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Abstract 

We investigated the developmental trajectory of number word 
learning in bilingual preschoolers to examine the relative 
contributions of two factors: (1) the construction of numerical 
concepts, and (2) the mapping of language-specific words 
onto these concepts. We found that children learn the 
meanings of small numbers independently in each language, 
indicating that the delay in the acquisition of small numbers is 
mainly due to language-specific processes of mapping words 
to concepts. In contrast, the logic and procedures of counting 
are learned simultaneously in both languages, indicating that 
these stages require the construction of numerical concepts 
that are not stored in a language-specific format. 

Keywords: number word learning; bilingual speakers; 
conceptual change 

Introduction 
Across a variety of languages and cultural groups, 

including Canada, the US, Japan, Russia, Bolivia, Slovenia, 
Taiwan, and Saudi Arabia, children learn number word 
meanings in distinct, protracted, stages (Almoammer, 
Sullivan, Donlan, Maruscic, Zaucer, O’Donnell, & Barner, 
2013; Barner, Libenson, Cheung, & Takasaki, 2009; Li, Le 
Corre, Shui, Jia, & Carey, 2003; Piantadosi, Jara-Ettinger, & 
Gibson, 2014; Sarnecka, Kamenskava, Yamana, Ogura, & 
Yudovina, 2007; Wynn, 1990). In the first stage, children 
learn to recite a partial count list (e.g., one, two, three, four, 
five, etc.), often pointing at objects as they count. Yet, these 
children actually have little understanding of how number 
words represent quantity, and as a result are often classified 
as “non-knowers.” Sometime later, they acquire an exact 
meaning for one, at which point they are called “1-
knowers”. Months later, they learn an exact meaning for two 
to become “2-knowers.” They then learn three (“3-
knowers”) and sometimes four (“4-knowers”). Up until this 
point, children are generally referred to as “subset-knowers” 
since they only know the meanings for a subset of their 
number words. However, at the next stage children appear 
to recognize that the counting procedure can be used to 
enumerate sets, and that the last word in a count routine 
labels the cardinality of the entire set (for discussion of 
knower levels, see Wynn, 1990; Lee & Sarnecka, 2011; Le 
Corre & Carey, 2007; Piantadosi, Tenenbaum, & Goodman, 
2012; Sarnecka & Carey, 2008; Davidson, Eng, & Barner, 
2012). At this stage, children are generally referred to as 
cardinal principle knowers (“CP-knowers”).  

Even after becoming CP-knowers, children still appear 
unsure of how the counting procedure represents number. 
According to some accounts (Sarnecka & Carey, 2008; 
Wynn, 1990), children become CP-knowers – and 

understand how counting represents number – by noticing 
an isomorphism between the structure of the count list and 
the cardinalities that they represent. In particular, on such 
accounts, children learn the successor principle – that every 
natural number n has a successor, defined as n+1. However, 
recent evidence suggests that many so-called CP-knowers 
do not have knowledge of this principle, and that instead 
they initially use a blind procedure for counting and giving 
correct amounts, with little insight into how this procedure 
works (Davidson, et al., 2012). When told that a box 
contains 4 objects and asked how many there are when one 
more is added, many CP-knowers are at chance.  

Although it remains controversial when children fully 
understand how counting represents number, the basic 
developmental trajectory is robust (Lee & Sarnecka, 2011; 
Piantadosi, et al., 2012). However, despite this consensus on 
the developmental facts, it remains unknown what causes 
transitions between the stages of number word learning. 

What we do know is that several sources indicate that the 
length of the delays between stages is highly malleable (e.g., 
Dowker, 2008; Klibanoff, Levine, Huttenlocher, Vasilyeva 
& Hedges, 2006). First, children who receive greater 
exposure to number words pass through knower level stages 
more quickly (Levine, Suriyakham, Rowe, Huttenlocher, & 
Gunderson, 2010; Gunderson & Levine, 2011). Second, 
children’s rate of number word learning appears to be 
affected by the structure of their language. Some languages, 
like English and Russian, have obligatory singular-plural 
marking, which might help children to identify that one 
refers to singleton sets, whereas two and larger numbers 
refer to sets of more than one (Carey, 2004, 2009). 
Consistent with this, children learning English and Russian 
become 1-knowers faster than children learning Japanese 
and Mandarin Chinese, which do not have obligatory 
singular and plural marking (Barner, et al., 2009; Li et al., 
2003; Sarnecka et al., 2007). Languages like Slovenian and 
Saudi Arabic not only have singular-plural marking, but 
also have dual marking, which refers to sets of precisely two 
(Corbett, 2000). Remarkably, children learning these 
languages are faster to learn one and two (but interestingly 
not three) than children from any other previously studied 
group, even though they appear to receive less training than 
children from other countries (Almoammer et al., 2013). 

