihood

problem in parameter ranges where the Galerkin solver requires near-infinite com-

pute time and memory to produce numerically accurate results. A matching so-

lution is also proposed to interpolate between parameter regions where neither

the Galerkin nor analytic solutions are applicable. Thus, we present a method

for producing likelihoods based on OCHL data over all model parameter ranges,

which is a key requirement in statistical estimation algorithms. We use numerical

experiments in both Chapters 3 and 4 to show the validity of our methods and

demonstrate the increase in statistical power in estimating price volatility and

correlation when using bivariate OCHL data.
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Chapter 1

Introduction

Financial markets have been the subject of research since at least Bachelier

[1900], and serious efforts to characterize price variability continued through the

20th century, with a more modern resurgence of interest initiated by Mandelbrot

[1967]. Although long in use by market participants in the form of heuristic

rules prior to 1973 [Haug and Taleb, 2011], the Black-Scholes-Merton formula

[Black and Scholes, 1973, Merton, 1973] allowed for statistical models of price

volatility to be used in option pricing and trading decisions. This in turn intensi-

fied the need to quantify price dynamics and more deeply study their statistical

properties. Engle [1982] and Bollerslev [1986] introduced the Autoregressive Con-

ditionally Heteroscedastic (ARCH) and Generalized Autoregressive Conditionally

Heteroscedastic (GARCH) models as state-space-like time series representation

of price volatility. Shortly thereafter followed the stochastic volatility model of

Hull and White [1987], which is still popular today. Extensions and further appli-

cations of these models to different assets types, markets, pricing scenarios, and

inferential settings have allowed the literature to grow tremendously. In addition

to the strides made by researchers in the field, the wide availability of high-quality

data has facilitated the study of price volatility from a statistical standpoint. De-
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spite their availability, two particular types of data have not been as extensively

studied in the literature: high-frequency time series data and open, close, high,

and low (OCHL for short) data. This work develops statistical approaches that

more efficiently use these types of data.

1.1 High-Frequency Data

Traditionally, financial models have used low-frequency returns (e.g., daily,

weekly or monthly returns) to investigate price volatility. However, as high-

frequency price data (which is roughly defined as sampling every 5 minutes or

less) has become widely available, interest has turned to generating high-resolution

estimates of the volatility path and to improving estimates of volatility model pa-

rameters over higher frequencies.

Attempts have been made to fit the GARCH model to high-frequency data

[Bollerslev, 1986, Andersen and Bollerslev, 1997b]. However, the assumptions be-

hind the classical GARCH model are not robust with respect to the specification

of the sampling interval, and therefore the model is not invariant to temporal

aggregation [Drost and Nijman, 1993, Andersen and Bollerslev, 1997b, Zumbach,

2000]. To address this issue some authors have turned to estimating low-frequency

GARCH and stochastic volatility models using relevant summaries of the high-

frequency prices. One popular summary statistic is the realized variance estimator

[Comte and Renault, 1998, Andersen et al., 2001b, Barndorff-Nielsen and Shep-

hard, 2002a]. The realized variance is defined as the sum of squared high-frequency

log returns over the period of interest. Under strict stationarity and some other

weak regularity conditions for the volatility process, the realized variance con-

verges in probability to the integrated variance of the true diffusion process as the

sampling frequency increases. Takahashi et al. [2009] and Shirota et al. [2014] use

2



both high-frequency returns as well as the realized variance to estimate stochastic

volatility models, while Hansen et al. [2012] do the same for GARCH models.

Similarly, Maneesoonthorn et al. [2014] use the realized volatility and the bipower

variation estimators to estimate stochastic volatility models with jumps, while

Bollerslev and Zhou [2002] use high order powers of the realized volatility as ap-

proximations to higher orders of integrated volatility.

A key challenge in working with high frequency prices is that they are often

contaminated with microstructure noise. Indeed, as the sampling period shrinks

down to the transaction-by-transaction frequency, irregular spacing between trans-

actions, discreteness in transaction prices, and very short term temporal depen-

dence become dominant features of the data [Stoll, 2000]. One consequence of the

presence of microstructure noise is that the realized variance becomes a biased

and inconsistent estimator of the true integrated variance [Zhou, 1996]. Possible

solutions to this issue have been proposed by Zhang et al. [2005], who suggest

sampling data sparsely at an optimally determined frequency and then averag-

ing across the possible grids over the data, Ait-Sahalia et al. [2011], who propose

combining estimators based on subsampling data at different frequencies, and

Hansen and Lunde [2006], Barndorff-Nielsen et al. [2008], who employ a class of

kernel-based methods similar to those used for estimating the long-run variance

of a stationary time-series in the presence of autocorrelation. In the context of

model-based approaches it is common to assume that the summaries of the high-

frequency returns used to estimate the model are noisy versions of the true realized

volatilities (e.g., see Venter and de Jongh [2012], Shirota et al. [2014]).

Chapter 1 describes a Bayesian stochastic volatility model for high-frequency

data that explicitly accounts for the presence of microstructure noise. Unlike

other approaches in the literature, we estimate our model directly using the high-

3



frequency price data rather than summaries of the high-frequency returns. To

account for the effect of microstructure noise we introduce a hierarchical spec-

ification in which the observed high-frequency prices are noisy versions of the

true unknown prices. One appealing feature of our proposed model is that it is

(approximately) coherent across all sampling frequencies, which is in line with

previous efforts to validate the application of discrete-time models for volatility in

high-frequency settings [Andersen et al., 1999]. Coherency is achieved by starting

with a continuous-time model and then carefully discretizing the exact solution

to the stochastic differential equations for the price and volatility processes, and

by carefully eliciting prior distributions for the parameters of the continuous-time

model.

1.2 Bivariate OCHL Data

Chapter 1 is concerned with high-frequency data where only the period open-

ing and closing prices are used to estimate volatility. However, even for lower-

frequency data, it is common to assume that asset prices follow correlated geo-

metric Brownian motions. In that setting, estimates of volatility and correlation

are usually based on log-returns, which depend only on the opening and closing

prices. However, typically more information is available. For example, maximum

and minimum trading prices over different trading intervals are readily available

which can serve as summary statistics for volatility over the periods of interest.

In univariate settings, it has been shown that incorporating this additional in-

formation can substantially improve estimates. For example, Horst et al. [2012]

derive a full likelihood-based (Bayesian) approach to estimate volatility in uni-

variate financial time series where open, closing, highest, and lowest prices are

included. Their work fits into a body of literature and collection of techniques
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by practitioners where the observed range of prices is used to make similar esti-

mates. Likelihood-free approaches, like that of Rogers and Satchell [1991], Rogers

et al. [2008], on the other hand suffer from not being able to be easily integrated

into inferential frameworks that require explicit estimates of probability, as well

as being sub-optimal. Likelihood approaches involving less than all four extrema

have been used in computing first passage times Kou et al. [2016], Sacerdote et al.

[2016], with application to structural models in credit risk and default correlations

Haworth et al. [2008], Ching et al. [2014], and to pricing financial derivative in-

struments whose payoff depends on some (but not all) of the observed boundaries

[He et al., 1998].

A general likelihood-based approach for incorporating OCHL data in bivariate

model estimation has, until now, been unfeasible. This is due to the lack of

a robust and numerically efficient solution, necessary when requiring repeated

computation, to the partial differential equation determining this likelihood. In

Chapters 2 and 3 we develop this numerical solution and demonstrate the increase

in statistical power in using OCHL data when comparing to existing methods.
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Chapter 2

High-Frequency Stochastic

Volatility

2.1 Introduction

Estimating asset price volatilities is a common problem in finance; for exam-

ple, accurate estimates of volatility paths play a key role in both option pricing

and portfolio design. Traditionally, financial models have used low-frequency re-

turns (e.g., daily, weekly or monthly returns) to investigate price volatility. Early

attempts at incorporating higher-frequency information focused on using intra-

period maximum and minimum prices (e.g., see Alizadeh et al. [2002b], Brandt

and Diebold [2003], and Chou et al. [2010]). However, as high-frequency price

data has become widely available, interest has turned to using all intra-period

prices to generate high-resolution estimates of the volatility path and to improve

estimates of the integrated volatility over higher frequencies. In this chapter we

describe a Bayesian stochastic volatility model for high-frequency data that ex-

plicitly accounts for the confounding effect of microstructure noise that normally
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makes difficult the direct application of such dynamical models to this type of

data. In this way, we avoid loss of informativeness that is present when using

summaries of the data, such as the realized volatility estimators, instead of fitting

to the data directly.

The remainder of the Chapter is structured as follows: Section 2.2 describes

the continuous- and discrete-time version of the model. Section 2.3 details the

priors used and the method through which they were derived. Section 2.4 out-

lines the Bayesian Markov chain Monte Carlo (MCMC) algorithm used to fit

the model. Section 2.5 examines the effect of certain model parameters on the

posterior variance of the mean volatility level in our model. Finally, Section 2.6

includes simulation results demonstrating the robustness of our inferential proce-

dure to microstructure noise.

2.2 Model Formulation

We begin with the continuous-time stochastic volatility model of Hull and

White [1987], where the price Ŝt of an asset follows a Geometric Brownian mo-

tion and the time-varying log-volatility process log(σ̂t) follows a mean-reverting

Ornstein-Uhlenbeck (OU) process,

d log(Ŝt) = µ̂ dt+ σ̂t
√
dtε̂t, (2.1)

d log(σ̂t) = −θ̂(log(σ̂t)− α̂) dt+ τ̂
√
dtε̂t,1, (2.2)

where ε̂t and ε̂t,1 are dependent Wiener processes with instantaneous correlation ρ.

This model not only allows for the volatility to evolve over time, but also captures

leverage effects though the correlation between ε̂t,1 and ε̂t,2 (e.g., see Black [1976]).

However, since at least the papers by Barndorff-Nielsen and Shephard [2001] and
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Chernov et al. [2003], it is understood that single-factor volatility models cannot

reproduce the dependence structure of asset returns. Further, at high sampling

frequencies, jumps have been shown to be an important part of asset price variance

[Huang and Tauchen, 2005]. As a consequence of these results, we extend the

model in (2.1)-(2.2) to include two factors for the volatility and jumps in the

returns:

d log(Ŝt) = µ̂ dt+
√
σ̂t,1σ̂t,2

√
dtε̂t,1 + dJt, (2.3)

d log(σ̂t,1) = −θ̂1(log(σ̂t,1)− α̂) dt+ τ̂1
√
dtε̂t,1, (2.4)

d log(σ̂t,2) = −θ̂2(log(σ̂t,2)− α̂) dt+ τ̂2
√
dtε̂t,2. (2.5)

The volatility exhibited by the log-prices in (2.3) is specified as a product of two

OU processes. For the purposes of this paper, we will think of the volatility

processes as distinct, σ̂t,1 being slow and σ̂t,2 being fast. By slow versus fast we

mean that the mean-reversion timescale of (2.4) is greater than that of (2.5):

1/θ̂1 � 1/θ̂2. We allow for leverage between the innovations of returns and the

fast volatility, but the slow volatility and the price innovations are independent;

the two volatility processes are also independent:

E [ε̂tε̂t,2] = ρ, E [ε̂tε̂t,1] = 0, E [ε̂t,1ε̂t,2] = 0.

Finally, we model the jump process dJt as a compound Poisson process with

constant jump intensity λ and i.i.d. jump size Zt ∼ N(µJ , σ2
J). In other words,

over a finite interval ∆, J(t+ ∆)− J(t) = ∑N(∆)
j=1 Ztj , where

(tj − tj−1) ∼ Exp (λ) , N(∆) ∼ Pois (λ∆) , Ztj ∼ N(µJ , σ2
J), tj ∈ (t, t+ ∆).

(2.6)
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We assume that jump sizes and arrival times are independent of either the price

or volatility processes.

To generate a discretization of the model in (2.3) - (2.5), consider the (strong)

solution of the Ornstein-Uhlenbeck process governing the evolution of the log-

volatility in (2.2),

log(σ̂t) ∼ N

(
α̂ + exp

{
−θ̂t

}
{log(σ̂0)− α̂} , τ̂

2

2θ̂

{
1− exp(−2θ̂t)

})
, (2.7)

with stationary distribution

log(σ̂t) ∼ N

(
α̂,
τ̂ 2

2θ̂

)
. (2.8)

For an arbitrary time interval ∆ (which, for the purpose of this paper, we measure

in milliseconds) we can use (2.7) to generate the finite-difference equations

log(Sj) = log(Sj−1) + µ(∆) +√σj,1σj,2 εj + Jj(∆), (2.9)

log(σj+1,1) = α(∆) + θ1(∆) {log(σj,1)− α(∆)}+ τ1(∆) εj,1, (2.10)

log(σj+1,2) = α(∆) + θ2(∆) {log(σj,2)− α(∆)}+ τ2(∆) εj,2, (2.11)

where j = 0, 1, . . . , bT/∆c , i = 1, 2, and

σj+1,i = σ̂(j+1)∆,i
√

∆, Sj = Ŝj∆, Jj(∆) = J((j + 1)∆)− J(j∆) (2.12)

α(∆) = α̂ + 1
2 log(∆), µ(∆) = µ̂∆,

τi(∆) = τ̂i

√√√√√1− exp
{
−2θ̂i∆

}
2θ̂i

, θi(∆) = exp
{
−θ̂i∆

}
,

(2.13)
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and


εj

εj,1

εj,2

 ∼ N




0

0

0

 ,


1 0 ρ

0 1 0

ρ 0 1



 .

We write α(∆), µ(∆), θi(∆), and τi(∆) to emphasize that we have a different

set of parameters depending on the choice of ∆. The random variable Jj(∆) is

defined in (2.6) and is the jump increment from j∆ to (j + 1)∆. Finally, (2.9) is

an approximate discretization, while (2.10) and (2.11) are exact solutions.

Using the strong solution in (2.7) to derive the finite difference equations (2.9)

- (2.11) allows us to take any step size ∆ irrespective of the relative magnitude

of the continuous-time model parameters. Indeed, the more standard forward-

Euler discretization provides a poor approximation to the continuous-time model

when ∆ > 1/θ̂, the timescale of inertia of the log-volatility process. Even in cases

where ∆ < 1/θ̂, discretizing the model SDE using the exact solution of the OU

process is a more accurate approximation of the finite-time transition density of

the continuous process in (2.3) - (2.5) [Elerian et al., 2001].

The discretization (2.9) - (2.11) is a discrete-time approximation of the stochas-

tic process in (2.3) - (2.5) and the likelihood based on this discretization introduces

a bias when estimating continuous time parameters. Elerian et al. [2001] and Er-

aker [2001] both show that a way to correct for this bias (in the context of MCMC

analysis) is to introduce latent, intra-interval sub-samples of the process. We ex-

pect to achieve a similar, but better, result by decreasing ∆ and accounting for

microstructure noise. Moreover, the inverse of the transformations in (2.13) make

it possible to meaningfully compare parameters inferred from different sampling

frequencies and thereby check the coherency of our inferential procedure across

10



different timescales.

In order to account for the effect of microstructure noise, we extend the pre-

vious model by differentiating between the true log asset price log(Sj) and the

discretely observed log price Yj = log(Pj). We treat these observed log prices as a

noise-contaminated version of the true log price which is observed discretely only

n(∆) = bT/∆c times and whose index j corresponds to j∆ in continuous-time.

More specifically, we let

Yj = log(Sj) + ζj, (2.14)

where ζ1, ζ2, . . . are independent and identically distributed errors with mean zero

and standard deviation ξ. To motivate (2.14), consider one possible source of

microstructure noise, the bid-ask spread. We can think of the idealized, “true”

equilibrium price as evolving continuously in time by being moved by market

supply and demand. Real-time order arrival and market friction makes it so

that transaction prices are recorded at the highest bid or lowest ask levels only,

thereby bounding the equilibrium market price in the bid-ask range. In this case

it is natural to assume that Pj = Sj + νj, where νj ∼ U [−Dp/2, Dp/2] and Dp

is the size of the bid-ask spread. Using a first-order Taylor approximation then

leads to Yj = log(Pj) ≈ log(Sj) + ζj, where ζj = 1
Sj
νj. A similar argument can be

used to account for the effect of price discretization.

More generally, in order to account for the approximation error as well as

for other sources of microstructure noise, we let ζt ∼ N(0, ξ2) where ξ ≈ D
2Q ,

D = max{Dp, Ds}, Dp represents a rough estimate of the bid-ask spread over the

period of interest, Ds represents another possible source of microstructure noise

(such as price quantized to the nearest cent), and Q is a rough guess of the average

price of the asset over the period of interest. Note that the distribution of ξ is
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independent of the time scale ∆ used for the discretization of the continuous-time

process, and therefore independent of the frequency at which prices are observed.

To summarize, our hierarchical discrete-time stochastic volatility model re-

duces to

Yj = log(Sj) + ζj, (2.15)

log(Sj) = log(Sj−1) + µ(∆) +√σj,1σj,2 εj + Jj(∆), (2.16)

log(σj+1,1) = α(∆) + θ1(∆) {log(σj,1)− α(∆)}+ τ1(∆) εj,1, (2.17)

log(σj+1,2) = α(∆) + θ2(∆) {log(σj,2)− α(∆)}+ τ2(∆) εj,2, (2.18)

where

ζj ∼ N(0, ξ2),


εj

εj,1

εj,2

 ∼ N




0

0

0

 ,


1 0 ρ

0 1 0

ρ 0 1



 ,

and initial conditions

log(σ0,i) ∼ N

(
α,

τi(∆)2

1− θi(∆)2

)
, log(S0) ∼ N

(
η, κ2

)
,

where the priors for log(σ0,i) are the marginal stationary distributions of the

discrete-time, autoregressive volatility processes. Table 2.1 summarizes our nota-

tion.

2.3 Prior Elicitation

We approach the problem of estimation and prediction for the model described

above using Bayesian methods. This requires that we elicit priors for the unknown
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Symbol Interpretation

D
at
a Pj Observed asset price at time j∆.

Yj Logarithm of the observed asset price at time j∆.
Pa

ra
m
et
er
s

Sj True asset price at time j∆.
σj,i Discrete-time approximation of the slow/fast volatility

i of the true asset price at time j∆.
α(∆) Discrete-time approximation of the stationary mean of

the log volatility.
µ(∆) Discrete-time approximation to the mean asset return.
θi(∆) Discrete-time approximation to the autocorrelation as-

sociated with the log volatility i.
τi(∆) Discrete-time approximation to the volatility of volatil-

ity i.
ρ Correlation coefficient between volatility and price inno-

vations for the slow volatility process.
ξ Standard deviation associated with the microstructure

noise.
λ Arrival rate of price jumps.
µJ Expected value of price jump sizes.
σJ Standard deviation of price jump sizes.

H
yp

er

∆ Time step between observations (Fixed).
η Mean for the true asset price at time 0. (Fixed; no

inference performed)
κ Standard deviation for the true asset at time 0. (Fixed;

no inference performed)

Table 2.1: Notation summary for our high-frequency stochastic volatility model,
including data, parameters and hyper-parameters.

parameters ρ, ξ2, α(∆), µ(∆), θ(∆) and τ(∆). Eliciting a prior for the correla-

tion parameter ρ and the microstructure variance ξ2 is relatively straightforward

since their value and interpretation are independent of the time step ∆. On the

other hand, ensuring that the priors for α(∆), µ(∆), θ(∆) and τ(∆) are coherent

across scales, i.e., that the priors provide the same information no matter what

the time step ∆ is, is non trivial. To address this problem we proceed to elicit

priors on the continuous-time parameters α̂, µ̂, θ̂, τ̂ and then use the formulas in

(2.13) to obtain the implied priors on α(∆), µ(∆), θ(∆) and τ(∆) for any time
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step ∆. Ideally, such priors would be invariant to the transformations in (2.13).

However, fully invariant priors are difficult to elicit and would, in any case, lead to

computationally complicated models even using simulation-based methods such as

Markov chain Monte Carlo algorithms. Hence, we settle for the more modest goal

of assigning priors that belong to families that are conditionally conjugate and

therefore lead to computationally tractable models, but whose first two moments

are (approximately) coherent across scales.

1. Prior for ρ: We assign (ρ+ 1)/2 a symmetric beta distribution with mean

1/2 and precision c. This prior ensures that ρ ∈ [−1, 1] as required and

implies that E(ρ) = 0 a priori. Furthermore, for large values of c, this

means that we believe a priori that the leverage effect is relatively small.

