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Sentiment-aware intelligent systems are essential to a wide array of applications.

These systems are driven by language models which broadly fall into two paradigms:

Lexicon-based and contextual. Although recent contextual models are increasingly

dominant, we still see demand for lexicon-based models because of their interpretability

and ease of use. For example, lexicon-based models allow researchers to readily

determine which words and phrases contribute most to a change in measured sentiment.

A challenge for any lexicon-based approach is that the lexicon needs to be routinely

expanded with new words and expressions. Here, we propose two models for automatic

lexicon expansion. Our first model establishes a baseline employing a simple and shallow

neural network initialized with pre-trained word embeddings using a non-contextual

approach. Our second model improves upon our baseline, featuring a deep Transformer-

based network that brings to bear word definitions to estimate their lexical polarity. Our

evaluation shows that both models are able to score new words with a similar accuracy

to reviewers from Amazon Mechanical Turk, but at a fraction of the cost.

Keywords: sentiment analysis, semantic lexicons, transformers, BERT, FastText, word embedding, labMT

1. INTRODUCTION

In computational linguistics and natural language processing (NLP), sentiment analysis involves
extracting emotion and opinion from text data. There is an increasing demand for sentiment-
aware intelligent systems. The growth of sentiment-aware frameworks in online services can be
seen across a vast, multidisciplinary set of applications (Nasukawa and Yi, 2003; Medhat et al.,
2014; Bakshi et al., 2016).

With the modern volume of text data—which has long rendered human annotation infeasible—
automated sentiment analysis is used, for example, by businesses in evaluating customer feedback
to make informed decisions regarding product development and risk management (Turney, 2002;
Cabral and Hortacsu, 2010). Combined with recommender systems, sentiment analysis has also
been used with the intent to improve consumer experience through aggregated and curated
feedback from other consumers, particularly in retail (Kumar and Lee, 2006; Tang et al., 2009; Yu
et al., 2013), e-commerce (Bhatt et al., 2015; Haque et al., 2018), and entertainment (Terveen et al.,
1997; Pang et al., 2002).
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Beyond applications in industry, sentiment analysis has been
widely applied in academic research, particularly in the social
and political sciences (Chen et al., 2021). Public opinion,
e.g., support for or opposition to policies, can be potentially
gauged from online political discourse, giving policymakers an
important window into public awareness and attitude (Laver
et al., 2003; Thomas et al., 2006). Sentiment analysis tools have
shown mixed results in forecasting elections (Tumasjan et al.,
2010) and monitoring inflammatory discourse on social media,
with vital relevance to national security (Pang and Lee, 2008).
Sentiment analysis has also been used in the public health
domain (Coppersmith et al., 2014; Yadollahi et al., 2017; Gohil
et al., 2018), with recent studies analyzing social media discourse
surrounding mental health (Bathina et al., 2021; Stupinski et al.,
2021), disaster response and emergencymanagement (Beigi et al.,
2016).

The growing number of applications of sentiment-aware
systems has led the NLP community in the past decade to develop
end-to-end models to examine short- and medium-length text
documents (Wilson et al., 2005; Feldman, 2013), particularly
for social media (Pak and Paroubek, 2010; Agarwal et al., 2011;
Korkontzelos et al., 2016). Some researchers have considered the
many social and political implications of using AI for sentiment
detection across media (Crawford, 2019; Crawford and Paglen,
2021). Recent studies highlight some of the implicit hazards
of crowdsourcing text data (Shmueli et al., 2021), especially
in light of the latest advances in NLP and emerging ethical
concerns (Conway and O’Connor, 2016; Hovy and Spruit, 2016).
Identifying potential racial and gender disparity in NLP models
is essential to develop better models (Tatman, 2017).

Sentiment analysis tools fall into one of two groups, depending
on their definition of sentiment and their model for its
estimation. One of the more popular paradigms is discrete
classification, where sentiment is divided into several classes
(e.g., positive, negative) and pieces of text are associated with
each class. However, sometimes a continuous measure is desired,
requiring a spectrum of sentiment scores rather than sentiment
classes (Thelwall et al., 2010). This more nuanced sentiment
scoring paradigm has been widely adopted for e-commerce,
movies, and restaurant reviews (Snyder and Barzilay, 2007).

Sentiment analysis models largely derive from two major
paradigms: 1. Lexicon-based models and 2. Contextual models.
Lexicon-based models compute sentiment scores based on
sentiment dictionaries (sentiment lexicons) typically constructed
by human annotators (Taboada et al., 2011; Dodds et al., 2015;
Augustyniak et al., 2016). A sentiment lexicon contains not
only terms that express a particular sentiment/emotion, but also
terms that are associated with a particular sentiment/emotion
(denotation vs. connotation). Contextual models, on the
other hand, extrapolate semantics by converting words to
vectors in an embedding space, and learning from large-scale
annotated datasets to predict sentiment based on co-occurrence
relationships between words (Wilson et al., 2005; Pak and
Paroubek, 2010; Agarwal et al., 2011; Feldman, 2013; Socher et al.,
2013b). Contextual models have the advantage in differentiating
multiple meanings, as in the case of “The dog is lying on the
beach” vs. “I never said that—you are lying,” while lexicon-based

models usually have a single score for each word, regardless of
usage. Despite the flexibility of contextual models, their results
can be difficult to interpret, as the high-dimensional latent space
in which they are embedded renders explanation difficult. The
ease of use and transparent comprehension of lexicon-based
models help explain their continued popularity (Pang and Lee,
2008; Taboada et al., 2011; Dodds et al., 2015). For example, while
the linguistic mechanisms leading to change in sentiment may be
hard to explain with word embeddings, one can straightforwardly
use lexicon scores to reveal the words contributing to shifted
sentiment (Dodds et al., 2011; Reagan et al., 2017; Gallagher et al.,
2021).

