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Brain-machine interface cursor 
position only weakly affects 
monkey and human motor cortical 
activity in the absence of arm 
movements
sergey D. stavisky  1,2, Jonathan C. Kao2,13, Paul Nuyujukian1,2,3,4,5, Chethan pandarinath1,2, 
Christine Blabe1, Stephen I. Ryu2,8, Leigh R. Hochberg  9,10,11,12, Jaimie M. Henderson1,4,5 & 
Krishna V. shenoy2,3,4,5,6,7

Brain-machine interfaces (BMIs) that decode movement intentions should ignore neural modulation 
sources distinct from the intended command. However, neurophysiology and control theory suggest 
that motor cortex reflects the motor effector’s position, which could be a nuisance variable. We 
investigated motor cortical correlates of BMI cursor position with or without concurrent arm movement. 
We show in two monkeys that subtracting away estimated neural correlates of position improves 
online BMI performance only if the animals were allowed to move their arm. To understand why, we 
compared the neural variance attributable to cursor position when the same task was performed 
using arm reaching, versus arms-restrained BMI use. Firing rates correlated with both BMI cursor and 
hand positions, but hand positional effects were greater. To examine whether BMI position influences 
decoding in people with paralysis, we analyzed data from two intracortical BMI clinical trial participants 
and performed an online decoder comparison in one participant. We found only small motor cortical 
correlates, which did not affect performance. These results suggest that arm movement and 
proprioception are the major contributors to position-related motor cortical correlates. Cursor position 
visual feedback is therefore unlikely to affect the performance of BMI-driven prosthetic systems being 
developed for people with paralysis.

BMIs are an emerging medical technology that can be used to bypass motor disabilities due to injury and disease. 
These systems read out the movement intentions of people with paralysis to restore function1, for example by con-
trolling computer cursors for communication2, commanding arm and hand movements of robotic limbs3, or elec-
trically stimulating the person’s own paralyzed muscles4. A key component of BMI systems is the decoder, which 
attempts to infer the user’s movement intentions from recorded neural activity5. One challenge for decoders is 
that neural signals in areas like motor cortex reflect other processes besides just the user’s intended movement. 
Motor control requires an accurate estimate of the position of the limb6. Such state estimation, which is mediated 
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by both visual and proprioceptive feedback7 as well as efference copy8, adds additional sources of motor cortical 
modulation that may interfere with decoding movement intentions.

In particular, it has been shown that activity in primary motor (M1) and dorsal premotor cortex (PMd), which 
we will refer to together as ‘motor cortex’, covaries with the arm’s position in the workspace during static hold9–12 
and during movement10,11,13. Activity also differs when movements in a similar direction are made with different 
arm orientations14,15. Positional effects could reflect a number of causes beyond just differences in the muscle 
forces that are needed to move or maintain the arm’s position: these include changes in the internal state estimate 
of where the arm is in space, or different proprioceptive and visual feedback. It has been hypothesized that similar 
effector state-related information will be present during BMI use16–19, and BMI performance was shown to suf-
fer when there was a mismatch between proprioceptive and visual feedback, indicating the presence of sensory 
feedback from both modalities20. Motor cortical modulation due to effector state estimation and visual feedback 
is particularly germane to BMI decoding, since these factors would presumably still affect the observed neural 
activity even when BMI output commands should be the same.

The ReFIT decoder19, a state-of-the-art BMI decoder21–23, incorporates a ‘Cursor Position Subtraction’ oper-
ation that attempts to mitigate the anticipated neural variability due to the cursor’s position. Cursor Position 
Subtraction models the neural activity due to the on-screen cursor position and subtracts it out from the meas-
ured neural activity prior to decoding cursor velocity commands. Gilja, Nuyujukian and colleagues showed that 
this operation improves performance in monkeys, but this test was performed during BMI use accompanied by 
arm reaching19. During this behavioral context, motor cortex is expected to receive strong proprioceptive inputs 
and contribute efferent commands to the arm. The underlying assumption of whether there are substantial cur-
sor positional effects during BMI use in the absence of overt movement – which is likely to be the situation for 
BMI users with paralysis or amputation – has not previously been tested. Indeed, when ReFIT was successfully 
translated to clinical study human BMI users2,24, the Cursor Position Subtraction operation led to mixed results24.

We investigated this question using a combination of pre-clinical monkey experiments and data from the 
BrainGate2 BMI clinical trial. We first present closed-loop decoder comparisons which show that Cursor Position 
Subtraction only improves performance when monkeys also made accompanying arm movements. To better 
understand why this was the case, we present the results of additional monkey experiments that compare cursor 
positional effects when the same task was performed either with the hand or with a BMI in the absence of overt 
movements. To tease apart whether hand and cursor position both separately influence motor cortical activity 
during free-arm BMI use, we analyzed further experiments intended to reduce the correlation between hand and 
cursor position. Finally, we replicate key results in human intracortical BMI users to show that cursor positional 
effects are also minimal in these participants.

Results
Subtracting expected cursor positional effects only helps when arm movements accompany 
BMI use. Cursor Position Subtraction improved decoder performance when monkeys were free to move their 
arm during BMI use, but this operation did not improve performance in the absence of overt arm movements. 
Specifically, we performed head-to-head comparisons of velocity Kalman filters both with and without Cursor 
Position Subtraction in two contexts: with the monkey’s arm free to move, and with their arm restrained (Fig. 1a). 
Importantly, we as the experimenters did not require the monkeys to move their arm during BMI use, but they 
almost always did so when their arm was not restrained. This is unsurprising given that this was the behavior used 
to initially seed the free-arm BMI decoder. Within each context, we fit decoders with and without Cursor Position 
Subtraction from the same training data and then tested them in alternating blocks. Figure 1b shows trial-by-trial 
performance on a Radial 8 Target Task from example free-arm and restrained-arm experiment sessions, while 
Fig. 1c shows summary metrics for all sessions in two monkeys.

When the animals were free to move their arm during BMI use, times to target were significantly lower when 
Cursor Position Subtraction was used. This effect was robust in all four monkey J experiment sessions (‘datasets’; 
4,563 total trials) and all five monkey R datasets (5,649 trials). This was the case both for decoders trained directly 
from arm reaching data (three datasets) and decoders recalibrated from closed-loop BMI data collected while 
the monkey performed the task with an initial arm reach-trained BMI decoder (six datasets). When comparing 
all datasets, Cursor Position Subtraction reduced grand mean of means time to target by 15.7% in J and 21.8% 
in R. This online performance benefit due to Cursor Position Subtraction is consistent with the results from 
Supplementary Figures 3 and 4 of19, which were also obtained in a free-arm context.

However, when the monkeys were not allowed to move their arm during BMI use, the outcome of the decoder 
comparisons was markedly different. Only two of eight J datasets (10,095 total trials) and three of seven R datasets 
(8,708 trials) showed a significant improvement when using Cursor Position Subtraction, and two of the seven 
R datasets showed a significant reduction in performance when using Cursor Position Subtraction. The grand 
mean time to target was 7.5% slower in monkey R when performing Cursor Position Subtraction, and the two 
decoding methods performed essentially the same for monkey J. To rule out performance ceiling effects in mon-
key J, we deliberately decreased overall decoder quality in several datasets (for both decoders with and without 
Cursor Position Subtraction) by using suboptimal decoder calibration methods and excluding electrodes from 
the decoders (see Methods). This did not change the outcome: the two individual datasets where Cursor Position 
Subtraction slightly improved performance were among those in the top half of performance and did not have 
any electrodes dropped.

To try to better understand why Cursor Position Subtraction did not appear to improve performance in the 
absence of overt arm movements, we first visualized what influence this operation exerted on the decoded veloc-
ity. Figure 1d shows representative vector field examples showing the effect of Cursor Position Subtraction on 
decoded velocity as a function of where in the workspace the cursor was. In the free-arm context, both monkeys’ 
Cursor Position Subtraction decoders added a modest velocity vector directed approximately towards the center 
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of the workspace. These vector fields increased in magnitude near the workspace boundaries, and across different 
sessions’ decoders the maximum magnitude within the workspace ranged from 2.04 to 3.97 mm/s (3.06 ± 0.97, 
mean ± s.d.) for monkey J and 1.88 to 2.43 mm/s (mean 2.15 ± 0.21) for monkey R. This result is consistent with 
the attractor points described in25 for position-velocity Kalman filters initially seeded from arm movements (but 
then updated during BMI use without overt arm movements).

In contrast, the cursor position’s effect on velocity was very small in the restrained-arm context: the maximum 
magnitude ranged from 0.65 to 1.34 mm/s (0.94 mean ± 0.28 s.d.) for J and 0.30 to 0.76 mm/s (mean 0.53 ± 0.18) 
for monkey J. These results show that in the absence of arm movement, a linear mapping from cursor position to 
firing rates explained little variance in the training data. Consequently, the Cursor Position Subtraction operation 
that was fit from these data had minimal effect on decoded velocity. This in turn explains why we observed little 
difference between the standard and Cursor Position Subtraction restrained-arm decoders.

Cursor position-related modulation is stronger during hand-controlled than restrained-arm 
BMI use. The previously described differences in the Cursor Position Subtraction velocity vector fields 
between free-arm and restrained-arm decoders imply weaker position-correlated neural modulation in the 
restrained-arm context. However, this interpretation has several limitations or other possible explanations: 
positional effects could be small within the limited range of positions sampled during the Radial 8 Target Task; 
position-related modulation could be outside the two neural dimensions that affect the decoder26,27; and/or 
position-related neural modulation could be poorly described by a linear fit. To more thoroughly investigate 
cursor positional effects without these limitations, we performed a set of experiments where monkeys performed 
a Random Target Task in which longer target hold epochs occurred across a larger span of the workspace. To 
directly compare positional effects during arm movements versus restrained-arm BMI use, during each experi-
ment session the monkey first performed the task using a restrained-arm BMI, and then with his hand.

