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ABSTRACT OF THE THESIS

Stability of Simultaneous Input and State Estimation Algorithms

by

Mohammed Alyaseen

Master of Science in Engineering Sciences (Mechanical Engineering)

University of California San Diego, 2021

Professor Robert Bitmead, Chair

Algorithms for simultaneous input and state estimation (SISE algorithms) that are

optimal in the minimum-variance unbiased sense have been in development for decades.

The stability of such algorithms is not guaranteed. For time invariant systems, this thesis

derives necessary and sufficient stability conditions. In the square case, where the num-

ber of inputs equals the number of outputs, the exact positions of the algorithm’s poles

are established. In the non-square case, the derived stability condition is formulated as a

detectability condition. Those necessary and sufficient conditions are generalized to suf-

ficient only conditions for the time varying case. Lastly, the effect of delay in the system

under consideration on the SISE algorithm is explored. A general method, inspired by

fixed lag smoothing, is proposed to handle cases where a general delay is present.
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1 Introduction

Consider a problem of a rocket modeled as a dynamical system with thrust as in-

put and the rocket’s trajectory as output. Now consider the unfavorable circumstance where

somehow there is a malfunction in the thrust. It is desirable in this situation to have a rea-

sonable detection of that unknown malfunction in the thrust of which no direct measurement

is available and where the only available information is measures of the rocket trajectory

such as position, velocity, etc. This hypothetical problem is an instance of a more general

problem. The general problem asks if, for a dynamical system actuated by some unknown

input signal, there is a way to reasonably estimate the system’s states and unknown input

signals given noisy measurements of the system’s output. It is necessary to add to the prob-

lem description that no information about the statistical structure of the unknown signal is

assumed since any unrealistic assumption about the unknown input signals will affect the

performance of the desired estimator. This excludes the possibility of treating the problem

with state extension approaches. An interest in this estimation problem is at least as old as

J D Glover’s 1969 paper [1]. Motivated by problems where the input signals are completely

unknown like in the rocket example (which is taken from him), he developed an algorithm

that is supposed to estimate the unknown input signal of discrete linear time varying (D-

LTV) systems. Through the course of the decades following his work and until recently, the

range of applications of this problem only widened. To emphasize this wide range and show

the amount of attention this problem has caught, some areas of applications are described

below.

One early set of applications is the estimation of states of geophysical systems where

the input is an environmental phenomenon that can only be detected in a finite number of

places. An example of such an application is found in [2] where the mean areal precipita-
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tion is estimated at some time given measurements of precipitation only at finite number of

locations. Another area of application is detection of isolated impulse inputs [3, 4] that have

unknown magnitude and act on the system at an unknown time. This area includes problems

like failure detection to which the rocket example above belongs. Another application that

appeared recently in the literature is the estimation of states of power systems where some

elements, like power consumption on the consumers end, are largely unknown [5]. In fact,

problems encountered in this last application are the motive behind the theoretical develop-

ment of the material presented in this thesis. It can be seen from this short but broad list

of applications presented thus far that in some cases such as failure detection, it is desirable

primarily to estimate the unknown input without much emphasis on state estimation, while

in other cases such as that of power systems, the desired quantities to be estimated are the

states of the system. This, however, is a matter of application while in theory, both problems

are instances of the broader problem of simultaneous input and states estimation (SISE).

The theoretical development of algorithms to solve the described problem was as rich

as its applications. It may be that the absence of any information about the unknown input

opened many possible ways to deal with it. Many algorithms where proposed to solve this

problem and many methods were used to arrive at such algorithms. For example, Kitanidis

[2] developed an algorithm to estimate the state only of a linear system with no feedthrough

term. Hsieh [6] extended his algorithm to estimate the unknown input as well. An extension

to systems where a full column rank direct feedthrough matrix is present was done by others

like Darouach, Zasadzinski, and Boutayeb [7] as well as Gillijns and de Moor [8]. Moreover,

Yong, Zhu, and Frazzoli [9] produced an algorithm that makes no assumption about the

feedthrough matrix. In all these works, the emphasis was on an algorithm that would produce

the minimum variance unbiased estimate of the state and the unknown inputs i.e. MVU

algorithms. It should not be taken that the minimum variance unbiased approach was the
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only way by which such algorithms were produced. For instance, Li [10] took a Bayesian

approach, where the unbiasedness requirement is dropped, and developed a filter that he

proved to be a minimum-mean-square-error estimator. Bitmead, Abooshahab, and Hovd

[11] took another approach in which the unknown input is modelled as a white noise with

unbounded variance and a SISE algorithm is derived as a limiting case of the Kalman Filter.

Fang, de Callafon, and Cortes [12] extended the algorithm even beyond the linear framework

and proposed a method of solving the SISE problem in the non-linear context.

Another line of research, which was arguably less active than the first, has been find-

ing stability conditions for those algorithms. This line includes the paper of Darouach and

Zasdzinski [13] where necessary and sufficient stability conditions are deduced for the SISE

algorithm of an LTI system. Yong and co-authors [9] recovered Darouach’s conditions while

deriving sufficient only stability conditions for the LTV case. This variety of algorithms

present in literature that deal with the problem in different cases or even in the same case but

with different approaches should not be thought of as totally distinct algorithms. In almost

every attempt at a solution of that problem, the property of optimality in some sense was

sought. This provided a basic connection, often explicitly stated, between relatively new

and older approaches to deal with this problem. Even in [10] where the approach taken is

Bayesian and where the unbiasedness of the estimator is not sought, the algorithm developed

there is proved to be identical to that of [2] which is built as a classical minimum variance

unbiased point estimator.

1.1 Contributions & organization

As shown in the above literature review, there is a large set of works that studies a

minimum variance unbiased algorithmic solution for the problem of estimating states and
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unknown inputs of a system. This thesis belongs to this set. However, there is no attempt

to derive a new algorithm that estimates states and unknown inputs, since there are already

more than enough. The main contribution of this work is to attempt to bring some clarity and

unity to this picture by establishing precisely the connection of these algorithms to system

inversion and optimal estimation by deriving necessary and sufficient conditions for stability

starting with the time-invariant (LTI) case. What makes the necessary and sufficient stability

conditions derived here for LTI systems different from those of Darouach [13] and Yong et.

al [9] is that we arrive at our conditions without any appeal to the optimality of the SISE

algorithm. We also use the same analysis method to recover the sufficient only stability

conditions for linear time-varying (LTV) systems. Further, a new method is proposed to

solve the SISE problem when an indefinite delay is present in the system under consideration.

The presence of delay violates the assumptions for many SISE algorithms such as [14] and

[8]. The method proposed here reduces delayed systems to forms on which classical SISE

algorithms can be applied.

Section 2 presents the SISE problem for a linear time-invariant system. Section 3

studies the zero direct feedthrough case and the corresponding SISE algorithm of [14] and

shows that, in the square case where the number of measurements equals the number of

disturbance channels, the input estimator is a one-step delayed inverse of the system and

the state estimator is a plant simulation. Stability depends on the transmission zeros of the

former system. These necessary and sufficient stability conditions then are extended to the

non-square case with more measurements. This involves the Riccati difference equation

and a detectability condition. Section 4 expands this analysis to the full column-rank direct

feedthrough case. Section 6 contains the extension of stability results to time-varying sys-

tems via the Riccati equation. Section 5 brings unity to the distinct algorithms developed for

distinct cases by showing that those different cases are due primarily to different delay struc-
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tures of the system under study. It also reduces the general delay problem to the problem

analyzed in Section 4. Finally, Section 7 waves some difficulties raised in [11] in the notion

of model-free unbiased estimation by interpreting the SISE algorithm as a point estimator.

2 Problem Formulation

As noted earlier in section 1.1, for the purpose of clarity we will begin by performing

our analysis on the LTI case and then extend results to LTV systems. Thus, consider a system

modeled by the following state space realization.

xt+1 = Axt +Gdt + wt (1)

yt = Cxt +Hdt + vt, (2)

where xt ∈ Rn is the state, dt ∈ Rm is the unknown input, and yt ∈ Rp is the system’s

output. The initial state x0 is a random variable with a known covariance matrix P0. The

signals wt and vt are zero mean independent white noises that are also independent of x0.

The covariances of wt and vt are Q > 0 and R > 0, respectively. We will call the term

Hdt the feedthrough term, and H the feedthrough matrix. Note that, following [14] and

[8], the system considered has no known input. This is not a limiting assumption as the

algorithm developed is easily extensible to the case with known input as will be shown

below. The conditions of whiteness and independence of wt and vt are not limiting either

as known from Kalman filtering theory (Chapter 5.5 of Anderson and Moore [15]). Denote

the measurements signal Yt , {yt, . . . , y1, y0}. The aim of SISE is to produce from Yt, a

recursive filtered state estimate, x̂t|t, and filtered and/or smoothed MVU estimates, d̂t|t+1 or

d̂t|t, depending on the properties of the system matrices. We make the following assumption.
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Assumption 1. System (1-2) has [A,C] observable, [A,Q1/2] stabilizable, P0 ≥ 0, Q ≥ 0,

and R > 0.

As mentioned in Section 1.1, the SISE algorithm that will be analyzed in this the-

sis is built as an unbiased-minimum-variance estimator. However, recall from the literature

review in Section 1 that there are many formulations of the minimum variance unbiased

(MVU) SISE algorithm that are not totally distinct. For that, it should be stated clearly what

formulation will be followed in this thesis and what is the motivation behind its choice. This

demands a little more detailed review of the history of development of the MVU formulation

of SISE. The tradition began with Kitanidis [2] who formulated an algorithm that estimates

the state only, for a system with zero feedthrough term. Darouach et. al [13] introduced

a new approach for the state filter and established stability conditions for it. Hsieh [6] ex-

tended Kitanidis’ algorithm to estimate the input as well for systems with no feedthrough

but without attempting to prove the optimality of the input estimate in the sense of minimum

variance. In a central paper [14], Gillijns and de Moor united all results of the three previous

authors by developing an algorithm that simultaneously estimates the state and the unknown

input. They proved the optimality of their algorithm in the minimum variance sense. They

brought unity to previous works by proving that Kitanidis’ [2] algorithm implicitly performs

input estimation that is exactly like the one presented in Hseih [6] and that the latter’s input

estimate is optimal in the sense of minimum variance. In a following paper [8], the same

authors did similar work but with the case where the system has a full rank feedthrough

term. However, They did not discuss the stability of their algorithms in either of their papers.

