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Chemometric analysis of frequency-domain
photon migration data: quantitative
measurements of optical properties and
chromophore concentrations in multicomponent
turbid media

Andrew J. Berger, Vasan Venugopalan, Anthony J. Durkin, Tuan Pham, and
Bruce J. Tromberg

Frequency-domain photon migration ~FDPM! is a widely used technique for measuring the optical
properties ~i.e., absorption, ma, and reduced scattering, ms9, coefficients! of turbid samples. Typically,
FDPM data analysis is performed with models based on a photon diffusion equation; however, analytical
solutions are difficult to obtain for many realistic geometries. Here, we describe the use of models based
instead on representative samples and multivariate calibration ~chemometrics!.

FDPM data at seven wavelengths ~ranging from 674 to 956 nm! and multiple modulation frequencies
~ranging from 50 to 600 MHz! were gathered from turbid samples containing mixtures of three absorbing
dyes. Values for ma and ms9 were extracted from the FDPM data in different ways, first with the diffusion
theory and then with the chemometric technique of partial least squares. Dye concentrations were
determined from the FDPM data by three methods, first by least-squares fits to the diffusion results and
then by two chemometric approaches. The accuracy of the chemometric predictions was comparable or
superior for all three dyes. Our results indicate that chemometrics can recover optical properties and
dye concentrations from the frequency-dependent behavior of photon density waves, without the need for
diffusion-based models. Future applications to more complicated geometries, lower-scattering samples,
and simpler FDPM instrumentation are discussed. © 2000 Optical Society of America

OCIS codes: 170.1580, 170.5280, 170.4090.
1. Introduction

Frequency-domain photon migration ~FDPM! is a
ell-characterized technique for quantitatively mea-

uring optical properties of homogeneous bulk sam-
les. In a FDPM experiment, intensity-modulated
ight is launched into a sample and detected at one or

ore locations away from the source.1 The bulk op-
tical properties of the sample, namely, the absorption
coefficient ma and the reduced scattering coefficient
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ms9, are calculated from the FDPM data. Numerous
groups have shown that the FDPM technique can be
used to extract estimates of ma and ms9.1–4 From
these, other properties of interest can be calculated.
For example, by estimating ma at multiple wave-
lengths, one obtains an absorption spectrum from
which can be calculated the concentrations of differ-
ent chemical or biological constituents.1 In the med-
ical optics community, there has been recent interest
in using FDPM as a means of characterizing human
tissue for various medical purposes, such as oxygen-
ation monitoring and tumor assessment.5–9

Light transport in tissue at source–detector sepa-
rations of more than a few millimeters is well de-
scribed by a diffusion approximation to the equation
of radiative transport. In the frequency domain,
this corresponds to the diffusion of photon density
waves emanating from the light source, with ma and
ms9 determining the propagation properties of the
waves.10 To extract ma and ms9 from FDPM data,
1 April 2000 y Vol. 39, No. 10 y APPLIED OPTICS 1659
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one must invert this model. The ease and accuracy
with which one can perform this inversion and
thereby extract fundamental parameters from FDPM
data with the diffusion theory depend considerably
on the measurement geometry. For infinite and
semi-infinite measurement geometries, analytical so-
lutions to the diffusion equation are readily obtained
and can be inverted to provide ma and ms9.11 How-
ever, for more complicated geometries, such as those
presented by small-pathlength cuvettes or human
body parts, finding analytical solutions to the diffu-
sion equation becomes prohibitively difficult. Nu-
merical inversions can be attempted for particular
geometries, but these often are computationally in-
tensive. Beyond the mathematical difficulties, the
physical validity of the diffusion approximation suf-
fers in measurements involving highly absorbing me-
dia or short source–detector separations.12 In many
geometries, therefore, FDPM data are easy to acquire
but impossible or awkward to invert with diffusion
models. Alternative data-analysis methods are
needed that can model the complicated geometries
with greater ease, as has been suggested.13

