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ABSTRACT OF THE DISSERTATION

Modeling and Control of State of Charge of Modular and Second Life Battery Systems

by

Yunfeng Jiang

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California San Diego, 2019

Professor Raymond A. de Callafon, Chair

Lithium-ion battery energy storage systems are currently being used to power an ever-

increasing set of electrical applications in mobile computing and automotive industry. Lithium-

ion batteries are also used to tackle the problem of energy storage to help reduce the inherent

variability of renewable energy. Energy storage or charge capability is an important factor in

these applications and typically expressed in the units Watt hour (Wk) or Ampere hour (Ah)

respectively.

If a battery is used to plan for long term energy storage, a single large capacity battery

becomes cost prohibitive and a maintenance challenge. The standard solution is a breakdown of

a large battery in smaller parallel placed modules and brings an important challenge: modules

xvi



must operate and behave electrically the same to avoid a battery system unbalance in which

uncontrollable stray currents between modules may occur. Typically, this challenge is solved

by assuming all modules have the same capacity, electrical parameters and maintain the same

state of charge. This is clearly an unrealistic assumption in case of battery module heterogeneity

in which modules behave dynamically different, degrade separately over time or modules with

different capacity and state of charge are mixed.

In this dissertation, the problem of combining parallel placed battery modules with

possible different capacity, varying internal electric parameters and dissimilar state of charge is

investigated. A solution is proposed that involves monitoring and estimation of state of charge

and electrical parameters, along with scheduling of modular battery current using buck regulated

battery modules. In particular, the thesis contains the following contributions in more detail.

Firstly, state-of-the-art modeling and control approaches for (modular) battery energy

storage system are proposed and validated experimentally. For the state-of-the art modeling

approach, a fractional differential model method is proposed to model the dynamics of a lithium-

ion battery system over a large operating range. The modeling approach is a combination of

conventional equivalent circuit model and electrochemical impedance spectroscopy experimental

data. Furthermore, continuous-time system identification methods are employed to monitor and

estimate model parameters of the proposed fractional differential model of the battery.

Secondly, to better utilize a battery energy storage system, the fractional differential

battery modeling approach is proposed to characterize power delivery dynamics, given charge

and discharge demand as an input. This approach is applicable not only in normal operating

range, but also in extreme cases, such as battery over-charging and over-discharging as validated

by experimental results included in the thesis

Finally, current scheduling strategies are proposed to solve the problem of battery module

heterogeneity and further improve the performance, lifespan and safety of a complete battery

energy storage system with parallel connected battery modules. The scheduling algorithms

are formulated in both open-loop and closed-loop implementation. The open-loop algorithm

xvii



is formulated by solving a typical linear programming problem with detailed knowledge of

the battery system. The closed-loop method is computed autonomously by recursive control

algorithm without detailed battery knowledge, even when the characteristic parameters change

as the battery pack ages. The experimental results indicate the feasibility and flexibility of the

proposed current scheduling method in a battery pack system with parallel placed buck regulated

battery modules.
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Chapter 1

Introduction

1.1 Battery Energy Storage System (BESS)

International communities and governments have considerably increased investments in

renewable energy technologies to reduce environmental pollution, improve energy security and

economic benefits, and overcome the global energy crisis [4, 5]. Rechargeable batteries have

currently been developed to power an ever-increasing diverse range of electrical applications in

automobile starters, portable consumer devices, light vehicles, uninterruptible power supplies,

and battery storage power stations [6]. State-of-the-art lithium-ion batteries (LIBs) are considered

as one of the most popular types of rechargeable batteries, exhibiting significant improvements

in energy density, offering weight, size and design flexibility, appearing a very slow loss-of-

charge when not in use and exhibiting negligible memory effect [7]. Beyond all these dominant

features, low investment and maintenance costs drive LIB technologies available to grow as the

predominant technology for next promising generation battery energy storage system (BESS) in

renewable energy industry and automotive industry [8].

In the current renewable energy industry, due to the volatility and irregularity of renewable

energy production, BESS have proven the capability to regularize power flow [9, 10] and make

renewable energy sources economically viable solutions for grid support [11]. A specific example

of typical BESS applied in renewable energy industry is shown in Figure 1.1, where the diagram

includes energy generation via power station, solar power and wind power, energy storage
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through BESS and energy consumption by home and factory. The battery pack of a BESS is

built up from multiple LIB cells where series connections are used to provide the BESS terminal

voltage and parallel connections are applied to increase storage capacity and maximize the BESS

power output. For example, a LIB-based BESS can be also based on a second-life battery system

recycled from electric vehicles (EVs) to provide grid supporting functions, such as demand

charge management, renewable energy integration and regulation energy management [12, 13].

Power Station

Solar Power

Wind Power
Battery Energy Storage System (BESS)

Energy Generation

Energy Storage

Factory

Home

Energy Consumption

Figure 1.1. Overall architecture of a specific example of BESS in renewable energy industry,
including energy generation via power station, solar power and wind power, energy storage
through BESS and energy consumption by home and factory.

In the automotive industry, LIB BESS are considered as the primary energy source to

become a common replacement for existing lead-acid and nickel-metal hydride batteries (NiMH)

that have been widely applied in EVs, hybrid electric vehicles (HEVs), and plug-in hybrid

electric vehicle (PHEVs) to significantly reduce environmental damage in the transportation

sectors [14]. Unfortunately, this replacement is still a challenging task, since overheating or

overcharging does cause undesirable and irreversible damage to the battery. The irreversible

damages manifest itself as a degraded cell storage capacity and reduces the useful lifetime of the
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battery [15].

1.2 Motivating Problems

In order to protect the BESS, a battery management system (BMS) is used to continuously

track battery cell and battery pack by monitoring the state of the battery, protecting the BESS

from operating outside a safe operating area and maintaining safe, reliable and optimal operation

[16, 17]. A specific example of BMS applied in EV is shown in Figure 1.2, where voltage (V),

current (I) and temperature (T) are measured to allow for state of charge (SOC) and state of

health (SOH) estimation, further perform battery balancing and compute power limits.

Meas. Voltage (V) 
Current (I) 

Temperature (T)

Estimate State of 
Charge (SOC)

Estimate State of 
Health (SOH)

Perform  Battery 
Balancing

Compute Power 
Limits

Display and 
Alarms

Charger Load

Figure 1.2. Overall architecture of a specific example of BMS in EV application.

Among all above mentioned functionalities of the BMS, the primary task of all BMS
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features is to use software to execute algorithms that accurately capture the battery dynamics,

and continuously estimate non-measurable states, such as: SOC, SOH and state of power (SOP)

of the battery. The most typical measurement that characterizes the dynamics of a BESS is

the electrochemical impedance spectroscopy (EIS) technique. The EIS uses data obtained by

excitation with a small voltage and experimentally measures the impedance of the system as a

function of frequency. The frequency response of the measured system obtained by EIS measured

data is revealed to express energy storage, battery internal states, and dissipation properties in a

Nyquist plot. As an illustration in Figure 1.3, there are two main sections in the typical Nyquist

plot of a LIB over full operating frequency range: (1) a low frequency range (1 mHz-1 Hz) where

a straight line characterized by the 45◦ is usually believed to be caused by limitations in mass

diffusion of lithium ions; (2) a middle frequency range (1 Hz- 10 kHz), where a semi-ellipse

can be attributed to the charge transfer process, porosity of the electrodes, and double-layer

effect to represent the kinetics of the electrochemical battery reactions [18]. The most simple

1-resistor-capacitor (1-RC) network equivalent circuit model (ECM) shows an ideal semi-circle

in the EIS graph, which is not consistent with measured experimental data displayed in Figure 1.3.

Although increasing the model order by adding more RC components may be used to improve

the data fit, it suffers from a large number of model parameters to be estimated. Therefore, it

is necessary to figure out a simple model with low computational requirements to accurately

capture the non-linear behavior over the full operating range of typical Li-ion battery Nyquist

plot, motivated by structure mismatch and complicated parameter estimation of integer ECMs.

Besides focusing on the dynamics of the electrochemical process of LIB, it is also very

important to model the dynamics of battery energy storage capacity in terms of energy demand

based on measurable input/output signals in real-time. In this dissertation, the modeling approach

aims at characterizing the power storage and delivery capability of a BESS and also explicitly

understanding the remaining energy available in the battery system from a relatively novel control

perspective, which is significantly different from conventional modeling approaches.

As shown in Figure 1.1, a BESS is built from multiple parallel placed battery modules
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Figure 1.3. Typical Nyquist plot of a Li-ion battery cell [1].

to increase energy storage and delivery capacity. Such configuration has the advantage of

significantly improving efficiency and flexibility of the battery system for EV applications and

renewable energy grid support functions, since partly empty or failing battery modules in the

battery pack can be swapped for fast updates in the overall SOC. As a matter of fact, variability

in battery LIB parameters are inevitable in the production process and these variations in actual

capacities, leakage currents, and operating conditions further enhance the heterogeneity and

nonuniformity of parallel placed battery modules [19, 20]. This situation may severely cause

discrepancies in internal impedance and OCV between modules and negatively affecting the

performance and lifespan of a battery pack. The discrepancy between battery modules also

limits the ability to extract or store the full electrical energy capacity in the battery pack [21, 22].

This motivates the development of a control and scheduling algorithm to mitigate heterogeneous

effect in order to maximize the battery pack life cycle, and simultaneously monitor the state of

battery for optimal performance of a high power BESS with parallel placed battery modules
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[23, 24, 25].

1.3 Summary of Contributions

In the dissertation, the research aims to apply system identification methods, optimal

control techniques, and optimization algorithms to significantly improve safety and performance

of BESS in the electrified vehicles and electric grids. Some novel modeling approaches and

control strategies are specifically proposed for battery modeling, power prediction, and current

scheduling with experimental verification and validation, respectively. The summary of the main

contributions is described as follows.

• Battery State of Charge Modeling: A battery model with non-integer order

derivatives is proposed for modeling the non-linear dynamical behavior of a LIB over a

large operating range, which is an amalgamation of EIS experimental data and standard

1-RC ECM. Several continuous-time (CT) system identification methods, including the

standard least squares-based state-variable filter (LSSVF) and extended instrumental

variable state-variable filter (IVSVF) are described and applied to estimate the model

parameters and fractional derivative coefficients of the proposed model. These methods

are demonstrated on experimental data from a real LIB application over broad operating

range, where the storage resolution is limited and system dynamics is stiff.

• Battery Power Prediction: A fractional derivative modeling approach is proposed

aiming to predict non-linear power storage and delivery dynamic behavior of a LIB, given

the charge and discharge demand control input, which is significantly different from the

conventional ECM and first principle electrochemical models. The commonly used LSSVF

identification method is extended to the proposed fractional model combined in the voltage

and current model, respectively, to monitor the charge/discharge demand signal and power

storage and delivery output signal in real time. This method demonstrates power storage

and delivery prediction capability of a lithium iron phosphate (LiFePO4) battery, not only
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in normal operating range, but also in some extreme situations, such as over-charging and

over-discharging.

• State of Charge Balancing: This dissertation addresses battery heterogeneity of a

parallel connection of battery modules by taking advantage of buck regulators integrated

on each battery module. The current scheduling strategies are comprehensively formulated

in both an open-loop and a closed-loop implementation to balance the current out of

each battery module and provide a desire power flow from the battery pack. These novel

scheduling strategies are validated through a battery pack of parallel connected battery

modules with different battery module characteristic parameters. The experimental results

illustrate the feasibility and effectiveness of the proposed current scheduling methods

in a real battery application, which motivates future research on developing scheduling

algorithms to optimize power flow out of a battery pack.

1.4 Organization

The remainder of the dissertation is organized as follows:

Chapter 2 introduces and validates fractional modeling method and improves the method

with CT system identification approaches. These methods demonstrate feasibility and accuracy

for LIB in real applications, where the storage resolution is limited and the system dynamics is

stiff.

Chapter 3 proposes and validates a novel modeling approach for a single LIB system as

BESS to predict power storage and delivery dynamics in both normal operating range and some

extreme situations.

Chapter 4 presents and illustrates current scheduling strategies for a parallel-connected

battery systems to coordinate and balance the current output of each individual battery system in

real applications.

Chapter 5 includes the conclusion of this thesis and provides suggestions on future work.
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Chapter 2

Modeling of Battery System

2.1 Introduction

One of the most important functions of a BMS in BESS application is to find a battery

model for system monitoring and battery fault detection , where the battery algorithms can be

used to accurately capture battery dynamics and monitor the state of battery [26]. A battery

model can be described by a physics-based electrochemical model that uses a set of partial

differential equations (PDEs) [2]. A typical physics-based electrochemical PDE model uses

an insertion composite cathode, a solid polymer electrolyte, and a lithium anode to account

for battery dynamics underlying electrochemistry principles, as shown in Figure 2.1. Such a

physics-based model has the advantage of being able to describe specific battery information in

terms of various physical processes occurring inside a battery from first principle. Unfortunately,

it suffers from the disadvantage of model uncertainty for which parameter estimation techniques

may be used. Moreover, the complexity of a physics-based model may suffer from parameter

identifiability limitations, especially when only the external information of voltage (V), current

(I) and temperature (T), is available [27].

To simplify parameter estimation and simulation calculations, model complexity reduc-

tion can be considered via porous electrode models that use a polynomial approximation model

(PAM) or a single particle model (SPM) as shown in Figure 2.2. A parabolic profile is utilized

to approximate the concentration within each spherical particle of both electrodes in a PAM.
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Figure 2.1. Simple schematic showing the electrochemical modeling approach for Li-ion battery
cell [2].

Similarly, a single spherical particle, where area is equal to the active area of the solid phase

in the porous electrode, is applied to represent each electrode in a SPM [28]. Although both

simplified PAM and SPM are computationally much faster than standard physics-based models,

they still have own limitations to estimate battery performance, because simplified models do

not consider all physics processes [29].

