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Abstract 15 

Both experimenter-controlled stimuli and stimulus-independent variables impact cortical 16 

neural activity. A major hurdle to understanding neural representation is distinguishing 17 

between qualitatively different causes of the fluctuating population activity. We applied an 18 

unsupervised low-rank tensor decomposition analysis to the recorded population activity 19 

in the visual cortex of awake mice in response to repeated presentations of naturalistic 20 

visual stimuli. We found that neurons co-varied largely independently of individual neuron 21 

stimulus response reliability and thus encoded both stimulus-driven and stimulus-22 

independent variables. Importantly, a neuron's response reliability and the neuronal 23 



Diverse co-active neurons encode distinct variables 
 

2 

coactivation patterns substantially reorganized for different external visual inputs. Analysis 24 

of recurrent balanced neural network models revealed that both the stimulus specificity 25 

and the mixed encoding of qualitatively different variables can arise from clustered external 26 

inputs. These results establish that co-active neurons with diverse response reliability 27 

mediate a mixed representation of stimulus-driven and stimulus-independent variables in 28 

the visual cortex. 29 

 30 

Introduction 31 

Neural variability is a key feature of neocortical neuronal responses. During repeated 32 

sensory stimulation, most neurons exhibit high trial-to-trial variability, while only a small 33 

number of neurons display reliable responses across trials (Softky and Koch 1993; 34 

Stringer et al. 2019a). The abundance of unreliable neurons in the cerebral cortex raises 35 

the question to what extent these neurons contribute to the representation of stimulus-36 

driven and stimulus-independent variables (Olshausen and Field 2006). Possible answers 37 

to this question arise from multiple sources. First, neural variability is correlated across 38 

neurons (Cohen and Kohn 2011) such that untuned/unreliable neurons enhance sensory 39 

information coding (Leavitt et al. 2017; Safaai et al. 2013). Second, sensory cortex not 40 

only encodes stimuli, but also encodes behavioral variables (Dipoppa et al. 2018; 41 

McGinley et al. 2015; Niell and Stryker 2010; Stringer et al. 2019b; Vinck et al. 2015) or 42 

internal state variables (Allen et al. 2019; Vinck et al. 2015). Thus, neural response 43 

variability to sensory stimuli can be partially explained by experimentally observed 44 

stimulus-independent variables (Stringer et al. 2019b). These observations suggest that 45 

unreliable neurons may play a role in encoding both stimulus-driven and stimulus-46 
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independent unobserved variables. 47 

There is a growing consensus in neuroscience that co-active ensembles of 48 

neurons, as opposed to single neurons, are the underpinning of cognition and behavior 49 

(Buzsáki 2010; Saxena and Cunningham 2019; Yuste 2015). How then do neurons in 50 

sensory cortex co-vary and encode stimulus-driven or stimulus-independent variables? 51 

We assume that single-trial neuronal responses consist of additive modulations of distinct 52 

latent factors. Furthermore, each latent factor is modulated by the gain specific to the 53 

neuron and the trial (Fig. 1A). The question of encoding stimulus-driven and stimulus-54 

independent variables is usefully illustrated by considering the extreme ends of a spectrum 55 

of possibilities (Fig. 1B). At one extreme, reliable neurons co-vary and encode stimulus-56 

driven variables, while unreliable neurons co-vary and encode stimulus-independent 57 

variables. At the other extreme,neurons covary and encode both stimulus-driven and -58 

independent variables regardless of their reliability. Identifying where along this spectrum 59 

cortical encoding operates is fundamentally challenging because the stimulus-driven and 60 

the stimulus-independent variables are unobserved (Keemink & Machens, 2019). These 61 

unobserved variables must be inferred from observed neuronal population activity, which, 62 

however, is highly variable across trials of repeated stimulus presentation. Supervised 63 

methods, such as demixed principal component analysis (Kobak et al. 2016) and targeted 64 

dimensionality reduction (Mante et al. 2013) can only partially solve this problem by 65 

inferring unobserved variables that are correlated to observed behavioral or task-related 66 

variables. A promising direction is to  solve the problem using unsupervised methods, as 67 

shown by recent works in visual cortex (Stringer et al. 2019b) and frontal cortex (Hirokawa 68 

et al. 2019). Here we employed an unsupervised method, tensor component analysis 69 
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(TCA) (Williams et al. 2018), which allowed us to identify stimulus-driven and stimulus-70 

independent unobserved variables in an unbiased fashion from observed neuronal 71 

population activity in response to repeated stimulus presentations. 72 

We performed two-photon calcium imaging of excitatory neurons in the primary 73 

visual cortex of awake, head-fixed mice during visual stimulation with repeated identical 74 

naturalistic movie clips (Nat Mov) or periodic drifting gratings (PDG). We identified 75 

unobserved variables, or "latent factors", representing either stimulus-driven variables or 76 

stimulus-independent variables. Our results show that neurons with a range of reliability 77 

co-vary and encode both stimulus-driven and stimulus-independent variables. Moreover, 78 

we found that the neuronal coactivation pattern is randomly redistributed across different 79 

stimuli. This suggests that feedforward inputs to neurons in visual cortex have a significant 80 

influence on neuronal coactivation patterns. Finally, simulation of a neural network model 81 

revealed possible input structures underlying the observed encoding paradigm in visual 82 

cortex.  83 

 84 

Materials and Methods 85 

LEAD CONTACT AND MATERIALS AVAILABILITY  86 

Further information and requests for resources should be directed to and will be fulfilled 87 

by the Lead Contact, Ji Xia (xiaji@wustl.edu). We used tools for fitting TCA in 88 

https://github.com/ahwillia/tensortools.  89 

 90 

EXPERIMENTAL MODEL AND SUBJECT DETAILS  91 

Animals 92 
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For imaging visual cortical responses, a Emx1-Cre (Jax Stock #005628) x ROSA-LNL-tTA 93 

(Jax Stock #011008) x TITL-GCaMP6s (Jax Stock #024104) triple transgenic mouse line 94 

(n = 7) was bred to express GCaMP6s in cortical excitatory neurons (Madisen et al. 2015). 95 

Mice ranging in age from 6 - 20 weeks of both sexes (3 males and 4 females) were 96 

implanted with a head plate and cranial window and imaged starting >2 weeks after 97 

recovery from surgical procedures and up to 10 months after window implantation. The 98 

animals were housed on a 12 hr light/dark cycle in cages of up to 5 animals before the 99 

implants, and individually after the implants. All animal procedures were approved by the 100 

Institutional Animal Care and Use Committee at University of California, Santa Barbara. 101 