We grouped trials based on the workspace location of that trial’s target and examined firing rates 
(trial-averaged during the target hold epoch) within each of these workspace ‘tiles’. To quantify the upper bound 

Figure 1. Cursor Position Subtraction only improves free-arm BMI performance. (a) Monkeys performed a 
Radial 8 Target Task using a BMI cursor controlled via decoded motor cortical spiking activity. Closed-loop 
performance was tested in two behavioral contexts: with the contralateral-to-arrays arm unseen but free to 
move (top row of all panels), or with this arm restrained (bottom row). (b) In each context, we compared 
variants of the velocity Kalman filter with and without subtracting the expected neural activity due to the 
cursor’s position. Example performance data is shown for one free-arm and one restrained-arm experiment 
session (datasets R.2013.01.28 and J.2013.11.15). Each point shows one successful trial’s time to target; its color 
denotes whether it was during a block with (green) or without (grey) Cursor Position Subtraction. Horizontal 
black bars show mean time to target for each block. (c) Aggregate performance across multiple experiment 
sessions. Each line compares the mean performance for a given session with (left) and without (right) Cursor 
Position Subtraction. Bolded lines denote datasets where the performance was significantly different (p < 0.01, 
rank-sum test between the two decoders’ distributions of times to targets). Fractions count how many of the 
sessions’ comparisons each decoder type won (i.e., had significantly lower times to target). Bar plot heights show 
mean performance across datasets. Datasets in which Cursor Position Subtraction was fit directly from a hand-
controlled block (rather than from a closed-loop BMI recalibration block) are marked with brown squares. The 
example datasets from panel b are shown with corresponding colored circles. (d) The effects of Cursor Position 
Subtraction on the decoders from the two example datasets in panel b are shown as vector fields which indicate, 
for a given workspace location, what velocity would be added to the decoded velocity if the cursor was located 
there. These added dynamics pushed roughly towards the workspace center and were much stronger in the free-
arm context.
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of how much hold period firing rates varied as a function of cursor position without assuming a particular rela-
tionship (e.g., linear tuning or effect on the decoder), we measured each electrode’s firing rate difference between 
holding the cursor in the highest-rate tile and the lowest-rate tile. To provide context for these magnitudes, we 
also report them as a percentage of the electrode’s firing rate range during movements, calculated across both 
hand-controlled and restrained-arm task performance.

Figure 2a shows firing rate as a function of workspace position for three example electrodes during one dataset 
(‘dataset-electrodes’) in both behavioral contexts, with single-trial spike rasters shown in Fig. 2b. These exam-
ples were chosen to illustrate position-correlated modulation in: both contexts (elec. 129, but note the greater 
modulation during arm use); during hand control only (elec. 2); and during restrained-arm BMI only (elec. 47). 
Figure 2c shows histograms summarizing these measurements across the four datasets collected in each monkey 
(J: 2,681 arm trials total, 3,796 BMI trials; R: 4,442 arm trials, 3,430 BMI trials). During arm use, 516/768 (67.2%) 
of monkey J’s dataset-electrodes showed a significant firing rate difference between the highest and lowest rate 
tiles (p < 0.001, rank-sum test). The mean of these differences across dataset-electrodes was 10.2 Hz (13.5% of 
movement-epoch range). During restrained-arm BMI use, hold-epoch firing rates varied substantially less across 
workspace position tiles: 279 (36.3%) showed significant modulation, with a mean difference of 4.3 Hz (5.7%).

Figure 2. Effector position affects firing rates more during arm use than restrained-arm BMI use. (a) Motor 
cortical correlates of reaching hand position (top row) and BMI cursor position (bottom row) during Random 
Target Task target hold epochs for three example electrodes (columns). For this analysis, the workspace was 
divided into nine equally-sized tiles and trials were grouped based on target location. Each tile is colored 
based on the electrode’s mean firing rate during the end of the corresponding trials’ target hold periods. Each 
electrode’s colormap is normalized to its firing rate range across BMI and arm movement conditions and is fixed 
across the arm and BMI plots. Differences between the highest and lowest rate tiles in Hz (and as a percentage of 
the electrode’s firing rate range) are written above each plot; asterisks denote significant differences (p < 0.001, 
shuffle test). Dataset J.2013.04.24. (b) Example spike rasters during arm (brown) and BMI (blue) use. Trials 
are grouped by target location tile, with axis colors matched to the corresponding electrode’s tiles in panel a. 
Shading shows the epoch analyzed in the other panels. (c) Histograms of electrodes’ positional effects during 
arm (top row) and BMI use (bottom row), quantified as firing rate differences between highest and lowest-rate 
tiles (left) and as a percentage of firing rate range during movements (right). Each electrode contributes one 
point per dataset. Data aggregated across all four of each monkey’s datasets. For the rate difference histograms 
only, within-bin shading shows the number of dataset-electrodes with (dark) or without (light) significant 
differences. Note the different axis limits for each monkey. (d) Each point corresponds to one dataset-electrode 
whose firing rate modulated in response to movement during at least one of the behavioral contexts. Each 
dataset-electrode’s coordinates show how much of its firing rate variance was explained by hand position (linear 
regression) during arm use (horizontal) and cursor position during BMI use (vertical). Points’ colors denote 
whether a significant fraction (p < 0.001, shuffle test) of variance was explained during arm use only (brown), 
BMI use only (blue), both contexts (red), or in neither context (gray). Counts of how many points belong to 
each category are reported next to the legend.
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Monkey R’s results also showed smaller positional effects during restrained-arm BMI use, although in this 
monkey the differences between contexts were smaller: during arm use 253/695 (35.0%) of electrodes showed 
a significant positional effect, with a mean difference of 2.9 Hz (5.2%). In the restrained-arm BMI context, 150 
(21.6%) of dataset-electrodes had significant differences, with a mean difference of 2.4 Hz (4.8%). We note that 
monkey R had fewer electrodes recording good spike signals; this worse neural signal quality likely contributed 
to his smaller number of electrodes exhibiting a positional effect, and its smaller magnitude. These results extend 
those of the previous section by showing that across a wider variety of workspace positions, positional effects are 
stronger during arm use than restrained-arm BMI use. This further supports the hypothesis that consequential 
cursor positional effects only emerge when arm movements accompany BMI use.

Most electrodes with strong positional tuning showed relatively linear relationships between workspace posi-
tion and firing rate, like in the Fig. 2a examples. We therefore quantified the single-trial firing rate variance 
explained by a linear fit to the cursor’s (horizontal, vertical) position. While simplistic, this analysis allows us 
to directly compare these results to how the position feedback subtraction operation of decoders like ReFIT 
would model the cursor positional effect, and to the descriptions of such behavioral correlates often reported in 
neurophysiology studies (e.g.,9). Whereas in the above tile analysis we included all available electrodes, here we 
attempted to restrict the analysis to the subset of electrodes with meaningful task-related modulation, which we 
defined as a significant firing rate change during movement initiation. The reasoning for this difference is that 
in the former analysis, we sought to describe what position-correlated activity is detected across the arrays; this 
is what a BMI system will have to work with. In this latter analysis we are categorizing how electrodes’ responses 
relate to arm reaching versus BMI cursor movements, and thus are less interested in electrodes that don’t modu-
late during either of the tasks.

Figure 2d shows that substantially more hold-epoch firing rate variance was explained by cursor position 
during arm use (which is equivalent to the hand’s position in the vertical plane) than by cursor position during 
restrained-arm BMI use. Amongst the 416 monkey J dataset-electrodes with significant variance explained due 
to cursor position during arm use (including those tuned during both contexts), the coefficient of determination 
ranged from 0.012 to 0.659 (mean 0.152). During the restrained-arm BMI context, only 253 dataset-electrodes 
had significant variance explained by cursor position, with a R2 range of 0.011 to 0.264 (mean 0.0493). For mon-
key R, the corresponding statistics were: 194 dataset-electrodes with significant R2 during arm use, ranging from 
0.008 to 0.472 (mean 0.0758); 150 dataset-electrodes with significant R2 during BMI use, ranging from 0.010 to 
0.240 (mean 0.0526). Of the dataset-electrodes with significant variance explained by cursor position in at least 
one context, only a minority (11.5% in J and 17.8% in R) had variance explained only during BMI use; the rest 
were roughly equally divided between having significant variance explained only in the hand-controlled context 
or in both contexts. These results are consistent with the prior tile analysis and demonstrate that there are stronger 
motor cortical correlations with the position of the hand during arm use than with the position of a BMI cursor 
in the absence of arm movements.

Movement-epoch position-related modulation differences. In the previous section, we focused on 
positional effects during the target hold period. This minimizes the confounding effects of movement generation: 
movement-epoch activity includes efferent command components that could be different in different parts of 
the workspace, whereas active hold-period activity may better isolate possible neural correlates of the subject’s 
awareness of the effector position (along with any motor cortical efferents related to maintaining the hold posture 
during arm use). A more engineering-minded reason for examining hold epoch data is these are used to fit the 
Cursor Position Subtraction model of the ReFIT decoder, and one goal of this study was to verify whether this 
decoder operation was useful in the absence of overt arm movements. Nonetheless, we wanted to also compare 
movement-epoch positional effects between arm and BMI use, especially in light of evidence that the motor sys-
tem operates in different regimes between moving and holding-in-place during both arm11,28–30 and BMI use27.

We examined movement-epoch position-related differences in a different set of experiments in which the 
monkeys performed a ‘Radial 3 × 8 Target Task’ using either their hand or a restrained-arm BMI. This task con-
sisted of alternating blocks of Radial 8 Target sets such that the radial and center targets of each set were located 
in different areas of the workspace (Fig. 3a). The task design allowed us to compare neural activity between move-
ments with the same extrinsic direction and distance, but in different parts of the workspace. Importantly, despite 
having the same vector from movement origin to target, arm movements in different workspaces of this task are 
biomechanically distinct; this is one reason why we would predict considerable position-related differences. Data 
were aggregated across four monkey J datasets (2,377 total arm trials and 2,314 BMI trials) and six monkey R 
datasets (2,998 arm trials and 2,618 BMI trials).