Due to relatively simple structure, equivalent circuit model (ECM) is widely gaining

popularity as another alternative model in designing a model for the BMS. An ECM has far

less model parameters (to be estimated) and the underlying ordinary differential equation model

simplifies firmware implementation. As shown in Figure 2.3, a resistor-capacitor (RC) network

model, consisting of internal resistance, effective capacitance and equivalent potential, is widely
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Figure 2.2. Schematic diagram of the single particle model for Li-ion battery cell [2].

applied in constructing ECM models to mimic the phenomenological effects of a battery [30].

There are some commonly applied RC network models, such as 1-RC model, 2-RC model. and

1-RC hysteresis model. Although RC network models have clear electrical interpretations, the

internal model properties that include the finite integer order and linearity, are not able to capture

the partial derivative nature of a Li-ion battery over the full operating range. The limitations of

RC network models can be observed particularly well when comparing the structural mismatch

of experimental measurements of characterizing electrochemical systems [31].

Therefore, it is necessary to figure out a simple model to accurately capture the non-linear

behavior over the full operating range of typical LIB Nyquist plot illustrated in Figure 1.3,

motivated by structure mismatch and complicated parameter estimation of integer ECMs.

An alternative and successful approach to find accurate, but still low complexity models

of battery systems is to use a fractional differential model (FDM). A FDM has non-integer deriva-

tives for states can be applied to fix reconcile discrepancies between structure complexity and

estimation accuracy in common ECMs. FDMs are able to explain inherent fractional derivative

properties due to diffusion dynamics, memory hysteresis, and mass transfer of LIBs, thus they

10



+

-

R0

R1

i

+

-

vOCV v0

v1

C1

Figure 2.3. Schematic diagram of the equivalent circuit model (ECM).

have ability to exhibit better accuracy with fewer parameters, compared with conventional integer

ECMs [32].

2.2 Fractional Differential Systems

Fractional differential systems have been widely applied in various application fields,

such as physical chemistry, electricity, electronics, mechanics, automatic control, robotics and

signal processing, because their dynamics behaviors can be described by differential equations

involving fractional derivatives functions (fractional differential equations) [33]. For most

dielectric/insulating materials in electrical application, the current and the voltage across the

capacitor are non-linear related: the current is proportional to time non-integer derivative of the

voltage across the capacitor [34]. Also, unlike the well-known conventional ”integer” methods,

the non-integer derivative allows an explanation of mass transport, diffusion, and memory in

dielectrics [35]. For a battery system, especially LIB system, the fractional differential system is

applied in capturing the electrical dynamics including mass transport and charge transfer process

in the electrolyte, mass diffusion and porosity in solid electrodes [36].
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2.2.1 General Linear Fractional Differential System Equation

A general linear fractional differential system can be expressed by a fractional differential

equation of the following form

y(t)+a1Dα1y(t)+ ...+anDαny(t) = b0Dβ0u(t)+b1Dβ1u(t)+ ...+bmDβmu(t) (2.1)

where (a j,bi)∈R2, differentiation orders α1 <α2 < ... <αn, β0 < β1 < ... < βm, and αi,βi ∈R+

(restricted to arbitrary positive real-number value). The fractional differentiation operator for

real-number value of α when α takes a non-integer value can be defined as [37]

Dα = (
d
dt
)α , ∀α ∈ R+ (2.2)

The classical form of fractional derivative in Riemann-Liouville (R-L) sense to a function f (t) is

commonly defined by [34]

Dα f (t) = (
d
dt
)dαe

1
Γ(dαe−α)

∫ t

0

f (τ)
(t− τ)α−bαcdτ (2.3)

where ∀α ∈ R+, t > 0, and gamma function Γ(γ) for every γ ∈ R+ can be defined via a

convergent improper integral:

Γ(γ) =
∫

∞

0
zγ−1e−z dz (2.4)

It should be noted that in the above equations the floor function b·c represents the largest integer

smaller than or equal to α , and the ceiling function d·e defines the smallest integer larger than or

equal to α . An alternative definition called Grünwald-Letnikov (G-L) allows the derivative a

non-integer value instead of the integral is considered as the following definition [35]

Dα f (t) = lim
h→0

(−1)α

hα

[ t−a
h ]

∑
j=0

(−1) j

 α

j

 f (t + jh) (2.5)
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where [·] donates the integer part. The Laplace transform of α-th derivative (α ∈ R+) of an

arbitrary signal f (t)

L {Dα f (t)}= sαF(s), if f (t) = 0 ∀t ≤ 0 (2.6)

can then be generally applied as a more concise algebraic tool to describe fractional differential

systems [38]. Thus this allows to rewrite the fractional differential equation (2.1), with both

input signal u(t) and output signal y(t) equal to 0 when t = 0 (zero initial conditions), into a

transfer function form

G(s) =
b0sβ0 +b1sβ1 + · · ·+bmsβm

1+a1sα1 + · · ·+ansαn
(2.7)

It should be noted that in the above equations the floor function b·c represents the largest integer

smaller than or equal to α , and the ceiling function d·e defines the smallest integer larger than or

equal to α . An alternative definition called Grünwald-Letnikov (G-L) allows the derivative a

non-integer value instead of the integral is considered as the following definition [35]

Dα f (t) = lim
h→0

(−1)α

hα

[ t−a
h ]

∑
j=0

(−1) j

 α

j

 f (t + jh) (2.8)

where [·] donates the integer part. The Laplace transform of α-th derivative (α ∈ R+) of an

arbitrary signal f (t)

L {Dα f (t)}= sαF(s), if f (t) = 0 ∀t ≤ 0 (2.9)

can then be generally applied as a more concise algebraic tool to describe fractional differential

systems [38]. Thus this allows to rewrite the fractional differential equation (2.1), with both

input signal u(t) and output signal y(t) equal to 0 when t = 0 (zero initial conditions), into a

transfer function form

G(s) =
b0sβ0 +b1sβ1 + · · ·+bmsβm

1+a1sα1 + · · ·+ansαn
(2.10)
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The transfer function G(s) in (2.10) is applied in the continuous-time identification of the FDMs

throughout this paper.

2.2.2 Numerical Analysis of Fractional Derivatives

The reversed Grünwald-Letnikov (reversed G-L) definition in the similar form with (2.8)

Dα f (t) = lim
h→0

1
hα

[ t−a
h ]

∑
j=0

(−1) j

 α

j

 f (t− jh) (2.11)

is carried out to simulate the system response to an arbitrary input signal in time-domain analysis

of a fractional derivative system. The closed-form numerical solution to the general fractional

differential equation (2.1) in reversed G-L form can be computed by the recursive approach [39]

yt =
1

∑
n
i=0

ai
hαi

(
ut−∑

n
i=0

ai
hαi ∑

[ t−a
h ]

j=1 w(α j)
j yt− jh

)
(2.12)

where h represents the step-size in computation. The w j(α) in the above solution (2.12) can be

evaluated recursively from

wα
0 = 1,wα

j = (1− α +1
j

)wα
j−1, j = 1,2, ... (2.13)

The above recursive method can be applied to obtain numerical approximation of fractional

derivative input and output signals. The signal û(t) is calculated by using (2.11) substituting

(−1)α

 α

j

 = wα
j and the time response under the signal u(t) can be consequently obtained.

Since the recursive approach is based on the fixed-step computation, the step-size h needs to be

selected with special care to improve the accuracy of the simulation. Therefore, it is necessary to

take sometime to validate the computational results by decreasing step-size h in a gradual way

until the simulation results have no variation.
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2.3 Continuous-time Battery Model Identification

There are various parameter identification approaches that can be employed to determine

the unknown parameters of a FDM for a battery system. A recently published parameter

estimation method [1] has shown to provide good results, but requires a large number of time

consuming integration and convolution calculations. In addition, this method requires noise-

sensitive identification to estimate the fractional derivative value and estimation error is caused

by numerical simulation [40]. Although alternate indirect identification method of discrete-time

(DT) model parameters can be used to solve the above issues, information on fast dynamics

may be lost due to sampling, whereas relatively too small sampling time will result to numerical

problems that limits DT model identification [41]. Furthermore, estimation of model parameters

may be sensitive to initial and noise conditions and limits the potential of real-time applications

[42]. In order to overcome disadvantages of DT method, a direct CT system identification can

been applied, because it can provide good insight of system properties and avoid information

loss due to undesired high sensitivity issues [43]. The direct CT system identification has been

analyzed and compared with indirect DT system identification methods in battery applications

[44].

2.3.1 Advantages of Continuous-time Over Discrete-time Model Identifi-
cation

DT model identification based on sampled input/output data set has been successfully

applied in estimation of CT dynamics processes by digital computers and data acquisition

systems (DAS). However, the difficulties or limitations of using DT model identification in LIB

applications have been encountered when applying various sampling rate (or sampling interval).

High sampling rate can lead to numerical problems due to discrete poles constrained in small

area close to the unit circle boundary of the z-plane, whereas low sampling rate is not able to

retain all the system information [45]. Since LIB system consists of both fast and slow dynamic
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modes of behavior, which reveals a typical stiff system, the selection of sampling rate (sampling

interval) needs to be treated with excessive care [46]. On the one hand, the slow sampling (large

sampling interval) will lead to the information loss due to the existence of the fast dynamics. On

the other hand, the rapid sampling (small sampling interval) is able to accurately capture the

fast system dynamic, however, this will result in the inaccuracy of parameter estimation because

of ignorance of the slow dynamics in real system [47]. Moreover, the numerical precision of

DT system is more inclined to be affected by the estimation parameters and the discrete pole

location that is located near the stability boundary within limited storage resolution [48]. As the

sampling rate increases, the disturbance sensitivity of capacitance and resistance values increases

the quasilinear utility in the RC networks, which ultimately leads to inaccurate results of the

system identification [49].

The direct CT system identification has been thoroughly studied in contrast with the

indirect DT identification [50]. When applied to model identification and parameter estimation in

using data collected when choosing the appropriate sampling rate, the CT identification methods

have particular advantages over well-established DT methods for system modeling and control

system design: (1) the CT identification methods are preferable to represent underlying dynamic

system in better physical insight, exhibit the preservation of a priori knowledge, and show built-in

capability to deal with the situation of non-uniformly sampled data; (2) the CT approach includes

inherent filtering, which not only can significantly improve the statistical efficiency, but also

makes more robust to measurement noises; (3) the CT identification method can efficiently

avoid discretization that induces undesired high sensitivity issues, therefore it can result in better

identification performance of the stiff system [51]. Therefore, considered all above advantages,

the direct CT identification approach is utilized to the parameter identification throughout the

paper.
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2.3.2 Least Squares-based State-variable Filter Method

In order to consider CT parameter estimation of the FDM in (2.1) or transfer function

G(s) in (2.10), it is assumed that measurable output signal y(t) is corrupted by an additive

measurement white noise e(t)

y(t) = y0(t)+ e(t) (2.14)

where y0(t) is hypothetical noise-free deterministic system output. It is worth noting that the

input signal u(t) and the output signal y(t) are considered to be related with the fractional

differential equation (2.1). Therefore, the equation error is then expressed as the following form

[52]

ε(t) = y(t)−ϕ(t)T
θ (2.15)

where the regressor vector is defined as

ϕ(t) =
[
Dβ0u(t) ... Dβmu(t) −Dα1y(t) ... −Dαny(t)

]T
(2.16)

and the parameter is denoted by the vector

θ = [b0 b1 ... bm a1 a2 ... an]
T (2.17)

A mathematical approach to determine parameter vector θ is minimizing L2 norm of ε(t)

J =
∫ T

0
(ε(t))2dt (2.18)

In the present case, output signal y(t) is highly linear to the parameter vector θ , thus J is

minimized analytically in the following least squares (LS) estimate

θ̂LS =

(∫ T

0
ϕ(t)T

ϕ(t)dt

)−1 ∫ T

0
ϕ(t)T y(t)dt (2.19)
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In order to numerically compute the LS estimate in (2.19), the discretization of fractional

derivative input and output signals is needed to transfer continuous functions and equations into

discrete counterparts. Considering time digitized regression vector ϕ(kTs), time instant Ts and

k = 1,2, . . . ,N based on N data points, the regressor matrix Φ can be then formulated as

Φ = [ϕ(Ts) ϕ(2Ts) . . . ϕ(NTs)]
T (2.20)

and the digitized system output y(kTs) can be formed as a column vector to describe output

matrix Y in a similar way. The CT LS parameter estimation can be computed via

θ̂LS = (ΦT
Φ)−1

Φ
T Y (2.21)

Because CT stochastic processes are always related with the white noise and its deriva-

tives, parameter estimation normally would encounter difficulties: small perturbations that

contaminating on the coefficient or the initial condition of the differential equation would finally

result in the perturbations of the solution [53]. Therefore, special care is needed in parameter

estimation of the fully stochastic FDM CT model in order to reduce the noise/deviation on

the input/output data in order to alleviate the practical difficulties. A traditional and effective

approach to estimate coefficients of (fractional order) CT model is to use a minimum-order SVF

filter to both sides of (2.15) [54]. From the signal analysis perspective, the SVF consisted of

multiple band-pass filters can be applied to gain differentiation behavior in low frequency part,

and to filter (smooth) noise/perturbation effect in high frequency part. A typical SVF filter is

chosen with operator model L(s) in the following form [55]

L(s) =
1

E(s)
=
(

γ

s+ γ

)n
(2.22)

where n is the highest system order, and γ represents the cut-off frequency of the SVF. It should

be noted that since the cut-off frequency γ is selected to emphasize the filter frequency band and

18



define the bandwidth of the filter, the recommended γ value in general is chosen to be slightly

larger than the frequency bandwidth of the identified system [45]. Hence, filtered input u f and

output y f can be obtained at the output of the filters (2.22)

u f (t) = L(s)u(t) (2.23)

and

y f (t) = L(s)y(t) (2.24)

By using the filters defined in (2.22), the fractional equation (2.1) can be extended to the

(fractional) derivatives form as to formulate the standard least squares-based SVF (LSSVF)

method

y f (t)+a1Dα1y f (t)+ ...+anDαny f (t) = b0Dβ0u f (t)+b1Dβ1u f (t)+ ...+bmDβmu f (t) (2.25)

Instead of minimizing the L2 norm of ε(t) as in (2.15), the L2 norm of ε f (t) is now minimized

based on the filtered fractional equation in (2.25)

ε f (t) = y f (t)−ϕ f (t)T
θ (2.26)

where the regressor vector is composed of the filtered input/output signals as the following form

ϕ f (t) =
[
Dβ0u f (t) . . . Dβmu f (t) −Dα1y f (t) . . . −Dαny f (t)

]T
(2.27)

Again, the same discretization approach is applied to numerically compute the (fractional)

derivatives of the input/output signals to estimate parameters. Combined a time digitized filtered

regression vector ϕ f (kTs) with the filtered system output y f (kTs) column vector Y f , time instant

19



Ts and k = 1,2, . . . ,N, the CT LSSVF estimate can be formulated as

θ̂LSSV F = (ΦT
f Φ f )

−1
Φ

T
f Y f (2.28)

where

Φ f = [ϕ f (Ts) ϕ f (2Ts) ... ϕ f (NTs)]
T (2.29)

2.3.3 Instrumental Variable-based State-variable Filter Method

The basic LSSVF method has some attractive properties and include the analytical

solution that is relatively easy to compute, low computational complexity, and quite good

robustness with respect to noise. However, it is well know the resultant parameter estimates are

asymptotically biased in the presence of non-white equation noise on the regression equation.

