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ABSTRACT OF THE DISSERTATION

Extensions of the Reciprocity Method in Consecutive Pattern Avoidance
in Permutations

by

Quang Tran Bach

Doctor of Philosophy in Mathematics

University of California, San Diego, 2017

Professor Jeffrey Remmel, Chair

Let Sn denote the symmetric group. For any σ ∈ Sn, we let des(σ) denote the

number of descents of σ, inv(σ) denote the number of inversions of σ, and LRmin(σ)

denote the number of left-to-right minima of σ. Jones and Remmel developed the

Reciprocity Method to study the generating functions of the form

∑
n≥0

tn

n!

∑
σ∈NMn(τ)

xLRmin(σ)y1+des(σ)

where NMn(τ) is the set of permutations σ in the symmetric group Sn which have

xvi



no consecutive τ -matches and τ is a permutation that starts with 1 and has exactly

one descent.

In this thesis, we extend the reciprocity method to study the generating

functions of the form ∑
n≥0

tn

n!

∑
σ∈NMn(Γ)

xLRmin(σ)y1+des(σ)

in the case where Γ is a set of permutations such that, for all τ ∈ Γ, τ starts with 1

but we do not put any conditions on the number of descents in τ . In addition, we

can also obtain the q-analog for the reciprocity method and compute the generating

functions of the form

INMΓ(t, q, z) = 1 +
∑
n≥0

tn

[n]q!
INMΓ,n(q, z)

where INMΓ,n(q, z) =
∑

σ∈NMn(Γ)

zdes(σ)+1qinv(σ). Our results from this extension then

lead us to define natural refinements for the c-Wilf equivalence relation. That is, if

stat1, . . . , statk are permutations statistics, we say that two sets of permutations Γ

and ∆ are (stat1, . . . , statk)-c-Wilf equivalent if for all n ≥ 1,

∑
σ∈NMn(Γ)

k∏
i=1

x
stati(σ)
i =

∑
σ∈NMn(∆)

k∏
i=1

x
stati(σ)
i .

This enables us to give many examples of pairs of permutations α and β in Sj which

are des-c-Wilf equivalent, (des, inv)-c-Wilf equivalent, and (des, inv,LRmin)-c-Wilf

equivalent.
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Chapter 1

Introduction

1.1 A quick history of permutation patterns

We first start with the basic definitions and terminologies for permutations

and permutation patterns.

We let Sn denote the group all permutations of length n. That is, Sn is the

set of all one-to-one maps σ : {1, . . . , n} → {1, . . . , n} under composition. We let

S∞ = ∪n≥0Sn. Given σ ∈ Sn, we shall write σ = σ1 . . . σn where σi = σ(i). This way

of writing permutations is often referred to as one-line notation.

If σ = σ1 · · ·σn ∈ Sn, then we let Des(σ) = {i : σi > σi+1} and des(σ) =

|Des(σ)| denote the descent set and the number of descents of σ, respectively. We let

inv(σ) = |{(i, j) : 1 ≤ i < j ≤ n & σi > σj}| denote the number of inversions of σ and

coinv(σ) = |{(i, j) : 1 ≤ i < j ≤ n & σi < σj}| denote the number of coinversions of

σ. We define the reverse of σ, σr, to be the permutation σr = σnσn−1 · · ·σ2σ1 and the

complement of σ, σc, to be the permutation σc = σc1σ
c
2 · · ·σcn where σci = n+ 1− σi for

each 1 ≤ i ≤ n. We say that σj is a left-to-right minima of σ if σi > σj for all i < j.

1



2

For example, the left-to-right minima of σ = 938471625 are 9, 3 and 1.

Given a sequence τ = τ1 · · · τn of distinct positive integers, we define the

reduction of τ , red(τ), to be the permutation of Sn that results by replacing the i-th

smallest element of τ by i for each i. For example red(53962) = 32541.

We define the usual p, q-analogues of n, n!, and
(
n
k

)
as

[n]p,q = pn−1 + pn−2q + · · ·+ pqn−2 + qn−1 =
pn − qn

p− q
,

[n]p,q! = [1]q[2]q · · · [n]q, and[
n

k

]
p,q

=
[n]p,q!

[k]p,q![n− k]p,q!
.

We shall use the standard conventions that [0]p,q = 0 and [0]p,q! = 1. Setting p = 1 in

[n]p,q, [n]p,q!, and
[
n
k

]
p,q

yields [n]q, [n]q!, and
[
n
k

]
q
, respectively.

Let τ = τ1 . . . τj ∈ Sj and σ = σ1 . . . σn ∈ Sn. Then we say that

1. τ occurs in σ if there exists 1 ≤ i1 < · · · < ij ≤ n such that red(σi1σi2 . . . σij ) = τ ,

2. there is a τ -match starting in position i in σ if red(σiσi+1 . . . σij−1) = τ , and

3. σ avoids τ is there is no occurrence of τ in σ.

We note that a τ -match in σ is often refered to as a consecutive occurrence of τ in

σ. There are many variations of the notions a pattern occurring in a permutation σ

including barred patterns, vincular patterns, bivincular patterns, partially ordered

patterns, and mesh patterns. These types of patterns are described in Kitaev’s book

[29] which gives a broad introduction to the study of permutations patterns and its

applications. However, we shall not study such variations in this thesis. .

We let Sn(τ) denote the set of permutations of Sn which avoid τ and NMn(τ)



3

denote the set of permutations of Sn which have no τ -matches. Let Sn(τ) = |Sn(τ)|

and NMn(τ) = |NMn(τ)|. If α and β are elements of Sj, then we say that α is

Wilf-equivalent to β if Sn(α) = Sn(β) for all n ≥ 1 and we say that α is consecutive-

Wilf-equivalent (c-Wilf-equivalent) to β if NMn(α) = NMn(β) for all n. For any

permutations τ and σ, we let τ -mch(σ) denote the number of τ -matches of σ.

These definitions are easily extended to sets of permutations. That is, if Γ ⊆ Sj ,

then we say that

1. Γ occurs in σ if there exists 1 ≤ i1 < · · · < ij ≤ n such that red(σi1σi2 . . . σij ) ∈ Γ,

2. there is a Γ-match starting in position i in σ if red(σiσi+1 . . . σij−1) ∈ Γ, and

3. σ avoids Γ is there is no occurrence of Γ in σ.

We let Sn(Γ) denote the set of permutations of Sn which avoid Γ and NMn(Γ) denote

the set of permutations of Sn which have no Γ-matches. We let Sn(Γ) = |Sn(Γ)|

and NMn(Γ) = |NMn(Γ)|. If Γ and ∆ are subsets of Sj, then we say that Γ is

Wilf-equivalent to ∆ if Sn(Γ) = Sn(∆) for all n and we say that Γ is c-Wilf-equivalent

to ∆ if NMn(Γ) = NMn(∆) for all n. For any permutation σ and set of permutations

Γ, we let Γ-mch(σ) denote the number of Γ-matches of σ.

It is easy to see that the Wilf equivalence classes and c-Wilf equivalence classes

are closed under the operations of reverse and complement. It immediately follows

that there are at most two Wilf-equivalences classes in S3, namely {123, 321} and

{132, 213, 231, 312}. One of the first major results in the subject is due to Knuth in

1969, which says that the number of 321-avoiding permutations is equal to that of

132-avoiding permutations. Thus, in fact, all permutations in S3 are Wilf equivalent.

Moreover, for all τ ∈ S3, Sn(τ) = Cn where Cn = 1
n+1

(
2n
n

)
is the n-th Catalan number.
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There are three Wilf-equivalence classes in S4.