In this paper, we develop a FDPM data-analysis
technique based on a multivariate calibration algo-
rithm and a set of training samples rather than on
diffusion theory alone. Multivariate techniques and
neural networks have previously been used to extract
tissue optical properties from spatially resolved
steady-state diffuse reflectance profiles13–15; to the
best of our knowledge, this is the first application of
such methods to the frequency domain. Multifre-
quency ~i.e., 50–600 MHz!, multiwavelength FDPM
curves are obtained for each training sample. Cor-
relations between photon density wave phase and
amplitude behavior and various parameters of inter-
est ~ma, ms9, and dye concentration! are sought, guided
y physical insight from the diffusion model. In
uch an approach, geometry-dependent effects can be
odeled empirically. The correlation trends are

hen used to predict the same parameter~s! from
ther FDPM curves. This empirical approach to ex-
racting information is often called chemometrics.
ur major goals in this paper are one, to develop a
eneral framework for applying chemometrics to
ultifrequency, multiwavelength FDPM data, and

wo, to compare the performance of diffusion- and
raining-set-based analysis techniques in extracting
ptical properties and concentrations from a FDPM
est set.

2. Materials and Methods

A. Sample Preparation

Forty samples with varying absorption and scatter-
ing characteristics were created from mixtures of
three stock solutions of absorbing dyes ~nigrosin, Al-
drich Co.; naphthol green B @naphthol#, Sigma
Chem.; and copper phthalocyanine tetrasulfonic acid
@CPTA#, Sigma Chem.!, a scattering solution
~Intralipid-20% suspension!, and distilled water.
Figure 1 depicts the sample preparation sequence.
660 APPLIED OPTICS y Vol. 39, No. 10 y 1 April 2000
Two samples were created for each combination of
dyes: a turbid one for FDPM analysis and a nontur-
bid one ~lacking Intralipid! for spectrophotometer
analysis.

The mixtures were designed to have uncorrelated
values of ma and ms9; otherwise, information about
one parameter could spuriously improve the chemo-
metric prediction of the other. For the same reason,
the relative concentrations of the three dyes were
chosen to vary randomly.16 Figure 2 plots ma versus
ms9 reference values at 674 nm for the 40 samples and
shows that there is no correlation between these pa-
rameters. As shown, the ma values ranged from
0.009–0.09 mm21 and the ms9 values from 0.5–2
mm21. This corresponded to sample albedos @ms9y
~ma 1 ms9!# ranging from 0.930 to 0.999.

B. Spectrophotometer Data

Absorption spectra from 600–1000 nm were mea-
sured for the three stock dye solutions and also for the
40 nonturbid dye mixtures just described. Spectra
were obtained on a Beckman DU-650 single-beam
spectrophotometer with 1-cm pathlength cuvettes
and distilled water used as a reference. These spec-
tra were used to calculate ma values at the seven laser

Fig. 1. Sample preparation sequence for creation of 40 mixtures
with varying ma and ms9 values. NG, nigrosin; NP, naphthol; CP,

PTA; W, water; IL, intralipid; SPM, spectrophotometer.

Fig. 2. Plot of ma versus ms9 values for the 40 samples in this
tudy, showing the lack of correlation between the two optical
arameters.
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wavelengths used by the FDPM instrument ~674,
782, 803, 849, 894, 947, and 956 nm!, as described
below.

First, values of ma at 674 nm ~selected arbitrarily
from among the seven laser wavelengths! were de-
termined for each stock solution from the measured
absorbance A. Because the stock solutions were too
dense to measure absorbances directly, portions of
them were diluted with distilled water by factors of
either 32 or 48. Calculation of ma from A came from
the relation IyIo 5 exp~2map! 5 102A, where IyIo is
the ratio of output-to-input intensities traversing a
cuvette of internal pathlength p. With p 5 10 mm,
the calculation of ma from A therefore becomes

ma 5
A ln~10!

10 mm
. (1)

Values for the diluted solutions were multiplied by 32
or 48 as appropriate to generate ma

~674! for the non-
diluted stock solutions. Linear combinations of
these values were then used to predict ma for the 40
mixtures by means of

ma
~674! 5 (

d51

3

~ma!d
674 Vd

Vtot
, (2)

where d is an index over the three dyes and ~VdyVtot!
s the volume fraction of stock containing dye d used
n making the sample. We computed the ma values

at the other six laser wavelengths l by scaling ma
~674!

to the relative absorbances at those wavelengths:

ma
~l! 5 ma

~674!
A~l!