 102 

Surgical procedures  103 

All surgeries were conducted under isoflurane anesthesia (3.5% induction, 1.5 - 2.5% 104 

maintenance). Prior to incision, the scalp was infiltrated with lidocaine (5 mg/kg, 105 

subcutaneous) for analgesia and meloxicam (1 mg/kg, subcutaneous) was administered 106 

preoperatively to reduce inflammation. Once anesthetized, the scalp overlying the dorsal 107 

skull was sanitized and removed. The periosteum was removed with a scalpel and the 108 

skull was abraded with a drill burr to improve adhesion of dental acrylic. A 4 mm craniotomy 109 

was made over the visual cortex (centered at 4.0 mm posterior, 2.5 mm lateral to Bregma), 110 

leaving the dura intact. A cranial window was implanted over the craniotomy and sealed 111 

first with silicon elastomer (Kwik-Sil, World Precision Instruments) then with dental acrylic 112 

(C&B-Metabond, Parkell) mixed with black ink to reduce light transmission. The cranial 113 

windows were made of two rounded pieces of coverglass (Warner Instruments) bonded 114 

with a UV-cured optical adhesive (Norland, NOA61). The bottom coverglass (4 mm) fit 115 
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tightly inside the craniotomy while the top coverglass (5 mm) was bonded to the skull using 116 

dental acrylic. A custom-designed stainless steel head plate (eMachineShop.com) was 117 

then affixed using dental acrylic. After surgery, mice were administered carprofen (5-10 118 

mg/kg, oral) every 24 hr for 3 days to reduce inflammation. The full specifications and 119 

designs for head fixation hardware can be found on the Goard lab website 120 

(https://goard.mcdb.ucsb.edu/resources). 121 

 122 

Two-photon imaging  123 

After >2 weeks’ recovery from surgery, GCaMP6s fluorescence was imaged using a 124 

Prairie Investigator 2-photon microscopy system with a resonant galvo scanning module 125 

(Bruker). For fluorescence excitation, we used a Ti:Sapphire laser (Mai-Tai eHP, Newport) 126 

ZLWK�GLVSHUVLRQ�FRPSHQVDWLRQ��'HHS�6HH��1HZSRUW��WXQHG�WR�Ȝ� �����QP��)RU�FROOHFWLRQ��127 

we used GaAsP photomultiplier tubes (Hamamatsu). We used a 16x/0.8 NA microscope 128 

objective (Nikon) at 1x or 2x magnification, obtaining a square field of view with width 129 

UDQJLQJ�IURP�����WR�����ȝP��/DVHU�SRZHU�UDQJHG�IURP���–75 mW at the sample depending 130 

on GCaMP6s expression levels. Photobleaching was minimal (<1%/min) for all laser 131 

powers used. A custom stainless-steel light blocker 132 

(https://goard.mcdb.ucsb.edu/resources) was mounted to the head plate and interlocked 133 

with a tube around the objective to prevent light from the visual stimulus monitor from 134 

reaching the PMTs. During imaging experiments, the polypropylene tube supporting the 135 

mouse was suspended from the behavior platform with high tension springs to reduce 136 

movement artifacts. 137 

 138 
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2-Photon Post-processing 139 

Images were acquired using PrairieView acquisition software and converted into TIF files. 140 

All subsequent analyses were performed in MATLAB (Mathworks) using custom code 141 

(https://goard.mcdb.ucsb.edu/resources). First, images were corrected for X-Y movement 142 

by registration to a reference image (the pixel-wise mean of all frames) using 2-143 

dimensional cross correlation. 144 

To identify responsive neural somata, a pixel-wise activity map was calculated 145 

using a modified kurtosis measure. Neuron cell bodies were identified using local adaptive 146 

threshold and iterative segmentation. Automatically defined ROIs were then manually 147 

checked for proper segmentation in a graphical user interface (allowing comparison to raw 148 

fluorescence and activity map images). To ensure that the response of individual neurons 149 

was not due to local neuropil contamination of somatic signals, a corrected fluorescence 150 

measure was estimated according to: 151 

 152 

(݊) ௧ௗܨ  = ௦ܨ   (݊)  െ ߙ כ  ௨(݊) 153ܨ

 154 

where ܨ௨ ZDV�GHILQHG�DV�WKH�IOXRUHVFHQFH�LQ�WKH�UHJLRQ�����ȝP�IURP�WKH�52,�ERUGHU�155 

(excluding other ROIs) for frame ݊ and ߙ was chosen from [0 1] to minimize the Pearson’s 156 

correlation coefficient between ܨ௧ௗ and ܨ௨. The ܨ/ܨ߂ for each neuron was then 157 

calculated as: 158 

 159 

= ܨ/ܨ߂ ݊ܨ)   െ  160 0ܨ / (0ܨ 

 161 
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Where ܨ is the corrected fluorescence (ܨ௧ௗ) for frame ݊ and ܨ defined as the mode 162 

of the corrected fluorescence density distribution across the entire time series. 163 

 164 

Visual stimuli  165 

All visual stimuli were generated with a Windows PC using MATLAB and the 166 

Psychophysics toolbox (Brainard 1997). Stimuli used for two-photon imaging were 167 

presented on an LCD monitor (17.5 x 13 cm, 800 x 600 pixels, 60 Hz refresh rate) 168 

positioned 5 cm from the eye at a horizontal tilt of 30 deg to the right of the midline and 169 

vertical tilt of 18 deg downward, spanning 120 deg (azimuth) by 100 deg (elevation) of 170 

visual space in the right eye. 171 

For drifting grating visual stimulation, 12 full-contrast sine wave gratings (spatial 172 

frequency: 0.05 cycles/deg; temporal frequency: 2 Hz) were presented full-field, ranging 173 

from 0 to 330 deg in 30 deg increments. We presented 8 repeats of the drifting grating 174 

stimulus; a single repeat of stimulus consisted of all 12 grating directions presented in 175 

order for 2 sec with a 4 sec inter-stimulus interval (gray screen).  176 

For natural movie visual stimulation, we displayed a grayscale 30 sec clip from Touch of 177 

Evil (Orson Wells, Universal Pictures, 1958) containing a continuous visual scene with no 178 

cuts (https://observatory.brain-map.org/visualcoding/stimulus/natural_movies). The clip 179 

was contrast-QRUPDOL]HG� DQG� SUHVHQWHG� DW� ��ௗIUDPHV� SHU� VHFRQG�� :H� Sresented 30 180 

repeats of the natural movie stimulus; each repeat started with 5 sec of gray screen, 181 

followed by the 30 sec of movie.  182 

When we compared neural responses across stimuli, we did analyses on part of 183 

the responses so that their trial structure matches. For Nat Mov, we took the first 240 time 184 
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points after movie onset and the first 8 trials of the responses. For PDG, we took 185 

concatenated neural responses during PDG without the gray screen periods to get 240 186 

time points (20 time points × 12 orientations). Thus, two types of neural responses would 187 

have the same trial structure (240 time points × 8 trials).  188 

 189 

Nonnegative Tensor Decomposition with missing data  190 

We organized our data into a 3-way tensor ߯ (ܰ × ܶ × ௧ݔ and let (ܭ  represent the activity 191 