A major challenge for the simpler and more interpretable
lexicon-based models, however, is the time and financial
investment associated with maintaining them. Sentiment
lexicons must be updated regularly to mitigate the out-of-
vocabulary (OOV) problem—words and phrases that were
either not considered or did not exist when the dictionaries
were originally constructed (Riloff, 1996). While researchers
show general sentiment trends are observable unless the lexicon
does not have enough words, having a versatile dictionary with
specialized and rarely used words improves the signal (Dodds
and Danforth, 2010; Reagan et al., 2017). Notably, language is an
evolving sociotechnical phenomenon. New words and phrases
are created constantly, especially on social media (Alshaabi et al.,
2021a). Word usage changes over time. New words are created,
old words lose popularity, and the meaning of words can change.
For example, the word “covid” grew to be the most narratively
trending n-gram in reference to the global Coronavirus outbreak
during February and March 2020 (Alshaabi et al., 2021b).

Sentiment analysis applications are often developed to
investigate bipolar relationships (e.g., positive–negative,
happy–sad, excited–bored). These bipolar relationships
are conveniently handled by binary classification systems,
however, such a formalization leads to multiple varieties of
neutral sentiment (Colhon et al., 2017). Many sentiment
analysis applications avoid, ignore, or remove text with neutral
sentiment. Excluding neutral sentiment text during training can
have significant impacts on trained models, which are often
confused by or uncertain of neutral sentiment text (Koppel and
Schler, 2006). For classification-based applications, explicitly
representing neutral sentiment as a third class can improve
model performance (Ribeiro et al., 2016). Humans process
emotionally charged words differently than neutral words,
thus sentiment analysis model may find success via similar
processes Kissler and Herbert (2013).

In this work, we propose an automated framework extending
sentiment for semantic lexicons to OOV words, reducing the
need for crowdsourcing scores from human annotators, a process
that can be time-consuming and expensive. Although our
framework can be used in a more general sense, we focus on
predicting happiness scores based on the labMT dataset (Dodds
et al., 2015). This dataset was constructed from human ratings
of the “happiness” of words on a continuous scale, averaging
scores from multiple annotators for more than 10,000 words.
We discuss this dataset in detail in section 3.1. In section 2,
we discuss recent developments using deep learning in NLP,
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and how they relate to our work. We introduce two models,
demonstrating accuracy on par with human performance (see
section 3 for technical details). We first introduce a baseline
model—a neural network initialized with pre-trained word
embeddings—to gauge happiness scores. Second, we present a
deep Transformer-based model that uses word definitions to
estimate their sentiment scores. We will refer to our models as
the “Token” and “Dictionary” models, respectively. We present
our results and model evaluation in section 4, highlighting how
the models perform compared with reviewers from Amazon’s
Mechanical Turk. Finally, we highlight key limitations of our
approach, and outline some potential future developments in
concluding remarks.

2. RELATED WORK

Word embeddings are abstract numerical representations
of the relationships between words, derived from statistics
on individual corpora, and encoding language patterns
so that concepts with similar semantics have similar
representations (Bengio et al., 2003). Researchers have shown
that efficient representations of words can both express meanings
and preserve context (Maas et al., 2011; Hollis and Westbury,
2016; Hollis et al., 2017; Li et al., 2017). While there are
many ways to construct word embedding models (e.g., matrix
factorization), we often use the term to refer to a specific class of
word embeddings that are learnable via neural networks.

Word2Vec is one of the key breakthroughs in NLP,
introducing an efficient way for learning word embeddings
from a given text corpus (Mikolov et al., 2013a,b). At its core,
it builds off of a simple idea borrowed from linguistics and
formally known as the “distributional hypothesis”—words that
are semantically similar are also used in similar ways, and likely
to appear with similar context words (Harris, 1954).

Starting from a fixed vocabulary, we can learn a vector
representation for each word via a shallow network with a single
hidden layer trained in one of two fashions (Mikolov et al.,
2013a,b). Both approaches formalize the task as a unsupervised
prediction problem, whereby an embedding is learned jointly
with a network that is trained to either predict an anchor
word given the words around it (i.e., continuous bag-of-words
(CBOW)), or by predicting context words for an anchor word
(i.e., skip-gram) (Mikolov et al., 2013a). Both approaches,
however, are limited to local context bounded by the size of the
context window. Global Vectors (GloVe) addresses that problem
by capturing corpus global statistics with a word co-occurrence
probability matrix (Pennington et al., 2014).