2. Prior for µ(∆): For the mean of the asset returns a prior in the normal

family leads to a simple full conditional distribution for MCMC sampling. If

we let E [µ̂] = âµ̂ and Var [µ̂] = b̂2
µ̂, then µ(∆) = µ̂∆ leads to E [µ(∆)] = ∆âµ̂

and Var [µ(∆)] = ∆2b̂2
µ̂. Hence, in our analysis we use the prior

µ(∆) ∼ N(∆âµ̂,∆2b̂2
µ̂)

where values of âµ̂ and b̂2
µ̂ are elicited from historical data.

3. Prior for θi(∆): The discrete-time autocorrelation coefficient θ(∆) of the

volatility process is bounded above by 1 and below by 0 such that log(σj) is

bounded as j →∞. Hence, we employ a truncated normal prior for θ(∆),

p(θ(∆)) ∝ N
(
aθ(∆), b2

θ(∆)
)
1(θ(∆)∈[0,1]),

which leads again to a tractable computational algorithm. Note that because
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of the truncation,

E [θ(∆)] = aθ(∆) +
φ
(
−aθ(∆)
bθ(∆)

)
− φ

(
1−aθ(∆)
bθ(∆)

)
Φ
(

1−aθ(∆)
bθ(∆)

)
− Φ

(
−aθ(∆)
bθ(∆)

)bθ(∆) (2.19)

Var [θ(∆)] = b2
θ(∆)

1 +
−aθ(∆)
bθ(∆)φ

(
−aθ(∆)
bθ(∆)

)
− 1−aθ(∆)

bθ(∆) φ
(

1−aθ(∆)
bθ(∆)

)
Φ
(

1−aθ(∆)
bθ(∆)

)
− Φ

(
−aθ(∆)
bθ(∆)

)
+

 φ
(
−aθ(∆)
bθ(∆)

)
− φ

(
1−aθ(∆)
bθ(∆)

)
Φ
(

1−aθ(∆)
bθ(∆)

)
− Φ

(
−aθ(∆)
bθ(∆)

)


2 (2.20)

where φ(·) and Φ(·) denote the density and the cumulative distribution func-

tions of the standard normal distribution. Now, given the prior mean âθ̂ and

variance b̂2
θ̂
for θ̂, we choose the values of aθ(∆) and bθ(∆) so that the mean

and variance of θ(∆) above are approximately equal to the mean and vari-

ance of exp
{
−θ̂∆

}
. To simplify calculation of the moments of exp

{
−θ̂∆

}
we use a second-order Taylor expansion of exp

{
−θ̂∆

}
to approximate the

first two moments of θ(∆) in terms of âθ̂ and b̂2
θ, an approach known as the

Delta-Method (e.g., see Casella and Berger [2002]):

E
[
exp

{
−θ̂∆

}]
≈ exp (−âθ̂∆)

(
1 + 1

2 b̂
2
θ̂
∆2
)
, (2.21)

E
[
exp

{
−2θ̂∆

}]
≈ exp (−2âθ̂∆)

(
1 + 2b̂2

θ̂
∆2
)
. (2.22)

Using (2.19), (2.20), (2.21), and (2.22), and by setting

E [θ(∆)] = E
[
exp

{
−θ̂∆

}]
, Var [θ(∆)] = Var

[
exp

{
−θ̂∆

}]
,

we obtain a system of two equations with two unknowns that can be solved

numerically to find the values of aθ(∆) and b2
θ(∆) in terms of âθ̂, b̂2

θ̂
, and ∆.

To elicit âθ̂ and b̂2
θ̂
, recall that θ̂ is the inverse of the time scale of inertia for
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log(σ̂t) in the continuous-time formulation, which can be thought of as the

characteristic time length, or unit of time, over which the process for the

diffusion of log(σ̂t) “forgets” about an endogenous shock. The two hyper-

parameters can be chosen so that the prior probability mass for θ̂ permits a

reasonable range for the timescale of inertia.

4. Prior for α(∆): For the mean log-volatility level α̂, we once again use a

computationally convenient prior in the normal family. Letting E [α̂] = âα̂

and Var [α̂] = b̂2
α̂, and recalling that α(∆) = α̂ + 1

2 log(∆), we have

α(∆) ∼ N
(
âα̂ + 1

2 log(∆), b̂2
α̂

)
.

To elicit the values of âα̂ and b̂2
α̂, recall that α̂ is the stationary (long-term)

median of the volatility process. Hence, for most assets these parameters

could be elicited by looking at the time series of the asset’s implied volatility

(e.g., the VIX index if the asset is the S&P500 index).

5. Prior for τ 2(∆): We use a prior in the Inverse-Gamma family for τ 2(∆),

so that

τ 2(∆) ∼ Inv-Gamma (aτ2(∆), bτ2(∆)) .

To find the values of aτ2(∆) and bτ2(∆) recall that

τ 2(∆) = τ̂ 2
(
1− exp{−2θ̂∆}

)
/
(
2θ̂
)
.

If we let E [τ̂ 2] = âτ̂2 and Var [τ̂ 2] = b̂2
τ̂2 , and if we use the prior mean and

variance of θ̂ as before, we can again apply the Delta-Method to approximate

the prior first and second moments of τ 2(∆) by performing a second-order

Taylor expansion of τ 2(∆) and (τ 2(∆))2 about the prior means of τ̂ 2 and θ̂,
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leading to

E
τ̂ 2

1− exp{−2θ̂∆}
2θ̂

 ≈ τ̂ 2

1− exp
{
−2θ̂∆

}
2θ̂

∣∣∣∣∣∣
τ̂2=âτ̂2 ,θ̂=âθ̂

+ 1
2 b̂

2
τ̂2

∂2

∂2τ̂ 2

τ̂ 2

1− exp
{
−2θ̂∆

}
2θ̂

∣∣∣∣∣∣
τ̂2=âτ̂2 ,θ̂=âθ̂

+ 1
2 b̂

2
θ̂

∂2

∂2θ̂

τ̂ 2

1− exp
{
−2θ̂∆

}
2θ̂

∣∣∣∣∣∣
τ̂2=âτ̂2 ,θ̂=âθ̂

(2.23)

and

E


τ̂ 2

1− exp{−2θ̂∆}
2θ̂


2
 ≈

τ̂ 2

1− exp
{
−2θ̂∆

}
2θ̂


2∣∣∣∣∣∣∣
τ̂2=âτ̂2 ,θ̂=âθ̂

+ 1
2 b̂

2
τ̂2

∂2

∂2τ̂ 2

τ̂ 2

1− exp
{
−2θ̂∆

}
2θ̂


2∣∣∣∣∣∣∣
τ̂2=âτ̂2 ,θ̂=âθ̂

+ 1
2 b̂

2
θ̂

∂2

∂2θ̂

τ̂ 2

1− exp
{
−2θ̂∆

}
2θ̂


2∣∣∣∣∣∣∣
τ̂2=âτ̂2 ,θ̂=âθ̂

. (2.24)

The right sides of (2.23) and (2.24) are functions of aτ2(∆) and bτ2(∆), so

that the above system of equations can be solved numerically to find aτ2(∆)

and bτ2(∆) in terms of the other known prior hyper-parameters. Finally, to

elicit âτ̂2 and b̂τ̂2 ,we have to recall that the ratio τ̂2

2θ̂ represents the long-run

variance of the log-volatility process log(σ̂). The prior for τ̂ 2 can therefore

be elicited from market-traded approximations of the volatility process, such

as the VIX.

6. Prior for ξ2: For computational convenience, the variance of the mi-

crostructure noise is assigned an inverse Gamma with shape parameter aξ
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and rate parameter bξ. The mean of the prior can be elicited from infor-

mation about the bid-ask spread, the tick size and the average price of the

stock as discussed in Section 2.2, while its standard deviation is selected so

that we stay within an order of magnitude (above and below) of the mean.

7. Prior for (λ,µJ ,σ2
J): We assign a Gamma(aλ, bλ) prior for the arrival rate

of jumps, and a Normal-Inverse-gamma prior for the expected value and

variance of the jump sizes with hyper-parameters (mJ , 1, aJ , bJ). The hyper-

parameters for the arrival rate of jumps are elicited from weekly dynamics,

assuming an average of once-per-week jump and a variance an order to

magnitude greater:

E [λ∆∗] = ∆∗aλ
bλ

= 1, Var [λ∆∗] = (∆∗)2aλ
b2
λ

= 10,

∆∗ = 1 week (milliseconds).

The jump size hyper-parameters are elicited from historical data of the S&P

500 index. In particular, mJ is the average observed weekend jump size

from 1990 to 2015 on the S&P 500, whereas bJ/(aJ − 1) is the observed

variance of the said jumps. Finally, we set aJ = 1.1 so that the prior admits

a valid expectation for the jump variance σ2
J but is minimally informative

(equivalent to 1.1 data points in the prior).

2.4 Computation

The posterior distribution of high-frequency stochastic volatility is analytically

intractable, so we perform parameter inference and prediction using a Markov

chain Monte Carlo (MCMC) algorithm. Our sampler extends the ideas intro-
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duced in Omori et al. [2007], which used a mixture of Normals approximation to

the distribution of a log χ2 distribution. More specifically, our algorithm alternates

between (1) integrating out the true latent prices with the forward component of

the Forward-Backward algorithm [Carter and Kohn, 1994, Frühwirth-Schnatter,

1994] and sampling (ρ, ξ, µ(∆)) jointly given all other parameters (2) sampling the

true asset prices S0, S1, . . . , Sn(∆) from their joint full conditional distribution us-

ing the Forward-Backward algorithm, (3) jointly sampling the mixture indicators

γ1, . . . , γn(∆) (to be introduced below) given all other parameters, (4) given the

mixture indicators, integrating out the volatilities using the forward component of

the Forward-Backward algorithm and jointly sampling all of the volatility param-

eters except ρ, (5) jointly sampling the volatilities (σ1,1, σ1,2), . . . , (σn(∆),1, σn(∆),2),

(σn(∆)+1,1, σn(∆)+1,2) using a second Forward-Backward algorithm.

For Steps (1) and (2) in our inferential procedure, note that, given the mean

return µ(∆), the microstructure variance ξ2 and the volatilities (σ1,1, σ1,2) . . . ,

(σn(∆),1, σn(∆),2), (σn(∆)+1,1, σn(∆)+1,2), equations (2.15) and (2.16) - (2.17) define

a linear state-space model with state variable xj = log(Sj) and Gaussian innova-

tions. Hence, using a Forward-Backward algorithm to sample the true asset prices

is straightforward. For Steps (4) and (5), we note that

log {| log(Sj/Sj−1)− µ(∆)− Jj(∆)|} = 1
2 log(σj,1) + 1

2 log(σj,2) + log(ε2j,1)/2.

Following Omori et al. [2007] we approximate the error term using a mixture of

Gaussian distributions,

log(ε2j,1)/2 ∼
10∑
l=1

plN

(
ml

2 ,
v2
l

4

)

(see Table 2.2 for the values of {pl}, {ml} and {vl}). The mixture can be rewritten
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Component pl ml v2
l

1 0.00609 1.92677 0.11265
2 0.04775 1.34744 0.17788
3 0.13057 0.73504 0.26768
4 0.20674 0.02266 0.40611
5 0.22715 -0.85173 0.62699
6 0.18842 -1.97278 0.98583
7 0.12047 -3.46788 1.57469
8 0.05591 -5.55246 2.54498
9 0.01575 -8.68384 4.16591
10 0.00115 -14.65000 7.33342

Table 2.2: Parameters of the mixture representation of the log Chi-squared
distribution, provided in Omori et al. [2007].

by introducing auxiliary indicators γ1, . . . , γn(∆) such that

log(ε2j,1)/2 | γj ∼ N

(
mγj

2 ,
v2
γj

4

)
, Pr(γk = l) = pl.

The auxiliary indicators are sampled jointly conditional on all other parameters,

and Pr(γk = l) = pl is interpreted as the prior probability that observation k

belongs to mixture element l.

Conditionally on the true prices and the indicators γ1, . . . , γn(∆), we have again

a linear state-space model with Gaussian innovations so that we can integrate out

the volatilities in the posterior and sample all of the volatility parameters except

for ρ to complete Step (3). Conditional on this sample, the volatilities can be

sampled using another Forward-Backward algorithm for Step (4). Details of the

algorithm are given in Appendix A.

Once the algorithm has converged and the burn-in samples have been dis-

carded, point and interval estimates can be easily obtained using empirical esti-

mates. For example, given a sample of the volatility path ((σ(b)
1,1, σ

(b)
1,2), (σ(b)

2,1, σ
(b)
2,2),

. . . , (σ(b)
n(∆),1, σ

(b)
n(∆),2)) for b = 1, . . . , B, a sample of the in-sample (approximate)
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integrated variance IV =
∫ T

0 σ̂2
t dt can be obtained as

IV (b) ≈
n(∆)∑
j=1

(
σ

(b)
j,1σ

(b)
j,2

)
.

A similar approach can be used to make out-of-sample predictions of the integrated

volatility.

2.5 The effect of the mean-reverting rate θ̂ and

the observational duration on the posterior

variance of the mean log-volatility α̂

When estimating model parameters, the common intuition is that an increase

in sample size leads to a decrease in posterior uncertainty. When dealing with the

estimation of stochastic volatility models for high-frequency data, one may apply

this thinking when the sample size is increased by obtaining more frequent price

path samples for a fixed observational period, i.e. infill asymptotics. However, in

the case where the volatility process has a finite non-zero mean-reversion timescale

(as is the case for the Ornstein-Uhlenbeck processes used here), an increase in the

number of intraperiod observations does not add information about the mean-level

of the process. Rather, the posterior uncertainty for this model parameter can

only be decreased by increasing how long we observe the process, i.e. increasing

domain asymptotics.

To demonstrate this feature of the model, we study analytically the relation-

ship between the mean-reverting rate θ̂, the time duration of observation T , and

the posterior variance of mean log-volatility α̂ for a single volatility process. To

proceed analytically, we consider a simplified inference problem described by the

21



following assumptions: (1) the mean log-volatility α̂ is the only parameter to be

inferred – all other parameters are known; (2) the prior distribution for the mean

log-volatility α̂ is normal and is denoted by N(âα̂, b̂2
α̂) (previously there was no

parametric assumption made on the on the prior for α̂); c) the log-volatility log(σ̂t)

is observed exactly (without error) on a uniform grid {0,∆, 2∆, . . . , N∆} in time

duration [0, T ] where ∆ is the sampling period and N = T/∆.

The exact solution of the Ornstein-Uhlenbeck process (2.2) is given in (2.7).

Applying the exact solution (2.7) to the time interval [j∆, (j + 1)∆], we obtain

log(σ̂(j+1)∆) = θ(∆) log(σ̂j∆) + (1− θ(∆))α̂ + τ(∆)εj , 0 ≤ j ≤ N − 1

where εj ∼ N(0, 1), and θ(∆) and τ(∆) are given in (2.13). Recall the stationary

distribution of the continuous-time log-volatility process in (2.8)

log(σ̂t) ∼ N
(
α̂, τ(∞)2

)
, τ(∞)2 = τ̂ 2

2θ̂
.

Here we denote the stationary variance as τ(∞)2 for mathematical convenience.

The likelihood of α̂ given the observation {log(σ̂0), log(σ̂1), . . . , log(σ̂N)} is

L (α̂ |log(σ̂0), log(σ̂1), . . . , log(σ̂N)) ∝ exp
(
−(log(σ̂0)− α̂)2

2τ(∞)2

)

×
N−1∏
j−0

exp

−
(
log

(
σ̂(j+1)∆

)
− θ(∆) log(σ̂j∆)− (1− θ(∆))α̂

)2

2τ(∆)2

 . (2.25)

Since we assume N(âα̂, b̂2
α̂) as the prior for α̂, the posterior distribution of α̂ is
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normal and the reciprocal of the posterior variance of α̂ has the expression

1
Var [α̂] = 1

b̂2
α̂

+ 1
τ(∞)2 +

N−1∑
j=0

(1− θ(∆))2

τ(∆)2 = 1
b̂2
α̂

+ 2θ̂
τ̂ 2

1 +N · tanh
 θ̂∆

2

 .
(2.26)

In the above, we have used the expressions of τ(∆) and θ(∆) given in (2.13).

Now, using the linear approximation tanh
(
x
2

)
≈ x

2 and setting T = N∆, we

can write (2.26) as
1

Var [α̂] ≈
1
b̂2
α̂

+ 2θ̂
τ̂ 2

1 + θ̂T

2

 . (2.27)

This expression is valid for θ̂∆ ≤ 1, i.e. when the timescale of inertia of the log-

volatility process is greater than the spacing between observations. The important

consequence of (2.27) is that decreasing ∆ does not decrease the posterior variance

of α̂. In other words, an increase in the number of intraperiod observations does

not add information about α̂. Rather, the posterior uncertainty for α̂ can only

be decreased by increasing T (increasing how long we observe the process) or

increasing θ̂ (on average, increasing the number of reversions to the mean). The

rate of information increase for α̂ with respect to T and θ̂ is examined under two

conditions.

When τ̂ is fixed, 1/Var [α̂] increases linearly with the time duration T and

increases quadratically with the mean-reverting rate θ̂. The quadratic increase of

1/Var [α̂] with respect to θ̂ is the combined result from two contributions: i) for

larger θ̂, the variance of log(σ̂t) is smaller and consequently each data point is a

more accurate approximation to α̂; and ii) for larger θ̂, the time duration [0, T ]

covers more rounds of log(σ̂t) fluctuating away from α̂ and relaxing back toward

α̂.

When τ̂2

2θ̂ (the stationary variance of log-volatility) is fixed, 1/Var [α̂] increases
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linearly with θ̂T . In this case, if the prior is wider than the stationary distribution

(b̂2
α̂ ≥ τ̂2

2θ̂ ) and the time duration is much larger than the time scale of inertia

(T � 1/θ̂), then the posterior variance of α̂ is inversely proportional to the time

duration:

Var [α̂] ≈ τ̂ 2

θ̂
· 1
θ̂T

. (2.28)

When θ̂∆ � 1 (i.e. when the timescale of inertia of the log-volatility process

is much smaller than the spacing between observations), the linear approximation

tanh(θ̂∆/2) ≈ θ̂∆/2 is invalid. Instead, we have the approximation tanh(θ̂∆/2) ≈

1, which leads to

1
Var [α̂] ≈

1
b̂2
α̂

+ 2θ̂
τ̂ 2 (1 +N), for θ̂∆� 1

Under this regime, 1/Var [α̂] is approximately proportional to the number of ob-

servations, N , provided that θ̂∆� 1 is preserved as N is increased. This occurs

when the spacing between observations, ∆, is fixed and the increase in N comes

from extending the observational duration T . When T is fixed, as N increases ∆

decreases, which eventually will carry the system from the regime of θ̂∆ � 1 to

that of θ̂∆ ≤ 1. The behavior of the posterior variance of α̂ for θ̂∆ ≤ 1 with N

increasing through either lowering ∆ or increasing T is illustrated in Section 2.6.4

below.

The results above, which indicate that α̂ cannot be estimated consistently

under in-fill asymptotics, apply to any stochastic volatility model based on the

Ornstein-Uhlenbeck process. Note, however, that they do not contradict standard

asymptotic results from the realized volatility literature, which focus on the inte-

grated variance during a finite period of time and not on the long-term median

volatility of the process.
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2.6 Illustrations

2.6.1 Effect of microstructure noise and sampling frequency

on estimates: simulation studies

In this section we examine the effects of microstructure noise and sampling

frequency on our inference of the model parameters. We first consider a one-day

(6.5 hours) simulated dataset in which the true log-prices were generated according

to (2.16) - (2.17) with ∆ = 10−3 seconds, but where the microstructure noise was

incorporated by adding to each point (exponentiated to transform from log-price

to price level) a uniformly distributed random variable between −0.05 and 0.05,

simulating a $0.1 bid-ask spread. The price was rounded to the nearest 100th,

then transformed back to the log scale.

The true parameters used in the simulations were set to be reasonably close

to typical values on the S&P500 market. The instantaneous return per millisec-

ond µ̂ was set to µ̂ = 1.7 · 10−12/millisecond, corresponding to an annual return

of 1%, based on 251 trading days per year, 6.5 trading hours per trading day,

excluding jumps between trading sessions. Assuming a characteristic timescale

of inertia of the slow continuous log-volatility process to be 3.5 hours (measured

in milliseconds) and that of the fast log-volatility process to be 10 minutes, θ̂1

and θ̂2 were set to θ̂1 = 7.94 · 10−8/milliseconds and θ̂2 = 1.57 · 10−6/milliseconds.