We quantified how neural activity differed between movements in the same direction but within different 
parts of the workspace. Specifically, for each of the eight outward target directions, we measured the firing rate 
from 0 to 600 ms after target onset, averaged separately for trials from each of the three target sets (i.e., in the 
three different workspace areas). We then defined a ‘workspace modulation’ metric as the difference magnitude 
between the target sets with the highest and lowest rates (e.g., the maximum minus the minimum firing rate 
amongst leftward reaches in the lower, middle, or upper workspace). Figure 3b shows each dataset-electrode’s 
maximal workspace modulation across the eight movement directions during either arm use or restrained-arm 
BMI use. These movement-epoch results were consistent with the previously described differences in hold-epoch 
positional effects. During arm movements, 319/720 (44.3%) of monkey J’s dataset-electrodes and 186/1043 
(17.8%) of monkey R’s dataset-electrodes showed significant modulation differences across movements in the 
same direction but in different areas of the workspace (p < 0.001, shuffle test). In contrast, during restrained-arm 
BMI movements only 15 (2.1%) of monkey J’s and 28 (2.7%) of monkey R’s dataset-electrodes exhibited signifi-
cant workspace modulation. Thus, positional effects were much weaker during BMI use than arm use, both when 
moving towards a target and when holding the cursor over the target.
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Firing rates correlate with both cursor and hand positions during free-arm BMI use. Thus far, 
we showed that hand position had stronger motor cortical correlates than restrained-arm BMI cursor position. 
We next asked, does the cursor position exert any additional influence on firing rates when monkeys are allowed 
to move their arm during BMI use? The answer to this question could be relevant to future patients using move-
ment neural prostheses who still have some residual motor function. However, for the purpose of answering this 
question, a “problem” was that the hand and cursor positions were strongly correlated when the monkeys used 
high performing BMI decoders. This was because, as previously described, the monkeys had adopted a strategy of 
making actual arm movements when controlling the cursor in a free-arm BMI context.

To address this problem, we intentionally trained lower performing decoders for the next set of experiments 
by using only a subset of electrodes and forgoing the beneficial Cursor Goal intention estimation training data 
correction19. Our motivation for deliberately degrading the decoder was that this would reduce the correlations 
between hand and cursor movements (i.e., the decoder would not as accurately infer the monkey’s intended 
movement, causing the hand and cursor to diverge over the course of the movement). Decorrelating the hand and 
cursor positions would allow us to better tease apart their separate neural contributions. Although only a subset 
of electrodes’ activity causally moved the BMI cursor, all of the electrodes were included in the following neural 
analyses.

In these free-arm BMI experiments, the monkeys again performed the Radial 3 × 8 Target Task. We restricted 
our analyses to only the target hold periods of trials to the central target of each of the three target sets (Fig. 4a). 
This experiment design was chosen for two reasons: first, when monkeys used a BMI to control the cursor in 

Figure 3. Peri-movement position-related modulation is greater during arm than BMI use. (a) Monkeys 
made Radial 3 × 8 Target Task out and back movements in each of three workspaces; a vertical task axis 
target arrangement is illustrated at the top. Firing rates are shown for an example electrode (J.2013.04.22, 
elec. 116) when moving either the arm (brown) or BMI without accompanying arm movement (blue). Each 
plot corresponds to outward movements towards a target in the direction corresponding to the plot location. 
Different line styles denote movements to different target sets centered on one of three locations within the 
overall workspace. Trial-averaged firing rates are shown from 40 to 600 ms after target onset, and shading shows 
s.e. This dataset-electrode’s maximal ‘workspace modulation’ was 42.9 Hz during arm movements towards 
the upper target, and 8.0 Hz during BMI movements towards the upper-right target. (b) Quantification of 
workspace-related firing rate modulation across all dataset-electrodes for each monkey (4 monkey J datasets, 
6 R datasets). Each scatter plot point corresponds to one dataset-electrode. Its coordinates show the maximal 
workspace modulation during arm movement (horizontal position) and during BMI movement (vertical 
position). Points’ colors denote whether there was significant (p < 0.001, shuffle test) workspace-related 
modulation during arm use only (brown), BMI use only (blue), both contexts (red), or in neither context (gray). 
Counts of how many points belong to each category are reported next to the legend. The dataset-electrode from 
panel a is marked with a green arrow. Marginal histograms are each shown for behavioral context. Within-
bin shading denotes the number of dataset-electrodes with (dark) or without (light) significant workplace 
modulation. Distribution means are marked by the dashed lines.
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Figure 4. Hand and cursor positions both affect neural activity during free-arm BMI use. (a) We examined the 
separate influence of cursor and hand positions on firing rates during the free-arm BMI use context, during which 
they are somewhat decoupled. Monkeys performed a Radial 3 × 8 Target Task. Simultaneous cursor (top) and hand 
(bottom) trajectories are shown for example dataset R.2013.11.19, color-coded based on which of the three target 
sets they belong to. Firing rates were compared during hold periods when the cursor was within a center target’s 
acquisition area (dashed boxes). Every trial’s cursor and hand positions during the analysis epoch are shown with 
blue and brown points, respectively. For clarity, only a subset of trials’ trajectories is shown. (b) Histograms showing 
what fraction of each electrode’s firing rate variance was explained by 1-D cursor position (blue) or hand position 
(brown) along the workspace dimension that the center target locations varied over (e.g., horizontal position in 
panel a). The number of dataset-electrodes with significant variance explained within each bin are denoted with an 
opaque shade of the color. Data are aggregated across all eight monkey J and seven R datasets. For visual clarity, the 
leftmost bins are cut off at the top. (c) Each point represents a dataset-electrode for which a significant fraction of 
neural variance was explained by cursor or hand position (or both). We computed the partial correlation between 
the cursor position and firing rate, accounting for shared variance with hand position (vertical coordinate) and, 
conversely, the partial correlation between hand position and firing rate, accounting for the cursor position 
(horizontal coordinate). Colors denote whether additional neural variance was explained by hand position only 
(brown), cursor position only (blue), both cursor and hand positions (red), or neither (black). Counts of how many 
dataset-electrodes belong to each category (i.e., have partial correlations with that parameter beyond the variance 
explained by the correlated movement of the cursor and hand) are reported next to the legend.
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the wider workspace of the Random Target Task, there were more times when their hand was out of sight of the 
hand tracking system; analyzing the center hold of Radial 3 × 8 Target Task data reduced the prevalence of such 
drop-outs. Second, this design addresses a potential concern with the previous tasks’ hold-epoch analyses: it 
could be that some of the position-correlated hold epoch activity observed was due to preparing the subsequent 
movement. This is because the subsequent target after acquiring radial targets in the standard Radial 8 Target 
Task is always the center target. In the Random Target Task, the next target is not known, but it is more likely to 
be towards the workspace center. Examining Radial 3 × 8 Target Task center target hold activity eliminates this 
concern, because the possible next targets are symmetrically spaced in all directions. We do note, however, that 
even if preparing-while-holding contributes to the positional effects described earlier, this would not explain why 
the positional effects were stronger during hand control compared to restrained-arm BMI control (ref.31 showed 
that preparatory activity is similar between these two contexts in these same two monkeys).

Both monkeys were able to perform the free-arm BMI Radial 3 × 8 Target Task despite the intentionally 
degraded decoders. Across his eight datasets, monkey J successfully completed between 96.3% and 100% of trials 
(mean of 97.9%), with a mean time to target of 858 ms (grand mean of individual datasets’ means). Monkey R’s 
success percentage ranged from 84.5% to 99.3% (mean 94.0%) with a grand mean time to target of 1,427 ms. We 
analyzed center target hold periods from a total of 3,912 monkey J trials and 4,399 monkey R trials. Since cursor 
position essentially only varied along one dimension in these data (the task axis connecting the three Radial 8 tar-
get set centers), we examined the relationship between hold epoch firing rates and both cursor and hand positions 
along this axis. These two variables were quite decoupled: across monkey J datasets, the within-session correlation 
between hold-epoch cursor and hand positions ranged from −0.128 to +0.162 (mean −0.017). Across R datasets, 
the correlation ranged from −0.560 to +0.873 (mean −0.04).

Both of these kinematic variables were correlated with firing rates: Fig. 4b shows histograms of firing rate 
variance explained using just BMI cursor position or hand position: 327/1536 (21%) monkey J and 63/1344 (5%) 
monkey R dataset-electrodes’ activity significantly varied with hand position (p < 0.001, shuffle test), while 176 
(11%) J and 97 (7%) R dataset-electrodes’ activity significantly varied with BMI cursor position. Neural variance 
explained in the Radial 3 × 8 Target Task was smaller than in the Random Target Task: among those electrodes 
with significant modulation to hand or cursor position, monkey J’s mean R2 was 0.071 for hand and 0.050 for 
cursor, and monkey R’s was 0.042 for hand and 0.043 for cursor. This was expected given that the 1D cursor and 
hand positions’ trial-to-trial variability in the Radial 3 × 8 Target Task was much smaller than the 2D position 
variability in the Random Target Task.

The observation that there were significant and distinguishable neural correlations with both hand and cursor 
positions during free-arm BMI use allowed us to turn to the more interesting question that motivated this last 
set of monkey experiments: did both cursor and hand positions contribute to firing rates, beyond their shared 
covariation? This analysis was restricted to the 445 monkey J dataset-electrodes and 133 R dataset-electrodes with 
significant variance explained by either cursor or hand positions in the previous analysis. Figure 4c shows these 
dataset-electrodes’ partial neural variance explained by hand position (beyond that explained by its covariation 
with cursor position) on the horizontal axis, and partial variance explained by cursor position (beyond that 
explained by its covariation with hand position) on the vertical axis. The key take-away from this analysis is that 
both the hand and cursor positions did separately matter to the ensemble population activity.