While Word2Vec and GloVe offer substantial improvements
over previous methods, they both fail to encode unfamiliar
words—tokens that were not processed in the training corpora.
FastText refines word embeddings by supplementing the learned
embedding matrix with subwords to overcome the challenge of
OOV tokens (Bojanowski et al., 2017; Joulin et al., 2017). This
is achieved by training the network with character-level n-grams
(n ∈ {3, 4, 5, 6}), then taking the sum of all subwords to construct
a vector representation for any given word. Although the idea

behind FastText is rather simple, it presents an elegant solution to
account for rare words, allowing the model to learn more general
word representations.

A major shortcoming of the earlier models is their
inability to capture contextual descriptions of words as
they all produce a fixed vector representation for each
word. In building context-aware models, researchers often use
fundamental building blocks such as recurrent neural networks
(RNN) (Rumelhart et al., 1986)—particularly long short-term
memory (LSTM) (Hochreiter and Schmidhuber, 1997)—that
are designed to process sequential data. Many methods have
provided incremental improvements over time (Chen et al., 2017;
Lee et al., 2017; Peters et al., 2017). ELMo is one of the key
milestones toward efficient contextualized models, using deep bi-
directional LSTM language representations (Peters et al., 2018).

In late 2017, the advent of deep attention-based models,
dubbed transformers, rapidly changed the landscape in
the NLP community (Vaswani et al., 2017). The encoder-
decoder framework, powered by attention blocks, enables
faster processing of the input sequence while also preserving
context (Vaswani et al., 2017). Recent adaptations of the
building blocks of Transformers continue to break records,
improving the state-of-the-art across all NLP benchmarks
with recent applications to computer vision and pattern
recognition (Dosovitskiy et al., 2021).

Exploiting the versatile nature of Transformers, we observe
the emergence of a new family of language models widely known
as “self-supervised” including as bidirectional encoders (e.g.,
BERT) (Devlin et al., 2019), and left-to-right decoders (e.g.,
GPT) (Radford et al., 2018). Self-supervised language models
are pre-trained by masking random tokens in the unlabeled
input data and training the model to predict these tokens.
Researchers leverage recent subword tokenization techniques,
such as WordPiece (Wu et al., 2016), SentencePiece (Kudo and
Richardson, 2018), and Byte Pair Encoding (BPE) (Sennrich
et al., 2016), to overcome the challenge of rare and OOV words.
Subtle contextualized representations of words can be learned
by predicting whether sentence B follows sentence A (Devlin
et al., 2019). Pre-trained language models can then be fine-tuned
using labeled data for downstream NLP tasks, such as named
entity recognition, question answering, text summarization, and
sentiment analysis (Radford et al., 2018; Devlin et al., 2019).

Recent advances in NLP continue to improve the language
facility of Transformer-based models. The introduction of
XLNet (Yang et al., 2019) is another remarkable breakthrough
that combines the bi-directionality of BERT (Devlin et al., 2019)
and the autoregressive pre-training scheme from Transformer-
XL (Dai et al., 2019). While the current trend of making
ever-larger and deeper language models shows an impressive
track record, it is arguably unfruitful to maintain unreasonably
large models that only giant corporations can afford to
use due to hardware limitations (Thompson et al., 2020).
Vitally, less expensive language models need to be both
computationally efficient and exhibit performance on par with
larger models. Addressing that challenge, researchers proposed
clever techniques of leveraging knowledge distillation (Hinton
et al., 2015) to train smaller and faster models [e.g., DistilBERT
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(Sanh et al., 2019)]. Similarly, efficient parameterization strategies
via sharing weights across layers can also reduce the size of the
model while maintaining state-of-the-art results [e.g., ALBERT
(Lan et al., 2020)].

Previous work on automatic sentiment lexicon generation
(ASLG) has used a variety of heuristics to assign sentiment scores
to OOV words. Most ASLG methods start with a seed lexicon
containing words of known sentiment, then use a distance
function to propagate sentiment scores from known words
to unknown words. Word co-occurrence frequencies (Turney
and Littman, 2003; Kiritchenko et al., 2014) and shortest path
distances within a semantic word graph (Qiu et al., 2009;
Baccianella et al., 2010; San Vicente et al., 2014) [such as
WordNet (Fellbaum, 1998)] were common distance functions
in earlier work. More recently, distance functions based on
learned word embeddings have gained popularity (Tang et al.,
2014; Wang et al., 2016; Ljubešić et al., 2018; Thavareesan and
Mahesan, 2020). The outputs of word embedding models usually
need to be projected into a lower dimension before they can be
used for ASLG. This can be done using a variety of machine
learning models, though linear models are likely one of the most
popular options (Qiu et al., 2009; Amir et al., 2015; Wang et al.,
2016; Li et al., 2017; Alshari et al., 2018; Ljubešić et al., 2018;
Thavareesan and Mahesan, 2020). Amir et al. (2015) proposed
the use of a support vector regressor (SVR) trained with
CBOW (Mikolov et al., 2013a) or GloVe (Pennington et al.,
2014) word embeddings, finding that the SVR model out
performed various linear models [e.g., Lasso (Yuan and Lin,
2006), Ridge (Hoerl and Kennard, 1970), ElasticNet (Zou and
Hastie, 2005) regressors] on the labMT lexicon. However, their
models only predicted a binary sentiment polarity (ŷ ∈ [0, 1]),
rather than continuous scores. Li et al. (2017) extended their
work, proposing a class of linear regression models trained
with word embeddings to predict affective meanings in several
sentiment lexicons such as ANEW (Bradley and Lang, 1999),
VAD (Mohammad, 2018). Darwich et al. (2019) present an
excellent review of ASLG.

