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Vertical Integration in Restructured Electricity Markets:

Measuring Market Efficiency and Firm Conduct

Erin T. Mansur∗

October, 2003

Abstract

Unlike other studies that have found substantial inefficiencies in restructured electricity mar-
kets, this paper provides estimates that reveal relatively competitive behavior in the Pennsylva-
nia, New Jersey, and Maryland market. This distinctive conclusion results from using a model
that incorporates structural market features and particular production constraints that are not
captured in previous studies. First, the vertical integration of firms in the PJM market re-
duces electricity producers’ interest in setting high prices; producers sell wholesale electricity
and also are required to buy power, which they provide to their retail customers at set rates.
My model reflects this degree of vertical integration of PJM firms. Second, I account for pro-
duction constraints that result in cost nonconvexities. Measures of price-cost margins based on
a commonly used method that does not incorporate these nonconvexities imply that market
imperfections during the summer following PJM’s restructuring increased procurement costs
51% ($950 million). That method further implies considerable welfare loss as actual production
costs exceeded the competitive model’s estimates by 12.5%. This paper develops a consistent
estimate of competitive production decisions that respect important production constraints, and
it presents estimates showing that costs were only 3.4% above competitive levels. Using this new
method of estimating production, I compare behavior of two producers that have relatively few
retail customers with other firms. Consistent with these vertically integrated firms’ incentives,
only firms with large net selling positions in the market reduced output relative to competitive
production estimates. (JEL L13 L94)
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1 Introduction

Over the past quarter century, there has been a movement towards restructuring wholesale elec-

tricity markets in several U.S. states and in other countries. Policy makers believed restructuring

would impose market discipline and thus lead to lower production costs at existing power plants

and more efficient investments. Unfortunately, the promises of restructuring have not always been

realized. While studies have found substantial inefficiencies in some restructured markets, this pa-

per demonstrates two reasons why performance is relatively competitive in the Pennsylvania, New

Jersey, and Maryland (PJM) market. First, in this market, the vertical integration of firms reduces

electricity producers’ interest in setting high prices: Producers sell into the wholesale market and

also are required to buy in the market in order to provide power to their retail customers at set

rates. Second, I account for production constraints that result in cost non-convexities.

These production constraints are ignored in papers that use the standard methodology to mea-

sure market imperfections in electricity markets (for example, Borenstein, Bushnell, and Wolak,

2002 (hereafter BBW)). In applying this technique to determine PJM’s price-cost margins, I extend

the methodology by estimating an import supply function. Prices during the summer after PJM

restructured were quite high. During this period, I find evidence that total energy procurement

costs exceeded those of a perfectly competitive spot market by 51 percent, or $262 million. If

bilateral contracts exhibited similar margins, my measure of total transfers associated with market

power increases to $950 million. These are substantial wealth transfers, especially in a market

where vertically integrated firms self-supply most of the electricity.

Given these measures of market power, I examine the welfare implications of restructuring

that, in general, occur from allocative and production inefficiencies. However, wholesale electricity

markets do not have allocative inefficiencies, in the short run, because derived demand is completely

inelastic. There are two reasons for this. First, consumers have no incentive to reduce quantity

demanded at higher prices because the regulatory structure of electricity retail markets has kept
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consumers’ rates constant.1 Second, the firms that procure customers’ electricity in the wholesale

market are mandated to provide the power at any cost. Therefore, the only welfare effects result

from inefficient production. Using the standard methodology of estimating competitive market

outcomes, I measure actual production costs to have exceeded these competitive estimates by 12.5

percent during the post-restructuring summer.

However, by ignoring certain types of production constraints, this methodology overstates pro-

duction inefficiencies from restructuring. This “single-period” technique assumes that power plants

operate following an on-off strategy—producing at full capacity if and only if price equals or exceeds

marginal production costs—while the process of producing electricity efficiently requires that firms

consider several non-convexities in costs. For example, when power plants activate generating units

to produce electricity, they pay between $100 to $7000 in “start up” costs.2 These costs impose

intertemporal constraints on production decisions.

This paper tests the importance of these constraints in measuring market efficiency. I use

data from the pre-restructuring period to observe the factors involved in firms’ actual production

decisions. I model production as a function of prices, costs, and intertemporal constraints in

a flexible format using a Heckman selection model while accounting for endogeneity of prices.

For the control period, this model fits actual production decisions substantially better than the

“single-period” model (as shown in figure 3). Then, using coefficient estimates, I extrapolate

how firms would have behaved, given cost and demand shocks, had restructuring not occurred.

Comparing actual production costs with these estimates of “competitive production” costs for the

initial summer of restructuring, I estimate that actual costs exceeded competitive estimates by only

3.4 percent, substantially less than the estimates generated using the standard technique.

Finally, I use my competitive estimates of production to test whether firm behavior in the

PJM market changed as a result of restructuring. For many hours during the post-restructuring

1A few customers have “interruptible” contracts that are exercised when the quantity demanded approaches the
capacity of supply, causing customers to curtail electricity demanded. As this does not depend on price, demand
shifts but remains completely inelastic.

2This range represents the 5th and 95th percentile of start up costs for coal, oil and natural gas generating units
in the U.S. Eastern grid using output data from the PROSYM model (Kahn, 2000).
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period, a few vertically integrated firms were net sellers and, therefore, had incentives to exercise

oligopoly power, i.e., raise wholesale prices. Other firms primarily purchased power, on net, from

the spot market and had incentives to reduce prices. I examine how vertical integration affects firms’

incentives to exercise market power in the PJM market with two methods. I treat restructuring as a

natural experiment in order to test whether the two large net-selling firms, PECO and PPL, behaved

differently from other firms after restructuring, controlling for shocks to competitive behavior. I

estimate that these two firms produced approximately 14 percent less than they would have in a

competitive environment. On average, other firms did not deviate from competitive levels. Also,

as a benchmark, I examine the consistency of firm behavior with a structural model’s first order

condition for these large, vertically integrated firms. In this exercise, I also find supporting evidence

that PECO and PPL exercised market power.

The paper proceeds with section 2 briefly discussing divestiture in restructured electricity mar-

kets, outlining the PJM wholesale electricity market, and modeling the incentives of strategic firms

that are vertically integrated in generation and distribution. In section 3, I discuss the method-

ology of determining competitive benchmark estimates using the “single-period” model. I present

the price-cost margin estimates, as well. Section 4 measures market inefficiencies by constructing

an “intertemporal” model that accounts for unit commitment problems and compare actual pro-

duction with a competitive counterfactual measure. Section 5 also uses these competitive measures

of production to examine how vertical integration affects firms’ incentives to exercise market power.

I report my conclusions in section 6.

2 The PJM Electricity Market

The historical perspective of electricity generation as a natural monopoly led to markets being

concentrated with few regulated firms or government agencies producing power. However, with

technological advances and changes in perceptions, many argued that multiple firms could compete

in generating electricity and a movement towards restructuring these markets began. Under deregu-

lation, firms supplying generation will typically have incentives to withhold output and drive prices
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above marginal costs. However, these incentives may be affected if firms are vertically integrated

with other aspects of electricity markets, i.e., owning the transmission and distribution systems of

electricity markets.3

The England and Wales market, where the government historically had produced electricity,

became one of the first to deregulate. In April, 1990, the market restructured and privatized, with

many of the government generating assets being allocated to two firms: PowerGen and National

Power. Generators signed long-term financial contracts that limited their incentives to increase

energy spot market prices. Wolfram (1999) finds that these duopolists did exercise market power,

but not to the level consistent with Cournot behavior. In her 1998 paper, Wolfram directly studies

the bidding behavior of these two private companies and finds evidence that firms’ observed bidding

behavior is consistent with multi-unit auction theory: Firms charged more for power plant units

with more “inframarginal” generation.

Prior to restructuring the most notorious U.S. electricity market, three utilities operated Cali-

fornia’s generation, transmission, and distribution. The potential for these utilities to exert vertical

market power, such as by excluding market entrants, concerned regulators. Thus, regulators re-

quired the utilities to divest fossil-fuel burning power plants to five private companies. Furthermore,

regulators prohibited (or at least discouraged) the utilities, which were still responsible for distrib-

uting electricity as Load Serving Entities (LSE’s), from signing long-term contracts. The generating

firms had clear incentives to exercise oligopoly power and have done so.4

While restructuring in New England also led utilities to divest, they signed vesting contracts

that required new plant owners to supply a set quantity of electricity at predetermined prices to the

LSE’s. These vesting contracts reduce sellers’ returns on higher spot market prices. Bushnell and

Saravia (2002) study the competitiveness in the New England market. They find modest amounts

of market power being exercised, in part because firms with contracts bid negative margins.

Wolak (2000) notes how long-term contracts affect firm incentives in Australia’s experience

3Joskow and Tirole (2000) examine how rights over transmission affect firms’ behavior in exercising market power.
Wolak (2000) demonstrates how signing long-term contracts also alters firms’ incentives to exercise market power.

4BBW and Joskow and Kahn (2002) find evidence of market power being exerted.
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with electricity restructuring. When its market opened, prices exceeded the expectations of some

market participants. As a result, LSE’s started to sign hedge contracts. As consistent with Allaz

and Vila (1993), after suppliers signed these contracts, spot market prices dropped. Having signed

contracts at prices above those realized in the spot market, some frustrated LSE’s discontinued

signing additional contracts. When the initial contracts expired, the spot market prices once again

increased, reflecting the incentives of suppliers.

Unlike in other markets, PJM did not require utilities to divest plants as a condition of re-

structuring. Appendix A details the divestment laws for each state in PJM. Little divestment

occurred either proceeding or initially following restructuring. In this paper, I focus on a period

when the market structure was relatively stable by comparing firm behavior in the summer prior

to restructuring with that of the following summer.

2.1 Market Rules

In the late 1990s, the PJM Interconnection L.L.C. (PJM) consisted of most or all of Pennsylvania,

New Jersey, Maryland, Delaware and the District of Columbia, as well as some of Virginia. While

integrated with the Eastern U.S. transmission grid, the market has been regulated as a single entity

based on transmission reliability concerns. In 1997, PJM began facilitating trades among regulated

utilities and independent producers involved in the generation, transmission, and distribution of

electricity in an effort to lower utilities’ costs of providing power to customers. Regulators required

all participants to trade in the market’s one central market. Financial arrangements may be made

outside of the centralized market but, to ensure reliability, all transactions must be reported to the

market. As PJM intended, this spot market only covers a small fraction of quantity demanded, or

“load”: 10 to 15 percent.

Every five minutes, the market clears by using a uniform-price, sealed bid auction for the right

to supply electricity to the system. Market participants offer extremely flexible bid curves for

supplying energy on a day-ahead basis. During the time period studied here, if a firm made an

offer to supply electricity and the regulator accepted the bid, the firm had no obligation either to
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produce or to otherwise cover the bid: The bids were financial commitments. However, these bids

were used as a basis for the regulator at the time of production much like a Walrasian auction.

The PJM operators post a single price when the system is not constrained by the capacity of the

transmission grid (i.e., there is no transmission congestion). In 1998, PJM adopted what is known

as a “nodal” pricing system in order to accommodate transmission constraints.5

Power plants consist of several, independently operating “generating units,” each comprised

of a boiler, a generator, and a smoke stack. When the nodal market first opened, suppliers were

required to make “cost-based” bids for each unit. In other words, the producers had to bid their

marginal costs of production that had been determined by years of regulation rate hearings. A

notable step in restructuring PJM occurred in April, 1999, when the requirement on the energy bid

component was relaxed. The Federal Energy Regulatory Commission granted firms the right to

change generating units from making cost-based bids to offering a more flexible type of bid. These

“market-based” bids were subject to price cap of $1000 per megawatt-hour (MWh). While many

utilities obtained the right to bid units as market-based, many units remained cost-based during

most of the summer of 1999. Firms may have opted not to switch if they had little incentive to

exercise market power. In particular, those firms that either purchased electricity in the market or

supplied their own generation may have less incentives to increase wholesale prices.

2.2 Market Structure

For each of the eight major utilities in PJM, panel A of table 1 reports 1999 generation capacity

categorized by primary fuel type. Firms produce electricity using a variety of technologies that is in

part due to the longevity of outdated power plants. Furthermore, because of current technological

limits on the storage and production of electricity, even a new generation system would require

some “baseload” generating units that operate at low marginal costs most hours and other, more

flexible “peaking” units that operate just a few hours a day.

5Each node is a point where energy is supplied, demanded, or transmitted. The PJM energy market can have
over 2,000 prices every five minutes when congestion occurs. For more on nodal pricing, see Schweppe, et al. (1988).
In the summers of 1998 and 1999, the transmission system was constrained about 15 and 18 percent of the hours,
respectively.
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The market consists of approximately 57,000 megawatts (MW) of capacity, including nuclear,

hydroelectric, coal, natural gas, and oil energy sources (see figure 1). Nuclear and coal plants

provide baseload generation capable of covering most of the demand. Nuclear power comprises 45

percent of generation but only 24 percent of capacity. In contrast, natural gas and oil burning

units provide over a third of the market’s capacity, yet they operate only during peak demand

times. These utilization differences result from heterogeneous cost structures. Baseload units have

low marginal costs and significant intertemporal constraints, like large start up costs, while the

relatively flexible peaking units are more expensive to operate. Section 4 examines the importance

of these constraints.

The utilities also own transmission wires and are responsible for providing electricity to their

customers. These entities are vertically integrated; they both buy and sell electricity in the whole-

sale market. Firms purchasing electricity to meet customers’ demand, or “native load,” are called

Load Serving Entities (LSE’s). So far, the deregulation of wholesale electricity markets has coin-

cided with retail rate freezes for incumbent utilities. Customers pay their LSE’s a fixed rate for

electricity, and therefore, these firms will want to purchase energy from the wholesale market as

cheaply as possible. However, LSE’s also generate electricity and some, after meeting their native

load, may sell additional power to others.