• The first Wilf-equivalence class in S4 is

{1234, 1243, 1432, 2134, 2143, 2341, 3142, 3214, 3412, 4123, 4312, 4321}. Bóna [10]

gave an exact formula for Sn(1342).

• The second Wilf-equivalence class in S4 is

{1342, 1423, 2314, 2413, 3142, 2431, 3124, 3241, 4132, 4213}. Gessel [21] in 1990

gave an explicit formula of Sn(τ) for any τ in this class.

• The third Wilf-equivalence class in S4 is {1324, 4231}. It is still an open problem

to find an explicit formula for Sn(1324) or find a generating function for Sn(1324).

There is a recursive formula given by Marinov and Radoic̆ić [34] in 2003. The

upper and lower bounds for the growth of this class are provided by Bóna [11]

and Bevan [9] in 2015.

In addition, there are numerous results that involve Wilf equivalent classes for sets of

two or more patterns of various lengths.

There are also refinements to the Wilf-equivalence and c-Wilf equivalence rela-

tion. For any permutation statistic stat on permutations and any pair of permutations

α and β in Sj, we say that α is stat-Wilf equivalent to β if for all n ≥ 1

∑
σ∈Sn(α)

xstat(σ) =
∑

σ∈Sn(β)

xstat(σ). (1.1)

More generally, if stat1, . . . , statk are permutations statistics, then we say that α and
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β are (stat1, . . . , statk)-Wilf equivalent if for all n ≥ 1,

∑
σ∈Sn(α)

k∏
i=1

x
stati(σ)
i =

∑
σ∈Sn(β)

k∏
i=1

x
stati(σ)
i . (1.2)

Replacing Sn(τ) by NMn(τ) in equations (1.1) and (1.2) above gives us analogous

refinements for the c-Wilf equivalent relation.

The study of patterns in permutations and words has quite a long history

which can be dated back to Euler in 1749 and later MacMahon in the 1880s. In 1749,

Leonhard Euler introduced polynomials of the form

n−1∑
k=0

(k + 1)ntk =
An(t)

(1− t)n+1

where An(t) =
∑

σ∈Sn x
des(σ) is the Eulerian polynomial, the generating function of

the the number of descents over the symmetric group Sn. In the 1880s, MacMahon

gave generating functions for the distribution of inversions in permutations and words.

In modern day terminology, these results correspond to occurrences or consecutive

occurrences of the pattern 21.

The origin of the modern day study of patterns in words can be traced back

to papers by Rotem, Rogers, and Knuth in 1970s and has been an active area of

research since then. It started with an exercise proposed by Knuth in the first volume

of his book “The Art of Computer Programming" [32]. In this particular exercise,

Knuth asked his reader to show that the number of stack-sortable permutations of

length n is given by 1
n+1

(
2n
n

)
, the n-th Catalan number. Here, a stack is a last-in

first-out linear sorting device that allows two operations push and pop. The input

of the algorithm is a permutation σ = σ1σ2 · · ·σn of length n. In the first step of
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the algorithm, we push σ1 into the stack. Next, we compare σ1 with the left-most

remaining element in the input, namely σ2. If σ1 < σ2, we pop σ1 out of the stack, set

σ1 as the first element of the output, and push σ2 into the stack. Otherwise, we simply

push σ2 into the stack on top of σ1. Subsequently, in each stage of the algorithm, we

compare the left-most remaining element in the input with the top element in the

stack. The process ends when all the elements have been placed into the output. If

the output is another n-permutation s(σ) = σ′1σ
′
2 · · ·σ′n such that σ′1 < σ′2 < · · · < σ′n

then we say σ is stack-sortable. It is well-known that the number of stack-sortable

permutation of length n equals to the number of permutations of the same length that

avoid the pattern 231. Therefore, this exercise provides the first explicit application

of permutation patterns in computer science.

The notion of patterns in permutations and words has also proved to be a useful

language in a variety of seemingly unrelated problems including the theory of Kazhdan-

Lusztig polynomials, singularities of Schubert varieties, Chebyshev polynomials, rook

polynomials for Ferrers boards, and various other sorting algorithms and sortable

permutations. In addition, the study of patterns in permutations and words also arises

in computational biology and theoretical physics. Many tools have been developed to

study a variety of problems such as how to count the number of permutations and

words that avoid a given pattern or collection of patterns or how to find the generating

function for the number of occurrences of a pattern or collection of patterns. There

also are two recent books in this area, one by Kitaev [29] which studies patterns in

permutations and another by Heubach and Mansour [23] which studies patterns in

words. There is also an annual conference dedicated purely to the study of patterns in

permutations and words called “Permutation Patterns," which was organized for the
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first time at the University of Otago in Dunedin, New Zealand, in 2003.

1.2 Symmetric functions and brick tabloids

In this section, we give the necessary background on symmetric functions that

will be used throughout this thesis.

A partition of n is a sequence of positive integers λ = (λ1, . . . , λs) such that

0 < λ1 ≤ · · · ≤ λs and n = λ1 + · · · + λs. We shall write λ ` n to denote that λ is

partition of n and we let `(λ) denote the number of parts of λ. When a partition of

n involves repeated parts, we shall often use exponents in the partition notation to

indicate these repeated parts. For example, we will write (12, 45) for the partition

(1, 1, 4, 4, 4, 4, 4).

If λ = (λ1, . . . , λk) is a partition of n, then a λ-brick tabloid of shape n is

a filling of a rectangle consisting of n cells with bricks of sizes λ1, . . . , λk in such a

way that no two bricks overlap. For example, Figure 1.1 shows the six (12, 22)-brick

tabloids of shape (6).

Figure 1.1: The six (12, 22)-brick tabloids of shape (6).

Let Bλ,n denote the set of λ-brick tabloids of shape (n) and let Bλ,n be the

number of λ-brick tabloids of shape (n). If B ∈ Bλ,n, we will write B = (b1, . . . , b`(λ)) if

the lengths of the bricks in B, reading from left to right, are b1, . . . , b`(λ). For example,

the brick tabloid in the top right position in Figure 1.1 is denoted as (1, 2, 2, 1).

Let Λ denote the ring of symmetric functions in infinitely many variables
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x1, x2, . . . and let Λn be the vector space of symmetric functions of degree n. We shall

define the nth elementary and homogeneous symmetric functions en and hn through

their respective generating functions.

Let E(t) denote the generating function for the sequence e0, e1, e2, . . .. We

define en by

E(t) =
∞∑
n=0

ent
n =

∞∏
i=1

(1 + xit) = (1 + x1t)(1 + x2t) · · · .

For example, if 0 = x4 = x5 = · · · then E(t) becomes

(1 + x1t)(1 + x2t)(1 + x3t)

= 1 + (x1 + x2 + x3)t1 + (x1x2 + x2x3 + x3x1)t2 + x1x2x3t
3,

which means that the first few elementary symmetric functions in three variables are

e0 = 1, e1 = x1 + x2 + x3, e2 = x1x2 + x2x3 + x3x1, and e3 = x1x2x3.

The nth homogeneous symmetric function hn is defined in a similar manner to

en. The generating function for hn is defined to be

H(t) =
∞∑
n=0

hnt
n =

∞∏
i=1

1

1− xit
.