of neuron n at time t and trial k. Nonnegative tensor component analysis (TCA) 192 

decomposes ߯ into a sum of R rank-one tensors, where each rank-one tensor can be 193 

written as an outer product of 3 nonnegative vectors: 194 

௧ݔ  ൎ  ݓ
ܾ௧ܽ௧

ோ

ୀଵ

 =  ො௧ 195ݔ 

 196 

Nonnegative TCA with missing values were fit to minimize the squared reconstruction 197 

error:  198 

څ ܯ ||  (߯ െ  Ƹ߯  ) ||ிଶ  while ܹ  ܤ,0  ܣ,0  0 199 

 200 

Here, Ƹ߯ denotes the reconstructed data. || ή ||ிଶ  denotes the squared Frobenius norm of a 201 

tensor:  202 

|| ߯ ||ிଶ = 
ே

ୀଵ


்

௧ୀଵ

ݔ௧ଶ


ୀଵ

 203 

 204 

M denotes a masking tensor with the same shape as ߯ , and څ denotes entrywise 205 
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multiplication of two tensors. For fitting nonnegative TCA on ܨ/ܨ߂ data, we set ݉௧ = 0 if 206 

௧ݔ < 0, otherwise we set ݉௧ = 1. Normalized reconstruction error is the squared 207 

reconstruction error normalized by || څ ܯ  ߯ ||ிଶ . 208 

 Different from matrix decompositions, tensor decompositions are often unique 209 

(Kruskal 1977). However, when ܴ is large or ܹ,ܣ,ܤ have low rank, it could be difficult to 210 

optimize. To monitor this possibility, we calculated similarity between different TCA fitting 211 

results on the same dataset as described in (Williams et al. 2018). We found that the 212 

similarity between fitting results is close to 1 for all the nonnegative TCA models reported 213 

in this work.  214 

 215 

Preprocessing of ܨ/ܨ߂ data  216 

 traces over time 217 ܨ/ܨ߂ data were normalized such that the averaged squared sum of ܨ/ܨ߂

equals to 1 for every neuron:  218 

ඩ(ݔ௧ଶ

௧

ܭܶ/( = 1 219 

 220 

This normalization step is crucial for ensuring TCA fitting is not biased by high firing rate 221 

neurons, since TCA is optimized to minimize the squared reconstruction error.  222 

 223 

Choice of the number of components in TCA 224 

We picked the number of TCA components such that they captured a significant amount 225 

of neural responses without over-fitting, checked with cross-validation as previously 226 

reported (Williams et al. 2018). To perform cross-validation, we randomly masked out 50% 227 
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of tensor entries in ߯. The remaining data was training set and the masked-out data was 228 

test set. We trained nonnegative TCA with missing values to fit the training set. And then 229 

we used the trained TCA model to fit the test set. As we increase the number of 230 

components in TCA, if the normalized reconstruction error of the test set went up, the TCA 231 

model would overfit the training set. As previously reported (Williams et al. 2018), TCA is 232 

unlikely to overfit, even with up to 60 components. For this paper, we chose 20 233 

components for TCA, given that 20 component TCA captured a significant amount of 234 

neural responses without over-fitting. Note that all the results in this paper were robust to 235 

changes in the number of TCA components (data not shown; we tested TCA with 10 to 40 236 

components).  237 

 238 

Balance network model  239 

Neurons were modeled as binary units. We simulated 1600 excitatory neurons and 400 240 

inhibitory neurons. The spiking ݏ௫ of neuron i in population x א {E,I} was given by  241 

(ݐ)௫ݏ  = ) ߆  ݏܬ

ଶ

ୀଵ

 + ௫ߤ   +    ݃

ଶ

ୀଵ

 × ܭ   × ߟ  + ܮ

ଶ

ୀଵ

 × ߦ  െ ௫ߠ ) 242 

ܬ .is the Heaviside step function ߆  is the connectivity weight from neuron j to neuron i. 243 

Each neuron received on average 200 excitatory and 200 inhibitory recurrent inputs, thus 244 

most matrix elements ܬ were zero. For the non-zero matrix elements ܬ, the synaptic 245 

weights were ܬாா  = ூாܬ   = ாூܬ ;0.07   =  െ0.14; ܬூூ  =  െ0.13. Bias current was given by 246 

ாߤ  = ூߤ ;1.13   =  0.91. Spiking threshold was given by ߠா  = ூߠ ;1   =  0.7. Choices of 247 

parameters are motivated by previous work in the balanced network (Litwin-Kumar and 248 

Doiron 2012; van Vreeswijk and Sompolinsky 1998b).  249 
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Frozen input pulse trains ߟ consisted of 20 pulse trains repeated over trials, thus 250 

imitating the stimulus-driven variables (Supplemental Fig. S4D 251 

(https://figshare.com/s/576fe4fa7850f8cecde5)). On each trial, each frozen pulse train 252 

contained one burst of 3 pulses during a random located time window of 200 ms. 253 

(Supplemental Fig. S4D (https://figshare.com/s/576fe4fa7850f8cecde5)). Another set of 254 

20 different input pulse trains ߦ varied across trials, thus imitating stimulus-independent 255 

variables (Supplemental Fig. S4E (https://figshare.com/s/576fe4fa7850f8cecde5)). Since 256 

stimulus-independent variables are not locked to the trial structure, we generated trial-257 

varied input pulse trains as Poisson pulse trains with a rate of 0.005 Hz during 500 sec, 258 

i.e., the duration of the simulation. 259 

 is a 2000x20 matrix, describing synaptic weights between frozen input pulse 260 ܭ

trains and individual neurons. Each neuron only received one frozen pulse train, and each 261 

frozen pulse train innervated 100 neurons. The nonzero entries of ܭ followed a lognormal 262 

distribution with mean = 2 (Supplemental Fig. S4B 263 

(https://figshare.com/s/576fe4fa7850f8cecde5)). ݃ is a constant gain factor varying from 264 

trial to trial, randomly selected from a uniform distribution ܷ(0.3, ܮ .(0.8  is a 2000x20 265 

matrix, describing synaptic weights between trial-varied input pulse trains and individual 266 

neurons. Each neuron only received one trial-varied pulse train and each trial-varied pulse 267 

train innervated 100 neurons. Similar to ܭ, the nonzero entries of ܮ followed a lognormal 268 

distribution (Supplemental Fig. S4B (https://figshare.com/s/576fe4fa7850f8cecde5)). 269 

Both, (i) the burst-like temporal structure of the input pulse trains and (ii) the clusters of 270 

neurons with identical input pulse trains were chosen to impose a level of coordinated 271 

spiking within the otherwise unstructured recurrent model neural network. 272 
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To simulate neural responses to two different stimuli, we generated two sets of 273 

frozen input pulse trains and trial-varied input pulse trains as well as the corresponding 274 

input synaptic weights independently with the same statistics as described above.  275 