The fact that hand position explained less additional variance than cursor position in monkey R should not 
be interpreted as inconsistent with the previous results, and does not imply that the cursor was “more important” 
from the perspective of neural modulation. This is because this particular experiment was designed to answer 
whether or not both the hand and cursor influenced neural activity during free-arm BMI use, rather than to 
quantitatively compare which had more influence. The reason for this limitation is that the task and analysis are 
not “balanced”, by which we mean that 1) there was more BMI cursor position variability than hand variability, 
and 2) some of the hand variability was in the dimension orthogonal to the task axis and thus not included in the 
partial correlations, whereas almost all of the cursor position variance was by definition along the task axis since 
the cursor is what was used to perform the task. Both of these phenomena can be seen in the example dataset 
kinematics shown in Fig. 4a. To summarize: the previous experiments showed that hand position during arm 
use has stronger neural correlates than cursor position during BMI use; this experiment further shows that both 
hand and cursor positions do separately influence firing rates when they are decoupled during BMI use that is 
accompanied by arm movements.

Cursor positional effects are also minimal in humans with paralysis. We believe that macaques 
are an excellent animal model for investigations that are intended to ultimately be applied to BMI systems for 
human use. Here, however, we were in the advantageous position of being able to further bolster our findings with 
human BMI data. Specifically, we analyzed previously-collected data (recently reported in2) where two clinical 
trial participants performed a typing-like Grid Task in which they used a BMI that decoded attempted arm or 
finger movements to acquire a cued target amongst a grid of possible targets (Fig. 5a). Although the human Grid 
Task has minor differences compared to the monkey Random Target Task, it is essentially similar: the participant 
had to move the cursor to randomly appearing targets (discretely) spanning a workspace and then select the cued 
target. An important difference is that the people used a discrete ‘click’ command to select the target, whereas the 
monkeys merely held the cursor over the target. We examined how human neural activity preceding the click 
selection varied as a function of where in the workspace the target was (Fig. 5a), similarly to the earlier analysis 
of hold-period monkey cursor positional effects shown in Fig. 2a–c. There were several noteworthy differences 
between participants, so we will describe each of their results in turn.

Participant ‘T5’ had tetraplegia due to spinal cord injury and lacked volitional control and sensation of his 
arms. Therefore, even though he used arm movement and hand squeeze imagery to control the cursor velocity 
and click, his data should be unaffected by arm somatosensory and proprioceptive feedback effects. T5 had two 
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96-electrode arrays chronically placed in motor cortex, and most of these electrodes were able to record action 
potentials. Both the online BMI velocity decoding and the subsequent analyses reported here were therefore per-
formed on threshold crossing firing rates, like in the previous monkey results. Figure 5b quantifies cursor posi-
tional effects in T5’s neural activity. Neural modulation was modest: across the 3 datasets (1474 trials), the mean 
firing rate difference between the tiles with the highest and lowest activity was 13.9 Hz. This firing rate difference 
was significant for 83/576 (14.4%) of dataset-electrodes (p < 0.001, rank-sum test). When firing rate changes were 
normalized to each electrode’s range, this maximum positional effect corresponded to a mean of 7.7% of overall 
task-related firing rate changes.

Participant T6’s data differed in two substantial ways. First, she had a single 96-electrode array placed in motor 
cortex, which had worse signal quality resulting in few high-amplitude action potentials. To overcome this and 

Figure 5. BMI cursor position correlates in human motor cortex are small. (a) An analysis similar to that of 
Fig. 2 was performed using motor cortical data from two human clinical trial participants performing a Grid 
Task with a BMI cursor. Trials were grouped by dividing the target locations within the workspace into nine 
(participant T5) or four (participant T6) tiles. The plot shows, for four example electrodes, trial-averaged neural 
activity immediately prior to target selection. Data are from datasets T5.2016.10.13 and T6.2014.07.02. Note 
that for T6, the principal BMI control signal was high frequency LFP power (HLFP), rather than spike rate. (b) 
Data from ‘T5’, who has spinal cord injury and is unable to volitionally move his arms, presented as in Fig. 2c. 
(c) Similar analysis for ‘T6’, who has ALS and was still able to volitionally move her hands. We collected data 
in two different behavioral contexts: in the movement suppressed context (left), we asked T6 to avoid moving 
her hand. In the regular context (right), she was free to (and did) make finger movements during BMI use. 
(d) We performed a closed-loop decoder comparison with and without Cursor Position Subtraction (dataset 
T5.2017.06.28). This panel shows the effect of Cursor Position Subtraction on cursor velocity as in Fig. 1d. (e) 
Trial-by-trial closed-loop Radial 8 Target Task performance, shown as in Fig. 1b. Two points with values of >5 s 
are drawn at the plot ceiling. Arrows show each decoder’s mean time to target.
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extract more useful information about her movement intentions, an additional neural feature was derived from 
the raw voltage measurements: high frequency local field potential power (HLFP). This HLFP was the dominant 
signal used for T6’s velocity decoding, and it enabled high BMI cursor control performance2. The present analyses 
therefore examined this HLFP feature rather than threshold crossings. Second, T6, who had ALS, was still able to 
move her hands at the time of these experiments. She used imagery of finger movements contralateral to the array 
to command cursor velocity and imagined squeezing the hand ipsilateral to the array to click. To assess whether 
T6’s ability to make overt movements affected her BMI performance, Grid Task data was collected under two 
conditions: with T6 asked to suppress her hand and finger movements, or with T6 free to move her hands and 
squeeze her fist (which she did).

Figure 5c shows T6’s cursor positional neural effects, which were similar between the movement-suppressed 
and free-to-move conditions. We speculate that this could be because finger movements elicited less motor corti-
cal feedback than the monkeys’ larger arm movements. When suppressing movements (two datasets, 224 trials), 
the mean difference between the highest and lowest tiles was 5.7 μV2, which corresponded to a mean of 5.5% of 
electrodes’ overall task-related activity range. When T6 was free to move during the BMI task (five datasets, 944 
trials), the mean positional activity difference was 5.0 μV2, or 4.0% of the task-related range. This position-related 
modulation was significant in 3/192 (1.6%) of dataset-electrodes during the movement-suppressed condition and 
5/480 (1.0%) of dataset-electrodes during the free-to-move condition. The weak cursor positional effects observed 
in T6’s data are similar to those of T5, with the caveat that two different motor cortical signals (high-frequency 
LFP power versus threshold crossing spike rate) were analyzed in these two participants. The results of these 
offline analyses of human BMI user data were consistent with the monkey restrained-arm results, both in the 
case of BMI use without overt movement and, in the case of T6, with some finger movements. This strongly pre-
dicts that the effect of BMI cursor position on decoding intended movements in people with paralysis would be 
inconsequential.

Finally, to further increase our confidence in this prediction, we performed a closed-loop decoder comparison 
during one research session with participant T5. This comparison was modeled on the earlier monkey decoder 
comparisons. First, an initial decoder was trained using the ReFIT protocol (open-loop calibration followed by 
closed-loop calibration). The data collected from the closed-loop block was then used to fit two final decoders 
from this same training data: one with and one without Cursor Position Subtraction. Figure 5d plots a vector field 
showing the effect of cursor position on velocity for the decoder with Cursor Position Subtraction. Consistent 
with the small positional effects on neural activity described in the previous offline analyses, the magnitude of 
positional effects on decoder velocity were also minimal: the maximum magnitude within the workspace was only 
0.98 pixels/second. T5 used these two decoders to perform a Radial 8 Target Task in an alternating ABAB block 
design (Fig. 5e). As predicted, there was not a significant difference in online BMI performance: times to target 
were 1561 ± 572 ms (mean ± s.d.) with the Cursor Position Subtraction decoder operation and 1545 ± 578 ms 
without it (p = 0.43, rank-sum test).

Discussion
We have presented multiple complementary lines of evidence that support the same conclusion: motor cortical 
correlates of the position of a two-dimensional BMI-controlled cursor, without accompanying arm movements, 
are weak and unlikely to be a meaningful nuisance variable during decoding. We first showed that subtracting the 
expected cursor position’s neural contribution as described in19 did improve BMI performance if the monkeys 
were allowed to move their arm during BMI use, but not when the BMI was used in the absence of arm move-
ments (Fig. 1). This suggested that the strong cursor positional effects in the free-arm context were due to propri-
oceptive and/or efferent activity related to the arm being in different parts of the workspace.

Further monkey experiments comparing cursor positional effects when the cursor was controlled either using 
the hand or with an arm-restrained BMI (Figs 2, 3) confirmed that neural modulation was stronger during arm 
use. However, we observed that some electrodes’ activity did covary with cursor position even in the absence 
of arm movements. This suggested that both BMI cursor and hand positions could influence motor cortical 
activity if both hand and cursor moved during BMI use, and we indeed observed this during free-arm BMI 
experiments (Fig. 4). Together, these pre-clinical animal model results suggested that for clinical BMI cursor 
control applications such as typing and using a computer32,33, cursor position will minimally impact neural sig-
nals. We then presented further evidence which supports this prediction by analyzing two human participants’ 
previously-collected BMI cursor task data, as well as performing a new closed-loop decoder comparison in one 
participant (Fig. 5).