Many of the human engineered heuristics used in previous
work on ASLG can be largely automated via clever application of
new machine learning techniques. Sentiment analysis knowledge
bases can be constructed using graph-mining and multi-
dimensional scaling techniques (Bajpai et al., 2016). Once
constructed, these knowledge bases allow for the application of a
host of additional methods. Neural tensor networks can be used
for knowledge base completion, inferring relationships that were
missed during construction (Socher et al., 2013a). Graph neural
networks can create rich features from the relationships captured
in knowledge bases, allowing sentiment analysis models to handle
complex context-based problems (Dowlagar and Mamidi, 2021;
Liao et al., 2021; Yang et al., 2021). Ensembles of symbolic and
sub-symbolic AI can be used to cover the individual weaknesses
of each method (Cambria et al., 2020).

Building on the many of the models discussed above, we
develop a framework for augmenting semantic lexicons using
word embeddings and pre-trained large language models. Our
models output continuous valued sentiment scores that can
represent degrees of negative, neutral, and positive sentiment.

Our tool reduces the need for crowdsourcing scores from human
annotators while still providing similar, and often better, results
compared with random reviewers from Amazon Mechanical
Turk at a fraction of the cost.

3. MATERIALS AND METHODS

We propose two models for predicting happiness scores for the
labMT lexicon (Dodds et al., 2015)—a general-purpose sentiment
lexicon used to measure happiness in text corpora (see section 3.1
for more details).

Our first model is a neural network initialized with pre-
trained FastText word embeddings. The model uses fixed
word representations to gauge the happiness score for a given
expression, enabling us to augment the labMT dataset at a
low cost. For simplicity, we will refer to this model as the
Token model.

Bridging the link between lexicon-based and contextualized
models, we also propose a deep Transformer-based model that
uses word definitions to estimate their happiness scores—namely,
the Dictionary model. The contextualized nature of the input
data allows our model to accurately estimate the expressed
happiness score for a given word based on its lexical meaning.

We implement our models using Tensorflow (Abadi et al.,
2016) and Transformers (Wolf et al., 2020). See section 3.2 and
section 3.3 for additional details of our Token and Dictionary
models, respectively. Our source code, along with pre-trained
models, are publicly available via our GitLab repository (https://
gitlab.com/compstorylab/sentiment-analysis).

3.1. Data
In this study, we use the labMT dataset as an example sentiment
lexicon to test and evaluate our models (Dodds et al., 2015). The
labMT lexicon contains roughly ten thousand unique words—
combining the five thousand most frequently used words from
New York Times articles, Google Books, Twitter messages, and
music lyrics (Dodds et al., 2015). It is a lexicon designed to gauge
changes in the happiness (i.e., valence or hedonic tone) of text
corpora. Happiness is defined on a continuous scale h ∈ {1 → 9},
where 1 bounds the most negative (sad) side of the spectrum,
and 9 is the most positive (happy). Ratings for each word are
crowdsourced via Amazon Mechanical Turk (AMT), taking the
average score havg from 50 reviewers to set a happiness score
for any given word. For example, the words “suicide,” “terrorist,”
and “coronavirus” have the lowest happiness scores, while the
words “laughter,” “happiness,” and “love” have the highest scores.
Function and stop words along with numbers and names tend to
have neutral scores (havg ≈ 5), such as “the,” “fourth,” “where,”
and “per.”

The labMT dataset also powers the Hedonometer, an
instrument quantifying daily happiness on Twitter (Dodds et al.,
2011). Over the past few years, the labMT lexicon was updated to
include newwords that were not found in the original survey [e.g,
terms related to the COVID19 pandemic (Alshaabi et al., 2021b)].

We are particularly interested in this dataset because it also
provides the standard deviation of human ratings for each word,
which we use to evaluate our models. In this work, we propose

Frontiers in Artificial Intelligence | www.frontiersin.org 4 January 2022 | Volume 4 | Article 783778

https://gitlab.com/compstorylab/sentiment-analysis
https://gitlab.com/compstorylab/sentiment-analysis
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Alshaabi et al. Augmenting Semantic Lexicons Using Wordembeddings

FIGURE 1 | Emotional valence of words and uncertainty in human ratings of

lexical polarity. A 2D histogram of happiness havg and standard deviation of

human ratings for each word in the labMT dataset. Happiness is defined on a

continuous scale from 1 to 9, where 1 is the least happy and 9 is the most.

Words with a score between 4 and 6 are considered neutral. While the vast

majority of words are neutral, there is a positive bias in human language (Dodds

et al., 2015). The average standard deviation of human ratings for estimating

the emotional valence of words in the labMT dataset is 1.38.

two models to estimate havg using word embeddings, and thus
provide an automated tool to augment the labMT dataset both
reliably and efficiently.