The incentives of vertically integrated firms depend on the amount of power they must purchase

in order to meet native load relative to the amount they would produce, and sell to the market, at

competitive prices.6 In addition to serving native load, a utility’s net position may be affected by

contracts; LSE’s in PJM meet approximately 30 percent of demand by signing short and long-term

bilateral contracts with other utilities or independent producers.7 Net selling firms have incentives

to set prices and can easily do so by withholding generation from its most expensive units (or

6The incentives of subsidiary companies will also depend on the regulatory treatment of their LSE affiliates.
Furthermore, even with a clear net position, the objective of publicly-owned utilities may be other than to maximize
profits.

7 In a personal communication, Joe Bowring of the MMU estimated this level of contracts. In addition, 10 to 15
percent of supply comes from spot market purchases, one to two percent from imports, and the remaining 53 to 59
percent is self-supplied by firms.

7



setting the units’ market-based bids above the competitive equilibrium price).

Generally, in a market with perfectly inelastic demand, a monopsonist cannot affect prices.

However, if the firm is a net buyer that also sells in the market, then it can operate plants with

marginal costs above the equilibrium price. This will reduce purchases in the spot market and

lower wholesale prices. In PJM, there are several net buyers that may have incentives to exercise

oligopsony power. However, it is unclear that firms would benefit from this behavior because of

other regulatory constraints.8

I assume firms maximize profits by setting quantity. The resulting objective function for verti-

cally integrated firm i will be:

max
qi

Pi(qi) · (qi − qdi − qci ) + rdi q
d
i + rci q

c
i − Ci(qi), (1)

where, Pi(qi) is the inverse residual demand function firm i faces in the spot market, qi is its

production, rdi and q
d
i are the retail price and quantity (or native load), q

c
i is the net supply/demand

position from bilateral contracts paid the contract price rci , and Ci(qi) is total production costs.

The resulting first order condition equals:

Pi + P 0i · (qi − qdi − qci ) = C 0i, (2)

where firms have incentives to increase prices only if they are net sellers: qi > qdi + qci .

While restructuring has allowed retail competition to change firms’ native load, many customers

stayed with their historic providers during this time period.9 Decisions over generation capacity,

service territory, and contracts were initially determined under a regulatory environment and are

assumed to be exogenous to firms’ incentives after restructuring.

For 1999, panel B of table 1 reports each firms’ market share of capacity, generation, generation

when demand exceeded 40,000 MW, and peak demand. On average, three companies—Philadelphia
8Regulators required the firms to offer retail customers a fixed rate that was above the expected average wholesale

price. This allowed firms to cover the costs of “stranded" assets. By depressing wholesale prices, an oligopsonist
would make the “rate freeze” be lifted sooner (as the stranded assets would be paid off) which may or may not be
beneficial to the firm.

9 In Pennsylvania, though, some customers did change providers in 1999. On July 1, the percent of customers that
had switched from GPU Energy, PECO, and PPL was 5.5, 16.0, and 3.5. In particular, large customers switched; For
these three firms, 39.9, 37.1, and 19.2 percent, respectively, of their initial load switch. Source: www.oca.state.pa.us.
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Electric Company (PECO), GPU, and Pennsylvania Power & Light (PPL)—generation exceeded

their native load. However, GPU may have been less inclined to learn how to set prices in this

new environment as it was in the process of selling its assets: It sold a 2012 MW coal fired plant

to Edison in March and most the rest of its plants to Sithe, a transaction completed in November.

In contrast, on average, the other firms either had a zero net position or were net buyers. Between

the summers of 1998 and 1999, the market structure did not change substantially.10 In addition to

often being net sellers, PECO and PPL, which account for only 32 percent of capacity, actively bid

market-based offers into the spot market and together offered 84 percent of all the market-based

bids. GPU offered only 14 percent of these bids. In a news article, Smith and Fialka (1999) note

PECO and PPL bid to make “the most of steamy conditions:”

What PECO and PPL did was offer much of their output at low prices so that the
majority of their plants would be called into service. But knowing demand was so high,
they offered power from their tiniest plants at vastly higher bids, in a way that often
set the peak price for a number of hours.

Given these firms’ incentives, I characterize PJM as having a set of quantity-setting, dominant

firms that face a competitive, albeit large, fringe and completely inelastic demand. This model

implies that the aggregate output of the dominant firms will be less than the competitive level while

the fringe will increase production to meet demand. This implies two testable hypotheses: Actual

prices were above perfectly competitive prices levels; and firms distorted production decisions that

caused welfare loss.

Strategic firms with asymmetric costs, or firms with asymmetric strategies, distort production

decisions from the competitive equilibrium (Borenstein and Farrell, 2000). This causes cross-firm

production inefficiencies whereby—even though individually firms achieve given output levels by

minimizing own production costs—the aggregate output level is not produced using the least costly

technology. Furthermore, an individual oligopolist will not necessarily produce less than it would

have in a perfectly competitive market.11

10Other than GPU’s sale of the large coal plant, no other plant was sold or retired from 1998 through October
1999. Also we see no major construction in the period of study (less than 700 MW were built at this time by utilities
and non-utilities) (EIA form 860 a,b).
11Levin (1985) shows that, in an oligopoly with asymmetric costs, some producers may increase production relative
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In addition to strategic reasons, production distortions may occur even if a firm does not

intentionally exercise market power. Firms face uncertainty in demand and each other’s bids in the

day-ahead, blind auction. A firm will distort production by either (intentionally or unintentionally)

bidding a low-cost unit above the competitive price, or opting not to operate regardless of the bid.

Section 4 measures the welfare implications of these production distortions. First, however, I test

the second hypothesis that prices exceeded competitive levels after restructuring.

3 Measuring Market Power in the PJM Market

Unlike much of the recent industrial organization literature, where price-cost margin estimates tend

to depend of assumptions of economic behavior and estimates of demand functions, the functional

form of the derived demand in wholesale electricity markets has been greatly simplified by economic

regulations on retail electricity prices. Namely, constrained retail prices imply completely inelastic

demand. Margin estimates in electricity market studies have centered on determining marginal

costs in order to calculate competitive prices.

In this section, I measure margins in PJM by using a method that fails to account for in-

tertemporal constraints. Nevertheless, this “single-period” approach is useful as it is relatively

straight-forward to apply and allows comparisons with other markets where researchers have also

used the technique. Furthermore, as discussed below, ignoring intertemporal constraints in mea-

suring competitive prices causes two, potentially offsetting, biases. In contrast, when measuring

welfare effects, as in section 4, the biases from ignoring these constraints compound, and may be

substantially large.

Wolfram (1999) develops a methodology of studying market imperfections in electricity markets.

She calculates the marginal cost of each generating unit in the England and Wales market in order

to generate competitive prices. A comparison of actual prices with her counterfactual price mea-

sures provides evidence of firms exercising market power, but below levels consistent with Cournot

to competitive levels. Note that firms can potentially exercise market power without causing welfare losses; if all
firms uniformly increase bids, the optimal order of production will not be distorted.
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behavior. In analyzing the California electricity market, BBW use a Monte Carlo simulation to

account for the convex relationship between the uncertain availability of power plants and compet-

itive prices. Joskow and Kahn (2002) also extend Wolfram’s technique in estimating market power

in California while noting that environmental permits substantially increased perfectly competitive

price estimates, but that observed prices are even greater. Bushnell and Saravia (2002) study the

New England market using the technique and find that margin estimates are quite sensitive to

their determination of the appropriate price to use in comparisons. The PJM Market Monitoring

Unit (MMU) examined firm behavior and found some evidence of market power being exercised,

as well.12

3.1 Methodology of Single-Period Model

In order to calculate price-cost margins, I model competitive behavior for the generating units

capable of being used to exercise market power. I assume these units operate following an on-off

strategy by producing at full capacity if and only if price equals or exceeds marginal production.

In other words, this method ignores intertemporal constraints on production choices. The perfectly

competitive price equals the marginal production cost of generating an additional unit of electricity,

given that the least costly technologies are already producing to meet demand.

Demand for energy services in the spot market, which does not depend on prices, is comprised

of demand for electricity (qdt ) and additional reserves (q
r
t ) that are regulated to insure against

blackouts.13 I categorize supply into four groups: fossil, nuclear, hydroelectric, and net imports.

For a given competitive price (P ∗t ), firms use fossil-fuel burning units, or “fossil units,” to generate

qf . These units, some of which have high marginal costs and are flexible, might be used strategically.

12Studies by Bowring, et al. (2000) and MMU (2000) center on three high demand days and find that prices may
have resulted either from scarcity or firms exercising market power ; however, the MMU does not attempt to separate
out these effects. A more expansive study by the MMU (2001) compares units’ bids and marginal costs between
April 1999 and December 2000. By their measures, firms exercised a modest amount of market power. MMU (2001)
bases these price-cost margin estimates on the bid of the most expensive operating unit. This ignores market power
exercised by power plants that have reduced output and will understate estimates of price-cost margins.
13Demand also includes energy lost in the process of transmission. Line losses equal approximately 4.5 percent of

generation (www.pjm.com). PJM requires regulation to insure against system-wide outages. The operators require
1.1 percent of maximum of predicted load during early morning hours (1 to 5 AM) and the rest of the day (PJM
Pre-Scheduling Operation Manual).
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In contrast, nuclear power plants—which have low marginal costs, high start up costs, and change

production rates slowly—generate qnt independently of P
∗
t . While strategic firms will not alter q

n
t ,

they consider how prices impact revenue from this inframarginal nuclear generation. Hydroelectric

generation (qht ) could potentially be used to set prices. However, as I argue in Appendix B, PJM

has little hydroelectric capacity and treating qht as independent of P
∗
t is unlikely to substantially

bias results. Net imports (imports less exports) into PJM (qIMP
t ) do respond to prices. I assume

that imports from the surrounding regulated markets are competitive and, as described in section

3.1.2, depend on actual prices (Pt) as well as P ∗t . In equilibrium, P ∗t clears the market:

qdt + qrt = qf (P ∗t ) + qnt + qht + qIMP
t (Pt, P

∗
t ). (3)

Figure 2 depicts a hypothetical example of how to solve for the equilibrium using PJM units’

offer curve, supply (qft (P
∗
t )+qnt +qht ), and residual demand: q

d
t +qrt −qIMP

t (Pt, P
∗
t ). Assuming that

the offer curve lies above the competitive supply curve, I determine the competitive price by moving

along the residual demand curve from where it intersects the offer curve to where it intersects the

supply curve. As the price falls to the competitive equilibrium, net imports are reduced and more

of the quantity demanded must be met by PJM firms. I use this model to predict competitive

prices and output decisions for each generating unit.

3.1.1 Sample Period

In the summer following restructuring, from April through September of 1999, PJM observed sub-

stantially higher prices than most seasons since the market restructured.14 I focus on this six month

period when some firms began to make market-based offers. While prices averaged $26 per MWh

in the summer of 1998, they increased to an average of $38 in the following summer, reaching the

14Since the summer of 1999, prices have been relatively low in the energy market. Notable exceptions when average
prices exceeded $40 per MWh include December 2000, August 2001, and the first three months of 2003. Since 1999,
there have been notable changes in market rules and market structure. In June of 2000, PJM started a day-ahead
market in addition to the real-time market. Allaz and Vila (1993) show how the presence of a two-settlement system
can reduce market power. Changes in ownership resulted in less market concentration and increased the likelihood
of some firms being net buyers, which could have increased oligopsony power. April of 2002, PJM expanded into
western Pennsylvania, Ohio, and West Virginia.
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market cap several times.15 In general, during high demand periods like that summer, generation

and transmission capacity limits bind making firms’ residual demand inelastic and market power

more likely. Furthermore, regulators may have not foreseen all possible manners in which firms

could exercise market power in this new and extensive restructuring of the market.

However, in order to determine the extent to which high prices resulted from market power

(or other types of market imperfections), one must consider supply and demand shocks that would

increase prices in a competitive market. For the summers of 1998 and 1999, table 2 provides

summary statistics of some market characteristics. First, demand grew, in part, due to higher

temperatures.16 While demand increased only 809 MW (2.7 percent) on average, matching the

slow growth in generation capacity, peak demand increased by 3245 MW (6.7 percent) over the

previous summer (www.pjm.com). Also, from 1998 to 1999, fuel input prices increased. Oil and

natural gas prices increased substantially from $16.30 to $20.56 a barrel and $2.33 to $2.60 per

mmBTU, respectively (see Appendix B).

In addition, two tradable pollution permit markets required the compliance of at least some

PJM plants. From 1998 to 1999, prices in the Clean Air Act Amendments’ sulfur dioxide (SO2)

market, which then regulated 23 PJM units, climbed from approximately $150 to $200 per ton.

For some power plants, the largest cost increase resulted from a new regional nitrogen oxides

(NOx) tradable permits program. Beginning in 1999, the Ozone Transport Commission required

units in Delaware, Pennsylvania, and New Jersey (and others in New York and New England), to

dramatically reduce May through September emissions. In May of 1999, permit prices exceeded

$5000 per ton, increasing some units’ marginal production costs by 50 percent, but fell precipitously

to $1093 by summer’s end. These input price shocks increased marginal production costs of coal,

15PJM reports a load-weighted average of all nodal prices for each hour that I use as “the price” throughout this
paper. In Appendix B, I describe why this price measure is used in comparison to competitive price estimates.
This price exceeded $130 per MWh, a value PJM’s market monitoring unit (2000) deems the most expensive unit’s
marginal cost, almost three times as often in the summer of 1999 (96 hours) as the previous summer (37 hours). As
shown in table 3, the load-weighted average price increased even more so over the summers of 1998 and 1999 than
the unweighted average price.
16The mean of the daily temperature averages went from 73.3 to 74.3, and the mean of the daily maximum

temperature went from 82.5 to 84.8 (www.noaa.gov).
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natural gas, and oil units 23, 15, and 27 percent, respectively. My measure of competitive prices

account for these demand and supply shocks.