The remaining parameters τ̂ 2
i and α̂ governing the behavior of the log-volatility

processes were set using the publicly traded VIX index. The VIX is the square

root of the risk-neutral market expectation of the S&P 500 variance over the next

30 days on an annualized scale, such that

log σ̂t ≈ log (log (1 + VIXt/100))− 1
2 log(Tyear)
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where Tyear = 1 year = 251× 6.5× 3.6 · 106 ms. We can transform between VIXt

and log(σ̂t), obtaining approximations of the historical log-volatility path. With

θ̂i set, the parameters α̂ and τ̂ 2
i determine the stationary distribution of the log-

volatility process, log(σ̂t,i) ∼ N
(
α̂,

τ̂2
i

2θ̂i

)
. Thus we set α̂ to be the mean of this

VIX-derived log-volatility path, and τ̂ 2
i the variance thereof, divided by 2θ̂i. A

summary of the true model parameters used in this simulation is presented in

Table 2.3.

We fit our model to the simulated data using priors whose means equal the

true simulation values and whose standard deviations put the majority of the prior

mass within one order of magnitude of the mean (recall that the prior specification

procedure described in Section 2.3 only requires the first two moments of each

continuous-time parameter). For example, since µ̂T = 1.7 · 10−12, we let E [µ̂] =

âµ̂ = 1.7·10−12 and Var [µ̂] = b̂2
µ̂ = (1·10−11)2. In this case, the prior region covered

by three standard deviations to the left and right of the prior mean approximately

corresponds to a range from -15% to a 20% annual return. In general, specifying

the prior standard deviation in this manner usually leads to a relatively wide but

reasonable prior coverage of parameter model values. A summary of the prior

means and standard deviations used to fit the model is provided in Table 2.4.

We fit three slightly different versions of our model to the simulated dataset.

In the first version, the microstructure noise parameter was set to ξ2 = 0, so

our model does not take into account microstructure noise and reduces to the

standard SV models used in the literature. In the second version, ξ2 was fixed to

2.5 · 10−7, a level of microstructure noise roughly consistent with the true level of

microstructure noise added in the data. Finally, the third version corresponds to

our full model where ξ2 is estimated from the data by assigning it a Gamma prior

with mean 2.5 · 10−7 and standard deviation 1 · 10−6 (see Table 2.4). The dataset

26



Parameter Value Interpretation
µ̂ 1.7 · 10−12/ms Annual asset return of 1%, based on 251 trading

days per year, 6.5 trading hours per trading day,
excluding jumps between trading sessions.

θ̂1 7.94 · 10−8/ms Timescale of inertia for the slow log-volatility
process equal to 3.5 hours.

θ̂2 1.67 · 10−6/ms Timescale of inertia for the slow log-volatility
process equal to 10 minutes.

α̂ −13− log(
√
ms) Average of daily closing VIX values from

1/2/1990 to 4/10/2015 (18.9% a year), trans-
formed to the log(σ̂t) scale with time measured
in milliseconds.

τ̂ 2
1 1.86 · 10−8/ms 2θ̂1 times the variance of daily closing VIX

values from 1/2/1990 to 4/10/2015, trans-
formed to the log(σ̂t) scale with time mea-
sured in milliseconds. In terms of the annu-
alized volatility for the price, the correspond-
ing distribution of annualized volatility has (1st,
10th, 50th, 90th, 99th) percentiles given by
(8.16%, 11.8%, 18.9%, 30.7%, 46.6%)

τ̂ 2
2 3.9 · 10−7/ms 2θ̂2 times the variance of daily closing VIX

values from 1/2/1990 to 4/10/2015, trans-
formed to the log(σ̂t) scale with time mea-
sured in milliseconds. In terms of the annu-
alized volatility for the price, the correspond-
ing distribution of annualized volatility has (1st,
10th, 50th, 90th, 99th) percentiles given by
(8.16%, 11.8%, 18.9%, 30.7%, 46.6%)

ξ2
T 2.5 · 10−7 Bid-ask spread of $0.1 for an average price of

$100.
ρT 0 Innovations in the price and log-volatility pro-

cess are independent, no leverage effect.

Table 2.3: Summary for model parameters in simulation data, along with asso-
ciated market interpretation of these parameters.

was analyzed assuming sampling periods of 300, 30, 15, and 5 seconds (note that,

because the size of the microstructure noise is assumed to be the same at every

sampling scale, we use the same prior for ξ2 for all sampling periods).
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Parameter Prior mean Prior standard deviation
µ̂ 1.7 · 10−12 1 · 10−11

θ̂1 7.94 · 10−8 1 · 10−7

θ̂2 1.67 · 10−6 1 · 10−5

τ̂ 2
1 1.86 · 10−8 1 · 10−7

τ̂ 2
2 3.9 · 10−7 1 · 10−6

α̂ −13 10
ξ2 2.5 · 10−7 1 · 10−6

ρ 0 1

Table 2.4: Parameters of the prior distributions used for inference with simulated
data.

The plots for the posterior mean and 95% probability bands for the estimated

log-volatility paths are given in Figure 2.1 - 2.2, along with the true signal from

the simulated data. As the sampling period decreases, we see that the first version

of the model (which ignores microstructure noise by fixing ξ2 = 0) fails to capture

the latent signal. On the other hand, the other two versions of our models produce

much better posterior estimates for the latent signal. In particular, we see that,

as expected, the naive choice ξ2 = 0 model overestimates the volatility signal for

higher sampling frequencies where the time interval ∆ diminishes enough so that

the microstructure noise dominates for the volatility signal. We can also see that,

although the second and third versions of the model tend to smooth out the true

volatility path, the reconstruction generated by the model that estimates ξ2 from

the data is somewhat more accurate.

In addition to estimating the volatility path, we also investigate the ability of

the model to infer model parameters. In particular, Figure 2.4 shows the posterior

density estimates for the continuous-time parameters α̂, τ̂ 2, θ̂ and µ̂ (which are

comparable across scales), as well as the posterior distribution for ξ2 (in the case

of the third version of the model, which is the only one in which it is estimated

from the data). Note that, when the model is estimated with ξ2 = 0 fixed,
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ξ2 = 0 ξ2 = 2.5 · 10−7 ξ2 estimated

∆
=

30
0
s

−15

−14

−13

−12

−11

0 500 1000 1500

time (s)

lo
g(

σ̂ t
)

−15

−14

−13

−12

−11

0 500 1000 1500

time (s)

lo
g(

σ̂ t
)

−15

−14

−13

−12

−11

0 500 1000 1500

time (s)

lo
g(

σ̂ t
)

∆
=

60
s

−15

−14

−13

−12

−11

0 500 1000 1500

time (s)

lo
g(

σ̂ t
)

−15

−14

−13

−12

−11

0 500 1000 1500

time (s)

lo
g(

σ̂ t
)

−15

−14

−13

−12

−11

0 500 1000 1500

time (s)
lo

g(
σ̂ t

)

∆
=

10
s

−15

−14

−13

−12

−11

0 500 1000 1500

time (s)

lo
g(

σ̂ t
)

−15

−14

−13

−12

−11

0 500 1000 1500

time (s)

lo
g(

σ̂ t
)

−15

−14

−13

−12

−11

0 500 1000 1500

time (s)

lo
g(

σ̂ t
)

Figure 2.1: Slow log-volatility paths for simulated data. All three inference
approaches are applied to the same data set that contains microstructure noise.
The microstructure noise added in the simulated data is approximately at the
level of ξ2 = 2.5 · 10−7. Red denotes the true paths, while the gray region denotes
the posterior 95% probability for the log-volatility value. Black is the posterior
mean log-volatility signal. We see that when microstructure is ignored (ξ2 = 0),
we fail to recover the true signal.
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Figure 2.2: Fast log-volatility paths for simulated data. All three inference
approaches are applied to the same data set that contains microstructure noise.
The microstructure noise added in the simulated data is approximately at the
level of ξ2 = 2.5 · 10−7. Red denotes the true paths, while the gray region denotes
the posterior 95% probability for the log-volatility value. Black is the posterior
mean log-volatility signal. We see that when microstructure is ignored (ξ2 = 0),
we fail to recover the true signal.
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Inference with Inference with Inference with
ξ2 = 0 ξ2 = 2.5 · 10−7 ξ2 estimated

µ̂
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Figure 2.3: Posterior density approximations of the observational model param-
eters for simulated data. The red vertical line represents the true parameter value.
The sampling periods used are: 5 minutes (red), 60 seconds (blue), and 10 seconds
(red).

the posterior densities for α̂, the mean level of log volatility, show a reduction

in variance with increasing sampling frequency: posterior draws become more

centered around a wrong, overestimated value for mean log-volatility level. These

results are consistent with those obtained for the volatility path and show that

the model fails to capture the constant information content in the data regarding
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α̂. We also note that learning τ̂ 2 and θ̂ is difficult whether we do or do not include

microstructure noise. However, due to the constant information in the data with

respect to α̂, the posterior uncertainty for θ̂ and τ̂ 2 seems to remain constant even

with increasing sampling frequency when ξ is not fixed.

2.6.2 Estimating Integrated Variance

As described in Section 2.4, the posterior draws for σ2
j allow us to approximate

the posterior distributions for the integrated variance of the latent volatility pro-

cess. In this Section we extend the previous simulation study to compare the 95%

intervals generated by the three versions of our model with those generated from

a realized variance estimate. The literature on realized volatility estimators for

high-frequency data is vast (for a review, refer to Pigorsch et al. [2012]), but the

construction of confidence intervals for the realized volatility estimators can be

challenging. Here we compare the coverage properties of our model-based credible

intervals against bootstrap-based confidence intervals of the the kernel-based real-

ized variance estimator introduced by Zhou [1996] and Hansen and Lunde [2006].

The idea behind the bootstrapping method is to periodically extend the available

data set and randomly re-select a new data set to construct a bootstrap sample

(see Hwang et al. [2013] for a full description of the procedure).

The results of the comparison are shown in Table 2.5. The table is constructed

using 300 simulated data sets, each corresponding to a single trading day. We

compare the percentage of times the 95% confidence/credible intervals for the

integrated variance (IV) estimator covers the true integrated variance value. A

well-calibrated interval will produce a 95% coverage on average, and we see that

the estimator based on our approach where ξ2 is fully estimated preforms very

well, both when compared to ξ2 = 0, ξ2 = 2.5 · 10−7, and when compared to the
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kernel-based estimator.

Sampling period
5 min 60 sec 30 sec 15 sec 5 sec

Inference with ξ2 = 0 93 72 28 3 0
Inference with ξ2 = 2.5 · 10−7 95 79 57 23 0
Inference with ξ2 estimated 95 91 92 96 97
Inference with kernel-based estimator 53 51 48 59 76

Table 2.5: Coverage table comparing the percentage of covered integrated vari-
ance levels by 95% confidence/credible intervals of our estimator and a kernel-
based estimator.

2.6.3 Effect of microstructure noise and sampling frequency

on estimates: market data

We perform an analysis for real market data, which consists of a single day of

midpoint spot prices of Apple Inc. (NASDAQ:AAPL) on March 6th, 2014, printed

on the millisecond from the NYSE TAQ data set. Our a priori distribution for

the bid-ask spread driving microstructure noise is centered on $0.1 as with the

simulation data. All other priors are the same as in Section 2.6. The estimated

volatility paths are shown in Figure 2.5. In the case where ξ2 = 0, the model

estimates the volatility signal to be, on average, higher than in the cases where

ξ2 > 0, which is also seen in the posterior means estimates of α̂ in Figure 2.6. This

is consistent with the simulation-study results, where the ξ2 = 0 model attributes

microstructure noise to the log-volatility signal.

Figure 2.6 shows the posterior distributions for the model parameters. Note

that the posterior for ξ2 is centered around 8 · 10−9 – two orders of magnitude

smaller than the prior center of 2.7 · 10−7. This value of the posterior mean is

roughly equivalent to a bid-ask spread of $0.01, which is reasonable for a highly-
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traded stock like AAPL. Furthermore, note that fixing ξ2 = 2.5 ·10−7 compared to

treating ξ2 as an unknown parameter, leads to volatility paths that are smoother

and have greater coherence in posterior estimates of the model parameters across

sampling periods. This is especially true for θ̂, since the closer the log-volatility

process is to being discontinuous, the shorter its timescale must be. We thus see

the obvious trade-off when specifying ξ2: if ξ2 is too large, we run the risk of

over-smoothing; if ξ2 is too small, we confound the effects of noise with those of

the volatility process.

2.6.4 Effect of timescale of inertia on estimates of α̂

To illustrate the discussion in Section 2.5 on the effect of the log-volatility

timescale on our method’s ability to learn α̂, we examine the posterior uncertainty

for α̂ under two scenarios: (1) increasing sample size N by decreasing the sampling

period ∆, and (2) increasing N by increasing the observational period T while

keeping ∆ constant. The same simulated dataset is used in both (1) and (2), with

1/θ̂ = 15 min, such that θ̂∆ ≤ 1 and the approximation for the posterior variance

of α̂ in (2.27) is applicable.

Under scenario (1), we consider the entire data set and estimate α̂ with ∆ =

1 min, 30 sec, 15 sec, and 5 sec. The posterior distributions for α̂ are shown in the

left panel of Figure 2.7. We see that the posterior uncertainty for α̂ remains the

same with increasing number of intraperiod samples, as suggested by the analysis

in Section 2.5. Under scenario (2), we fix ∆ = 1 min and increase sample sizes

by increasing the observational period T , using the first 1/6 (65 min) of the data,

the first 2/6 (130 min) of the data, and so on through the entirety of the data

(390 min). The right panel of Figure 2.7 shows the posterior densities for α̂ under

this regime. Confirming the discussion in Section 2.5, we tend to see a decreasing
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posterior variance for α̂ with increasing observational duration, but not when the

sampling frequency increases. The important takeaway point is that a dataset

covering a finite observational period contains a finite amount of information, no

matter now finely the observational period is sampled.

2.7 Conclusion

In this paper we have outlined a discrete-time stochastic volatility model for

high-frequency data. The model and the algorithm used to estimate it are de-

signed to be coherent across all sampling frequencies. To this end, we elicit priors

on the parameters of the continuous-time version of our model and transform them

to the discrete-time scale. Both simulation and real data results show that adding

the microstructure term in the standard stochastic volatility formulation allows

one to fit such models to high-frequency data and extract the log-volatility signal

from noisy observations. However, having a good prior estimate of the noise level

is an important specification, since attributing some fluctuations in the observed

log volatility to microstructure noise has a smoothing effect on the reconstructed

log volatility paths. Finally, simulation studies show that the integrated vari-

ance estimator derived from our model is well-calibrated and outperforms current

kernel-based realized volatility estimators.
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ξ2 = 0 ξ2 = 2.5 · 10−7 ξ2 estimated

α̂

−15 −14 −13 −12 −11 −10 −16 −15 −14 −13 −12 −11 −16 −15 −14 −13 −12 −11

lo
g( τ̂

2 slo
w
)

−19 −18 −17 −16 −15 −18 −17 −16 −15 −14 −18 −17 −16 −15 −14

lo
g( τ̂

2 fa
st
)

−18 −17 −16 −15 −14 −18 −17 −16 −15 −14 −13 −18 −17 −16 −15 −14 −13

lo
g( θ̂ s

lo
w
)

−26 −24 −22 −20 −18 −16 −14 −24 −20 −16 −22 −20 −18 −16

lo
g( θ̂ f

as
t)

−20 −18 −16 −14 −12 −20 −18 −16 −14 −12 −20 −18 −16 −14

Figure 2.4: Posterior density approximations of volatility model parameters for
simulated data. The red vertical line represents the true parameter value. The
sampling periods used are: 5 minutes (green), 60 (blue) seconds, and 10 seconds
(red).
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Inference with Inference with Inference with
ξ2 = 0 ξ2 = 2.5 · 10−7 ξ2 estimated

∆
=

30
0
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∆
=
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s

∆
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5
s

Figure 2.5: Log-volatility paths for the AAPL 03/06/2014 data. Red denotes
the posterior mean of the paths, while the gray region denotes the posterior 95%
probability for the log-volatility value.
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Figure 2.6: Posterior density approximations of model parameters for the AAPL
03/06/2014 data. The sampling periods used are: 5 minutes ( ) , 30 seconds
( ) , 15 seconds ( ) , 5 seconds ( ) , and 1 second ( ) . Vertical
red lines represent prior mean for the given parameters.
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Figure 2.7: Posterior densities of α̂. Left panel: sample size N is increased
by decreasing ∆. Right panel: sample size N is increased by increasing the
observational duration T . The same data set was used for both cases, where
1/θ̂ = 15min so that θ̂∆ ≤ 1 for all posterior samples. The red vertical line
signifies the true α̂ value used in the data-generation process. For a fixed T and
decreasing ∆ (left) [1 minute ( ) , 30 seconds ( ) , 15 seconds ( ) , 5
seconds ( ) ] the posterior variance of α̂ stays approximately the same. For a
fixed ∆ and increasing T [65 minutes ( ) , 130 minutes ( ) , 195 minutes
( ) , 260 minutes ( ) , 325 minutes ( ) , and 390 ( ) minutes], the
posterior variance of α̂ tends to decrease.
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Chapter 3

Volatility Estimation For

Bivariate Assets With OCHL

Data: A Galerkin Solution

3.1 Introduction

In Chapter 2, we showed how a filtering approach can be effectively applied

to very high-frequency univariate data for the more accurate estimation of asset

volatility. Information present in high-frequency returns can also be captured

over longer observational periods by including the highest and lowest intraperiod

prices. This information can substantially improve estimates (see for example

Horst et al. [2012] for the univariate treatment). In this chapter we develop a

general likelihood-based approach for incorporating open, close, high, and low

data in the bivariate setting.
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We consider a two-dimensional correlated Brownian motion:

X(t) = x0 + µxt+ σxWx(t) (3.1)

Y (t) = y0 + µyt+ σyWy(t) (3.2)

where Wi are standard Brownian motions with Cov(W1(t),W2(t)) = ρt. Our

interest is in finding the 6-dimensional joint probability density function for the

pair (X(t), Y (t)) and the random variables MX(t) = max0≤s≤tX(s), mX(t) =

min0≤s≤tX(s), MY (t) = max0≤s≤t Y (s), mY (t) = min0≤s≤t Y (s). We introduce

q(x, y, t) = lim
dy→0

lim
dx→0

1
dxdy

Pr (x ≤ X(t) < x+ dx, y ≤ Y (t) < y + dy,

Mx(t) ≤ bx,My(t) ≤ by,mx(t) ≥ ax,my(t) ≥ ay|X(t) = x0, Y (0) = y0, θ) (3.3)

with θ := (µx, µy, σx, σy, ρ). The density satisfies the Fokker-Planck equation [Ok-

sendal, 2013]:

∂

∂t′
q(x, y, t′) = −µx

∂

∂x
q(x, y, t′)− µy

∂

∂y
q(x, y, t′)+

1
2σ

2
x

∂2

∂x2 q(x, y, t
′) + ρσxσy

∂2

∂x∂y
q(x, y, t′) + 1

2σ
2
y

∂2

∂y2 q(x, y, t
′). (3.4)

Given that we consider the subset of (X(t), Y (t)) that satisfies the constraints

imposed by the boundary data, we impose the absorbing conditions on the Fokker-

Planck equation

q(ax, y, t′) = q(bx, y, t′) = q(x, ay, t′) = q(x, by, t′) = 0, 0 < t′ ≤ t. (3.5)

Differentiating q(x, y, t) with respect to the boundaries produces the 6-dimensional
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transition density of

(X(0), Y (0),MX(t),mX(t),MY (t),mY (t)) = (x, y, bx, ax, by, ay)

given the starting point of (X(0), Y (0)) = (x0, y0). We denote this 6-dimensional

transition density by f(x, y, ax, bx, ay, by) and note that it is the fourth-order par-

tial derivative of the unconstrained process q with respect to the four boundaries:

∂4

∂ax∂bx∂ay∂by
q(x, y, t) = f(x, y, ax, bx, ay, by). (3.6)

We should note that f(x, y, ax, bx, ay, by) exists. Consider the relation

f(x, y, ax, bx, ay, by) =

Pr (X(t) ∈ dx, Y (t) ∈ dy,mx ∈ dax,Mx ∈ dbx,my ∈ ay,My ∈ dby |θ ) =

PW (A(x, y, ax, bx, ay, by)) ,

where

A(x, y, ax, bx, ay, by) =
{
ω ∈ W

∣∣∣∣∣Xω(t) = x, Yω(t) = y, inf
t′∈[0,1]

Xω(t′) = ax,

sup
t′∈[0,1]

Xω(t′) = bx, inf
t′∈[0,1]

Yω(t′) = ay, sup
t′∈[0,1]

Yω(t′) = by

}
.