Young, Zhu, and Frazzoli [9] on the other hand established stability results and an extension

of Gillijns and De Moor’s SISE to the case of a system with a non-full rank feedthrough

matrix. Given the central role played by Gillijns and De Moor’s two papers [14, 8] in uniting

old algorithms and providing a solid ground for new treatments such as that of Yong et al.
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[9], we chose in this thesis to analyze the algorithms presented in [14] and [8] for both cases

of zero and full rank feedthrough term respectively.

2.1 Inclusion of a known input signal

It is seen from the problem formulation above that the system that will be considered

has no known input signal. This assumption enhances the simplicity and conciseness of

the material. However, as will be shown in what follows, this assumption is by no means

limiting. Consider the following system with both known and unknown input signals (ut and

dt respectively)

x̄t+1 = Ax̄t +But +Gdt + wt (3)

ȳt = Cx̄t +Dut +Hdt + vt. (4)

Thanks to linearity, we can split the state of this system into two components, one

expresses the response to the known input and nothing more, while the other expresses the

response to initial conditions and all other disturbances. Specifically, define the following

deterministic system

x′t+1 = Ax′t +But

y′t = Cx′t +Dut

x′0 = 0.

Note that, given the original system matrices and the known input signal ut, the state x′t and
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output y′t of this system can be exactly determined for any finite time t. Now we define

xt+1 , x̄t+1 − x′t+1

= Ax̄t +But +Gdt + wt − Ax′t −But

= A(x̄t − x′t) +Gdt + wt

= Axt +Gdt + wt. (5)

We similarly define the output

yt = ȳt − y′t

= Cx̄t +Dut +Hdt + vt − Cx′t −Dut

= C(x̄t − x′t) +Hdt + vt

= Cxt +Hdt + vt. (6)

The system represented by (5) and (6) is of the same form as the system (1-2) which is

used in the problem formulation. Thus, any SISE algorithms designed for (1-2) can be

readily applied to the system with known input signals (3-4). This is done by supplying

yt = ȳt− y′t as the SISE algorithm input, where ȳt is measured and y′t is calculated. Then the

state estimate for (3-4) is given as ˆ̄xt|t = x̂t|t + x′t, where x̂t|t is the state estimate provided

by the SISE algorithm and x′t is calculated.

3 Zero direct feedthrough

For H = 0 in (2), SISE from [14] is shown as Algorithm 1.
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Algorithm 1: SISE for H = 0

Xt = APt−1A
T +Q, (7)

Kt = XtC
T (CXtC

T +R)−1, (8)

Mt = [GTCT (CXtC
T +R)−1CG]−1

×GTCT (CXtC
T +R)−1, (9)

Pt = (I −KtC) [(I −GMtC)Xt

×(I −GMtC)T +GMtRM
T
t G

T
]

+KtRM
T
t G

T , (10)

d̂t−1|t = Mt(yt − CAx̂t−1|t−1), (11)

x̂t|t = Ax̂t−1|t−1 +Gd̂t−1|t +Kt

× (yt − CAx̂t−1|t−1 − CGd̂t−1|t). (12)

cov(xt|Yt) = Pt, (13)

under the following structural condition.

Assumption 2.

rankCG = m. (14)

An immediate observation is that SISE contains no specific information related to

a model for the unmeasured disturbance dt. Indeed, it is frequently claimed that signal

{dt : t = 0, 1, . . . } possesses no model whatsoever. In fact, it will be argued that the

unknown input signal dt at time t is treated as a mere parameter of the model not a stochastic

signal itself. Although this is not explicitly stated in some works in which the SISE algo-

9



rithm is developed such as [14], failure to appreciate this point would bring some misunder-

standings related to the unbiasedness of SISE as will be discussed in Section 7. Evidently,

Assumption 2 requires p ≥ m and rankC ≥ rankG = m. Firstly, we treat the square case,

p = m, where the number of measurements equals the dimension of the disturbance input.

Then we shall derive more general results.

3.1 Stability analysis for the square case without feedthrough

From Assumption 2 when p = m, CG is invertible. Since, from (9), MtCG = I or

Mt = (CG)−1, we have

d̂t−1|t = (CG)−1(yt − CAx̂t−1|t−1), (15)

0 = yt − CAx̂t−1|t−1 − CGd̂t−1|t, (16)

x̂t|t = Ax̂t−1|t−1 +Gd̂t−1|t, (17)

= [I −G(CG)−1C]Ax̂t−1|t−1 +G(CG)−1yt. (18)

This estimation algorithm:

– is time-invariant;

– does not depend on Q or R, the noise variances;

– is independent from the covariance calculations;

– has zero x̂t|t innovations (16), (12).
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Algorithm 1 reduces to (15-18).

x̂t|t = [I −G(CG)−1C]Ax̂t−1|t−1 +G(CG)−1yt,

d̂t−1|t = −(CG)−1CAx̂t−1|t−1 + (CG)−1yt.

Note that, using the Woodbury matrix identity twice, we may rewrite the SISE yt-to-d̂t−1|t

transfer function as

(CG)−1 − (CG)−1CA(zI − A+G(CG)−1CA)−1G(CG)−1

=
[
CG+ CA(zI − A)−1G

]−1
,

=
[
C
(
I + A(zI − A)−1

)
G
]−1

,

=
[
C
(
I − z−1A

)−1
G
]−1

,

=
[
zC(zI − A)−1G

]−1
. (19)

The filtered state estimate error satisfies

x̃t|t , xt − x̂t|t,

= [I −G(CG)−1C]Ax̃t−1|t−1

+ [I −G(CG)−1C]wt−1 −G(CG)−1vt.

The stability of SISE and the boundedness of the covariance of x̃t|t, depends on the eigen-

values of [I −G(CG)−1C]A.

Theorem 1. For system (1-2) subject to p = m and Assumptions 1 and 2, the eigenvalues

of the SISE estimator system matrix, [I −G(CG)−1C]A, lie at the transmission zeros of the

square transfer function zC(zI −A)−1G. Accordingly, the SISE estimator is asymptotically

stable if and only if these transmission zeros all lie inside the unit circle.
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The proof of this theorem follows immediately from (19). We see that, in the square

case, the poles of SISE are located precisely at the transmission zeros of a one-step delayed

version of the dt-to-yt transfer function of the model (1-2). SISE therefore is performing

system inversion to recover d̂t−1|t from Yt. The dependent recursion (17) for x̂t|t is merely

a simulation of the state equation (1) driven by d̂t−1|t. Effectively all the information in Yt

is used in generating the disturbance estimate, leaving simulation (17) to generate the state

estimate.

3.2 System transformation for the non-square case

Due to Assumption 2 the only non-square case permissible is the one with number of

outputs p greater than the number of unknown inputs m. Also, the fact that the solution of

the square case was significantly facilitated by recognizing the invertibility of the matrix CG

gives the insight that transforming the non-square case to a system where an invertibility of

this sort is used will simplify the problem. Keeping in mind Assumption 2, take the singular

value decomposition of the full column rank p×m matrix CG.

svd(CG) = UΣV T ,

=

[
U1 U2

] Σ̄m×m

0p−m×m

V T

12



where Σ̄ is an m ×m diagonal matrix of non-zero singular values. Transform the original

output signal yt from (2),

ȳt = UTyt = UTCxt + UTvt

= C̄xt + v̄t

=

UT
1 C

ŪT
2 C

xt +

UT
1 vt

ŪT
2 vt


=

C̄1

C̄2

xt +

v̄1,t
v̄2,t

 . (20)

By construction,

C̄G = UTCG = ΣV TC̄1

C̄2

G =

C̄1G

0

 , (21)

where det(C̄1G) 6= 0. It should be noted that the covariance matrix of v̄t will change to R̄ =

UTRU , where R is the covariance matrix of the untransformed measurement noise of the

original system, vt. This does not affect assumption of positive definiteness of measurement

noise covariance.1

3.3 Stability analysis for the non-square case without feedthrough

Since it is shown in the previous section that any system (1-2) on which Assumptions

1 and 2 hold can be transformed to a system (1-20), we will analyze the stability of the

1A simple proof is that for any v = Uv′ 6= 0 ∈ Rk and full column rank U , we have: R ∈ Rk×k > 0 →
(∀x ∈ Rk 6= 0)(xTRx > 0)→ vTRv > 0→ v′T (UTRU)v′ > 0.
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transformed system. Theorem 2 which is the central theorem of this subsection is mentioned

first. The rest of the section consists of a proof and an interpretation of this theorem.

Theorem 2. Subject to assumptions 1 & 2, the SISE algorithm of system (1-20) as presented

in Algorithm 1 is stable if and only if {A(I −G(C̄1G)−1C̄1), C̄2} is detectable.

As mentioned in the introduction, the method used to derive the stability conditions

for the SISE algorithm is reducing its state estimator’s covariance matrix limit as time in-

creases indefinitely to a solution of an algebraic Riccati equation (ARE) that is dependent

on the system matrices only. To do so, note that d̂t−1|t can be eliminated from the state es-

timate x̂t|t by substituting (11) in (12). Doing so reduces the state estimation component of

Algorithm 1 to

x̂t|t = (I −KtC̄)(I −GMtC̄)Ax̂t−1|t−1 +
[
GMt +Kt(I − C̄GMt)

]
yt. (22)

Now, denote

Ht , GMt −KtC̄GMt +Kt

I −HtC̄ = I −GMtC̄ +KtC̄GMtC −KtC̄ (23)

= (I −KtC̄)(I −GMtC̄).