For each firm, table 3 describes the capacity factor (the fraction of capacity used to generate),

during the summers of 1998 and 1999. Over these summers, PECO and PPL reduced output

by 8 and 19 percent, respectively. In contrast, on average during this period, the other firms’

production levels were constant. These summary statistics do not, of course, account for changes

in input costs and other market conditions that may have affected these firms asymmetrically. For

example, all firms in Pennsylvania (including PECO and PPL) were greatly affected by the new

NOx environmental regulation while Maryland firms were not.

3.1.2 Net Imports

Firms inside and outside of PJM will choose which market to sell to depending on relative prices.

If PJM firms increase prices above competitive levels, then actual net imports will also exceed

competitive levels. With fewer net imports and completely inelastic demand, PJM’s more expensive

units will operate in a competitive market. For each summer, I estimate net import supply.17

Firms exporting energy into PJM probably behave as price takers because they are numerous, face

regulatory restrictions in their regions, and are limited by PJM pricing rules.18 Margin estimates

will be understated if this assumption fails.

When transmission constraints do not bind, PJM and surrounding regions are essentially one

market. However, the multitude of prices and “loop flow” concerns make assuming perfect infor-

mation implausible. The corresponding transaction costs make net imports dependent on both the

sign and magnitude of price differences. Data on bilateral contracts in neighboring regions are not

publicly available so I proxy regional prices using daily temperature in bordering states (New York,

Ohio, Virginia, and West Virginia). I also model net imports as a function of monthly fixed effects

17 In contrast, BBW aggregate confidential import bid curves for the day-ahead market in California. However,
since the PJM bids were not financially binding during my sample period, I do not follow this method.
18At the time of my study, regions surrounding PJM were under rate-of-return regulation. New York restructured

later in 1999. To set price, importers had to bid into the day-ahead market. Obviously this will not prohibit importers
from exhibiting market power as they can still withhold or bid high in the day-ahead market. However, it makes
them price takers in the real-time market.
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to address input cost shocks. For a given summer, I model net imports as a linear-log function of

actual price (Pt) in hour t:19

qIMP
t = β1 ln(Pt) ∗ Peakt + β2 ln(Pt) ∗ (1− Peakt) (4)

+
MX

m=1

αmMonthmt + δPeakt +
SX
s=1

γsTempst + εt,

where Peakt indicates hours between 11 AM and 8 PM on weekdays, Monthmt is an indicator

variable for each summer month, Tempst measures temperature for bordering states, and εt is an

error term.20

Finally, I address the endogeneity of price using two stage least squares (2SLS) as ignoring

this effect would result in attenuation bias. For both peak and off-peak hours, I instrument prices

with the log of hourly quantity demanded in PJM: ln(qdt ) ∗ Peakt and ln(qdt ) ∗ (1− Peakt). Typi-

cally quantity demanded is considered endogenous to price, however, since the derived demand for

wholesale electricity is completely inelastic, this unusual instrument choice is valid in this case. I

exclude demand from the second stage as it only indirectly affects net imports through prices.

Separately for 1998 and 1999, table 4 reports 2SLS coefficient and standard error estimates

that account for serial correlation and heteroskedasticity.21 Panel A shows the coefficients on the

instruments in the first stage, which suggest strong load instruments, while panel B displays β1 and

β2 for each year. In the second stage for both years, bβ1 < bβ2, which suggests that import supply
is more price sensitive during off-peak hours. In 1999, coefficients imply a price elasticity of net

19Other potential functional forms for net import supply would be to assume a constant elasticity or impose a linear
relationship. However, net imports are negative in many hours, making a constant elasticity model inappropriate. A
linear model would not account for the inelastic nature of supply (e.g., transmission lines entering PJM occasionally
bind and limit net imports). I opt for an alternative model linear in net imports and logarithmic in PJM prices. The
model is smooth, defined for all net imports, and accounts for the inelastic nature of imports nearing capacity.
For robustness, I also estimate a linear model and find similar results: In the summer of 1999, the slope coefficients

were 11.99 (2.23) and 52.56 (7.66) for peak and off-peak, respectively. Using peak and off-peak averages for net
imports, 1404 and 407 MWh, and prices, $74.21 and $22.82, this implies price elasticities (bβi · P/qIMP

t ) of net
imports of 0.63 and 2.9.
20The temperature variables for bordering states are modeled as quadratic functions for cooling degree days (degrees

daily mean below 65◦ F) and heating degree days (degrees daily mean above 65◦ F). As such Tempst has four variables
for each of the four states. These data are state averages from the NOAA web site daily temperature data.
21 I test the error structure for autocorrelation (Breusch-Godfrey LM statistic p-value of 0.00) and heteroscedasticity

(Cook-Weisberg test with a p-value of 0.00). First I estimate the IV coefficients assuming i.i.d. errors in order to
calculate an unbiased estimate of ρ, the first-degree autocorrelation parameter. After quasi-differencing the data, I
re-estimate the IV coefficients while using the White technique to address heteroscedasticity.
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imports on peak equal to 0.79 at average imports, while off-peak the elasticity is 4.2.22

In the following section, I solve for the competitive equilibria—as shown in (3)—by using these

estimates to predict net imports. For a given summer, I assume that the observed bounds on net

imports (qIMP
MIN , q

IMP
MAX) represent capacity constraints on transmission lines into and out of PJM.

23

As in figure 2, qIMP
t equals the actual net imports eqIMP

t plus the deviation in imports given that

under competition price will be P ∗t , not the actual Pt:

qIMP
t (Pt, P

∗
t ) = eqIMP

t (Pt) + [bβ1Peakt + bβ2(1− Peakt)] ln(
P ∗t
Pt
) (5)

s.t. qIMP
t ∈ [qIMP

MIN , q
IMP
MAX ].

3.1.3 Fossil Unit Supply

Estimating competitive supply from fossil units requires the construction of a marginal cost curve.

Historic regulatory rate hearings provide rich data sources and formulae, which are independent of

output, to determine unit i’s marginal cost of production (cit):

cit = V OMi +HRi · (W fuel
it +WSO2

it rSO2i +WNOx
it rNOx

i ), (6)

where V OMi is variable operating and maintenance cost, HR is an efficiency measure called heat

rate, and W fuel
it ,WSO2

it , and WNOx
it are daily prices for unit i’s fuel usage, SO2 emissions, and NOx

emissions. Emission rates for SO2 and NOx equal r
SO2
i and rNOx

i . Appendix B describes the data

sources for these variables.

In addition to production costs, estimates of competitive prices must account for scarcity rents

and opportunity costs. Note that the industry marginal cost curve forms a step-wise function.

Therefore, scarcity rents may arise when the equilibrium price falls between the production marginal

costs of two units. The market clears by recognizing the shadow price of the production constraints

of the low cost unit. Scarcity rents also occur when demand exceeds the capacity of the entire market

including transmission-constrained imports. Given the completely inelastic demand in this market,

22Elasticity equals bβi/qIMP
t . In the summer of 1999, net imports averaged 1404 on peak and 407 off-peak.

23The observed net imports for the summer of 1998 ranged from -5,882 to 3194. In the summer of 1999, it ranged
from -3,304 MWh to 6,095 MWh. Given the infrequency of observations at these limits, I do not econometrically
model censoring.
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scarcity rents only occur with positive probabilities in this latter, extreme case. Two potentially

important opportunity costs involve intertemporal and spatial trading. However, electricity cannot

be stored making intertemporal opportunity costs irrelevant.24 PJM firms do have the option of

selling outside the region. In fact, some bilateral trades in neighboring states greatly exceeded

the PJM price cap in 1998 and 1999. Yet, by estimating net import supply in section 3.1.2, I

account for arbitrage opportunities such that no addition trade opportunities exist in equilibrium.

The competitive price, therefore, will account for import response and be determined by marginal

production costs from (6) or, if generation and transmission capacity are exceeded, by the price

cap.

As well as computing units’ marginal costs, the determination of competitive supply also requires

knowing their production capability. Generating units cannot run constantly and must be shut off

for routine maintenance, limiting available capacity. As this paper focuses on summer months, while

scheduled outages primarily occur in the low demand Spring and Fall seasons, these scheduled

outages are irrelevant. However, additional unplanned outages also affect units’ availability. I

account for these idiosyncratic shocks (ξit) in determining unit i’s output (qit):

qit(P
∗
t ) = { Kmax

i if P ∗t ≥ cit and ξit > FOFi
0 otherwise,

(7)

where Kmax
i is maximum capacity. In each hour, the forced outage factor (FOFi) states the

probability a unit cannot produce electricity when called upon. If ξit ≤ FOFi, a forced outage

prohibits the unit from producing. This is an important limitation in a market without storage

capability. When firms exercise market power, outages can make a unit “pivotal” and enable it set

the price at the cap. Even under perfect competition, forced outages may substantially increase

prices if supply nears capacity.

A common technique to account for these outages is to “derate” the capacity of a unit such

that production eqit(P ∗t ) = Kmax
i · (1 − FOFi) if P ∗t ≥ cit and zero otherwise. However, given the

convexity of the market’s supply curve with respect to price, the expected costs will exceed the

24 I discuss two notable exceptions, pumped storage and hydroelectric power, in Appendix B.
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costs of the expected supply for a given level of demand. Also, using actual outages as a basis for

supply curve calculations would be biased, as they are endogenous for strategic firms (Wolak and

Patrick, 1997). Therefore, as with BBW, I account for forced outages using historic forced outage

factors in a Monte Carlo simulation. For each hour in the sample, I simulate outages by drawing

ξit from a [0, 1] uniform distribution.

After concatenating the supply curve for all available units based on (7), I determine the equi-

librium as the intersection of fossil supply and residual demand, which depends on price as given by

(3) and (5). If residual demand intersects supply between operating units, the I determine scarcity

rents from residual demand. If residual demand exceeds fossil supply such that all generation and

transmission capacity binds, scarcity rents exist and I set price to the $1000 cap. For each hour, I

repeat the process 100 times and calculate the mean of these simulations of the equilibrium price,

P
∗
t , that will be an unbiased estimate of the expected price under perfect competition. Noting

that the competitive price equals the marginal cost of producing an additional MWh, I measure

price-cost markups (Pt − P
∗
t ) using these cost estimates.

3.2 Price-Cost Margin Results

For each month in the summers of 1998 and 1999, table 5 reports hourly averages for demand, actual

price, and competitive price estimates assuming a linear-log functional form for net import supply.25

From April through September, 1999, the competitive equilibrium price averaged $28.94 per MWh,

approximately nine dollars below the actual price average. In contrast, during the previous summer,

the observed prices ($26.04) only slightly exceeded marginal costs ($23.33). Examining market

performance in specific months, one notes substantial variation in price-cost markups. On the one

hand, during June and July of 1999, actual prices surpassed competitive price estimates by $6.79

and $53.85, respectively. In contrast, all other summer months of that year had small positive or

25As a robustness check, I also assume a linear functional form for net import supply and report measures of
the market’s performance similar to those above. Relative to the linear-log model, the linear model results in more
competitive estimates of market performance, 22 percent, and smaller procurement cost increases. In 1999, the overall
costs equal $623 million (s.e. $119 million) and the spot market costs increase $170 million (s.e. $39 million). In 1998,
costs increase $175 million (s.e. $28 million) and $51 million (s.e. $8 million), respectively. However, as discussed in
footnote 19, this functional form is not account for transmission capacity constraints.
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negative margins. Margins in 1998, however, exhibited less monthly variation. Margins also vary

substantially by time of day: Prices during peak hours, which are between 11 AM and 8 PM on

weekdays, were twice as great as costs in 1999 while I estimate negative margins during off-peak

hours. I discuss the implications of negative margins in section 3.2.1.

In order to measure overall market performance in an industry that lacks storage and has sub-

stantial intra-day variation in quantity demanded, I follow the practice of constructing a quantity-

weighted Lerner index (for example, BBW). This highlights the economic significance of high de-

mand hours in measuring the cost of procuring electricity. For a given set of hours (S), I define

market performance (MP (S)) as:

MP (S) =

P
t∈S(Pt − P

∗
t )eqtP

t∈S Pteqt , (8)

where eqt equals electricity sold at prices reflecting those in the spot market. PJM’s vertically
integrated firms self-supply the majority of electricity, limiting the effect on energy costs of market

imperfections in the spot market. However, spot purchases will be subject to firms exercising

market power. Also, many bilateral contracts probably will be affected by strategic behavior. For

example, firms index some contracts to spot prices. Assuming risk neutrality and efficient markets,

even those contracts not explicitly indexed will, in expectation, equal the spot price.26 Therefore,

I define eqt as energy purchased on the spot market or through bilateral contracts.27
Using this measure for the entire summer of 1999, I estimate MP = 0.34 (see table 5). This

reflects an increase in procurement costs through the spot market for $262 million above actual

procurement costs. I estimate that this increase in procurement costs has a standard error of $41

26The cost of market power from the bilateral contracts will be the difference between the expected prices and the
expected costs, multiplied by the volume of contracts. In expectation, this will be the same as if the quantity passed
through the spot market. However, this market was just beginning and suppliers may have not foreseen the high
prices and may have agreed to low prices. The sellers could not profit by ignoring the contracts and selling their
power to the spot market instead. According to the MMU report (2000): “An energy sale contract typically includes
a liquidated damages provision specifying the amount that the seller, for example, owes the buyer if the seller does
not perform, i.e., does not delivery energy when agreed. A typical liquidated damages provision would require the
seller to pay the buyer the price the buyer actually had to pay to obtain replacement energy from the market, if the
seller were unable to deliver.”
27The PJM Market Monitoring Unit’s annual report (2000) summarizes average spot market purchases by month

and time of day (disaggregating peak (11 AM to 8 PM) and off-peak). Each hour, I assume contracts equal 0.3 times
total quantity demanded plus regulated reserves: .3*(qdt + qrt ).