We use the shorthand X(t) ∈ dx for X(t) ∈ (x, x + dx), and PW is the Wiener

measure on the sample space W of all realizations (paths) (Xω(t), Yω(t)) from the

stochastic process (3.1) - (3.2). The process is defined in the usual way using

Kolmogorov’s extension of measure over cylinder sets on t → R2 (see Freidlin
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[1985], Section 1.2). Sets of the form A(x, y, ax, bx, ay, by) can be defined as a

countable intersection/union of cylinder sets on t→ R2, hence they are measurable

under PW ; therefore f(x, y, ax, bx, ay, by) exists.

Marginals of (3.3) involving less than all four boundaries have been used in

computing first passage times [Kou et al., 2016, Sacerdote et al., 2016], with appli-

cation to structural models in credit risk and default correlations [Haworth et al.,

2008, Ching et al., 2014], and to pricing financial derivative instruments whose

payoff depends on some (but not all) of the observed boundaries [He et al., 1998].

One-dimensional analog of this problem was used in Horst et al. [2012] to derive

a full likelihood-based (Bayesian) approach to estimate volatility in univariate fi-

nancial time series where open, closing, highest, and lowest prices are included.

Their work fits into a body of literature and collection of techniques by practition-

ers where the observed range of prices is used to make similar estimates. In this

chapter we will provide an efficient numerical method necessary for carrying out

inferential procedures with correlated financial time series in the bivariate setting.

Closed-form solutions to (3.4) - (3.5) are only available for some parameter

regimes. When ρ = 0, the transition density of the process is the solution to a

well-understood Sturm-Liouville problem where the eigenfunctions of the differ-

ential operator are sine functions. For ρ 6= 0, the solution when ax = −∞ and

bx = ∞, can be obtained using the method of images to enforce the remaining

boundaries. Alternatively, if ax, ay = −∞ or bx, by = ∞, eigenfunctions of the

Fokker-Plank equation can be found in radial coordinates. Both of these tech-

niques are used and detailed by He et al. [1998]. A further complication is that

we are not directly interested in evaluating the solution of the differential equa-

tion, but we are interested instead in evaluating its fourth order mixed partial

derivative (recall equation (3.6)).
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For non-zero correlation, it is still possible to approach the general problem

by proposing a biorthogonal expansion in time and space [Risken, 1989, section

6.2], where the eigenfunctions for the differential operator are approximated by

the eigenvectors of a linear system obtained using a truncated expansion based on

eigenfunctions for the case ρ = 0, a set of separable basis functions, each of which

is a product of two sine functions (one in each dimension) satisfying the boundary

conditions. However, a drawback of this out-of-the-box solution is that the system

matrix for the corresponding eigenvalue problem is dense. Additionally, for mod-

erately large values of |ρ|, a large number of basis elements is typically needed for

an accurate approximation. The denseness and size of the resultant system makes

the expansion a slow solution. This becomes unfeasible in cases where we need to

solve the equation many times such as in the case of doing statistical likelihood-

based inference. An alternative is to use a finite difference scheme to directly

solve the evolution problem after suitable transformations. However, both of these

methods need a high degree of numerical resolution to produce practically useful

approximations of the transition density. The trigonometric series expansion has

exponential accuracy in the case ρ = 0, while it loses accuracy catastrophically

when ρ 6= 0. We hypothesize that the inefficiencies in the trigonometric expan-

sion arise from using a separable representation for a differential operator that is

intrinsically correlated in the two dimensions. For the finite difference approach,

the problem is twofold as the method introduces numerical diffusion in the initial

condition and it also uses a separable approximation for the differential operator.

In this chapter we propose a robust and efficient algorithm to numerically ap-

proximate the solution to (3.4) - (3.5) and (3.6) in two distinct parameter regimes.

We use a Galerkin discretization that directly takes into account the correlation

parameter present in the differential operator in order to efficiently represent an
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analytic small-time solution and propagate it forward in time. We apply our

computational method to estimate diffusion parameters with a maximum likeli-

hood from an independent, identically distributed sample. Section 3.2 outlines

some methods we considered for this problem. Section 3.4 describes the Galerkin

method we implemented. Section 3.5.3 includes our numerical experiments.

3.2 Preliminaries

Before considering solutions to the full Fokker-Planck equation (3.4) - (3.5),

we simplify the PDE by proposing a series of transformations to standardize the

problem. Firstly, transformation

T(0) : q(x, y, t)→ p(x, y, t) (3.7)

decomposes solution q into an exponential factor and an unknown function p,

eliminates the advection terms in the differential equation for p while preserving

the initial and boundary conditions for p. T(0) is defined as

T(0) : p(x, y, t) = exp(αx+ βy + γt)q (x, y, t) , (3.8)

where

α = −µx
σ2
x

− ρ

σxσy(1− ρ2)

(
−µy
σ2
y

+ µxρ

σxσy

)
,

β =
(
−µy
σ2
y

+ µxρ

σxσy

)
,

γ = 1
2

(
σx

bx − ax

)2
α2 + 1

2

(
σy

by − ay

)2

β2 + αβ,
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This new functions satisfies the pure diffusion equation:

∂ p

∂t
= 1

2σ
2
x

∂2 p

∂x2 + ρσxσy
∂2 p

∂x∂y
+ 1

2σ
2
y

∂2 p

∂y2 , (x, y) ∈ Ω (3.9)

Ω := (ax, bx)× (ay, by)

subject to the constraints

p(x, y, t) = 0, for (x, y) ∈ ∂Ω,

p(x, y, 0) = δ (x− x0) δ (y − y0) .

Secondly, the problem is then standardized with the scaling transformation

T(1) :



p(1)(x(1), y(1), t) = LxLyp(x, y, t),

p(1)(x(1), y(1), 0) = δ(x(1) − x(1)
0 )δ(y(1) − y(1)

0 ),

(x(1), y(1)) =
(
x−ax
Lx

, y−ay
Ly

)
,

(Lx, Ly) = (by − ay, bx − ax)

(3.10)

which re-defines the differential equation and computational domain observed by

p(1)(x(1), y(1), t)

∂

∂t
p(1)(x(1), y(1), t) = L(1)p(1)(x(1), y(1), t), (x(1), y(1)) ∈ Ω(1), (3.11)

Ω(1) := (0, 1)× (0, 1).

The differential operator L(1) takes the form

L(1) = 1
2τ

2
x

∂2

∂x2 + ρτxτy
∂2

∂x∂y
+ 1

2τ
2
y

∂2

∂y2 ,

with τx = σx
Lx
, τy = σy

Ly
. Two remarks are in order here:
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1. The transformation T(1) preserves ρ from the original problem.

2. We consider Lx and Ly as fixed in differentiating p(x, y, t), corresponding to

the unperturbed (ax, bx, ay, by). This amounts to perturbing the boundaries

of Ω(1) when differentiating p(1)(x(1), y(1), t) with respect to (ax, bx, ay, by),

while keeping the diffusion parameters τx, τy constant. In contrast, if we treat

Lx, Ly as functions of the boundary parameters, then upon differentiation

τx, τy will be perturbed while preserving Ω(1).

Thirdly, we normalize the diffusion equation (3.11) with the transformation

T(2) : p(2)(x̃, ỹ, t̃) =


p(1)(x(1), y(1), t̃/τ 2

x), if τ 2
x ≥ τ 2

y

p(1)(y(1), x(1), t̃/τ 2
y ), otherwise,

, (3.12)

defined with the coordinate transformation

x̃ = x(1) · 1(max{τ2
x ,τ

2
y}=τ2

x) + y(1) · 1(max{τ2
x ,τ

2
y}=τ2

y), (3.13)

ỹ = y(1) · 1(max{τ2
x ,τ

2
y}=τ2

x) + x(1) · 1(max{τ2
x ,τ

2
y}=τ2

y), (3.14)

t̃ = t ·max
{
τ 2
x , τ

2
y

}
. (3.15)

The differential problem under T(2) now takes on the normalized form (from hereon

referred to as the normalized problem):

∂

∂t̃
p(2)(x̃, ỹ, t̃) = L̃p(2)(x̃, ỹ, ỹ), (x̃, ỹ) ∈ Ω̃ (3.16)

L̃ = 1
2
∂2

∂x̃2 + ρσỹ
∂2

∂x̃∂ỹ
+ 1

2σ
2
ỹ

∂2

∂ỹ2 , Ω̃ := (0, 1)× (0, 1) (3.17)

47



with σỹ = min {τx/τy, τy/τx} subject to the initial and boundary conditions

p(2)(x̃, ỹ, t̃) = 0, for (x̃, ỹ) ∈ ∂Ω̃,

p(2)(x̃, ỹ, 0) = δ (x̃− x̃0) δ (ỹ − ỹ0) . (3.18)

As seen above, the computational domain under T(2) remains the unit square.

However, the diffusion coefficient in the principal x̃-direction is always unity, while

σỹ ≤ 1. The time for evaluating the final condition is scaled by either τ 2
x or τ 2

y ,

while the correlation coefficient remains the same. Transforming back to the

original coordinate frame is straight-forward

p(x, y, t) = p(2)(x̃(x, y;σx, σy, ρ), ỹ(x, y;σx, σy, ρ), t̃(t;σx, σy, ρ)) · 1
LxLy

.

Hence, the solution to the original problem (3.4) - (3.5) can be expressed as the

product

q(x, y, t) = exp(−αx− βy − γt)·

p(2)(x̃(x, y;σx, σy, ρ), ỹ(x, y;σx, σy, ρ), t̃(t;σx, σy, ρ)) · 1
LxLy

.

As a consequence of the second remark above, all of the dependency of q on

(ax, bx, ay, by) is through the normalized solution p(2)(x̃, ỹ, t̃). Thus, without loss

of generality, we will concentrate on the solution of the normalized problem (3.16)

and will drop the subscript p(2) from here on when discussing the solution to the

normalized problem.
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3.3 A Review of Standard Approaches

Before describing our method for solving the normalized problem (3.16) -

(3.18), we discuss other candidate approaches and highlight their limitations in

the context of the present problem.

3.3.1 Eigenfunction Expansion

Following Section 6.2 of Risken [1989], we may use the biorthogonal decompo-

sition of the solution as a sum of eigenfunctions and time-dependent coefficients

determined by eigenvalues:

p(x̃, ỹ, t̃) =
∑
ν

hνφν(x̃, ỹ)e−λν t̃, (3.19)

where hν is the coefficient of the eigenfunction φν(x̃, ỹ). Because the differential

operator L is self-adjoint, the family of eigenfunctions is complete in the Hilbert

space L2(Ω). Moreover, the eigenvalues are bounded below by a positive constant

c, so that the solution decays to zero as t̃ goes to infinity (see section 6.3 of Risken

[1989]).

Since we require φν(x̃, ỹ) to be zero on the boundaries, we approximate the

eigenfunction using a finite set of orthogonal basis functions satisfying boundary

conditions, i.e., a finite sequence of sines,

φν(x̃, ỹ) =
L∑
l=1

M∑
m=1

cl,m,ν sin (2π l x̃) sin (2πm ỹ) := Ψ(x̃, ỹ)T cν ,

where we have truncated the infinite series for some suitably large L and M and
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defined

ψl,m(x̃, ỹ) = sin (2π l x̃) sin (2πm ỹ) ,

Ψ(x̃, ỹ) = (ψ1,1(x̃, ỹ), . . . , ψL,M(x̃, ỹ))T ,

cν = (c1,1,ν , . . . , cL,M,ν)T .

We substitute the biorthogonal representation (3.19) into the eigenvalue problem

Lφν = −λνφν , (3.20)

where L is the differential operator in the normalized Fokker-Planck equation.

Applying L to the basis function expansion of φv and again approximating the

result using the finite set of basis functions yields

Lφν = L(Ψ(x̃, ỹ)T cν) = L(Ψ(x̃, ỹ)T )cν = (AΨ(x̃, ỹ))T cν , (3.21)

where A is a matrix analytic in (σỹ, ρ). In the last part of the equation above,

we have truncated the infinite sine series expansion of Lψl,m(x̃, ỹ). In the case

where ρ = 0, A is diagonal because {ψl,m(x̃, ỹ)} are the eigenfunctions to L.

When ρ 6= 0, A is no longer diagonal and is in fact dense. Substituting the linear

representation of Lφν into the eigenvalue problem (3.20), we arrive at the matrix

eigenvalue problem

Ψ(x̃, ỹ)TAT cν = −λνΨ(x̃, ỹ)T cν ⇔ AT cν = −λνcν

whose solution gives the family of orthonormal eigenfunctions. As mentioned

already, the efficiency of this approach is dependent on the cost of solving the

eigenvalue problem AT cν = −λνcν . With all of the eigenpairs (cν , λν), the ap-
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proximate solution is then

p(x̃, ỹ, t̃) ≈
∑
ν

hν
(
Ψ(x̃, ỹ)T cν

)
e−λνt.

Because a good working approximation of p(x̃, ỹ, t̃) requires many terms in the ex-

pansion, and because the resultant system matrix is dense, repeated computation

of the eigenproblem for the density calculation is unfeasible. This is especially

important in the context of the main problem: computing derivatives of p with

respect to the boundary parameters.

3.3.2 Finite Difference Methods

A finite difference method which approximates the spatial derivatives in prob-

lem (3.16) - (3.18) requires the solution to a system of differential equations

ċ(t̃) = Bc(t̃)⇒ c(t̃) = exp
(
Bt̃
)
c(0), (3.22)

which reduces to the eigenvalue decomposition of a matrix B. Here, c(t̃) is a

vector consisting of values of the solution in (3.16) on a set of grid points over

Ω̃ at time t̃, and the product Bc(t̃) approximates Lp(x̃, ỹ, t̃). The system matrix

B is dependent on the discretization scheme used to approximate L. Using a

central-in-space scheme over a regular grid on Ω̃ with ∆x̃ = ∆ỹ = h, we have

B = 1
2

1
h2Bx̃,x̃ + ρσỹ

1
4h2Bx̃,ỹ + 1

2σ
2
ỹ

1
h2Bỹ,ỹ,

where each of the matrices Bx̃,x̃, Bx̃,ỹ, Bỹ,ỹ approximate ∂2

∂x̃2 ,
∂2

∂x̃∂ỹ
, ∂

2

∂ỹ2 , respectively.

The use of a regular grid with a constant h independent of the parameters is

appealing here because, it allows us to construct once and store the matrices
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Bx̃,x̃, Bx̃,ỹ, Bỹ,ỹ, which saves valuable computational resources if we are to solve

the finite difference eigenproblem (3.22) repeatedly for different parameter values

(σỹ, ρ).

Unlike the system matrix for the trigonometric expansion, the system matrix

B here is sparse: each row of (Bx̃,x̃, Bx̃,ỹ, Bỹ,ỹ) is composed of all zeros except for

three or four entries. This structure does not change as h → 0. The eigenvalue

problem is therefore much cheaper to solve. However, the solutions generated

by this methods lead to quite inaccurate finite difference approximations to the

derivatives of p which, as the reader might recall, are the main object of interest

in our problem.

3.3.3 Calculation of Joint Density

Following (3.6), to compute the joint density f(x, y, ax, bx, ay, by), we must

take derivatives of the solution p(x̃, ỹ, t̃) with respect to the boundary parame-

ters (ax, bx, ay, by). Because the approximate solutions we will consider below are

functions of the parameters without explicit analytic form, ∂4

∂ax∂bx∂ay∂by
p(x̃, ỹ, t̃)

must be computed numerically using a finite difference approximation. We must

therefore find the solution for each of the sixteen perturbed problems

p(x̃, ỹ, t̃ | ax ± ε, bx ± ε, ay ± ε, by ± ε).

The derivative of p with respect to the 4 boundaries is approximated as

∂4

∂ax∂bx∂ay∂by
p(x̃, ỹ, t̃)

≈

∑
k1,k2,k3,k4=±1

c{k1,k2,k3,k4}p(x̃, ỹ, t̃ | ax + k1ε, bx + k2ε, ay + k3ε, by + k4ε)

(2ε)4
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The finite difference approximation, however, introduces fundamental limitations

for the type of approximation that can be used and the degree of accuracy admis-

sible for this problem.

Consider an approximate solution p(k)(x̃, ỹ, t̃ | b) where we have included pa-

rameter b explicitly as a simplified notation for [ax, bx] and [ay, by] and we assume

that the approximation approaches the true solution as the discretization resolu-

tion k →∞. In general, the truncation error can be represented as

p(k)(x̃, ỹ, t̃|b)− p(x̃, ỹ, t̃|b) =
(1
k

)α
Freg(b) +

(1
k

)β
Firreg(b) + εmachFround(b),

(3.23)

for some α, β > 0; (1/k)αFreg(b) is the regular part of the truncation error, which is

a smooth function of b; (1/k)βFirreg(b) is the irregular part of the truncation error,

which is not smooth in b; and εmachFround(b) is the effect of round-off errors with

εmach ∼ 10−16 denoting the machine epsilon for IEEE double precision system.

Note that when expressed using the chain rule, both ∂

∂ax
and ∂

∂bx
contain

∂

∂b
. As a result, ∂2

∂ax∂bx
leads to ∂2

∂b2 . Although in the discussion below, for

simplicity, we only illustrate the numerical differentiation on the first derivative,

keep in mind that it is the second derivative that is more relevant in the calculation

of ∂4

∂ax∂bx∂ay∂by
p(x̃, ỹ, t̃).

The coefficient, Freg(b), of the regular part of truncation error is a smooth

function of b with derivative = O(1). The coefficient, Fround(b), in the effect

of round-off errors, behaves virtually like a random variable, discontinuous in b.

For the irregular part of truncation error, the coefficient Firreg(b) can be thought

of in general as continuous in b but not smooth in b where the derivative has

discontinuities. Linear interpolation applied to accommodate starting position or

ending position not falling on a grid point, for example, introduces this kind of
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irregular truncation error. Based on the expression we wrote out above for the

finite difference solution, applying the numerical differentiation with step ε yields:

p(k)( x̃, ỹ, t̃
∣∣∣ b+ ε)− p(k)( x̃, ỹ, t̃

∣∣∣ b− ε)
2ε =

∂

∂b
p( x̃, ỹ, t̃

∣∣∣ b) +O(ε2) +
(1
k

)α Freg(b+ ε)− Freg(b− ε)
2ε

+
(1
k

)β Firreg(b+ ε)− Firreg(b− ε)
2ε

+ εmach
Fround(b+ ε)− Fround(b− ε)

2ε .

In the equation above, as the step in the numerical differentiation is refined, the

first line of the RHS is well behaved, converging to the true value ∂
∂b
p(x̃, ỹ, t̃ | b)

as ε → 0. The second line of RHS, however, is problematic. As ε → 0, the

contribution from round-off error blows up to infinity

εmach
Fround(b+ ε)− Fround(b− ε)

2ε = O
(
εmach
ε

)
−→∞ as ε→ 0

For a fourth-order derivative, the error contribution of finite machine precision

becomes O(εmach/ε4) and a step size as big as ε ∼ 10−4 produces errors O(1).

This is catastrophic in instances where true values of the fourth order derivative

(the joint density) are smaller than 1.

3.3.4 Boundary derivatives with finite difference and ir-

regular truncation errors

The contribution from the irregular part of truncation error can also be prob-

lematic if the finite difference approximation of the derivative of Firreg(b) isO(kβ/ε).

Indeed, this is a property of the finite difference method because of the linear in-

terpolation necessary for function arguments not on grid points. Referring to the
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notation in (3.23), and setting k := 1/h, the interpolation error introduced by a

finite difference scheme at position b for the boundary parameters using step h

has the general form of

Interpolation error = O(h2)(1− remainder(b/h, 1))remainder(b/h, 1)

The coefficient part Firreg(b) = (1 − remainder(b/h, 1))remainder(b/h, 1) is con-

tinuous in b but not differentiable. Its first derivative has the behavior of

∂

∂b
Firreg(b) = 1

h
(1− 2remainder(b/h, 1)) .

The contribution from the irregular part of truncation error is

h2Firreg(b+ ε)− Firreg(b− ε)
2ε = O

(
h2

max(ε, h)

)

In the second order numerical differentiation, however, the contribution from the

irregular part of truncation error behaves like

h2Firreg(b+ ε)− 2Firreg(b) + Firreg(b− ε)
ε2 = O

(
h2

max(ε2, h2)

)

The interplay between h and ε limits the size ε we can use to perform density

calculations for a fixed step size h.

Hence, while finite difference approximations lead to sparse systems that can be

solved relatively fast, they impose a natural limit on the quality of the derivative.

On the other hand, eigenvalue expansions do not suffer from having irregular

truncation errors (leading to more accurate derivatives), but the system matrix is

dense and therefore the problems are slow to solve.
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3.4 A Novel Semidiscrete Galerkin Method

We propose a semidiscrete Galerkin (continuous in time, discrete in space)

solution to the general diffusion problem (3.9). The method relies on an analytic

approximation for the solution p(x̃, ỹ, t̃) for small time t̃ and a basic convergence

estimate from approximation theory for parabolic problems.