The main reason comes from the fact that the filtered regression vector ϕ f (kTs) is correlated with

the filtered noise term ε f (kTs) [50]. As a traditional variant of the LS method, the instrumental

variable (IV) method can deliver unbiased estimates and also has the advantage of relying on

linear regression techniques.

The primary principle of the IV method relies on the so-called instruments generally

obtained from a parallel model yIV
f . Hence, the most common IV identification method uses an

auxiliary model in order to generate noise-free output estimate

ϕ
IV
f (t) =

[
Dβ0u f (t) . . . Dβmu(t) −Dα1yIV

f (t) . . . −DαnyIV
f (t)

]T
(2.30)

The IV vector should satisfy the following as

E
[
ϕ

IV
f (t)ϕT

f (t)
]

is non singular (2.31)

and

E
[
ϕ

IV
f (t)ε f (t)

]
= 0 (2.32)
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where E[·] stands for the mathematical expectation. The continuous-time instrumental variable-

based filter (CT IVSVF) estimation can be given as

θ̂IV SV F = (ΦIV
f

T
Φ f )

−1
Φ

IV
f

T Y f (2.33)

where

Φ
IV
f = [ϕ IV

f (Ts) ϕ
IV
f (2Ts) ... ϕ

IV
f (NTs)]

T (2.34)

and the column vector Y f is the same as (2.29). The implementation of CT IVSVF parameter

estimation is summarized in the overall flow chart as shown in Fig. 2.4.
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Figure 2.4. Implementation flow of continuous-time instrumental variable-based state-variable
filter (CT IVSVF) parameter estimator.

Compared with conventional LS identification methods, IV methods have the advantages

of providing consistent parameter estimates when the noise in real applications can not comply

with a normal distribution and rational spectral density [56]. As one of the available IV methods,

the simplified refined instrumental variable for continuous-time system identification (SRIVC)
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has been introduced to solve the problem of formulating unbiased parameter estimates. Although

the SRIVC method is a powerful IV method for unbiased parameter estimation with proven

statistical efficiency properties and exhibits statistically consistent and asymptotically efficient

parameter estimates in the presence of white measurement noise [57], the parameter estimation

requires detailed modeling of the noise filter to obtain the statistical efficiency [58]. The pre-

filters and the highly colored noise present on the (filtered) LIB experimental measurements

may require complex noise filters to achieve this statistical efficiency of SRIVC and require

additional computations that can be avoided by choosing an instrument that is not optimal in

terms of variance properties. Therefore, the above proposed IVSVF identification approach

is selected to estimate parameters and compare performance/accuracy with LSSVF estimation

method throughout this paper, because of its ability to provide consistent estimate results for

non-white noise structure in LIB system experimental data.

2.4 Continuous-time Fractional Differential Model for a
Lithium Ion Battery

ECMs have been widely applied in BMS and compared with twelve commonly used

ECMs, the first-order RC model (1-RC) is considered to be the best choice for LIB in terms of

model complexity, model accuracy, and generalizability to multiple cells [59]. However, simple

elements, such as capacitances, resistances, inductances or convective diffusion impedance, are

not able to describe the experimental frequency dispersion result of a solid electrode/electrolyte

interface [60].

A constant-phase element (CPE) can be generally applied to describe the capacitance

dispersion of the frequency dispersion that is normally ascribed to distributed surface reactivity,

electrode porosity, surface inhomogeneity, roughness or fractal geometry, current and potential

distributions associated with electrode geometry instead of an ideal capacitor. Therefore, CPEs

are used extensively in ECMs and the derived FDM structure is shown in Figure 2.5. From the
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description in Figure 2.5, it is worth mentioning that an ohmic resistor (R0) can be applied to

depict resistive impedance, a parallel circuit composed of a resistor (R1) and a CPE, is used to

represent the diffusion dynamic behavior.

CPE

+

-

R0

R1

i

+

-

vOCV v0

v1

Figure 2.5. Structure of the fractional differential model for Li-ion batteries.

The CPE is an equivalent electrical circuit component that appears currently in modeling

the behavior of the imperfect dielectrics (partially capacitive and resistive) [61]. The electrical

impedance can be expressed in terms of capacitance-like parameter C1 and the differentiation

order α (α ∈ R+, 0< α < 1)

ZCPE(s) =
1

YCPE(s)
=

1
C1Sα

(2.35)

where the CPE admittance YCPE(s), C1 and α are frequency independent. Since constant phase

is always -90 ◦, the CPE as a circuit parameter is exhibiting limited behavior: an ideal capacitor

for α=1, and a pure resistor for α=0 [62]. In this case (2.35), although CPE can be used as

an extremely flexible fitting parameter to fit EIS data, it is not able to describe the meaning in

terms of time constant distribution. The CT transfer function of the first-order FDM depicted in
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Figure 2.5 can be derived as

H(s) =
VOCV (s)−V0(s)

I(s)
=

V (s)
I(s)

= R0 +
R1

1+R1C1sα
(2.36)

where VOCV (s) = L {vOCV (t)}, V0(s) = L {v0(t)}, I(s) = L {i(t)}, and L {·} is the notation for

the Laplace transform.

The following relationship can be obtained from the whole circuit shown in Figure 2.5

v0 = vOCV − v1− iR0 (2.37)

where i, v0 and R0 are the current, output voltage, and ohmic resistance, vOCV is the open circuit

voltage (OCV), v1 and τ = R1C1 are the voltage and time constant of an RC circuit, respectively.

The output function (2.37) consisted of state variable v1, vOCV , and implicit determining factor

input current i.

All coefficients are replaced by the unknown circuit parameters, then the transfer function

of first-order FDM (2.36) can be rewritten as

H(s) =
V (s)
I(s)

=
b0 +b1sα

1+a1sα
(2.38)

where the identified parameters are

b0 = R0 +R1 (2.39)

b1 = R0R1C1 (2.40)

a1 = R1C1 (2.41)
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The above transfer function (2.38) can be described in a fractional differential equation form as

(1+a1sα)V (s) = (b0 +b1sα)I(s) (2.42)

The current input i(t) and voltage output v(t) = vOCV (t)− v0(t) related with (2.42) can then be

expressed as the following regression form

v(t) = ϕFDM(t)T
θFDM (2.43)

where the revised regression vector ϕFDM(t) is defined as

ϕFDM(t) = [ i(t) Dα i(t) −Dαv(t) ]T (2.44)

and the parameters are denoted by the vector

θFDM = [b0 b1 a1 ]
T (2.45)

In most practical situations, the measured terminal battery voltage is usually the noise-free case,

and it is actually corrupted by additive noises. Therefore, the complete equation for the battery

system, with an equation error ε(t), can be written in the regression form

v(t) = ϕFDM(t)T
θFDM + ε(t) (2.46)

Low-pass first-order SVF L(s)= γ

s+γ
, as the most simple form in (2.22), is then applied to

smoothen (filter) the time-derivative of current input and voltage output. Then, the filtered

equation error can be defined as to estimate parameters

ε
∗
f (t) = v f (t)−ϕ

∗
FDM(t)T

θFDM (2.47)
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where the filtered regression vector can be given by

ϕ
∗
FDM(t) = [ i f (t) Dα i f (t) −Dαv f (t) ]T (2.48)

Subsequently, in order to validate the accuracy of the estimation, the fitness function f (t) can be

defined as follows

f (t) = ||v0(t)− vsim(t)||22 (2.49)

where v0(t) is the tested battery terminal voltage and vsim(t) is the simulated battery voltage.

2.5 Experiment

The battery characterization experiments are conducted in order to estimate parameters

and validate our proposed model of a Li-ion polymer battery cell.

2.5.1 Battery Tests

Experiment characterization data of Li-ion polymer battery is continuously measured at

room temperature (22-25◦C) in the testing workbench. The specific information of the Li-ion

polymer battery under test is shown in Table 2.1. As shown in Figure 2.6, a static capacity

test, an open circuit voltage (OCV) test, a Hybrid Pulse Power Characterization (HPPC) test,

and a Urban Dynamometer Driving Schedule (UDDS) test are consecutively conducted in the

characterization tests. It should be noted that the sampling rate is 1 Hz in all characterization

experiments.

Table 2.1. Specific information of the Li-ion polymer battery under test.

Characterization Lithium-ion polymer
Charge/discharge capacity 40.83/40.61 Ah
Nominal voltage 3.7 V
Minimum discharge voltage 2.7 V
Maximum charge voltage 4.2 V
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Capacity 
0.5 C charge/discharge 

1 hour rest

OCV 
0.5 C charge/discharge  

5 hour rest, 10% SOC step

HPPC 
2% SOC step

UDDS  
90% to 20% SOC

Figure 2.6. Battery characterization procedure.

There are three charge/discharge cycles in the static capacity test. The Li-ion polymer

battery is charged at 0.5C (constant current) in each cycle, until the battery terminal voltage can

reach the maximum charge voltage (4.2 V). After that, the battery terminal voltage is maintained

at the maximum value 4.2 V before the charge rate is below 1/20C. Then, the battery is discharged

at a constant rate 0.5C before the battery terminal voltage reaches the minimum discharge voltage

(2.7 V). Moreover, 1 hour rest (0C) is then set after each charge/discharge cycle. The average

value of all three charge/discharge cycles can be used to calculate the charge/discharge capacity.

As shown in Figure 2.7, the charge/discharge OCV-SOC experimental curves are mea-

sured at 10% SOC step with 0.5C charge/discharge rate, and there is a 5 hours rest between two

neighboring charge/discharge cycles. As can be seen in Figure 2.7, the discharge OCV curve is

slight lower than the charge curve at certain SOC range due to rate-dependent hysteresis. When

SOC = 20%, the deviation between charge and discharge OCV curves reaches the maximum
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value 22.6 mV, as shown in small figure in Figure 2.7. It is worth noting that for the purpose of

simplicity in calculation, the average value of the measured charge/discharge OCV-SOC curves

is applied in the model identification.
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Figure 2.7. Charge/discharge OCV-SOC experimental curves.

Then, a HPPC test profile is intended to determine dynamic power capability in model

parameter estimation over the devices usable voltage range using a test profile that incorporates

both discharge and charge pulses. The HPPC test begins at 100% fully charged Li-ion battery

and terminates after completing the final profile at 0 % SOC with 2% SOC discharge step and

1 hour rest between two consecutive charge/discharge cycles to allow the cell to return to a

charge equilibrium condition before applying the next profile. The actual current input of one

specific charge/discharge cycle of HPPC profile is shown in Figure. 2.8. The HPPC current

characterization profile and voltage response at SOC = 50% is recorded to establish the cells

28



OCV behavior, which are enlarged in Figure 2.9.
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Figure 2.8. HPPC test profile.

UDDS stands for Urban Dynamometer Driving Schedule, mandated dynamometer test on

fuel economy that represents city driving conditions which is used for light duty vehicle testing.

This manual defines a charge depleting operational mode, which is intended to allow the vehicle

to operate in an all-electric mode (propulsion and accessories powered by the electric drive and

onboard electric energy storage), with a net decrease in battery SOC. In this dissertation, the

specific UDDS datasets that can be used to be able to imitate the battery load of a car to represent

city driving conditions at the specific temperatures, and voltage response records are used as

model validation datasets in order to assess the simulated models.
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Figure 2.9. HPPC pulses at SOC=50%.

2.5.2 Pre-determination of Non-integer Order

The fitness function f (t) that describes the deviation between the simulated model output

and experimental battery terminal voltage, is used to measure the model accuracy and validate

the model performance. 1 Hz cut-off frequency for a low-pass filter is selected in order to

pre-filter the input/output signals. As a matter of fact, the non-integer order α affects the model

accuracy/performance. For this research, the fractional order α is selected from 0.01 to 1.0 with

the step length 0.01. The identification process is performed at each α value, and the results

are shown in Figure 2.10. As can be seen from Figure 2.10, the fitness function value typically

changes when the value of the fractional order varies. It should be mentioned here that when the

fractional orders are chosen from 0.01 to 0.35, the values of the fitness function are beyond the

range compared with other selected fractional orders. Hence, the range of fractional order shown
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in Figure 2.10 is chosen from 0.36 to 1 with step size 0.01. The model when the fractional order

α = 0.64 obtains the smallest value and obtains the best model accuracy/performance under

HPPC test cycles. Thus, the optimized fractional order α = 0.64 is chosen in the FDM to validate

performance throughout this thesis.
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Figure 2.10. Relationship between model accuracy and fraction order.