These facts suggest that the transitions between knower 
level stages can be accelerated by the frequent and 
informative use of number words. However, they leave open 
why frequent and informative input matters, and thus why 
learning is so hard. Here we consider two, mutually 
compatible, possibilities. First, it is possible that the 
protracted transitions between the stages of number word 
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learning are affected by gradual processes of conceptual 
change: 1-knowers may take months to become 2-knowers 
because they do not yet have a concept of “exactly two” and 
must construct this as part of learning the word (Carey, 
2004, 2009; Sarnecka & Carey, 2008; Spelke & Tsivkin, 
2001). Consequently, hearing the word two used frequently 
and in supportive grammatical contexts may be important 
because it helps children construct the concept “two”. 
Similarly, becoming a CP-knower may involve a conceptual 
change that is speeded by frequent exposure to number 
words and the counting routine. Alternatively, the primary 
reason for the delays may not be conceptual, but due to the 
problem of identifying how words in a particular language 
map onto numerical concepts (whether these concepts are 
innate, constructed but easy to acquire, or difficult to 
acquire but constructed sometime before the onset of 
number word learning). Consider, for example, a scenario in 
which the concepts “one”, “two”, and “three” are innately 
specified in the child’s representational repertoire. In this 
case, the observed delays between knower level stages 
might be explained by the difficulty of identifying which 
words correspond to which set sizes. In the case of counting, 
a similar gradual, language-specific learning process might 
take place: learning the cardinal principle in English, for 
example, might not require conceptual change per se, but 
might instead involve a mapping of words onto innate 
concepts of cardinality (Leslie, Gelman, & Gallistel, 2008). 
This model, like the constructivist alternative, also predicts 
that frequency of input should affect rate of learning.  

These two possibilities are by no means mutually 
exclusive, but they do make predictions that can distinguish 
the relative role each factor plays in learning. In particular, 
they make different predictions for bilingual learners. 
Specifically, if the primary cause of delays between stages 
of number word learning is conceptual, then when children 
acquire knowledge in one language (e.g., English), this 
knowledge may readily transfer to their secondary language 
of instruction (e.g., Spanish) with little additional language-
specific learning required. However, if the primary 
challenge is the language specific problem of mapping 
words onto concepts, bilingual children may exhibit 
relatively independent learning trajectories in each of their 
two languages with little evidence of transfer. The best 
predictor of their number word knowledge, in this case, may 
be how much input they receive in a particular language, 
rather than what they know in another language. 

To explore these questions, we tested three groups of 
bilingual children in the U.S. who spoke either English and 
French or English and Spanish. Each child was tested with 
Wynn’s (1990) Give-a-Number task in order to establish 
their knower level in each language, and each child was 
asked to count as high as they could. In addition, we tested 
when bilingual children acquire the successor principle in 
each language, and whether it transfers between languages 
in a subset of the CP-knowers with a third task, called the 
Successor Task (see Sarnecka & Carey, 2008). 

Methods 

Participants 
One hundred and forty-seven bilingual speakers of either 
English and French (n = 20; M = 3;8; range = 2;11-5;0) or 
English and Spanish (n = 127; M = 4;6; range = 2;2-5;6) 
from the San Diego area participated. Eighty-five children 
were from predominately low socioeconomic (SES) 
Hispanic families at a local preschool that caters to English 
learners. The remaining 62 children were from primarily 
non-Hispanic Caucasian, upper-middle class families.  