19



million (see Appendix C for a discussion of the estimation methodology). My measure of total

transfers associated with market power increases to $950 million if bilateral contracts exhibited

similar margins.28 To put these procurement cost increases in context, these estimates are 51

percent greater than those from a competitive market (i.e.,
P

t∈S P
∗
t eqt).

3.2.1 Pricing Model Discussion

In some months and some times of day, I report actual prices below competitive estimates. In 1999,

May and September exhibit negative margins, which may have resulted from these (historically

regulated) firms ignoring some marginal costs. For example, the NOx emissions regulation began

trading in May at extremely high prices and increased some units’ marginal cost by $13 per MWh.

As regulators did not require compliance of firms until year’s end, some firms may have ignored

this new market’s high costs.29 In these months, cost estimates ignoring NOx permits result in

competitive price estimates similar to actual prices.30 In addition, intertemporal constraints may

have also biased cost estimates over these months.

In general, off-peak hours also display negative margins. However, plants do actually operate

when price falls below their marginal costs. Recall the single-period model cost estimates ignore

the shadow price of intertemporal constraints. Unit commitment problems, including start up

costs, impose a dynamic optimization problem. If a firm expects prices to increase in the future

and its unit has large start up costs, then it will be less expensive to run in low demand hours

than to shut down and restart. Actual margins that consider these unit commitment problems

will be nonnegative. However, by omitting intertemporal constraints during off-peak hours, the

single-period methodology overstates marginal costs.

28The total cost standard error (s.e.) is $126 million. Using similar calculations for the previous summer, overall
procurement costs equal $282 million (s.e. $59 million), while spot market costs alone total $82 million (s.e. $17
million).
29Furthermore, Kolstad and Wolak (2003) find that, in the California electricity market, firms do not account for

tradable permits to the full extent as other production costs. In 2000, they find that firms in the southern California
NOx tradable permits market (RECLAIM) produced more than the competitive level, as predicted in BBW, in
comparison to relative behavior in 1998 and 1999.
30Prices are $3.9 above costs in May and $1.4 below costs in September. This suggests that some firms may have

either disregarded or discounted current NOx prices when determining marginal production costs.
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In contrast, during peak hours, start up costs and other intertemporal constraints may delay

firms from operating even when expected prices exceed marginal production costs; firms may expect

the price-cost differences to be temporary and insufficient to cover their unit commitment costs.

By ignoring shadow prices during peak hours, those most subject to the exercise of market power,

the single-period methodology biases marginal cost estimates downwards. While the overall impli-

cations of ignoring intertemporal constraints may be ambiguous, BBW argue that the overall effect

is negligible when including margins from peak and off-peak hours. However, as will be discussed

in section 4, the effects may be substantial in measuring market inefficiencies as peak and off-peak

biases cumulate rather than offset.

4 Measuring Market Inefficiencies

In this market, short run market inefficiencies only result from deviations in production that I

measure by comparing actual production costs with competitive counterfactual estimates. This

section defines the optimization problem of competitive firms while accounting for intertemporal

constraints. I then explain the econometric estimation technique of this intertemporal model that

requires observing a baseline of competitive behavior. While regulated, I argue that the short

run operation of power plants prior to restructuring, in 1998, was consistent with such behavior.

Surely this regulated market did not exemplify perfect competition; firms invested inefficiently and

probably distorted marginal production costs by making inefficient decisions regarding maintenance,

labor, and capital allocation including environment abatement technologies. However, given these

costs, operators likely dispatched units in a least-cost manner.31 Using the coefficient estimates

from the pre-restructuring period, I predict a competitive counterfactual for production decisions

31Under regulation, some argue that firms had incentives to minimize effort rather than costs and therefore did
not operate efficiently. Firms may have let units operate during low demand times instead of stopping and restarting
them. If restructuring improved efficiency then, conditional on market conditions, more starts would be expected in
the summer of 1999 than in that of 1998. Without controlling for market conditions, the number of fossil unit starts
went from 4473 to 9006.
Further, even in 1998, firms could have withheld production from units that would have operated in a competitive

market. However, as cost-based bids determined prices, the ability to move prices may have been limited. In contrast,
in 1999, the flexibility of using bids as well as quantity may have facilitated exercising market power to the degree
that firms circumvented constraints, such as regulatory surveillance. In addition, these historically regulated utilities
may have undergone a learning process about how to exercise market power.
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for the post-restructuring period. Finally, I present the empirical results of the welfare impacts of

market imperfections in electricity markets using both the single-period and intertemporal models.

4.1 Intertemporal Model of Competitive Production

Several technologically-induced intertemporal constraints limit firms ability to produce electricity.

As previously mentioned, after unit i shuts down, in order to resume operation at hour t, the

firm pays “start up” costs (STARTi). In addition to marginal production costs, firms incur some

“no load” costs (NOLOADi), such as running conveyor belts and fans, regardless of the amount

produced. Ramping rates (RMPi) limit the speed at which units increase or decrease hourly

production. After being shut down, minimum down times (DOWNi) limit how quickly units can

restart. Finally, minimum (Kmin
i ) and maximum (Kmax

i ) operating capacity levels restrict a unit’s

range of operation.

These intertemporal constraints create non-convexities in firms’ production cost functions.

Price-taking firms obtain profit maximization by optimizing units’ production separately. Nei-

ther a firm’s production at other plants nor its contractual agreements (including native load)

affect optimization. Given price (Pt) and variable production costs (Cit(qit)) at unit i and hour t,

a competitive firm chooses production (qit) to solve the dynamic program:

V (qi,t−1, t) = max
qit
{Ptqit − Cit(qit)− STARTiq

+
it q

0
i,t−1 (9)

−NOLOADiq
+
it + δEt[V (qit, t+ 1)]} s.t. :

(i) Capacity: qit ∈ {0, [Kmin
i ,Kmax

i ]},
(ii) Ramping: |qit−qi,t−1|

Kmax
i

≤ RMPi,

(iii) Min. Down: qit > 0⇒ (qi,t−1 > 0 or qi,t−s = 0,∀s ∈ {1, ...,DOWNi}),
where, V (qi,t−1, t) is the value function this hour,32 q+it indicates operation this period, (while q

0
i,t−1

indicates no production last hour), and δE[V (qit, t+ 1)] is the discounted expectation of the value

function next hour.
32Bellman equations typically have an additional state variables St. However, in this case, the state variable simply

refers to the initial production level going into period t, −→q t−1; therefore, I avoid introducing an extra variable.
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I assume Cit(qit) to be a linear function: citqit. Noting that competitive firms take Pt as given,

a heuristic representation of the first order condition of (9) is:

PCMit ≡ Pt − cit = λit(
−→q it), (10)

where −→q it = (qi,0...qi,T ), T equals total hours, PCMit is the price-cost markup (ignoring intertem-

poral constraints), and λit is a general function accounting for intertemporal constraints that can

have a positive or negative effect on the true marginal cost: cit + λit(
−→q it). Intertemporal con-

straints may reduce a unit’s marginal cost; for example, postponing shutting down at low prices

may improve overall profits since the firm avoids restarting the unit later on when prices rise. In-

tertemporal constraints may also increase marginal costs. Again, using the case of start up costs,

a firm will not operate even when prices exceed marginal production costs if rents are not substan-

tial enough to cover the cost of starting. When intertemporal constraints are inconsequential, the

price-taking firms’ optimization problem can be simplified further; these firms operate units at full

capacity when price exceeds (or equals) marginal cost of production (cit). Given this description of

competitive firms’ optimization problem and estimates of cit as in (6), the following section explains

the methodology used to account for intertemporal constraints in order to determine a competitive

counterfactual market outcome.

4.2 Methodology of Intertemporal Model

For the pre-restructuring period, when I assume competitive behavior, I estimate the policy func-

tion: q∗it equals the argmax of (9). Effectively inverting (10), the price-taking firm will choose

output as a function of historic, current, and future price-cost markups and intertemporal con-

straints. Unlike production models that estimate the optimal mix of inputs, I know production

costs but must estimate how constraints affect the firm’s dynamic optimization problem. An al-

ternative approach would be to make a direct calculation of the dynamically optimal solution.

However, this would require information on the exact methodology the system operators use to

dispatch units and on the ways firms form expectations about future prices. Rather, I opt for a
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reduced-form approach relating output decisions to price-cost markups and constraints using in a

flexible format.

The dependent variable, “utilization rate” (URit), measures the fraction of a unit’s capacity

operating in a given hour. I model URit = X 0β so that the predictions of dURit for 1999 are

consistent with competitive behavior. To do this, I need consistent measures of the β parameters

but also X variables unlikely to be subject to strategic behavior. For example, while the shadow

price of intertemporal constraints depends on historic and future behavior (see (10)), including

lagged and lead dependent variables could potentially bias competitive estimates in 1999 (e.g., a

unit that reduces output to exercise market power may be unable to produce at full capacity because

of ramping constraints). Instead, I identify firm choices by substituting in a vector of past, current,

and future price-cost markups (
−−−→
PCM it) and unit characteristics: RMPi, Kmax

i and STARTi. I

set
−−−→
PCM it to consist of six variables: markups during the previous, current, and following hour as

well as the daily average markup for yesterday, today, and tomorrow. I write utilization rate as a

function of these variables and an idiosyncratic shock (εit):

URit = f(
−−−→
PCM it, RMPi,K

max
i , STARTi) + εit. (11)

In the estimation procedure described below, each of the six markup variables are interacted with

each of the three unit characteristic variables. To further account for non-linear relations, I estimate

each of these 27 variables (6+3+6*3) as a piece-wise linear, or spline, function that is separated

by quintile. Finally, I allow these choices to differ by time of day by estimating 24 sets of hourly

coefficients.

Using data described in Appendix B, I estimate firm production choices in three steps of an in-

strumental variables-Heckman selection model. First, as prices may be endogenous, I predict fitted

values of price-cost markups ( \PCMit) that are orthogonal to production. Even before restructur-

ing, a large unit sustaining a forced outage will likely move the market price. Furthermore, if firms

behave strategically after restructuring, markups will be inconsistent with that of a competitive

equilibrium. I instrument the actual markups using the predicted competitive markups from sec-

24



tion (3):
−−−→
PCM∗

it ≡ P
∗
t −cit. These instruments include predicted competitive markups of six types:

the previous, current, and following hour and the daily average markup for yesterday, today, and

tomorrow. Like all other variables, I allow these instruments to enter as piece-wise linear functions

separated by quintile and to differ by hour of day. For markup measure j in
−−−→
PCM it—which varies

by type, quintile, and hour—I run an OLS regression:

PCMjit = f1(
−−−→
PCM∗

it, RMPi,K
max
i , STARTi) + ε1,it. (12)

In the second stage, I estimate the binary choice of whether a unit operates or not. Using a

probit model, I estimate ONit, an indicator that URit > 0, as a function of fitted markups and

intertemporal constraints:

ONit = f2( \PCMit, RMPi,K
max
i , STARTi) + ε2,it. (13)

I estimate the probability of operating ( \Pr(ONit)) and the inverse Mill’s ratio ( \MILLSit). Finally,

conditional on operation, I estimate utilization rates as a function of fitted markups, ramping rates,

capacity, and their interactions. Conditional on operation, I assume start up costs do not affect

production:

URit|ONit = f3( \PCMit, RMPi,K
max
i , \MILLSit) + ε3,it, (14)

where I use weighted least squares, with Kmax
i as the weight, so that predicted system-wide

production—namely the sum over all units of (dURit|ONit ∗ \Pr(ONit) ∗ Kmax
i )—is consistent with

actual system-wide production in 1998.

Given the high degree of periodicity of a unit’s hourly utilization rate, serial correlation must be

taken into account. Maximum likelihood estimation of (12), (13), and (14) that accounts for serial

correlation would require imposing a specific functional form on the error structure and would be

quite cumbersome to estimate. Rather, I determine the models’ coefficients and standard errors

using a bootstrapping method. I account for serial correlation by grouping observations in seven-

day increments: For a given bootstrap draw, I pick an observation (with replacement) as well as

the following six days’ observations. I repeat the estimation procedure using the new sample, which
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has the same number of observations as in the initial regression.33 I repeat the process 200 times

to determine the sample mean and standard deviation of these draws in order to estimate firm

competitive decisions, as well as their aggregate production costs. In contrast, sections 3.1.2 and

3.2 estimate standard errors using parametric approaches and thus are treated differently in the

following section.

I have defined a flexible relationship between output decisions and key variables that makes the

interpretation of any individual coefficient difficult. In brief, on average, higher price-cost markups

in the current hour increase the likelihood of operation and the output from operating units.

Units with high capacity, quick ramping rates, and low start up costs operate more. Conditional

on operating, units with slow ramping rates tend to have higher utilization rates. Appendix D

provides a detailed discussion of the coefficient estimates.

For the summer of 1998, in order to determine the importance of intertemporal constraints, I

compare production estimates from the intertemporal and single-period models with actual output.

The intertemporal model fits the actual production data better than the single-period model.34

Figure 3 plots a kernel regression of price-cost markups (ignoring intertemporal constraints) ranging

from -$30 to $30/MWh, marking the 5th and 95th percentiles, on actual utilization rates (black

line). As price-cost markups increase, the average utilization rate rises slowly from 0.2 to 0.8. In

comparison to actual utilization rates, single-period model utilization rates (light gray line) are

low during negative price-cost markups, increase quickly, and are high for positive markups.35 In

33Robinson (1982) demonstrates that estimation of limited dependent variable models will be consistent when serial
correlation is not modeled explicitly in the likelihood function.
34The correlation of actual utilization rates to single-period utilization rate estimates is 0.56 while with intertem-

poral utilization rate estimates the correlation is 0.69. The correlation of the two estimates is 0.82.
A more formal test requires the use of some non-nested test, since there does not exist a mapping of one utilization

rate estimate to the other. I follow the methodology of an encompassing test, as described in Davidson and MacKinnon
(1993, pages 386-387). This is done by testing one hypothesis and including the variables from the second hypothesis
that are not already in the model. In this case, I regress actual utilization rates on the intertemporal model estimates,
and also include the single-period model’s estimates. The coefficient on the intertemporal model’s estimate is 0.9948
(with OLS s.e. of 0.0027) while the single-period model’s estimate is insignificant: a coefficient of 0.0021 (0.0015).
Accounting for serial correlation increases the standard errors. I repeat the process using a least absolute deviation
estimator: The intertemporal model coefficient is 1.071 (0.002) and the single period one is 0.101 (0.001).