2.5.3 Validation Results

In order to validate the model accuracy/performance of the aforementioned FDM, the

optimized FDM (when α = 0.64) is used to compare with same structure first-order integer

model (IM) in (2.38) (when α = 1) in both CT LSSVF and CT IVSVF system identification.

The 1 Hz cut-off frequency is also selected as pre-fliter SVF through the validation process.

The validation result for UDDS test is shown in Figure 2.11. The simulated and experimental

battery voltage outputs, and voltage errors between the simulated models and experiment data
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are plotted in Figure 2.11. And the zoom-in range results between 0 s and 2000 s are shown

in Figure 2.12. The results show that (1) the IM estimated by LSSVF method has the largest

overall error compared with other estimated models; (2) the FDMs offers substantially better

performance then IMs in both LSSVF and IVSVF methods; (3) the IVSVF identification method

has better performance over LSSVF method in both FDM and IM, because the recent presented

IV method is less correlated (more independent) to the equation error; (4) FDM applied by

IVSVF identification method appears the best performance compared with other estimated

models under UDDS profile, which mainly consists of high frequency contents and is closer to

the actual working conditions.
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Figure 2.11. Voltage values and errors across all UDDS tests.

The root-mean-square error (RMSE), mean absolute error (MAE) and median absolute

deviation (MAD) of above mentioned estimators over the full experimental period are chosen to

list in Table 2.2. It validates that the proposed FDMs exhibit better overall performance and the

explicitly RMSE, MAE and MAD of the FDM applied IVSVF system identification method is

substantially smaller than other estimated models. It can be concluded from the above analysis
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Figure 2.12. Detailed voltage values and errors between 0 s and 2000 s.

that the proposed FDM applied IVSVF method characterizes the Li-ion battery more accurately

and shows better performance than other models.

Table 2.2. RMSE, MAE and MAD of model voltage estimation in whole UDDS validation.

LSSVF IM LSSVF FDM IVSVF IM IVSVF FDM
RMSE [mV] 16.87 12.88 16.30 9.15
MAE [mV] 15.39 11.70 14.92 8.20
MAD [mV] 0.57 0.48 0.49 0.37

2.6 Summary

Based on the premise of using the advantage of CT identification for the estimation of

model parameters, the main purposes of this chapter is to show the following contributions:

(1) a fractional differential model (FDM) that has fewer estimation parameters than a physics-

based electrochemical model, can be applied to accurately mimic complex input/output dynamic

behavior of an electrochemistry-based system inside a Li-ion battery; (2) a continuous-time (CT)

system identification approach can be used to estimate model parameters of a FDM in a Li-ion
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battery (LIB); (3) the use of a state-variable filter (SVF) to formulate a parameter estimation

problem that is less susceptible to noise on the fractional derivatives of the input/output signals

of the model; (4) the use of a standard least squares (LS) based state-variable filter (LSSVF)

method for the estimation of FDM parameters; (5) the further improvement of the LS parameter

estimates via an instrumental variable (IV) method to estimate parameters of the FDM.
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Chapter 3

Power Prediction of Battery System

3.1 Introduction

Alternative battery dynamic models with low computational requirements for the BMS

are highly desired to focus on dynamics of the electrochemical process of LIB. It is also very

important to use a simplified dynamic model to capture battery dynamics formulated on the

basis of observations from a power charge/discharge demand signal to the voltage and current

signals [3]. From this point of view, a viable alternative method to model the battery system

is to model the dynamic of power storage and delivery of a LIB, as indicated in Figure 3.1.

In this chapter, the power storage and delivery dynamics of a battery system with an input of

charge and discharge demand is modeled from control system perspective, which is different

from the conventional ECM or electrochemical models. As indicated in Figure 3.1, the proposed

method to predict power storage and delivery capability of a battery system is done by modeling

individual dynamics from a power charge/discharge demand signal to the voltage and current

signals, respectively. In particular, such a dynamic model for power storage and delivery is

based on fractional derivative model, used to capture the possible infinite dimensional behavior

of battery power dynamics. The proposed model approach aims to not only model how fast

a battery can store and deliver energy as a function of time, but also provide the potential of

controlling a battery system as BESS.
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Figure 3.1. Model approach for dynamic power storage and delivery, see also [3].

3.2 Power-Based Battery Modeling

3.2.1 Experiment Setup

As shown in Figure 3.2, an experimental setup is built to test a battery as a power

storage/delivery system. The charge/discharge demand signal can be applied as the input when

measuring current and voltage signals of the batteries are recorded in real-time. There are three

parts of the experimental setup: main circuitry, control and measurement circuitry, and computer.

In the main circuity, metal-oxide-semiconductor field-effect transistor (MOSFETs) T1

and T2 are used to allow the control of the power supply to LIBs. When T1 is on and T2 is off,

the LIB is connected to the power supply. The power is transferred to charge the battery. When

T1 is off and T2 is on, the battery is disconnected with the power supply. The power flow from

the supply is switched off, thus the battery is connected to the ground and discharged. The main

use of the pulse-width modulation (PWM) technique of T1 and T2 is to allow for modulating

charge and discharge demand signals. The electric load is comprised of a parallel connection of

load resistors. Such an electric load behaves to limit the current when the battery is charged, and
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Figure 3.2. Model approach for dynamic power storage and delivery, see also [3].

performs as the load when the battery is discharged.

In the control and measurement circuitry, a National Instruments (NI) USB data acquisi-

tion (DAQ) device is used to delivery corresponding control signals to switch MOSFETs. The

DAQ device is also applied to receive the measured signals and can communicate with the

computer via a USB cable in real-time. A MOSFET drive is developed to boost the level of the

digital output signal generated by the DAQ device. Low-order Butterworth low-pass filtering

circuitry is used to reduce aliasing effects on the measured switching signals. a NI LabVIEW

program was developed to automatically load cycle signals from existing files and can also

save measured signals from the DAQ device. The experimental battery test can be repeated by

applying the same sequence of charge/discharge demand signals.

A photograph of the experimental battery tester is shown in Figure 3.2. A 2.3 Ah-3.3 V

LiFePO4 battery cell ANR26650 manufactured by A123 Systems (Michigan, USA) is utilized

37



in the experimental test. Pulse discharge at 10 s can reach 120 A and maximum continuous

discharge is 70 A. Low drain-to-source on-resistance MOSFET IRLZ34 is applied to adapt in

a high current flow. A bidirectional ± 20 A Hall effect sensor ACS714 is utilized to measure

the current, and an analog-to-digital (A/D) conversion is used to measure the voltage over the

battery.

3.2.2 Experiment Results

For experimental verification of the parameter estimation of the battery FDM, the battery

is charged and discharged by a sequence of charge/discharge demand signal composed of 6th

order pseudo random binary sequence (PRBS) [3]. Specifically, each PRBS is the 6th order with

different scaling factors of 1, 2, and 3, respectively. As a result, different C-rates are implemented

in the experiment. Each PRBS is connected with a period of zero-state, which indicated the idle

status of the charge/discharge system, as shown in Figure 3.3. The measured signals of voltage

and current are also shown in Figure 3.3. The experimental time is T = 90 min, and the sample

rate is 10 Hz, which contains 54,000 samples.

3.2.3 Continuous-time Fractional Differential Model Identification

In order to establish a dynamic model of a Li-ion battery as a power storage/delivery

system, the power charge/discharge demand signal r(t) is considered as an input signal. The

voltage signal v(t) and current signal i(t) of the battery are considered as observable output

signals. As shown in Figure 3.1, the multiplication of voltage signal v(t) and current signal

i(t) is equal to the power storage/delivery signal p(t). The experimental results included below

illustrate that the parameters of the two separate FDMs between r(t) as input signals and v(t)

and i(t) as output signals can be estimated very well with the LSSVF method. More details on

conventional LSSVF method can be referred to last chapter, and the overall filtering and LS

estimation in the LSSVF algorithm are summarized in Figure 3.4.
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Figure 3.3. Charge/discharge cycles, voltage and current experimental results in 90 min.

3.2.4 Voltage Model

A second-order voltage FDM, with input r(t) and output v(t), has much better prediction

performance as shown in Figure 3.5, and the simplest form to capture the voltage dynamics is

estimated by the LSSVF method in the form

v(t) = vn(t)+ v0 =
b2s2α +b1sα +b0

a2s2α +a1sα +1
r(t)+ v0 (3.1)

where v0 and vn(t) are offset voltage and new output voltage signals, separately. First order

SVF L(s) = 1
s+λ

is then applied to get the filtered charge/discharge demand signal r f (t) and

the filtered new output voltage signal vn f (t). In order to estimate the parameters, the filtered

prediction error of voltage model can be defined as

ε f v(t,θ1) = vn f (t)−ϕ
∗
1 f (t)

T
θ1 (3.2)
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Figure 3.4. The least squares-based state-variable filter (LSSVF) estimator.

where the regression vector is given by

ϕ
∗
1 f (t)

T = [s2αr f (t) sαr f (t) r f (t) − s2αvn f (t) − sαvn f (t)] (3.3)

and the parameter vector

θ
T
1 = [b2 b1 b0 a2 a1] (3.4)

combines the unknown parameters. Subsequently, the predicted voltage

v̂(t,θ1) = v̂n(t,θ1)+ v0 = ϕ
∗
1 f (t)

T
θ1 + v0 (3.5)

is applied to estimate the performance of the model, where v̂n(t,θ1) is the predicted new voltage.

The filtered squared prediction error of voltage model given by

ε
2
f v(t,θ1) = ||vn f (t)− v̂n(t,θ1)||22 (3.6)
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is utilized to validate the accuracy of the estimation.

3.2.5 Current Model

Following the same procedure, a first-order current FDM with the input r(t) and the

output i(t), can be estimated by the LSSVF method to capture the current dynamics of battery.

The first-order current FDM is of the from

i(t) =
d1sα +d0

c1sα +1
r(t) (3.7)

and still excellent prediction performance as shown in Figure 3.5.

After applying the same filter L(s), the filtered current signal i f (t) and filtered charge

and discharge demand signal r f (t) are used to minimize the L2 norm of ε f i(t,θ2)

ε f i(t,θ2) = i f (t)−ϕ
∗
2 f (t)

T
θ2 (3.8)

where the regression vector is given by

ϕ
∗
2 f (t)

T = [sαr f (t) r f (t) − sα i f (t)] (3.9)

and the parameter vector

θ
T
2 = [d1 d0 c1] (3.10)

combines the unknown coefficients in the first order current FDM. As in the voltage model, the

filtered squared prediction error of current model is now built as

ε
2
f i(t,θ2) = ||i f (t)− î(t,θ2)||22 (3.11)

to verify the accuracy of the model, where î(t,θ2) as the predicted current output.

41



α
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ε2 f
i(
t,
θ 2
)

0

10

20

30

40

50

60

70

80

Filtered squared prediction error of current models

1st order current model
2nd order current model

α
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ε2 f
v
(t
,θ

1
)

0

5

10

15

20

25

30

35

40

45
Filtered squared prediction error of voltage models

1st order voltage model
2st order voltage model

Figure 3.5. Squared prediction error of voltage model ε2
f v(t,θ1) and current model ε2

f i(t,θ2) as
a function of fractional differential order α .

3.2.6 Experimental Data-Based Modeling

For identification and model validation purposes, the first 30 min of measured data and 5

Hz cut-off frequency SVF are applied to estimate the parameters and validate the models. The

filtered squared prediction error of the first order and the second order voltage model ε2
f v, and

the current model ε2
f i as a function of fractional differential order α are shown in Figure 3.5.

The dependency on the fractional differential order α is used to characterize the accuracy of the

models for different values of α , where a lower value along the y-axis indicates a more accurate

estimation.

As can be seen in Figure 3.5, the results show that the filtered squared prediction error

of a second-order voltage FDM is significantly smaller than a first-order model. This explains

that the selected second-order model indeed has much better prediction performance, while still

preserving the requirement of a model of the smallest complexity to capture the voltage dynamic.

For the current FDM it is observed that a first order FDM suffices. Although the second-order
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current FDM has a slightly smaller prediction error, the first-order current FDM shows similar

performance with the advantage of only having to need a first order model.
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Figure 3.6. Validation results of the dynamic voltage and current models with one-step-ahead
voltage and current predictors v̂(t|t−1) and î(t|t−1) in the first 30 min.

When the fractional differential order α is chosen as α = 0.1 both ε2
f v and ε2

f i have the

smallest value, which leads to the most accurate estimation. Therefore, the fractional differential

order α = 0.1 is chosen in the system identification via the LSSVS method for both the voltage

and current FDM in Equations (3.1) and (3.7). Fixing the fractional differential order, the

batch-wise estimation leads to the following voltage model and the current model, respectively

given by

• Voltage Model

v(t) =
0.2420s0.2−0.3766s0.1 +0.1105

1.7607s0.2−2.9055s0.1 +1
r(t)+3.2141 (3.12)
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Figure 3.7. Validation results of dynamic power storage/delivery models with the one-step-ahead
power predictor p̂(t|t−1) in the first 30 min.

• Current Model

i(t) =
−1.7381s0.1 +2.1883
−0.7840s0.1 +1

r(t) (3.13)

The estimated voltage FDM in Equation (3.12) and the current FDM in Equation (3.13) are

used to predict the voltage, current outputs and power output on the basis of measurements

of the charge/discharge demand signal r(t) that acts as an input to these models. Prediction

of the voltage and current signals is done with the parameters of the voltage and current

FDMs in Equations (3.12) and (3.13) that have been optimized for 1-step-ahead prediction.