A~674! . (3)

These ma values agreed to within 1% with values
calculated directly from the samples’ absorbances
with Eq. ~1!, indicating that the chromophores inter-
cted minimally in scattering-free solutions. Final
alues for ma were obtained by inclusion of the ab-

sorption due to water,17 which was absent in the
spectrophotometer data because of the water in the
reference cell.

Reference values for ms9
~l! were calculated for each

urbid sample on the basis of the concentration of
ntralipid.18 The set of reference values associated

with each sample therefore contained ma and ms9 at
each wavelength of interest, along with the concen-
trations of nigrosin, naphthol, and CPTA.

C. Frequency-Domain Photon Migration Data

FDPM data from the 40 samples were obtained with
the optical-fiber-based infinite geometry shown in
Fig. 3. Amplitude-modulated laser light was gener-
ated and detected with instrumentation described
elsewhere8; briefly, the system includes diode lasers,
a network analyzer for rf signal generation and de-
tection, and an avalanche photodiode for conversion
of the detected light into a rf electrical signal. Mea-
sured quantities are the phase shift, f, and the ac
mplitude demodulation, A, of the avalanche photo-
diode current relative to the rf signal that modulates
the laser output. The two optical fibers ~source and
detection! were placed several centimeters deep
within the phantoms to create approximately infinite
boundary conditions. The source–detector separa-
tion distance r was varied by means of micrometer
control. Measurements of f and A were acquired at
20 modulation frequencies f between 50 and 572.5

Hz, in increments of 27.5 MHz, at r 5 6 and r 5 10
m. The accuracies of the phase and the amplitude
easurements were determined to be 60.30° and
3.5%, respectively.19

D. Data-Analysis Techniques

1. Removal of Instrumental Effects
According to diffusion theory, the measured phase
shift, f, and ac amplitude, A, at source–detector sep-
aration r in an infinite geometry such as Fig. 3 are
related to ma and ms9 by the following expressions2:

f 5 kir 1 fI, (4)

A 5 CI

exp~2kr r!

r
, (5)

where fI is the instrumental phase offset, CI is an
instrument-dependent multiplicative constant affect-
ing the amplitude, the subscript I indicates terms
that do not depend on r, and the wave numbers kr and
ki are the following functions of v, ma, and ms9

kr 5 F3
2

ma~ma 1 ms9!G1y2HF1 1 S v

ma cD
2G1y2

1 1J1y2

, (6)

ki 5 F3
2

ma~ma 1 ms9!G1y2HF1 1 S v

ma cD
2G1y2

2 1J1y2

, (7)

where v is the modulation frequency in radians ~v 5
pf ! and c is the speed of light in the medium.
One method of removing the instrumental effects is

Fig. 3. Infinite geometry for FDPM data acquisition in phantoms.
1 April 2000 y Vol. 39, No. 10 y APPLIED OPTICS 1661
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to perform measurements at two different values of r
while holding all other parameters fixed, thus obtain-
ing the measured quantities f~1!, f~2!, A~1!, and A~2!,
where the superscript here indicates that r1 5 6 mm
or r2 5 10 mm. By transforming variables to

F ; f ~1! 2 f ~2! 5 ki~r1 2 r2!, (8)

! ; A~1!yA~2! 5
exp@2kr~r1 2 r2!#

r1yr2
(9)

the new variables F and ! depend solely, to within
the validity of Eqs. ~4! and ~5!, on the optical proper-
ies at the measurement wavelength ~through kr and

ki! and the measurement parameters v, r1, and r2,
with instrumental artifacts suppressed.