35Recall that the single-period model requires that units operate at 100% capacity whenever the perfectly competitive
price exceeds the estimated marginal cost. However, the single-period model estimates of the utilization rate do not
jump from zero to one when the actual price exceeds marginal costs in figure 3. This is because the single-period
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contrast, the intertemporal model (dark gray line) closely fits observed behavior. This suggests

that intertemporal constraints matter.

Figure 3 implies that the single-period model fails to account for intertemporal constraints that

may substantially affect output decisions and lead the model to underestimate welfare effects based

on direct production costs, namely the variable costs excluding start up and no load costs. During

peak hours, intertemporal constraints will lead to units with moderate marginal production costs

not starting and others with low marginal production costs not being able to ramp up to full

capacity. This will require units with high marginal production costs to operate, increasing the

direct production costs. In contrast, during the middle of the night, intertemporal constraints will

lead to moderate cost units operating at a loss but avoiding start up costs the next morning. Again,

the direct costs of production will be greater than implied by the single-period model. Therefore,

unlike in the case of measuring price-cost margins where the intertemporal biases were potentially

off-setting, in the case of measuring welfare, the single-period model will overstate welfare losses.

4.3 Estimating Welfare Effects

In general, firms increasing prices cause two types of welfare loss: allocative inefficiencies (as con-

sumers purchase less at high prices) and production inefficiencies (when multiple firms have asym-

metric costs or strategies). These production inefficiencies are only across firms, as each firm pro-

duces a given quantity in a least cost manner. Given the completely inelastic demand for wholesale

electricity, these cross-firm production inefficiencies are the only welfare implications in the short

run. Calculating welfare effects then becomes a matter of comparing actual total production costs

with competitive estimates. For a sample of T hours and N units in PJM, I measure the welfare

effect to be:

W ∗ −cW =
TX
t=1

{
NX
i=1

[Cit(bqit)− Cit(q
∗
it)] +

Z PN
i=1 bqitPN

i=1 q
∗
it

pt(q
d
t − x)dx}, (15)

model and actual prices are not perfectly correlated. Note that utilization increases at negative markups; this suggests
that my marginal cost estimates overstate firms’ perceived costs.
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where W ∗ is social welfare under perfect competition and cW is actual welfare. Similarly, q∗it andbqit are the optimal and actual production levels of PJM firms. The inverse net import competitive

supply function is given by pt(qdt − x) and qdt is demand. As in section 4.1, I assume variable costs

Cit(qit) to be a linear function: citqit. As in section 3.1, actual hydroelectric and nuclear production

are assumed to be consistent with competitive behavior. In order to calculate (15), I use the EPA’s

Continuous Emissions Monitoring System (CEMS) data on actual hourly production of fossil fuel

units (bqit)—which I discuss in Appendix B—and competitive estimates for these units (q∗it) based
upon the intertemporal and single-period models. I determine changes in net imports using the

estimated net import supply curve described in section 3.1.2.

In table 6, I examine the welfare implications of restructuring and the importance of intertem-

poral constraints in measuring these welfare effects. The first method of calculating production

under perfect competition, q∗it, uses the intertemporal model estimates. This model provides a

consistent estimate of competitive behavior; for firms in PJM during the summer of 1998, both

the actual production costs and my cost estimates totaled $1.34 billion. However, in 1999, actual

production costs were $1.64 billion while my production estimates were only $1.59 billion.36 These

cost differences imply production inefficiencies of $54 million, or 3.4 percent, after restructuring.

Recall the intertemporal model coefficients and standard errors are estimated using a bootstrap-

ping method. As a measure of the production inefficiencies’ standard errors, I report the standard

deviation of 200 bootstrap draws, which is $4.2 million.

In contrast, using the standard methodology, which does not account for intertemporal con-

straints, I predict welfare effects even before restructuring. For 1998, this single-period model’s

estimates of production costs were $71 million, or 5.6 percent, less than actual production costs.

Recall from section 3.2, I estimate the standard errors for this model using a linear estimation pro-

36For 1999, I calibrate the intertemporal model so that the summer’s aggregate production equals that of the
single-period model. For each hour, I determine the equilibrium production level implied by the single-period model:PN

i=1 q
∗
it(S). Using units’ marginal production costs and intertemporal model’s production decisions (q∗it(I)), I

construct a supply curve. Equilibrium is defined to be where: α
PN

i=1 q
∗
it(S) =

PM
i=1 q

∗
it(I), where M is the least-

cost set of units and α scales the equation such that the summer’s aggregate generation is equal for both models:PT
i=1 α

PN
i=1 q

∗
it(S) =

PT
i=1

PM
i=1 q

∗
it(I). In this case, α equals 1.03.
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cedure. For the pre-restructuring period, I estimate welfare loss standard errors to be $1.2 million.

In the summer of 1999, the single-period model cost estimates were only $1.46 billion, implying

production inefficiencies totaled $182 million (with a standard error of $1.4 million). Welfare losses

were 12.5 percent of competitive production cost estimates.37 In each year, the intertemporal model

predicts less welfare loss than the single-period model.

During hours when actual prices exceeded their competitive estimates, I measure additional

inefficiencies due to the production costs paid to imports. For both competitive models, I use the

same import estimates of welfare and production. Assuming imports are competitive, the additional

production costs from market distortions is $3.2 million and $2.3 million in the summers of 1998 and

1999, respectively. Using the delta method to estimate the standard errors of additional imports, I

find no significant difference in import costs between 1998 and 1999.38 Including net import costs,

total welfare losses are more than three times as great using the single-period model ($185 million)

than using the intertemporal model ($56 million).

Relative to wealth transfers—as measured in section 3.2—deadweight losses were small, only six

percent the size. (Recall that during the summer of 1999, the costs of procuring electricity from

the PJM spot market exceeded the estimated procurement costs of a perfectly competitive market

by $262 million and that, if similar markups affected demand met with bilateral contracts, total

costs increased $950 million.) Of the $56 million in costs likely to have resulted from intertemporal

constraints, less than half can be attributed to start up costs. The actual start up costs in the six

month period of 1998 totaled $23.2 million for the plants in the CEMS data. In 1999, start up

costs for the observed production decisions were $26.7 million, suggesting that other intertemporal

37One way to account for intertemporal constraints is to treat the 1998 single-period model estimates as a control
group. Assuming that the 1998 welfare loss estimates resulted solely from the bias of ignoring these constraints, the
welfare effects from restructuring related market imperfections equal the change in total welfare losses from 1998 to
1999, or $111 million. Note that if the bias is not constant over time, this method will inaccurately measure welfare
effects.
38Standard errors of additional production costs from increased imports are estimated using the delta method

and the log(price) coefficients’ standard errors shown in table 5. For each hour, I estimate the partial derivative of
additional import supply costs with respect to the log(price) coefficient and multiply by the coefficients’ standard
error. I dropped nine outliers that occurred July 30, 1998, when the estimated gradient was extremely larger than
other hours.
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constraints affect firms’ production decisions. If firms operated as suggested by the single-period

model, the number of starts would be twice as great and start up costs would have totaled $44.4

and $41.0 million in these two summers. In contrast, the intertemporal model predicts firms rarely

shut units down and start up costs equal $5.7 and $10.2 million, respectively. Given these welfare

measures and earlier findings on overall competitiveness of the market, I now address the issue of

whether specific firms were exercising market power.

5 Vertical Integration and Firm Conduct

This section asks whether PJM firms’ behavior changed after restructuring. More specifically, I ask:

Do firms with net selling positions behave differently from other firms? Does vertical integration

affect firms incentives to exercise market power? I address these questions using two tests: I treat

restructuring as a natural experiment in measuring firm production; and, as a benchmark, I examine

the consistency of firm behavior with a structural model’s first order condition.

5.1 Testing the Effects of Vertical Integration on Firm Incentives using a Nat-
ural Experiment

As a natural experiment, I test whether output from two firms, PECO and PPL, differed after the

PJM market restructured relative to the other firms. Since market conditions may asymmetrically

affect competitive firms, I control for estimates of competitive production decisions. I isolate these

firms because, relative to others, they:

· offered unregulated, “market-based” bids (section 2.2);
· had net selling positions (table 1); and
· reduced output from 1998 to 1999 (table 3).

As previously discussed, GPU also had a net selling position (and reduced output slightly) but,

unlike PECO and PPL, offered few market-based bids. For robustness, I test the sensitivity of

my results to the definition of “oligopolist” by including and excluding GPU. This first approach

simply addresses whether PECO and PPL behaved differently than others on average.
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As with the welfare analysis, I use two estimates of firm i’s competitive production (bqit), based
on the single-period and intertemporal models, to account for cost and demand shocks. Estimates of

fossil units’ competitive production are aggregated by firm (table 1 lists these firms).39 Furthermore,

I control for unobservable shocks that are common to all firms in the summer after the policy of

restructuring is enacted (Policyt). In addition, I include a vector of exogenous variables (Zt) with

indicators of hour of day and day of week, as well as a piece-wise linear function of demand that is

separated by decile. Firm fixed effects (ηi) are also included.

In this difference-in-differences approach, I estimate behavioral changes following restructuring

for oligopolists PECO and PPL (Oligi) relative to the “fringe” suppliers. Even though some firms

in the fringe have large market shares, I model them as price-takers because they are unlikely to

have either incentives or the ability to affect prices. uit is an idiosyncratic shock. For firm i at hour

t, firm aggregate observed production (qit) is modeled as follows:

ln(qit) = φ ln(bqit) + ζPolicyt + γPolicyt ·Oligi + Z 0tΠ+ ηi + uit. (16)

Table 7 reports the OLS coefficients with Newey-West standard errors. I assume the moving

average process to include 24 hourly lags. In column (i), I do not control for competitive production,

setting φ in (16) to zero. The bγ coefficient measuring production by oligopolists after restructuring
is -0.20, implying a reduction in output of 20 percent, on average, by these two firms in the summer

of 1999. In column (ii), I control for competitive output estimates based on the intertemporal-period

model. Here, bγ equals -0.16 and the coefficient on the log of the estimated production, bφ, is 0.69.
Uncertainty in production, such as forced outages, will result in attenuation of the φ coefficient.

To address potential bias from including a variable with measurement error, I set φ = 1. In column

(iii), the dependent variable is the difference between the log of actual output and the log of the

estimated competitive output. The model suggests that oligopolists reduced output by 14 percent

after restructuring while other firms did not behave differently. Using a Hausman specification test,

the column (iii) bγ estimate is significantly different from that in column (i) suggesting that some,

39All small firms are aggregated as firm “other” since none of them would be large enough to exercise significant
market power.
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but not all, of the actual reduction in output was due to competitive market conditions. Regressions

based on the single-period competitive model support these findings.40 In addition, as a robustness

check, I repeat the analysis including GPU and estimate qualitatively similar coefficients.41 Given

the potential biases from including regressors with measurement error (bqit), as in column (ii), I find
the results of column (iii) to be the most convincing of these regressions. These results support the

hypothesis that market power was exercised by these two net selling firms, PECO and PPL, after

prices were deregulated in this market. A formal test of this conclusion uses a structural model of

firms’ first order conditions.

5.2 Structural Test of Firm Behavior

This method tests a particular structural model of firm behavior to explore firm behavior after

restructuring. As a benchmark, I write the first order condition, (2), assuming firms optimize in a

static game setting by choosing quantities. If firms are playing a dynamic game or are optimizing

by choosing prices, the first order condition will change. However, the purpose of my estimation

is not to determine the consistency of behavior with one specific strategy, but rather to use this

model to benchmark behavior for comparisons over time and across firms.

In this setting, a firm with a larger net position will have more incentive to drive the price

above marginal costs (conditional on a firm’s inverse residual demand). For firm i, year j, and hour

t, I modify (2) by using the assumptions from section 4—constant marginal production costs (cijt)

and shadow price of intertemporal constraints (λijt). Like Puller (2000), I also model a conduct

parameter for each firm, allowing it to vary by year (θij):42

Pjt + θijP
0
ijt · (qijt − qdijt − qcijt) = cijt + λijt. (17)

40 I estimate the regressions in columns (ii) and (iii) using estimates of competitive production from the single-
period model. In column (ii), the coefficient on oligopolists after restructuring is -0.162 (s.e. 0.032). The coefficient
on competitive production γ is only 0.283 (0.014). In column (iii), the model predicts oligopolists reduced output by
8.3 percent while all firms increased output 7.7 percent.
41For example, when including GPU, the coefficients for column (ii) are γ =-0.116 (0.025) and ζ =-0.010 (0.014).

For Column (iii), they are γ =-0.089 (0.024) and ζ =-0.012 (0.014).
42Puller tests whether firm behavior in the California market was consistent with static or dynamic pricing models.

He estimates a firm conduct parameter and cannot reject Cournot behavior.
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As in section 2, I denote inverse residual demand Pijt, production qijt, native load qdijt, and net

supply/demand position from bilateral contracts qcijt. A firm’s marginal cost (cijt + λijt) equals its

most expensive unit that is operating but at less than capacity (Kmax
i ):

cijt + λijt ≥ cljt + λljt,∀l 6= i : qljt ∈ (0,Kmax
i ). (18)

If all units are at capacity, then the firm’s marginal cost is the marginal cost of its next most

expensive unit.