Simulations were performed with a discrete time step of 10 ms and neurons are 276 

updated asynchronously with a fixed order. At the beginning of each trial, 20% of neurons 277 

were randomly selected to be active, with the rest of neurons being silent. We simulated 278 

20 trials for each stimulus. Each trial was simulated for 25 sec. We convolved the simulated 279 

spike train with a kernel  ݁  ି ௧ / ఛమ  െ  ݁  ି ௧ / ఛభ similar to GCaMP6s kernel to generate 280 

simulated ܨ/ܨ߂ traces (rise time ߬ଵ = 100 ms, decay time ߬ଶ = 2 s). TCA was fitted on 281 

subsampled simulated ܨ/ܨ߂ traces with a time resolution of 100 ms.  282 

 283 

QUANTIFICATION AND STATISTICAL ANALYSIS 284 

Correlation between reliability of co-active neuron pairs 285 

To investigate dependency on reliability for neuronal coactivation, we calculated the 286 

Pearson correlation between reliability of significantly positively correlated neuron pairs in 287 

all recorded imaging fields. To select those neuron pairs, we calculated the Pearson 288 

correlation between pairs of neuronal responses and picked neuron pairs with positive and 289 

significant ( <  0.001) correlations.   290 

   291 

Ordering of TCA components  292 

For analysis on responses during Nat Mov, TCA components were ordered by their 293 

consistency over trials. The consistency of TCA components was quantified as coefficient 294 

of variation (CV) of their trial factors.  295 
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For analysis on concatenated responses, TCA components were first separated 296 

into two groups based on whether the sum of trial factors during first 8 trials (during PDG 297 

stimulation) was higher than sum of trial factors during second 8 trials (during Nat Mov 298 

stimulation). Then, within each group, TCA components were ordered by their consistency.  299 

 300 

Sorting neurons by dominant components  301 

Neurons were reordered by their dominant components. There were two steps for this 302 

sorting method. First, we grouped neurons by their dominant component. Dominant 303 

component was defined as the component with the highest neuron factor value for a given 304 

neuron. Second, within each group of neurons with the same dominant component, we 305 

sorted neurons by their neuron factor values of the dominant component in descending 306 

order.  307 

 308 

Fitting performance  309 

We used the coefficient of determination (ܴଶ) to quantify the fitting performance of 310 

reconstructed responses by TCA components. Before we calculated ܴଶ between 311 

normalized ܨ/ܨ߂ traces and reconstructed ܨ/ܨ߂ traces, we set the negative part of 312 

normalized ܨ/ܨ߂ and corresponding part of reconstructed ܨ/ܨ߂ traces to zero. 313 

  314 

Response reliability  315 

Response reliability was defined as the correlation coefficient of neural responses between 316 

pairs of trials averaged over all trial pairs for a given neuron:  317 

 318 
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ݕݐ݈ܾ݈ܴ݅݅ܽ݅݁  =  
2

ܭ)ܭ െ 1)



భୀଵ

 
భݎ) ݒܥ , (మݎ

ඥܸܽݎ(ݎభ) ܸܽݎ(ݎమ)



మୀభାଵ

 319 

 320 

 321 

Results 322 

Response reliability has a skewed distribution. 323 

We recorded from layer 2/3 pyramidal neurons in V1 of awake, head-fixed mice using two-324 

photon calcium imaging of transgenic mice expressing the calcium indicator GCaMP6s in 325 

excitatory neurons (see Methods) (Fig. 1C, D). Mice watched a repeated clip of a 30 sec 326 

naturalistic movie for 30 trials while being constrained within a tube (see Methods). We 327 

recorded from 10 imaging fields in 7 mice and extracted calcium responses (ܨ/ܨ߂)  from 328 

a total of 4077 well-isolated somatic regions of interest (ROIs). Neuronal responses varied 329 

across trials. Using previously described methods (Goard and Dan 2009; Rikhye and Sur 330 

2015), we quantified this response variation in terms of the "response reliability", defined 331 

as the correlation coefficient of neural responses between pairs of trials averaged over all 332 

trial pairs for a given neuron (Fig. 1E; see Methods). Response reliability distributions were 333 

skewed, with most neurons exhibiting low response reliability (Fig. 1F; Supplemental Fig. 334 

S1A (https://figshare.com/s/59b11baca3948f34db87)). Note that the skewed distribution 335 

was not a result from the slow dynamics of calcium transients (Supplemental Fig. S1B 336 

(https://figshare.com/s/59b11baca3948f34db87)). Because of the unimodal distribution, a 337 

distinction between “reliable” and “unreliable” neurons is not useful.  338 

  339 

Neurons co-vary significantly with each other during stimulus presentation.  340 
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To quantify the level of coordination among the neurons in the population activity, we 341 

applied nonnegative TCA (see Methods) to the normalized ܨ/ܨ߂ data from recordings 342 

organized into a three-dimensional tensor (Fig. 1G-J), as previously described ((Williams 343 

et al. 2018)). We found that with 20 components, the nonnegative TCA decomposition 344 

captured a significant amount of neural responses (545 neurons x 350 time points x 30 345 

trials) for neurons with diverse reliability without overfitting (Fig. 1H; Fig. 2A). We quantified 346 

the fitting performance of individual neurons by the coefficient of determination (R2), and 347 

found that in general, fitting performances on neurons with high reliability were higher than 348 

that of neurons with low reliability (Fig. 2B). Given that TCA is built to capture responses 349 

that are shared across dimensions (across neurons, time or trials), it is not surprising to 350 

see that neurons with high reliability, whose responses are shared across trials, were 351 

better fit. However, for some neurons with low reliability, fitting performances were also 352 

surprisingly high (Fig. 2B), which suggests that their responses are shared across 353 

neurons. To quantify the extent to which neuronal responses are shared across neurons, 354 

we fitted TCA on neural responses with randomly shuffled trials for each neuron 355 

independently. Note that the reliability of each neuron after shuffling is still the same as 356 

that in the original data. Fitting performances on the original data were significantly better 357 

than fitting performances on data with shuffled trials (Fig. 2C), especially for neurons with 358 

low reliability. Furthermore, neurons were co-active largely independent of their reliability, 359 

supported by weak correlation between reliability of co-active neuron pairs (Supplemental 360 

Fig. S2D (https://figshare.com/s/e9f4a464bbde7f717bbe), see Methods). In conclusion, 361 

this comparison indicates that neuronal coactivation pattern significantly contributes to 362 

population activity during stimulus presentation from single (Fig. 2C) and combined 363 
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experiments (Supplemental Fig. S2B, C (https://figshare.com/s/e9f4a464bbde7f717bbe)).  364 