Caregivers were asked to report their child’s primary 
language on the consent forms that were sent home by the 
preschools. As reported on the returned consent forms, 83 
children were primarily Spanish speakers, 3 were primarily 
French speakers, and 44 were primarily English speakers. 4 
children were equally proficient in English and Spanish and 
1 child was equally proficient in English and French. 
Twelve parents did not respond. To avoid decreasing our 
recruitment rate, parents were not asked any further 
questions about their child’s language abilities. Although 
parent report is often predictive of children’s overall verbal 
fluency, it is not necessarily a reliable indicator of children’s 
familiarity with numbers, since children may be instructed 
in a language other than their primary language. Therefore, 
we also directly measured children’s familiarity with 
numbers by assessing counting ability in each language. 
This was then used to determine each child’s “Primary 
Number Language” (NL1) and “Secondary Number 
Language” (NL2). 

Procedures 
Children completed four tasks, once in each language, in the 
following order: (1) Language Proficiency; (2) Give-a-
Number; (3) Highest Count; and (4) Successor Task. The 
Successor Task was added to the procedures midway 
through data collection. Thus, only CP-knowers from the 
Low SES Spanish-English Group completed this task. 

 
Give-A-Number Task This task, which was adapted from 
Wynn (1990), assessed children’s knowledge of number 
words. On each trial, the experimenter presented the child 
with a plate and ten plastic fish and asked the child to place 
a quantity on the plate, avoiding singular and plural marking 
by asking, “Can you put n on the plate? Put n on the plate 
and tell me when you’re all done.” Once the child 
responded, the experimenter then asked, “Is that n? Can you 
count and make sure?” If the child recognized an error, the 
experimenter allowed the child to fix it. Two versions of 
Give-a-Number were used. Children who participated in an 
earlier version of the study completed up to twenty-one 
quasi-randomized trials, consisting of three trials for each of 
the seven numbers tested (i.e., 1, 2, 3, 4, 5, 8, and 10; see 
Lee & Sarnecka, 2011 for discussion). Children who 
participated later were given a staircased version of the 
Give-a-Number task (as in Wynn, 1990, Experiment 3).  
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Children were defined as an n-knower (e.g., three-
knower) if they correctly provided n (e.g., 3 fish) on at least 
two out of the three trials that n was requested and, of those 
times that the child provided n, two-thirds of the times the 
child did so it was in response to a request for n. If n was 
five or higher, the child was classified as a CP-knower. 

 
Highest Count Task After the Give-a-Number task, the 
experimenter asked, “Can you count as high as you can?” 
The child’s Highest Count was defined as the largest 
number counted to before an error. For each child, “Primary 
Number Language” (i.e., NL1) was defined as the language 
in which she counted highest. The other language was 
labeled her “Secondary Number Language” (i.e., NL2). In 
cases where the Highest Count matched in both languages, 
the NL1 was defined according to parent report (n = 6).  

 
Successor Task This task was modeled after Sarnecka and 
Carey (2008) and was designed to assess children’s 
understanding of the successor principle, operationalized 
here as the knowledge that adding one object to a set (i.e., n) 
results in an increase of exactly one unit on the count list 
(i.e., n + 1). Children identified as CP-knowers were shown 
with an empty opaque box and a container filled with 
identical plastic toys (e.g. apples). To begin each trial, the 
experimenter directed the child’s attention to the box by 
exclaiming, “Look, there’s nothing in the box!” and 
permitted the child to look inside to confirm it was empty. 
The experimenter then held up the container of objects, 
stating that she had n items, poured the objects inside the 
box, and closed the lid (e.g., “I have fourteen apples. I’m 
putting fourteen apples in the box”). The experimenter then 
asked a memory-check question, e.g., “How many apples 
are in the box?” Once the child correctly answered the 
memory-check question, the child watched as the 
experimenter added one identical object to the box. The 
experimenter then asked whether there were n + 1 or n + 2 
objects, e.g., “Are there fifteen apples or sixteen apples in 
the box?” Children were tested on two small numbers (5 and 
8), three medium numbers (12, 14, and 16), and three large 
numbers (21, 23, and 27) in a counterbalanced order. 