As shown in (17), a strategic firm (θij = 1) will determine output as a function of price,

marginal production cost, the shadow price of intertemporal constraints, the slope of the inverse

residual demand facing firm i, and the net position of production (qijt − qdijt − qcijt). In contrast,

the first order condition of a firm behaving competitively (θij = 0) will be as shown in (10); the

overall amount a firm generates does not affect its decision on at the marginal generating unit.

For purpose of estimation, using the notation in (10), I write (17) as:

PCMijt = αij + βij(qijt − qdjt) + εijt, (19)

where εijt is an idiosyncratic shock. I assume λljt to be monotonically increasing with cljt within

a the set of a firm’s operating units in a given hour. Thus, the price-cost markup (PCMijt) is the

difference between the market price and the marginal production cost of the most expensive unit

operating below capacity.43 I now define “net position” (qnetijt ) as the difference between production

and native load. The intercept, αij , equals the average over T hours of the firm’s responsiveness to

net contract coverage plus the shadow price of the constraints: αij = 1
T

P
t∈T (θijP

0
ijtq

c
ijt + λijt). If

a firm is a price-taker, then αij = λij . Recall from section 3.2.1, the impacts of λ on prices depend

on time of day, and may be offsetting. So, the overall impact on price-cost markups can be either

positive or negative. As this shadow price, as well as some contract specifications, differ by time of

day, I allow α to vary for peak (Peakt) and off-peak hours.44 The βij coefficient on the net position

43As with Puller (2000), if the marginal unit’s production exceeds 90 percent of its capacity, I redefine the firm’s
marginal cost as the cost of its next most expensive unit that has operated during the previous week.
44As in previous sections, I define peak as hours between 11 AM and 8 PM on weekdays.
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equals −θijP 0ijt (which is nonnegative) and any other correlation between net supply and the price-
cost margin: For a competitive firm, βij equals the covariance of the firm’s net position and the

shadow price of intertemporal constraints (σλ,qnet/σ2qnet). For both αij and βij , I use observations

from 1998, the control period, to separate these effects. Identification depends on assuming that,

for a given firm and time of day, λ and σλ,qnet/σ
2
qnet are constant over the two summers. The

econometric model is:

PCMijt = ai + αiPolicyj + aPKi Peakjt + αPKi PeakjtPolicyj (20)

+biq
net
ijt + βiq

net
ijt Policyj + εijt.

I estimate (20) using 2SLS as qnet is endogenous. The instruments are daily temperatures for both

states in PJM and for those bordering the region.45 Appendix B discusses data sources. I model

the idiosyncratic shock as a heteroskedastic, first-order autoregressive error term.46

Table 8 reports the bbi and bβi coefficients and robust standard errors from estimating (20) for

each firm. For each firm, column (i) reports bbi, the impact of net position on markups during
1998. Relative to this baseline, column (ii) reports the additional impact in 1999: bβi. Recall
that regardless of net position, a positive bβ is consistent with exercising market power. Two net
sellers, PECO and PPL, have significant and positive bβ coefficients implying that, on average,
they exhibited behavior consistent with exercising market power after restructuring. In contrast,

the other net seller (GPU) did not behave statistically differently after restructuring. One other

firm has a significantly positive bβ coefficient; Public Service, the largest buyer in this market,

may have been exercising monopsony power and dampened prices from being even higher than

observed. This behavior will also exacerbate production inefficiencies, and therefore, welfare loss.

For Potomac, Baltimore, Delmarva, Atlantic, and “other” firms, I estimate a negative bβ coefficient,
suggesting that the covariance of firms’ net positions and intertemporal constraint shadow prices

45Temperatures are modeled as quadratic functions for daily means, with coefficients allowed to vary above and
below 65 degrees Fahrenheit (cooling and heating degree days, respectively).
46 I correct for serial correlation by estimating an AR(1) coefficient (ρ) and quasi-difference the data, namely

calculate Dx=x(t)-ρ*x(t-1) for all data. Then, I estimate the 2SLS results using these quasi-differenced data and
report robust standard errors estimated using the Huber/White/sandwich estimator of variance.
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were not constant over the two summers. If the change in this covariance was negative for all firms,

then the findings that Public Service, PECO, and PPL did take other firms’ responses (P 0ijt) into

consideration are even more likely. In columns (iii) and (iv), I limit the sample to only those hours

when qnetit is positive, testing whether all firms exercised monopoly power when they had incentives

to do so. However, during these hours, only PECO and PPL have positive β coefficients. These

firms seem the most culpable for the wealth transfers and welfare losses previously measured.

6 Conclusions

This paper examines the pricing and production choices of firms in the newly deregulated PJM

electricity market. During the initial summer of restructuring, prices spiked more frequently than

in other recent summers. I find evidence of market imperfections and that some PJM firms behaved

strategically. Using a technique based on Wolfram (1999), this paper estimates prices for a compet-

itive market in determining estimates of price-cost margins and finds substantial wealth transfers

and welfare effects. For this post-restructuring summer, I find an increase in procurement costs of

$262 million, 51 percent above the costs of a perfectly competitive spot market. If similar markups

affected demand met with bilateral contracts, the measure of the increase in procurement costs is

$950 million. In using this methodology of estimating competitive market outcomes, I calculate

that actual production costs were greater than these competitive estimates by 12.5 percent.

However this “single-period” model ignores intertemporal constraints, and therefore, overstates

production inefficiencies. In this paper, I develop a consistent measure of competitive production

decisions to estimate welfare. Relative to the standard technique, my model accurately predicts

production behavior substantially better during the control period. Comparing actual production

costs with these competitive production cost estimates for the summer after restructuring, I estimate

that actual costs exceeded competitive estimates by only 3.4 percent, substantially less than the

estimates using the standard technique.

These transfers and welfare effects resulted from strategic behavior. Treating restructuring as

a natural experiment, this paper’s findings show that the two large net-selling firms, PECO and
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PPL, produced approximately 14 percent less than they would have in a competitive environment.

Furthermore, as a benchmark, I examine the consistency of all large PJM firms with a structural

model’s first order condition. Here, I also find supporting evidence that PECO and PPL increased

prices. These results do not imply that divesting power plants was a poor decision. However, it

does caution regulators that, if they do require divestiture, then they also enable firms to sign

contracts that will limit incentives to distort the market.
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Appendices
Appendix A: Divestiture Policies

The Energy Information Administration’s December 1999 report “The Changing Structure of

the Electric Power Industry 1999: Mergers and Other Corporate Combinations” summarizes the

laws affecting divestment in Investor-Owned Electric Utilities (IOUs) for each state as of September

1999. Among the top ten utilities having to divest, Potomac Electric Power Company sold 6,000

MW and Duquesne Light sold 4,400 MW. The following is an excerpt from table 11 on the status

of state restructuring provisions on divestiture of power generation assets, as of September 1999.

Maryland: HB 703 passed 4/99. HB 703 forbids mandated divestiture. However, Po-
tomac Electric Power Co. is selling all its generation assets.

Delaware: HB 10 passed 3/99. HB 10 allows the Public Service Commission (PSC) to
decide if divestiture is needed to alleviate market power “in extreme situations and as a
last resort.” Stranded cost recovery is not an issue for the IOU in Delaware. Delaware
Cooperative’s stranded cost recovery will be addressed by the PSC.

New Jersey: A10 and S5 passed 2/99. Laws A10 and S5 leave divestiture and the
issue of stranded cost recovery up to the Board of Public Utilities which may require
divestiture.

Pennsylvania: HB 1509 passed 12/96. HB 1509 does not require divestiture. Some
Pennsylvania utilities are selling generation assets to reduce stranded costs and/or re-
structure their companies into “wire” companies by getting out of the generation side
of the business. Duquesne Light to divest generation. Allegheny Energy to transfer
generation to affiliated generation company or divest.
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Appendix B: Data Sources

Prices

The PJM energy market can have thousands of different locational prices at a given time. An

accurate model of a nodal price system would account for transmission constraints and “loop flow”

concerns in addition to calculating marginal costs.47 Such a model would have to recreate the

dispatch decisions of the PJM operators, an impossible task given the “black box” nature of the

decisions. I look at the marginal costs of a market with no transmission constraints within PJM.

This makes this study tractable and enables me to accurately estimate costs at least for a subset

of hours rather than trying to replicate the market exactly. Therefore, I also determine prices for

an unconstrained transmission system for the observed market. Some papers, including Bushnell

and Saravia (2002), estimate a market-wide unconstrained price using bid data. However, during

my sample period, the PJM bids were not financially binding and may misrepresent the market

price. An alternative measure of a single price uses information from the hourly nodal prices in

PJM. PJM reports the load-weighted average of all nodal prices for each hour. While constraints

increase total costs, the impact on average price is indeterminate ex ante. The effect of congestion

on pricing when firms have market power is further confounded. Congestion reduces the elasticity

of residual demand but congestion rules cap some bids near costs. Given these caveats, I use this

load-weighted average price measure to approximate the unconstrained market-clearing price.

Hydroelectric and Nuclear Generation

Unlike other types of generation, hydroelectric generation faces limited reservoirs of how much

energy it can produce between periods of precipitation. The costs of producing power are negligible,

but the opportunity costs of generating can be quite high. A price-taking firm maximizes profits by

producing only in the highest price hours; producing at any other time will forgo the opportunity

of receiving a higher price.48 Firms optimize subject to constraints of minimum flow rates of rivers,

47Loop flow refers to the concept that electricity does not simply flow directly from source A to receptor site B but
rather will travel over all wires making up the transmission grid, as a complex function of transmission capacities.
48Similarly, a firm exercising market power will optimize by producing in the hours with the highest marginal

revenue.
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capacity constraints of generating power, and these reservoir constraints. I assume hydroelectric

generation will not vary from the observed levels. This biases down the measure of market power

as discussed in BBW.

I measure hydroelectric production using hourly bid data and monthly production data. Hydro-

electric generators bid into the market differently than other producers. They cannot bid market-

based rates. In fact, they are required to bid a price of zero and are thus called “zero-priced” bids.

While hydroelectric producers are restricted in the price they bid, they are allowed to alter the

quantity bid for each hour (unlike most of the market that bids a common offer curve for the entire

day). Since the bids were not binding at this time, they are not likely to be consistent with actual

generation. In fact, the monthly sum of “zero-priced” bids was as much as 20 times the monthly

total of hydroelectric generation, as reported by the Energy Information Administration (1998,

1999).49 I model hydroelectric generation by assuming that the hourly generation was consistent

with the scheduled “zero-priced” bids, which are primarily hydroelectric. These bids schedule more

generation in peak hours. I scale hourly production so total generation matched the EIA Form 759

total production.50 I determine the efficiency rate of pumped storage units from data on consump-

tion and net generation in the EIA Form 759, which reports net generation by month. The run

of river production plus the implied gross production of the pumped storage compose the monthly

production.

In addition, nuclear generation is not likely to be used to move prices. Huge start up costs

and low marginal costs result in these units running near capacity for long periods of time. There

marginal costs average less than $10/MWh and do not set the market price. Firms are unlikely

to use nuclear plants to move price since these plants are expensive to restart and are never the

cheapest technology a firm owns (i.e., they are “inframarginal”). When firms do shut down nuclear

49Another reason that the zero-priced bids may have been so large is that some other generation types can also
place zero-priced bids. Recall that all generation must be dispatched in the spot market pool. In order to ensure that
they are called upon, bilateral contracts will also be “bid” in at a price of zero. PJM reports all of the zero-priced
bids for the entire system by hour.
50For 1998, lacking data on zero-priced bids, I proxy the hourly distribution within a month of hydroelectric

generation. I predict the hourly share of monthly hydroelectric generation by regressing the hourly share of monthly
zero-priced bids on a cubic function of load and hourly fixed effect during 1999.
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plants for maintenance, the units are typically down for weeks. During the summer of 1999, the

median fraction of capacity in operation was 98 percent for all PJM nuclear plants and no outages

were reported. I assume a constant level of production within a month for these units.

Fossil Fuel Data Sources

To determine PJM fossil units’ marginal production costs, I use publicly available PROSYM

model output (Kahn, 2000) that provide data for 392 fossil units, including aggregations of some

small units. These data include summer capacity, heat rate at maximum capacity, forced outage

factors, primarily fuel burned, variable operating and maintenance costs, SO2 and NOx emissions

rates, and coal units’ marginal costs.

I measure fuel prices using spot prices of oil and natural gas while assuming constant coal

costs.51 EIA provides data on the daily spot price of New York Harbor No. 2 heating oil and

BTU/gallon conversion rates. Natural Gas Intelligence provided daily natural gas spot prices for

Transco Zone 6 non-New York. For oil and natural gas units, I add fuel distribution costs that I

approximate as the difference between the average spot price in the region and the price PJM firms

reports for delivered fuel over the summers of 1998 and 1999 (EIA form 423, 1998 and 1999). To

calculate SO2 regulation costs, I use the mean of two monthly price indices of SO2 permit prices

that brokerage firms Cantor Fitzgerald and Fieldston report to the EPA. I use monthly price index

data on NOx costs from Cantor Fitzgerald. The EPA lists which units had to comply with the

Acid Rain program during Phase I (including “substituting” units). Plants in Pennsylvania, New

Jersey, and Delaware had NOx regulatory compliance obligations in 1999.