  365 

Neurons with a range of reliability are co-active and encode stimulus-driven and -366 

independent variables.  367 

To reveal the encoding paradigm of the neurons, we visualized all 20 TCA components in 368 

matrix form, sorted by their consistency across trials (Fig. 3A). Here neuron factors directly 369 

reflect the coactivation pattern of the neurons (Supplemental Fig. S2E, F 370 

(https://figshare.com/s/e9f4a464bbde7f717bbe)), and trial factors indicate whether the 371 

latent variables or TCA components are driven by the stimulus. We quantified the 372 

consistency of components by the coefficient of variation (CV) of their trial factors. 373 

Consistent components with low CV represent stimulus-driven variables, while 374 

inconsistent components with high CV represent stimulus-independent variables. In 375 

addition, we sorted the neurons based on their response reliability when visualizing neuron 376 

factors. The sorting by consistency and reliability revealed two key observations. First, 377 

there is a continuous distribution of consistency of components. Second, neurons with 378 

diverse reliability co-vary and encode different components, as indicated by 10 neurons 379 

with the highest neuron factor values for each component spanning a range of reliability 380 

(Fig. 3B; Supplemental Fig. S3 (https://figshare.com/s/2789918249d3fd0b7af1); Fig. 4). In 381 

other words, a single neuron’s response reliability imposes only a weak constraint on its 382 

encoding capabilities. This spread of coactivation pattern across reliability leads to a 383 

seemingly paradoxical conclusion that neurons with low reliability can encode stimulus-384 

driven variables and neurons with high reliability can encode stimulus-independent 385 

variables (Supplemental Fig. S2G, H (https://figshare.com/s/e9f4a464bbde7f717bbe)). 386 
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This apparent paradox is illustrated by responses from two example neurons (Fig. 3C, D). 387 

The neuron with low reliability in Fig. 3C displayed highly variable responses from trial to 388 

trial, however, whenever it fired, it fired at the same time point in the trial. Thus, the neuron 389 

with low reliability had a high neuron factor value (higher than one s.d. above mean) for 390 

the consistent component shown in Fig. 3C. By contrast, the neuron with high reliability in 391 

Fig. 3D had a high neuron factor value for the corresponding inconsistent component. This 392 

resulted from the fact that the neuron with high reliability not only encoded stimulus-driven 393 

variables, but also encoded stimulus-independent variables. The findings indicate that one 394 

neuron can co-vary with different groups of neurons and encode distinct variables. The 395 

two key observations largely hold for neural responses to drifting gratings, however there 396 

were fewer neurons with high reliability encoding stimulus-independent variables 397 

(Supplemental Fig. S3 (https://figshare.com/s/2789918249d3fd0b7af1)).  398 

 399 

Neuronal coactivation pattern randomly redistributes across different stimuli.  400 

Cortical neurons are deeply embedded in a recurrent neural circuit (Douglas et al. 1995). 401 

The recurrent nature of cortical circuits raises the question of how the observed single-402 

neuron reliability and the population coactivation patterns are modulated by feedforward 403 

visual input. To investigate the impact of  feedforward and recurrent input, we analyzed 404 

neural responses to a naturalistic movie clip (Nat Mov) and periodic drifting gratings (PDG) 405 

stimuli from neurons in the same imaging field. In order to make a direct comparison across 406 

stimuli, we matched their trial structure for all analyses (see Methods).  407 

First, we compared how single neuron activity changes across stimuli. The activity 408 

level (averaged ܨ/ܨ߂ over time) of cortical neurons followed a skewed distribution during 409 
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both Nat Mov and PDG stimulation (Fig. 5A). In addition, neurons’ activity level 410 

substantially redistributed across stimuli (Fig. 5B). The response reliability to both stimuli 411 

also followed skewed distributions (Fig. 5C) and extensively redistributed across stimuli 412 

(Fig. 5D).  413 

Second, we compared how neuronal ensembles change across stimuli. Are 414 

neurons co-active in the same way during Nat Mov stimulation and PDG stimulation? To 415 

answer this question, we fitted TCA with 20 components on concatenated neural 416 

responses (Fig. 5E). Note that TCA is ignorant to which stimulus is on during each trial. 417 

Despite this lack of information about the trial structure, TCA successfully identified two 418 

groups of components corresponding to the two stimuli (Fig. 5E). As expected, the 419 

consistent components during PDG stimulation reflect the tuning curves of orientation 420 

selective neurons, with two peaks for their temporal factors corresponding to responses to 421 

orientations separated by 180 degrees. To quantify similarities between neural ensembles, 422 

we calculated the correlation coefficient (CC) between neuron factors of different 423 

components (Fig. 5F). Note that TCA factors are not necessarily orthogonal to each other, 424 

in contrast to principal component analysis (Kruskal 1977; Williams et al. 2018). Thus, the 425 

CC between neuron factors is not expected to be zero or negative. We found that inter-426 

component CCs within stimuli were predominantly negative while inter-component CCs 427 

across stimuli centered around zero (Fig. 5G). A negative CC between two components 428 

indicates that if one neuron is recruited by one component, it is unlikely to be recruited by 429 

the other component. Consequently, different TCA components within stimuli, i.e., Nat Mov 430 

or PDG, tend to be encoded by largely non-overlapped ensembles of neurons, while 431 

different TCA components across stimuli, i.e., Nat Mov vs PDG, tend to be encoded by 432 
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random ensembles of neurons. Importantly, the fact that neuronal ensembles are 433 

randomly reorganized for different external visual inputs, raises the question whether 434 

neural ensembles are formed mainly due to feed-forward external inputs instead of cortical 435 

recurrent connections.  436 

 437 

A balanced model network with random connectivity and correlated external inputs 438 

reproduces key features of the observed cortical activity.  439 

To identify a potential mechanism behind the observed cortical dynamics, we simulated a 440 

balanced model network (van Vreeswijk and Sompolinsky 1996, 1998a) with random 441 

connectivity and clustered external inputs (clustered as defined by grouping of neuron 442 

inputs; note that the model has no spatial organization, see Methods and Fig. 6A). In brief, 443 

the recurrent model network consisted of 1600 excitatory and 400 inhibitory binary point 444 

neurons with uniform random connectivity for each neuron type (see Supplemental Fig 445 

S4A (https://figshare.com/s/576fe4fa7850f8cecde5) and Methods). To mimic stimulus-446 

driven and -independent variables in the model, we constructed two qualitatively different 447 

sets of external input pulse trains (Supplemental Fig. S4D, E 448 

(https://figshare.com/s/576fe4fa7850f8cecde5)). One set of 20 different input pulse trains 449 

was identical ("frozen") across trials, thus imitating stimulus-driven variables. Another set 450 

of 20 different input pulse trains varied in a trial-independent manner, thus imitating 451 

stimulus-independent variables. To mimic coactivation patterns among neurons, we 452 

randomly partitioned the 2000 model neurons into 20 clusters of 100 model neurons each. 453 

All neurons within a cluster received the same "frozen" input pulse train. For another 454 

random partitioning of the model neurons into 20 clusters of 100 neurons, all neurons 455 
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within a cluster received the same input pulse train, that, however, varied in a trial-456 

independent manner. To match with the temporal structure of experimental data, we 457 

mimicked ܨ/ܨ߂ responses by convolving simulated spike trains with alpha functions (see 458 