Our numerical method produces a functional representation of the approxi-

mate solution which (i) imposes a computational burden comparable to or better

than that of the finite difference method and (ii) is infinitely differentiable with

respect to the boundary parameters, allowing us to perform the crucial numerical

differentiation needed to obtain the density of interest.

As described in Section 3.3.1, the solution to the model problem (3.16) - (3.18)

has the eigenfunction expansion

p(x̃, ỹ, t̃) =
∞∑
ν=0

hνφν(x̃, ỹ)e−λν t̃,

where hν is the coefficient of φν(x̃, ỹ) in the eigenfunction expansion of p(x̃, ỹ, 0).

Proceeding with the standard Galerkin approach, we propose a solution p(k)(x̃, ỹ, t̃)

of similar form

p(k)(x̃, ỹ, t̃) =
k∑
i=0

ci(t̃)ψi(x̃, ỹ),

where the basis functions ψi(x̃, ỹ) satisfy the boundary conditions. We also require

that all first- and second-order derivatives of ψi(x̃, ỹ) are in L2(Ω̃), i.e. ψk(x̃, ỹ) ∈

W 2
2 (Ω̃). This will allow us to take derivatives of the approximate solution with

respect to the boundaries for the problem. Finally, we designate the set of basis

functions as

Sk := {ψ1(x̃, ỹ), . . . , ψk(x̃, ỹ)} .
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Since p(k) is an approximation to the solution p, it does not follow the differ-

ential equation exactly nor can it represent the initial condition fully. We capture

this by defining residuals

∂

∂t̃
p(k)(x̃, ỹ, t̃)− L̃p(k)(x̃, ỹ, t̃) := Re(k),

p(x̃, ỹ, 0)− p(k)(x̃, ỹ, 0) := R0(k).

There are various conditions that could be imposed on the residual functions (see

Section 2.10.3 of Norrie and De Vries [1973] for a summary). The orthogonality

condition coincides with the Galerkin procedure:

∫
Ω
Re(k)ψi(x̃, ỹ)dx̃ dỹ = 0,

∫
Ω
R0(k)ψi(x̃, ỹ)dx̃ dỹ = 0, i = 0, . . . k, (3.24)

which is equivalent to the weak formulation of the heat problem

〈
∂tp

(k)(x̃, ỹ, t̃), ψi
〉

=
〈
L̃p(k)(x̃, ỹ, t̃), ψi

〉
,〈

p(k)(x̃, ỹ, 0), ψi
〉

= 〈p(x̃, ỹ, 0), ψi〉 ,

where < ·, · > is the usual inner product in L2(Ω̃). The orthogonality conditions

(3.24) lead to the system of equations

M ċ(t̃) = Sc(t̃), (3.25)

Mc(0) = p(0), (3.26)

where M is the mass matrix, S is the stiffness matrix, and each component of

p(0) is the vector projection of p(x̃, ỹ, 0) onto the corresponding vector set in Sk.
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The matrices M and S, and the vector p(0) are constructed as:

[M ]ij =
∫

Ω̃
ψiψjdx̃ dỹ,

[S]ij = −1
2

∫
Ω̃

(
∂

∂x̃
ψi(x̃, ỹ)

)(
∂

∂x̃
ψj(x̃, ỹ)

)
dx̃ dỹ

− ρσỹ
∫

Ω̃

(
∂

∂x̃
ψi(x̃, ỹ)

)(
∂

∂ỹ
ψj(x̃, ỹ)

)
dx̃ dỹ

− 1
2σ

2
ỹ

∫
Ω̃

(
∂

∂ỹ
ψi(x̃, ỹ)

)(
∂

∂ỹ
ψj(x̃, ỹ)

)
dx̃ dỹ,

[p(0)]i =
∫

Ω̃
p(x̃, ỹ, 0)ψi(x̃, ỹ)dx̃ dỹ.

The entries of Sij are computed with integration by parts to enforce the boundary

conditions. Then, the semidiscrete Galerkin approximation becomes

p(k)(x̃, ỹ, t̃) = ψ(x̃, ỹ)T exp
(
M−1S t̃

)
c(0),

with ψ(x̃, ỹ) = (ψ0(x̃, ỹ), . . . , ψk(x̃, ỹ))T . Since both M and S are infinitely differ-

entiable with respect (ax, bx, ay, by) (each entry in the matrices has this property,

which can be seen in the defining expressions above), the system matrix M−1S is

infinitely differentiable with respect to the parameters (ax, bx, ay, by) as well. As

a consequence, the matrix exponential

exp
(
M−1S t̃

)
=
∞∑
n=0

1
n!
(
M−1S

)n
t̃n

is also infinitely differentiable with respect to the boundary parameters. Hence,

we can safely apply ∂
∂ax∂bx∂ay∂by

to the Galerkin approximation p(k)(x̃, ỹ, t̃) as long

as the derivatives of the vectors ψ(x̃, ỹ)T and c(0) exist. This is ensured as long

as each ψi(x̃, ỹ) is differentiable with respect to the boundary parameters, and

therefore the approximation of f(x, y, ax, bx, ay, by) based on p(k) exists.
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In general, both M and S are dense. Thus, the computational complexity of

the method is determined by the number of eigenfunctions needed to represent

the solution and, in general, need not be more efficient than a finite difference

method. However, unlike the trigonometric expansion approach in Section 3.3.1,

the Galerkin method presented here admits a much more general family of basis

functions which need not be separable. As a result, if chosen to accommodate the

correlation ρ in the differential operator, the basis family can yield systems that

are small enough to outperform the finite difference approach yet still accurate

enough to be useful. Below, we describe our choice of basis functions which satisfy

this criteria.

3.4.1 Basis Family

We motivate the construction of the basis functions by considering the funda-

mental solution for the unbounded problem (3.16). We choose the family of basis

functions Sk = {ψi(x̃, ỹ), 0 ≤ i ≤ k}

ψi(x̃, ỹ) = 1
2πσ̃2

√
1− ρ̃2 (3.27)

× exp
{
−((x̃− x̃i)2 − 2ρ̃(x̃− x̃i)(ỹ − ỹi) + (ỹ − ỹi)2)

2(1− ρ̃2)σ̃2

}

× x̃ (1− x̃) ỹ(1− ỹ)

for some parameters (ρ̃, σ̃) and a collection of nodes {(x̃i, ỹi)}ki=0 which form a

grid over Ω̃.

This grid is determined by the choice of kernel parameters (ρ̃, σ̃) with a scaling

parameter l, and it is defined in the following way. For a set of (ρ̃, σ̃, l), shift the

coordinate system so that (x̃′0, ỹ′0) = (1/2, 1/2). In the shifted coordinate system,

generate a rectangular grid, uniform in each of x- and y-directions, over the square
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Figure 3.1: A sample grid design for l = 1, σ = 0.3 and ρ = 0.6. The left panel
corresponds to the initial grid {(x′j, y′j)}k

′
j=0 over Ω (solid black square). The right

panel depicts the rotated initial grid. The set of final node points {(xi, yi)}ki=0 is
contained within Ω and is denoted by the red solid points.

region [1/2− 1/
√

2, 1/2 + 1/
√

2]× [1/2− 1/
√

2, 1/2 + 1/
√

2]. The grid size in the

x-direction is set to lσ̃(1 + ρ̃) and the grid size in the y-direction is lσ̃(1− ρ̃). The

square region is selected to ensure that after a π/4 rotation around (1/2, 1/2), the

rotated grid should cover the square [0, 1]× [0, 1] (see left panel of Figure 3.1).

The grid is comprised of all nodes within Ω̃:

{(x̃i, ỹi)}ki=0 =
{

(x̃j, ỹj)|(x̃j, ỹj) ∈ Ω̃, j = 0, . . . , k′
}
,

(see right panel of Figure 3.1). It should be noted that the level sets of the heat

kernel for the basis functions are ellipses with major and minor axes aligned with

the node points. Further, there is more resolution (ie. the node layout is denser)

along the direction corresponding to the smaller standard deviation of the basis

heat kernel in the principal coordinate frame. Finally, for a given l, nodes in either

principal direction are separated by l standard deviations of the basis heat kernel.

This layout naturally takes into account some degree of correlation ρ̃ so that the

small-time solution, having level sets similar to those of the kernels, can be better
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resolved. Essentially, the collection {ψi(x̃, ỹ|ρ̃, σ)}ki=0 is composed of fundamental

solutions to a heat diffusion problem tuned by σ and ρ̃, tampered such that their

support is on Ω̃, zero on the boundaries, still smooth, and inheriting the correlation

structure of the fundamental solution to the problem. For the purposes of this

paper, we found that keeping fixed l = 1 with a moderate ρ̃ (|ρ̃| ∼ 0.8) yields

reasonable results. It is important, however, that sign(ρ̃) = sign(ρ) so that the

problematic, narrow component of the small-time solution (which can be seen in

the minor axis of the contours of the small-time solution in the right panel of

Figure 3.2) can be resolved.

3.4.2 Small-time Solution

The initial condition for our problem requires that the basis family used for the

Galerkin method resolve very high-wave number terms necessary to approximate a

δ−like function. In order to avoid this and thereby reduce the computational load

for our method, we develop an analytic, small-time solution to the problem. In

addition to attenuating high-frequency terms by analytically evolving the process

forward in time for a short period, we also reduce the overall error of our method,

as will be demonstrated in Section 3.4.3.

The small-time solution is derived by enforcing only one boundary condition,

at the boundary that has the largest influence on the solution. We start with

the fundamental solution Gρ(x̃, ỹ, t̃|x̃0, ỹ0) for the unbounded problem in (3.16),

which is the bivariate Gaussian density with mean and covariance determined by

the initial condition and the diffusion parameters [Stakgold and Holst, 2011]. We

can then find a small enough t̃ε such that Gρ

(
x̃, ỹ, t̃ε |x̃0, ỹ0

)
is numerically zero

on the rest of the boundaries of Ω̃. We select the largest among all time instances

satisfying this condition. This is done in the following way.
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1. Scale and rotate the coordinate axes by the transformation T(3)

T(3) :

 ξ

η

 = 1√
2

 1√
1−ρ −

1
σỹ
√

1−ρ

1√
1+ρ

1
σỹ
√

1+ρ


 x̃

ỹ

 , (3.28)

p(ξ, η, t̃) = σỹ
√

1− ρ2 · p(x̃, ỹ, t̃),

so that the problem obeys the standard diffusion equation

∂

∂t̃
p(ξ, η, t̃) = 1

2
∂2

∂2ξ
p(ξ, η, t̃) + 1

2
∂2

∂2η
p(ξ, η, t̃)

on a computational domain now transformed to a parallelogram Ω(3) (see

left panel of Figure 3.2). The transformed initial condition will be denoted

as (ξ0, η0).

2. The fundamental solution G(ξ, η, t̃|ξ0, η0) in this coordinate frame which

does not take into account boundaries follows the zero-correlation bivariate

Gaussian probability density function

G(ξ, η, t̃|ξ0, η0) = 1
2πt̃ exp

(
−(ξ − ξ0)2 + (η − η0)2

2 t̃

)
.

We define the distance between G(ξ, η, t̃|ξ0, η0) and any of the linear bound-

aries of Ω(3) as the shortest distance between (ξ0, η0) to each of the boundary

segments (blue line segments in the left panel of Figure 3.2). There are four

such distances d1, d2, d3, d4; and assume that they are listed in increasing

magnitude. Note that the perpendicular intersections may not fall within

the line segment when the four line segments form a very skewed diamond.

At the line segment where we enforce the boundary condition, the perpen-

dicular intersection from (ξ0, η0) onto the boundary is always contained in
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the line segment. This boundary is nearest to (ξ0, η0), corresponds to the

shortest one of four distances.

Setting t̃ε = d2/8 ensures that the fundamental solution G(ξ, η, t̃ε|ξ0, η0) is at

most ≈ 10−15 on the second-nearest boundary, as well as the other two other

boundaries further away. In this way, G(ξ, η, t̃ε|ξ0, η0) numerically satisfies

the boundary condition on the three farthest boundaries.

3. Reflect the point (ξ0, η0) → (ξ′0, η′0) about the closest boundary. The im-

age function G(ξ, η, t̃ε|ξ′0, η′0) satisfies the diffusion equation and is equal to

G(ξ, η, t̃ε|ξ0, η0) on the closest boundary. Further, G(ξ, η, t̃ε|ξ′0, η′0) takes on

values less than 10−15 on all other boundaries, because it is outside of Ω(3).

For this same reason, the system of images numerically satisfies the initial

condition for the problem.

The small-time solution pε is the difference of the two images

pε(ξ, η, t̃) := G(ξ, η, t̃|ξ0, η0)−G(ξ, η, t̃|ξ′0, η′0),

satisfying all of the boundaries numerically and also satisfying the governing

diffusion equation for t̃ ≤ t̃ε, as illustrated in the left panel of Figure 3.2.

Performing a change of variables T−1
(3) : (ξ, η) → (x̃, ỹ) produces the small-

time solution pε(x̃, ỹ, t̃) in the normalized diffusion problem frame

pε(x̃, ỹ, t̃) = Gρ(x̃, ỹ, t̃|x̃0, ỹ0)−Gρ(x̃, ỹ, t̃|x̃′0, ỹ′0), (3.29)
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Figure 3.2: An example of the small-time solution p(ξ, η, tε) on the transformed
domain Ω̃ with τx = τy = 1 and ρ = 0.6. Left: The shaded red region is a heatmap
of the small-time solution in the transformed coordinate frame, while the blue line
segments represent the distance between the boundaries and the initial condition
coordinate. The green point outside of the computational domain is the center of
the reflected image (ξ′0, η′0) about the closest boundary. Right: The small-time
solution transformed back to the original coordinate system. Here, the contours
denote the level-sets for the function. They very closely approximate the level
sets for the fundamental solution of the unbounded problem (3.9)

where the function Gρ(·) is the shifted fundamental solution

Gρ(x̃, ỹ, t̃|x̃0, ỹ0) =

1
2π t̃σỹ

√
1− ρ2 exp

−
[
(x̃− x̃0)2 σ2

ỹ + (ỹ − ỹ0)2 − 2ρ(x̃− x̃0)(ỹ − ỹ0)σỹ
]

2 t̃ σ2
ỹ(1− ρ2)


as illustrated in the right panel of Figure 3.2.

Using Theorem 5.E of Zeidler [1995], we can solve for p(x̃, ỹ, t̃) by considering

the smooth p(x̃, ỹ, t̃ε) as an initial condition and evolving it forward in time by
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t̃− t̃ε. This replaces initial condition in (3.26) with

Mc(t̃ε) = p(t̃ε), (3.30)

[p(t̃ε)]i =
∫

Ω̃
p(x̃, ỹ, t̃ε)ψi(x̃, ỹ)dx̃ dỹ.

Intuitively, the bigger t̃ε, the smaller both errors Re(k) and R0(k) will be in

approximating the solution for the initial value p(x̃, ỹ, t̃ε). On the other hand,

for large t̃ε, the error in the small-time approximate solution will be significant.

The selection of t̃ε = d2/8 is a good compromise for accommodating these two

opposing forces in reducing errors.

3.4.3 Error Bound

A bound on the closeness of the approximate solution p(k)(x̃, ỹ, t̃) to the strong

solution p(x̃, ỹ, t̃) is developed in Bramble et al. [1977]. Their result shows that

the Galerkin approximation we use converges to the strong solution in L2(Ω̃), and

it motivates the thrust of our numerical solution. First, we define the error term

e(k)(t) = p(x̃, ỹ, t̃)− p(k)(x̃, ỹ, t̃),

as well as the norm

‖w‖2 =
∞∑
j=0

λ2
j 〈w, φj〉

2

for the eigenpairs (λj, φj) of the operator L. The ‖·‖2 norm used in Bramble et al.

[1977] captures the variation in a given function: for any set of eigenpairs {(λj, φj)}

over the domain Ω̃, increasing the absolute value of λj with j corresponds to a

function φj with increasing number of oscillations over Ω̃. The ‖ · ‖2 norm is

distinct from the usual L2(Ω̃) norm , which we denote as ‖ · ‖L2(Ω̃). As referred to
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in Bramble et al. [1977], functions w ∈ L2(Ω̃) with ‖w‖2 <∞ are also in W 2
2 (Ω̃).

Finally, if we have the condition (corresponding to equation 2.1 in Bramble et al.

[1977])

‖p(x̃, ỹ, t̃ε)− p(k)(x̃, ỹ, t̃ε)‖L2(Ω̃) ≤ C h(k)2‖p(x̃, ỹ, t̃ε)‖2, (3.31)

where h(·) is a decreasing function of k > 0, Theorem 2.1 in Bramble et al. [1977]

applies and we have the error estimate

‖e(k)(t)‖L2(Ω̃) ≤ Ch(k)2‖p(x̃, ỹ, t̃ε)‖2. (3.32)

Here, the constant C and the function h(k) are the same as in (3.31). The implica-

tion is that if the basis functions in Sk represent the small-time solution p(x̃, ỹ, t̃ε)

with no error, the Galerkin solution forward in time is also without error.

We can ensure condition (3.31) is met if Sk is complete in L2(Ω̃) as k grows.

The other two conditions necessary for the error bound to apply are demonstrated

by Bramble et al. [1977] for the Galerkin method. Equation (3.32) can be summa-

rized in a simple way: the error of the method is controlled by how much variation

the small-time solution has; the rate of decrease of the error is controlled by how

well the span of Sk represents the small-time solution compared to the variation of

the initial condition as k increases. In the context of (3.32), our method, with its

small-time analytic solution and choice of basis functions, is specifically tailored

to minimize the error between the strong solution and its Galerkin approximation

under L2(Ω̃).
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3.5 Estimation

The pdf from (3.6) provides the likelihood necessary for frequentist and Bayesian

inference in bivariate settings. Likelihood-free approaches, like that of Rogers and

Satchell [1991] and Rogers et al. [2008], on the other hand suffer from being sub-

optimal when data are independent and identically distributed (i.i.d.) and cannot

be easily extended to the non-i.i.d. case.

To illustrate the suboptimality of likelihood-free estimators for the i.i.d. case,

we consider maximum likelihood inference from an i.i.d. sample Z1, . . . , Zn, where

Zi = (Xi, Yi,mx,i,Mx,i,my,i,My,i), where Xi and Yi corresponds to log returns of

the two assets, mx,i and my,i correspond to the minimum log-returns observed

during the day, and Mx,i and My,i correspond to the maximum log returns. Com-

putation of the maximum likelihood estimation (MLE) is based on an iterative

derivative-free numerical algorithm to maximize the likelihood (the Nelder-Mead

method; see Lagarias et al. [1998] for review and convergence properties). This is

feasible even for moderate to large sample sizes, because our numerical method

is specifically designed for computational efficiency for repeatedly evaluating the

density function (3.6).

3.5.1 Consistency

In this section we prove that the MLE based on the Galerkin approximation

p(k)(x̃, ỹ, t̃) is consistent. To do so, we first show that the distribution on Z based

on the approximate p(k)(x̃, ỹ, t̃) converges to the true distribution F (·|θ). Define

the approximate probability density

f (k)(x, y, ax, bx, ay, by) := ∂4

∂ax∂bx∂ay∂by
q(k)(x̃, ỹ, t̃). (3.33)
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At this point we will assume that for a sufficiently large k, f (k)(z) is positive for all

z ∈ Z and is integrable over Z. As such, we may regard it as a proper probability

density function with the cumulative probability density and probability measure

over Z being

F (k)(z|θ) =
∫ ax

−∞

∫ ay

−∞

∫ bx

−∞

∫ by

−∞

∫ x

−∞

∫ y

−∞

∂4

∂a′x∂b
′
x∂a

′
y∂b
′
y

q(k)(x′, y′, t|a′x, b′x, a′y, b′y) dz,

(3.34)

Pr
k

(A) :=
∫
A
f (k)(z) dz, for any measurable A ⊂ Z, (3.35)

where z = (x, y, ax, bx, ay, by). We will prove that for every z ∈ Z,

lim
k→∞

F (k)(z|θ) = F (z|θ).

First, we prove the Lemma

Lemma 1.

lim
k→∞

∫ bx

ax

∫ by

ay
f (k)(x, y, ax, bx, ay, by) dx dy =

∫ bx

ax

∫ by

ay
f(x, y, ax, bx, ay, by) dx dy.