Implications for BMI decoder design. We set out to test the assumption that the sensorimotor system’s 
awareness of the BMI cursor position (via vision and/or an internal model) would have motor cortical correlates 
that decoders should account for. However, our results indicate that for BMIs that are not accompanied by overt 
movement, these effects are minimal and will not interfere with a decoder’s ability to infer movement intentions. 
Zhang and Chase18 recently speculated that ReFIT19 performs so well because its position decoding implementa-
tion allows the decoder to still work as a second-order physical system. While this may very well be an advantage 
of a physics-obeying position-velocity Kalman filter compared to a position-velocity Kalman filter that cannot be 
expressed as a simple physical system, our results suggest that the main advantage of ReFIT over a velocity-only 
Kalman filter (with similar training data improvements) is that it accounts for a nuisance term that is present 
when the BMI user’s arm is allowed to move.

Arm movements accompanying BMI use are not expected in nearer-term clinical BMI systems1 providing 
cursor control to people with paralysis or amputation. Nuisance variable mitigations such as Cursor Position 
Subtraction are therefore unnecessary in these applications, and we recommend against their use because 
such decoder operations introduce additional free parameters that are subject to neural non-stationarities or 
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estimation errors, as noted in24,25. Consistent with this recommendation, the Cursor Position Subtraction oper-
ation was not used in our recent study in which the ReFIT decoder enabled people with paralysis to type using 
a virtual keyboard2. These results add to an emerging story that the effects of some forms of visual feedback on 
motor cortical activity may be less problematic for BMI decoding than originally predicted27 (but see34, which 
reports that seeing a BMI arm approaching a graspable object strongly modulates activity).

Our observation that a centering velocity vector (due to Cursor Position Subtraction) improved performance 
during free-arm BMI use raises the possibility that such effector dynamics may be beneficial for BMI control in 
at least some tasks. We have previously used an ad-hoc variant of this to improve performance35. Such ‘centering 
dynamics’ could be systematically investigated and optimized in future work by directly adding various centering 
velocity vector fields during arm-restrained BMI use.

Interpretation limitations. We believe that the stronger positional effects observed during arm use and 
during BMI use accompanied by arm movements can be attributed to a combination of motor cortical control of 
holding the arm in different positions (i.e., different output) and proprioceptive feedback (i.e., different input). 
These results are consistent with previous reports that motor cortex is strongly modulated by arm position9–15 and 
that proprioceptive feedback about movements has stronger influence on M1 activity than visual feedback36. Both 
of these processes (between which our study does not disambiguate) are absent during restrained-arm BMI use. 
However, we cannot rule out that these differences are due to some cognitive change between when the sensori-
motor system is or is not engaged in moving the arm.

Although we showed here that visually monitored BMI effector positional effects are minimal and can be 
ignored during decoding, it is unknown whether more anthropomorphic BMI effectors such as robotic arms34,37 
will induce stronger motor cortical modulation related to effector state (e.g., arm position or joints conforma-
tion). This might be expected because these prostheses more directly tap into the sensorimotor system’s native 
arm-monitoring machinery. We also anticipate future BMI use cases where there will be proprioceptive feedback 
from the effector. There are ongoing efforts to make bidirectional BMIs that write in proprioceptive and soma-
tosensory information38,39. Alternatively, the person’s own limb can be controlled via robotic exoskeletons20,40 or 
functional electrical stimulation of the muscles4,41. These situations may be more akin to the free-arm BMI con-
text in this study, in that treating the expected contribution of the effector’s position as a nuisance variable could 
improve decoding movement commands.

A remaining question is, what caused the cursor positional effects observed during BMI use without accom-
panying movements? Likewise, what was the source of the cursor-specific neural variance in the free-arm BMI 
experiments? One possibility is that these are indeed motor cortical correlates of the subject’s internal state esti-
mation of the cursor’s position. However, these small cursor position-correlated neural activity changes could 
also reflect the position of the user’s eyes. In these experiments, the monkeys were head-fixed but were free to 
fixate wherever they chose. The human participants were able to move their eyes and head. In practice, BMI users 
in these kinds of tasks will look at either the cursor or the target, which are highly correlated over the course of 
the experiment. During the target hold period, these positions are effectively the same. Previous work has shown 
modest gaze-related activity in PMd during reaching tasks42–46, and accounting for this effect can improve BMI 
performance47. However, here we also saw similar cursor position-correlated modulation in M1, which is not 
believed to track gaze48. Nonetheless, in this study we cannot rule out gaze-related (and head-related, for the 
human results) modulation. Future studies with enforced fixation and blanking periods without visual feedback 
would be needed to more definitively attribute cursor positional effects to an internal model rather than gaze and 
afferent visual information. However, it is possible that the experimental manipulation of enforcing eye fixation 
will itself increase the magnitude of its neural correlates43,44. Regardless of this lingering scientific question, from 
a BMI design perspective, it is reassuring that even if there are gaze effects in motor cortex during BMI use, they 
are small.

Methods
Research animals and human participants. This study involved two adult male rhesus macaques: mon-
key J (15 kg and 11 years old at the start of these experiments) and monkey R (13 kg, 7 years old). All experiments 
and procedures were approved by the Stanford University Institutional Animal Care and Use Committee and 
were performed in accordance with relevant guidelines and regulations. This study also includes two human 
participants, ‘T5’ and ‘T6’, who gave informed consent and were enrolled in the BrainGate2 Neural Interface 
System clinical trial (ClinicalTrials.gov Identifier: NCT00912041, registered June 3, 2009). This pilot clinical 
trial was approved under an Investigational Device Exemption (IDE) by the US Food and Drug Administration. 
Permission was also granted by the Institutional Review Boards of Stanford University (protocol #20804) and 
Partners Healthcare/Massachusetts General Hospital (2011P001036). All research was performed in accordance 
with relevant guidelines/regulations.

T5 was male, 64 years old at the start of this work, and right-handed. He was diagnosed with C4 AIS-C spinal 
cord injury ten years prior to this study. He retained the ability to weakly flex his left elbow, as well as inconsistent 
slight residual movements of upper and lower extremities and occasional involuntary spastic flexion. He retained 
neck and head movements and was able to speak. T6 was female, 51 years old at the start of this work, and 
right-handed. She was diagnosed with Amyotrophic Lateral Sclerosis (ALS) with motor impairment (ALSFRS-R 
functional scale rating of 16). She retained dexterous movements of the fingers and wrist, as well as the ability to 
move her head and speak, at the time of this study.

Multiple experiment sessions were performed with each monkey and participant. We will refer to the data 
from one experiment session as a ‘dataset’.
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Neural recording. Neural data were recorded using essentially similar chronic multielectrode arrays 
and recording hardware (Cerebus systems for monkeys, NeuroPort systems for humans, both by Blackrock 
Microsystems, USA). The human neural recording system, along with the BMI and experiment control system, 
form the BrainGate2 Neural Interface System (CAUTION: Investigational Device. Limited by US Federal Law to 
Investigational use).

Monkeys J and R had one 96-electrode array (10 × 10 layout of length 1 mm electrodes with 400 μm pitch/
spacing) neurosurgically placed in the dorsal aspect of premotor cortex (PMd) and one array placed in the gyral 
primary motor cortex (M1). When we performed the key analyses of the study separately for M1 and PMd elec-
trodes, we observed similar results; we therefore report results pooled across these areas. In each monkey, both 
arrays were contralateral to the arm used for reaching in the free-arm BMI and hand control behavioral con-
texts. J’s data were collected 43 to 65 months after array placement. R’s data were collected 16 to 40 months after 
array placement. Participant T5 had two 96-electrode Blackrock arrays (1.5 mm electrode length) placed in the 
hand knob area of dominant motor cortex. T6 had a single 96-electrode Blackrock array (1 mm electrode length) 
placed in the same area. Figure 1 of49 shows the exact locations of the arrays for both participants. Participant T5’s 
Grid Task data (Fig. 5a,b) were collected 2 months after his arrays’ placement, and the Radial 8 Target Task data 
(Fig. 5d,e) were collected 10 months after arrays placement. T6’s Grid Task data were collected 19-20 months after 
array placement.

Voltage signals were analog filtered from 0.3 Hz to 7.5 kHz and digitized at 30 kHz. In the monkey experi-
ments this signal was then digitally filtered from 250 Hz to 7500 Hz, and a threshold crossing spike was detected 
whenever the voltage dropped below −4.5 times the root mean square (RMS) voltage. As is standard for BMI 
studies, we did not spike-sort to assign waveforms to putative individual neurons. The analyzed spikes therefore 
reflect both single- and multiunit activity. In the human experiments, the raw voltage signal was processed by the 
real-time Simulink system, which first applied a common average reference to each electrode within an array. The 
signal was then split into a spike band (250 Hz asymmetric FIR high pass filter optimized to extract spike activ-
ity from Utah arrays50), and a high frequency local field potential (HLFP) band (power in the 150 Hz to 450 Hz 
band-pass filtered signal). A voltage threshold was applied to the spike band to obtain threshold crossing spikes. 
For participants T5 and T6’s Grid Task experiments, these voltage thresholds were −50 and −95 μV, respectively. 
For T5’s Radial 8 Target Task decoder comparisons, the threshold was set to −4.5 × RMS, like in the monkey 
experiments. The firing rate plots in Fig. 3a (peristimulus time histograms) were constructed by smoothing spike 
time series with a Gaussian kernel with 20 ms s.d. and averaging firing rates across trials of the same behavioral 
condition.

experiment setup. Monkeys were trained to sit in a primate chair and perform a 2D cursor task in which 
they controlled the velocity of a virtual cursor either with their hand or with a BMI. The task was displayed using 
a Wheatstone stereograph and appeared in the fronto-parallel plane. The BMI task was performed in two different 
behavioral contexts: ‘free-arm’, in which the monkey could move one arm, or ‘restrained-arm’, in which the arm 
was gently restrained. The other arm was restrained in all experiments. In the free-arm BMI and hand-controlled 
tasks, the monkey could not see his reaching arm because it was occluded by the display mirrors. The position 
of the monkey’s hand (specifically, of an infrared-reflective bead taped across two of the fingers) was tracked at 
60 Hz using a Polaris tracking system (Northern Digital). Prior to this study, both monkeys had at least a year of 
extensive experience performing hand-controlled and BMI tasks in all of the contexts tested; their behavior was 
stable over the course of the experiments.