For example, if 0 = x4 = x5 = · · · then H(t) becomes

(
1

1− x1t

)(
1

1− x2t

)(
1

1− x3t

)
= (1 + x1t+ x2

1t
2 + · · · )(1 + x2t+ x2

2t
2 + · · · )(1 + x3t+ x2

3t
2 + · · · )

= 1 + (x1 + x2 + x3)t1 + (x2
1 + x2

2 + x2
3 + x1x2 + x2x3 + x3x1)t2 + · · · ,
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so the first few homogeneous symmetric functions in three variables are h0 = 1,

h1 = x1 + x2 + x3, and x
2
1 + x2

2 + x2
3 + x1x2 + x2x3 + x3x1.

Lastly, the nth power symmetric function pn is defined to be

pn(x1, x2, x3, . . .) = xn1 + xn2 + xn3 + · · · .

It follows directly from their definition that

H(t) =
∞∏
i=1

1

1− xit
=
∞∏
i=1

1

1 + xi(−t)
=

1

E(−t)
.

For any partition λ = (λ1, . . . , λ`) ` n, let eλ = eλ1 · · · eλ` , hλ = hλ1 · · ·hλ` , and

pλ = pλ1 · · · pλ` . It is well known that {eλ : λ ` n}, {hλ : λ ` n}, and {pλ : λ ` n} are

bases for Λn, for all n. So the functions e0, e1, . . . form an algebraically independent

set of generators for Λ, and hence, every element in Λ can be uniquely expressed

as a polynomial in the functions e1, e1, . . . , eN for some N . This means that a ring

homomorphism θ on Λ can be defined by simply specifying θ(en) for all n. This is the

basic idea for the homomorphism method which was initiated by the work of Brenti.

In [12], Brenti defined a ring homomorphism θ by setting

θ(en) =
(−1)n−1(x− 1)n−1

n!

and used it to obtain the following well-known generating function

∞∑
n=0

zn

n!

∑
σ∈Sn

xdes(σ) =
x− 1

x− e(x−1)z
. (1.3)

However, Brenti did not use any results on the combinatorics of the transition matrices
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between bases of symmetric function. It was Remmel and his students who combined

homomorphisms and such combinatorics. Further details on these results can be found

in the book [37].

The most important foundation for Remmel’s development of the homomor-

phism method is perhaps the following identity, which was proved by Eğecioğlu and

Remmel in [17]

hn =
∑
λ`n

(−1)n−`(λ)Bλ,n eλ. (1.4)

This interpretation of hn in terms of en will aid us in describing the behavior of the

homomorphism θ when applied to the homogeneous symmetric functions, which in

turn will allow us to find generating functions for permutation statistics.

In addition, in the book “Counting with Symmetric Functions" by Mendes

and Remmel [37], the authors also explored other relationships between different

symmetric functions. For example, it is well known that for n ≥ 1,

n−1∑
i=0

(−1)ieipn−i = (−1)n−1nen.

Now by expanding E(−z)
∑∞

n=1 pnz
n and applying this result, we obtain

E(−z)
∞∑
n=1

pnz
n =

∞∑
n=1

(
n−1∑
i=0

(−1)ieipn−1

)
=
∞∑
n=1

(−1)n−1nenz
n.

Thus,

∞∑
n=1

pnz
n =

∑∞
n=1(−1)n−1nenz

n

E(−z)
. (1.5)

Small modifications to the brick tabloids can help us describe the interpretation
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of pn in terms of en. Let ν be a function on the set of non-negative numbers. For each

B = (b1, . . . , b`(λ)) ∈ Bλ,n, we define the weight ων(B) of B to be ων(B) = ν(b1) and

let

ων(Bλ,n) =
∑

B∈Bλ,n

ων(B).

For example, let n = 8 and λ = (12, 32). Then the weights of the six brick tabloids in

Bλ,(n) are given in Figure 1.2 so that ων(B(12,32),8) = 3ν(1) + 3ν(3).

ν(3)

ν(1)

ν(1)

ν(1)

ν(3)

ν(3)

Figure 1.2: The weights of the six (12, 22)-brick tabloids of shape (6).

In [33] and [36], the authors defined a new symmetric function pn,ν for each n

by setting

pn,ν =
∑
λ`n

(−1)n−`(λ)ων(Bλ,(n)) eλ. (1.6)

Therefore, by (1.5),

∑
n≥1

pn,νt
n =

∑
n≥1(−1)n−1ν(n)ent

n

E(−t)
=

∑
n≥1(−1)n−1ν(n)ent

n∑
n≥0(−1)nentn

. (1.7)
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Furthermore, we observe that when ν(n) = 1, the above equation becomes

1 +
∑
n≥1

pn,νt
n = 1 +

∑
n≥1(−1)n−1ent

n∑
n≥0(−1)nentn

=
1

E(−t)
= 1 +

∑
n≥1

hnt
n.

It follows from (1.5) that when ν(n) = n for all n ≥ 1, pn,ν equals the power symmetric

function pn.

Another natural extension to the method is given by Mendes, Remmel, and

Riehl in [38] where the authors extended the above result to the case of multiple

weight functions. Now suppose that we are given r weight functions αi, for 1 ≤ i ≤ r,

each is defined on the set of non-negative numbers. For each B ∈ Bλ,n, where `(λ) ≥ r,

we define

ωα1,...αr(B) = α1(b1) . . . αr(br) for `(λ) ≥ r.

We also define

ωα1,...αr(Bλ,n) =
∑

B∈Bλ,n

ωα1,...αr(B).

For example, if B = (b1, . . . , b`(λ)) ∈ Bλ,n and we let walpha1,α2(B) = α2(b1)α2(b`(λ))

when `(λ) ≥ 2, then the weights of the six brick tabloids of shape n = 8 and type

λ = (12, 32) are given in Figure 1.3 below. Here,

ωα1,α2(B(12,32),8) = α1(1)α2(1) + α1(3)α2(3) + 2α1(1)α2(3) + 2α1(3)α2(1).
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In [38], Mendes, Remmel, and Riehl showed that

pn;α1,...,αr =
∑

λ`n, `(λ)≥r

(−1)n−`(λ) ωα1,...,αr(Bλ,n)eλ

=
∑

T=(b1,...,b`(λ))∈Bλ,n
`(λ)≥r, bi≥1

(−1)n−`(λ) ωα1,...,αr(T )

`(λ)∏
i=1

ebi .

So that

∑
n≥r

pn;α1,...,αrt
n =

∏r
i=1

(∑
n≥1(−1)n−1αi(n)enz

n
)∑

n≥0(−z)nen
(1.8)

This formula (1.8) provided an extension to the homomorphism method which

allowed the authors of [38] to give several combinatorial proofs for the generating

functions counting the numbers of descents in permutations with prescribed descent

run lengths. In Chapter 5, we shall explore another application of this result in

computing the generating functions counting the number of initial and final descents

in permutations.

1
α  (1)

2
α  (3)

2

2
α  (3)

2

2

2
α  (3)

1
α  (1)

1
α  (1)

1

1

1
α  (1)

α  (3)

α  (3)α  (1)

α  (3)α  (1)

Figure 1.3: The (12, 22)-brick tabloids of shape (6) under multiple weights.

There have been many other applications and extensions of Brenti’s homomor-

phism method over the recent years by Remmel and his co-authors. In [8], Beck and
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Remmel defined a new homomorphism θp,q by

θp,q(en) =
(−1)n−1(x− 1)n−1q(

n
2)

[n]p,q!

where [n]p,q! is the p, q-analogue of n defined in the previous section. They then used

this homomorphism to show that

[n]p,q!θp,q(hn) =
∑
σ∈Sn

xdes(σ)qinv(σ)pcoinv(σ).

This in turn allowed them to obtain the p, q-analogue of (1.3) as follows.

∞∑
n=0

tn

[n]p,q!