Results 

Highest Count 
Highest count identified children’s NL1 and NL2. In the 
high SES French-English group (n = 20), the average 
Highest Count in French was 13.9 (SD = 7.0) and in English 
was 10.7 (SD = 4.0). Sixteen of these children counted 
higher in French, and 4 counted higher in English. In the 
high SES Spanish-English group (n = 42), the average 
Highest Count in Spanish was 12.3 (SD = 9.6) and in 
English was 20.9 (SD = 20). Eight children counted higher 
in Spanish, and 32 counted higher in English. Two children 
counted equally high in Spanish and English, and NL1 was 
classified by parent report (n = 1, English; n = 1, Spanish). 
In the low SES Spanish-English group (n = 85), the average 

Highest Count in Spanish was 17.7 (SD = 11.0) and in 
English was 10.4 (SD = 4.1). Sixty-eight children counted 
higher in Spanish, and 13 in English. Four additional 
children counted equally high in Spanish and English, and 
we classified their NL1 by parent report (n = 4, Spanish).  

Give-A-Number Task 
Across the three groups of bilingual children, there were a 
total of 33 non-knowers, 29 1-knowers, 34 2-knowers, 24 3-
knowers, 18 4-knowers, and 156 CP-knowers (where each 
child contributed two knower level classifications, since 
each spoke two languages).  
 
Predictors of NL2 Knower Level Our main question was 
whether children’s number knowledge in their NL1 
facilitated analogous learning in their NL2 via transfer. Our 
first analysis tested this idea in its simplest form. We asked 
whether children’s NL2 knower level increased as a 
function of their NL1 knower level. To examine this, we 
compared two ordinal logistic models with Age, NL1 and 
NL2 Highest Count as predictors of NL2 knower level. 
Model 2 also included NL1 knower level as a predictor.  

To compare these models, we computed their relative fits 
to the data using three sets of criteria. Model 1, which 
excluded NL1 knower level, had an overall misclassification 
rate of 0.33, a RMSE (root mean squared error) of 0.55 and 
an AICc (Akaike Information Criterion value) of 287. 
Adding NL1 knower level (as shown in Model 2) reduced 
the misclassification rate to 0.27, lowered the RMSE to 0.49 
and lowered the AICc to 245, suggesting that Model 2 was a 
better fit than Model 1. For Model 2, the effect likelihood 
ratio tests found that NL1 knower level, χ2(5) = 53.6, p < 
0.001, NL2 Highest Count, χ2(1) = 7.72, p = 0.006 and Age, 
χ2(1) = 4.35, p = 0.037, were significant predictors of NL2 
knower level, whereas NL1 Highest Count, χ2(1) = 0.208, p 
= 0.65, and Group, χ2(2) = 1.74, p = 0.42, were not.  

The results thus far indicate that NL1 knower level is an 
important predictor of NL2 knower level. However, 
different processes may drive children’s learning of small 
(1-4) and large (5+) number words. Consistent with this, 
parameter estimates from Model 2 showed that transfer only 
occurred at the CP-knower level (and perhaps 4-knower).  

To explore this, we conducted an ordinal logistic 
regression which excluded children who were CP-knowers 
in both languages, R2 = 0.196, χ2(9) = 37.7, p < .001. This 
analysis found no significant effect of transfer (despite 
finding other significant effects), suggesting that transfer at 
the CP-knower stage drove the effects that were described 
above. Specifically, effect likelihood ratio tests found that 
NL2 Highest Count, χ2(1) = 5.61, p = 0.018, and Age, χ2(1) 
= 3.93, p = 0.047, were significant predictors of NL2 
knower-level; however, NL1 knower level, χ2(4) = 7.40, p = 
0.12, NL1 Highest Count, χ2(1) = 0.231, p = 0.63, and 
Group, χ2(2) = 0.959, p = 0.62, were not. In contrast, an 
analysis that examined only transfer of CP-knower status 
found a relationship between NL1 and NL2 knower level. 
An ordinal logistic regression that coded children in each 
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language as either a CP-knower or subset-knower found that 
NL1 CP-knower status, χ2(1) = 33.4, p < 0.0001, NL2 
Highest Count, χ2(1) = 8.58, p = 0.003, and Age, χ2(1) = 
5.51, p = 0.019, but not Group, χ2(1) = 5.08, p = 0.08, 
predicted NL2 CP-knower status. Thus, we again found 
evidence of cross-linguistic transfer at the CP-knower stage. 