In the human tasks, the person sat in a chair and performed cursor control tasks presented on a computer 
monitor in front of them. Research sessions were conducted in the participant’s home using a semi-portable 
cart-mounted system. Participant T6’s BMI data were collected in two different behavioral contexts: she was 
either free to make finger movements, or was asked to suppress her movements. Movement suppression was 
verified by measuring finger movements with a dataglove (5DT), as reported in2.

The monkey and human experiment flow and BMI systems were based on the same underlying platform, and 
were similar; we describe where there were noteworthy differences below. Experiments were implemented using 
a custom Simulink xPC/Realtime platform (Mathworks, USA), operating at a 1 ms clock, which enabled 1 ms 
precision timing for all data. The task was displayed on 120 Hz monitors, using MSMS (University of Southern 
California, www.mddf.usc.edu) for the monkeys and Psychophysics Toolbox (www.psychtoolbox.org) for the 
humans.

Radial 8 Target Task. This task, as well as the others described below, consists of moving a virtual cursor 
to acquire virtual targets in a 40 cm wide by 32 cm tall workspace. In the Radial 8 Target Task, the target loca-
tion alternated between the workspace center and one of eight radial locations (pseudorandomly chosen within 
8-target sequences) equally spaced around a circle centered on the workspace center. The radial target centers 
were located 12 cm from the workspace center during blocks used for decoder calibration, and 8 cm from the 
center during the decoder evaluation blocks. We define the acquisition to the radial target and the acquisition of 
the center target as two separate trials. In the monkey variant of the task, only one target was visible at any given 
time.

The target was acquired by holding the cursor within the target acquisition area for a contiguous 500 ms. 
Leaving the target area did not fail the trial, but it did reset this acquisition time counter. The target acquisition 
area was a 4 × 4 cm square (5 × 5 cm for monkey J free-arm context) surrounding the (smaller) visual circu-
lar depiction of the target, with the following exceptions: during the first-pass closed-loop BMI blocks where 
the initial decoder was used (which was typically worse than the final decoder), the target area was 6 × 6 cm or 
occasionally 7 × 7 cm; this helped prevent the monkeys from becoming frustrated. For all tasks, the next target 
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was displayed 20 ms after a trail success or failure. The trial time limits for the closed-loop decoder comparisons 
(Fig. 1) were 5 s. For other tasks and experiments, trial time limits varied depending on the monkey and dataset, 
but were always generous enough that time limit was not a limiting factor in the monkey’s performance; the occa-
sional timed out trials (putatively due to disengagement from the task) were not analyzed.

One participant T5 Radial 8 Target Task dataset was specifically collected for this study to compare decoders 
with and without a ‘Cursor Position Subtraction’ operation. The workspace was 1920 pixels wide by 1080 pixels 
tall. The eight circular targets, each of radius of 50 pixels, were equally spaced around a circle of radius 409 pixels. 
All eight targets were always displayed, and the trial’s active target was shown with a different color (the other 
targets could not be selected). The active target was selected if the cursor center was held inside the target (the 
acquisition area was circular for the human variant of the Radial 8 Target Task) for a continuous 500 ms. The trial 
failed after 10 s.

For monkey decoder comparisons, each decoder was used in alternating blocks of approximately 200 trials per 
block (an ABABAB… design). T5’s decoder comparison consisted of a single ABAB block design session using 
a ReFIT decoder with (A) and without (B) Cursor Position Subtraction. To compare decoder performance, we 
used the metric of time to target, which is only calculated for successful trials. Overall success rates were 97.1% 
and 97.2% for monkeys J and R, respectively, and 99.8% for participant T5. For all three BMI users, task perfor-
mance was sufficiently high that any failure was almost certainly attributable to task disengagement, rather than 
an inability to acquire the target. To exclude trials in which the animal or participant may have briefly disengaged 
from the task, we only analyzed successful trials that followed another successful trial. For the monkey datasets, 
we further avoided including data with dubious motivation at the very end of the session, right before the monkey 
chose to stop working. Specifically, we used the following block inclusion rule: if the animal did not finish the last 
AB ‘block-set’ of the experiment session, this block-set was excluded. If the animal did finish the block-set, then 
its last block was excluded.

Radial 3 × 8 Target Task. A ‘Radial 3 × 8 Target Task’ variant was used for the Fig. 3 experiment in which 
monkeys performed the task using hand control and restrained-arm BMI control during the same experiment 
sessions, and in the Fig. 4 free-arm BMI experiments. During each of these experiment sessions, three different 
Radial 8 target sets were used; each of the target sets consisted of a center target and eight radial targets, but the 
entire target set could be shifted over in the workspace. Specifically, the center targets were located at either −7 
cm, 0 cm, or +7 cm relative to the overall workspace center along a horizontal ‘task axis’, or −6 cm, 0 cm, or +6 cm 
along a vertical task axis. Radial targets were located 7 cm from the corresponding center target in the horizontal 
task axis arrangement and 6 cm from the center target in the vertical task axis arrangement. The smaller vertical 
task extent was to accommodate the animals’ reduced vertical range of arm motion. For this same reason, the 
topmost three targets of monkey J’s hand-controlled vertical axis Radial 3 × 8 Target Task were moved down by 
1 cm to accommodate his slightly shorter arms.

The task axis was fixed for a particular dataset but was varied from day to day. For the free-arm BMI exper-
iments, a total of seven datasets were collected with a horizontal task axis arrangement and eight datasets were 
collected with a vertical task axis arrangement. For the hand control + restrained-arm BMI experiments, there 
were five horizontal and five vertical task axis datasets. The three target sets were presented in approximately 100 
trial blocks of the same target set, with the target sets interleaved throughout the session. Specific task details for 
these experiments are: the target acquisition area was 4 × 4 cm when the task was performed under hand control 
and 5 × 5 cm when performed under BMI control; the requisite target hold period was 800 ms; the trial time limit 
was 3 seconds during hand control and 5 seconds during BMI control.

Random Target Task (monkeys). At the start of each trial, the target appeared anywhere in a 24 × 24 cm 
region centered within the overall workspace. The target acquisition area was 4 × 4 cm when the cursor was 
hand-controlled and 5 × 5 cm when BMI-controlled. The monkey acquired the target by holding the cursor 
within this area for a contiguous 800 ms. The next target was presented 20 ms after the success or failure of a trial.

Grid Task (humans). We examined previously collected data from2 to measure cursor positional effects in 
human participants using a BMI to perform a Grid Task (Fig. 5a–c). A 1000 × 1000 pixel region centered within 
an overall 1078 × 1078 pixel workspace was divided into a 6 × 6 grid (T5 and T6) or 9 × 9 grid (T5 only) of 
equally-sized square gray targets. We analyzed T5 data from both grid sizes together since a different post-hoc 
division of trials by target regions was used for these analyses (‘tiles’, described later). Each target was selectable 
at all times, but for each trial, the correct target was prompted by being illuminated in green. A particular target 
could be selected either by holding the cursor over it for 1 s, or by commanding a ‘click’ (see “BMI decoders: 
human” methods below); both participants primarily used the click method. We only analyzed successful trials 
(98% for T5, 93% for T6). To reduce the effects of variability due to selection method, we only analyzed trials 
where the selection was made with a click (91% of successful trials for T5 and 87% for T6). Furthermore, since 
our analyses focused on neural differences based on where in the workspace the cursor was being held, we only 
analyzed trials where the cursor was held over the target for at least 150 ms prior to the click selection; this meant 
analyzing 58% (T5) and 94% (T6) of successful click trials.

Dataset selection. In this section we describe how we chose which collected datasets to analyze. The deci-
sion to exclude a dataset was always made prior to performing any cursor positional effect neural analyses, and 
was instead based on disqualifying task behavior or if it was found that there was a technical problem with the 
data collection.

For the closed-loop monkey decoder comparisons (Fig. 1) we analyzed all collected datasets of the Radial 8 
Target Task where the monkey completed at least two pairs of blocks with each decoder (i.e., at least “ABAB…”). 
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Twelve monkey J datasets were analyzed (two were excluded due to insufficient trials). Twelve monkey R datasets 
were analyzed (two were excluded due to insufficient trials).

For the Random Target Task experiments (Fig. 2) and Radial 3 × 8 Target Task experiments performed either 
with a restrained-arm BMI or the hand (Fig. 3), we included all collected datasets where the monkey performed 
these tasks and was engaged in the task for the several hours that was typical for these animals. Several datasets 
were excluded because the animal chose to stop working unusually early that day (these had fewer than half as 
many trials as the included datasets). Eight monkey J datasets were analyzed (two were excluded due to insuffi-
cient trials). Ten monkey R datasets were analyzed (two were excluded due to insufficient trials). One additional 
monkey R dataset was excluded because the raw neural data recording system failed that day. The same dataset 
selection criterion was used for the free-arm BMI Radial 3 × 8 Target Task experiments (Fig. 4). Eight monkey J 
datasets were analyzed, and seven monkey R datasets were analyzed (two were excluded due to insufficient trials).

For the human clinical trial participant offline analyses (Fig. 5a–c), we analyzed three participant T5 and 
seven participant T6 BMI Grid Task datasets available to us from a prior study2; the methods section of that study 
describes its data collection protocol and block inclusion criteria. The closed-loop human participant decoder 
comparison (Fig. 5d,e) was only attempted during one research session, and this is the dataset that is reported.