Intertemporal Model Data Sources

The intertemporal model utilizes detailed data about each unit’s hourly production, costs,

and emissions. The EPA’s Continuous Emissions Monitoring System (CEMS) provides hourly

production data for the fossil units. CEMS records hourly gross production of electricity, heat

input, and three pollutants—sulfur dioxide, nitrogen oxides, and carbon dioxide—for most fossil

51While spot markets for coal exist, the heterogeneous product trades on more dimensions than simply price and
quantity. Factors such as moisture, ash content, sulfur content, and location determine the type of coal being traded.
Rather than modeling each plants coal costs, I impose constant prices for delivery of coal.
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units in the country.52 This study defines utilization rate as current gross production divided by

the maximum observed gross production over the summers of 1998 and 1999. The sample excludes

units not operating in the previous week. During the summers of 1998 and 1999, CEMS monitored

234 units that accounted for over 97 percent of PJM’s fossil fuel capacity.53 CEMS data are highly

accurate and comprehensive for most types of fossil units (Joskow and Kahn, 2002). I use the same

marginal cost estimates as in the single-period model. In addition, I use the PROSYM data (Kahn

2000) on start up costs and a proxy for ramping rates (“minimum up time” is the number of hours

a unit must remain operating before it can be shut off, which related to the inverse of ramping

rates). For those observations without start up cost data, I use fitted values from a regression of

start up costs on marginal production costs, capacity, and the interaction of these two variables.

Firm Conduct Tests Data Sources

Calculating firms’ hourly net position requires data on production, demand, and contract posi-

tions. I aggregate CEMS gross production data by firm and add nuclear and hydroelectric genera-

tion. Contract data are not publicly available. I proxy for firm native load: For each large firm, I

use summer peak demand, which occurred July 6, 1999, to determine market shares. The share is

multiplied by system-wide hourly demand to form the proxy. In addition, data on market share of

a firm’s customers on direct access are available at: http://www.oca.state.pa.us/cinfo/instat.htm.

Appendix C: Estimating Standard Errors

This appendix estimates the standard errors of the total costs of market imperfections. I

assume that demand levels and prices are known with certainty and the uncertainty stems from

measurement errors in costs. The cost estimates are assumed to be unbiased but noisy measures.

The noise originates from measurement errors of heat rates, emission rates, and input prices, from

differences between realized outages and those in the Monte Carlo simulation, and unit commitment

problems.

52Gross generation includes the electricity generated for sales (net generation) as well as the electricity produced
to operate that power plant. Typically net generation is approximately 90 to 95 percent of gross generation.
53 In order to comply with the 1990 Clean Air Act, fossil-fuel generating electric producers are required to report

hourly emissions and electricity production by unit. Regulation affects units of 25 MW capacity plus new units under
25 megawatts that use fuel with a sulfur content greater than .05% by weight.
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I note that for each hour t the markup equals:

Pt − P
∗
t = E(Pt − P

∗
t ) + εt. (C1)

Assume εt has a homogenous, first-degree autocorrelation error structure: εt = ρεt−1 + ut and

ut˜N(0, σ
2
u), where σ

2
u is the variance of the underlying i.i.d. error term and ρ is the AR(1) lag

coefficient. Then, a consistent approximation for the variance of the total change in costs will be:

V ar(
TX
t=1

(Pt − P
∗
t )eqt = V ar(

TX
t=1

εteqt) = σ2u
1− ρ2

TX
i=1

TX
j=1

qiqjρ
|i−j|. (C2)

I estimate σu and ρ to calculate the standard errors of the total costs. For a given summer and

net import supply curve, I run generalized least squares—using the Prais-Winsten methodology—to

express markup (Pt −P
∗
t ) as a quartic function of fossil load and indicators of month, hour of day,

and day of week. For the linear-log model in the summer of 1999, the resulting estimates bσu and
bρ are 40 and 0.70, respectively.

This technique is also used to estimate standard errors in welfare loss using the single-period

model. For each summer, I regress the hourly excess production costs (actual production costs less

estimated production costs) on quartic function of fossil load and indicators of month, hour of day,

and day of week, using the Prais-Winsten methodology. The standard error of the total excess

production costs, or welfare loss, is given by the square root of the sum of squared residuals.

Appendix D: Production Estimation Results

Table D1 summarizes the results that follow from estimating (12), (13), and (14). As an

example, for the probit equation (13) and the conditional production regression (14), panel A

displays the coefficient estimates’ mean and 5th and 95th percentile. I focus on one hour (6pm)

and one quintile of each spline (third). Note that I do not have data on ramping rates and use a

proxy (minimum up time) that is negatively correlated with ramping rates.

For this sample, price-cost markups and capacity did not directly affect the probability of

operation. As consistent with expectations, higher start up costs significantly reduce the probability

of operating. Units with higher start up costs were more likely to operate if the margins were
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high during the proceeding hour or overall during that day (though high margins the proceeding

day reduce the probability of these units operating). Units with slower ramping rates tend to

operate more when the next day’s markups are high, though they operate less when the current

daily markups are high. Conditional on operation, firms generate more given higher current hour

markups, lower proceeding hour markups, and quicker ramping rates. Units with slower ramping

rates produce more when the current daily markup is greater. Units with more capacity produce

more if the proceeding or following day have high markups (though they produce less if the current

day’s markups are high). The high degree of correlation among variables makes the interpretation

of any single one difficult.

Therefore, to understand the impact of intertemporal constraints, panel B summarizes the

overall impact of the main variables: the six types of markups, capacity, ramping rates, and start up

costs. For each variable, I state the mean of all observations’ marginal effects and the marginal effect

of the median observation using the entire sample. In the probit regressions, current hour markups

increase the probability of a unit operating while lag and lead markups reduce this probability. A

similar pattern is seen in daily averages. On average, units with high capacity, quick ramping rates,

and low start up costs operate more. For the median observation, this trend is reversed. Conditional

on operating, units increase production when markups are high during the previous, current, or

following hour. The marginal effects of daily markup averages and of capacity on utilization do not

exhibit clear patterns. Finally, condition on operating, units with slow ramping rates tend to have

higher utilization rates.
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Figure 1: PJM Supply Curve (April 1, 1999) 
 

 

Figure 2: Determining the Competitive Equilibrium Based on an Offer Curve, Supply, 
and Residual Demand (Demand less Net Imports) 
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Figure 3: Goodness-of-Fit Comparison of Utilization Rates across Price-Cost Markup 
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Table 1 
 

PJM Firm Characteristics 
 
Panel A: Generation Capacity by Firm and Fuel Type in 1999a 

 
Firm Coal Oil Gas Water Nuclear Total
Public Service Electric b 1,607 1,842 3,311 - 3,510 10,269
PECO 895 2,476 311 1,274 4,534 9,490
GPU, Inc. 5,459 1,816 203 454 1,513 9,445
PP&L Inc. 3,923 478 1,701 148 2,304 8,554
Potomac Electric Power 3,082 2,549 876 - - 6,507
Baltimore Gas & Electric 2,265 925 755 - 1,829 5,773
Delmarva Power & Light 1,259 888 311 - - 2,458
Atlantic City Electric  391  436  482 - - 1,309
Otherc 2,087 353 - 439 - 2,880
Total 20,967 11,762 7,949 2,316 13,690 56,685
Market Share 37% 21% 14% 4% 24% 

 
Panel B: Market Shares of Capacity, Generation, and Demand by Firm in Summer of 1999d 

 
Firm 

Capa
 
city  Gener

 
atione 

Pe
Gener

ak 
ationf 

Dem
Ser

and 
vedg 

Public Service Electric 18.1% 14.0% 16.8% 17.3% 
PECO 16.7% 17.8% 19.9% 8.8% 
GPU, Inc. 16.7% 19.8% 16.4% 14.7% 
PP&L Inc. 15.1% 15.9% 16.1% 9.9% 
Potomac Electric Power 11.5% 10.1% 10.2% 10.4% 
Baltimore Gas & Electric 10.2% 12.5% 11.3% 11.2% 
Delmarva Power & Light 4.3% 3.2% 3.3% 6.0% 
Atlantic City Electric 2.3% 1.1% 1.3% 4.3% 
Other 5.1% 5.6% 4.7% 17.4% 

    
Notes: 

a) Capacity, in megawatts (MW), is listed by primary fuel type used in each generating unit at a power plant, as 
determined by the EIA. Coal includes anthracite, bituminous coal, and petroleum coke. Oil includes No. 2, 4, 
and 6 fuel oil and kerosene. The other categories are natural gas, hydroelectric, and nuclear. Source: Energy 
Information Administration (EIA), Form 860 (1999). 

b) In 1999, the GPU parent company owned Jersey Central, GPU Nuclear, Metropolitan Edison and Pennsylvania 
Electric. 

c) “Other” includes the following utilities: Safe Harbor Water Power, Easton Utilities, UGI Development, 
Allegheny Electric Coop, A&N Electric Coop, and cities of Berlin, Dover, Lewes, Seaford, and Vineland. Also 
I include Edison, which purchased Homer City from GPU in March 1999. 

d) Summer is defined as April 1 to September 30. 
e) Source: EIA Form 759, 1999. I aggregate monthly generation for April through September. 
f) Source: EPA Continuous Emissions Monitoring System, 1999. Peak generation share is share during hours with 

demand above 40,000 MW.  
g) Source: www.oca.state.pa.us. Demand served is share summer peak demand less direct access customers. On 

July 6, 1999, the system-wide demand reached a peak of 51,700 MW. Source: EIA Form 861, 1999. In 1999, 
many Pennsylvania customers switched to alternative providers, leaving GPU (3.4 percent of total market 
demand), PECO (5.6 percent), and PP&L (2.5 percent).  “Other” demand includes direct access customers. 
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Table 2 
 

PJM Market Summary Statistics During Summers of 1998 and 1999 
 

Panel A: Summer of 1998 
 

Variable  Units  Mean  Std. Dev.  Min   Max
Quantity demanded hourlya MWh  29,650  6,482  17,461   48,469  
Price of:   

Electricitya $/MWh  $26.04  $43.46  $0.00   $999.00  
Electricity (Q weighted) $/MWh  $29.82  $53.45  $0.00   $999.00  
Natural Gasb $/mmbtu  $2.33  $0.25  $1.80  $2.81  
Oilc $/Barrel  $16.30  $1.36  $13.99   $19.17  
SO2 Permitd $/Ton  $172.44  $24.40  $136.50   $198.50  
NOx Permite $/Ton  N/A  N/A  N/A  N/A  

Marginal costs: f   
Coal Units $/MWh  $19.70  $5.17  $13.15   $37.51  
Natural Gas Units $/MWh  $36.75  $11.73  $17.23   $115.81  
Oil Units $/MWh  $46.94  $11.54  $22.79   $113.49

 
Panel B: Summer of 1999 
 

Variable  Units  Mean  Std. Dev.  Min   Max
Quantity demanded (hourly) MWh  30,459  7,156  17,700   51,714  
Price of:   

Electricity $/MWh  $37.97  $100.99  $.00   $999.00  
Electricity (Q weighted) $/MWh  $47.92  $47.92  $.00   $999.00  
Natural Gas  $/mmbtu  $2.60  $0.27  $2.08  $3.28  
Oil $/Barrel  $20.56  $2.91  $16.55   $26.04  
SO2 Permit  $/Ton  $202.71  $9.23  $188.00   $211.50  
NOx Permit  $/Ton  $2,406  $1,756  $0   $5,244  

Marginal cost of:   
Coal Units  $/MWh  $24.16  $6.58  $13.18   $50.92  
Natural Gas Units  $/MWh  $42.08  $14.24  $19.44   $138.01  
Oil Units  $/MWh  $59.56  $15.68  $25.25   $158.58

 
Notes: 

a) Electricity price and quantity data from PJM Interconnection: www.pjm.com 
b) Natural gas prices at Transco Zone 6 non-New York from Natural Gas Intelligence. 
c) No. 2 heating oil sold at New York Harbor from the U.S. Energy Information Agency. 
d) EPA reports monthly average trades of SO2 permits at two brokerage firms (Cantor Fitzgerald and 

Fieldston). 
e) NOx costs are from Cantor Fitzgerald’s monthly price index. 
f) In addition to the above input costs, data from the PROSYM model (Kahn 2000) are used to 

determine marginal costs.   
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Table 3 
 

Capacity Factor for Fossil Units by Firm and Year 
 
 Summer Summer Per cent 
Firm of 1998 of 1999 Cha nge 
Public Service Electric 0.142 0.171 20. 3% 
PECO 0.230 0.211 -8. 1% 
GPU, Inc. 0.604 0.575 -4. 7% 
PP&L Inc. 0.546 0.442 -19. 0% 
Potomac Electric Power 0.466 0.490 5. 1% 
Baltimore Gas & Electric 0.515 0.519 0. 9% 
Delmarva Power & Light 0.371 0.377 1. 6% 
Atlantic City Electric 0.233 0.267 14. 7% 
Other 0.698 0.636 -8. 9% 
Fringe 0.441 0.442 0. 2% 
 
Notes: 

a) Capacity factor is the fraction of total fossil fuel burning generation capacity being used in 
generating electricity for each large firm in PJM and for both the summer of 1998 and the summer of 
1999. The numerator is the aggregate of gross generation (including electricity used at the power 
plant) for fossil units over a summer. The denominator, gross capacity, equals the aggregation, 
within a firm, of each unit’s maximum observed hourly gross generation during the sample, times 
the number of hours in the summer. 

b) Source: Environmental Protection Agency (EPA) Continuous Emissions Monitoring System, 1999. 
c) Summer is defined as April 1 to September 30. 
d) Fringe is the quantity-weighted average of all firms except PECO and PPL. 
e) “Other” includes the following utilities: Safe Harbor Water Power, Easton Utilities, UGI 

Development, Edison (Homer City), Allegheny Electric Coop, A&N Electric Coop, and cities of 
Berlin, Dover, Lewes, Seaford, and Vineland. 
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Table 4 
 

IV Estimation of Net Import Supply Function, Summers of 1998 and 1999 
 
Panel A: First-stage dependent variable is log of hourly PJM prices by year and time-of-

day. 
 

 1998 1998 1999 19 99 
Variable Pe

ln(P
ak 
rice) 

Off-
ln(P

Peak 
rice) 

Pe
ln(P

ak 
rice) 

Off- 
ln(P 

Peak 
rice) 

ln(Load)*Peak 2.
(0.