∑
σ∈Sn

xdes(σ)qinv(σ)pcoinv(σ) =
x− 1

x− e
t(x−1)
p,q

(1.9)

where

exp,q = 1 +
∑
n≥1

q(
n
2)

[n]p,q!
xn.

One can also apply the homomorphism method to the case of alternating

permutations. Here, we say that the permutation σ = σ1 · · ·σn ∈ Sn is alternating if

σi−1 > σi and σi < σi+1 for even i. In addition, an alternating permutation of even

length is called even alternating while an alternating permutation of an odd length is

called odd alternating. Now consider the following homomorphism. ϕ(en) = (−1)n

n!
g(n)

where g(n) = 0 is n is odd and g(n) = (−1)n/2 if n is even. Then it can be shown

that (2n)!ϕ(h2n) = A2n, where A2n is the number of even alternating permutations of

length 2n. This leads to the following generating function

∑
n≥0

t2n

(2n)!
A2n =

(∑
n≥0

(−1)n
t2n

(2n)!

)−1

= sec (t). (1.10)
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Similar argument can be used to show that (2n− 1)!ϕ(p2n) = A2n−1, where A2n−1 is

the number of odd alternating permutations of length 2n− 1. Therefore,

∑
n≥1

t2n−1

(2n− 1)!
A2n−1 =

1

t
ϕ

(∑
n≥1

p2nt
2n

)

=
1

t

∑
n≥1(−1)n−1(2n) ϕ(e2n)t2n∑

n≥0 ϕ(e2n)(−t)2n

=

∑
n≥1(−1)n−1 t2n−1

(2n−1)!∑
n≥0(−1)n t2n

(2n)!

=
sin(t)

cos(t)
= tan(t). (1.11)

Combining (1.10) and (1.11) gives us the following well-known generating

function for the number of alternating permutations

∞∑
n=0

An
tn

n!
=
∞∑
n=0

#|σ ∈ Sn is alternating|
tn

n!
= sec(t) + tan(t).

In [46], Wagner extended this idea to compute the generating functions over

the wreath product Ck§Sn. Specifically, Wagner considered the signed permutations in

Ck§Sn with signs in the set Ck = {ε, ε2, . . . , εk} where ε = e2πi/k, and defined a partial

ordering Ω on the signed letters such that εi1 <Ω ε
i2 <Ω . . . <Ω ε

in for all 0 ≤ i ≤ k

together with a partial ordering Γ such that εia <Γ ε
jb if a < b for all i, j. The number

of (Ck§Sn)-descents and (Ck§Sn)-inversions of an element σ ∈ Ck§Sn are given by

desk(σ) = |{i : 1 ≤ i ≤ n− 1, σi >Ω σi+1}| and

invk(σ) = |{(i, j) : 1 ≤ i < j ≤ n, σi >Γ σj}|.
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This enabled the author of [46] to obtain the generating function for

∑
σ∈Ck§Sn

ε(σ)mxdesk(σ)yinvk(σ)

and several related results. Langley and Remmel in [?] considered a sequence of

permutations Σ = (σ(1), . . . , σ(L)) in Sn and define the common descents of the set Σ

to be

Comdes(Σ) =
(
∩Li=1Des(σ

(i))
)

and comdes(Σ) = |Comdes(Σ)|.

Applying this method, they obtained an analogue for the generating functions of the

form ∑
n≥0

tn

[n]P,Q!

∑
Σ=(σ(1),...,σ(L))∈SLn

xcomdes(Σ)Qinv(Σ)P coinv(Σ)

as an P,Q-analog of (1.9) where Q = (q1, . . . , qL), P = (p1, . . . , pL), and these statistics

are defined as

Qinv(Σ) =
L∏
i=1

q
inv(σ(i))
i and P coinv(Σ) =

L∏
i=1

p
coinv(σ(i))
i .

1.3 The main goal of this thesis

The main focus of this thesis is to apply an extension of the basic homor-

morphism method to study the distribution of descents over NMn(Γ), the set of

permutations of length n which have no consecutive occurrences of Γ, where Γ is a set
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of permutations. Specifically, we shall consider generating functions of the form

NMΓ(t, x, y) =
∑
n≥0

tn

n!
NMΓ,n(x, y) =

∑
n≥0

tn

n!

∑
σ∈NMn(Γ)

xLRmin(σ)y1+des(σ).

In the case where Γ consists of a single permutation τ , we shall simply write NMτ (t, x, y)

for NMΓ(t, x, y).

Jones and Remmel [24–27] developed what they called the reciprocity method

to compute the generating function NMτ (t, x, y) for certain families of permutations

τ such that τ starts with 1 and des(τ) = 1. The basic idea of their approach is as

follows. If τ starts with 1, then the results in [25] allows us to write NMτ (t, x, y) in

the form

NMτ (t, x, y) =

(
1

Uτ (t, y)

)x
where Uτ (t, y) =

∑
n≥0

Uτ,n(y)
tn

n!
.

Next one writes

Uτ (t, y) =
1

1 +
∑

n≥1 NMτ,n(1, y) t
n

n!

. (1.12)

One can then use the homomorphism method to give a combinatorial interpretation of

the right-hand side of (1.12) which can be used to find simple recursions for the coeffi-

cients Uτ,n(y). This homomorphism method was first introduced by Brenti [12] and

later developed by Remmel and his students which is the subject of the book “Counting

with Symmetric Functions” by Mendes and Remmel [37]. The so-call homomorphism

method derives generating functions for various permutation statistics by applying a

ring homomorphism defined on the ring of symmetric functions Λ in infinitely many
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variables x1, x2, . . . to simple symmetric function identities such as H(t) = 1/E(−t),

where H(t) and E(t) are the generating functions for the homogeneous and elementary

symmetric functions defined above.

In their case, Jones and Remmel defined a homomorphism θτ on Λ by setting

θτ (en) =
(−1)n

n!
NMτ,n(1, y).

Then

θτ (E(−t)) =
∑
n≥0

NMτ,n(1, y)
tn

n!
=

1

Uτ (t, y)
.

Hence

Uτ (t, y) =
1

θτ (E(−t))
= θτ (H(t)),

which implies that

n!θτ (hn) = Uτ,n(y).

Thus, if we can compute n!θτ (hn) for all n ≥ 1, then we can compute the polynomials

Uτ,n(y) and the generating function Uτ (t, y), which in turn allows us to compute

the generating function NMτ (t, x, y). Jones and Remmel [26, 27] showed that one

can interpret n!θτ (hn) as a certain signed sum of the weights of filled, labeled brick

tabloids when τ starts with 1 and des(τ) = 1. They then defined a weight-preserving,

sign-reversing involution I on the set of such filled, labeled brick tabloids which

allowed them to give a relatively simple combinatorial interpretation for n!θτ (nn).

Consequently, they showed how such a combinatorial interpretation allowed them to

prove that for certain families of such permutations τ , the polynomials Uτ,n(y) satisfy

simple recursions.



19

In [3], Remmel and the dissertation author extended the reciprocity method to

study the polynomials UΓ,n(y) where

UΓ(t, y) = 1 +
∑
n≥1

UΓ,n(y)
tn

n!
=

1

1 +
∑

n≥1 NMΓ,n(1, y) t
n

n!

in the case where Γ is a set of permutations such that for all τ ∈ Γ, τ starts with 1

and des(τ) ≤ 1. Specifically, we studied the case where

Γk1,k2 = {σ ∈ Sp : σ1 = 1, σk1+1 = 2, σ1 < σ2 < · · · < σk1 , σk1+1 < σk1+2 < · · · < σp}.