The closed loop equation of the SISE estimate of the state (22) can now be written as

x̂t|t = (I −HtC̄)Ax̂t−1 +Htȳt.

14



Define

x̃t , xt − x̂t|t

= Axt−1 +Gdt−1 + wt−1 − (I −HtC̄)Ax̂t−1|t−1 −Htȳt

= Axt−1 +Gdt−1 + wt−1 − (I −HtC̄)Ax̂t−1|t−1

−Ht(C̄Axt−1 + C̄Gdt−1 + C̄wt−1 + v̄t)

= (I −HtC̄)Ax̃t−1 + (I −HtC̄)Gdt−1 + (I −HtC)wt−1 −Htv̄t.

Now, from (9), MtC̄G = I . Hence, by (23),

(I −HtC̄)G = G−GMtC̄G−KtC̄GMtC̄G+KtC̄G

= 0.

So, the unknown input dt−1 is eliminated which reduces the innovations x̃t to

x̃t = (I −HtC̄)Ax̃t−1 + (I −HtC̄)wt−1 −Htvt. (24)

Now by (13),

Pt = cov(xt|Ȳt)

= E[x̃tx̃
T
t ]

Note that E[x̃t−1w
T
t−1], E[x̃t−1v̄

T
t ], and E[wt−1v̄

T
t ] are zero matrices (the first two from model

and algorithm and the last from the noise independence assumption). So, a recursive equation
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for Pt equivalent to (13) can be derived directly from (24), namely,

Pt = (I −HtC̄)(APt−1A
T +Q)(I −HtC̄)T +HtR̄HT

t . (25)

Using (7),

Xt+1 = A(I −HtC̄)Xt(I −HtC̄)TAT + AHtR̄HT
t A

T +Q. (26)

Note that (26) is in the form of a recursive Lyapunov equation. However, the matrixHt is de-

pendent onXt so it is not directly possible to find stability criteria. To deal with this problem,

(26) is reduced to a Riccati difference equation which explicitly depends only on the system

matrices and the matrix Xt. This reduction is made possible by the system transformation

discussed in Section 3.2. The following lemma establishes this reduction.

Lemma 1. Splitting the transformed covariance matrix R̄ to

R̄ =

R̄1 R̄2

R̄T
2 R̄3

 ,
the recursion (26) is equivalent to the Riccati Difference Equation (RDE):

Xt+1 = ĀXtĀ
T − (ĀXtC̄

T
2 − AG(C̄1G)−1R2)(C̄2XtC̄

T
2 + R̄3)

−1

× (ĀXtC̄
T
2 − AG(C̄1G)−1R̄2)

T + Q̄, (27)

where,

Ā = A(I −G(C̄1G)−1C̄1), Q̄ = AG(C̄1G)−1R1(G(C̄1G)−1)TAT +Q. (28)
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Proof. keeping (21) in mind, define Z , C1G, so detZ 6= 0. Denote

(C̄XtC̄
T + R̄)−1 , Y

=

 Y1 Y2

Y T
2 Y3

 . (29)

Now,

Ht = GMt −KtC̄GMt +Kt,

where

Mt = (GT C̄TY CG)−1GT C̄TY,

Kt = XtC̄
TY.

So,

Ht = G

[ZT 0

]
Y

Z
0



−1 [

ZT 0

]
Y −Xt

[
C̄T

1 C̄T
2

]
Y

Z
0


×

[ZT 0

]
Y

Z
0



−1 [

ZT 0

]
Y +Xt

[
C̄T

1 C̄T
2

]
Y

=

[
GZ−1 GZ−1Y −11 Y2

]
+Xt

[
0 C̄2(Y3 − Y T

2 Y
−1
1 Y2)

]
(30)
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But from (29),

(C̄XtC̄
T + R̄) =

C̄1XtC̄
T
1 + R̄1 C̄1XtC̄

T
2 + R̄2

C̄2XtC̄
T
1 + R̄T

2 C̄2XtC̄
T
2 + R̄3

 =

 Y1 Y2

Y T
2 Y3


−1

.

By the formula for inverting 2× 2 block matrices,

 Y1 Y2

Y T
2 Y3


−1

=

Y −11 + Y −11 Y2(Y3 − Y T
2 Y

−1
1 Y2)

−1Y T
2 Y

−1
1 −Y −11 Y2(Y3 − Y T

2 Y
−1
1 Y2)

−1

−(Y3 − Y T
2 Y

−1
1 Y2)

−1Y T
2 Y

−1
1 (Y3 − Y T

2 Y
−1
1 Y2)

−1.


From the right column matrix blocks,

Ȳ , (Y3 − Y T
2 Y

−1
1 Y2) = (C̄2XtC̄

T
2 + R̄3)

−1, (31)

Y −11 Y2 = −(C̄1XtC̄
T
2 + R̄2)Ȳ .

Substituting (31) in (30) gives

Ht =

[
GZ−1 −GZ−1(C̄1XtC̄

2
2 + R̄2)Ȳ

]
+

[
0 XtC̄

T
2 Ȳ

]
,

=

[
GZ−1 ((I −GZ−1C̄1)XtC̄

T
2 −GZ−1R̄2)Ȳ

]
.

Ht =

[
GZ−1 HȲ

]
, (32)

with,

H , ((I −GZ−1C̄1)XtC̄
T
2 −GZ−1R̄2). (33)
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Substitution of (32) in (26) gives

Xt+1 = A((I −HtC̄)Xt(I −HtC̄)T +HtR̄HT
t )AT +Q,

= A
(
(I −GZ−1C̄1 −HȲ C̄2)Xt(I −GZ−1C̄1 −HȲ C̄2)

T+

Ht

R̄1 R̄2

R̄T
2 R̄3

HT
t

AT +Q,

= A((I −GZ−1C̄1)Xt(I −GZ−1C̄1)
T ,

−HȲ C̄2Xt(I −GZ−1C̄1)
T − (I −GZ−1C̄1)XC̄

T
2 ȲHT +HȲ C̄2XC̄

T
2 ȲHT ,

+GZ−1R̄1(GZ
−1)T +HȲ R̄T

2 (GZ−1)T +GZ−1R̄2ȲHTHȲ R̄3)ȲHT )AT +Q,

= A((I −GZ−1C̄1)Xt(I −GZ−1C̄1)
T−

HȲ [C̄2Xt(I −GZ−1C̄1)
T − R̄T

2 Z
−TGT ]−

[(I −GZ−1C̄1)XtC̄
T
2 −GZ−1R̄2]ȲHT

+HȲ (C̄2XtC̄
T
2 + R̄3)ȲHT +GZ−1R̄1(GZ

−1)T )AT +Q.

The last equation can be simplified by introducing Ȳ andH from (31) and (33), respectively.

Xt+1 = A((I −GZ−1C̄1)Xt(I −GZ−1C̄1)
T −HȲHT −HȲHT +HȲ Ȳ −1ȲHT

+GZ−1R̄1(GZ
−1)T )AT +Q,

= A((I −GZ−1C̄1)Xt(I −GZ−1C̄1)
T −HȲHT +GZ−1R̄1(GZ

−1)T )AT +Q.

Substituting the definitions (31) and (33) gives

Xt+1 = ĀXtĀ
T − (ĀXtC̄

T
2 − AG(C̄1G)−1R̄2)(C̄2XtC̄

T
2 + R̄3)

−1×

(ĀXtC̄
T
2 − AG(C̄1G)−1R̄2)

T + Q̄,
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where,

Ā = A(I −G(C̄1G)−1C̄1), Q̄ = AG(C̄1G)−1R̄1(G(C̄1G)−1)TAT +Q.

This ends the proof of the lemma.

After the recursive covariance equation for the SISE algorithm is reduced to the Ric-

cati difference equation (27), we apply the results of convergence of RDE’s to (27) to es-

tablish the stability conditions for the SISE algorithm. The stability conditions are those

conditions that ensure that the following two propositions hold.

1. The discrete-time algebraic Riccati equation (DARE)

X = ĀXĀT − (ĀXC̄T
2 − AG(C̄1G)−1R̄2)(C̄2XC̄

T
2 + R̄3)

−1×

(ĀXC̄T
2 − AG(C̄1G)−1R̄2)

T + Q̄, (34)

that corresponds to the RDE (27), has a unique positive definite stabilizing solution X̄ .

2. The matrix Xt of (27) approaches the stabilizing solution X̄ of (34) as t→∞.

The conditions for both of these propositions are established in the following proof of The-

orem 2.

Proof of theorem 2

Theorem 2 states that the SISE algorithm as presented in Algorithm 1 of a system

(1-20), subject to Assumptions 1 & 2, is stable if and only if {A(I − G(C̄1G)−1C̄1), C̄2} is

detectable.
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Proof. In this proof, we make use of Theorem E.5.1 and Theorem 14.7.2 from Kaileth,

Sayed, and Hassibi [16]. Both theorems are reproduced in the Appendix. Appealing to

Theorem E.5.1 in , the DARE (34) has a unique positive semi-definite stabilizing solution X̄

if and only if

1. {Ās, Q̄s/2} is controllable on the unit circle and

2. {Ā, C̄2} is detectable,

where,

Q̄s , Q̄− AG(C̄1G)−1R̄2R̄
−1
3 R̄T

2 (C̄1G)−TGTAT ,

Ās , Ā− AG(C̄1G)−1R̄2R̄
−1
3 C̄2.