The resulting 1-step-ahead predictions are given by

v̂(t|t−1) = ϕ
∗
1 (t)

T
θ1 + v0 (3.14)

and

î(t|t−1) = ϕ
∗
2 (t)

T
θ2 (3.15)
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using the regessor vectors

ϕ
∗
1 (t)

T = [s0.2r(t) s0.1r(t) r(t) − s0.2vn(t) − s0.1vn(t)] (3.16)

and

ϕ
∗
2 (t)

T = [s0.1r(t) r(t) − s0.1i(t)] (3.17)

creating the 1-step-ahead power predictor by

p̂(t|t−1) = v̂(t|t−1) · î(t|t−1) (3.18)

as a multiplication of the 1-step-ahead prediction of voltage and current.

It should be noted that the models given in Equations (3.12) and (3.13) may not be suitable

for simulation, as parameters are optimized for prediction. Instead, the predictors in Equations

(3.14) and (3.15) should be used for 1-step-ahead power delivery/storage prediction of the battery.

As shown in Figure 3.6, the comparison of the predicted and measured results indicates that

the estimated voltage and current FDMs obtained via the LSSVF method can both capture the

dynamics of the voltage and current signals of the battery system. Furthermore, the proposed

method is evaluated to estimate the performance of FDM identification for power storage/delivery

model, which is achieved by multiplying the outputs of the individual fractional differential

models. As shown in Figure 3.7, the estimation results indicate that the power storage/delivery

model is able to capture the dynamics of the battery as the power storage/delivery systems.

It should be also noted that the one-step-ahead predictors using fractional differential

models yield better prediction than using the same order integer models. The voltage and

current prediction errors comparison between the optimized fractional models (α = 0.1) given

in Equations (3.12) and (3.13) and the integer models (α = 1) given in Equations (3.1) and (3.7)

are shown in Figure 3.8. The comparison result obtained indicates that very low relative voltage

prediction errors and slight low current prediction errors of fractional models offer substantially
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better accuracy of prediction ability than integer models.
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Figure 3.8. Voltage and current prediction errors εv(t,θ1) and εi(t,θ2) of optimized fractional
models (α = 0.1) and integer models (α = 1) in the first 30 min.

As a final comparison of the FDM quality, a model fit ratio

γx,x∈{v,i,p} = (1− ‖ x̂(t|t−1)− x ‖
‖ x− x̄ ‖

) (3.19)

is introduced to validate the accuracy of the model, where x, x̄ and x̂(t|t−1) are output, mean

value of output and one-step-ahead output predictor, respectively. Also shown in Table 3.1, the

model fit ratios comparison illustrates that our proposed fractional models via the LSSVF method

obtain more accurate estimation for all of the voltage models, the current model and the power

storage/delivery model, assuming that fractional models are more believable than integer models.

Furthermore, the last 60 min data set is used to validate the estimated voltage model and

the current model in Equations (3.1) and (3.7), respectively. The comparison of the predicted

and measured results is shown in Figure 3.9. The comparison results indicate that the estimated

models can also capture the dynamics of the objective system in the last 60 min and predict
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Table 3.1. Model fit ratios comparison between fractional models (α = 0.1) and integer models.

Model Fit Ratio Fractional Model Integer Model
Voltage Model γv 98.9893% 81.7168%
Current Model γi 97.5721% 97.1509%

Power Storage/Delivery Model γp 97.9440% 91.0754%

well with various C-rate charging and discharging and the wider range of SOC. As indicated

in Figure 3.10, the predicted power output, which is combined by the product of the predicted

voltage and current, is compared with measured power. The results validate that our proposed

dynamic model can accurately predict the dynamics from the demand signal to the power

storage/delivery signal of the battery for various operating situations of the battery.
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Figure 3.9. Validation results of dynamic voltage and current models with one-step-ahead
voltage and current predictors v̂(t|t−1) and î(t|t−1) in the last 60 min.

3.3 Summary

System identification of a proposed FDM of a battery via the LSSVF method is described

in this chapter. This method allows for a consistent estimation of the battery output dynamics
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Figure 3.10. Validation results of dynamic power storage/delivery model with one-step-ahead
power predictor p̂(t|t−1) in the last 60 min.

by fixing the value of the fractional differential order and then computing smooth fractional

derivative signals of voltage and current signals to perform parameter estimation through standard

LS minimization. Furthermore, an additional line search over the fractional differential order

is utilized to minimize the estimation error and find the best fractional differential order. The

proposed method is applied to model the dynamics from a power demand signal to the actual

power storage/delivery of a LiFePO4 battery cell. This is done by estimating two separate FDMs

from the power demand signal to the voltage and current signals measured at the battery in real-

time. Based on the experimental data set obtained from the LiFePO4 battery system, comparison

of predicted and measured results validates that the FDM estimated via the LSSVF method

can capture the power storage/delivery dynamics over a large operation range of the battery

and reveal better prediction performance than standard linear differential equation models with

integer derivatives. It is anticipated that the proposed estimation method is easily implemented

in a BMS to determine and predict the power delivery dynamics of a battery.
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Chapter 4

Current Scheduling for a Parallel Connec-
tion of Battery Energy Storage System

4.1 Introduction

The battery pack of a BESS is built up from multiple battery cells where series con-

nections are used to provide the BESS terminal voltage and parallel connections are used to

increase storage capacity and maximum power output of the BESS. Most BESS use LIB cells

connected in series, parallel or a mixture of both configuration to provide high voltage with a

desired energy capacity, long life span, low self-discharge rate and fast charging capabilities

[63, 64]. For the discussion and analysis presented in this dissertation, a battery module is

considered to be formed by connecting a fixed number of (LIB-based) cells placed in parallel and

series to satisfy a desired OCV of the individual battery module [65]. In addition, each battery

module will be equipped with a current sensor and a buck regulator to allow for modulation of

the terminal voltage of the battery module. The buck regulator serves as a DC-to-DC power con-

verter controlled by pulse-width modulation (PWM) of a metal-oxide-semiconductor field-effect

transistor (MOSFET) to efficiently step down terminal voltage of a battery module [66]. Finally,

a full battery pack is formed by connecting multiple battery modules in parallel to a common

DC-bus to increase the storage capacity and power rating of the full battery pack as a whole. The

common DC-bus may be used to serve a (unknown) load such as an DC/AC inverter for grid

supporting function or driving an motor in an EV application. Next to the full battery pack, a
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BMS is used to monitor the SOC, module temperature, LIB cell voltages and aims to protect the

BESS from operating outside its safe operating area [67].

With a BESS built from multiple parallel placed battery modules, the BESS can also

be used to keep track of battery (module) parameters and perform module balancing, where

the current from each module is rated according to its SOC parameter [40, 26]. Especially

in a BESS with parallel placed modules where the terminal voltage of the modules can be

adjusted with a buck regulator, the BMS features can be used for balancing the battery modules

[68]. Balancing the battery modules will maximize the battery pack life cycle, especially when

the battery pack ages and the number of total cycle increases [25]. As shown in Figure 4.1,

such configuration shows the advantage of tremendously increasing feasibility, flexibility and

efficiency of a swappable battery pack for EV applications, because partly empty or failing

battery modules in the battery pack can be easily swapped for fast updates.

For accurate balancing of the modules, knowledge of the OCV of each module and its

impedance is needed to adjust the buck regulator and ensure the current out of each module is as

desired. Unfortunately, battery heterogeneity due to the manufacturing process and operating

conditions is inevitable to negatively have an impact on the performance of extracting and storing

the electrical energy capacity and lifespan of a battery pack. In light of heterogeneous battery pack

degradation, it is necessary to develop a control and scheduling algorithm for a BMS to mitigate

the impact of the possible differences between battery modules for a high power battery pack.

One approach would be to operate batteries with lower internal resistances over a wider SOC

range, which allows battery pack lifespan to be defined by the average battery capacity instead

of the worst battery capacity [22]. An alternative approach is to assign lower SOC to smaller

battery capacity, which can significantly improve capacity homogeneity and eventually extend

battery pack lifespan [69]. Furthermore, a multiple objective (homogenize internal resistances,

fault detection) optimization with multi-level converters (MLCs) is regarded as a suitable control

approach for balancing both charge and temperature within battery packs [70, 71]. Although

these algorithms are able to deal with difference in SOC and battery parameters between modules,
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Figure 4.1. Exchangeable battery module with a series connection of LIBs in a suitcase size
format. Multiple of these battery modules are connected in parallel to increase power and energy
storage capabilities.

they tend to be computationally complex and require reliable high speed communication between

battery modules to provide optimal scheduling.

The scheduling of multiple battery modules in a heterogeneous battery pack is solved

in this chapter by finding the optimal terminal voltage of each individual module. The optimal

terminal voltage is based on the requirement of balanced currents provided by the modules,

whereas voltage regulation is achieved via PWM of the buck regulator in each battery module.

Using centralized algorithm in open-loop system [64] as a basis, a scheduling algorithm with a

decentralized architecture is developed to compute the PWM in each module. The decentralized

architecture ensures that no high-speed communication is required between battery modules.

Local current control in each battery module is achieved via a proportional-integral-derivative
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(PID) feedback controller with a recursive scheduling algorithm. The recursive scheduling

algorithm ensures that at least one of the battery modules will operate at a full or close to

100% PWM, without the explicit knowledge of the electrical module parameters such as OCV

or internal impedance and despite a time-varying load connected to the battery pack. The

proposed closed-loop current scheduling control technique is applied to the actual operation of

experimental tester to validate the feasibility and performance in different load scenarios of a

real-life battery system.

4.2 Parallel Buck Regulated Battery Modules

4.2.1 Module Formulation and Assumptions

In this chapter, current optimal scheduling of parallel placed battery modules is executed

by buck regulators, which are composed of a PWM-driven MOSFET, a flyback diode and

an inductor, as shown in Figure 4.2. A battery pack is formed by a set of any number of

parallel-connected battery modules with buck regulated and series-connected battery cells and

ultimately connect the unit to the electric load.. In each module, the battery is represented by

a series connection of battery cells to create the desired OCV, while a BMS with MOSFET

microcontroller controlled switch with a fly-by diode and inductor are used for regulation of

the battery voltage on the parallel bus. It should be noted that module number n is arbitrary,

because a battery pack can be fully or partially arranged with battery modules to deliver the

desired voltage, capacity, or power density so as to significantly enhance the flexibility of the

battery systems.

For the derivation of the current optimal scheduling algorithm, the battery system of

parallel placed buck regulated battery modules can be simply approximated as a group of

adjustable power supplies in parallel, as shown in Figure 4.3. Specifically, we assume that each

battery module k with a serial of multiple cells is characterized by a modulated ideal voltage

supply Vk in series with an internal impedance Zk. For each battery module k, we presume the
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Figure 4.2. System diagram of parallel buck regulated battery modules.

following knowledge:

• The ideal voltage supply can be given by Vk = αkV OCV
k , where OCV V OCV

k is the terminal

voltage of a battery module in case of no external load connected and voltage modulation

coefficient αk ∈ [0,1] represents the PWM duty cycle of MOSFET applied by a buck

regulator.

• The slowly time-varying internal impedance of a battery module is given by a constant

and known value Zk in comparison with the time-varying natural of the external load

impedance Zl .

Applying Kirchoff’s circuit laws now yields to the following relationships for above

mentioned battery system shown in Figure 4.3:

• The algebraic sum of current Ik of each battery module is equal to bus current

Ibus =
n

∑
k=1

Ik (4.1)

due to Kirchhoff’s current law (KCL).
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Figure 4.3. Model for current scheduling.

• Similar to KCL, the bus voltage Vbus can be satisfied

Vbus =Vk−ZkIk (4.2)

for each battery module k due to Kirchhoff’s voltage law (KVL).

4.2.2 The Formulation of Module Voltages and Module Currents

The above fundamental equalities Eq. (4.1) and Eq. (4.2) of the battery system can be

combined to compute bus current Ibus and bus voltage Vbus when a load with impedance value Zl

is applied to connect battery back with parallel placed battery modules. With the knowledge of a

given set of values for modulated voltages Vk, k = 1,2, . . . ,n, individual module current Ik can

be determined by

Ik =
Vk−Vbus

Zk
(4.3)

Recalling that the bus current Ibus can be derived from individual module current Ik from
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relationship Eq. (4.1), we can solve bus voltage Vbus via

Vbus = ZLIbus = ZL

n

∑
k=1

Ik = ZL

n

∑
k=1

Vk−Vbus

Zk

This allows us to recreate Vbus

Vbus = ZL

n

∑
k=1

Vk

Zk
−VbusZL

n

∑
k=1

1
Zk

which is equivalent to

Vbus =

n

∑
k=1

Vk

Zk

1
Zl

+
n

∑
k=1

1
Zk

From last expression, the bus voltage Vbus can be computed by the linear combination

Vbus = g1V1 +g2V2 + . . .gnVn where

g j =

1
Z j

1
Zl

+
n

∑
k=1

1
Zk

, j = 1,2, . . . ,n
(4.4)

where the ”gain factors” gk, k = 1,2, . . . ,n are given by a combination of impedances Zk and Zl

from parallel placed battery modules.