Successor Task 
Although our analyses thus far indicate that transfer 

occurs at the CP-knower stage, these analyses do not 
address what exactly transfers (e.g., knowledge of a 
procedure or knowledge of the logic of counting). To 
investigate this, we asked whether all CP-knowers 
understood the successor principle – i.e., that every natural 
number, n, has a successor defined as n + 1. Evidence that 
some CP-knowers do not have this knowledge would 
suggest that effects of CP-knower transfer reported above 
do not reflect transfer of this conceptual understanding.  

For each child, a trial was included in the analyses if the 
child’s Highest Count measure in the corresponding 
language was greater than the target number of the trial. For 
example, data from the “12” trial was only included if a 
child could count to at least 13 in the tested language. This 
ensures that the task measured children’s conceptual 
understanding of the successor principle, rather than their 
knowledge of the count list. Children who had fewer than 
two valid trials in either language (n = 5) were excluded 
from analyses, resulting in 41 children (M = 4;11, SD = 4.6 
months), who were included. On average, children 
contributed 5.4 trials (SD = 2.0 trials) for their NL1 and 2.6 
trials (SD = 1.1 trials) for their NL2.  

Overall, performance on the Successor Task was greater 
than chance (i.e., 0.50) in both NL1, M = 0.68, SD = 0.23; 
t(40) = 5.00, p < 0.001, and NL2, M = 0.61, SD = 0.33; t(40) 
= 2.17, p = 0.036, and there was no significant difference 
between NL1 and NL2, t(40) = 1.56, p = 0.13. Nevertheless, 
there were large individual differences between children. 
Specifically, 30% of children were at or below chance in 
their NL1 and 49% were at or below chance in their NL2. 

 
Transfer of Successor Principle from NL1 to NL2 Even 
if CP-knowers do not initially understand the successor 
principle, it remains possible that this knowledge transfers 
later in development. We therefore asked whether 
knowledge of the successor principle transferred across 
languages or if it is learned separately in each language.  

For this analysis, we will only compare performance on 
the small numbers (i.e. 5 and 8) because the majority of our 
participants could not count high enough to contribute valid 
data on the next highest number (i.e. 12). A standard least 
squares regression, F(4,36) = 3.3, p = 0.02, R2 = 0.27, 
revealed that knowledge of the successor principle in NL2 
small numbers was significantly predicted by NL1 
successor principle knowledge of small numbers, F(1,36) = 
10.4, p = 0.003, but not by NL2 Highest Count, F(1,36) = 
0.66, p = 0.42, NL1 Highest Count, F(1,36) = 0.69, p = 
0.41, or Age, F(1,36) = 0.05, p = 0.83. These results are 

consistent with the idea that knowledge of the successor 
principle in a child’s first language transfers to their second 
language, at least for some numbers.  

To further examine the effect of transfer of the successor 
principle knowledge, we asked if knowing the successor of 
a particular number in NL1 (e.g., cinco) predicted successor 
knowledge of the same number in NL2 (e.g., five). To test 
this, we examined what predicted children’s performance on 
the “5” and “8” trials independently. First, to predict 
children’s NL1 performance on the “5” trial, we 
implemented an ordinal logistic regression, R2 = 0.09, χ2(3) 
= 0.2, p = 0.2, using NL1 performance on “5”, NL1 
performance on “8”, and NL2 performance on “8”. Results 
showed that NL1 performance on “5”, χ2(1) = 4.6, p = 0.03, 
was the only significant predictor. Neither NL1 performance 
on “8”, χ2(1) = 0.18, p = 0.67, nor NL2 performance on “8”, 
χ2(1) = 0.007, p = 0.93, were significant. Likewise, we 
conducted another ordinal logistic regression, R2 = 0.18, 
χ2(3) = 10.1, p = 0.02, on NL2 performance on “8” and 
found that NL1 performance on “8”, χ2(1) = 6.1, p = 0.01, 
was the only significant predictor, but NL1 performance on 
“5”, χ2(1) = 2.8, p = 0.10, and NL2 performance on “5”, χ2 
(1) = 0.18, p = 0.67, were not.  