That is, Γk1,k2 consists of all permutations σ of length p where 1 is in position 1, 2 is in

position k1 + 1, and σ consists of two increasing sequences, one starting at 1 and the

other starting at 2. Interestingly, our extension for the reciprocity method also applies

even when the permutations in Γ do not have the same length nor the same descent

set. In addition, we also investigated a new phenomenon that arises when adding the

identity permutation 12 . . . k to the family Γk1,k2 . Let Γk1,k2,s = Γk1,k2 ∪{1 · · · s(s+ 1)}

for some s ≥ max(k1, k2). In certain cases, we were able to obtain explicit formulas

for the polynomials UΓk1,k2,s
,n(y) for certain values of k1, k2, and s. For instance, if

Γ = {1324, 123}, then we proved the following result for the polynomials UΓ,n(y)’s.

For all n ≥ 0,

UΓ,2n(y) =
n∑
k=0

(2k + 1)
(

2n
n−k

)
n+ k + 1

(−y)n+k+1 and UΓ,2n+1(y) =
n∑
k=0

2(k + 1)
(

2n+1
n−k

)
n+ k + 2

(−y)n+k.

Another example where we could find an explicit formula is the case Γ2,2,s =

{1324, 1342, 123} where we showed that UΓ2,2,s,1(y) = −y, and for n ≥ 2, the polyno-
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mials UΓ2,2,s,n(y)’s satisfy the recursion

UΓ2,2,s,n(y) = −yUΓ2,2,s,n−1(y)−
s−2∑
k=0

(
(n− k − 1)yUΓ2,2,s,n−k−2(y) + (n− k − 2)y2UΓ2,2,s,n−k−3(y)

)
.

Using these recursions, we proved that

UΓ2,2,2,2n(y) =
n∑
i=0

(2n−1) ↓↓n−i (−y)n+i and UΓ2,2,2,2n+1(y) =
n∑
i=0

(2n) ↓↓n−i (−y)n+1+i

where for any x, (x) ↓↓0= 1 and (x) ↓↓k= x(x− 2)(x− 4) · · · (x− 2k − 2) for k ≥ 1.

Remmel and the dissertation author also further extended the reciprocity

method to study the generating functions NMΓ(t, x, y) where all the permutations Γ

start with 1 but there is no restriction on the number of descents in a permutations

in Γ. While the basic concepts of the reciprocity method still hold, the involution

defined by Jones and Remmel no longer works. Thus, we defined a new sign-reversing,

weight-preserving mapping JΓ and, under this new involution, we were able to compute

the recursion for the polynomials UΓ,n(y) for the special cases where τ ∈ Γ such that

des(τ) = j ≥ 1 and the bottom elements of these descents are 2, . . . , j + 1 when

reading from left to right. In most of the cases here, the analysis of the fixed points of

the involution JΓ can be associated with counting the number of linear extensions for

certain Hasse diagrams.

Finally, we can obtained the q-analog for the reciprocity method and computed
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the generating functions of the form

INMΓ(t, q, z) = 1 +
∑
n≥0

tn

[n]q!
INMΓ,n(q, z)

where INMΓ,n(q, z) =
∑

σ∈NMn(Γ)

zdes(σ)+1qinv(σ). Our results from this extension led us

to define natural refinements for the c-Wilf equivalence relation. We also gave many

examples of pairs of permutations α and β such that α and β are (des, inv)-c-Wilf

equivalent, (des,LRmin)-c-Wilf equivalent, and (des, inv,LRmin)-c-Wilf equivalent.

The remainder of this thesis is organized as follows. Chapter 2 starts with the

results from Jones and Remmel on pattern matching in cycle structure which leads to

the development of their reciprocity method. In the same chapter, we also describe

Bach and Remmel’s extension to the reciprocity method to the case where Γ is a

family of permutations that start with 1 and have des(τ) ≤ 1 for all τ ∈ Γ. In Chapter

3, we provide a new involution which will allow us to remove the restriction on the

number of descents in the forbidden patterns. We also consider examples where the

forbidden patterns τ = τ1 · · · τ6 with τ1 = 1, τ3 = 2, τ5 = 3 and des(τ) = 2. In Chapter

4, we give the q-analogue to the reciprocity method and discuss several refinements

for the c-Wilf equivalent relation. We also provide conditions on permutations α and

β in Sj which will guarantee that α and β are des-c-Wilf equivalent, (des, inv)-c-Wilf

equivalent, or (des, inv,LRmin)-c-Wilf equivalent. Lastly, in Chapter 5, we consider

several other applications of Brenti’s homomorphism method in finding the generating

functions for the number of initial and final descents in permutations.



Chapter 2

The reciprocity method

In this chapter, we extend the reciprocity method of Jones and Remmel [26,27]

to study generating functions of the form
∑

n≥0
tn

n!

∑
σ∈NMn(Γ) x

LRminσy1+des(σ) where Γ

is a set of permutations which start with 1 and have at most one descent, NMn(Γ) is

the set of permutations σ in the symmetric group Sn which have no Γ-matches, des(σ)

is the number of descents of σ and LRminσ is the number of left-to-right minima of

σ. We also briefly introduce the study by Jones and Remmel on pattern matching in

cycle structure and use their result to show that this generating function is of the form(
1

UΓ(t,y)

)x
where UΓ(t, y) =

∑
n≥0 UΓ,n(y) t

n

n!
and the coefficients UΓ,n(y) satisfy some

simple recursions in the case where Γ equals {1324, 123}, {1324 · · · p, 12 · · · (p− 1)}

and p ≥ 5, or Γ is the set of permutations σ = σ1 · · ·σn of length n = k1 + k2 where

k1, k2 ≥ 2, σ1 = 1, σk1+1 = 2, and des(σ) = 1.

22
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2.1 Pattern matching in the cycle structure of per-

mutations

Jones and Remmel [24] initiated the study of study pattern matching conditions

in the cycle structure of a permutation. Suppose that τ = τ1 · · · τj is a permutation in

Sj and σ is a permutation in Sn with k cycles C1, . . . , Ck. Here, we shall always write

cycles in the form Ci = (c0,i . . . , cpi−1,i) where c0,i is the smallest element in Ci and

pi is the length of the cycle Ci. In the cycle structure of σ, we shall always arrange

the cycles by increasing smallest elements, i.e., we arrange the k cycles of σ so that

c0,1 < . . . < c0,k. Then we say that σ has a cycle τ -match if there is an i such that

Ci = (c0,i . . . , cpi−1,i) where pi ≥ j and an τ such that red(cr,icr+1,i · · · cr+j−1,i) = τ,

where we take indices of the form r+s mod pi.We denote the number of cycle τ -match

in σ by c-τ -mch(σ). For example, if τ = 2 1 3 and σ = (1, 10, 9)(2, 3)(4, 8, 5, 7, 6) then

9 1 10 is a cycle τ -match in the first cycle while 7 5 8 and 6 4 7 are cycle τ -matches

in the third cycle. In addition, c-τ -mch(σ) = 3.

Similarly, we say that τ cycle occurs in σ if there exists an i such that Ci =

(c0,i . . . , cpi−1,i) where pi ≥ j and there is an r with 0 ≤ r ≤ pi − 1 with indices

0 ≤ i1 ≤ . . . ≤ ij−1 ≤ pi − 1 such that red(cr,icr+i1,i · · · cr+ij−1,i) = τ where again, we

take indices of the form r + s mod pi. We say that σ cycle avoids τ if there is no

cycle occurrence of τ in σ. For example, if τ = 1 2 3 and σ = (1, 10, 9)(2, 3)(4, 8, 5, 7, 6)

then 4 5 7, 4 5 6, and 5 6 8 are cycle occurrences of τ in the third cycle.