4.2.3 Currents Matrix

With the individual module currents Ik given in Eq. (4.3) and bus voltage Vbus given in

Eq. (4.4), we can then obtain Ik as a typical linear combination of all modulated module voltages

Vk:

Ik =
1
Zk

Vk−

n

∑
m=1

Vm

Zm

1
Zl

+
n

∑
m=1

1
Zm

=
1
Zk


Vk

Zl
+

n

∑
m=1

Vk

Zm
−

n

∑
m=1

Vm

Zm

1
Zl

+
n

∑
m=1

1
Zm


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where the summation index has been changed to m in order to avoid confusion with the specific

module current Ik indexed with k. The above expression for Ik can be simplified as an insightful

linear combination expression

Ik = dk,1V1 +dk,2V2 + . . .+dk,nVn, where

dk, j =



− 1
Zk
·

1
Z j

1
Zl

+
n

∑
m=1

1
Zm

for j 6= k

1
Zk
·

1
Zl

+
n

∑
m=1

1
Zm
− 1

Zk

1
Zl

+
n

∑
m=1

1
Zm

for j = k

(4.5)

The coefficients dk, j, k = 1,2, . . . ,n and j = 1,2, . . . ,n can build up a n×n impedance

matrix D = [dk, j], which relates module currents Ik to module voltage Vk given by

I1

I2

...

In


=



d1,1 d1,2 · · · d1,n

d2,1 d2,2 · · · d2,n

...
... · · · ...

dn,1 dn,2 · · · dn,n





V1

V2

...

Vn


, with dk, j given in (4.5) (4.6)

The impedance matrix D = [dk, j] will be very useful for the explicit computation of

module currents Ik as a function of the module voltages Vk and visa versa. It can be easily

observed from the definition of the impedance matrix D = [dk, j] that with all impedance values

positive, D is also positive definite and symmetric, making D nonsingular. With D invertible,

module voltages Vk can be computed as a function of desired module currents Ik for the parallel

placed battery modules.
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4.3 Open-loop Optimal Current Scheduling

4.3.1 Relative Scaling of Module Currents

Given the knowledge of impedance matrix D = [dk, j] with internal impedances Zk and a

fixed (but unknown) load impedance Zl , optimal current scheduling problem can be formulated

as to compute the buck regulated module voltages Vk ≤V OCV
k , such that module currents Ik can

be scaled to satisfy

I =



I1

I2

...

In


= β



β1

β2

...

βn


, 0≤ βk ≤ 1, k = 1,2, . . . ,n (4.7)

where the coefficients β is used for absolute scaling and 0≤ βk ≤ 1 specifies the relative scaling

of the module current Ik. It should be noted that the β value represents β > 0 for battery module

discharging, whereas β < 0 for battery charging. A recursive solution will be formulated to

accomplish module current scheduling despite the lack of knowledge on the internal module

impedance Zk and the external load impedance Zl (fixed and time-varying). The relative scaling

βk of the module currents I is determined by charging/discharging current Ik in/out of module k

based on individual SOC of each battery module, defined as

βk =
mink=1,2,...,n SOCk

SOCk
≤ 1 (charging status)

and

βk =
SOCk

maxk=1,2,...,n SOCk
≤ 1 (discharging status)

where SOCk of module k is satisfied by 0%≤ SOCk ≤ 100% (0% = empty; 100% = full). The

above βk expressions can guarantee that battery modules with smaller SOC will charge faster

with larger current compared to battery modules with a larger SOC, and also battery modules

with a smaller SOC will discharge less current compared to battery modules with a larger SOC.
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In case where all modules have same storage capacity and same SOC, and can be required to

follow the same charging/discharging profile, the relative scaling βk of the module currents I

given by Eq. (4.7) can be satisfied to be identical βk = 1, k = 1,2, . . . ,n, making

I1 = I2 = · · ·= In (4.8)

and will be denoted by equal SOC current scheduling and specifically verified in this paper.

4.3.2 Module Current Scheduling via Linear Programming

Given the full information of the invertible impedance matrix D with each internal

impedance Zk and external load impedance Zl in Eq. (4.6), we can explicitly compute the set of

optimal modulated module voltages V = [V1 V2 · · · Vn]
T from a desired set of module currents

I = [I1 I2 · · · In]
T . Using vector notation

V =



V1

V2

...

Vn


, V OCV =



V OCV
1

V OCV
2
...

V OCV
n


for module voltages, vector format I in Eq. (4.7) for module currents, and invertible impedance

matrix D in Eq. (4.6), the optimal current scheduling can be written as a typical linear program-

ming (LP) problem that requires to compute the maximum value of the current absolute scaling

β ≥ 0 (for discharging) such that V ≤V OCV . By rewriting that

V = D−1



β1

β2

...

βn


β
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from Eq. (4.6) and the optimization for absolute scaling β of module currents can be expressed

in standard form as
max

β

β

s.t. D−1
[

β1 β2 · · · βn

]T

β ≤V OCV

which is equivalent to a LP problem for numerical computation (MATLAB)

βopt = min
β

f T
β , s.t. Aβ ≤ b, with

A = D−1
[

β1 β2 · · · βn

]T

,

f T =−1, and b =V OCV

(4.9)

The LP formulation in Eq. (4.9) provides the numerical tool to compute the optimal solution

that can maximize module current I by finding the maximize value β , given the constrains on

VOCV for each module. Once the optimal absolute scaling βopt is obtained, both optimal module

currents and voltages can be explicitly computed via

Iopt = βopt

[
β1 β2 · · · βn

]T

(4.10)

and

Vopt = βoptD
[

β1 β2 · · · βn

]T

(4.11)

4.3.3 Centralized Recursive Optimal Current Scheduling

The LP solution given in Eq. (4.9) to compute the optimal value βopt requires full

knowledge of the impedance matrix D in Eq. (4.6) with internal module impedances Zk and

external load impedance Zl . It should be further noted that the internal module impedances

Zk may be monitored by battery management system (BMS) and slowly increase over time,

however, the external load Zl may be not known and has the fast time-varying feature due to

changing power demands in different scenario profiles. Therefore, the module current optimal
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scheduling in Eq. (4.6) must be allowed to compute in a recursive way with the knowledge of

internal impedance Zk (fixed value) for each module but without further explicit knowledge of

the external load Zl .

In recursive module current scheduling, we will update the impedance matrix D recur-

sively to allow for the computation of the optimal modulated module voltages Vk, where the value

of external load impedance Zl =
Vbus
Ibus

can be estimated by monitoring the bus voltage Vbus and

the bus current Ibus by using Ohm’s law. Therefore, based on the fact that the value of Zl can be

estimated and replaced in the impedance matrix D by the ratio of Vbus and Ibus, a straightforward

recursive approach is used to recursively update D in order to determine optimal values of the

internal module voltages Vopt for optimal scheduling module currents Iopt . Starting from an initial

choice for the module voltages V = [V1 V2 · · · Vn]
T , the estimated load impedance Zl obtained

from measured bus voltage Vbus and bus current Ibus can be used to update impedance matrix D

and further applied to compute the optimal current scaling βopt . The optimal module voltages

Vopt can then be obtained from relationship Eq. (4.11) and used to communicate each module in

a centralized approach. This centralized recursive optimal current scheduling approach can be

implemented recursively in time and summarized as below specific procedure in discrete-time

(DT) system.

Centralized current scheduling procedure:

1. Assume fixed internal impedances Zk, k = 1,2, . . . ,n but a time-varying load impedance

Zl .

2. Set initial time index t = 0 and communicate the n elements Vk[0] of the initial module volt-

ages V [0] = [V1[0] V2[0] · · · Vn[0]]T to each of the corresponding modules k = 1,2, . . . ,n.

3. At time index t, conduct a measurement of Vbus[t] and Ibus[t] and compute the external load

impedance by

Zl[t] =
Vbus[t]
Ibus[t]

61



and then update the impedance matrix D[t] in (4.6).

4. Before the subsequent time step t +1, find βopt [t] by the LP problem in (4.9) using the

updated impedance matrix D[t] and compute the module voltages Vopt [t +1] according to

Vopt [t +1] = βopt [t]D[t]
[

β1 β2 · · · βn

]T

5. At time step t +1, communicate each of the modules k = 1,2, . . . ,n and update the module

voltage Vk to Vk =Vk[t +1] of the Vopt [t +1] = [V1[t +1] V2[t +1] · · · Vn[t +1]]T

6. Increment time index t = t +1 and restart from step 1.

It should be noted that the recursive updates of optimal module voltages Vopt [t] from

above procedure can converge in a single time step in case of fixed value of Zl at time step t.

In order to track fast time-varying of external load Zl due to power demand change, the above

procedure should allow high-frequency measurements and communication of bus voltage Vbus

and bus current Ibus. In addition, the above centralized implementation of recursive module

current scheduling can be solved by LP problem in Eq. (4.9), where each module k = 1,2, . . . ,n

simply only receives its Vk[t +1] from the centrally computed optimal LP solution Vopt [t +1] =

[V1[t +1] V2[t +1] · · · Vn[t +1]]T in step 4 and 5.

4.3.4 Decentralized Recursive Optimal Current Scheduling

Although the LP problem in Eq. (4.9) can be computed with fast computing hardware,

measurements and communication of a large bus voltage Vbus and a high bus current Ibus may

require dedicated hardware and optical isolation devices. Furthermore, when the number n of

modules becomes large, the communication to update of Vopt [m+1] puts additional requirements

on the speed and reliability of the communication hardware, and the ability to respond to the

information request in a timely manner gets reduced. In this paper, we will propose a solution

that replaces the measurements of Vbus and Ibus and reduce the centralized communication
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requirements by a decentralized recursive module current scheduling. In order to explain

clearly the decentralized recursive module current scheduling, first it should be noted that the

measurement of Vbus and Ibus can be replaced by the measurement of a single module current Ik

performed by any module m. From KVL in Eq. (4.2), the measurement of Vbus can be replaced

by a measurement of a module current Im and computed by Vbus =Vm−ZmIm. As a matter of fact

that the individual module current Im is much smaller than the bus current Ibus, the measurement

of the individual module current Im can be easily realized by implemented BMS of that module

m. Second, it should be also noted that once bus voltage Vbus is known, all the module currents

Ik, k = 1,2, . . . ,n can now be computed as the following expression

Ik =
Vk−Vbus

Zk
, where Vbus =Vm−ZmIm (4.12)

allowing to recreate bus current Ibus via

Ibus =
n

∑
k=1

Ik =
n

∑
k=1

Vk−Vbus

Zk
, where Vbus =Vm−ZmIm (4.13)

With both bus voltage Vbus and bus current Ibus now obtained from above expression, the same

load impedance estimate as centralized scheduling can be rewritten as

Zl =
Vbus

Ibus
=

Vbus
n

∑
k=1

Vk−Vbus

Zk

, where Vbus =Vm−ZmIm (4.14)

which allows to update the impedance matrix D the computation of the optimal module voltages

Vopt via the LP problem of Eq. (4.9).

In view of a decentralized solution as opposed to centralized solution in last section, it

can be clearly observed that the measurement of the current Im of module m and the computation

of the bus voltage Vbus in (4.14) can be done within any module m without any communication

requirements. Furthermore, if each and every module m holds the knowledge on all the initial
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module voltages Vk, k = 1,2, . . . ,n and the internal impedances Zk, k = 1,2, . . . ,n, the bus

current Ibus in Eq. (4.13) can be computed and the information on all the optimal module voltages

Vk, k = 1,2, . . . ,n can be solved by the same LP problem of Eq. (4.9) and maintained in each

and every module m. In this way, each module m computes its own optimal voltage Vm and

keeps track of the optimal voltages Vk of the other modules, which eliminates the need for high

speed central communication of the individual module voltages Vk, k = 1,2, . . . ,n to each of the

modules. The only communication that would have to take place typically at a much smaller

rate is the updates on the possibly slowly changing internal impedances Zk and SOCk of each

module k = 1,2, . . . ,n. Similar to the centralized recursive solution, the ideas on the locally

decentralized computation of the bus voltage Vbus and the bus current Ibus by solving the LP

problem in Eq. (4.9) can be implemented recursively in time and summarized in the following

procedure.

Decentralized current scheduling procedure:

1. Assume fixed internal impedances Zk, k = 1,2, . . . ,n but a time-varying load impedance

Zl .

2. Set initial time index t = 0 and communicate the n elements Vk[0] of the initial module volt-

ages V [0] = [V1[0] V2[0] · · · Vn[0]]T to each of the corresponding modules k = 1,2, . . . ,n.

3. At time index t, each individual module m measures the module current Im[t] and compute

the bus voltage

Vbus[t] =Vm[t]−ZmIm[t]

the bus current

Ibus[t] =
n

∑
k=1

Vk[t]−Vbus[t]
Zk

, Vbus[t] =Vm[t]−ZmIm[t]

and further update the impedance matrix D[t] in (4.6) with full information of internal
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impedance Zk and estimated load impedance Zl[t] =
Vbus[t]
Ibus[t]

.

4. Before the subsequent time step t +1, each individual module updates the optimal module

voltages Vopt [t +1] = [V1[t +1] V2[t +1] · · · Vn[t +1]]T according to

Vopt [t +1] = βopt [t]D[t]
[

β1 β2 · · · βn

]T

where βopt [t] is obtained by the LP problem in (4.9) solved in each module.

5. At time step t +1, each module m updates the module voltage Vk to Vk =Vk[t +1] of the

Vopt [t +1] = [V1[t +1] V2[t +1] · · · Vn[t +1]]T

6. Increment time index t = t +1 and restart from step 1.

It should be noted that the recursive updates of optimal module voltages Vopt [t] explained above

again is able to converge in a single time step in case Zl is fixed at time step t. Due to the

decentralized nature of measuring module current and solving the same LP problem within

each individual module, additional communication requirement of measurement and optimal

computation of module voltage Vk is not necessary, which can allow a large battery pack of

multiple modules n to track time-varying load demands with little communication traffic. For

robustness and time drift avoiding, only temporary communication of internal impedance Zk and

timing clock for synchronous updates of Vm =Vm[t +1] at time index t +1 are required.