Discussion 
We investigated number word learning bilingual children to 
examine the causes of the long delays between stages. 
Specifically, we tested whether these delays are best 
explained by processes of gradual conceptual change or by 
language-specific processes of mapping words onto 
concepts. Our findings suggest that in the 1-knower, 2-
knower, and 3-knower stages of number word learning, 
knowledge is acquired independently in each language. In 
contrast, children’s classification as Cardinal Principle 
knowers in their NL2 was strongly predicted by being a CP-
knower in their NL1 (in addition to NL2 counting ability, 
but not NL1 counting ability). This result suggests that the 
scope of inference at this stage is not restricted to a 
particular language but may instead involve a moment of 
insight that applies to counting in general, independent of 
any particular language. Finally, we replicated previous 
findings that not all CP-knowers understand the successor 
principle, and thus that learning this principle does not 
likely drive children’s ability to use the counting procedure 
to label and generate sets. Instead, children likely learn 
about the successor principle gradually in both languages 
after they become competent users of the counting 
procedure, with some evidence of transfer.  

These results allow us to draw several important 
conclusions regarding the nature of number word learning, 
not only as it occurs in bilinguals, but also as it occurs in 
monolingual learners. First, our results support the intuition 
described in previous studies (i.e., Le Corre & Carey, 2007; 
Sarnecka & Lee, 2009; Wynn, 1990) that number word 
learning involves multiple, discontinuous stages of learning, 
such that small and large number words are acquired via 
different mechanisms. In our study, the rate at which 
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children learned labels for “one,” “two,” and “three” was 
best explained by their exposure to these words in a 
particular language and not by whether they had previously 
learned corresponding words in another language. This 
result strongly suggests that the delays between subset 
knower stages are not caused by difficulties in constructing 
new concepts, but instead are due to problems in identifying 
which concepts correspond to which words. The situation is 
different, however, when it comes to how children learn to 
count. Although learning the counting procedure requires 
substantial linguistic experience with number words, once 
knowledge of this procedure is acquired it becomes 
available to children in a format that transcends natural 
language.  

Second, given these basic conclusions, our data also speak 
to debates regarding the origin of numerical concepts. 
Although our findings cannot decide whether concepts like 
“one”, “two”, and “three” are innate, they do have important 
implications regarding this question. In recent years, the 
protracted, stage-like process of acquiring small number 
words like one, two, and three has been interpreted by some 
researchers as evidence for a constructivist theory of 
number word learning – on the assumption that delays 
between stages must be driven by the problem of 
constructing new concepts (see Le Corre & Carey, 2007, for 
one example). According to this reasoning, if such concepts 
were innate, we would expect children to quickly map 
words onto meanings once they are made available in their 
language input. However, the results of the current study 
bring this logic into question: number word learning 
requires not only the availability of relevant concepts but 
also the ability to identify how these concepts are expressed 
by a particular language. Our data suggest that this second 
problem is not trivial. Even on nativist views where the 
concepts “one”, “two”, and “three” are given innately, 
children may nevertheless struggle to identify how they are 
encoded by words in their language.  

A third important conclusion suggested by our study is 
that becoming a Cardinal Principle knower is much more 
complex than previously argued, possibly involving several 
distinct steps. Sarnecka and Carey (2008) argued that 
learning the successor principle allows children to become 
CP-knowers on the basis of data that showed that children 
classified as CP-knowers by Wynn’s Give-a-Number task 
were more likely than subset knowers to exhibit 
understanding of the successor principle. Although it may 
be true that CP-knowers are more likely than subset 
knowers to understand the successor principle, Davidson, 
Eng, and Barner (2012) note that CP-knowers are 
nevertheless highly heterogeneous in their knowledge, and 
that the least experienced counters among them often show 
no evidence of understanding the successor principle. These 
findings led them to conclude that learning the successor 
principle and generalizing it to all numbers cannot be what 
drives children to become CP-knowers. Instead, Davidson et 
al. argued that when children become CP-knowers, their 
initial knowledge is purely procedural in nature and may 

better be understood as “Counting Procedure” knowers, at 
least until they show evidence of understanding the logic of 
counting. Our results are consistent with this conclusion. 
Like Davidson et al. (2012), we found that children first 
learn the counting procedure before showing evidence of 
understanding the successor principle, even for very small 
numbers, and that even our most experienced counters were 
still far from having generalized the successor principle to 
all numbers in their count list.  