In Figure 1, we display a 2D histogram of the human rated
happiness scores in the labMT dataset. The figure highlights the
degree of uncertainty in human ratings of the emotional valence
of words. For example, the word “the” has an average happiness
score of havg = 4.98, with standard deviation of σ = 0.91, while
the word “hahaha” has a happier score with havg = 7.94 and σ =

1.56. Some words also have a relatively large standard deviation
such as “church” (havg = 5.48, σ = 1.85), and “cigarettes”
(havg = 3.31, σ = 2.6).

While the majority of words are neutral, with a score between
4 and 6, we still observe a human positivity bias in the English
language (Dodds et al., 2015; Aithal and Tan, 2021). On average,
the standard deviation of human ratings is 1.38. In our evaluation
(section 4), we show how our models perform relative to the
uncertainty observed in human ratings.

3.2. Token Model
Our first model uses a neural network that learns to map words
from the labMT lexicon to their corresponding sentiment scores.
While still being able to learn a non-linear mapping between the
words and their happiness scores, the model only considers the

individual words as input—enriching its internal utility function
with subword representations to estimate the happiness score.

The input word is first processed into a token embedding—
sequentially breaking each word into its equivalent character-
level n-grams whereby n ∈ {3, 4, 5} (see Figure 2 for an
illustration). English words have an average length of 5
characters (Miller et al., 1958; Mayzner and Tresselt, 1965),
which would yield 6 unique character-level n-grams given our
tokenization scheme. While we did try shorter and longer
sequences, we fix the length of the input sequence to a size of
50 and pad shorter sequences to ensure a universal input size.
We choose a longer sequence length to allow us to encode longer
n-grams and rare words.

We then pass the token embeddings to a 300-dimensional
embedding layer. We initialize the embedding layer with weights
trained with subword information on Common Crawl and
Wikipedia using FastText (Bojanowski et al., 2017). In particular,
we use weights from a pre-trained model using CBOW with
character-level n-grams of length 5 and a window size of 5 and
10 (https://fasttext.cc/docs/en/english-vectors.html).

The output of the embedding layer is pooled down and passed
to a sequence of three dense layers of decreasing sizes: 128, 64,
and 32, respectively. We use a rectified linear activation function
(ReLU) for all dense layers.We also add a dropout layer after each
dense layer, with a 50% dropout rate to add stochasticity to the
model, allowing for a simple estimate of uncertainty using the
standard deviation of the network’s predictions (Srivastava et al.,
2014).

We experimented with a few different layout configurations,
finding that making the network either wider or deeper has
minimal effect on the network performance. Therefore, we
choose to keep our model rather simple with roughly 10 million
trainable parameters. The output of the last dense layer is finally
passed over to a single output layer with a linear activation
function to regress a sentiment score between 1 and 9. See
Figure 3 for a simple diagram of the model architecture.

3.3. Dictionary Model
Historically, lexicon-based models have only considered simple
statistical methods to estimate the emotional valence of words.
Here, we try to bridge the connection between the conventional
techniques among the community and recent advances in NLP.

For our second model, we use a contextualized Transformer-
based language model to estimate the sentiment score for a given
word based on its dictionary definition. While still predicting
scores for individual words, we now do so by augmenting each
word with its expressed meaning(s) from a general dictionary.
Given an input word, we look up its definition via a free online
dictionary API available at https://dictionaryapi.dev.

The average length of definitions for the words found
in labMT is roughly 38 words. We choose a maximum
definition length of 50 words—which covers the 75th percentile
of that distribution—to ensure that words with multiple
definitions are adequately represented. While increasing the
sequence length beyond 50 did not improve our accuracy,
it increases the model complexity slowing our training and
inference time substantially. Therefore, we fix the length of
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FIGURE 2 | Input sequence embeddings. We use two encoding schemes to prepare input sequences for our models: token embeddings (blue) and dictionary

embeddings (orange) for our Token and Dictionary models, respectively. Given an input word (e.g., “coronavirus,”) we first break the input token into character-level

n-grams (n ∈ {3, 4, 5}). The resulting sequence of n-grams along with the original word at the beginning of the embeddings are used in our Token model. Sequences

shorter than a specified length are appended with PAD, a padding token ensuring a universal input size. For our Dictionary model, we first look up a dictionary

definition for the given input. We then process the input word along with its definition into subwords using WordPiece (Wu et al., 2016). Uncommon and novel words

are broken into subwords, with double hashtags indicating that the given token is not a full word.

FIGURE 3 | Model architectures. Our first model is a neural network initialized

with pre-trained word embeddings to estimate happiness scores. Our second

model, is a deep Transformer-based model that uses word definitions to

estimate their sentiment scores. See section 3.2 and 3.3 for further technical

details of each model, respectively. Note the Token model is considerably

smaller with roughly 10 million trainable parameters compared with the

Dictionary model that has a little over 66 million parameters.

word definitions to a maximum of 50 words. We pad shorter
sequences, and truncate words 51 and beyond to ensure a fixed
input size.