BMI decoders. The majority of experiments reported in this study examine neural activity while a BMI user 
moved a virtual cursor in a 2D workspace using a velocity Kalman filter. Before describing the several decoder 
variations used in this study, it is worth noting that as it is actually used in most BMI systems, including in the 
present work, the closed-loop operation of this class of decoders can be expressed25,51,52 in the form of:

= +−tv M v M y( ) (1)21 t 1 t

where v(t) = [vhor(t); vver(t)] is the velocity vector the in horizontal and vertical workspace dimensions at a given 
time step t, y(t) is an E × 1 vector of neural features observed during the current time bin, E is the number of elec-
trodes multiplied by the number of neural features per electrode, M1 and M2 are 2 × 2 and 2 × E matrices. This can 
be thought of as a second-order physical control system18 in which, at every time step, the velocity is a damped 
update of the previous velocity (in practice M1 is diagonal matrix with elements less than 1) plus a “neural push” 
input which is a linear weighting of neural activity (e.g., each electrode’s firing rates) onto horizontal and vertical 
velocity. The various ways to fit the decoder that are described below will adjust the specific parameters of M1 and 
M2 while leaving this essential form of the decoder the same.

An important deviation from this formulation is if the decoder has a Cursor Position Feedback subtraction 
operation to account for a potential influence of BMI cursor position on firing rates. Whether or not this oper-
ation is useful is one of the key questions of this study. This decoder operation is described in the next section.

In this study, BMI decoders were trained and used in the two different behavioral contexts: free-arm and 
restrained-arm. This entailed different protocols for obtaining the training data to fit the decoders. We followed 
the training protocols described in19 for the monkey BMI decoders and2,24 for the human BMI decoders, except 
where differences are noted. All decoders were fit and used within-context, by which we mean that decoders used 
in the free-arm context were trained from data collected during that context, and likewise, decoders used in the 
restrained-arm context were trained from passive observation or previous closed-loop BMI data collected during 
that context. The decoders operated with a 50 ms (monkeys) and 15 ms (humans) update time step, with velocity 
held constant for each 1 ms system update between neural updates.

In the monkey free-arm context and in T6’s ‘finger movements OK’ context, decoder training began with the 
subject/participant performing the Radial 8 Target Task with their hand. For two monkey J and one monkey R 
datasets, final decoders (with and without Cursor Position Subtraction) were fit from the initial hand-controlled 
block rather than from a first-pass decoder closed-loop block. This is explained more in the next section. For the 
remaining sessions, binned kinematics (hand endpoint velocity in the 2D vertical plane for monkeys, index and 
thumb velocities for participant T6) and neural data collected during this first hand-controlled block were used to 
fit an initial decoder. The subject/participant then used this initial decoder to perform another block of the Radial 
8 Target Task. For participant T6, this recalibration block employed partial error attenuation to ensure that she 
could reach all targets2.

The closed-loop kinematics and neural data from this first-pass decoder block were used to fit a new, ‘recali-
brated’ decoder. Previous work that introduced the ReFIT decoder, which includes a Cursor Position Subtraction 
operation (“Innovation 2” in19), tested the online benefit of this innovation by comparing ReFIT decoders with 
and without Cursor Position Subtraction while allowing the monkey to move his arm (their Supplementary 
Figures 3b and 4b). Both of these decoders included the ‘Cursor Goal’ intention estimation optimization 
(“Innovation 1’) of ReFIT, in which the training data velocities are rotated to point towards the target under the 
assumption that this is where the BMI user was always aiming. In the present study we also compared decoders 
with and without Cursor Position Subtraction (Fig. 1), also in the free-arm context, essentially replicating that 
aspect of the19 results. However, to provide more complementary new data, here we did not use the Cursor Goal 
innovation when training the decoders used for these comparisons. That is, our free-arm BMI closed-loop per-
formance comparisons tested velocity Kalman filters fit from the same training data, without Cursor Goal correc-
tion, either with or without Cursor Position Subtraction.

In this study, Cursor Goal correction was used when fitting the decoders in the experiments comparing cur-
sor positional effects during hand-controlled versus restrained-arm BMI task performance (Figs 2, 3) and in the 
human participant decoders (Fig. 5). It was not used in the free-arm BMI Radial 3 × 8 Target Task experiments 
(Fig. 4) in order to deliberately train sub-optimal decoders so as to reduce the correlation between hand and 
cursor positions.
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During all decoder fittings, training data velocities were set to 0 during the target hold epoch (i.e., when the 
cursor was within the target acquisition area), as described in19. This operation is motivated by an assumption 
that neural activity reflects that the user is trying to command zero velocity during this epoch (even if some small 
movement may be unavoidable). Hold epoch velocities are therefore replaced with 0 velocity to more accurately 
fit the decoder to the user’s nominal intentions.

Decoder training during the restrained-arm BMI context was similar to the two-step free-arm protocol 
described above, in that an initial decoder was trained from an initial training block. This first decoder was then 
used to collect a closed-loop (BMI-controlled) second training data block, which was then used to train final 
decoders. The key difference, however, is that in the restrained-arm context, the initial training block consisted 
of the user watching automated straight-line movements of the cursor to the target, rather than performing the 
task with their hand. The decoder fitting procedure thus assumes that the neural activity being recorded corre-
sponds to the kinematics of the (automated) cursor movement. While this need not be true, in practice this works 
well enough that a usable initial decoder can be fit and used to collect closed-loop data from which an improved 
(‘recalibrated’) final decoder can be fit.

When fitting the final decoders for the experiments comparing cursor positional effects during arm use and 
restrained-arm BMI use (Figs 2 and 3), two-thirds of the available monkey J electrodes and three-fourths of the 
available monkey R electrodes were used to causally control the cursor. A different random set of electrodes was 
chosen for decoder inclusion at the start of each experiment session (i.e., there was a different subset of electrodes 
used in each dataset). The original purpose of this experiment design choice was to potentially allow for compar-
ing responses between electrodes that did or did not directly affect the decoder (‘direct’ or ‘indirect’ electrodes, 
respectively). However, initial analyses did not reveal substantial cursor positional effect differences between 
direct and indirect neural populations, and we did not further pursue this question in the present study; rather, 
all analyses combined both direct and indirect electrodes. The decoders used in the Fig. 4 experiments were also 
trained with only a subset of the electrodes. As mentioned earlier, this was to intentionally reduce the perfor-
mance of these decoders. For monkey J, this fraction was one-half of the electrodes for six datasets, two-thirds 
for one dataset, and three-fourths for one dataset. For monkey R, three-fourths of the electrodes were used in all 
seven datasets.

The human participants had two-dimensional velocity control of a computer cursor, plus a discrete “click” 
selection command, using the ReFIT Kalman Filter and Hidden Markov Model-based state classifier detailed in2. 
Participant T5 attempted to move his (imagined to be) outstretched arm to command cursor velocity, whereas 
T6 attempted to move her index finger and thumb. Both participants “clicked” by attempting to squeeze their left 
(ipsilateral-to-arrays) hand. The human participants’ threshold crossing firing rates were smoothed online with a 
half-Gaussian kernel with 25 ms standard deviation. T5’s decoder operated only on threshold crossings, but T6’s 
decoder also operated on HLFP power because her array’s spikes signal quality was poor.

BMI decoders with Cursor Position Subtraction. The hypothesis underling incorporating a Cursor 
Position Subtraction operation into a velocity decoder is that if the BMI effector’s position affects neural activity, 
then this positional effect can deleteriously affect BMI performance by causing changes in decoded velocity that 
are unrelated to the user’s actual movement intention. This can be mitigated by modeling the cursor positional 
effect as a nuisance variable and subtracting from the observed firing rates the expected contribution of the cur-
sor’s current position.

In this study, we followed the method of19 and estimated the positional effect from neural and cursor position 
observations in the training data during time periods when the BMI user was holding the cursor over the target, 
right before target acquisition. The logic behind fitting Cursor Position Subtraction from the hold epoch is that 
we assume that during this period the user is engaged in the task and that therefore the sensorimotor system is 
tracking the position of the cursor. There is also less cursor movement during the hold period, which putatively 
reduces the amount of neural activity related to movement generation (e.g., intended speed and velocity tuning). 
This epoch therefore may better isolate cursor position-related activity.

Specifically, at the start of the decoder fitting procedure, let Y be the E × T matrix of the firing rate obser-
vations during all T target hold period time bins, and P = [phor; pver; 1] is the 3 × T matrix of the mean cursor 
positions during each bin (the last bias row is to allow for baseline firing rates). We find Cpos = Y/P, where / is 
the matrix right division operation, i.e. the least-squares solution to CP = Y. The last column of Cpos is discarded, 
leaving an E × 2 matrix in which the ith row provides weights describing how the horizontal and vertical cursor 
position are believed to affect the neural activity of electrode i.

Cpos is then used to subtract away Ypos = Cpos * [phor; pver], i.e., the expected firing rate contribution due to the 
cursor’s position, from all neural observations during the subsequent steps of the Kalman filter fitting procedure 
and during online decoder operation. As a technical note, since this subtraction is applied during the fitting of the 
Kalman filter emissions matrix (the C matrix in the ReFIT decoder derivation from19), this is equivalent to fitting 
the emissions model of a position-velocity Kalman filter.

Thanks to the steady-state formulation of the velocity Kalman filter (equation 1), we can visualize the effect 
of the Cursor Position Subtraction operation as a vector field showing what ‘positional effect velocity’ is added to 
the decoded velocity just due to where the BMI cursor is located (Figs 1d, 5d). This contribution is calculated at a 
given position in the workspace as

= −. M Cv [p ;p ] (2)2pos effect pos hor ver

where the negative sign reflects that the cursor positional effect is subtracted from observed firing rates.
As mentioned earlier, on three of the decoder comparison experiment sessions, the cursor positional effect 

was estimated from the monkey’s arm reaching data (data points marked with squares in Fig. 1c), rather than 
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from closed-loop BMI data collecting using an initial decoder. Aside from this difference in how the training 
data was collected (i.e., whether the monkey was controlling the cursor with his hand or BMI), this cursor posi-
tional effect estimation procedure was the same as described above for when the effect was estimated from BMI 
task data. Our motivation for testing Cursor Position Subtraction decoders trained from both hand-controlled 
and brain-controlled data was to more comprehensively test when this operation improves performance in the 
free-arm BMI behavioral context.