Also, according to Theorem 14.7.2 in [16], the matrix Xt of (27) approaches the stabilizing

solution X̄ of (34) as t→∞ if Condition 2 above holds and

3. {Ās, Q̄s/2} in stabilizable, and

4. X0 > −Xa,

where Xa is a certain positive definite matrix. (For details, see the Appendix.)

But the conditions 1, 3, and 4 are implied by Assumption 1 as will be shown below. Hence,

the SISE algorithm (Algorithm 1) is stable if and only if Condition 2 holds, namely, if and

only if {Ā, C̄2} = {A(I −G(C̄1G)−1C̄1), C̄2} is detectable.

By Assumption 1, the covariance Q satisfies Q ≥ 0, which by the definition of Xt

in (7) implies Condition 4. Also, by Assumption 1, {A,Q1/2} is stabilizable. This implies

Condition 3 as the following reasoning suggests. If {A,Q1/2} is stabilizable then there exists
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a matrixN1 such that the eigenvalues ofA+Q1/2N1 can all be placed in the unit circle. Note

that

Qs = Q̄− AG(C̄1G)−1R̄2R̄
−1
3 R̄T

2 (C̄1G)−TGTAT ,

= Q+ AG(C̄1G)−1R̄1(G(C̄1G)−1)TAT − AG(C̄1G)−1R̄2R̄
−1
3 R̄T

2 (C̄1G)−TGTAT ,

= Q+ AG(C̄1G)−1(R̄1 − R̄2R̄
−1
3 R̄T

2 )(C̄1G)−TGTAT .

Take

Qs/2 =

[
Q1/2 AG(C̄1G)−1(R̄1 − R̄2R̄

−1
3 R̄T

2 )1/2
]
.

Denote

N =

N1

N2

 ,
with the above definition of N1 and the choice of

N2 = (R̄1 − R̄2R̄
−1
3 R̄T

2 )−1/2(C̄1 + R̄2R̄
−1
3 C̄2).

Note that
(
R̄1 − R̄2R̄

−1
3 R̄T

2

)
is always invertible since it is a Schur complement of the leading
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block in the positive definite matrix R̄. This choice of N yields

As +Qs/2N = Ā− AG(C̄1G)−1R̄2R̄
−1
3 C̄2

+

[
Q1/2 AG(C̄1G)−1(R̄1 − R̄2R̄

−1
3 R̄T

2 )1/2
]

×

 N1

(R̄1 − R̄2R̄
−1
3 R̄T

2 )−1/2(C̄1 + R̄2R̄
−1
3 C̄2)

 ,
= Ā− AG(C̄1G)−1R̄2R̄

−1
3 C̄2 +Q1/2N1

+ AG(C̄1G)−1(R̄1 − R̄2R̄
−1
3 R̄T

2 )1/2(R̄1 − R̄2R̄
−1
3 R̄T

2 )−1/2(C̄1 + R̄2R̄
−1
3 C̄2),

= A− AG(C̄1G)−1C̄1 − AG(C̄1G)−1R̄2R̄
−1
3 C̄2 +Q1/2N1 + AG(C̄1G)−1C̄1

+ AG(C̄1G)−1R̄2R̄
−1
3 C̄2,

= A+Q1/2N1,

whose eigenvalues all lie within the unit circle by the definition of N1. Hence, {F s, Qs/2} is

stabilizable. Finally, note that Condition 3 implies Condition 1, since all eigenvalues on the

unit circle can be placed within the unit circle by the above choice of N . This concludes the

proof.

We already know from Theorem 1 that the eigenvalues of A(I − G(C̄1G)−1C̄1) are

stable if and only if zC̄1(zI − A)−1G is minimum-phase. We see that, when p > m, the

surfeit of measurements beyond those strictly needed to produce d̂t−1|t are brought to bear

on estimating xt. The stability of SISE depends on either the square system (A, C̄1) yielding

stability via Theorem 1, i.e. via stable transmission zeros, or there being sufficient informa-

tion in the additional measurements to stabilize the estimator.
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3.4 Further Reduction

In this subsection, a transformation alternative to that of Section 3.2 is introduced

to further simplify the derivation of Theorem 2. The transformation is a variation of the

technique in [9]. Consider again the singular value decomposition of the p×m matrix CG.

svd(CG) = UΣV T ,

=

[
Um Up−m

]Σ̄

0

V T .

Define the p× p non-singular transformation

T =

T1
T2

 ,

Im −UT
mRUp−m(UT

p−mRUp−m)−1

0 Ip−m


 UT

m

UT
p−m

 , (35)

where R is the covariance matrix of the measurement noise of the original system. Now,

transform the original output signal yt,

ȳt = T yt =

T1C
T2C

xt +

T1vt
T2vt


=

C̄1

C̄2

xt +

v̄1,t
v̄2,t

 . (36)

As in (21), This transformation yields

C̄1

C̄2

G =

C̄1G

0

 ,
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where det(C̄1G) 6= 0. What is different in this transformation though is that the covariance

of the transformed noise, v̄t, is made block diagonal.

R̄ = cov

v̄1,t
v̄2,t

 = cov(T vt) = T cov(vt)T T = T RT T ,

=

T1
T2

R [T T
1 T T

2

]
,

=

T1RT T
1 T1RT T

2

T2RT T
1 T2RT T

2

 .
However,

T1RT T
2 = (UT

m − UT
mRUp−m(UT

p−mRUp−m)−1UT
p−m)RUT

p−m

= 0m×p−m.

Hence,

R̄ =

R̄1 0

0 R̄2


This transformation significantly simplifies (27) and thus the derivations of Lemma 1 and

Theorem 2. The simplified version of (27) will be used in Section 6 to extend stability

results to time varying systems. More, a similar transformation will be used for stability

results of the case with direct feedthrough.

Results in Section 3 are provisionally accepted to be published in Automatica jour-

nal in a paper co-authored with Mohammad Ali Abooshahab, Morten Hovd, and Robert

Bitmead. The author of this thesis was a primary investigator of those results and is the
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primary author of those sections as they appear in this thesis.

4 Full-rank direct feedthrough

When H 6= 0 in (2), SISE alters. Gillijns and De Moor [8] provide a SISE algorithm,

subject to the following assumption.

Assumption 3. rankH = m.

Subject to this assumption, the SISE algorithm for time-invariant system (1-2) is

given as Algorithm 2.
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Algorithm 2: SISE for rankH = m

x̂t|t−1 = Ax̂t−1|t−1 +Gd̂t−1|t−1, (37)

P x
t|t−1 =

[
A G

]P x
t−1|t−1 P xd

t−1|t−1

P dx
t−1|t−1 P d

t−1|t−1


AT

GT

+Q,

R̃t = CP x
t|t−1C

T +R, (38)

Mt = (HT R̃−1t H)−1HT R̃−1t , (39)

d̂t|t = Mt(yt − Cx̂t|t−1), (40)

P d
t|t = (HT R̃−1t H)−1,

Kt = P x
k|k−1C

T R̃−1t , (41)

x̂t|t = x̂t|t−1 +Kt(yt − Cx̂t|t−1 −Hd̂t|t), (42)

P x
t|t = P x

t|t−1 −Kt(R̃t −HP dHT )KT
t ,

P xd
t|t =

(
P dx
t|t
)T

= −KtHP
d
t|t.

In this section, an analysis analogous to that of Section 3 will be followed. It is worth

noting from (39) that MtH = I . This implies that the SISE algorithm that gives a filtered

estimate d̂t|t rather than a smoothed estimate d̂t|t+1 is difined if and only if rankH = m, i.e.

the matrix H has full column rank. This is where Assumption 3 is exploited. This condition

is significant for the derivations in the next subsection. When rankH < m, [9] provides

ULISE, a carefully developed SISE algorithm which uses the singular value decomposition

as in subsection 4.2 but more widely to handle the more complicated interaction between

filtered and smoothed estimates for dt. Another method by which the case of rankH < m is

reduced to the case of rankH = m will also be derived in Section 5.
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4.1 Stability analysis for the square case with feedthrough

Noting that Algorithm 2 is defined if and only if rank H = m, the feedthrough term

H in the square case is an m×m full rank matrix and hence, invertible. By (39),

Mt = (HT R̃−1t H)−1HT R̃−1t

= H−1R̃tH
−THT R̃−1t = H−1.

Substitution in (40) yields

d̂t = H−1(yt − Cx̂t|t−1) (43)

0 = yt − Cx̂t|t−1 −Hd̂t. (44)

It is clear from (44) and (42) that in the square case, all the measurements of time t are

used to estimate dt and the filtered value of the state estimate x̂t|t is the same as the previous

predicted estimate x̂t|t−1. The input estimate d̂t|t is then used to predict the value of the state

at time t + 1 by mere simulation. To describe the dynamics of Algorithm 2 in the square

case, the closed-loop formula of the predicted state estimate is obtained by eliminating d̂t|t

as follows.

x̂t|t = x̂t|t−1

x̂t+1|t = Ax̂t|t−1 +Gd̂t|t

= Ax̂t|t−1 +GH−1(yt − Cx̂t|t−1)

= (A−GH−1C)x̂t|t−1 +GH−1yt. (45)

Theorem 3. For system (1-2) subject to p = m and Assumptions 1 and 3, the eigenvalues of
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the SISE estimator system matrix, A−GH−1C, lie at the transmission zeros of the square dt-

to-yt transfer functionH+C(zI−A)−1G. Accordingly, the SISE estimator is asymptotically

stable if and only if these transmission zeros all lie inside the unit circle.

Proof. applying the woodbury identity to the dt-to-yt square transfer function,

[
H + C(zI − A)−1G

]−1
= H−1 −H−1C(zI − A+GH−1C)−1GH−1.

Which is exactly the yt-to-d̂t|t transfer function as can be seen from (45) and (43). The poles

of this transfer function lie at the transmission zeros of the original system’s dt-to-yt transfer

function.