FIGURE 4 | Ensemble learning and k-fold cross-validation. Using an 80/20

split for training/validation, we train our models for a maximum of 500 epochs

per fold for a total of 5 folds. We use the model trained from each fold to build

an ensemble because the average performance of an ensemble is less biased

and better than the individual models.

We estimate the sentiment of each labMT word as follows.
The word, along with its definition, is processed into dictionary
embeddings by breaking each word into subwords based on their
frequency of usage using WordPiece (Wu et al., 2016). This is a
widely adopted tokenization technique that breaks uncommon
and novel words into subwords, which reduces the vocabulary
size of language models and enables them to handle OOV tokens.
Other tokenization models will give similar results (Kudo and
Richardson, 2018). We only use the word as input to our model
for terms without definitions.

In principle, the dictionary embeddings can be passed
to a vanilla Transformer model [e.g., BERT (Devlin et al.,
2019), XLNet (Yang et al., 2019)]. However, we prefer more
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TABLE 1 | Summary statistics of the testing subset comparing our models to the annotated ratings reported in labMT.

Mean absolute error (MAE) Percentiles

Model Average 25th 50th 75th 85th 95th

Linear models

ElasticNet + Word2Vec 0.81 0.82 0.81 0.82 0.82 0.83

ElasticNet + GloVe 0.81 0.82 0.81 0.82 0.82 0.82

ElasticNet + FastText 0.81 0.82 0.81 0.82 0.82 0.82

LASSO + Word2Vec 0.81 0.81 0.81 0.81 0.82 0.83

LASSO + GloVe 0.81 0.81 0.82 0.82 0.82 0.82

LASSO + FastText 0.81 0.80 0.81 0.81 0.81 0.82

Ridge + Word2Vec 0.73 0.73 0.73 0.74 0.74 0.75

Ridge + GloVe 0.75 0.74 0.75 0.75 0.77 0.79

Ridge + FastText 0.73 0.73 0.73 0.74 0.74 0.74

Random forest (RF) models

RF + Word2Vec 0.69 0.69 0.70 0.70 0.71 0.78

RF + GloVe 0.70 0.70 0.70 0.71 0.71 0.71

RF + FastText 0.68 0.67 0.68 0.68 0.68 0.69

Support vector regressor (SVR) models

SVR + Word2Vec 0.65 0.65 0.65 0.66 0.66 0.67

SVR + GloVe 0.67 0.68 0.67 0.66 0.68 0.69

SVR + FastText 0.64 0.64 0.64 0.65 0.66 0.66

Proposed models

Token model (single) 0.62 0.60 0.61 0.64 0.65 0.66

Token model (ensemble) 0.57 0.29 0.44 0.66 0.72 0.77

Dictionary model (single) 0.50 0.49 0.50 0.51 0.51 0.52

Dictionary model (ensemble) 0.45 0.15 0.31 0.40 0.52 0.59

Human ratings (standard deviation σ ) 1.38 1.18 1.36 1.56 1.69 1.90

Human ratings (variance σ
2) 1.99 1.39 1.85 2.43 2.86 3.61

Each word in the labMT lexicon is scored by 50 distinct individuals and the final happiness score is the unweighted mean of their scores (Dodds et al., 2015). We report the standard

deviation and variance of the ratings as a baseline to assess the human’s confidence in the reported scores. Comparing our predictions with the annotations crowdsourced via AMT, our

mean absolute errors are on par with the variance observe in the human annotated labMT scores. In addition to our proposed models, we also evaluate three groups of baseline models

based on linear regression, random forests, and support vector machines. We trained and evaluated each baseline model over 10 trials using one of three pre-trained embeddings as

the primary input: word2vec-google-news-300 (Mikolov et al., 2013a), glove-wiki-gigaword-300 (Pennington et al., 2014), fasttext-wiki-news-subwords-300 (Bojanowski et al., 2017).

Our baseline models are similar to those seen in Amir et al. (2015) and Li et al. (2017). Best models are highlighted in bold.

manageable models (i.e., smaller and faster) due to their
efficiency while maintaining state-of-the-art results. We tried
both ALBERT (Lan et al., 2020) and DistilBERT (Sanh et al.,
2019). Both models have equivalent performance on our task.
The output of the model’s pooling layer is passed to a
sequence of three dense layers of decreasing sizes with dropout
applied after each layer—similar to our approach in the Token
model. Finally, the output of the last dense layer is projected
down to a single output value that servers as the sentiment
score prediction.

The Token model is considerably lighter in terms of memory
usage, and faster in terms of training and inference time than the
Dictionary model. Our current configuration of the Tokenmodel
results in roughly 10 million trainable parameters compared with
the Dictionary model that has over 66 million parameters.

4. RESULTS

4.1. Ensemble Learning and k-Fold
Cross-Validation
In the deep learning community, particularly in the NLP
domain, it is common to scale up the number of parameters

in successful models to eke out additional performance gains.
The effectiveness of this approach tends to be correlated
with the amount of training data available (i.e., larger models
are more effective when trained on larger data sets). With
the limited size of our training set, we needed alternative
techniques to increase the performance of our models. Ensemble
learning is a widely known and adopted family of methods
in which the average performance of an ensemble is shown
to be both less biased and better than the individual
models (Hansen and Salamon, 1990; Krogh and Vedelsby,
1994).