The more important new closed-loop decoder comparisons were those collected in the restrained-arm BMI 
behavioral context. When we initially collected one monkey J dataset comparing the full ReFIT decoder (which 
includes Cursor Goal intention estimation) against ReFIT without Cursor Position Subtraction, we observed no 
online performance difference; both decoders performed very well. We speculated that perhaps the high perfor-
mance on this task was close to a “ceiling effect”, thereby obscuring the benefit of Cursor Position Subtraction. 
We therefore collected the remaining monkey J datasets without the Cursor Goal operation during the decoder 
recalibration, which has previously been shown to reduce performance19. To further increase the range of online 
performance levels examined (i.e., to further reduce performance), three of these datasets had a randomly-chosen 
one-fourth, one-third, or one-half of electrodes disabled when fitting the final two decoders which were com-
pared against one another (the same electrodes were removed for both decoders). Monkey R’s BMI performance 
was worse than monkey J’s, so we were less concerned about ceiling effects; we therefore compared the standard 
ReFIT decoder either with or without Cursor Position Subtraction in all seven of his restrained-arm datasets.

The same method for fitting and implementing a ReFIT decoder with Cursor Position Subtraction was used 
for the T5 closed-loop experiment collected specifically for this study.

Cursor positional effect during target hold. These analyses seek to describe the relationship between 
neural activity and where in the workspace the BMI user is holding the cursor (Figs 2 and 5a–c). We divided the 
region of the workspace where targets could appear into either a 3 × 3 = 9 (monkeys J, R, and human participant 
T5) or 2 × 2 = 4 (participant T6) ‘tiles’ and grouped trials based on which tile the target was located in. We then 
trial-averaged hold-epoch firing rates across the trials. These choices of workspace division resolution were made 
to balance dividing the workspace into smaller regions to look for more nuanced position-dependent neural 
variability against the desire to have sufficient number of trials in each tile provide an accurate neural activity 
estimate. Across all of the datasets used in these ‘tile analyses’ (including both monkeys and human participants), 
the minimum number of trials within a tile was 18 trials, and the mean was 78.9 trials per tile).

The analyzed hold epoch for the monkey datasets was from 400 to 750 ms after the start of the target hold 
period (which lasted 800 ms). Firing rates were calculated by counting the number of spikes within these hold 
epochs and normalizing by its duration, yielding a single firing rate scalar per electrode per trial. For the human 
data analyses, we averaged each trial’s neural activity (firing rates for T5, HLFP power for T6) over the 100 ms 
before target selection (click). Cursor horizontal and vertical positions were averaged across this analysis epoch, 
yielding 2-element position vector for each trial. Non-functional electrodes (i.e., zero spikes recorded, or extreme 
noise) were excluded from these analyses.

We also reported across-tile neural modulation range as a percentage of movement epoch neural modu-
lation range; this was done to provide a context for the “scale” of the cursor positional effect compared to the 
‘dynamic range’ observed over the course of movements, which are known to elicit high activity in motor cortex. 
We trial-averaged firing rates in short time bins to capture the time-varying richness of peri-movement neural 
activity. Trial averaging, however, precluded using the Random Target and Grid Tasks in which each trial has a 
different start point, end point, and duration. Instead, this dynamic range was calculated by trial-averaging across 
the conditions of a Radial 8 Target Task block (approximately 200 trials) that was collected before each behavioral 
context’s Random Target (monkey) or Grid Task (human) blocks. Specifically, firing rates were computed from 0 
to 600 ms after target on, using 20 ms bins slid by 1 ms; this provided sixteen condition-averaged (out to and back 
from each target) neural activity time series. For monkey datasets, this range was calculated by considering the 
minimum and maximum firing rates across both hand-controlled and restrained-arm BMI contexts.

We used a simple test to determine which dataset-electrodes to include in the Fig. 2d analysis: the electrode 
had to modulate during the movement task, which we defined as a firing rate change between the very start of the 
trial and a subsequent time window where the movement was being made. This test is motivated by the obser-
vation that the largest neural response component during arm movement tasks is a general change of firing rates 
when initiating a movement53. Specifically, for each electrode we binned spike counts in two windows during each 
trial (0 to 150 ms and 150 to 300 ms after target on) and compared these windows’ distributions; electrodes with a 
significant change (p < 0.01, sign-rank test) were considered ‘task-modulated’. This test was run separately for the 
monkey hand-controlled and restrained-arm BMI contexts and the electrode was included if it responded during 
either context. In practice, very few dataset-electrodes with significant cursor positional effects were excluded 
from analysis based on this movement tuning test.

The calculation of firing rate variance explained by cursor position reported in Fig. 2d was performed sep-
arately for each dataset-electrode, and consisted of a linear regression between y, individual trials’ firing rates 
during the analyzed target hold epoch (the same epoch as in the tile analysis) and the matrix of cursor positions 
on each trial [phor; pver; 1]:
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where β1, β2, β3 are linear coefficients fit via least-squares regression. This formulation allows for a baseline firing 
rate for each electrode. The coefficient of determination (R2) of this regression was used to describe how well 
cursor position explained firing rate variance. To determine whether this variance explained was significant, we 
used a shuffle test in which we randomly permuted the pairings between trials’ cursor positions and firing rates 
and re-calculated the regression R2. This process was repeated over 1,001 shuffles. A p-value of below 0.001 for a 
given dataset-electrode indicates that trials’ true positions explained more of that dataset-electrodes’ firing rate 
variance (R2) than all the shuffled datasets’ cursor positions.

Cursor positional effects during arm and BMI movements. The ‘workspace modulation’ metric used 
in this analysis (presented in Fig. 3) is described in the Results section. One additional detail is that since we were 
trial-averaging firing rates within a behavioral condition (BMI or arm use × target direction × workspace), we 
wanted to exclude any conditions with very few trials. This was to exclude firing rate measurements that were prone 
to unusually high single-trial noise. Specifically, we excluded any conditions with fewer than 10 trials, which ended 
up excluding 1 of 96 monkey J arm use conditions and 1 of 144 monkey R BMI use condition. To calculate the sta-
tistical significance of each dataset-electrode’s observed workspace modulation, we computed a null distribution of 
1,001 shuffled workspace modulations. In each shuffle, workspace labels were randomly permuted amongst trials 
of a given behavioral context (arm or BMI use) and reach direction in that dataset. For example, during a shuffle 
an arm reach to the upward target in the left workspace might be re-labeled as an arm reach to the upward target in 
the right workspace. Each electrode’s workspace modulations were then re-computed when trial-averaging within 
the (shuffled) workspace groupings. This generates a distribution of workspace modulation magnitudes under the 
null hypothesis that firing rate differences are merely due to trial-to-trial variability that does not covary with which 
workspace the trial was actually performed in. The p-value of a given dataset-electrode’s statistic was determined 
based on how many of the shuffled workspace modulations its true workspace modulation was greater than.

Cursor vs. hand positional effects during free-arm BMI use. Data from a Radial 3 × 8 Target Task 
where the monkey used a BMI with his arm free to move were analyzed to tease apart the separate neural corre-
lates of hold-epoch cursor and hand positions (Fig. 4). As in the Fig. 2 analyses described in the previous section, 
we analyzed neural and kinematic data in an analysis epoch from 400 to 750 ms from the beginning of the target 
hold, prior to target selection. The monkey controlled the cursor solely with neural activity via the BMI; we did 
not enforce that his hand make any specific movements or that it be visible to the bead tracking system. Therefore, 
there were times when the bead was not tracked because the monkey turned his hand over or moved it to the 
extremes of his reach range (e.g., far away from or close to his body). Since we needed to measure the hand’s posi-
tion during the analysis epoch for this analysis, we excluded trials in which the bead was not visible during the 
entire hold period. Across datasets, between 0% and 41.0% (mean 11.0%) of trials were excluded for this reason.

The firing rate variances explained by task axis cursor or hand positions (Fig. 4b) were calculated with lin-
ear regressions set up similarly to equation 3, except that only one position coordinate (horizontal or vertical, 
depending on the dataset’s task axis), plus the 1 for baseline firing rate, were predictor variables. Separate regres-
sions were performed using either trials’ cursor or hand positions to try to predict these trials’ firing rates.

Partial R2 values (Fig. 4c) were calculated by squaring the linear partial correlation coefficients between trials’ 
hold-epoch firing rates and the task axis position of one effector (e.g., the hand) after controlling for that effector’s 
(e.g., the hand’s) covariance with the other effector (e.g., the cursor). For example, ρneural, hand · cursor, the partial corre-
lation between neural activity and hand position, after accounting for cursor position, was found by assembling all 
n trials’ hold-epoch firing rates into a length n vector, y. These trials’ hand and cursor positions were assembled into 
length n vectors phand and pcursor, respectively. MATLAB’s partialcorr (y, phand, pcursor) function was then used to com-
pute the partial correlation. ρneural, cursor · hand, the partial correlation coefficient between firing rates and cursor posi-
tions, after controlling for hand positions, was found by interchanging hand and cursor in the above description.

Statistical significance for the partial correlations was calculated with a shuffle test similar to that described 
earlier for Fig. 2d: trials’ pairings between firing rates and kinematics (here, cursor and hand positions) were 
scrambled and partial R2 were calculated for each dataset-electrode from these 1,001 shuffled datasets. The 
p-value for a dataset-electrode’s partial R2 statistic was determined by how many of the scrambled datasets’ R2 its 
true data partial R2 was greater than.

Data Availability
The data can be made available upon reasonable request by contacting the lead or senior authors.
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