As in the zero feedthrough case, the square SISE simplifies to (45) and (43) which

means again that Algorithm 2 becomes time invariant, independent from noise variances

and from estimates’ covariance calculations, and as pointed out earlier has zero filtering

innovation. It is also possible as in the zero feedthrough case to calculate the exact positions

of the poles of the SISE in this case as Theorem 3 proves. However, there is an important

difference between the square cases with full-rank feedthrough and zero feedthrough. When

the feedthrough matrix is full-rank, SISE (Algorithm 2) inverts the system (1-2); while when

the feedthrough is the zero matrix, SISE (Algorithm 1) inverts a delayed version of the

system (1-2). That is roughly because in the latter case, the input dt does not affect yt, it only

affects yt+1. This will be examined in detail in Section 5.
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4.2 System transformation for the non-square case

As in the zero feedthrough case, the simplicity and neatness of the result of the square

case result from the fact that the feedthrough matrix H should be invertible. This gives the

indication that some sort of this invertibility of the feedthrough matrix for the non-square

case will simplify the solution. This insight goes hand in hand with the condition rankH =

m which is necessary for derivation of the algorithm. Take the singular value decomposition

of matrix H

svd(H) = UΣV T

=

[
Um Up−m

]Σ̄

0

V T .

Define the non-singular transformation

T =

T1
T2

 ,

Im −UT
mRUp−m(UT

p−mRUp−m)−1

0 Ip−m


 UT

m

UT
p−m

 . (46)

Now, transform the original output signal yt,

ȳt = T yt = C̄xt + H̄dt + v̄t

=

T1C
T2C

xt +

T1H
T2H

 dt +

T1vt
T2vt

 .
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By a reasoning similar to that of Section 3.4, note that

ȳt =

C̄1

C̄2

xt +

H̄1

0

 dt +

v̄1,t
v̄2,t

 , (47)

where H̄1 = T1H̄ , which is non-singular by construction. Following the reasoning in Section

3.4, note that the noise covariance of the original system, R, is altered without effect on

positive definiteness by the transformation as follows.

R̄ = cov

v̄1,t
v̄2,t

 =

R̄1 0

0 R̄2

 . (48)

The above transformation (47 - 48) can be performed whenever Assumption 3 holds. It is

for this transformed system that the stability results are derived in the next section.

4.3 Stability analysis for the non-square case with feedthrough

The central theorem of this section for which the rest of the section is dedicated is

the following.

Theorem 4. Subject to Assumptions 1 & 3, the SISE algorithm of system (1-47) as presented

in Algorithm 2 is stable if and only if {A−GH̄−11 C̄1, C̄2} is detectable.

As in Section 4.3, a lemma analogous to Lemma 1 is required before the proof of

Theorem 4 can be presented. Again, the method used to derive the stability conditions for

the SISE algorithm is reducing its state estimator’s covariance recursive equation to a Riccati

difference equation. First, eliminate the input estimate d̂t|t from the prior state estimate x̂t+1|t
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by substituting (40) in (42) and then both in (37). The resulting estimator is

x̂t+1|t = (A− AKtC̄ + AKtH̄MtC̄ −GMtC̄)x̂t|t−1 + (AKt − AKtH̄Mt +GMt)ȳt.

(49)

Defining

Lt , AKt − AKtH̄Mt +GMt

allows (49) to be written as

x̂t+1|t = (A− LtC̄)x̂t|t−1 + Ltȳt. (50)

Define

x̃t+1 , xt+1 − x̂t+1|t,

= Axt +Gdt + wt − (A− LtC̄)x̂t|t−1 − Lt(C̄xt + H̄dt + v̄t),

= (A− LtC̄)x̃t + (G− LtH̄)dt + wt − Lv̄t.

Noting that MtH̄ = I ,

G− LtH̄ = G− AKtH̄ + AKtH̄MtH̄ −GMtH̄ = 0

Hence,

x̃t+1 = (A− LtC̄)x̃t + wt − Lv̄t
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Define Pt+1 , P x
t+1|t = cov(x̂t+1|t) = E[x̃t+1x̃

T
t+1].

Pt+1 = E
[
x̃t+1x̃

T
t+1

]
= (A− LtC̄)Pt(A− LtC̄)T +Q+ LtR̄LT

t (51)

The following lemma is the counterpart of Lemma 1 but for the nonzero feedthrough case.

Similarly, it will be exploited to prove Theorem 4.

Lemma 2. For the system (1-47), the following RDE is equivalent to (51).

Pt+1 = ĀPtĀ− ĀPtC̄
T
2 (C̄tPtC̄

T
t + R̄2)

−1C̄2PtĀ
T + Q̄, (52)

where

Ā = (A−GH̄−11 C̄1), Q̄ = Q+GH̄−11 R̄1H̄
−T
1 GT

Proof. Split R̃−1t of (38) into

R̃−1t =

 Y1 Y2

Y T
2 Y3

 . (53)

It should be noted that by Assumption 1, R > 0 which implies R̃t > 0. Hence, Y1 and its

schur complement (Y3 − Y T
2 Y

−1
1 Y2) are non-singular. Now Mt and Kt of (39) and (41) can
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be written as

Mt =

[H̄T
1 0

] Y1 Y2

Y T
2 Y3


H̄1

0



−1 [

H̄T
1 0

] Y1 Y2

Y T
2 Y3

 ,
=

[
H̄−11 H̄−11 Y −11 Y2

]
,

Kt = Pt

[
C̄T

1 C̄T
2

] Y1 Y2

Y T
2 Y3

 .
Now,

Lt = AKt + AKtH̄Mt −GMt (54)

= APt

[
C̄T

1 C̄T
2

] Y1 Y2

Y T
2 Y3

+ APt

[
C̄T

1 C̄T
2

] Y1 Y2

Y T
2 Y3


H̄1

0

[H̄−11 H̄−11 Y −11 Y2

]

−G
[
H̄−11 H̄−11 Y −11 Y2

]
=

[
GH̄−11 APtC̄

T
2

(
Y3 − Y T

2 Y
−1
1 Y2

)
+GH̄−11 Y −11 Y2

]
(55)

From (53),

R̃t = (C̄PtC̄
T + R̄) =

C̄1PtC̄
T
1 + R̄1 C̄1PtC̄

T
2

C̄2PtC̄
T
1 C̄2PtC̄

T
2 + R̄2

 =

 Y1 Y2

Y T
2 Y3


−1

.

By the formula of partitioned matrix inversion,

 Y1 Y2

Y T
2 Y3


−1

=

Y −11 + Y −11 Y2(Y3 − Y T
2 Y

−1
1 Y2)

−1Y T
2 Y

−1
1 −Y −11 Y2(Y3 − Y T

2 Y
−1
1 Y2)

−1

−(Y3 − Y T
2 Y

−1
1 Y2)

−1Y T
2 Y

−1
1 (Y3 − Y T

2 Y
−1
1 Y2)

−1

 .
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Thus,

Ȳ , (Y3 − Y T
2 Y

−1
1 Y2) = (C̄2PtC̄

T
2 + R̄2)

−1, (56)

Y −11 Y2 = −C̄1PtC̄
T
2 Ȳ .

Substituting for Ȳ and Y −11 Y2 into (55) yields

Lt =

[
GH̄−11 ĀPtC̄

T
2 Ȳ

]
, (57)

where Ā = A−GH̄−11 C1. To conclude, substituting for Lt from (57) into (51) gives

Pt+1 = (A− LtC̄)Pt(A− LtC̄)T +Q+ LtR̄LT
t

= (A−GH̄−11 C̄1 − ĀPtC̄
T
2 Ȳ C̄2)Pt(A−GH̄−11 C̄1 − ĀPtC̄

T
2 Ȳ C̄2)

T

+GH̄−11 R̄1H̄
−T
1 GT + ĀPtC̄

T
2 Ȳ R̄2Ȳ C̄2PtĀ

T +Q

= ĀPtĀ
T − ĀPtC̄

T
2 Ȳ C̄2PtĀ

T − ĀPtC̄
T
2 Ȳ C̄2P

T
t Ā

T + ĀPtC̄
T
2 Ȳ C̄2PtC̄

T
2 Ȳ C̄2P

T
t Ā

T

+GH̄−11 R1H̄
−T
1 GT + ĀPtC̄

T
2 Ȳ R̄2Ȳ C̄2PtĀ

T +Q

= ĀPtĀ
T − 2ĀPtC̄

T
2 Ȳ C̄2P

T
t Ā

T + ĀPtC̄
T
2 Ȳ (C̄2PtC̄

T
2 + R̄2)Ȳ C̄2PtĀ

T

+GH̄−11 R̄1H̄
−T
1 GT +Q.

By (56), (C̄2PtC̄
T
2 + R̄2) = Ȳ −1. So,

Pt+1 = ĀPtĀ
T − ĀPtC̄

T
2 Ȳ C̄2P

T
t Ā

T +GH̄−11 R̄1H̄
−T
1 GT +Q

= ĀPtĀ
T − ĀPtC̄

T
2 (C̄2PtC̄

T
2 + R̄2)

−1C̄2P
T
t Ā

T + Q̄

This concludes the proof.
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As evident from the discussion presented so far, the analysis of the case where

rankH = m follows closely the case where H = 0. The reader would have already conjec-

tured that the proof of Theorem 4 parallels that of Theorem 2. Indeed, this is true. However,

the proof of Theorem 4 will be fully established below to show how the different transfor-

mation simplifies the proof as it may have been already seen that it simplified the proof of

Lemma 2. Theorems E.5.1 and 14.7.1 [16], reproduced in the Appendix, will be utilized as

done in the proof of Theorem 2.