4.3.5 Numerical Illustration of Recursive Equal SOC Current Schedul-
ing

To illustrate the recursive updates of the internal module voltages for equal SOC current

scheduling, we consider a numerical example of n = 3 parallel placed battery modules with full

scale module OCVs of

V OCV
1 = 48V, V OCV

1 = 49V and V OCV
3 = 50V (4.15)
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For illustration of the sensitivity of the open-loop scheduling with respect to knowledge of

the internal impedance of the battery modules, two different scenarios are considered. The

first scenario assumes an unknown time-varying load, but perfect knowledge of the internal

impedance. In the second scenario, the internal impedance of the battery modules is assumed to

be incorrect.

Before demonstrating the numerical results, it is worthwhile to show the need for current

scheduling of battery modules with different internal impedance values. Assuming internal

impedance values

Z1 = 4Ω, Z2 = 3Ω and Z3 = 2Ω (4.16)

and a time-varying load, the current of the individual battery modules when the PWMk for each

module k is simply fixed to 100% is illustrated in Figure 4.4. It can be seen that due to the

varying load (bottom of figure) that the current Ik produced by each module varies significantly

and there may be stray current between modules due to the difference in OCV between the

modules.

Unknown, time-varying external load

To illustrate the recursive updates of the internal module voltages for equal SOC current

scheduling, we consider the known internal impedance values given in Eq. (4.16) and again

subjected to a time-varying external load impedance Zl[t] over a DT index t, as shown in the

bottom figure of Figure 4.5. To adjust module voltages of

V =


V1

V2

V3

=


α1V OCV

1

α2V OCV
2

α3V OCV
3

 (4.17)

with the PWM modulation factor α1, α2 and α3, the decentralized iteration steps outlined in

above section is followed to maintain balanced (equal) module currents. The numerical results for
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Figure 4.4. Currents in battery modules (top) and PWM modulation (all 100%) of battery
voltage (middle) without recursive SOC balanced module scheduling of 3 parallel placed battery
modules with accurate estimated internal impedance, subjected to a time-varying external load
(bottom).

recursive time-varying balanced (equal) current scheduling is summarized in Figure 4.5, where

it can be seen in top figure that the individual module currents stay relatively close (balanced),

despite the presence of a time-varying external load. This is clearly an improvement over the

results in Figure. 4.4 when no current balancing is used under same time-varying load scenario.

It should be noted that we initialized the internal module voltages Vopt [0] =Vopt based

on the assumption of external load impedance Zl[1] = 10Ω at the initial time step t = 0. The

balanced (equal) module currents are caused by the time-varying updates of the module voltages

Vk[t] via PWM modulation factor αk[t], k = 1,2,3 in a proportional relationship. The time-

varying nature of the modulation factor αk[t], k = 1,2,3 of 3 modules is plotted in middle figure

of Figure 4.5, where module 1 is always set at a full modulation of 100% motivated intuitively by

its highest internal impedance Z3 = 4Ω and its lowest OCV V OCV
3 = 48V compared with other
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Figure 4.5. Currents in battery modules (top) and PWM modulation of battery voltage (middle)
for recursive SOC balanced module scheduling of 3 parallel placed battery modules with accurate
estimated internal impedance, subjected to a time-varying external load (bottom).

modules, which allows to modulate down (less than 100%) the other modules currents Ik to be

balanced (equal).

Effects of inaccurate internal impedance

The above numerical example illustrates the recursive equal SOC current scheduling

for n = 3 parallel placed battery modules with accurate estimated and fixed internal impedance

Zk, k = 1,2,3, subjected to a time-varying external load impedance Zl[t]. In fact, the estimated

internal impedance Zk can be quite uncertain and the measurement from BMS may not be

accurate because cable and parasitic resistance values should be also considered as part of

internal resistance value. Therefore, the computation precision of the optimal value βopt will be

heavily impacted due to recursive updates of impedance matrix D without accurate estimated

internal impedance value Zk, which finally makes extremely difficult to find precisely optimal
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modulated voltages Vk and PWM modulation factor βk for each module to realize current

scheduling purpose.

For illustrative purposes, we revisit the previous numerical example of n = 3 parallel

placed battery modules with the OCV values given in Eq. (4.15), the internal impedance values

in Eq. (4.16) used for LP program computation but slightly different true values

Zreal
1 = 4.2Ω, Zreal

2 = 2.8Ω and Zreal
3 = 2.2Ω (4.18)

subjected to the same time-varying external load impedance Zl[t] shown in bottom figure of

Figure 4.5. Before showing the results, it should be noted that the internal impedance values in

Eq. (4.16) are used to recursively update impedance matrix D and further to compute optimal

modulated module voltages Vk, however, the simulated measurement results of module currents

are based on the assumption that internal impedances with true value given in Eq. (4.18) are

connected to the time-varying external load. The results are summarized in Figure 4.6 and it

is clear that in top figure, module currents keep separated and current balancing is severely

compromised, in the presence of the same time-varying external load in Figure 4.5. A plot of

time-varying nature of modulation αk[t] is given in the middle figure of Figure 4.6 and it can

be seen that module 1 is still set at 100%, which allows the other modules to be modulated

down with different profile from Figure 4.5. Therefore, internal impedance Zk estimation should

be considered as a part of the current scheduling and an alternative approach would be to run

an iterative loop (e.g. closed-loop control system) to balance the currents and then deduct the

internal impedance from there.

4.4 Closed-loop Current Scheduling

4.4.1 Proportional-integral-derivative Control

In order to fix internal impedance Zk estimation problem discussed in above section to

balance module currents, a control model for buck regulated battery system uses distributed
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Figure 4.6. Currents in battery modules (top) and PWM modulation of battery voltage (middle)
for recursive SOC balanced module scheduling of 3 parallel placed battery modules with
inaccurate (small error) estimated internal impedance, subjected to a time-varying external load
(bottom).

feedback control in each battery module. To do this, a proportional-integral-derivative (PID)

controller with requisite corrective behavior in closed-loop is used in every individual battery

module shown in Figure 4.7. This PID controller monitors the controlled module current Ik,

and compares it with the reference current Ire f of each individual battery module. The current

difference ε between actual and desired module current value, called current error signal, is

applied as feedback to generate a controller output to maintain the module currents at the desired

values by changing PWM duty cycle to modulate up and down module voltages Vk. The overall

PID control function can be expressed mathematically in discrete-time (DT) digital system as

PWMk(t) = Kpεk(t)+Ki ∑
t
n=1 εk(t)+Kd[εk(t)− εk(t−1)],

εk(t) = Ire f ,k(t)− Ik(t)
(4.19)
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where Ik(t) is the measurement and Ire f ,k(t) is the reference of the current of the kth battery

module. The resulting PWMk(t) denotes the PWM dispatched to the buck regulator of the kth

battery module at time instance t. The parameters Kp,Ki and Kd and are all non-negative and

denote the coefficients for the proportional, integral, and derivative terms, respectively. It shows

a PID controller, which continuously calculates an error value εk(t) as the difference between

a desired reference current Ire f ,k(t) and measured process module current Ik(t), and applies a

correction based on proportional, integral, and derivative terms in order to minimize the error

over time by adjustment of a control variable PWM modulation PWMk(t) by MOSFET buck

regulated circuit. As indicated by Eq. (4.19), the PID control takes place using local information

of the battery module only. As such, the PID control algorithm of Eq. (4.19) is distributed on

each and every buck regulated battery module and typically runs at a sampling rate of 100Hz. To

avoid integrator windup, limiters on the PWM duty cycle are put in place so that the controller

output never reaches the modulation limits, as illustrated in Figure 4.7. Tuning a control loop

is the adjustment of the gains of the proportional Kp, integral Ki and derivative Kd terms to the

optimum values for the desired control response. Using the optimal control parameters can

guarantee optimal control of the system or its control stability and reduce overshoot and the

degree of any system oscillation. Applying PID controller with optimal three control terms in

Eq. (4.19) into each individual module allows to bring the module current Ik to the same value as

reference current Ire f in order to satisfy module currents I in Eq. (4.7) based on individual SOC.

+
PID Controller

Max

Min

Buck 
Regulator Load

-

Reference Current

refI
Current Error


     PWM 
Duty Cycle

PWM
Module Voltage

kV
Module Current

kI

Module Current Feedback

Figure 4.7. PID current loop control in buck regulated PWM circuit.

Coordination between the battery modules is accomplished via the reference signal Ire f
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send to the battery modules and will be done at much lower rate, typically with an update rate

of 1Hz. In case of equal recursive SOC current scheduling discussed above, every individual

module current reference Ire f ,k should be adjusted to be same value of Ire f , mathematically

expressed as

Ire f ,1 = Ire f ,2 = · · ·= Ire f ,n = Ire f (4.20)

However, the actual value of the common current reference Ire f is not known and depends on

the load conditions and the battery parameters (OCV and impedance) of each battery module.

Therefore it is necessary to adapt the common current reference Ire f to its maximum value where

at least one of the battery modules reaches a dispatch signal PWMk equal to or close to 100%.

4.4.2 Autonomous Closed-loop Control for Load-tracking

Using the PID controller discussed above can guarantee each individual current Ik to the

same value of desired reference current Ire f without specific knowledge of internal impedance

Zk and external load impedance Zl . In fact, the external load Zl may be time-varying relatively

fast due to fluctuating power demands and the reference current Ire f should be recursively

updated to find optimal output currents to satisfy current scheduling objective. In this paper, we

propose a novel autonomous closed-loop control method to automatically balance (equal) and

find the optimal individual battery currents Iopt in Eq. (4.10) and Figure 4.8 gives the flowchart

of the autonomous closed-loop control algorithm workflow when the external load is changed.

This proposed autonomous closed-loop control approach can be achieved by continuously

monitoring PWM duty cycle PWMk and measuring module currents Ik of every individual

module k = 1,2, . . . ,n, as shown in Figure 4.8 and summarized in the following procedure.

Autonomous closed-loop control procedure:

1. Set initial time index t = 0 and communicate the n elements Ire f of the initial reference

currents to each of the corresponding modules k = 1,2, . . . ,n.

2. At time index t, perform a monitor of PWM duty cycle PWMk and a measurement of
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Figure 4.8. Flowchart of the autonomous closed-loop control algorithm workflow.

module current Ik of every individual module k. If any module gets to 100% (full) duty

cycle, go to step 3, otherwise update the reference current Ire f = Ire f + Initial rate with a

fast ramp-up rate noted by ”initial rate” to increase module current Ik.

3. If any module gets to 100% (full) duty cycle and the absolute current difference between

different modules |Ik− I j| is less than the current difference threshold e, optimal module

currents Iopt are found and set to be the same value as the reference current Ire f sending the

system into an idle status. If not, decrease reference current Ire f to Ire f = Ire f − slow rate

with a small ramp-down rate and repeat step 3 until go to idle status.
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4. After getting into idle status, if PWM duty cycle of every module suddenly drops lower

than threshold PWM value 90%, the reference current Ire f needs to be increased to

Ire f = Ire f + fast rate with relatively large ramp-up rate and repeat from step 2, in order to

satisfy larger optimal balanced module currents Iopt due to load increase (load impedance

Zl decrease) demand. If PWM keeps larger than and equal to threshold PWM value 90%,

go to step 5.

5. In case that PWM duty cycle of every module suddenly still keeps larger than and equal

to threshold PWM value 90% but absolute current difference between different modules

|Ik− I j| becomes larger than bigger threshold 10e, it is necessary to decrease reference

current Ire f to Ire f = Ire f − fast rate with same ramp-up rate in step 4 in order to find

optimal balanced current Iopt due to load decrease (load impedance Zl increase) demand.

Restart from step 2.

It should be noted that the nature of the algorithm tries to make at least 1 module run

at full modulation 100% and balance all module currents to be equal in above proposed equal

SOC current scheduling given in (4.8). As a matter of fact that PWM duty cycle is between

0% (fully off) and 100% (fully on), limited resolution of current sensor and MOSFET may

result overmodulation (eg.110%) to keep module currents equal of optimal value. In such case,

the optimal reference current Ire f value to each module needs to be decreased slightly so as to

satisfy PWM duty cycle in reasonable range, therefore, at least 1 module may not run at 100%

PWM all the time, but very close to it. In addition, this closed-loop control algorithm provides a

current scheduling solution that keeps tracking PWM duty cycle of all modules without given

any knowledge of OCV, internal impedance, and load impedance, and such feedback control can

converge in a short time. The measurement of the module current and the controller output current

can be done within any module in relative fast rate without any communication requirements,

and the updates on changing reference current Ire f would take place at a much slower rate in the

central communication to each of the modules.
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4.5 Experimental Verification

4.5.1 Experimental Setup

An experimental setup used for the validation of the proposed optimal current scheduling

consists of 3 parallel connected buck regulated battery modules, where the modulation demand

signal can be applied and recorded and the current of each battery module can be measured

simultaneously. The schematic diagram of the experimental battery tester illustrated in Figure 4.9

is referred to explicitly explain the experimental setup. The parallel connection of 3 buck

regulated battery modules is connected to an electrical load with a parallel connection of load

resistors by common DC bus. Specifically, each parallel connected buck regulated battery module

consists of an adjustable power supply in series with a potentiometer and a buck regulator placed

on module board. The buck regulator is composed of a PWM driven MOSFET, a fly-by diode

and an inductor, and controlled by an Arduino Uno board.

Battery Module 1

Buck 
Regulator

MOSFET
Drive

Current
Sensor

Power
Supply

USB
Isolator

Battery Module 2

USB
Isolator

Battery Module 3

USB
Isolator

Computer
Electric 

Load

Internal
Resistance

Buck 
Regulator

MOSFET
Drive

Current
Sensor

Power
Supply

Internal
Resistance

Buck 
Regulator

MOSFET
Drive

Current
Sensor

Power
Supply

Internal
Resistance

Figure 4.9. Schematic of the experimental battery tester.