We note for later use that Eqs. ~8! and ~9! can be
ewritten to express kr and ki in terms of the mea-

sured quantities r, F, and !,

kr 5

2lnSr1

r2
!D

r1 2 r2
, (10)

ki 5
F

r1 2 r2
, (11)

and that Eqs. ~6! and ~7! can be inverted to express ma
and ms9 in terms of v, kr, and ki,

ma 5 Sv

2cD kr
2 2 ki

2

kr ki
, (12)

ms9 5
kr

2 2 ki
2

3ma
2 ma. (13)

2. Prediction of Optical Coefficients
Diffusion approach. One way to estimate ma and

s9 from FDPM data is to compare the experimental
curves of F and ! versus v to the diffusion theory
predictions of Eqs. ~8! and ~9! for different values of
ma and ms9. Selecting the optimal fit is an iterative,
nonlinear procedure. In the study described here, a
Levenberg–Marquardt fitting criterion was used to
achieve a simultaneous fit to both F and !.8 Data
from each sample were fit twice, with different ran-
dom starting guesses for the optical properties, and in
all cases both fits converged to the same final values
for ma and ms9. This process was repeated for data at
each laser wavelength, so the products of the analysis
were seven-wavelength ma and ms9 spectra.

Chemometric approach. The central tool for the
revious approach is a diffusion model that provides
n explicit link between the FDPM measurements
nd the parameters ma and ms9. By contrast, in a

chemometric approach, the emphasis is placed on em-
pirical correlations, with no adherence to any a priori
model. The correlations are found by analysis of
FDPM data from a training set of representative
samples whose optical properties are already known.
After this calibration step, the optical properties of
662 APPLIED OPTICS y Vol. 39, No. 10 y 1 April 2000
other samples can be predicted from FDPM data
alone, just as can be done with a theoretical model.

For this study, the chemometric method of partial
least-squares ~PLS! method was chosen. PLS has
found widespread use in the field of analytical chem-
istry in the past 15 years and has been applied to
problems of biomedical interest; a recent, comprehen-
sive review of its uses is provided as a reference.20

In essence, PLS derives a basis set of near-orthogonal
functions that, when linearly superposed, accurately
fit the measured responses of the training samples.
Regression of the fitting coefficients against a target
parameter ~e.g., optical constant or concentration!
ields a linear formula that can be used to predict the
alue of that same parameter in other samples. The
ank ~number of functions! of the model is usually

chosen to be as small as possible while still providing
a low root-mean-squared error of prediction ~RM-

EP!. The rank should approximately equal the
umber of independent parameters affecting the
easured data ~in this case, the number of dyes

resent!. Several excellent tutorials and introduc-
ions to PLS can be found in the literature.21–23 To
he extent that it tries to fit the measured FDPM data
losely, PLS is similar to the a priori diffusion ap-

proach mentioned above. However, in the case of
PLS the a priori information comes instead from the
training set, which gives PLS an inherent robustness
against background and instrumental fluctuations
that might not be described in a theoretical model.
PLS also uses an explicit formula rather than an
iterative process to predict the target parameter.

Because F~v! and !~v! vary nonlinearly with
changes in ma and ms9 @cf. Eqs. ~8! and ~9!#, PLS would
e a poorly suited tool for modeling these relations
irectly. Although PLS can be used as a black box to
nalyze nonlinear systems with some success,22 its

robustness is unreliable. If the dependence on ma
and ms9 is at least partially understood, one should

se this physical information to motivate a mathe-
atical transformation of the experimental data, spe-

ifically a transformation that creates linear
elations to the parameter~s! of interest. This ap-
roach is depicted conceptually in Fig. 4. We stress
hat this is a general approach; it does not require a
omplete mathematical description of the diffusion
rocess, as is available in the test case presented
ere. The great merit of PLS is its ability to com-
ensate for incomplete knowledge of a system by
odeling the effects of interferents. As long as the

ata can be transformed such that their dependence
n the target parameter becomes ~approximately! lin-

Fig. 4. Logic of transforming original FDPM data so that it can be
analyzed by PLS.
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ear, PLS can model the effects of complicated bound-
aries, instrumental artifacts, and other interferents.