Proof. Define the sets of form, for z = (x, y, ax, bx, ay, by),

B(ax, bx, ay, by) =

{z′ ∈ Z |z′ ∈ [ax, bx]× [ay, by]× [ax,∞)× (−∞, bx]× [ay,∞)× (−∞, by]} .

Elements within B(ax, bx, ay, by) are equivalent to sample paths that stay within
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the region [ax, bx]× [ay, by]:

B(ax, bx, ay, by) =

{ω ∈ W |Xω(t) ∈ [ax, bx], Yω(t) ∈ [ay, by],

mx ∈ [ax, bx),Mx ∈ (ax, bx],my ∈ [ay, by),My ∈ (ay, by]} .

Then

Pr(B(ax, bx, ay, by)) =
∫
B(ax,bx,ay ,by)

f(z) dz

=
∫ ∞
ay

∫ by

−∞

∫ ∞
ax

∫ bx

−∞

∫ bx

ay

∫ bx

ax
f(x′, y′, a′x, b′x, a′y, b′y)dx′ dy′ da′x db′x da′y db′y

=
∫ bx

ax

∫ by

ay
q(x, y, ax, bx, ay, by) dx dy, (3.36)

where the last equality employs the interpretation of q in (3.3) and we can freely

change the order of integration as f is bounded for all z ∈ Z. Similarly,

Pr
k

(B(ax, bx, ay, by)) =
∫ bx

ax

∫ by

ay
q(k)(x, y, ax, bx, ay, by) dx dy.

From (3.36), the partial derivative of the probability Pr(B(ax, bx, ay, by)) is well-

defined and can be written as

∂4

∂ax∂bx∂ay∂by
Pr(B(ax, bx, ay, by)) =

∫ bx

ax

∫ by

ay
f(x, y, ax, bx, ay, by) dx dy.

The second-order finite difference approximation the above expression can be ex-
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pressed as a linear combination of probabilities of perturbed sets B(·):

lim
ε→0

1
ε4

16∑
i=1

c(i) Pr(B(ax + k1(i)ε, bx + k2(i)ε, ay + k3(i)ε, by + k4(i)ε) =

∂4

∂ax∂bx∂ay∂by
Pr(B(ax, bx, ay, by)),

where c(i) and k(i) are functions mapping index i to the corresponding coeffi-

cient in the second-order finite difference approximation c(i) → {−1, 1}, kj(i) →

{−1, 1}. Using Big-O notation, for a sufficiently small ε

16∑
i=1

c(i) Pr(B(ax + k1(i)ε, bx + k2(i)ε, ay + k3(i)ε, by + k4(i)ε) =

ε4
∂4

∂ax∂bx∂ay∂by
Pr(B(ax, bx, ay, by)) +O(ε6; ax, bx, ay, by). (3.37)

The convergence result in Section 3.4.3 implies that

Pr
k

(B(ax + k1(i)ε, bx + k2(i)ε, ay + k3(i)ε, by + k4(i)ε) =∫ bx+k2(i)ε

ax+k1(i)ε

∫ by+k4(i)ε

ay+k3(i)ε
q(k)(x, y, ax + k1(i)ε, bx + k2(i)ε, ay + k3(i)ε, by + k4(i)ε) dx dy →∫ bx+k2(i)ε

ax+k1(i)ε

∫ by+k4(i)ε

ay+k3(i)ε
q(x, y, ax + k1(i)ε, bx + k2(i)ε, ay + k3(i)ε, by + k4(i)ε) dx dy =

Pr(B(ax + k1(i)ε, bx + k2(i)ε, ay + k3(i)ε, by + k4(i)ε) as k →∞ in L2(Ω).

Hence, for a sufficiently large k dependent on the supremum over i, and given the

error estimate in (3.32), we obtain the relation

Pr
k

(B(ax + k1(i)ε, bx + k2(i)ε, ay + k3(i)ε, by + k4(i)ε) =

Pr(B(ax + k1(i)ε, bx + k2(i)ε, ay + k3(i)ε, by + k4(i)ε)

+O(h(k)2; ax + k1(i)ε, bx + k2(i)ε, ay + k3(i)ε, by + k4(i)ε)
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Note here that the dominating terms O(h(k)2; ·) are differentiable with respect

to the boundary parameters (ax, bx, ay, by) since q and q(k) have this property.

Therefore, if we replace Pr(·) in (3.37) with Prk(·)

16∑
i=1

c(i) Pr
k

(B(ax + k1(i)ε, bx + k2(i)ε, ay + k3(i)ε, by + k4(i)ε) =

16∑
i=1

c(i) Pr(B(ax + k1(i)ε, bx + k2(i)ε, ay + k3(i)ε, by + k4(i)ε)

+
16∑
i=1

c(i)O(h(k)2; ax + k1(i)ε, bx + k2(i)ε, ay + k3(i)ε, by + k4(i)ε) =

ε4
∂4

∂ax∂bx∂ay∂by
Pr(B(ax, bx, ay, by)) +O(ε6; ax, bx, ay, by)

+
16∑
i=1

c(i)O(h(k)2; ax + k1(i)ε, bx + k2(i)ε, ay + k3(i)ε, by + k4(i)ε).

Dividing both sides by ε4 produces

1
ε4

16∑
i=1

c(i) Pr
k

(B(ax + k1(i)ε, bx + k2(i)ε, ay + k3(i)ε, by + k4(i)ε) =

∂4

∂ax∂bx∂ay∂by
Pr(B(ax, bx, ay, by)) +O(ε2; ax, bx, ay, by)

+ 1
ε4

16∑
i=1

c(i)O(h(k)2; ax + k1(i)ε, bx + k2(i)ε, ay + k3(i)ε, by + k4(i)ε).

As mentioned above O(h(k)2; ·) is differentiable with respect to the boundary

parameters, so that the right-most term is still O(h(k)2) as ε → 0. Taking the

limit in ε, we have

∫ bx

ax

∫ by

ay
f (k)(x, y, ax, bx, ay, by) dx dy = ∂4

∂ax∂bx∂ay∂by
Pr
k

(B(ax, bx, ay, by))

= ∂4

∂ax∂bx∂ay∂by
Pr(B(ax, bx, ay, by)) +O(h(k)2; ax, bx, ay, by)

=
∫ bx

ax

∫ by

ay
f(x, y, ax, bx, ay, by) dx dy +O(h(k)2; ax, bx, ay, by).
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Therefore, we have the desired result:

lim
k→∞

∫ bx

ax

∫ by

ay
f (k)(x, y, ax, bx, ay, by) dx dy =

∫ bx

ax

∫ by

ay
f(x, y, ax, bx, ay, by) dx dy.

Lemma 2 (Convergence in distribution). For any z ∈ Z, limk→∞ F
(k)(z|θ) =

F (z).

Proof. Let

I(k)(z) =
∫ x

ax

∫ y

ay
f (k)(u, v, ax, bx, ay, by) du dv

and let

I(z) =
∫ x

ax

∫ y

ay
f(u, v, ax, bx, ay, by) du dv.

It is possible to show that limk→∞ I
(k)(z) = I(z) as a consequence of Lemma 1

by considering some χk(z) ∈ Sk approximating the indicator 1(u ≤ x, v ≤ y) as

k →∞ and setting up a triangle inequality. However, we will omit this technical

detail here.

Next, we know that I(z) is integrable over (ax, bx, ay, by) as Pr(Z) = PW (W ) =

1. The Dominated Convergence Theorem applies, and we therefore have

lim
k→∞

∫ ax

−∞

∫ bx

−∞

∫ ay

−∞

∫ by

−∞
I(k)(z)da′xdb′xda′ydb′y =

∫ ax

−∞

∫ bx

−∞

∫ ay

−∞

∫ by

−∞
I(z)da′xdb′xda′ydb′y,

which implies the result of the Lemma.

Lemma 3. Assuming that θ is bounded, the maximum likelihood estimator is

consistent as n → ∞ (number of data points) and k → ∞ (number of basis

elements):

θ̂n,k → θ.
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Proof. By Lemma 2

Zk
d−→ Z as k →∞.

Next, given Theorem 4.1 in Singler [2008], we know that, for each k, qk is analytic

in both the diffusion parameters and boundary parameters. Hence, the probability

density function satisfies the criteria A1 - A6 in Casella and Berger [2002] to

guarantee that, for data Zk ∼ Fk(θ),

θ̂n,k(Zk)
p−→ θ as n→∞.

Now we need to show that the same holds for data sampled from F as k → ∞.

To do this, we will use Chebyshev’s inequality:

Pr
Z

(∣∣∣θ̂n,k(Z)− θ
∣∣∣ ≥ ε

)
≤

EZ
[
(θ̂n,k(Z)− θ)2

]
ε2

.

Because the approximate likelihood function f (k) is continuous with respect to the

data parameter z, the estimator θ̂n,k(z) is a continuous function with respect to z

as well. Further because we have bounded θ̂ from below and above,

EZk
[
(θ̂n,k(Zk)− θ)2

]
→ EZ

[
(θ̂n,k(Z)− θ)2

]
as k →∞

by the portmanteau lemma. Finally, we can show that

EZk
[
(θ̂n,k(Zk)− θ)2

]
→ 0 as n→∞, (3.38)

since the expected value of the MLE under F (·) tends to θ and its variance goes

to 0 when n→∞. Therefore, given any ε > 0 and δ > 0, we can find a sufficiently
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large n and k such that

Pr
Z

(∣∣∣θ̂n,k(Z)− θ
∣∣∣ ≥ ε

)
≤

EZ
[
(θ̂n,k(Z)− θ)2

]
ε2

< δ

3.5.2 Exploring the feasibility range for the Galerkin so-

lution

In this section we explore the numerical limitations of the Galerkin solution in

terms of its finite basis expansion and what ranges for t̃ can be accommodated. As

described in Section 3.4.1, the semidiscrete Galerkin method that we use to com-

pute the likelihood function requires a choice for the kernel parameters (ρ̃, σ̃, l).

Given finite restrictions on memory and compute time, σ̃ cannot be made arbitrar-

ily small nor can ρ̃ be made arbitrarily close to −1 or 1 in order to accommodate

all possible data. In particular, if the geometry of the problem is such that the

small-time approximation does not sufficiently depart from the δ-function form

of the initial condition, then there is no finite (ρ̃, σ̃, l) combination to produce an

accurate likelihood solution for arbitrarily small t̃ in the normalized T(2) frame.

We illustrate this numerical limitation in Figures 3.3 - 3.5 by simulating 13 data

points with σx = 1, σy = 1, ρ = 0.95, transforming the problem to the normalized

coordinate frame, and varying t̃ while keeping the other parameters fixed at their

data-generating values. Keeping l = 1 fixed, we also vary the basis-generating

parameters σ̃ and ρ̃ to test what t̃ regimes can be accommodated. The finite-

difference step used to derive the likelihood function is of size ∆ = 1/32 with

O(∆2) order accuracy. The inner products that are needed to establish the sys-

tem of equations for the method are computed using Simpson’s rule on a regular
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250× 250 grid.

The data point in Figure 3.3 is somewhat typical of the other ones featured

in Figures 3.4 - 3.5: there are no valid solutions for very small t̃ irrespective of

basis parameter choice (usually in this regime the likelihood produced by Galerkin

solution is negative and thus identified as inadmissible) and solutions converge for

t̃ > 1. The transient region between these regimes is the most problematic, partic-

ularly when the solution produces large positive values in what should be relatively

low-likelihood regions; an example is the low-resolution parameter combination

(ρ̃ = 0.4, σ̃ = 0.16). Moreover, there is no clear sign of convergence of the solution

for t̃ < 3/4, although the combinations (ρ̃ = 0.5, σ̃ = 0.08), (ρ̃ = 0.6, σ̃ = 0.08),

and (ρ̃ = 0.6, σ̃ = 0.12) give similar results. A feasible compromise that may oper-

ationalize the Galerkin solution in the context of maximum likelihood estimation

is to use a relatively high-resolution basis expansion, such as the one corresponding

to (ρ̃ = 0.6, σ̃ = 0.08, l = 1) and replace inadmissible likelihood values generated

for small t̃ with 1 ·10−16. Further, this constant is also applied for likelihoods with

t̃ < 0.25, since the data points considered here clearly show that the numerical so-

lution deteriorates in this region regardless of parameter choice and the likelihood

values produced therein, even if positive, should not be used. This very rough ap-

proximation may have a variety of effects on the estimation procedure, the most

obvious of which being the diverting of the convergence path of the optimization

procedure regardless of algorithm used. This may be especially true in the early

stages of the optimization scheme when the parameter space is being explored.

3.5.3 Simulation Study

In this section we study the maximum likelihood estimates based on the

Galerkin solution with the above estimated t̃ cutoffs on via a simulation study.
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Figure 3.3: Log-likelihood as a function of t̃ for one of the 13 data points, com-
puted with different (ρ̃, σ̃) combinations. The quality of the solution deteriorates
for t̃ < 1/2. For sufficiently small t̃, there are no valid solution values produced.
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Figure 3.4: Data points 2 through 7 used to test various parameter values for
basis generation. Legend is the same as in Figure 3.3.
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Figure 3.5: Data points 8 through 13 used to test various parameter values for
basis generation. Legend is the same as in Figure 3.3.
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Figure 3.6: Data generated with ρ = 0.95. Kernel-density approximations of the
repeated-sampling densities of the MLEs are shown. Samples are obtained from
the Galerkin likelihood (green) and the classical likelihood (red) and the Rogers
estimator (blue). The data-generating parameters are denoted with the vertical
solid line.
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ρ = 0.95 ρ = 0.60 ρ = 0.0
m = 4 m = 8 m = 16 m = 4 m = 8 m = 16 m = 4 m = 8 m = 16

σ̂x 0.475 1.238 1.304 0.203 0.127 0.232 0.137 0.243 0.167
σ̂y 0.593 1.040 1.088 0.111 0.120 0.260 0.189 0.171 0.107
ρ̂ 0.287 0.910 0.445 0.315 0.283 0.463 0.517 0.365 0.194

Table 3.1: Ratios of Galerkin to Gaussian MSEs for the three simulation cases.

Data is generated with zero drift via forward Euler discretization where the ob-

tained discrete-time extremes are recorded and used as the realized extremes of

the process. Simulations are generated with the same parameters

µx = 0, µy = 0, σx = 1, σy = 1, ρ = (0, 0.6, 0.95)

Without loss of generality, the drift parameters are assumed known, so that the

MLE is comprised of the diffusion and correlation parameters: θ̂ = (σ̂x, σ̂y, ρ̂). The

repeated-sampling distributions of the MLEs are approximated by computing the

MLE for each of n = 50 simulated path realizations, where each realization is

divided into m = 4, 8, 16 equal intervals with their respective OCHL data. If

we think of each path as a 6.5 hour trading day, this procedure is equivalent to

estimating daily volatility and correlation for two assets using ∼ 90, 45, and 12

min intervals throughout the trading day. Given the finite number of realizations

n, we construct a kernel density estimate of the repeated-sampling distribution.

Results are compared to the repeated-sampling distribution of the MLE based

on the usual bivariate normal likelihood which does not take into account the

boundaries, as well as the best-in-class unbiased estimator that uses OCHL data

(see Rogers et al. [2008]), which we term the Rogers estimator.
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3.6 Results and Discussion

Figure 3.6 shows the kernel density approximations of the repeated-sampling

distribution for the MLE in the case of ρ = 0.95. The MSE ratios for the es-

timators are shown Table (3.1). The approximate Galerkin likelihood produces

estimates with smaller MSE for ρ across all m ranges but fails to do so for the

variance parameters σx and σy. However, in those cases the MSE of the Galerkin

likelihood is biased by a small number of outlier estimates which are easily ob-

served in the kernel density plots of Figure 3.6. We hypothesize that such outliers

are due to the high degree of resolution in the solver necessary for the ρ = 0.95

case and the approximation made by replacing negative likelihood values or like-

lihoods computed in regions with t̃ < 0.25 by a small numerical constant. In

some cases, this can skew the optimization algorithm to regions which are not

global maxima, especially in the early stages of optimization where low-likelihood

regions are explored. The degree of this problem is not as great in the more mild

ρ = 0 and ρ = 0.60 scenarios, as judged by the MSE ratios in Table (3.1). Yet

there seem to be some cases of outliers in the estimates for the Galerkin method

for these cases, as shown in Figures 3.7 and 3.8. This is more difficult to judge

given the inherently greater degree of repeated sampling variability of the estima-

tors in these scenarios. However, the combined evidence from the approximate

repeated-sampling distributions, the non-uniform MSE ratios, and the break in

monotonicity with respect to increasing m in the MSE of the Galerkin method

(see Table (3.2)) all show that, despite providing a more powerful statistical esti-

mator as a whole, the Galerkin likelihood developed here stands to be improved

with respect to resolving likelihoods in the small-t̃ regions, as well as the transient

region t̃ described above. The analytic result and asymptotic matching solution

to address this need is developed in the following chapter.
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Figure 3.7: Data generated with ρ = 0.60. Kernel-density approximations of the
repeated-sampling densities of the MLEs are shown. Samples are obtained from
the Galerkin likelihood (green) and the classical likelihood (red) and the Rogers
estimator (blue). The data-generating parameters are denoted with the vertical
solid line.
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ρ = 0.95 ρ = 0.60
m = 4 m = 8 m = 16 m = 4 m = 8 m = 16

σ̂x 0.0458 0.0825 0.0315 0.0175 0.00933 0.00807
σ̂y 0.0608 0.0772 0.0262 0.0124 0.00952 0.00747
ρ̂ 0.00120 0.000802 0.000391 0.0494 0.0164 0.0148

ρ = 0.0
m = 4 m = 8 m = 16

σ̂x 0.0458 0.0825 0.0315
σ̂y 0.0608 0.0772 0.0262
ρ̂ 0.00120 0.000802 0.000391

Table 3.2: MSEs for the Galerkin likelihood solution for the three simulation
cases.

84



Chapter 4

Analytically Resolving the

Transient Region of the Galerkin

Solution

Chapter 3 introduced a semidiscrete (finite element) Galerkin method for solv-

ing the standardized diffusion problem (3.16). The Galerkin method is most ap-

propriate for moderate to large times, since numerical errors are attenuated with

increasing diffusion time t̃. Further, numerical simulations demonstrated the need

to resolve the likelihood function for small t̃ in order to fully use the information

present in OCHL data. We will call this parameter rage the incomputable region

of the Galerkin solver. For parameters in the incomputable region, a sufficient

condition to flag them as such is if the numerical derivative of the finite element

solution with respect to the boundary parameters produces a negative value. How-

ever, this is not a necessary condition, and in practice this is an insidious problem:

parameter combinations which should be attributed with a very small likelihoods

may be given values orders of magnitude higher than they should and thus bias
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any inferential procedure (see Figure 3.3 in Chapter 3) for an illustration). In this

chapter, we develop an analytic solution applicable in a small-t̃ region. In addi-

tion to having its own well-defined criteria for appropriate use (namely an upper

bound on t̃ as well as an upper bound on σ̃). In this chapter we also develop

an analytic matching solution that bridges the small-t̃ solution and the Galerkin

solution across the transient t̃ region.

4.1 A small-time solution to the PDE, revisited

As part of the overall Galerkin method, Chapter 3 introduced a small-time ap-

proximation for the normalized diffusion problem (3.16) via the method of images

(see Section 3.4.2). By reflecting the fundamental solution (i.e. the solution to

the governing PDE without the boundary conditions) about the closest boundary

and picking a sufficiently small t̃ε, the sum of images function (3.29)

pε(x̃, ỹ, t̃) = G(x̃, ỹ, t̃|x̃0, ỹ0)−G(x̃, ỹ, t̃|x̃′0, ỹ′0) (4.1)

satisfies the initial condition, the governing PDE, and the boundary conditions.

However, because the analytic dependence of this small-time approximation on the

boundaries is only through the location parameters (x̃′0, ỹ′0) of the single reflected

image, differentiating with respect to all four boundaries yields a uniform zero

value in computing the transition density ∂4

∂ax∂bx∂ay∂by
p(x̃, ỹ, t̃).

4.1.1 Uniqueness and Symmetry Condition

The insufficiency of the previous small-time solution suggests extending the

system of images by performing more than a single reflection. If there exists an

image whose location is the result of at least one reflection about each of the four
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boundaries, then this image is guaranteed to have a non-trivial contribution to the

density ∂4

∂ax∂bx∂ay∂by
p(x̃, ỹ, t̃). An immediate problem with the extension, however,

is the uniqueness of the resultant approximate density function. To illustrate the

problem, consider the two systems of images constructed by carrying out the series

of reflections

R1 := {1, 2, 3, 4} , R2 := {2, 3, 4, 1} , (4.2)

where {ri, rj, rk, rl} denotes the set of images generated by the following steps

1. ri : Reflect the initial condition (x̃0, ỹ0) about boundary ri to produce coor-

dinate (x̃ri , ỹri). The system of images consists of locations

{(x̃0, ỹ0), (x̃ri , ỹri)}

with signs {1,−1}.