We can extend of the notion of cycle matches and cycle occurrences to sets of

permutations in the obvious fashion. That is, suppose that Γ is a set of permutations in

Sj and σ is a permutation in Sn with k cycles C1 . . . Ck. Then we say that σ has a cycle
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Γ-match if there is an i such that Ci = (c0,i . . . , cpi−1,i) where pi ≥ j and an τ such

that red(cr,icr+1,i · · · cr+j−1,i) ∈ Γ, where we take indices of the form r+ s mod pi. We

say that Γ cycle occurs in σ if there exists an i such that Ci = (c0,i . . . , Cpi−1,i) where

pi ≥ j and there is an r with 0 ≤ r ≤ pi − 1 with indices 0 ≤ i1 ≤ . . . ≤ ij−1 ≤ pi − 1

such that red(cr,icr+i1,i · · · cr+ij−1,i) ∈ Γ where again, we take indices of the form r + s

mod pi. We say that σ cycle avoids Γ if there is no occurrence of Γ in σ.

For Γ ⊂ Sj, we let CSn(Γ) denote the set of permutations of Sn which cycle

avoid Γ and NCMn(Γ) denote the set of permutations of Sn which have no cycle

Γ-matches. We let CSn(Γ) = |CSn(Γ)| and NCMn(Γ) = |NCMn(Γ)|.

Given a cycle C = (c0, . . . , cp−1) where c0 is the smallest element in the cycle,

we let cdes(C) = 1 + des(c0 · · · cp−1). Thus, cdes(C) counts the number of descent

pairs as we traverse once around the cycle because the extra factor of 1 counts the

descent pair cp−1 > c0. For example, if C = (1, 5, 3, 7, 2) then cdes(C) = 3 which

counts the descent pairs 53, 72, and 21 as we traverse once around C. By convention,

if C = (c0) is one-cycle then cdes(C) = 1. If σ ∈ Sn is a permutation with k cycles

C1 . . . Ck, then we define cdes(σ) =
∑k

i=1 cdes(Ci). We let cyc(σ) denote the number

of cycles in σ.

In [24], Jones and Remmel studied the generating functions

CAΓ(t, x, y) = 1 +
∑
n≥1

tn

n!

∑
σ∈CSn(Γ)

xcyc(σ)ycdes(σ), and

NCMΓ(t, x, y) = 1 +
∑
n≥1

tn

n!

∑
σ∈NCMn(Γ)

xcyc(σ)ycdes(σ).

Their approach was to use the theory of exponential structures to reduce the problem

down to studying pattern matching in n-cycles. That is, let Lm denote the set of
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m-cycles in Sm. Suppose that R is a ring and for each m ≥ 1, we have a weight

function Wm : Lm → R. We let W (Lm) =
∑

C∈LmWm(C). Now suppose that σ ∈ Sn

with the cycle structure σ = C1 · · ·Ck. For each i, if Ci is of size m then we let

W (Ci) = Wm(red(Ci)). Lastly, we define the weight of σ, W (σ) by

W (σ) =
k∏
i=1

W (Ci).

Let Cn,k denote the set of all permutations of Sn with k cycles, then it is shown in the

book “Enumerative Combinatorics, vol. 2" by Stanley [43] that

1 +
∑
n≥1

tn

n!

n∑
k=1

xk
∑
σ∈Cn,k

W (σ) = ex
∑
m≥1

W (Lm)tm

m! . (2.1)

Now let CSn,k(Γ) denote the set of permutations σ ∈ Sn with k cycles such that

σ cycle avoids Γ and let NCMn,k(Γ) denote the set of permutations σ ∈ Sn with k

cycles such that σ has no cycle Γ-matches. Similarly, let Lcam(Γ) be the set of m cycles

γ ∈ Sm such that γ cycle avoids Γ with Lcam(Γ) = |Lcam(Γ)| and let Lncmm (Γ) be the set

of m cycles γ ∈ Sm such that γ has no cycle Γ-match with Lncmm (Γ) = |Lncmm (Γ)|. We

are interested in the special cases of weight functions W ca
m where W ca

m (C) = 1 if C

cycle avoids a set of permutations and W ncm
m (C) = 0 otherwise, or W ncm

m (C) = 1 if C

has no cycle Γ-matches and W ncm
m (C) = 0 otherwise. Then under these special weight

functions, (2.1) becomes

CAΓ(t, x, y) = 1 +
∑
n≥1

tn

n!

n∑
k=1

xk
∑

σ∈CSn,k(Γ)

ycdes(σ) = ex
∑
m≥1

tm

m!

∑
C∈Lcam (Γ) y

cdes(C)
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and

NCMΓ(t, x, y) = 1 +
∑
n≥1

tn

n!

n∑
k=1

xk
∑

σ∈NCMn,k(Γ)

ycdes(σ) = ex
∑
m≥1

tm

m!

∑
C∈Lncmm (Γ) y

cdes(C)

.

In the case Γ = {τ}, Jones and Remmel showed that if τ ∈ Sj is a permutation

that starts with 1, then we can reduce the problem of finding NCMτ (t, x, y) to the

usual problem of finding the generating function of permutations that have no τ -

matches. Their approach is as follows. Suppose we are given a permutation σ ∈ Sn

with k cycles C1 · · ·Ck. Assume we have arranged the cycles so that the smallest

element in each cycle is on the left and we arrange the cycles by decreasing smallest

elements. We let σ̄ be the permutation that arises from C1 · · ·Ck by by erasing all

the parenthesis and commas. For example, if σ = (7, 10, 9, 11)(4, 8, 6)(1, 5, 3, 2) then

σ̄ = 7 10 9 11 4 8 6 1 5 3 2. It is easy to see that the minimal elements of the cycles

correspond to left-to-right minima in σ̄. It is also easy to see that under the bijection

σ → σ̄, cdes(σ) = des(σ̄) + 1 since every left-to-right minima is part of a descent pair

in σ̄.

In [24], Jones and Remmel proved that if τ ∈ Sj and τ starts with 1, then for

any σ ∈ Sn,

1. σ has k cycles of and only if σ̄ has k left-to-right minima,

2. cdes(σ) = des(σ̄) + 1, and

3. σ has no cycle-τ -match if and only if σ̄ has no τ -match.

The consequence of this result is that we can automatically obtain refinements

of generating functions for the number of permutations with no τ -matches when τ
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starts with 1. Specifically,

NMτ (t, x, y) =
∑
n≥0

tn

n!

∑
σ∈NMn(τ)

xLRmin(σ)y1+des(σ)

= 1 +
∑
n≥1

tn

n!

n∑
k=1

xk
∑

σ̄∈NCMn,k(τ)

ycdes(σ̄)

= ex
∑
m≥1

tm

m!

∑
C∈Lncmm (τ) y

cdes(C)

= NCMτ (t, x, y).

This implies

NMτ (t, 1, y) =
∑
n≥0

tn

n!

∑
σ∈NMn(τ)

y1+des(σ) = e
∑
m≥1

tm

m!

∑
C∈Lncmm (τ) y

cdes(C)

.

So ∑
m≥1

tm

m!

∑
C∈Lncmm (τ)

ycdes(C) = ln (NMτ (t, 1, y))

which then gives

NMτ (t, x, y) = NCMτ (t, x, y) = ex ln(NMτ (t,1,y)) = (NMτ (t, 1, y))x .