Proof of Theorem 4

Theorem 4 states that the SISE algorithm as presented in Algorithm 2 of a system (1

- 47) subject to Assumptions 1 and 3 is stable if and only if {A−GH̄−11 C̄1, C̄2} is detectable.

Proof. Appealing to Theorem E.5.1 in [16], the DARE

P = ĀP ĀT − ĀP C̄T
2 (C̄2PC̄

T
2 + R̄2)

−1C̄2P
T ĀT + Q̄ (58)

that corresponds to the RDE (52) has a unique positive semi-definite stabilizing solution P̄

if and only if

1. {Ā, Q̄1/2} is controllable on the unit circle and

2. {Ā, C̄2} is detectable.

Also, according to Theorem 14.7.2 in [16], the matrix Pt of (52) approaches the stabilizing

solution P̄ of (58) as t→∞ if Condition 2 above holds and
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3. {Ā, Q̄1/2} is stabilizable, and

4. P0 > −P a,

where P a is a certain positive definite matrix. (For details, see the Appendix.)

But the conditions 1, 3, and 4 are implied by Assumption 1 as will be shown below. Hence,

the SISE algorithm (Algorithm 2) is stable if and only if Condition 2 holds, namely, if and

only if {Ā, C̄2} = {A−GH̄−11 C̄1, C̄2} is detectable.

By Assumption 1, P0 ≥ 0, which implies Condition 4. Also, by Assumption 1,

{A,Q1/2} is stabilizable. This implies Condition 3 as the following reasoning suggests.

If {A,Q1/2} is stabilizable then there exists a matrix N1 such that the eigenvalues of A +

Q1/2N1 can all be placed in the unit circle. Note that

Q̄ = Q+GH̄−11 R1H̄
−T
1 GT .

Take

Q̄1/2 =

[
Q1/2 GH̄−1R̄

1/2
1

]
.

Now denote

N =

N1

N2

 ,
with the previous choice of N1 and the choice of

N2 = R̄
−1/2
1 C̄1.
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This choice of N yields

Ā+ Q̄1/2N = A−GH̄−11 C̄1 +

[
Q1/2 GH̄−11 R̄

1/2
1

] N1

R̄
−1/2
1 C̄1

 ,
= A−GH̄−11 C1 +Q1/2N1 +GH̄−11 R̄

1/2
1 R̄

−1/2
1 C̄1,

= A+Q1/2N1,

whose eigenvalues all lie within the unit circle by the definition of N1. Hence, {Ā, Q̄1/2} is

stabilizable. Finally, note that Condition 3 implies Condition 1, since all eigenvalues on the

unit circle can be placed within the unit circle by the above choice of N . This concludes the

proof.

The relative simplicity of (52) compared to (27) is evident. This is due to the transfor-

mation which produces block diagonal measurement noise covariance. This transformation

made the derivations of both Lemma 2 and Theorem 4 simpler.

Results in Section 4 are provisionally accepted to be published in Automatica jour-

nal in a paper co-authored with Mohammad Ali Abooshahab, Morten Hovd, and Robert

Bitmead. The author of this thesis was a primary investigator of those results and is the

primary author of those sections as they appear in this thesis.

5 SISE and delay

So far, both formulations of the SISE problem we studied can be summarized in

Figure 1. The case where ` = 1 is that with H = 0, while the case where ` = 0 is that with

rankH = m. Recall also that in Section 2, it was stated that the aim of the SISE algorithm
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is to produce from Yt , {yt, . . . , y1, y0}, a recursive filtered state estimate, x̂t|t, and filtered

and/or smoothed MVU estimates, d̂t|t+1 or d̂t|t, depending on the properties of the system

matrices.

Figure 1: SISE Problem Formulation

Thus, it is now clear that the filtered and smoothed estimates, d̂t|t and d̂t|t+1, corre-

spond to the cases of full rank feedthrough matrix and zero feedthrough matrix respectively.

What has been done is a derivation and analysis of stability criteria for both cases subject to

Assumtions 2 or 3. In this section, a connection between both cases and the meaningfulness

of those assumptions will be established through a discussion of the relation of SISE to the

delay structure of the system. Denote the dt-to-yt transfer function of system (1-2) by Z(z).

In terms of system matrices,

Z(z) = H + C(zI − A)−1G. (59)

Using the Neumann series representation (geometric series generalization), this can also be

written as

Z(z) = H + z−1C(I − z−1A)−1G

= H + z−1CG+ z−2CAG+ · · ·+ z−(n+1)CAnG+ . . . . (60)
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Thus, using the inverse z-transform, the time response yt at time t of system (1-2) to any

sequence of input signals {dt} can by written as

yt = Hdt + CGdt−1 + CAGdt−2 + · · ·+ CAnGdt−(n+1) + . . . . (61)

This shows clearly the relevance of Assumptions 2 and 3. When H = 0, the construction

of an unbiased estimator of dt as a function of Yt is impossible, since Yt is independent

of dt. However, there is hope for constructing an unbiased estimator of dt−1 as a function

of Yt, given an unbiased estimate of xt−1. But here also, (61) shows that the problem is

indeterminate unless the matrix CG is has full column rank, that is rank(CG) = m, which is

exactly what Assumption 2 ensures. On the other hand, whenH 6= 0, Yt becomes dependant

on dt. But the construction of an unbiased estimator of dt as a function of Yt, given an

unbiased estimate of xt, becomes an indeterminate problem unless rankH = m, which

is exactly what Assumption 3 ensures. This explanation shows that some of the different

formulations of SISE present in the literature are due primarily to differences in the system’s

delay structure which is fully captured by properties of the unit impulse response matrices

H,CG,CAG,CA2G, . . . , also known as the Markov parameters of the system (1-2).

Now consider the following question. What if H 6= 0 but rankH < m. The singular

value decomposition of Ht thus becomes

Ht =

[
U1,t U2,t

]Σt 0

0 0


V T

1,t

V T
2,t

 (62)

This does not fit with the assumptions of any of the two limiting cases studied above. From

(61), it is clear that seeking an unbiased estimator of dt that is dependant on Yt only poses an

indeterminate problem. However, as (61) also shows if shifted one step forward, yt+1 is also
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dependant on dt. This situation raises the question about what conditions should hold for H

and CG such that an unbiased estimator of dt can be constructed as a function of Yt+1. This

problem is well studied by Yong, Zhu, and Frazzoli in [17], where the two techniques of

filtering and smoothing described above are carefully unified to obtain estimates of dt using

both yt and yt+1. The algorithm resulting from this unifying approach is thus called Unified

Linear Input & State Estimator (ULISE). The method used in ULISE depends on splitting

the unknown input dt into two additive components d1,t and d2,t such that dt = d1,t + d2,t.

This decomposition is made cleverly in a matter that allows d1,t to be unbiasedly estimated

from yt and d2,t to be unbiasedly estimated from yt+1. Thus, an estimate d̂t|t+1 is obtained

allowing a prior estimate of xt+1, and thus goes the filter. It turns out that the condition that

guarantees the possibility of constructing the above described estimator of dt is that

rank(C2,tG2,t−1) + rank(Ht) = m, (63)

where C2,t is time varying equivalent of that given in transformation (47), and G2,t−1 =

Gt−1V2,t−1 with V2,t−1 from (62). All this leads naturally to the question, what if (63) is

not fulfilled? Is there a formulation of the SISE problem with a general delay structure.

Figure 2 shows the formulation of this problem graphically. Note, however, that when ` >

1, the state estimator can only be a smoother. That is, if an unbiased estimate of dt can

only be obtained after the application of dt to the system by ` > 1 time steps, then an

unbiased estimate of the state xt+1 is only possible at time t+ ` since any unbiased estimator

of xt+1 should be a function of the estimate of dt. A thorough discussion of this general

delay problem is presented by the authors of [17] in another paper [18], where dt is split

into as much components as necessary for obtaining unbiased estimates of each component

from consecutive measurements. There method, however, is complex and the complexity

increases as the delay increases. Thus, I propose a simpler method here that is inspired by
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fixed-lag smoothing. The simplicity of the method that will be proposed here springs from

the fact that it reduces the general delay case to the case with full rank feedthrough matrix.

This simplicity, though, is not without its expenses that will be discussed after the method is

explained.

Figure 2: SISE Problem Formulation with General Delay

5.1 Reduction of systems with a general delay to a system with no delay

The consecutive output signals of (1-2) can be written as

yt = Cxt +Hdt + vt

yt+1 = CAxt +Hdt+1 + CGdt + Cwt + vt+1

yt+2 = CA2xt +Hdt+2 + CGdt+1 + CAGdt + Cwt+1 + CAwt + vt+2

...

yt+k = CAkxt + CAk−1Gdt + CAk−2Gdt+1 + · · ·+Hdt+k

CAk−1wt + CAk−2wt+1 + · · ·+ Cwt+k−1 + vt+k.
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In matrix form,



yt

yt+1

yt+2

...

yt+k


=



C

CA

CA2

...

CAk


xt +



H 0 0 0 . . . 0

CG H 0 0 . . . 0

CAG CG H 0 . . . 0

...
...

... . . . ...

CAk−1G CAk−2G . . . . . . H





dt

dt+1

dt+2

...

dt+k




0 0 0 0 . . . 0

C 0 0 0 . . . 0

CA C 0 0 . . . 0

...
...

... . . . ...

CAk−1 CAk−2 . . . . . . C





wt

wt+1

...

wt+k−1


+



vt

vt+1

vt+2

...

vt+k


. (64)

The number of block rows is k+1 which is not yet determined. Part of the problem is to find

what is the minimum sufficient k such that dt can be unbiasedly estimated. Next we define

a transformation to be applied on (64) that enables the estimation of dt given Yt+k. To do

this we first define the matrices T1, . . . , Tk+1 according to Algorithm 3. Note, however, that

to define those matrices the system (1-2) should comply with Assumption 4.