2. rj : Reflect each of {(x̃0, ỹ0), (x̃ri , ỹri)} about boundary rj and add to existing

set of images to produce

{
(x̃0, ỹ0), (x̃ri , ỹri), (x̃rj , ỹrj), (x̃rj ,ri , ỹrj ,ri)

}

with signs {1,−1,−1, 1}.

3. rk : Reflect each of
{

(x̃0, ỹ0), (x̃ri , ỹri), (x̃rj , ỹrj), (x̃rj ,ri , ỹrj ,ri)
}
about bound-

ary rk and add to existing set of images to produce

{
(x̃0, ỹ0), (x̃ri , ỹri), (x̃rj , ỹrj), (x̃rj ,ri , ỹrj ,ri),

(x̃rk , ỹrk), (x̃rk,ri , ỹrk,ri), (x̃rk,rj , ỹrk,rj), (x̃rk,rj ,ri , ỹrk,rj ,ri)
}

87



with signs {1,−1,−1, 1,−1, 1, 1,−1}.

4. rl : Reflect each of the existing image locations about boundary rl and add

to the existing set of images.

Here, boundary 1 corresponds to ỹ = 0, boundary 2 to x̃ = 1, boundary 3 to

ỹ = 1, and boundary 4 to x̃ = 0. Given the set {ri, rj, rk, rl}, we re-define pε as

the the sum of all J = 16 images

pε(x̃, ỹ, t̃) =
J∑
j=1

(−1)n(j)G(x̃, ỹ, t̃|x̃(j), ỹ(j)),

where n(j) is the number of reflections performed to produce image j, and (x̃(j), ỹ(j))

is the jth image location in the sequence at the end of Step 4 above. The newly

defined pε analytically satisfies the boundary condition at rl (since it is the last

reflection), and it also satisfies the PDE. Once again we can choose a sufficiently

small t̃ε such that the boundary conditions at ri, rj, and rk hold numerically as

well.

Referring back to the example reflection sets in (4.2), although not identical,

the two solutions to the PDE problem corresponding to R1 and R2 have mini-

mal relative differences. From a numerical implementation standpoint, there is

only near machine-ε difference between them. However, the two solutions have a

single image, (x̃1,2,3,4, ỹ1,2,3,4) and (x̃2,3,4,1, ỹ2,3,4,1) respectively, whose location is a

function of all four boundaries, and this single image entirely defines the corre-

sponding density function ∂4

∂ax∂bx∂ay∂by
pε. Because the location parameters of these

images are different, the joint densities of (x0, y0, x, y, ax, bx, ay, by) derived from

the two PDE solutions are consequently very different as well. Uniqueness of the

solution using the method of images is achieved by performing an infinite number

of reflections, which is not always possible (see Section 4.3 below).
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A condition weaker than uniqueness which nonetheless restricts the solution

space is the symmetry obeyed by the problem. We consider the transformation

xnew = (ax + bx)− xold,

ynew = (ay + by)− yold.
(4.3)

The PDF solution to the initial-boundary problem of the diffusion equation and

joint density of (x0, y0, x, y, ax, bx, ay, by) are invariant with respect to this trans-

formation. Under the normalized problem, when (x̃0, ỹ0) = (1/2, 1/2) and ρ = 0,

the proposed system of images must map to itself under the corresponding coor-

dinate transformation. Further, if we require that the system of images contain

the fewest possible elements, then the unique system of images is the union of the

sets of reflections

{2, 4, 1, 3} ∪ {2, 4, 3, 1} ∪ {4, 2, 1, 3} ∪ {4, 2, 3, 1} . (4.4)

When (x̃0, ỹ0) = (1/2, 1/2) and ρ = 0, the set of images from (4.4) is closed under

the transformation as desired:

{2, 4, 1, 3} → {4, 2, 3, 1},

{2, 4, 3, 1} → {4, 2, 1, 3},

{4, 2, 1, 3} → {2, 4, 3, 1},

{4, 2, 3, 1} → {2, 4, 1, 3}.

This is illustrated in Figure 4.1. Removing duplicate member images of (4.4) and
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summing over the remaining J∗ ≤ 64, we define the new small-time solution

pε(x̃, ỹ, t̃) =
J∗∑
j=1

(−1)n(j)G(x̃, ỹ, t̃|x̃(j), ỹ(j)). (4.5)

We can control the relative error of the approximation by setting the minimum

absolute value of pε at the boundaries and solving for t̃ε.

4.2 Calculation of the Joint Density

Out of the J∗ images in (4.5), exactly four have location parameters dependent

on all of the boundary parameters (ax, bx, ay, by). Hence, the density calculation

with the small-time solution becomes

∂4pε(x̃, ỹ, t̃)
∂ax∂bx∂ay∂by

=
4∑

j′=1

∂4G(x̃, ỹ, t̃|x̃(j′), ỹ(j′))
∂ax∂bx∂ay∂by

. (4.6)

One approach to compute the derivatives in (4.6) is to numerically perturb the

boundary parameters (ax, bx, ay, by) and use a finite difference approximation di-

rectly on the sum (4.5). However, since the small-time solution generally requires

the use of a small time t̃ ≤ t̃ε � 1, numerical underflow makes direct application

of finite difference hopeless. We can, however, leverage the very tractable analytic

form of the Gaussian kernel G(·) in (3.30) by defining the following factors to

more easily express the higher-order derivatives applied to (4.6)

C(t̃, σỹ, ρ) := − 1
2 t̃ σ2

ỹ(1− ρ2) , (4.7)

Pj(x̃, ỹ|x̃(j), ỹ(j)) :=
(
x̃− x̃(j)

)2
σ2
ỹ +

(
ỹ − ỹ(j)

)2
− 2ρ(x̃− x̃(j))(ỹ − ỹ(j))σỹ. (4.8)
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Figure 4.1: The finite system of images resultant from the sequence of reflections
in the set (4.4), for (x̃0, ỹ0) = (1/2, 1/2) and ρ = 0. All points outside Ω̃ are
image position resulting from the reflections, where the solid green points have
positions dependent on (x̃0, ỹ0) as well as all of the boundaries, and only they
contribute to the likelihood solution as given in (4.6). The green colored points
are symmetric about the initial condition with respect to horizontal and vertical
reflections centered on (x̃0, ỹ0) and hence are closed under the transformation
(4.3). Moreover, this configuration is unique under the symmetry and minimal
number of images conditions.
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The two key observations here are that Pj(·) is independent of t̃, meaning C(·)

carries the t̃ dependency in differentiation and that only Pj is dependent on the

boundary parameters through x̃(j) and ỹ(j). Without loss of generality, we can

express the derivatives:

∂4

∂ax∂bx∂ay∂by
G(x̃, ỹ, t̃|x̃(j), ỹ(j)) = (4.9)

G · C4 ·
(
∂ax∂bx∂ay∂by

)
P

+G · C3 ·
(
∂2
ax bx∂ay∂by + ∂2

ax ay∂bx∂by + ∂2
ax by∂bx∂ay+

+∂2
bx ay∂ax∂by + ∂2

bx by∂ax∂ay∂
2
ay by∂ax∂bx

)
P

+G · C2 ·
(
∂3
ax bx ay∂by + ∂2

ax bx∂
2
ay by + ∂3

ax bx by∂ay+

+∂3
ax ay by∂bx + ∂2

ax ay∂
2
by bx + ∂3

bx ay by∂ax + ∂2
bx ay∂ax∂by

)
P

+G · C · ∂4
ax bx ay byP, (4.10)

where ∂xG := ∂G/∂x , ∂2
x yG := ∂2G/∂x∂y, ∂x∂yG := ∂G/∂x · ∂G/∂y, etc. With

(4.10), we can express each of the derivatives in (4.6) as the sum of derivatives of

the polynomial Pj with respect to the boundary parameters. In particular, the

derivatives in (4.10) avoid the previous numerical underflow problems and lend

themselves to finite difference approximation even at high orders.

Thinking of t̃ as variable allows us to further simplify (4.10). Since C = O(1/t̃),

all three terms G · C3, G · C2, and G · C are o
(
G · C4 ·

(
∂ax∂bx∂ay∂by

)
P
)
, so that

the G · C4 order term in (4.10) dominates the others for sufficiently small t̃. This

truncation, when appropriate, is useful for reducing computational complexity

and it guarantees that the numerical implementation of the derivatives produces

positive values for all t̃ as long as
(
∂ax∂bx∂ay∂by

)
P is positive. Truncating at C4,
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the analytic likelihood approximation given by the sum of images is of the form:

∂4pε(x̃, ỹ, t̃)
∂ax∂bx∂ay∂by

≈
4∑

j′=1
G(x̃, ỹ, t̃|x̃(j′), ỹ(j′)) · C4 ·

(
∂ax∂bx∂ay∂by

)
Pj′ . (4.11)

The above approximate solution is close to the untruncated (i.e. the one

that includes all the term C4, C3, C2, and C1 term solution) small-time solution for

t̃ ≤ t̃ε. Extending beyond t̃ε produces a positive function dominated by the hy-

perbolic term C4. Figure 4.2 shows a profile comparison of the log-likelihood with

respect to t̃ for a representative sample configuration and ρ = 0. The truncated

approximate solution tracks well with the true analytic solution up to O(t̃) = 1.

Applying a first-order finite difference approximation with a finite step ∆ = 10−5

to compute the polynomial derivatives produces relative errors with a maximum

of order O(10−4) on a 30× 30 grid shown in Figure 4.3.

4.3 Existence of valid systems of images

For ρ = 0, the above procedure is guaranteed to produce an admissible set of

images regardless of the initial condition and σỹ used. However, this is not the

case for a general combination of ρ and σỹ. Consider Figure 4.4, which features

an initial condition (x̃0, ỹ0) = (0.1, 0.3) with ρ = 0.9. We can see that applying

the above procedure produces a system with images within the computational

domain, violating the initial condition. However, below we prove that for any

(x̃0, ỹ0) and ρ combination, we can find a sufficiently small σỹ such that a series

of reflections used for pε does not violate the problem.

Lemma 4. Given ρ > 0, and (x̃0, ỹ0) ∈ Ω̃, there exists 0 < σỹ ≤ 1 such that

(x̃(j)
0 , ỹ

(j)
0 ) /∈ Ω̃,∀ j ∈ {1, . . . , J}, where the collection of image locations {1, . . . , J}

is the result of a finite set of reflections about the boundaries of Ω̃.
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Figure 4.4: When ρ = 0.9, the system of images generated by the set of re-
flections in (4.4) and (x̃0, ỹ0) = (0.1, 0.3) now violates the initial condition as at
least one of the images falls within Ω̃.

Proof. Given that in the normalized problem Ω̃ is a unit square whose lower-

left corner is centered on the origin, applying the transformation T(3) in (3.28)

produces a characteristic geometry for the initial initial-boundary problem that

is illustrated in Figure 4.5. Corners a and c are obtuse, while b and d are acute.

Further, lines (1, 3) and (2, 4) are each parallel and of the same length, with lines 2

and 4 being longer. This can be observed from the coordinates of the four corners
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defining Ω̃ in the transformed topology:

a = (0, 0), b =
√

2
2

(
1√

1− ρ,
1√

1 + ρ

)
,

c =
√

2
2

(
1− 1/σỹ√

1− ρ ,
1 + 1/σỹ√

1 + ρ

)
, d =

√
2

2

(
−1/σỹ√

1− ρ,
1/σỹ√
1 + ρ

)
,

IC =
√

2
2

(
x0 − y0/σỹ√

1− ρ ,
x0 + y0/σỹ√

1− ρ

)

Now consider placing the images j = 1, . . . , J by performing a finite number

of alternating reflections about lines 4 and 2. This places images along a finite

segment of a line running through the initial condition position and orthogonal

to lines 2 and 4 (dashed line and black/red dots in Figure 4.5). If the number of

reflections is kept constant and σỹ is sufficiently small, all thus placed images are

in the interior region formed by extending lines 1 and 3. This is proved from the

following observations:

1. The slopes of both lines 2 and 4 are equal to −
√

1+ρ√
1−ρ and are therefore

independent of the choice of σỹ. Hence, shrinking σỹ moves corners d and c

along lines 4 and 2, respectively, away from the origin and thereby increasing

the interior region formed by extending lines 1 and 3.

2. From observation 1, the length of the chord covering the reflection line within

Ω̃ is a constant independent of σỹ. This implies that the length of the finite

segment covering the reflected images is also constant and independent of

σỹ.

3. The coordinate of the point of intersection between the reflection line and
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the extension of line 3 (blue point in Figure 4.5) is (x, y) where

x =
√

2
2

(
−2x0ρ+ 2y0/σỹ − 2/σỹ(1− ρ)

−2ρ
√

1− ρ

)
,

y =
√

2
2

(√
1− ρ√
1 + ρ

−2x0ρ+ 2y0/σỹ − 2/σỹ(1− ρ)
−2ρ
√

1− ρ + 1√
2σỹ
√

1 + ρ

)
.

The lengths of the x− and y−segments of the chord connecting the initial

condition and the point of intersection are

∆x =
√

2
2

{
1
σỹ
· σỹx0 − y0/ρ+ (1− ρ)/ρ+ y0√

1− ρ − x0√
1− ρ

}
,

∆y =
√

2
2

{
1
σỹ
· (σỹx0 − 2y0/ρ+ (1− ρ)/ρ+ 1/

√
2)
√

1− ρ− y0
√

1 + ρ√
1− ρ

√
1 + ρ

− x0√
1− ρ

}
.

Hence, as σỹ → 0, both ∆x2 → ∞ and ∆y2 → ∞, so that the distance

between the point of intersection and the initial condition grows. The sym-

metry of the problem (in terms of reflections x → −x and y → −y) makes

the argument applied to line 3 and the line of reflection applicable to the

extension of line 1 as well. Figures 4.7 and 4.6 show the reflected images

falling within the interior region with σỹ = 0.1 in both geometries.

Observations ii) and iii) imply that we can always find a sufficiently small σỹ

to cover the line segment containing the positions of images resulting from a

finite number of reflections about boundaries 2 and 4. Hence, any subsequent

reflections about lines 1 and 3 are guaranteed to place reflected images outside of

the computational region Ω.

For any such finite, admissible collection of images, we can make t∗ sufficiently

small such that the boundary values are numerically enforced on three out of the

four boundaries (since with a finite set of reflections the boundaries are analytically

enforced at the last boundary of reflection). Therefore, we have a collection of
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images J whose sum satisfies the initial-boundary problem and is non-trivially

differentiable with respect to the four boundary parameters for Ω̃. Moreover, the

reflections J cover the required set in (4.4).

4.4 Matching the Small-time and Galerkin So-

lutions

So far we have developed an analytic likelihood solution valid for certain

small t̃ε determined by the geometry of the initial-boundary value problem. The

Galerkin likelihood solution from Chapter 3, on the other hand, applies for rela-

tively larger t̃. The results of the simulation studies in Chapter 3 showed the need

to resolve the likelihood in the transient region t̃ between where the small-time

likelihood is applicable and where the Galerkin likelihood is applicable. This is

achieved by a two-step process where we first approximate the Galerkin likeli-

hood with a few low-frequency modes via least squares then match the first two

derivatives of the small-time likelihood to those of the low-frequency approxima-

tion. The resultant interpolation is a matching solution which also resolves the

transient region.

The likelihood computed with the Galerkin solution as a function of t̃ is of the

form

∂4pG(x̃, ỹ, t̃)
∂ax∂bx∂ay∂by

=
K∑
k=1

e−λk t̃p
(4)
k (t̃),

where p(4)
i (t̃) is a fourth-order polynomial. This proceeds from the Galerkin solu-

tion being dependent on t̃ only through the exponential term: the eigenfunctions

of the solution are by design solely functions of (ax, bx, ay, by) and (x̃, ỹ). Expand-
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Figure 4.6: Set of images in the original topology when σỹ = 0.1. All images
fall outside of Ω̃ for ρ = 0.9.

101



−30 −20 −10 0

−
5

0
5

10
15

●

a)
b)

c)
d)

1

2

3

4
●
●

●
●

●
●

●
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ing the polynomials, we see that the generating functions for the likelihood are of

the form

gk,j(t) := e−λk t̃ tαj , αj = 0, 1, 3, 4. (4.12)

The Laplace approximation of gk,j with αj > 0 is useful in elucidating how each

of the generating functions contribute to the overall likelihood. Letting

T̃ = log(t̃), (4.13)

to stabilize the tails of the approximant and performing a second-order Taylor ex-

pansion of g(T̃ ) about the maximum of gk,j produces the Gaussian approximation

gk,j(T̃ ) ≈ C(λk, αj) exp
{
−1

2αj(T̃ − log(αj/λk))2
}
. (4.14)

Up to second order, therefore, the Galerkin likelihood (as a function of t̃) is a linear

combination of Gaussian kernels gk,j whose bandwidth is controlled by the degree

of polynomial multiplier αj and whose location is controlled by the eigenvalue λj

and αj. In particular, the solution exhibits the behavior of resolving smaller t̃

regions with higher-frequency modes. The Laplace approximation of the gener-

ating functions is especially appropriate for the transient region of t̃. There, the

“non-Gaussian” generating functions e−λk t̃ tend to unity, while the approximately

Gaussian gk,j are dominated by the t̃αj terms (left-hand tails of (4.14)).

The first part of the matched solution is constructed from the generating func-

tions gk,j by fitting via least squares to values produced outside the transient

region, i.e. using big-t̃ likelihood values. We need to use as few points as possible

in the fitting exercise, as evaluating the Galerkin likelihood is relatively expensive,
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while still accurately representing the right-hand tail of the solution in the big-t̃

region. For this reason, we choose a sparse representation of the likelihood using

the first two generating functions g1,4, g2,4 as proportional to the matched solution

fLS(t̃) = t̃4
(
ω1e

−λ1 t̃ + ω2e
−λ2 t̃

)
,

log fLS(t̃) = 4 log(t̃)− λ1t̃+ log
(
ω1 + ω2e

−(λ2−λ1)t̃
)

where fLS is asymptotically valid for large t̃. Also, the largest possible degree of

t̃α used can more easily fit the small-t̃ likelihood which rapidly drops near t̃ = 0.

The weights ω1, ω2 are estimated from two likelihood values outside the transient

region. The two points of evaluation are t̃1 = 0.80 and t̃2 = 1.80, chosen based on

the empirical behavior of the Galerkin solver observed in Figures 3.3 - 3.5. If the

Galerkin solver produces an invalid likelihood at t̃ = 0.80 or t̃ = 1.80, then both

trial points are increased by 1 until valid likelihoods are produced. The reason

for the large jumps in this case is the relatively high cost of using the Galerkin

solver and the guarantee of the existence of a valid likelihood for sufficiently large

t̃. Once obtained, the two likelihood values are used to compute the best-fitting

ω1, ω2 via least squares. This matching scheme is applied to the same points as

in Figures 3.3 - 3.5 and are shown in Figures 4.9 - 4.11. This least-squares (LS)

solution is used to approximate the location t̃m and value of the maximum of the

likelihood, as well as compute its first two derivatives there analytically. This

data is the right-hand side of the matching solution. We pick this point, because

it is close to the maximum under the Galerkin solution and as such it is the

inflection point where the dynamics of the solution move from being dominated

by the −β/t̃ term (as we show below) to those dominated by −λ1t̃ term. Next, we

use the small-time likelihood to pick the functional form of the matching solution

that interpolates between the small-time region and the maximum point of the
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Galerkin solution, as well as derive the data necessary for the left-hand side of the

matching.

Closer observation of (4.11) reveal that each of the summands of the truncated

small-time solution share a common polynomial factor:

∂4pε(x̃, ỹ, t̃)
∂ax∂bx∂ay∂by

≈

≈
4∑

j′=1

1
π
√

2

(
1

2 t̃ σ2
ỹ(1− ρ2)

)4.5

exp
(
− 1

2 t̃ σ2
ỹ(1− ρ2)Pj

′

)(
∂ax∂bx∂ay∂by

)
Pj′

= K
(1
t̃

)4.5 4∑
j′=1

c′j exp
(
−βj

′

t̃

)
,

K = 1
π
√

2

(
1

2 σ2
ỹ(1− ρ2)

)4.5

,

βj′ = 1
2 σ2

ỹ(1− ρ2)Pj
′ ,

cj′ =
(
∂ax∂bx∂ay∂by

)
Pj′

The summand with the greatest βj′ contributes the most to the truncated small-

time solution in the t̃ ≤ 1 region where the matched solution will be applied.