First, we randomly subsample our dataset, taking a 20% subset
as our holdout set for testing. Using a 5-fold cross-validation
strategy, we break the remaining samples into 5 distinct subsets
using a 80/20 split for training/validation. We train one model
per fold for a maximum of 500 epochs each, and combine the
5 trained models to form an ensemble. While there are many
gradient descent optimization algorithms, we use Adam (Kingma
and Ba, 2015) as a popular and well-established optimizer,
keeping its default configuration and setting our initial learning
rate to 0.001. In Figure 4, we show a breakdown of our ensemble
pipeline whereby the blue squares highlight the validation subset
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FIGURE 5 | Error distributions for the Token model. We display mean absolute errors for predictions using the Token model on all words in labMT. We arrange the

happiness scores into three groups: negative (havg ∈ [1, 4), orange), neutral (havg ∈ [4, 6], gray), and positive (havg ∈ (6, 9], green). Most words have an MAE less than 1

with the exception of a few outliers. We see a relatively higher MAE for negative and positive terms compared to neutral expressions.

for each fold. Note, the holdout set is removed before training the
ensemble and is only used for testing a complete ensemble.

To estimate the happiness score for a given word, we take a
Monte Carlo approach by sampling 100 predictions per model
in the ensemble. We use the training setting for the dropout
layers in each model, rather than the test time averaging that is
commonly used, so that these predictions are heterogeneous. The
mean over these predictions becomes the proposed happiness
score, while the standard deviation serves as an estimate of model
uncertainty (Gal and Ghahramani, 2016). Providing a point
estimate along with an uncertainty band allows us to compare
and contrast the level of model uncertainty in our ensembles with
the uncertainty observed between human annotators.

4.2. Comparison With Other Methods and
Human Annotators
Although both of our proposed strategies—namely using
character-level n-grams and word definitions—performed well,
the Dictionary model outperforms the Token model. To
evaluate our models we train 10 replicates each and then

investigate error distributions obtained using the test set. We
report the mean absolute error (MAE) as an estimate of
overall performance, along with a selection of percentiles to
compare tail behavior across models. Each of these statistics
are averaged over the 10 replicates. This process provides us
with a strong estimate of the generalization performance for our
proposed models.

Table 1 summarizes the results of this evaluation process
for our proposed models and ensembles. We provide baseline
comparisons to models from previous work (Amir et al., 2015;
Li et al., 2017), including popular linear models, random
forests, and support vector machines trained with three different
flavors of word embeddings: Word2Vec (Mikolov et al., 2013a),
GloVe (Pennington et al., 2014), and FastText (Bojanowski
et al., 2017). These results indicate that our Token model
outperforms all prior baselines, our Dictionary model
outperforms our Token model, and both of our proposed
models benefited from ensemble learning. Though the ensembles
outperformed the individual models in both cases, it is
interesting to note that they also had longer tails for their
error distributions.
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FIGURE 6 | Error distributions for the Dictionary model. We display mean absolute errors for predictions using the Dictionary model on all words in labMT. Again, we

categorize the happiness scores into three groups: negative (havg ∈ [1, 4), orange), neutral (havg ∈ [4, 6], gray), and positive (havg ∈ (6, 9], green). Similar to the Token

model, most words have an MAE less than 1 with the exception of a few outliers. While the Dictionary model outperforms the Token model, we still observe a higher

MAE for negative and positive terms compared to neutral expressions.

We further examine the error distributions to investigate if
the models have a bias toward high or low happiness scores. In
Figures 5, 6, we display a breakdown of our MAE distributions
for the Token and Dictionary models, respectively. For ease
of interpretation and visualization, we categorize the happiness
scores into three groups: negative (havg ∈ [1, 4)), neutral (havg ∈

[4, 6]), and positive (havg ∈ (6, 9]). While the distributions
show our models operate well on all words, particularly neutral
expressions, we note a relatively higher MAE for negative words,
whereby our predictions to these terms are more positive than
the annotations.

We also compare our predictions to the ground-truth ratings,
examining the degree to which the models either overshoot or
undershoot the happiness scores crowdsourced via AMT. Words
in the labMT lexicon were scored by taking the average happiness
score of distinct evaluations from 50 different individuals (see
Table S2, Dodds et al., 2015). Since the variance of human ratings
and our model MAEs are on the same scale, we can use the
observed average variance of the ratings (1.17) as a baseline to
assess rater confidence in the reported scores. Comparing our

models to that baseline, we note that all models offer consistent
predictions with similar expectations to a random and reliable
reviewer from AMT. See Table 1 for further statistical details.

In Figures 7, 8, we display the top-50 words with the highest
mean absolute error for the Token and Dictionary models,
respectively. While the models always predict the right emotional
attitude outlining each word based on its lexical polarity, they
bias toward neutral by undershooting scores for happy words,
and overshooting scores for sad expressions.

One possible explanation of this systematic behavior is the
lack of words with extreme happiness scores in the labMT
lexicon. It is possible to train models with a smaller but balanced
subset of the dataset to overcome that challenge. Doing so,
however, would reduce the size of training/validation samples
substantially. Still, our margin of error is relatively low compared
to human ratings. Future investigations may test and improve the
models by examining larger sentiment lexicons.