A photograph is used to explicitly summarize and describe the experimental battery
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tester shown in Figure 4.10. The Tekpower TP5003T Variable Digital DC Power Supply with

maximum output voltage of up to 50 V and current up to 3 A is used in the experiment. The

MOSFET’s gate placed on the buck regulator is connected to a PWM pin on Arduino Uno

board, where the average value of voltage (and current) fed to the load can be controlled by

tuning the switch between supply and load on and off at a ultrafast rate. The Arduino Uno

board can be also employed to measure module current real-time signals by its analog input

pins, and simultaneously communicate with the computer through USB isolator cable. The USB

isolator is used to protect experiment equipment from electrical overvoltage and transient voltage

spikes, by eliminating ground loop currents flowing between the computer and Arudino board

which can cause damage and inaccurate measurements. The current sensor on module board

is around 27 mA/bit and the bandwidth is approximate 1 KHz single pole on the sensor. In the

computer, MATLAB provides the numerical computing environment automatically implement

current scheduling algorithms and save measured real-time data as well. In addition, PWM

switching frequency applied in MOSFETs is set to be 62.5 kHz driven by Arduino PWM pins in

the experiment. The MOSFETs are with low drain-to-source on-resistance that is suitable for

high current of battery modules. All tests are executed at a controlled ambient temperature of

25 ◦C.

4.5.2 Voltage versus PWM Duty Cycle Linearity Test

The buck regulated PWM control circuit is used in efficient voltage regulators by switch-

ing voltage to the load with the appropriate duty cycle and the smooth output current is obtained

with a RC filter. MOSFET on buck regulator is driven by PWM switching frequency 62.5 kHz

on the Arduino Uno pin 9 and the experiment output voltages of 3 buck regulated PWM control

circuit are measured by varying PWM duty cycle from 0 to 100% with a 5% step, as summarized

in Figure 4.11. The relationship between these two can be approximately considered as linearity

and the 3 fitting lines have relatively close coefficients but totally different, which shows the

influence of the parasitic resistances of the circuit on the performances. Voltage linearity becomes
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Figure 4.10. Photograph of the experimental battery tester.

degraded for low PWM duty cycle for all 3 modules in the discontinuous mode when the amount

of energy required by the load is too small. The inductor kickback pulse can not stay high for

very long time and the diode comes out of conduction sometimes during the off portion, which

causes the coil voltage collapse and even overshoots due to the resonance with the field-effect

transistor (FET) capacitance and coil self capacitance. So then the FET starts conducting due

to the overshoot across the body diode during a portion of the ”off ” period and the linearity

between voltage output and PWM duty cycle no longer applies. Therefore, running autonomous

closed-loop control for load-tracking requires to stay in linear areas of high PWM duty cycle in

the experimental tests.

4.5.3 Experimental Results with Varying Load Conditions

In order to verify the applicability of the decentralized closed-loop control algorithms

with autonomous load-tracking, the experimental setup is used to emulate 3 parallel placed
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Figure 4.11. Output voltage experiment data and fitting line of 3 battery modules as a function
of PWM modulation duty cycle.

battery modules with full scale open-circuit voltages (OCVs) of V OCV
1 = 48 V, V OCV

2 = 49 V,

V OCV
3 = 50 V and internal impedance values Z1 = 4Ω, Z2 = 3Ω, and Z3 = 2Ω. Furthermore,

cable and module board resistance is not accounted into the internal impedance, hence the true

module impedance values may be different from the assigned impedance values created by the

variable resistors. The discrepancy between OCVs and impedances is used to emulate mixed

battery modules. The decentralized PID controller of Eq. (4.19) for each module is the same

and tuned to have the control parameters Kp = 1, Ki = 0.3, Kd = 0.5 and operating at a sampling

rate of 100Hz.

For the experimental results with varying load conditions included in this paper, it is

first assumed based on that each module has the same SOC SOC1 = SOC2 = SOC3 and capacity
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Figure 4.12. Currents (top) and modulation of battery voltages (middle) in battery modules for
autonomous module current scheduling of 3 parallel placed battery modules, reference current
and time-varying external load impedance (bottom) under small load fluctuation scenario.

storage C1 =C2 =C3 to focus on the requirement of equal current scheduling I1 = I2 = I3. Two

test were performed: both a small step-wise changing external load scenario shown in (the

bottom plot of) Fig. 4.12 and a large step-wise changing external load scenario shown in (the

bottom plot of) Fig. 4.13 are used to validate the decentralized closed-loop control algorithms

with autonomous load-tracking. It should be pointed out that internal impedance information Zk

and the timing and size of the step in the load Zl are unknown to the decentralized closed-loop

control algorithms.

In both scenarios, the requirement of equal current scheduling I1 = I2 = I3 is used to

evaluate the to validate the decentralized closed-loop control algorithms with autonomous load-

tracking. From the top plots of Fig. 4.12 and Fig. 4.13 it can be observed that the decentralized

control algorithm enables the 3 module currents to stay relatively closed at steady-state levels

equal to each other without any knowledge of internal impedance Zk and variations in the load
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Figure 4.13. Currents (top) and modulation of battery voltages (middle) in battery modules for
autonomous module current scheduling of 3 parallel placed battery modules, reference current
and time-varying external load impedance (bottom) under large load fluctuation scenario.

Zl .

From the middle plots of Fig. 4.12 and Fig. 4.13 it can be observed that one of that at

least one of modules has a PWM αk close to 100%, indicating that the autonomous load-tracking

maximizes the power output of the battery pack. In addition, increasing PWM requires certain

ramp-up period but decreasing PWM can happen instantaneously in order to protect the battery

modules. The reference current signals are updated every 4 seconds and recorded in the bottom

plot of Fig. 4.12 and Fig. 4.13, which also included the load variation Zl .

In the third test with varying load conditions included in this paper, it is assumed based

on that modules have the same SOC the same SOC SOC1 = SOC2 = SOC3, but have a variation

in the capacity storage captured by the relationship C1 = C2 = 0.8C3. To ensure the SOC of

each module progresses simultaneously, the reference current in (4.20) needs to be altered to

Ire f ,1 = Ire f ,2 = 0.8Ire f ,3.
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Figure 4.14. Currents (top) and modulation of battery voltages (middle) in battery modules for
autonomous module current scheduling of 3 parallel placed battery modules, reference current
and time-varying external load impedance (bottom) under small load fluctuation scenario.

The small step-wise changing external load scenario shown in (the bottom plot of)

Fig. 4.14 is used to evaluate the current scheduling using autonomous demand tracking. From

the top plot of Fig. 4.14, it can be observed that the decentralized control algorithm schedules the

3 module currents proportional to the assumed capacity of the modules. The experiment result

shows that currents out of module 1 and module 2 remain the same and slightly lower (around

80%) than module 3 because their capacity degrades to 80% in order to accommodate their

limited capacity of 80% compared to module 3. In addition, from the middle plot of Fig. 4.14, it

can be seen that in Module 1 always stays at or is close to 100% due to its highest impedance

and capacity, and lowest OCV.

4.6 Summary

Modular battery systems that consist of parallel placed battery modules are essential

in range extension of electric vehicles and re-purposing of batteries for integration as energy
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storage in grid applications. The performance of such modular battery system can be significantly

improved if combining or mixing of modules is robust to open-circuit voltage (OCV), state of

charge (SOC) and internal impedance of each module.

This paper provides a solution to eliminate module-to-module differences by using buck

regulators on each battery module along with distributed closed-loop control with autonomous

load-tracking to allow current scheduling of parallel placed battery modules. The distributed

closed-loop control is based on standard digital PID control that monitors module current and

adjust pulse width modulation (PWM) to the buck regulators to maximize total battery power

output. Maximum battery output is accomplished by maximizing the PWM cycle of all modules

by ensuring that at least 1 module runs at full PWM of 100% and module currents are balanced.

This is accomplished without the explicit knowledge of the module OCV, module internal

impedance and total load impedance.

Experimental results verify the feasibility, effectiveness and accuracy of proposed au-

tonomous demand-side current scheduling of parallel buck regulated battery modules for balanc-

ing current out of each individual battery module. Implementation results indicate that balancing

individual battery module can be done within each module with fast rate decentralized control,

while reference current for real-time load tracking can be updated at slower update rates in order

to efficiently reduce the centralized communication requirements. The future work of this study

is to apply this proposed autonomous closed-loop control technique into battery management

system (BMS) of modular battery systems to improve battery pack performance and extend

battery pack lifespan.
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Chapter 5

Conclusion and Future Work

In order to meet emerging requirements for significantly improving safety and better

utilization of battery energy storage system (BESS) in the electrified vehicles and electric grids,

systematic research on applying system identification methods, advanced modeling and control

technologies is highly required, In this dissertation, three main problems are thoroughly studied:

a) battery modeling; b) power prediction; c)current scheduling. The summary for completed and

future work is as follows.

• Battery State of Charge Modeling: This dissertation presents a battery model

with non-integer order derivatives to describe Lithium-ion battery (LIB) behavior over

relatively large operating range, which is a combination of conventional 1-resistor-capacitor

(1-RC) electrical circuit model (ECM) and electrochemical impedance spectroscopy (EIS)

experimental result. The proposed non-integer or fractional differential model (FDM)

includes a constant phase element term to approximate the non-linear dynamical behavior

of the battery. The standard least squares-based state-variable filter (LSSVF) identification

method used for continuous-time (CT) system identification is used to estimate the model

parameters and the fractional derivative coefficients of the proposed FDM. For application

of modeling fractional differential order battery dynamics, the CT LSSVF parameter

estimation approach is extended to an instrumental variable (IV) method to be robust

to (non-white) noise perturbed output measurement. The model accuracy and model
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performance are validated on experimental data obtained from a LIB and confirm that the

proposed FDM is able to accurately capture the battery dynamics over broad operating

range. In comparison, the FDM also shows significant improvement on data prediction

accuracy compared to a conventional integer model, making the FDM more suitable for

monitoring battery dynamical behavior in a battery management system (BMS).

Future Work: The proposed modeling approach is expected to be first implemented

and validated on experimental data from a larger-scale battery system, such as a battery

energy storage system (BESS) in electrical vehicle (EV) and static energy storage system

in renewable energy industry.

• Battery Power prediction:A fractional derivative battery modeling approach is

proposed to predict power storage and delivery dynamic behavior of a battery system,

given charge and discharge demand as input, where fractional derivatives are applied to

approximate non-linear dynamic behavior of a battery system not only in normal operating

range, but also in some extreme situation, such as over-charging and over-discharging. The

proposed modeling approach is actually from control perspective, which is significantly

different from the conventional ECMs and electrochemical models. In particular, the

battery power prediction model is composed of voltage and current models, separately.

The LSSVF method commonly used in the identification of CT models is extended to allow

the estimation of fractional derivative coefficients and parameters of the battery models

by monitoring a charge/discharge demand signal and a power storage/delivery signal.

Based on experimental data, it is illustrated how the FDM can be utilized to predict the

dynamics of the energy storage and delivery of a lithium iron phosphate battery (LiFePO4)

in real-time. The results indicate that a FDM can accurately capture the dynamics of the

energy storage and delivery of a LIB over a large operating range, even in over-charging

and over-discharging cases. It is also shown that the FDM exhibits improvements on

prediction performance compared to standard integer derivative model, which in beneficial
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for a BMS.

Future Work: The proposed power prediction model method needs to be improved in

parameterization and estimation of the components, especially in the fractional derivative

optimization in the formulated model framework. The feasibility and performance of such

novel model method is also expected to be applied and validated in larger-scale battery

applications, such as battery pack system in automotive industry and BESS connected to

the electric grid in the renewable industry.

• State of Charge Balancing: This dissertation proposes the algorithms, hardware

overview and testing results for controlling discharge currents from mixed battery modules

configured in a parallel connection. The battery modules are considered to be mixed

as they may have discrepancies and time-dependent variations in open circuit voltage

(OCV) and impedance characteristics. Parallel placed battery modules are used to increase

power and energy storage capacity in mobile, electric vehicle (EV) and static energy

storage application. Mixing of battery modules is typically seen in second-life, repurposed

or exchangeable battery systems. When battery modules with different age or charge

characteristics are combined to generate a larger storage capacity, battery heterogeneity

is widely known to negatively impact the performance, lifespan and safety of the total

battery pack. This dissertation addresses such battery heterogeneity by taking advantage

of buck regulators on each battery module and formulating a scheduling algorithm for

dispatching the buck regulators to balance the current out of each battery module. In

this way, heterogeneous battery modules can be mixed and coordinated to provide a

desired power flow from the battery pack. The scheduling algorithms presented in this

dissertation are formulated in both an open-loop and a closed-loop implementation. In the

open-loop algorithm, optimal dispatch commands are computed based on knowledge of

the OCV and impedance of each battery module, while monitoring the load impedance.

In the closed-loop algorithm, optimal dispatch commands are computed autonomously
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by a recursive control algorithm that monitors both load impedance and battery module

currents. It is shown that especially the closed-loop algorithm, guarantees robust operation

without violating battery module operating constraint, even when the battery module

characteristic parameters change as the battery pack ages. This novel scheduling method is

validated through an experimental representation of a battery pack with 3 parallel placed

buck regulated battery modules with heterogeneity in internal impedance and OCV. The

experimental results show how battery current can be kept balanced within operating limits

and illustrate the feasibility and effectiveness of proposed current scheduling method in a

real battery application.

Future Work: The proposed current scheduling technique is expected to apply in more

battery modules and larger-scale parallel-connected battery pack system into EV and

electric grid applications. The current communication hardware can be improved by

up-to-date wireless communication platforms in order to avoid communication problems.

For future research, instead of only current scheduling, power scheduling needs to be

further addressed to optimize battery power output and energy transformation.
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