21* 
08) 

0.
(0.

47* 
10) 

2.
(0.

72* 
09) 

0. 
(0. 

50* 
10) 

ln(Load)*Off-Peak 0.
(0.

16* 
05) 

2.
(0.

18* 
06) 

0.
(0.

15* 
06) 

2. 
(0. 

35* 
06) 

R-squared 0.96 0.94 0.94 0. 93 
 
Panel B: Second-stage dependent variable is hourly net imports into PJM by year. 
 

Variable 1998 19 99 
ln(Price)*Peak 295.

(85.
7* 
6) 

1110. 
(128. 

2* 
8) 

ln(Price)*Off-Peak 484.
(65.

1* 
6) 

1717. 
(82. 

2* 
7) 

R-squared - - 
AR(1) coef (ρ) 0.89 0. 84 
Sample size 4,330 4, 341 

 
Notes:  
Table presents 2SLS coefficients. First I estimate 2SLS and use the errors to correct for serial correlation 
by estimating an AR(1) coefficient (ρ). Then I quasi-difference the data by calculating ∆x=x(t)-ρ*x(t-1) for 
all data. I re-estimate the 2SLS results using these quasi-differenced data. Robust standard errors are given 
in parentheses. Significance is marked with (*) at the 5% level and (#) at the 10% level. Regression 
includes month fixed effects, peak indicator (between 11 AM and 8 PM weekdays) and weather variables 
for bordering states (New York, Ohio, Virginia, and West Virginia), which are modeled as quadratic 
functions for cooling degree days (degrees daily mean below 65° F) and heating degree days (degrees daily 
mean above 65° F). In the first stage, I regress PJM ln(price) on the exogenous variables and instruments of 
hourly ln(load) in PJM.  
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Table 5 
 

Demand, Actual Price, Competitive Price, and Market Performance 
 
Month or  
Time of Day 

Hourly 
Demand 
(MW) 

Actual 
Price  

($/MWh) 

Competitive 
Pricea 

($/MWh) 

Mar
Perfor

(M

ket 
manceb 

P) 
April, 1998 25,427 19.20 18.45 0.06 

May  26,775 24.15 21.59 0.16 
June  29,739 24.98 24.87 0.08 
July  32,863 34.23 28.51 0.24 
August  33,183 29.58 24.35 0.24 
September 29,780 23.53 22.05 0.12 

     
April, 1999 25,612 21.44 20.58 0.06 

May  25,871 22.68 27.20 -0.17 
June  31,542 37.10 30.32 0.31 
July  36,957 91.67 37.81 0.64 
August  33,461 31.77 31.75 0.07 
September 29,140 22.06 25.67 -0.14 
     
Peak 1998c 35,068 41.72 28.71 0.35 
  Off-Peak  27,347 19.32 21.04 -0.05 
  Overall  29,650 26.04 23.33 0.17 
     
Peak 1999  35,722 74.21 35.23 0.58 
  Off-Peak  28,221 22.56 26.27 -0.10 
  Overall  30,459 37.97 28.94 0.34 

 
Notes:  

a) Competitive price is the average of Monte Carlo simulations of the competitive equilibrium price for 
a set of hours (e.g., a month). Competitive prices and market performance are reported for the linear-
log model of net import supply. 

b) For a given time period, similar to a Lerner index, market performance is the ratio of additional 
procurement costs (relative to the competitive estimates) over actual procurement costs. 

c) Peak indicates hours between 11 AM and 8 PM on weekdays. 
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Table 6 
 

Welfare Implications of Production Inefficiencies ($ millions) 
 

     Per cent 
 19 98 1999 Change Ch ange 
PJM Production Costs       
Actual Costs $1,338 .75 $1,642 .31 $303 .56 22 .68% 
Intertemporal Model       
- PJM Cost Estimates $1,335 .58 $1,588 .26 $252 .68 18 .92% 
- PJM Welfare Loss $3 .16 $54 .05 $50 .89 1609 .30% 
 ($6 .12) ($4 .24) ($7 .45) (134 .19%) 
- Loss Share of Cost 0 .24% 3 .40% 20 .14%   
Single-Period Model       
- PJM Cost Estimates $1,267 .60 $1,460 .03 $192 .42 15 .18% 
- PJM Welfare Loss $71 .14 $182 .28 $111 .14 156 .23% 
 ($1 .15) ($1 .38) ($1 .80) (1 .94%) 
- Loss Share of Cost 5 .61% 12 .48% 57 .76%   
       
PJM Net Import Costs       
Actual Costs $11 .56 $7 .54 -$4 .02 -34 .78% 
- Competitive Estimates $8 .34 $5 .19 -$3 .15 -37 .73% 
- Import Welfare Loss $3 .22 $2 .35 -$0 .87 -27 .15% 
 ($0 .07) ($0 .06) ($0 .09) (2 .49%) 
       
Total Welfare Loss       
-  Intertemporal Model  $6 .36 $56 .35 $49 .99 785 .70% 
 ($6 .12) ($4 .24) ($7 .45) (66 .70%) 
-  Single Period Model  $74 .34 $184 .58 $110 .24 148 .29% 
 ($1 .15) ($1 .38) ($1 .80) (1 .86%) 
Losses Ratio (I/S) 8 .56% 30 .53% 45 .34% 529 .83% 

 
Notes:  
Standard errors in parentheses. For the intertemporal model, standard errors are determined using bootstrap 
draws. I calculate the single-period model’s standard errors following the methodology described in 
Appendix C. The standard errors on net import supply are determined using the delta method and the 
standard errors from table 5. The costs include those observations when actual price exceeded the single-
period model’s competitive estimate. In calculating the standard errors on the changes in costs over time, I 
assume that the errors are uncorrelated across years. In calculating the standard errors for the percent 
change in costs: ((costs99/costs98) - 1), I treat the 1998 cost estimates as constants. 
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Table 7 
 

Test of Firm Behavior Based upon Hourly Firm-Level Production 

 
Dependent variables:  (i) and (ii): ln(actual production) by firm and hour.  
(iii): ln(actual production) - ln(intertemporal estimated production) by firm and hour. 
 
 (i) (ii) (iii) 
Restructuring -0.

(0.
017 
014) 

-0.
(0.

012 
012) 

-0.
(0.

010 
012) 

Oligopolist*Restructuring -0.
(0.

202* 
033) 

-0.
(0.

162* 
032) 

-0.
(0.

144* 
031) 

ln(Estimated Production) 0.
(0.

689* 
040) 

 

Sample Size 78,907 78,474 78,474 
F-Prob 618* 909* 21* 
 
Notes:  

Table presents OLS coefficients. Newey-West corrected standard errors are in parentheses. I assume a 
24-hour moving average process. Significance is marked with (*) at the 5% level and (#) at the 10% 
level. Regressors include indicator variables for firm, hour of day, and for day of week. In addition, the 
model includes a piece-wise linear function of demand that is separated by decile. 
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Table 8 
 

Test of Firm Behavior Based on Price-Cost Markups 
 

Dependent variable: price-cost markup by firm and hour. 
 
 Net Q all 

observations 
 Net Q > 0 Sample 

Firm (i) (ii) (iii) (iv) 

Public Service Electric -0.
(0.

138* 
026) 

0.
(0.

247* 
052) 

0.
(0.

040 
024) 

-0.
(0.

083 
061) 

PECO -0.
(0.

176* 
021) 

0.
(0.

491* 
068) 

-0.
(0.

193* 
024) 

0.
(0.

323* 
051) 

GPU, Inc. -0.
(0.

021* 
005) 

-0.
(0.

035* 
017) 

-0.
(0.

018* 
005) 

-0.
(0.

060* 
014) 

PP&L Inc. -0.
(0.

044* 
010) 

0.
(0.

131* 
021) 

-0.
(0.

046* 
011) 

0.
(0.

089* 
012) 

Potomac Electric Power 0.
(0.

045* 
009) 

-0.
(0.

077* 
019) 

-0.
(0.

194* 
052) 

-0.
(0.

046 
041) 

Baltimore Gas & Electric 0.
(0.

056* 
018) 

-0.
(0.

202* 
039) 

0.
(0.

013 
011) 

-0.
(0.

084* 
010) 

Delmarva Power & Light 0.
(0.

174* 
035) 

-0.
(0.

472* 
084) . .

Atlantic City Electric 0.
(0.

364* 
093) 

-1.
(0.

013* 
212) . .

Other 0.
(0.

090* 
028) 

-0.
(0.

290* 
064) . .

 
Notes:  

For each firm, I separately estimate these coefficients using 2SLS. I correct for serial correlation by 
estimating an AR(1) coefficient (ρ) and quasi-difference the data, namely calculate ∆x=x(t)-ρ*x(t-1) for 
all data. Then, I estimate the 2SLS results using these quasi-differenced data. Robust standard errors are 
given in parentheses. Significance is marked with (*) at the 5% level and (#) at the 10% level. Columns 
(i) and (ii) examine entire sample. Columns (iii) and (iv) are conditioned on positive net output positions. 
Delmarva Power & Light, Atlantic City Electric, and “other” firms always have negative net positions. 
Independent variable, Net Q, is firm net output (in MWh). In columns (i) and (iii), the coefficients are for 
both summers while in columns (ii) and (iv), the coefficients are the incremental effect for the summer of 
1999. Regression includes a constant (a) and an indicator of restructuring (α). In the first stage, I regress 
net quantity on the instruments of daily temperatures for both states in PJM and for those bordering the 
region. Temperatures are modeled as quadratic functions for cooling degree days (degrees daily mean 
below 65° F) and for heating degree days (degrees daily mean above 65° F). 



 55

Table D1 
Intertemporal Competitive Model Estimation 

 
Dependent variables:  ON = indicator of operation by hour and unit 

UR = utilization rate, conditional on operation, by hour and unit. 
 
Panel A: Example of Bootstrap Coefficients Mean, 5th and 95th percentile (e.g., third quintile for 6:00 pm) 

Variable  ON 
Coef. 

 
90% Conf. Interval 

UR 
Coef. 

 
90% Conf. Interval 

Hourly PCM (hr-1)  15.35 -2.36 37.30  -0.17 -0.24 -0.09 *
Hourly PCM ($)  -13.99 -34.41 2.44  0.14 0.05 0.26 *
Hourly PCM (hr+1)  4.21 -0.19 9.75  -0.01 -0.09 0.07  
Daily PCM (day-1)  -0.51 -1.25 0.17  -0.03 -0.06 0.00  
Daily PCM ($)  0.18 -0.73 1.02  0.00 -0.05 0.05  
Daily PCM (day+1)  0.83 -0.04 1.72  -0.01 -0.03 0.01  
RMP (hours)  2.35 -0.29 5.57  -0.03 -0.05 -0.01 *
K (GW)  -206.37 -479.87 15.65  1.01 -0.30 2.42  
SRT ($1000s)  -2.14 -3.99 -0.22 * . . .  
Hourly PCM (hr-1) * RMP  0.07 -0.23 0.40  0.01 -0.01 0.02  
Hourly PCM * RMP  -1.74 -4.11 0.25  0.01 -0.01 0.03  
Hourly PCM (hr+1) * RMP  2.15 -0.48 5.42  0.00 -0.02 0.02  
Daily PCM * RMP (day-1)  -2.01 -4.65 0.29  -0.01 -0.03 0.00  
Daily PCM * RMP  -0.66 -1.25 -0.20 * 0.01 0.00 0.02 *
Daily PCM * RMP (day+1)  0.36 0.09 0.61 * 0.00 -0.01 0.02  
Hourly PCM (hr-1) * K  -118.55 -292.78 26.35  1.14 0.39 1.98 *
Hourly PCM * K  203.18 -14.54 460.60  -1.67 -3.01 -0.43 *
Hourly PCM (hr+1) * K  -200.23 -444.95 5.53  1.08 0.24 2.07 *
Daily PCM * K (day-1)  88.83 -5.01 194.52  0.06 -0.49 0.56  
Daily PCM * K  71.12 -6.43 169.12  -0.39 -1.05 0.26  
Daily PCM * K (day+1)  -76.66 -199.02 22.64  0.04 -0.51 0.58  
Hourly PCM (hr-1) * SRT  3131.70 56.90 6187.10 * . . .  
Hourly PCM * SRT  -1598.20 -3836.20 685.10  . . .  
Hourly PCM (hr+1) * SRT  -1434.30 -5145.00 1863.70  . . .  
Daily PCM * SRT (day-1)  -1186.50 -2223.60 -140.70 * . . .  
Daily PCM * SRT  1325.10 214.60 2497.20 * . . .  
Daily PCM * SRT (day+1)  3480.40 -1308.30 9537.60  . . .  

 

Panel B: Summary of Marginal Effect for the Nine Primary Variables (Total Sample) 
  ON Utilization Rate 
Variable Mean of 

marginal effects 
Marginal effect 

at median
Mean of 

marginal effects 
Marginal effect 

at median 
Hourly PCM ($)    
    - lag -1.207 -0.035 0.034 0.006 
    - current 1.102 0.019 0.049 0.014 
    - lead -0.821 -0.006 0.154 -0.015 
Daily PCM ($)    
    - lag -0.431 -0.015 0.086 -0.000 
    - current 1.530 0.025 -0.132 0.198 
    - lead -0.965 -0.013 0.100 -0.165 
RMP (hours) -3.182 2.623 0.028 0.022 
K (GW) 41.174 -142.976 2.061 -0.713 
SRT ($1000s) -4.835 5.017 . . 
 
Notes: 

PCM is price-cost markup, RMP is the inverse ramping rate (minimum up time), K is capacity, and SRT is start up cost. PCM is 
instrumented with variables constructed using competitive price estimates from section 3. Each independent variable is modeled 
separately by hour and as a piece-wise linear function separated by quintile. 