For the measurements presented here, a very ac-
curate linearization is available, because of the sim-
ple geometry and the samples’ homogeneity. One
can use Eqs. ~12! and ~13! to compute estimates, at
ach modulation frequency, of ma and ms9. The
DPM measurements can thus be transformed into

wo data vectors containing estimates of ma and ms9.
Naturally, these vectors have a very linear depen-
dence on the actual values of ma and ms9, degraded
only by measurement errors. We shall call these
vectors m̂a

~v! and m̂9s
~v! to highlight this relation. We

ote, however, that this transformation ~and the
teps to follow! can also be performed on data from
ore complicated measurements. For instance, if

he boundary conditions were not infinite, then Eqs.
12! and ~13! would generate estimates of ma and ms9

convolved with boundary effects. PLS analysis
would still be feasible in such a case, for the reasons
suggested above.

After the FDPM data have been linearized as best
as possible, PLS analysis is performed to predict ma
and ms9. For this study’s limited data set to be used
most efficiently, the results reported below were gen-
erated by leave-one-out cross validation; i.e., each
ample’s properties were predicted with the other 39
s a training set.16 A full iteration of the cross-

validation procedure, using the manipulations just
described, is summarized in the flow chart of Fig. 5.
Unlike the diffusion approach, which produces simul-
taneous estimates of ma and ms9, the chemometric
approach generates separate predictions of the two
parameters. In addition, we note that reference ms9
values are not needed to generate ma predictions and
vice versa.

3. Prediction of Dye Concentrations
Three methods of predicting dye concentrations from
the FDPM data were explored; their schematic dif-
ferences are highlighted in Fig. 6 and discussed be-
low. As indicated, the first two techniques make use
of the ma~l! spectra that were derived in the Subsec-
tion 2.D.2, whereas the third approach bypasses ma
calculations.

Diffusion or least-squares approach. The conven-
tional method for calculating the concentration of one

Fig. 5. Data-processing sequence for chemometric prediction of
ma and ms9 from FDPM data.
absorber from a sample’s absorption spectrum has
been least-squares fitting.8 In this approach, the
sample’s spectrum is modeled with a linear combina-
tion of the absorption spectra of the individual chro-
mophores with weightings that minimize the
difference between the measured and the predicted
spectra. By combining this approach with diffusion
theory, concentration predictions are extracted from
the FDPM data of the sample completely a priori,
without recourse to a training set. This method was
used to extract concentration predictions of nigrosin,
naphthol, and CPTA from the seven-wavelength ma
spectra provided by diffusion theory. Unit absorp-
tion spectra of the three dyes were obtained with the
spectrophotometer, and absorption values for water
were taken from the literature.17

Chemometric approach with ma. Dye concentra-
tions can also be linearly extracted from the ma spec-
rum of a sample by use of chemometrics. PLS was
gain selected as the method. Combined with the
hemometric prediction of ma described above, this

provides a two-step chemometric method of convert-
ing FDPM data to dye concentration predictions, as
shown in the middle path of Fig. 6. Predictions are
no longer a priori, as they depend on the existence of
a training set. However, the concentration of each
dye is predicted independently; e.g., no reference data
n CPTA or naphthol is needed to predict nigrosin.
his is a potentially important advantage over least-
quares fitting, which requires reference data on all
bsorbers even if a prediction is desired for only one
f them.
Chemometric approach with FDPM data. Chemo-

metrics offers a second, substantially different
method of processing the original FDPM data to give
estimates of dye concentration, one in which the mid-
dle step of calculating ma is bypassed ~see path 3 in
Fig. 6!. Instead, a PLS regression is performed di-
rectly between the dye concentrations and the FDPM
data transformed into m̂a

~v! values ~computed at all
avelengths as well as at all modulation frequen-

ies!.
It is important to compare the experimental con-

traints imposed by the three data-analysis methods
escribed above. For the diffusion or least-squares
pproach, the measurement geometry needs to be
airly simple, and the spectrum of each significant
bsorber in the system must be known. If the chem-
cal content of the system is known incompletely, and
f there is an additional unknown absorber not de-
cribed by the spectral model, subsequent calcula-

Fig. 6. Schematic of different ways to compute dye concentrations
from FDPM data.
1 April 2000 y Vol. 39, No. 10 y APPLIED OPTICS 1663
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tions may be grossly affected. For the two-step
chemometric analysis, the constraints on measure-
ment geometry and absorption line shapes are lifted;
instead, reference values for ma and for one dye’s
oncentration must be known for each sample in a
raining set. For the one-step chemometric analy-
is, the constraints are reduced still further, as only
he dye concentration must be known. Both chemo-
etric models are inherently robust against incom-

lete knowledge of the full list of absorbers, since only
ne chemical is considered at a time.