Assumption 4. p ≥ m, that is the number of outputs of (1-2) is greater than or equal to the

number of inputs.
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Algorithm 3: Define T1, T2, . . . , Tk+1

Initialization:
svd(H) =

[
U1,1 U1,2

] [ Σ1,r1×r1 0
0(p−r1)×r1 0

]
V1, R̄1 = R,

Ū1,1 = UT
1,1 − UT

1,1R̄1U1,2(U
T
1,2R̄1U1,2)

−1UT
1,2

T1 = Ū1,1 ∈ Rr1×p,
for i = 2 to k do:

svd(UT
i−1,2U

T
i−2,2 . . . U

T
1,2CA

i−2G) =
[
Ui,1 Ui,2

] [Σi,ri×ri 0
0 0

]
Vi, (65)

where Ui,1 ∈ R(p−r1−···−ri−1)×ri , Ui,2 ∈ R(p−r1−···−ri−1)×(p−r1−···−ri)

R̄i = UT
i−1,2R̄i−1Ui−1,2 (66)

Ūi,1 = UT
i,1 − UT

i,1R̄iUi,2(U
T
i,2R̄iUi,2)

−1UT
i,2 ∈ Rri×p (67)

Ti = Ūi,1U
T
i−1,2U

T
i−2,2 . . . U

T
1,2 ∈ Rri×p (68)

Finalization:
Tk+1 = UT

k,2U
T
k−1,2 . . . U

T
1,2 ∈ R(p−r1−···−rk)×p

Define the matrix

T ,

[
T T
1 T T

2 . . . T T
k+1

]T
.

Note that the number of rows of T is r1 + r2 + · · · + rk + (p − r1 − · · · − rk) = p. Hence

T ∈ Rp×p. This seemingly complicated definition of T gives the elegant properties presented

in the following lemma.

Lemma 3. The following propositions hold for the matrix T .

1. T is non-singular,

2. • T2H = T3H = · · · = Tk+1H = 0,

• TiCAjG = 0, ∀ j ∈ {0, 1, . . . , k − 2} and i ∈ {j + 3, j + 4, . . . , k + 1}

3. TRT T is a block diagonal matix with blocks (T1RT
T
1 , T2RT

T
2 , . . . , Tk+1RT

T
k+1) in this

order.
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Proof. Each proposition is proved separately,

1. For any 0 ≤ i ≤ k,

ŪT
i,1

UT
i,2

 =

Iri −UT
i,1R̄iUi,2(U

T
i,2R̄iUi,2)

−1UT
i,2

0 Ip−r1−···−ri


UT

i,1

UT
i,2

 .

Thus,
[
Ūi,1 Ui,2

]T
is non-singular. The matrix T can be written in the following form

T =



I 0 . . . 0

0 I . . . 0

. . .

0 0 . . . Ūk,1

0 0 . . . Uk,2


. . .



I 0 0

0 I 0

0 0 Ū3,1

0 0 U3,2




I 0

0 Ū2,1

0 U2,2


Ū1,1

U1,2

 .

Thus, T is non-singular too.

2. • From the initialization of Algorithm 3, UT
1,2H = 0. Thus, T2H = T3H = · · · =

Tk+1H = 0.

• For any j and i, if 0 ≤ j ≤ k−2 and j+3 ≤ i ≤ k then Ti = T̄iU
T
j+2,2U

T
j+1,2 . . . U

T
1,2,

with a suitable T̄i obtained easily from (68). But by the definition of Uj+2,2 in

(65),

Ti = T̄iU
T
j+2,2(U

T
j+1,2 . . . U

T
1,2CA

jG) = 0.

A similar argument can be cast for the proposition that Tk+1CA
k−2G = 0.
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3. Note that

TRT T =



T1RT
T
1 T1RT

T
2 . . . T1RT

T
k+1

T2RT
T
1 T2RT

T
2 . . . T2RT

T
k+1

... . . . ...

Tk+1RT
T
1 . . . Tk+1RT

T
k+1


But when i < j,

TiRT
T
j = Ūi,1U

T
i−1,2U

T
i−2,2 . . . U

T
1,2R

(
T̄jU

T
i,2U

T
i−1,2 . . . U

T
1,2

)T
with a suitable T̄j obtained from (68). Thus, using (66),

TiRT
T
j = Ūi,1U

T
i−1,2U

T
i−2,2 . . . U

T
1,2RU1,2 . . . Ui−1,2Ui,2T̄

T
j

= Ūi,1R̄iUi,2T̄
T
j

By (67),

TiRT
T
j = Ūi,1R̄iUi,2T̄

T
j

=
(
UT
i,1 − UT

i,1R̄iUi,2

(
UT
i,2R̄iUi,2

)−1
UT
i,2

)
R̄iUi,2T̄

T
j

= 0

Thus, the upper triangular blocks part of TRT T are all zeros. And since TRT T is

symmetric, the lower triangular blocks are also zeros. This proves Proposition 3.

We now transform (64) by the matrix T , diag{T, T, T . . . , T} ∈ R(k+1)p×(k+1)p.
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Proposition 1 in Lemma 3 ensures that T is a valid transformation. This transformation

yields



Tyt

Tyt+1

Tyt+2

...

Tyt+k


=



TC

TCA

TCA2

...

TCAk


xt +



TH 0 0 0 . . . 0

TCG TH 0 0 . . . 0

TCAG TCG TH 0 . . . 0

...
...

... . . . ...

TCAk−1G TCAk−2G . . . . . . TH





dt

dt+1

dt+2

...

dt+k




0 0 0 0 . . . 0

TC 0 0 0 . . . 0

TCA TC 0 0 . . . 0

...
...

... . . . ...

TCAk−1 TCAk−2 . . . . . . TC





wt

wt+1

...

wt+k−1


+



Tvt

Tvt+1

Tvt+2

...

Tvt+k


. (69)

Exploiting Proposition 2 in Lemma 3,

TH =



T1

T2
...

Tk

Tk+1


H =



T1H

0

...

0

0


, TCG =



T1CG

T2CG

0

...

0


, . . . , TCAk−2G =



T1CA
k−2G

...

...

TkCA
k−2G

0


.

Thus, if from (69) we extract the k + 1 row blocks that depend only on dt and have zero
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blocks multiplied by dt+1, dt+2, . . . etc., we get



T1yt

T2yt+1

T3yt+2

...

Tk+1yt+k


=



T1C

T2CA

T3CA
2

...

Tk+1CA
k


xt +



T1H

T2CG

T3CAG

...

Tk+1CA
k−1G


dt + Vt, (70)

where

Vt =



0 0 0 . . . 0

T2C 0 0 . . . 0

T3CA T3C 0 . . . 0

...
... . . . ...

Tk+1CA
k−1 Tk+1CA

k−2 . . . . . . Tk+1C





wt

wt+1

...

wt+k−1


+



T1vt

T2vt+1

T3vt+2

...

Tk+1vt+k


. (71)

It is thus possible to define a new system

xt+1 = Axt +Gdt + wt (72)

Yt = Cxt +Hdt + Vt, (73)

where C and H are the matrix coefficients of xt and dt in (70), respectively. System (72-73)

has the same form as system (1-2) with the exception that the noise signal Vt is colored and

correlated with the process noise signals wt, wt+1, . . . , wt+k−1. As known from Kalman fil-

tering theory, these difficulties can be overcome by finding a an equivalent system with white

and uncorrelated noise signals (Chapter 5.5 of Anderson and Moore [15]). It should be noted

that Proposition 3 in Lemma 3 ensures that the part of Vt that depends on vt, vt+1, . . . , vt+k
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is white. That is because

E





T1vt

T2vt+1

...

Tk+1vt+k





T1vt+1

T2vt+2

...

Tk+1vt+k+1



T


= 0.

This simplifies the problem of Vt being colored. The transformation of system (72-73) into

an equivalent system with white and uncorrelated noise will not be done for the general case

in this thesis. Assuming this is done, SISE of Algorithm 2 can be applied directly on (72-

73) to estimate dt and xt+1 given yt, yt+1, . . . , yt+k if rankH = m. Thus the number of

consecutive measurements needed for unbiasedly estimating dt is the number, k+1, that lets

rankH = m. But, one should not try adding row blocks toH until eternity, since there is an

upper bound for rankH that can be a priori calculated. This is formulated in the following

lemma.

Lemma 4. rankH ≤ rank
[
HT (CG)T (CAG)T . . . (CAn−1G)T

]
, where n is the di-

mension of the state xt.
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Proof.

rankH = rank



T1H

T2CG

...

Tk+1CA
k−1G


,

= rank





T1

T2

. . .

Tk+1





H

CG

...

CAk−1G




,

≤ min


rank



T1

T2

. . .

Tk+1


, rank



H

CG

...

CAk−1G




.

Keeping in mind Assumption 4 and Proposition 1 of Lemma 3,

rank



T1

T2

. . .

Tk+1


=

(
k+1∑
i=1

rankTi,

)
= p ≥ m.
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Thus,

rankH ≤ min


p, rank



H

CG

...

CAk−1G


(k+1)p×m



= rank



H

CG

...

CAk−1G


(k+1)p×m

.

For k ≤ n, the lemma clearly holds. But for k > n, Cayley-Hamilton Theroem comes to our

rescue allowing us to prove that

rank
[
HT (CG)T . . . (CAk−1G)T

]T
= rank

[
HT (CG)T . . . (CAn−1G)T

]T

however large is k. This proves Lemma 4.

Lemma 3 says that if there can not be found a k ≤ n for which rankH = m, then

such a k does not exist. This provides an effective necessary and sufficient condition for

any Discrete LTI system with a finite number of states. Note also that there is no need to

re-derive stability conditions for the general delay case since it is reduced to the maximum

rank feedthrough case to which stability conditions are found in Section 4.