Hence, if we let

UΓ(t, y) =
∞∑
n=0

tn

n!
Uτ,n(y) =

1

NMΓ(t, 1, y)
=

1

1 +
∑

n≥1
tn

n!
NMΓ,n(1, y)

, (2.2)

then it is the case that

NMτ (t, x, y) =
∑
n≥0

tn

n!
NMΓ,n(x, y) =

(
1

Uτ (t, y)

)x
.
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Here, we can now exploit the identity H(t) = 1/E(−t) between the generating

functions for the homogeneous and elementary symmetric functions and Eğecioğlu and

Remmel’s formula in (1.4) to define a homomorphism in order to give a combinatorial

interpretation of the right-hand side of (2.2) which can be used to find simple recursions

for the coefficients Uτ,n(y). This homomorphism method shall be discussed in greater

details in the upcoming section.

2.2 The reciprocity method

In this section, we shall introduce Bach and Remmel’s extension to the reci-

procity method to find a combinatorial interpretation for UΓ,n(y) in the case where

Γ is a set of permutations which all start with 1 and have at most one descent. We

can assume that Γ contains at most one identity permutation. That is, if 12 · · · s and

12 · · · t are in Γ for some s < t, then if we consecutively avoid 12 · · · s, we automatically

consecutively avoid 12 · · · t. Thus NMn(Γ) = NMn(Γ− {12 · · · t}) for all n. In the

case where Γ contains only one permutation τ , we simply replace Γ by τ to obtain the

original reciprocity method introduced by Jones and Remmel in [25–27].

We want give a combinatorial interpretation to

UΓ(t, y) =
1

NMΓ(t, 1, y)
=

1

1 +
∑

n≥1
tn

n!
NMΓ,n(1, y)

,

where

NMΓ,n(1, y) =
∑

σ∈NMn(Γ)

y1+des(σ).

We define a homomorphism θΓ on the ring of symmetric functions Λ by setting
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θΓ(e0) = 1 and, for n ≥ 1,

θΓ(en) =
(−1)n

n!
NMΓ,n(1, y).

It follows that

θΓ(H(t)) =
∑
n≥0

θΓ(hn)tn =
1

θτ (E(−t))
=

1

1 +
∑

n≥1(−t)nθΓ(en)

=
1

1 +
∑

n≥1
tn

n!
NMΓ,n(1, y)

= UΓ(t, y).

By (1.4), we have

n!θΓ(hn) = n!
∑
λ`n

(−1)n−`(λ)Bλ,n θΓ(eλ)

= n!
∑
λ`n

(−1)n−`(λ)
∑

(b1,...,b`(λ))∈Bλ,n

`(λ)∏
i=1

(−1)bi

bi!
NMΓ,bi(1, y)

=
∑
λ`n

(−1)`(λ)
∑

(b1,...,b`(λ))∈Bλ,n

(
n

b1, . . . , b`(λ)

) `(λ)∏
i=1

NMΓ,bi(1, y). (2.3)

Next, we want to give a combinatorial interpretation to the right hand side of

(2.3). We select a brick tabloid B = (b1, b2, . . . , b`(λ)) of shape (n) filled with bricks

whose sizes induce the partition λ. We interpret the multinomial coefficient
(

n
b1,...,b`(λ)

)
as the number of ways to choose an ordered set partition S = (S1, S2, . . . , S`(λ)) of

{1, 2, . . . , n} such that |Si| = bi for i = 1, . . . , `(λ). For each brick bi, we then fill

the cells of bi with numbers from Si such that the entries in the brick reduce to a

permutation σ(i) = σ1 · · ·σbi in NMbi(Γ). We label each descent of σ that occurs

within each brick as well as the last cell of each brick by y. This accounts for the
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factor ydes(σ(i))+1 within each brick. Finally, we use the factor (−1)`(λ) to change the

label of the last cell of each brick from y to −y. We will denote the filled labeled brick

tabloid constructed in this way as 〈B,S, (σ(1), . . . , σ(`(λ)))〉.

For example, when n = 17,Γ = {1324, 1423, 12345}, and B = (9, 3, 5, 2),

consider the ordered set partition S = (S1, S2, S3, S4) of {1, 2, . . . , 17}, where

S1 = {2, 5, 6, 9, 11, 15, 16, 17, 19}, S2 = {7, 8, 14}, S3 = {1, 3, 10, 13, 18}, S4 = {4, 12},

and the permutations σ(1) = 1 2 4 6 5 3 7 9 8 ∈ NM9(Γ), σ(2) = 1 3 2 ∈

NM7(Γ), σ(3) = 5 1 2 4 3 ∈ NM5(Γ), and σ(4) = 2 1 ∈ NM2(Γ). The construction

of 〈B,S, (σ(1), . . . , σ(4))〉 is then pictured in Figure 2.1.

= 2 1σ(4)= 1 3 2(2)σ = 5 1 2 4 3(3)σ

{2,5,6,9,11,15,16,17,19} {7,8,14} {1,3,10,13,18} {4,12} 

σ(1)

2 7 814 18 1 3 1013 12 4

= 1 2 4 6 5 3 7 9 8 

65 9 1115 1916 17

y y y −y y −y y y −y y −y

Figure 2.1: The construction of a filled-labeled-brick tabloid.

We can then recover the triple 〈B, (S1, . . . , S`(λ)), (σ
(1), . . . , σ(`(λ)))〉 from B and

the permutation σ which is obtained by reading the entries in the cells from right to

left. We let OΓ,n denote the set of all filled labeled brick tabloids created this way.

That is, OΓ,n consists of all pairs O = (B, σ) where

1. B = (b1, b2, . . . , b`(λ)) is a brick tabloid of shape n,

2. σ = σ1 · · ·σn is a permutation in Sn such that there is no Γ-match of σ which

lies entirely in a single brick of B, and
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3. if there is a cell c such that a brick bi contains both cells c and c+1 and σc > σc+1,

then cell c is labeled with a y and the last cell of any brick is labeled with −y.

We define the sign of each O to be sgn(O) = (−1)`(λ). The weight W (O) of O

is defined to be the product of all the labels y used in the brick. Thus, the weight of

the filled labeled brick tabloid from Figure 2.1 above is W (O) = y11. It follows that

n!θΓ(hn) =
∑

O∈OΓ,n

sgn(O)W (O). (2.4)

We next define a sign-reversing, weight-preserving involution I : OΓ,n → OΓ,n.

Given a filled labeled brick tabloid (B, σ) ∈ OΓ,n where B = (b1, . . . , bk), we read the

cells of (B, σ) from left to right, looking for the first cell c for which either

(i) cell c is labeled with a y, or

(ii) cell c is at the end of brick bi where σc > σc+1 and there is no Γ-match of σ that

lies entirely in the cells of the bricks bi and bi+1.

In case (i), we define IΓ(B, σ) to be the filled labeled brick tabloid obtained

from (B, σ) by breaking the brick bj that contains cell c into two bricks b′j and b′′j

where b′j contains the cells of bj up to and including the cell c while b′′j contains the

remaining cells of bj. In addition, we change the label of cell c from y to −y. In case

(ii), IΓ(B, σ) is obtained by combining the two bricks bi and bi+1 into a single brick

b and changing the label of cell c from −y to y. If neither case occurs, then we let

IΓ(B, σ) = (B, σ).

For instance, the image of the filled labeled brick tabloid from the Figure 2.1

under this involution is shown below in Figure 2.2.
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2 7 814 18 1 3 1013 12 4

−y y y y −y y −y

65 9 11 1916 17

y y

15

−y

Figure 2.2: IΓ(O) for O in Figure 2.1.