3. Results and Discussion

A. Data

Plots of the instrument-corrected variables, F and !,
for the first ten samples scanned, are shown in Fig. 7.
Although an uncorrected phase measurement in-
clude shifts of as much as 104 degrees owing to optical
nd electronic delays, the two-distance calculation of

suppresses this instrumental factor and empha-
izes sample-dependent effects. The high sensitiv-
ty of FDPM measurements to intersample variations
n optical properties can be observed directly in the
nstrumental data.

B. Predictions of ma and ms9

The results of predicting ma at 674 nm with diffusion
fitting and chemometric modeling are shown in Fig. 8
in which the predictions are plotted versus the refer-
ence values. As the plots show, the linearity of the
predictions is high in both cases ~r2 is 0.98 for diffu-
sion and 0.99 for chemometrics!. The diffusion
model predictions are systematically low, with a
least-squares estimated slope of 0.79 relative to the
reference values, whereas the chemometrically pre-
dicted ma values inherently fall along the line of unit
slope.

Very few loading vectors were needed for the PLS

Fig. 7. Typical FDPM data for the samples used in this study.
All data were taken with the 674-nm diode laser at modulation
frequencies between 50 and 600 MHz. Top, phase difference be-
tween r 5 10 and r 5 6 mm @see Eq. ~8!#. Bottom, amplitude ratio
between r 5 10 and r 5 6 mm @see Eq. ~9!#.
664 APPLIED OPTICS y Vol. 39, No. 10 y 1 April 2000
calibrations because, as expected, the m̂a
~v! estimates

strongly resembled the actual ma values against
which they were regressed, as shown in Fig. 9. The
five shorter wavelengths between 674 and 849 nm
required only a single loading vector to achieve opti-
mal prediction of ma and thus indicated no competing
effects. At the higher wavelengths ~947 and 956
nm!, a few additional loading vectors ~1 extra at 947,
3 extra at 956! were needed because the signal level
dropped lower, and the instrumental background ef-
fects became nonnegligible.

The associated predictions of ms9 at 674 nm are

Fig. 8. Predictions of ma values at 674 nm from FDPM data of 40
urbid mixtures. ~a! Plot obtained with the best fit to the phase
nd amplitude data for each sample independently. ~b! Plot de-
ived with chemometric cross validation as described in the text.
he r2 values for the plots are 0.98 for the top and 0.99 for the
ottom, respectively.

Fig. 9. Comparison of data vectors analyzed for extraction of dye
concentrations from a typical sample. Note that the x axis is not
linear with respect to wavelength. Circles represent reference ma

values as determined by spectrophotometer. Squares with error
bars represent ma predictions from diffusion theory analysis of

DPM data. Upwards triangles represent ma predictions from
chemometric analysis of FDPM data. Connected downwards tri-
angles represent m̂a

~v! vector created from FDPM data. Note that
he m̂a

~v! vector contains 20 data points plotted per laser wave-
length, corresponding to frequencies from 50 to 600 MHz. Error
bars on the diffusion predictions are 68 3 1024 mm21, as mea-
sured in an earlier study.19



p
g
r
r

o
F

c
i
b
p
s

v
d
r
d
d
m
a
l

r
v
u

t
a
r
t

shown in Fig. 10. Once again, both plots are highly
linear ~r2 of 0.99 for both!. The PLS models re-
quired, in general, one more loading vector than for
absorption, with total numbers ranging from two to
four for optimal predictions. With scattering, the
diffusion model overpredicted the ms9 values by a fac-
tor of 1.14, whereas it underpredicted ma by nearly
the same amount; this is a consistent pattern at all
wavelengths, as evidenced in Table 1. This suggests
that the diffusion model interpreted some absorption
losses as scattering losses. However, the discrep-
ancy could also be because of a systematic error in the
preparation of the samples, and in any case the es-
sential feature to be compared between these plots is
the linearity, as described by the r2 value. As these

lots show, by use of data gathered in an infinite
eometry, the PLS technique can extract optical pa-
ameters from FDPM data with an accuracy compa-
able with that of the diffusion theory.