As can be seen so far, an explicit solution for SISE with no conditions on the feedthrough

matrix is found by reducing it to the case with full rank feedthrough matrix. The only steps

that need to be taken are running Algorithm 3 until rankH = m, reformulating (72-73) to
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an equivalent system with white uncorrelated noise, and applying Algorithm 2 to get the de-

sired estimates. As mentioned earlier, the general delay SISE problem was carefully solved

by Yong et al. [18] but in another complicated way that depends on decomposing the dt into

k components each of which is estimated by an output signal at consecutive times. Aside

from the problem of noise correlation and color, the method presented here is simpler. In

fact, they do not explicitly formulate an algorithm for the general delay case but show how

to recursively do so and give an example for systems with delay latency ` = 2. However,

there method is superior in giving estimates of components of dt as soon as they are avail-

able. In contrast, the method presented here gives the estimate of the whole signal dt in one

late shot. In terms of the estimation of the state, xt+1, both algorithms give a smoothed value

x̂t+1|t+k after the whole estimate of dt is available.

6 Extension of stability conditions to time-varying systems

Developments so far have been limited to the time-invariant case and have availed

themselves of concepts of transmission zeros and stable invertibility, each of which is prob-

lematic to extend to time-varying systems. However, since alternative results have been

phrased for the time-varying case, we consider this extension now, relying on examination

of SISE recursions via Riccati difference equations in the proofs of Lemmas 1 and 2. Note,

however, that the transformation of Section 3.4, where the measurement noise covariance

becomes block diagonal, is used here for the case of H = 0.

Appealing to [14, 8] for the time-varying SISE algorithms in the case zero direct

feedthrough and with application of the transformation (36) rather than (21), Riccati equation
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(27) becomes

Xt+1 = ĀtXtĀ
T
t − ĀtXtC̄

T
2,t(C̄2,tXtC̄

T
2,t + R̄2,t)

−1

× (ĀtXtC
T
2,t)

T + Q̄t,

where,

Āt = At(I −Gt−1(C̄1,tGt−1)
−1C̄1,t),

Q̄t = AtGt−1(C̄1,tGt−1)
−1R̄1,t(Gt−1(C̄1,tGt−1)

−1)TAT
t

+Qt,

and, in the case of full-rank feedthrough, (52) becomes

Pt+1 = ÂtPtÂ
T
t − (ÂtPtC̄

T
2,t)(C̄2,tPtC̄2,t + R̄2,t)

−1

× (ÂtPtC̄
T
2,t)

T + Q̂t,

where,

Ât = At −GtH̄
−1
1,t C̄1,t, Q̂t = Qt +GtH̄

−1
1,t R̄1,tH̄

−T
1,t G

T
t .

with now time-varying quantities {At, Gt, . . . , }. We may appeal to standard sufficient re-

sults, e.g. Theorem 5.3 in [19], on the exponential stability of the Kalman filter subject to

uniform reachability and detectability. Subject to the uniform satisfaction of time-varying

equivalents of Assumptions 1, 2 and/or 3 as appropriate, this extends our stability conditions

to the uniformly time-varying case. However, these stability conditions are now sufficient

only.
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Results in Section 6 are provisionally accepted to be published in Automatica jour-

nal in a paper co-authored with Mohammad Ali Abooshahab, Morten Hovd, and Robert

Bitmead. The author of this thesis was a primary investigator of those results and is the

primary author of those sections as they appear in this thesis.

7 A note on the meaningfulness of unbiasedness in the SISE

context

In their paper A Kalman-filtering derivation of simultaneous input and state estima-

tion [11], Bitmead and co-authors criticize the attempt to estimate the unknown input signal

without attributing any model to it. They say,

“It is usually attributed to John von Neumann or to Stanislaw Ulam that the

study of non-equilibrium thermodynamics in Physics is akin to the study of non-

elephants in Zoology. By the same token, the study of model-free estimation is

an unhelpful even meaningless description in this domain.”

Unsatisfied by the model-free description of the SISE problem, they re-derived the

SISE algorithm of [14] as a Kalman filter by explicitly modelling the unknown input se-

quence {dt} as a white noise with a covariance approaching infinity. They hold that, unless

the signal dt is given a statistical model, the property of unbiasedness of the estimator is

not used in its probabilistically standard sense. In this thesis, I used the term unbiased to

describe the SISE estimator without adopting the views of Bitmead et. al. And thus, in what

follows, I will defend the traditional account of SISE by appealing to the standard statistical

concepts of point estimators and point estimates.
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Definitions of a point estimators, point estimates, and bias

In the following definitions, I follow the classic text Introduction to Mathematical

Statistics of Hogg and Craig [20]. Let a random variable Y have a probability density func-

tion (pdf) that is of known functional form that depends upon an unknown parameter θ. Thus,

to each value of θ there corresponds a pdf of Y that we denote by fY (y; θ). It should be noted

here that θ is considered only an unknown constant parameter not a random variable. Now,

let Y1, Y2, . . . , Yn denote random samples of the random variable Y . A point estimator Θ̂ of

the parameter θ is defined as a function Θ̂ = g(Y1, Y2, . . . , Yn). The aim in the construction

of the function g(Y1, Y2, . . . , Yn) is that when the observed experimental values y1, y2, . . . , yn

of the random samples Y1, Y2, . . . , Yn are substituted in g, it yields a “good” estimate of θ.

We denote the estimate by θ̂ = g(y1, y2, . . . , yn). Note that the estimator Θ̂ is a random

variable since it is a function of the random samples Y1, Y2, . . . while the estimate θ̂ is only

a numerical value like θ. One of the quality measures of estimators that give a sense to the

word “good” as used above is unbiasedness. According to this formulation, the bias of a

point estimator is defined as

bais , E[Θ̂]− θ.

Thus, an unbiased point estimator Θ̂ is an estimator with bias = 0.

Input estimation as unbiased point estimation

55



Consider the system (1-2)

xt+1 = Axt +Gdt + wt

yt = Cxt +Hdt + vt.

with wt and vt being white, uncorrelated, and zero-mean noises. We consider the sequence

{dt ∈ Rm} a sequence of determinate but unknown parameters. The state at time t, xt, is a

random variable since it is a function of the random variable x0 and the sequence of random

variables {wt}. Thus the measurement at time t, yt, is a random variable too, parametrized

by the constant dt. Assume that a function X̂t(Yt) is given as an unbiased point estimator of

E[xt] such that E[X̂t(Yt)] = E[xt]. Define a function D̂t(Yt) as

D̂t(Yt) ,Mt(yt − CX̂t(Yt)) (74)

= Mt(Cxt +Hdt + vt − CX̂t(Yt)),

Where Mt is an arbitrary matrix of suitable dimensions. Evidently, D̂t(Yt) is a random

variable with an expected value of

E[D̂t(Yt)] = Mt(CE[xt] +HE[dt] + E[vt]− CE[X̂t(Yt)]).

But since dt is a constant and E[X̂t(Yt)] = E[xt] by definition, we get

E[D̂t(Yt)] = MtHdt.

Thus, D̂t(Yt) is an unbiased point estimator of the parameter dt if and only if MtH = I

which exactly agrees with SISE formulation of [8] that was reproduced as Algorithm 2.
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Moreover, if MtH = I , a function X̂t+1(Yt+1) can be defined as

X̂t+1(Yt+1) = AX̂t(Yt) +GD̂t(Yt),

which has an expected value of

E[X̂t+1(Yt+1)] = AE[X̂t(Yt)] +GE[D̂t(Yt)]

= AE[xt] +Gdt

= E[xt+1].

Thus, X̂t+1(Yt+1) is an unbiased estimator of E[xt+1]. This allows us to define Dt+1(Yt+1)

as an unbiased estimator of dt+1 similar to what was done for dt but with the condition

Mt+1H = I . This can go on indefinitely. Thus, a strictly statistical ground has been estab-

lished to confirm the meaningfulness of the claim that SISE is an unbiased estimator of the

signal dt without committing to any statistical model for it. SISE does exactly that and adds

to it a modification of the estimators X̂t(Yt) and D̂t(Yt) to minimize the variance. The same

reasoning applied above can be easily extended to the case of zero feedthrough.

8 Appendix

Theorems E.5.1 and 14.7.2 from [16] are alluded to in the proofs of Theorems 2 and

4. Thus, Theorems E.5.1 and 14.7.2 from [16] will be reproduced here for completeness.

Theorem (E.5.1 from [16]). Consider the discrete-time algebraic Riccati equation (DARE)

P = FPF ∗ +GQG∗ − (FPH∗ +GS)(R+HPH∗)−1(FPH∗ +GS)∗. (75)
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Then the following two statements are equivalent.

(i) {F,H} is detectable and {F s, GQs/2} is controllable on the unit circle, where F s ,

F −GSR−1H and Qs , Q− SR−1S∗.

(ii) The DARE has a stabilizing P, i.e., one for which the matrix F −KpH is stable, where

Kp = (FPH∗ +GS)(R+HPH∗)−1.

Moreover, any such stabilizing solution is unique and positive semi-definite.

Theorem (14.7.2 from [16]). Consider the Riccati recursion

Pi+1 = FPiF
∗ +GQG∗ − (FPiH

∗ +GS)(R+HPiH
∗)−1(FPiH

∗ +GS)∗,

where {F,H} is detectable and {F s, GQs/2} is stabilizable (F s and Qs are defined as in

Theorem E.5.1 above). Suppose, moreover, that the initial condition P0 is a Hermitian matrix

such that

I + (P a)∗/2P0(P
a)1/2 > 0,

where P a = (P a)1/2(P a)∗/2 is a certain positive definite matrix (Check [16] for details).

Then Pi converges to the unique stabilizing solution, P , of the DARE corresponding to the

above RDE.
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