Methods). All of the following analyses were performed on the simulated ܨ/ܨ߂ responses.  459 

With a choice of appropriate set of parameters, key features of the observed cortical 460 

activity were reproduced by the model network (Fig. 6). Even though model neurons 461 

received highly correlated external inputs, they operated in an asynchronous state (Fig. 462 

6B) due to balanced excitatory and inhibitory recurrent inputs (Renart et al. 2010). In 463 

addition, with lognormal distributed synaptic weights of external inputs (Supplemental Fig. 464 

S4B (https://figshare.com/s/576fe4fa7850f8cecde5)), the model exhibited a skewed 465 

distribution of response reliability (Fig. 6C). Furthermore, consistent with experimental 466 

results, simulated activities of model neurons were well fitted by TCA (Fig. 6D) and they 467 

co-varied more than expected by chance (Fig. 6E). Moreover, both consistent and 468 

inconsistent components recruited neurons with a range of reliability (Fig. 6F, G). 469 

Importantly, when the model network was presented with two different stimuli (see 470 

Methods), inter-component CCs within stimuli were predominantly negative while inter-471 

component CCs across stimuli centered around zero (Fig. 6H, I).  472 

By reproducing the observed cortical dynamics, the model revealed several 473 

essential insights. First, the clustered structure in external inputs, instead of the clustered 474 

structure in recurrent connections (Supplemental Fig. S5A-C 475 

(https://figshare.com/s/c95cdcf1477941ee7875)), is more likely to support the observed 476 

coactivation pattern in neuronal responses. Clustered recurrent connections would lead to 477 

spontaneous slow dynamics during which neurons within the cluster transiently increased 478 
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or decreased their firing rate (Litwin-Kumar and Doiron 2012). This spontaneous slow 479 

dynamics results in multiple inconsistent components with different temporal factors but 480 

the same neuron factors (Supplemental Fig. S5C 481 

(https://figshare.com/s/c95cdcf1477941ee7875)), which is contradictory to the 482 

experimental results. In contrast, TCA components of the model with clustered external 483 

inputs and random connectivity qualitatively resembled TCA components from 484 

experimental data (Fig. 6). Second, to impose coactivation patterns on neurons with a 485 

range of reliability, each neuron needs to receive two kinds of inputs: (i) frozen input pulse 486 

train imitating a stimulus-driven variable, and (ii) trial-varied input pulse train imitating a 487 

stimulus-independent variable. If each neuron received either the frozen or the trial-varied 488 

input pulse train (Supplemental Fig. S5D 489 

(https://figshare.com/s/c95cdcf1477941ee7875)), then neurons’ coactivation pattern 490 

would be determined by neuron’s reliability (Supplemental Fig. S5E, F 491 

(https://figshare.com/s/c95cdcf1477941ee7875), Fig. 1B, the constrained case).  492 

In conclusion, this analysis of recurrent balanced neural network models revealed 493 

that both the stimulus specificity and the mixed encoding of qualitatively different variables 494 

can arise from clustered external inputs. 495 

 496 

Discussion 497 

Neural variability is widely studied as a single-neuron feature (Faisal et al. 2008; Mainen 498 

and Sejnowski 1995) and a population-wide feature (Cohen and Kohn 2011; Doiron et al. 499 

2016). Here, we related single-neuron variability to population-wide variability by asking 500 

how neurons with different levels of reliability encode unobserved variables. Our work 501 
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demonstrated that neurons spanning a range of reliability are co-active and encode a 502 

mixture of stimulus-driven and stimulus-independent unobserved variables. We found that 503 

a neuron's response reliability and the neuronal coactivation patterns substantially 504 

reorganized for different external visual inputs. Furthermore, our model suggested 505 

clustered external inputs underpin the observed coactivation pattern of neurons. More 506 

broadly, this study has made the following contributions to our understanding of 507 

connectivity-mediated variability in visual cortex.  508 

First, we found that neural variability is well captured by additive and multiplicative 509 

modulation shared across neuron ensembles, as shown by the applicability of the linear 510 

TCA analysis (Fig. 2A, B). Neural variability can be modeled as an additive modulation 511 

(Scholvinck et al. 2015) by summing the trial-averaged evoked response and some 512 

stochastic activity such as spontaneous activity (Arieli et al. 1996). Alternatively, neural 513 

variability can be modeled as a multiplicative modulation (Ecker et al. 2014; Goris et al. 514 

2014) by multiplying the trial-averaged evoked response with a gain factor. Both additive 515 

and multiplicative modulations are necessary to reproduce neural variability observed in 516 

experimental data (Arandia-Romero et al. 2016; Lin et al. 2015). Here, we modeled trial-517 

to-trial variability as a sum of gain-changed temporal factors, where the gain is governed 518 

by the corresponding neuron factor and trial factor. Note that the temporal factors 519 

represent the shared neural activity across neurons and trials, which might serve as a 520 

better neural basis than the trial-averaged evoked responses (Williams et al. 2018).  521 

Second, we found that individual neuron’s response reliability imposes only a weak 522 

constraint on its encoding capabilities. One explanation given for the presence of neurons 523 

exhibiting weak responses to sensory stimuli is that even poorly-driven neurons may 524 
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contribute to sensory coding (Leavitt et al. 2017; Safaai et al. 2013). Indeed, we show that 525 

neurons with low reliability often make strong contributions to consistent stimulus-driven 526 

factors, despite the fact that the responses of individual neurons can be highly variable 527 

across trials (Fig. 3). In contrast, researchers have proposed that variable activity across 528 

trials is due to coding of non-sensory information, such as motor or behavioral variables 529 

(Niell and Stryker 2010; Vinck et al. 2015). A recent paper using shared variance 530 

component analysis identified stimulus-independent latent factors that were linked to facial 531 

movements and drove visual cortical neurons independently of sensory input (Stringer et 532 

al., 2019b). Our results are also in agreement with this finding, as we show that neurons 533 

from a range of reliability contribute to stimulus-independent latent factors (Fig. 3). Taken 534 

together, these results show that the encoding of distinct variables are not mutually 535 

exclusive, and that both phenomena are evident in visual cortical networks. 536 

Third, our experiment and model results support the possibility that clustered 537 

external inputs underpin the neuronal coactivation pattern. Alternatively, co-active 538 

neuronal ensembles could result from structured recurrent connectivity, based on the fact 539 

that the connectivity probability between co-active neurons is higher than neurons with 540 

decorrelated evoked responses (Ko et al. 2011). Additional evidence in support of this 541 

alternative mechanism is the similarity between co-active neuronal ensembles during 542 

spontaneous and stimulus-modulated activity (MacLean et al. 2005; Miller et al. 2014). 543 