Another key factor that plays a big role in our prediction
error is obtaining good word definitions, or the lack thereof, to
use as input for our Dictionary model. Surprisingly, outsourcing
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FIGURE 7 | Token model: Top-50 words with the highest mean absolute error. Model predictions are shown in blue and the crowdsourced annotations are displayed

in gray. While still maintaining relatively low MAE, most of our predictions are conservative—marginally underestimating words with extremely high happiness scores,

and overestimating words with low happiness scores.

definitions from online dictionaries for a large set of words is
rather challenging, especially if you opt-out of reliable but paid
services. In our work, we choose not to use an urban dictionary
or any services with paid APIs. We use a free online dictionary
API that is available at https://dictionaryapi.dev.

While we do have definitions for most words in our dataset, a
total of 1518 words have missing definitions. Most of these words
are names, abbreviations, and slang terms (e.g., “xams,” “foto,”
“nvm,” and “lmao”). Words with multiple definitions can also
cancel each other’s score (e.g., “lying”).
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FIGURE 8 | Dictionary model: Top-50 words with the highest mean absolute error. Model predictions are shown in blue and the crowdsourced annotations are

displayed in gray. Note, the vast majority of words with relatively high MAE also have high standard deviations of AMT ratings. Words that have multiple definitions will

have a neutral score (e.g., lying). A neutral happiness score is also often predicted for words because we are unable to obtain good definitions for them to use as

input. Although we have definitions for most words in our dataset, we still have a little over 1,500 words with missing definitions. Most of these words are names (e.g.,

“‘Burke,”) and slang (e.g., “xmas,” and “ta.”)

Notably, the vast majority of words with high MAE also have
high AMT standard deviations. To further investigate prediction
accuracy, we examine the overlap between the predictions and
human ratings. In particular, we compute the intersection over

union (IOU) between the predicted happiness score h′avg ± σ
′,

and the corresponding value from the annotated ratings havg±σ .
The Token model underestimates the happiness score for

“win”—the only word with a prediction that falls outside the
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range of human annotated happiness scores. The remaining
predicted happiness scores fall well within the range of
scores crowdsourced via AMT. Similarly, the Dictionary model
slightly underestimates the happiness scores for “mamma” while
overestimating the scores for “lying,” and “coronavirus.”

5. DISCUSSION

As the growing demand for sentiment-aware intelligent systems
increases, we will continue to see improvements to both
lexicon-based models and contextual language models. While
contextualized models are suitable for a wide set of applications,
lexicon-based models are used by computational linguists,
journalists, and data scientists who are interested in studying how
individual words contribute to sentiment trends.

Sentiment lexicons, however, have to be updated periodically
to support new words and expressions that were not considered
when the dictionaries were assembled. In this paper, we proposed
two models for predicting sentiment scores to augment semantic
dictionaries using word embeddings and pre-trained large
language models. Our first model establishes a baseline using a
neural network initialized with pre-trained word embeddings,
while our second model features a deep Transformer-based
network that brings into play word definitions to estimate their
lexical polarity. Our results and evaluation of both models
demonstrate human-level performance on a state-of-the-art
human annotated list of words.

Although both models can predict scores for novel words,
we acknowledge a few shortcomings. Our Token model relies
on subword information to estimate a happiness score for any
given word. For example, using subwords for “coronavirus”
yields a good estimate given that it contains “virus.” By contrast,
parsing character-level n-grams for other words (e.g., “covid”)
may not reveal any further information. We can overcome that
hurdle by using the word definition as input to our Dictionary
model to gauge its happiness score. Words, however, often have
different meanings based on context. Finding good definitions
may be challenging, especially for slang, informal expressions,
and abbreviations. We recommend using the Dictionary model
whenever it is possible to outsource a good definition of
the word.

A natural next step would be to develop similar models
for other languages, for example by building a model
for each language, or a multilingual model. Fortunately,
FastText (Bojanowski et al., 2017) provides pre-trained word
embeddings for over 100 languages. Therefore, it is easy to
upgrade the Token model to support other languages. Updating
the Dictionary model is also a straightforward task by simply
adopting a multilingual Transformer-based model pre-trained

with several languages [e.g., Multilingual BERT (Devlin et al.,
2019)]. We caution against translating words and using the
same English scores because most words do not have a one-
to-one mapping into other languages, and are often used to
express different meanings by the native speakers of any given
language (Dodds et al., 2015).

Another vast space of improvements would be to adopt
our proposed strategies to develop prediction models for other
semantic dictionaries. Researchers can further fine-tune these
models to predict other sentiment scores. For example, the
happiness scores in the labMT (Dodds et al., 2015) dataset
are closely aligned with the valence scores in the NRC-VAD
lexicon (Mohammad, 2018).We envision future work developing
similar models to predict other semantic differentials such as
arousal and dominance (Mohammad, 2018), EPA (Osgood,
1962), and SocialSent (Hamilton et al., 2016). Our primary
goal is to provide an easy and robust method to augment
semantic dictionaries to empower researchers to maintain and
expand them at a relatively low cost using today’s state-of-the-art
NLP methods.
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