Indexing j′ such that β1 ≥ β2 ≥ β3 ≥ β4, the small-time log-likelihood is

log
(
∂4pε(x̃, ỹ, t̃)
∂ax∂bx∂ay∂by

)
≈ log(K)− 4.5 log(t̃) + log(c1)− β1

t̃

+ log
1 +

∑
j 6=1

cj
c1

exp
(
−(βj − β1)

t̃

)
≈ log(K)− 4.5 log(t̃) + log(c1)− β1

t̃
+ log

(
1 + ε(t̃)

)
,

(4.15)

where we are assuming that the non-dominant exponential terms are small relative

to the β1 term. When constructing the matched solution, we ignore ε(t̃) since the

likelihood function is dominated by the log(t̃) term away from zero.
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The assumed form for the matched solution is the same as (4.15):

log fmatched(t̃) = log(ω(t̃))− γ(t̃) log(t̃)− β(t̃)
t̃

where the parameters ω(t̃), γ(t̃), and β(t̃) vary with t̃. At t̃∗, the left-hand side

of the matching condition, the values for these parameters are defined such that

they match the small-time solution

ω(t̃∗) = K, γ(t̃∗) = 4.5, β(t̃∗) = β1.

At t̃m, the right-hand side of the matching condition and the maximum of the

LS solution, ω(t̃), γ(t̃), and β(t̃) are chosen to match the value, first, and second

derivatives of the logarithmic form of the LS solution. The form of the parameters

between t̃∗ and t̃m is chosen to be a sigmoid function which rapidly transitions

away from t̃∗ and is the same for all three parameters:

ω(t̃) = ω(t̃∗)e−k(t̃−t̃∗) + ω(t̃m)
(
1− e−k(t̃−t̃∗)

)
,

γ(t̃) = γ(t̃∗)e−k(t̃−t̃∗) + γ(t̃m)
(
1− e−k(t̃−t̃∗)

)
,

β(t̃) = β(t̃∗)e−k(t̃−t̃∗) + β(t̃m)
(
1− e−k(t̃−t̃∗)

)
.

(4.16)

Given the order magnitudes of t̃∗ and t̃m commonly encountered, k ≈ 100 is

sufficiently large such that the higher-order derivatives of 1− e−k(t̃−t̃∗) are approx-

imately zero at t̃m and the matching on the right-hand side is still satisfied.

4.5 MLEs, revisited

To complete the analysis, we consider again the simulation scenario in Chapter

3 and the experimental setup where the Galerkin solution alone failed to outper-
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Figure 4.8: Data generated with ρ = 0.95 and is the same as in Figure 3.6.
Kernel-density approximations of the repeated-sampling densities of the MLEs
are shown. Samples are obtained from the Galerkin likelihood with the match-
ing solution (green) and the classical likelihood (red) and the Rogers estimator
(blue). The data-generating parameters are denoted with the vertical solid line.
Compared to Figure 3.6, the repeated sampling distributions of the parameter
estimates based on the Galerkin/matching solution are tighter.
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ρ = 0.95
m = 4 m = 8 m = 16

σ̂x 0.124 0.429 0.318
σ̂y 0.310 0.147 0.365
ρ̂ 0.250 0.753 0.699

Table 4.1: Ratios of Galerkin to Gaussian MSEs for the three simulation cases.

form the Gaussian (non-boundary) likelihood. In particular, ρ = 0.95 with m = 8,

and 16 showed a greater MSE than the MLE estimates using a purely Gaussian

likelihood (see Table 3.1). Using the same simulated data sets, the repeated sam-

pling distribution approximations where the matching solution is used in addition

to the Galerkin likelihood are shown in Figure 4.8. The ratios of the MSEs be-

tween the matched and Gaussian likelihoods are shown in Table 4.1. We can see

that the MSEs are resoundingly better, and that using the matching technique

developed here improves the statistical power of using OCHL data.
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Figure 4.10: Data points 2 through 12 used in Figure 3.4 with the Galerkin solu-
tion and the matched asymptotic solution in the transient region. The parameters
for the Galerkin solution are (ρ̃ = 0.60, σ̃ = 0.08, l = 1)
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Figure 4.11: Data points 8 through 13 used in Figure 3.5 with the Galerkin solu-
tion and the matched asymptotic solution in the transient region. The parameters
for the Galerkin solution are (ρ̃ = 0.60, σ̃ = 0.08, l = 1)
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Chapter 5

Conclusion

We have presented novel approaches for using two types of financial data for

statistical inference and prediction. We have demonstrated the effectiveness of

a Bayesian filtering approach in estimating financial market volatility in noisy,

high-frequency data. This method outperforms the currently popular averag-

ing approaches found in the realized volatility literature in estimating integrated

volatility on a daily timescale. As part of our approach, we have elicited pri-

ors invariant with respect to sampling frequency, and have formulated the used

discrete-time state-space models to be coherent over sampling frequencies as well.

Future work on this project includes extending the problem to multiple assets.

Given the nature of volatility shocks in markets, namely their occurrence over

a single or a few days, the high-frequency resolution of the volatility paths and

potentially fast-changing correlations among assets are of interest to both practi-

tioners and academics in the field.

We have also developed a semi-analytic computational framework for volatility

estimation for bivariate assets with OCHL data, a completely novel contribution.

As part of our approach, we have developed a non-separable variational-form basis

expansion (Galerkin solution) to the governing differential equation. Our numer-
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ical Galerkin solver takes directly into account the correlation structure inherent

in the bivariate OCHL problem and is therefore more efficient when compared to

other proposed numerical methods. However, in the context statistical inference,

often the likelihood in question needs to be evaluated in parameter regions where

near-infinite computational memory and time needs to be employed in order to

produce a valid numerical solution. To deal with this difficulty, we in turn de-

veloped an analytic solution asymptotically valid in this (small-time, under our

proposed representation of the canonical problem) parameter region. This was

achieved via the method of images and a symmetry argument. Next, we proposed

a matching solution which interpolates between the regions where the Galerkin

and small-time solutions are applicable. Finally, we performed a series of MLE

exercises that showed the validity of our method and also demonstrated the in-

crease in statistical power in using OCHL data in comparison to both the classical

Gaussian MLE estimator that disregards boundary conditions as well as the other

existing bivariate OCHL estimator.

A natural extension of our OCHL solution is its application in more dynamical

settings. In particular, when combined with a Gaussian process emulator, it is

possible to implement the OCHL likelihood solution in the estimation of stochastic

volatility dynamical models with the use of particle filters.
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Appendix A

Details of the Markov chain

Monte Carlo algorithm

We rewrite the full discrete-time model

Yj = log(Sj) + ζj,

log(Sj) = log(Sj−1) + µ(∆) +√σj,1σj,2 εj + Jj(∆),

log(σj+1,1) = α(∆) + θ1(∆) {log(σj,1)− α(∆)}+ τ1(∆) εj,1,

log(σj+1,2) = α(∆) + θ2(∆) {log(σj,2)− α(∆)}+ τ2(∆) εj,2,

(A.1)

This model is nonlinear in terms of the volatility due to the formulation of its

evolution on the log-scale. To re-parameterize the model to be linear in terms of

volatility and thereby use the Kalman Filter and Sampler, we take equation (A.1)
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and transform it so that it is linear in terms of log(σj),

log(Sj) = log(Sj−1) + µ(∆) +√σj,1σj,2 εj + Jj(∆)

↔ log [|log(Sj/Sj−1)− µ(∆)− Jj(∆)|]︸ ︷︷ ︸
y∗j

= 1
2 log(σj,1)︸ ︷︷ ︸

hj,1

+1
2 log(σj,2)︸ ︷︷ ︸

hj,2

+ log(ε2j,1)/2︸ ︷︷ ︸
ε∗j

.

Having defined y∗, hj,1, hj,2 and ε∗j , the model becomes linear in the terms involving

the volatility:

Yj = log(Sj) + ζj, (A.2)

y∗j = 1
2hj,1 + 1

2hj,2 + ε∗j , (A.3)

hj+1,1 = α(∆) + θ1(∆) {hj,1 − α(∆)}+ τ1(∆)εj,1, (A.4)

hj+1,2 = α(∆) + θ2(∆) {hj,2 − α(∆)}+ τ2(∆)εj,2, (A.5)

We approximate ε∗j as a mixture of Normals

ε∗j = log(ε2j)/2 ∼
10∑
l=1

plN

(
ml

2 ,
v2
l

4

)
.

We can introduce the mixture indicators γ1, . . . , γn(∆) such that

log(ε2j)/2 | γj ∼ N

(
mγj

2 ,
v2
γj

4

)
, Pr(γk = l) = pl.

Hence, conditionally on the sampled prices, the indicators γ1, . . . , γn(∆), jumps

J1(∆), . . . , Jn(∆)(∆), and the parameters µ(∆), α(∆), θk(∆), τk(∆) and ρ, we

have again a linear state-space model with Gaussian innovations. However, due

to correlation of the innovations of the price process εj and the fast volatility

process εj,2, we need a joint distribution for the transformed and approximated

ε∗j and εj,2. To this end, we directly follow the approach in Omori et al. [2007],
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beginning with the known expression

p(εj,2, ε∗j |γj) = p(εj,2|ε∗j , γj)p(ε∗j |γj)

= p(εj,2| dj exp(ε∗j)︸ ︷︷ ︸
εj

, γj)p(ε∗j |γj)

= N
(
εj,2

∣∣∣ρdj exp(ε∗j), (1− ρ2)
)
N

(
ε∗j

∣∣∣∣∣mγj

2 ,
v2
γj

4

)
,

where dj is the sign of εj. The nonlinear term exp(ε∗j) is approximated by a

linear function, where the constants (aγj , bγj) are chosen to minimize the expected

squared difference between exp(ε∗j) and its approximation, as done in Omori et al.

[2007]

exp(ε∗j)|γj ≈ exp(mγj/2)(aγj + bγj(2ε∗j −mγj)).

If z∗j , zj
iid∼ N(0, 1), the joint distribution for the conditional distribution of the

pair (ε∗j , εj,2|γj) can be written as


 ε∗j

εj,2


∣∣∣∣∣∣∣ γj
 =

 mγj/2

djρ exp(mγj/2)aγj

+

 vγj/2 0

djρbγjvγj exp(mγj/2)
√

1− ρ2


 z∗j

zj

 .
(A.6)

Rearranging equation (A.3) to express z∗j in terms of y∗j , hj,1, hj,2,mγj , and vγj , then

substituting into equation (A.5) allows us to finally write down the model in the

convenient linear state-space form, where the innovations in the state-evolution
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equations are independent:

Yj = log(Sj) + ζj,

y∗j = 1
2hj,1 + 1

2hj,2 +
mγj

2 +
vγj
2 z∗j , (A.7)

hj+1,1 = θ1(∆)hj,1 + α(∆)(1− θ1(∆)) + τ1(∆)εj,1,

hj+1,2 = θj,1(∆)hj,1 + θj,2(∆)hj,2 + αj(∆) + τ2(∆)
√

1− ρ2zj,

⇒

 hj,1

hj,2

 = Gj(∆)

 hj,1

hj,2

+

 α(∆)(1− θ1(∆))

αj(∆)

+ C(∆)

 εj,1

zj



with

Gj(∆) =

 θ1(∆) 0

θj,1(∆) θj,2(∆)


θj,1(∆) = −τ2(∆)djρbγj exp(mγj/2)

θj,2(∆) = θ2(∆)− τ2(∆)djρbγj exp(mγj/2)

αj(∆) = α(∆)(1− θ2(∆))+

τ2(∆)
(
djρ exp(mγj/2)aγj + djρbγjvγj exp(mγj/2)

{
y∗j −mγj/2
vγj/2

})

C(∆) =

 τ1(∆) 0

0 τ2(∆)
√

1− ρ2


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The full likelihood for the model can be written as

p(Y1, . . . , Yn(∆)|h1,...,n(∆),n(∆)+1, log(S0,...,n(∆)), γ1,...,n(∆), J1,...,n(∆)(∆),ψ) ∝
n(∆)∏
j=1

ξ−1/2 exp
{
− 1

2ξ (Yj − log(Sj))2
}

×
n(∆)∏
j=1

(vγj/2)−1 exp
{
− 1

2v2
γj
/4
(
y∗j − hj,1/2− hj,2/2−mγj/2

)2
}

×
n(∆)∏
j=1

(τ1(∆))−1 exp
{
− 1

2τ1(∆)2 (hj+1,1 − θ1(∆)hj,1 − α(∆))2
}

×
n(∆)∏
j=1

(
τ2(∆)

√
1− ρ2

)−1
exp

{
− 1

2τ2(∆)2(1− ρ2) (hj+1,2 − θj,2(∆)hj,2 − αj,2(∆))2
}

× p(log(S0))p(log(σ1)),

where ψ = (ξ, µ(∆), ρ, τ1(∆), τ2(∆), θ1(∆), θ2(∆), α(∆)).

For our MCMC algorithm, we implement a Gibbs sampler where we simulate

posterior draws from the full conditional posteriors for each set of parameters in

the steps below. We will use the following abbreviations for ease of notation:

γ := (γ1, . . . , γn(∆)), log(S) := (log(S1), . . . , log(Sn(∆))),

σ :=
(
(σ1,1, σ1,2), . . . , (σn(∆)+1,1, σn(∆)+1,2)

)
, Y := (Y1, . . . , Yn(∆)),

J := (J1(∆), . . . , Jn(∆)), Ω := (µ(∆), ρ, ξ2),

θ := (α(∆), θ1(∆), θ2(∆), τ1(∆), τ2(∆)), Λ := (λ, µJ , σ2
J).

1. Sample p(log(S),Ω|Λ, θ, J, σ, Y ).

(a) Sample p(Ω|Λ, θ, J, σ, Y ). Conditional on the volatilities/jumps σ

and J and volatility/jump parameters θ,Λ, the discrete-time version
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of model in (A.1) is comprised of the linear system

Yj = log(Sj) + ζj,

log(Sj) = µ(∆) + log(Sj−1) + Jj(∆),

+√σj,1σj,2ρεj,2 +
√

(1− ρ2)σj,1σj,2 · εj,

εj,2 = log(σj+1,1)− α(∆)− θ2(∆) {log(σj,1)− α(∆)}
τ2(∆) ,

εj ∼ N(0, 1),

ζj ∼ N(0, ξ2),

p(log(S0)) = N
(
log(S0)

∣∣∣η, κ2
)
.

(A.8)

The observational likelihood model in (A.8) allows us to integrate out

out log(S) using a sequential application of Bayes’ Theorem forward

in time, i.e. the Forward Filter. Note that starting with (A.1) is

equivalent to also integrating out γ from the system as well. Hence we

arrive at the conditional likelihood for observations p(Y |Ω,Λ,J ,σ,θ)

with which we can sample from the posterior:

p(Ω|θ,Λ,J ,σ,Y ) ∝ p(Y |Ω,Λ,θ,J ,σ,Y )p(Ω).

This is accomplished with a random-walk Metropolis-Hastings step

whose proposal covariance matrix is tuned to the data. In particu-

lar, sampling as well as accepting/rejecting is done on the R3 scale via

the transformation Ω→ Ω̃ :=
(
µ(∆), logit

(
ρ+1

2

)
, log(ξ2)

)
.

(b) Sample p(log(S)|Ω,Λ, θ, J, σ, Y ). The latent log-prices are sampled

using the Forward Filter (as in step 1(a) above) and Backward Sampler

using the system in (A.8). Because each y∗j is dependent on log(Sj) we
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re-define y∗j after this sample.

2. Sample the jumps and jump parameters: p(J,Λ|Ω, θ, log(S), σ, Y )

(a) We can integrate out J from the likelihood model in (A.1), (A.8) by

considering the likelihood of occurrence of jumps

p(N(∆) = 0) = e−λ∆, p(N(∆) > 0) = 1− e−λ∆.

We assume that ∆ is sufficiently small such that only a single jump

occurs within the jth period, such that the full conditional distribution

of Jj(∆) is therefore

p(Jj(∆)|Λ) = e−λ∆ · 1(N(∆)=0) + (1− e−λ∆) ·N(Jj(∆)|µj, σ2
J) · 1(N(∆)>0).

Integrating out the realized Jj(∆) from (A.8) produces the likelihood

model for each log(Sj) :

p(log(S)|Λ,Ω,θ,σ) =
n(∆)∏
j=1

p(log(Sj)| log(Sj−1),Λ,Ω,θ,σ)

× p(log(S0)),

(A.9)
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p(log(Sj)| log(Sj−1),Λ,Ω,θ,σ) =

e−λ∆·

N
(
log(Sj)|µ(∆) + log(Sj−1) +√σj,1σj,2ρεj,2, σj,1σj,2(1− ρ2)

)
+ (1− e−λ∆)·

N
(
log(Sj)|µ(∆) + log(Sj−1) + µJ +√σj,1σj,2ρεj,2, σ2

J + σj,1σj,2(1− ρ2)
)
.

(A.10)

Given that there is no dependence on Λ in the observable model, the

posterior distribution for Λ is computable with (A.9) - (A.10) via the

relation

p(Λ|Ω,θ, log(S),σ,Y ) ∝ p(log(S)|Λ,Ω,θ,σ)p(Λ.)

As in step 1a, we use a random-walk Metropolis-Hastings step to sample

Λ from the posterior.

(b) Sample p(J |Λ,Ω, θ, log(S), σ, Y ). The posterior probability of the

indicator function on each jump is

π0 := p(Nj(∆) = 0|Λ,Ω,θ, log(S),σ,Y )

∝ N
(
log(Sj)|µ(∆) + log(Sj−1) +√σj,1σj,2ρεj,2, σj,1σj,2(1− ρ2)

)
· exp(−λ∆)

π1 := p(Nj(∆) > 0|Λ,Ω,θ, log(S),σ,Y )

∝ N
(
log(Sj)|µ(∆) + log(Sj−1) +√σj,1σj,2ρεj,2 + µJ , σj,1σj,2(1− ρ2) + σ2

J

)
· (1− exp(−λ∆))

Given a non-zero jump at time j, the posterior distribution of its size
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is proportional to a Normal distribution

p(Jj(∆)|Λ,Ω,θ, log(S),σ,Y ) ∝

N
(
Jj(∆)| log(Sj)− µ(∆)− log(Sj−1)−√σj,1σj,2ρεj,2, σj,1σj,2(1− ρ2)

)
·N(Jj(∆)|µJ , σ2

J)

∝ N

(
Jj(∆)

∣∣∣∣∣
(

log(Sj)− µ(∆)− log(Sj−1)−√σj,1σj,2ρεj,2
σj,1σj,2(1− ρ2) + µJ

σ2
J

)
·(

1
(1− ρ2)σj,1σj,2

+ 1
σ2
J

)−1

,

(
1

(1− ρ2)σj,1σj,2
+ 1
σ2
J

)−1


3. Sample p(γ|σ, θ,Λ,Ω, J, log(S), Y ). Before sampling γ, all y∗j must be

re-computed. Following that, since each γj can take on a finite number of

values, for each j we sample the discrete posterior where

p(γj = l|−) ∝ p(γ = l)(vl/2)−1 exp
{
− 1

2v2
l /4

(y∗j − hj,1/2− hj,2/2−ml/2)2
}

× exp
{
− 1

2τ2(∆)2(1− ρ2) (hj+1,2 − θj,1(∆)hj,1 − θj,2(∆)hj,2 − αj,2(∆))2
}

4. Sample the volatility parameters p(σ, θ|γ,Λ,Ω, log(S), Y )

(a) Sample p(θ|γ,Λ,Ω, log(S), Y ). Conditional on all other parame-

ters, the portion of the state-space model where hj,k appear is com-

prised of the linear system

y∗j = 1
2hj,1 + 1

2hj,2 +
mγj

2 +
vγj
2 z∗j ,

hj+1,1 = θ1(∆)hj,1 + α(∆) + τ1(∆)εj,1, (A.11)

hj+1,2 = θj,2(∆)hj,2 + αj,2(∆) + τ2(∆)
√

1− ρ2zj,
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with αj,2(∆) and θj,2(∆) defined below (A.7). Thus we can integrate

out hj,k using the Forward Filter and obtain the likelihood

p(y∗1, . . . , y∗n(∆)|θ,γ,Λ,Ω)

and sample from the posterior for θ using a Metropolis-Hastings step.

As before, we transform θ → θ̃ such that θ̃ ∈ R5 and perform sampling

on this scale.

(b) Sample p(σ|θ, γ,Λ,Ω, log(S), Y ). Conditional on θ and all other

parameters, we use the Forward Filter Backward Sampler on (A.11) to

sample σ.
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