C. Prediction of Dye Concentrations

Figure 9 displays examples of input data for the three
different methods of concentration prediction. The
squares ~with error bars! are a ma spectrum esti-
mated from FDPM data with the diffusion theory; the
upward triangles, the ma spectrum estimated by use
f chemometric analysis; and the solid line, the same
DPM data converted into m̂a

~v! values computed as

Fig. 10. Predictions of ms9 values at 674 nm from FDPM data of 40
urbid mixtures. ~a! Plot obtained with the best fit to the phase
nd amplitude data for each sample independently. ~b! Plot de-
ived from the chemometric cross validation as described in the
ext. The r2 value for both plots is 0.99.

Table 1. Slopes of Diffusion-Predicted ma and ms* Values at Each
Wavelength in the Studya

l ~nm! ma Slope ms9 Slope Mean Slope

674 0.79 1.14 0.97
782 0.88 1.14 1.01
803 0.77 1.17 0.97
849 0.81 1.17 0.99
894 0.82 1.17 1.00
947 0.74 1.24 0.99
956 0.81 1.22 1.02

aThe consistent overprediction and underprediction in nearly
equal amounts at each wavelength suggests that the diffusion
model ascribed some of the absorption losses to scattering.
described in Section 2.D.2. For reference, ma values
alculated from spectrophotometer data as described
n Section 2.A are also shown ~circles!. The error
ars on the diffusion theory calculations indicate re-
roducibility and are due to system noise and the
tability of the fitting procedure19; the other values

plotted have errors of similar magnitudes.
The results of the three different methods of pre-

dicting the nigrosin dye concentrations are shown in
Fig. 11, with the corresponding results for naphthol
and CPTA appearing in Figs. 12 and 13. Each dye
or method combination has an associated RMSEP
value that represents the typical error in the predic-
tions; these nine values are presented graphically in
Fig. 14. As Fig. 14 shows, the chemometric methods
~center and right groups in the plot! produce RMSEP
alues that are consistently as low or lower than the
iffusion–least-squares method ~left group!. This
esult shows that in situations in which the FDPM
ata are gathered in an infinite geometry and the
iffusion theory is therefore readily applied chemo-
etrics can predict chromophore concentrations as

ccurately as conventional diffusion analysis and
east-squares curve fitting.

In addition, note that the two different chemomet-
ic methods of predicting dye concentration generate
ery similar RMSEP values. This indicates that it is
nnecessary to use the two-step method in which ma

is first predicted; one can proceed directly from
FDPM data to dye concentrations without substan-
tial loss of prediction accuracy.

As mentioned in the Subsection 2.D.2, the key ad-
vantages of the one-step chemometric method are
that it requires neither a simple geometry nor a ref-

Fig. 11. Predictions of nigrosin concentrations from the FDPM
data.
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erence measurement of ma. This second condition
rovides experimental convenience, as ma is usually

difficult to establish for turbid samples. These ad-
vantages do not, of course, ensure that the method
predicts concentrations from FDPM data success-
fully. As noted above, when the measurement is not

Fig. 12. Predictions of naphthol concentrations from the FDPM
data.

Fig. 13. Predictions of CPTA concentrations from the FDPM
data.
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conducted in an infinite geometry, m̂a
~v! as given by

Eq. ~12! is no longer a good estimate of ma. However,
if the perturbation introduced by more complicated
measurement geometries is not too great, some lin-
earity between ma and the perturbed m̂a

~v! should be
preserved. In such cases, PLS can exploit this rela-
tion and extract concentration predictions. Further
studies are needed to identify which measurement
geometries can be handled robustly by the chemomet-
ric methods suggested here. In particular, geome-
tries that are experimentally practical but
mathematically ill defined should be investigated.