However, our findings add an additional wrinkle to the 
story reported by Davidson et al. First, consistent with the 
idea that learning the successor principle involves a type of 
epiphany or conceptual change, we found that if children 
were able to infer successors in one language, they were 
generally able to do so in their second language, too. 
However, curiously, we found that this transfer was 
remarkably restricted to specific numbers like the labels for 
“five” and “eight”. Because this result was not predicted, 
and has not yet been replicated, it remains possible that the 
degree of specificity we report is an anomaly. Still, it is 
clear that despite showing some evidence of transfer across 
languages, children did not generalize knowledge of the 
successor principle within languages. Although we are 
unable to explain precisely why this might be, given our 
current dataset, the result is consistent with two broad 
alternatives. First, one possibility is that children’s failure to 
generalize to larger numbers may be due to their relatively 
less fluid knowledge of the count sequence for larger 
numbers. Although children are sufficiently familiar with 
the list to allow them to name the successors of large words 
(Davidson et al., 2012), the additional problem of doing this 
while simultaneously tracking changes to the cardinality of 
a set may prove especially taxing for larger, less familiar, 
number sequences. Against this hypothesis, however, 
children’s ability to apply the successor function for a 
particular number in their NL2 was not predicted by their 
counting ability in this language. Instead, surprisingly, it 
was strongly predicted by their ability to apply the successor 
function for the same number in their NL1. This result is 
difficult to explain on the hypothesis that children’s 
familiarity with the counting procedure mediates their 
expression of the successor principle.  

Another possibility is that successor knowledge is item-
based both within a language and across languages. On this 
hypothesis, the mechanism that allows children to transfer 
knowledge of a blind counting procedure from NL1 to NL2 
– i.e., the procedure that makes them CP-knowers – may 
involve forming a type of structure mapping between the 
count lists of their two languages, such that knowledge 
about particular sequences within count lists is transferred. 
Children might know that five and cinco represent the same 
quantity, as do six and seis, such that when they learn that 
five plus one equals six they can readily infer that cinco and 
uno equal seis. If we take seriously the specificity of 
transfer we report, then such a hypothesis may be the most 
parsimonious explanation of children’s behavior. 

While the focus of this study was to explain delays 
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between knower levels, one additional result is also implicit 
in the data that we reported. Generally it is assumed that 
because children move through knower level stages one-by-
one in sequence, this sequence must therefore be necessary 
and by some accounts, universal (Piantadosi, Jara-Ettinger, 
& Gibson, 2014). Our study suggests that this need not be 
true, and that stages in principle can be skipped. Although 
we do not have longitudinal data to directly address this 
question, we found that when children were identified as 
CP-knowers in one language, they were very likely to also 
be CP-knowers in their second language. Because this was 
not true for lower knower levels, it would appear that a child 
who is a 3-knower in one language but only a 1- or 2-
knower in their other might become a CP-knower in both 
languages at once, thereby skipping several stages in their 
secondary number language. This is interesting because it 
suggests that, at least in principle, small number word 
meanings can be defined from the start by their role in the 
counting routine, rather than by associations between 
individual words and set sizes (as is presumably normally 
the case). This result does not necessarily mean that such a 
process occurs in monolingual children, but it does raise the 
possibility that stages could in principle be skipped given 
the appropriate training.  

To summarize, in a large sample of bilingual children, we 
found evidence that language-specific learning likely 
explains delays between early knower levels. However, 
once a child learns the counting procedure in either 
language, they are able to transfer this knowledge to their 
other language. After learning this counting procedure, 
children next learn the successor principle, which also 
transfers across languages, but in a curious, incremental, 
fashion. Overall, these data suggest that in bilinguals and 
monolinguals alike number word learning is importantly 
discontinuous and depends on different learning processes 
at different moments in development.  
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