However, the evidence might not be sufficient: a neural network with random connectivity 544 

can also generate similar neuronal coactivation patterns during spontaneous and evoked 545 

activity (Okun et al. 2012). Moreover, consistent with previous work (Hofer et al. 2011), we 546 

found that neuronal coactivation pattern is highly dependent on stimulus (Fig. 5), which 547 
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demonstrated that external inputs, instead of recurrent connection, may be the dominant 548 

factor in the formation of neuronal ensembles. The mechanism underlying these 549 

coactivation patterns is still unclear. Searching for further evidence for our proposed 550 

mechanism might require analyses on simultaneous recordings from external inputs and 551 

cortical neurons (Sun et al. 2016).  552 

Fourth, the coactivation pattern of neurons with diverse reliability provides insights 553 

on the connectivity of external inputs to visual cortex. Neuroanatomy data showed that V1 554 

in mice is highly interconnected with other regions of neocortex (Froudarakis et al. 2019). 555 

For instance, V1 receives inputs carrying sensorimotor information (Petreanu et al. 2012). 556 

However, the structure of inputs at the neuronal population level remains elusive. In Figure 557 

1, we described a spectrum of how neurons encode stimulus-driven and -independent 558 

variables. Based on model investigations (Supplemental Fig. S5D-F 559 

(https://figshare.com/s/c95cdcf1477941ee7875) & Fig. 6), the two extremes of the 560 

spectrum correspond to different external input structures. Our experimental and model 561 

results suggested that a neuron’s reliability imposes only a weak constraint on its encoding 562 

capability, indicating that neurons receive both frozen and trial-varied inputs. This input 563 

paradigm has a potential functional advantage such that fewer neurons are required to 564 

encode the same number of variables, compared to distinct external inputs projecting to 565 

separate groups of neurons. Furthermore, different variables are encoded by largely non-566 

overlapped groups of neurons within a stimulus set (Fig. 5). This non-overlapping encoding 567 

strategy indicates that each input tends to innervate different groups of neurons. Such a 568 

mutually exclusive representation may enable simple linear readout for downstream 569 

neurons. This tradeoff between efficient coding and high readout efficiency informed the 570 
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choice of the input structure in our model. However, the chosen input structure in our model 571 

may not be the only possible solution to reproduce the key features of neuronal 572 

coactivation patterns. Another limitation of our model is that we assumed random 573 

connectivity between model neurons, which is not true for cortical neurons. Models with 574 

spatial dependence in connectivity resembling cortical networks (Huang et al. 2019) are 575 

good candidates to be investigated in the future.  576 

An important next step is to identify what stimulus-driven and -independent 577 

variables are encoded by neural responses. Earlier work suggests two possible ways to 578 

identify the stimulus-independent variables. First, we can look for behavioral or internal 579 

variables which have the highest correlation with the trial factors of inconsistent 580 

components (Hirokawa et al. 2019; Stringer et al. 2019b). Second, we can use 581 

photostimulation to activate the neuronal ensemble corresponding to the stimulus-582 

independent component and observe the changes of behavioral variables (Carrillo-Reid 583 

et al. 2019). However, it is much less straightforward to identify the stimulus-driven 584 

variables or visual features in this case. One promising idea is using a generative closed-585 

loop system to evolve synthetic images to maximize the corresponding neuronal 586 

ensemble’s coactivation (Bashivan et al. 2019; Ponce et al. 2019). Such evolved images 587 

might provide insight on the visual features encoded by the particular neuron ensemble.  588 
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Figure 1. Response reliability has a skewed distribution. 729 

A. We decompose single trial neural responses into stimulus-driven latent factors (green) that are 730 

consistent across trials and stimulus-independent latent factors (black) that are inconsistent across 731 

trials.  732 

B. Schematic shows two extremes of a spectrum of possibilities for the encoding of stimulus-driven 733 

and stimulus-independent variables: left, reliable neurons co-vary and encode stimulus-driven 734 

variables, while unreliable neurons co-vary and encode stimulus-independent variables; right, 735 

neuron’s reliability does not constrain its encoding capability, thus, neurons covary and encode 736 

both kinds of variables regardless of their reliability.  737 

C. Experimental setup. We performed two-photon calcium imaging of excitatory neurons in the 738 

primary visual cortex of awake, head-fixed mice during visual stimulation with periodic drifting 739 

gratings and repeated identical naturalistic movie clips.  740 

D. Visual cortex (contralateral to visual stimulus delivery) is retinotopically mapped in Emx1-741 

Cre::TITL-GCaMP6s mice. V1 fields are chosen from the region selective for the center of the 742 

presentation screen. Widefield scale bar = 1 mm; 2-SKRWRQ�VFDOH�EDU� �����ȝP� 743 

E. ܨ/ܨ߂ responses of one example neuron with high reliability (top) and one example neuron with 744 

low reliability (bottom) during the same naturalistic movie clip for 30 trials (movie starts at 5 sec 745 

and lasts for 30 sec duration).  746 

F. Distribution of response reliability for 545 recorded neurons in one example imaging field.  747 

G. Schematic of Tensor Component Analysis (TCA). Neural data is organized into a third-order 748 

tensor with dimensions N x T x K. TCA approximates the data as a sum of outer products of three 749 

vectors from R components: neuron factors describe the weights of each neuron, temporal factors 750 

describe the temporal dynamics of each latent factor, and trial factors describe the modulation 751 

across trials. 752 

H. Cross validation of TCA (Williams et al., 2018) on one example dataset (545 neurons x 350 753 

frames x 30 trials). Normalized reconstruction error (see Methods) plotted against the number of 754 
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components of TCA for training set (blue) and test set (orange). Dashed line denotes the TCA 755 

model with 20 components. 756 

I. One example component is displayed in the form of three vectors: neuron factor, temporal factor 757 

and trial factor. 758 

J. All the components are displayed in the form of three heatmaps. Each row corresponds to one 759 

component (in this example R = 5). 760 

 761 

Figure 2. Neurons co-vary significantly with each other during stimulus presentation.  762 

A. ܨ/ܨ߂ traces (top) and reconstructed ܨ/ܨ߂ traces (bottom) based on 20 TCA components for 763 

one example neuron with low reliability (left) and one example neuron with high reliability (right) 764 

across trials in one example imaging field. 765 

B. Fitting performance ܴଶ plotted against response reliability. Each dot represents one neuron in 766 

the example imaging field.  767 

C. Fitting performance ܴଶ for original data plotted against ܴଶ for data with shuffled trials. Each dot 768 

represents one neuron. Color indicates response reliability. Fitting performance for the original 769 

data is significantly better than for data with shuffled trials (Mann-Whitney rank test, p < 0.001) in 770 

the same imaging field as in A and B.  771 

 772 

Figure 3. Neurons with a range of reliability are co-active and encode stimulus-driven 773 

and -independent variables.  774 

A. Neuron, temporal and trial factors of nonnegative TCA with 20 components. For all three factors, 775 

components are ordered by coefficient of variance (CV) of trial factors. In addition, within the 776 

neuron factors, neurons are ordered by their response reliability. Two example components are 777 

highlighted by horizontal rectangles: (yellow) A "consistent" component with a low CV value of trial 778 

factors. (red) An "inconsistent" component with a high CV value of trial factors.  779 
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B. Reliability (abscissa) and ܴଶ values (color and dot diameter) for the top 10 neurons with the 780 

largest neuron factor values within a component, shown for all 20 components (ordinate). 781 