It will be important to investigate measurement
schemes in which the amount of input FDPM data is
greatly reduced. In the calculations presented here,
20 modulation frequencies and seven laser wave-
lengths were used at each of two source–detector
separations. Additional analysis is needed to estab-
lish the accuracy of predicting ma, ms9, and chro-
mophore concentration with fewer modulation
frequencies, source–detector positions, and optical
wavelengths. It may even be possible to deduce
chromophore concentrations chemometrically even
when the amount of input data is fundamentally in-
sufficient to calculate ma. Reducing the amount of
necessary input data could lead to significantly sim-
pler instrumentation. These investigations will
form the basis of further studies.

4. Conclusions

A general framework for processing FDPM data with
chemometrics has been developed. The approach is
to gather both phase and amplitude data, construct
new variables that vary linearly with a property of
interest, and perform regressions such as PLS to ob-
tain correlations and to correct for interfering signals,
including instrumental artifacts. Physical insight
~such as that provided by diffusion theory for simpli-
fied cases! should be used to motivate the change of
variables. This study has shown that chemometric
analysis can predict optical and chemical properties

Fig. 14. Summary of dye concentration predictions with the three
strategies depicted in Fig. 6.



diffuse optical tomography imager for breast cancer detection,”
with an accuracy comparable with or superior to that
of diffusion-based analysis in an infinite geometry.

The results suggest that chemometric, training-
set-based methods may broaden the range of tech-
niques employed to analyze multifrequency FDPM
data in two senses. First, by providing an alterna-
tive means of converting FDPM data to ma and ms9
values, chemometrics can analyze data without re-
quiring fits to a diffusion model. This approach
should better tolerate complicated boundary condi-
tions, short source–detector separations, and other
instances for which the diffusion approximation be-
comes invalid. In addition, chemometrics frees the
user from viewing FDPM data solely in terms of the
embedded ma and ms9 values. Instead, the FDPM
data vector itself can be treated as a source of infor-
mation from which predictions are directly extracted.
This capitalizes on the exquisite sensitivity of over-
damped photon density waves to optical loss mecha-
nisms without requiring an exact physical model of
the measurement geometry. Analysis can be per-
formed even when the full list of significant absorbers
is unknown. These insights may prove useful in
various future FDPM applications, ranging from in
vitro studies to noninvasive in vivo measurements.
Finally, chemometric techniques may be helpful in
reducing the needed number of FDPM measure-
ments per sample, thus leading to simpler instru-
mentation.

This research was conducted at the Beckman Laser
Institute at the University of California, Irvine, with
support from the National Institutes of Health ~NIH!
Laser Microbeam and Medical Program ~grant RR-
01192!, NIH grant R29-GM50958, Department of En-
ergy grant DE-FG03-91ER61227!, and Office of
Naval Research grant N00014-91-C-0134. A. J.
Berger gratefully acknowledges postdoctoral support
from the George E. Hewitt Foundation for Medical
Research.

References
1. S. Fantini, M. A. Franceschini, J. B. Fishkin, B. Barbieri, and

E. Gratton, “Quantitative determination of the absorption
spectra of chromophores in strongly scattering media: a
light-emitting-diode based technique,” Appl. Opt. 33, 5204–
5213 ~1994!.

2. B. J. Tromberg, L. O. Svaasand, T.-T. Tsay, and R. C. Haskell,
“Properties of photon density waves in multiple-scattering me-
dia,” Appl. Opt. 32, 607–616 ~1993!.

3. D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, “Scat-
tering and wavelength transduction of diffuse photon density
waves,” Phys. Rev. E 47, R2999–R3002 ~1993!.

4. B. W. Pogue and M. S. Patterson, “Frequency-domain optical
absorption spectroscopy of finite tissue volumes using diffusion
theory,” Phys. Med. Biol. 39, 1157–1180 ~1994!.

5. E. M. Sevick, B. Chance, J. Leigh, S. Nioka, and M. Maris,
“Quantitation of time- and frequency-resolved optical spectra
for the determination of tissue oxygenation,” Anal. Biochem.
195, 330–351 ~1991!.

6. B. W. Pogue, M. Testorf, T. McBride, U. Österberg, and K.
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