Components are in the same order as in A.  782 

C. One example component (same as yellow rectangle in D) that is consistent across trials (trial 783 

factor has low CV value). For clarity, here we used the display format of factors as described in 784 

Fig. 1I. For one neuron (red dot), the normalized responses and the reconstructed responses are 785 

shown below. As seen from the reconstructed response using this component alone (bottom), this 786 

neuron with low reliability has a large contribution from the consistent component.  787 

D. One example component (same as red rectangle in D) that is inconsistent across trials (trial 788 

factor has high CV value). For one neuron (red dot), the normalized responses and the 789 

reconstructed responses are shown below. As seen from the reconstructed response using this 790 

component alone (bottom), this neuron with high reliability has a large contribution from the 791 

inconsistent component. 792 

 793 

Figure 4. A single neuron’s response reliability imposes only a weak constraint on 794 

its encoding capabilities. 795 

A. Schematic shows reliability distribution of neurons encoding stimulus-driven and -independent 796 

variables for extremes of a spectrum of possibilities illustrated in Fig. 1B. Reliability of neurons with 797 

large neuron factor values are shown for each TCA component. Consistent components are 798 

assumed to represent stimulus-driven variables, while inconsistent components are assumed to 799 

represent stimulus-independent variables. Left: neuron’s encoding capability is constrained by its 800 

reliability; right: neuron’s encoding capability is not constrained by its reliability.   801 

B. Reliability (abscissa) averaged over top 10 neurons with the largest neuron factor values within 802 

a component, shown for all 20 components (ordinate). Components are ordered by consistency, 803 

similar to Fig 3B. Shaded area denotes standard deviation of reliability over the top 10 neurons. 804 
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Here different colors denote different imaging fields. Reliability is positively correlated with the 805 

consistency of components. (10 imaging fields; Spearman correlation ݎ =  0.37 ±  0.093, p < 0.05) 806 

Dashed line denotes the expected relation between reliability and the consistency of components 807 

under constrained extreme, while solid line denotes the expected relation under unconstrained 808 

extreme. 809 

 810 

Figure 5. Neuronal coactivation pattern randomly redistributes across different stimuli. 811 

A. Distribution of averaged ܨ/ܨ߂(%) over time and trials during Nat Mov and PDG for 1 imaging 812 

field (opaque color) and the other 9 imaging fields (transparent color). 813 

B. Averaged ܨ/ܨ߂(%) during Nat Mov plotted against averaged ܨ/ܨ߂(%) during PDG for neurons 814 

in 1 imaging field (black dots) and neurons in the other 9 imaging fields (gray dots). Averaged 815 

 during PDG (4077 neurons, 816 (%)ܨ/ܨ߂ during Nat Mov is weakly correlated with averaged (%)ܨ/ܨ߂

Pearson correlation r = 0.07, p < 0.001). 817 

C. D. Same as A,B, but for response reliability. Reliability during Nat Mov is weakly correlated with 818 

reliability during PDG (4077 neurons, Pearson correlation r = 0.09, p < 0.001). 819 

E. Twenty TCA components for concatenated neural responses to visual stimulation with PDG and 820 

Nat Mov. Ordering of components is determined by their trial factors (see Methods). Neuron factors 821 

are plotted with neurons ordered by their dominant components (see Methods).  822 

F. The correlation coefficient (CC) between neuron factors are displayed with the same component 823 

order as in E (diagonal entries are set to zero). 824 

G. Distribution of CC between neuron factors. Orange is for CC between neuron factors during Nat 825 

Mov; blue is for CC between neuron factors during PDG; green is for CC between neuron factors 826 

across stimuli; black is for CC between random vectors with the same dimension as neuron factors, 827 

representing the chance level. Opaque color is for 1 imaging field; transparent color is for the other 828 

9 imaging fields. Both CC during Nat Mov and during PDG is significantly negative (one-sample t-829 
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test, for all 10 imaging fields, p < 0.001). CC across stimuli is centered around zeros (one-sample 830 

t-test, for all 10 imaging fields, p > 0.1). 831 

 832 

Figure 6. A balanced network model with random connectivity and clustered external inputs 833 

reproduces key features of observed cortical activity. 834 

A. Illustration for the input structure to the model network. We simulated a balanced network with 835 

uniform random connectivity. There are two types of external inputs: frozen input pulse trains and 836 

trial-varied input pulse trains. Both inputs have a clustered input structure but with different neuron 837 

partitions. Model network consists of 1600 excitatory neurons and 400 inhibitory neurons. 25 sec 838 

x 20 trials are simulated.  839 

B. Raster plot of 500 randomly subsampled neurons during 1 trial. Blue dashed line separates 840 

inhibitory neurons from excitatory neurons.  841 

C. Response reliability histogram for subsampled excitatory neurons. Response reliability is 842 

calculated based on simulated ܨ/ܨ߂ traces. 843 

D. Fitting performance ܴଶ (20 TCA components) plotted against response reliability for 844 

subsampled excitatory neurons. 845 

E. Fitting performance ܴଶ for original data plotted against ܴଶ for data with shuffled trials for 846 

subsampled excitatory neurons (Mann-Whitney rank test, p < 0.005). Color indicates response 847 

reliability. 848 

F. Twenty TCA components. Components are ordered by CV of trial factors. In neuron factor, 849 

neurons are ordered by their response reliability. 850 

G. Reliability of 10 neurons with the largest neuron factor values for different components. 851 

Components are in the same order as in F. 852 

H. Twenty TCA components for concatenated neural responses to two stimuli. Neuron factors are 853 

plotted with neurons ordered by their dominant components (see Methods). 854 
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I. Distribution of CC between neuron factors. Color code is the same as Fig. 5G: orange is for CC 855 

between neuron factors during stimulus one; blue is for CC between neuron factors during stimulus 856 

two; green is for CC between neuron factors across stimuli; black is for CC between random 857 

vectors with the same dimension as neuron factors, representing the chance level. Both CC during 858 

stimulus one and CC during stimulus two is significantly negative (one-sample t-test, p < 0.001), 859 

CC across stimuli is centered around zero (one-sample t-test, p = 0.23). 860 

 861 

 862 

Supplemental figure legends 863 

https://figshare.com/s/7058a75fb2cd75dd22f4 864 



Figure 1



Figure 2



Figure 3



Figure 4



Figure 5



Figure 6