We claim that as long as each permutation in Γ has at most one descent, then

IΓ is an involution. Let (B, σ) be an element of Oγ,n which is not a fixed point of

I. Suppose that I(B, σ) is defined using case (i) where we split a brick bj at cell c

which is labeled with a y. In that case, we let a be the number in cell c and a′ be the

number in cell c+ 1 which must also be in brick bj. Since cell c is labeled with y, it

must be the case that a > a′. Moreover, there can be no cell labeled y that occurs

before cell c since otherwise we would not use cell c to define I(B, σ). In this case,

we must ensure that when we split bj into b
′
j and b

′′
j , we cannot combine the brick

bj−1 with b′j because the number in that last cell of bj−1 is greater than the number

in the first cell of b′j and there is no Γ-match in the cells of bj−1 and b′j since in such

a situation, IΓ(IΓ(B, σ)) 6= (B, σ). However, since we always take an action on the

leftmost cell possible when defining IΓ(B, σ), we know that we cannot combine bj−1

and bj so that there must be a Γ-match in the cells of bj−1 and bj. Moreover, if we

could now combine bricks bj−1 and b′j, then that Γ-match must have involved the

number a′ and the number in cell d which is the last cell in brick bj−1. But that is

impossible because then there would be two descents among the numbers between cell

d and cell c+ 1 which would violate our assumption that the elements of Γ have at

most one descent. Thus whenever we apply case (i) to define IΓ(B, σ), the first action

that we can take is to combine bricks b′j and b
′′
j so that I2

Γ(B, σ) = (B, σ).

If we are in case (ii), then again we can assume that there are no cells labeled

y that occur before cell c. When we combine brick bi and bi+1, then we will label cell

c with a y. It is clear that combining the cells of bi and bi+1 cannot help us combine
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the resulting brick b with bj−1 since, if there were a Γ-match that prevented us from

combining bricks bj−1 and bj , then that same Γ-match will prevent us from combining

bj−1 and b. Thus, the first place where we can apply the involution will again be cell

c which is now labeled with a y so that I2
Γ(B, σ) = (B, σ).

It is clear that if IΓ(B, σ) 6= (B, σ), then

sgn(B, σ)W (B, σ) = −sgn(IΓ(B, σ))W (IΓ(B, σ)).

Thus it follows from (2.4) that

n!θΓ(hn) =
∑

O∈OΓ,n

sgn(O)W (O) =
∑

O∈OΓ,n,IΓ(O)=O

sgn(O)W (O).

Hence if all permutations in Γ have at most one descent, then

UΓ,n(y) =
∑

O∈OΓ,n,IΓ(O)=O

sgn(O)W (O). (2.5)

Thus to compute UΓ,n(y), we must analyze the fixed points of IΓ.

If (B, σ) where B = (b1, . . . , bk) and σ = σ1 · · ·σn is a fixed point of the

involution IΓ, then (B, σ) cannot have any cell labeled y which means that the

elements of σ that lie within any brick bj of B must be increasing. If it is the case

that an identity permutation 12 · · · (k + 1) is in Γ, then no brick of B can have length

greater than k. Next, consider any two consecutive bricks bi and bi+1 in B. Let c be

the last cell of bi and c + 1 be the first cell of bi+1. Then either σc < σc+1 in which

case we say there is an increase between bricks bi and bi+1, or σc > σc+1 in which case

we say there is a decrease between bricks bi and bi+1. In the latter case, there must
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be a Γ-match of σ that lies in the cells of bi and bi+1 which must necessarily involve

σc and σc+1. Finally, we claim that since all the permutations in Γ start with 1, the

minimal elements within the bricks of B must increase from left to right. That is,

consider two consecutive bricks bi and bi+1 and let ci and ci+1 be the first cells of bi

and bi+1, respectively. Suppose that σci > σci+1
. Let di be the last cell of bi. Then

clearly σci+1
< σci ≤ σdi so that there is a decrease between brick bi and brick bi+1 and

hence there must be a Γ-match of σ that lies in the cells of bi and bi+1 that involves

the elements of σdi and σci+1
. But this is impossible since our assumptions ensure that

σci+1
is the smallest element that lies in the bricks bi and bi+1 so that it can only play

the role of 1 in any Γ-match. But since every element of Γ starts with 1, then any

Γ-match that lies in bi and bi+1 that involves σci+1
must lie entirely in brick bi+1 which

contradicts the fact that (B, σ) was a fixed point of IΓ.

We have the following lemma describing the fixed points of the involution IΓ.

Lemma 1. Let Γ be a set of permutations which all start with 1 and have at most one

descent. Let Q(y) be the set of rational functions in the variable y over the rationals

Q and let θΓ : Λ→ Q(y) be the ring homomorphism defined by setting θΓ(e0) = 1, and

θΓ(en) = (−1)n

n!
NMΓ,n(1, y) for n ≥ 1. Then

n!θΓ(hn) =
∑

O∈OΓ,n,IΓ(O)=O

sgn(O)W (O)

where OΓ,n is the set of objects and IΓ is the involution defined above. Moreover,

O = (B, σ) ∈ OΓ,n where B = (b1, . . . , bk) and σ = σ1 · · · σn is a fixed point of IΓ if

and only if O satisfies the following four properties:

1. there are no cells labeled with y in O, i.e., the elements in each brick of O are
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increasing,

2. the first elements in each brick of O form an increasing sequence, reading from

left to right,

3. if bi and bi+1 are two consecutive bricks in B, then either (a) there is increase

between bi and bi+1, i.e., σ∑i
j=1 bj

< σ1+
∑i
j=1 bj

, or (b) there is a decrease between

bi and bi+1, i.e., σ∑i
j=1 bj

> σ1+
∑i
j=1 bj

, and there is a Γ-match contained in the

elements of the cells of bi and bi+1 which must necessarily involve σ∑i
j=1 bj

and

σ1+
∑i
j=1 bj

, and

4. if Γ contains an identity permutation 12 · · · (k + 1), then bi ≤ k for all i.

Note that since UΓ,n(y) = n!θΓ(hn), Lemma 1 gives us a combinatorial inter-

pretation of UΓ,n(y). Since the weight of of any fixed point (B, σ) of IΓ is −y raised

to the number of bricks in B, it follows that UΓ,n(−y) is always a polynomial with

non-negative integer coefficients.

2.3 Results of the reciprocity method

Having described the reciprocity methods, we now consider several results that

arise by setting specific values to the family Γ.

2.3.1 The case Γ = Γk1,k2

Let k1, k2 ≥ 2 and p = k1 + k2. We consider the family of permutations

Γ = Γk1,k2 in Sp where

Γk1,k2 = {σ ∈ Sp : σ1 = 1, σk1+1 = 2, σ1 < σ2 < · · · < σk1 , σk1+1 < σk1+2 < · · · < σp}.
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We then have the following result.

Theorem 1. Let Γ = Γk1,k2 where k1, k2 ≥ 2, m = min{k1, k2}, and M = max{k1, k2}.

Then

NMΓ(t, x, y) =

(
1

UΓ(t, y)

)x
where UΓ(t, y) = 1 +

∑
n≥1

UΓ,n(y)
tn

n!
,

UΓ,1(y) = −y, and for n ≥ 2,

UΓ,n(y) = (1− y)UΓ,n−1(y)− y
(
n− 2

k1 − 1

)(
UΓ,n−M(y) + y

m−1∑
i=1

UΓ,n−M−i(y)

)
.

Proof. By (2.5), we must show that the coefficients

UΓ,n(y) =
∑

O∈OΓ,n,IΓ(O)=O

sgn(O)W (O)

have the following properties:

1. UΓ,1(y) = −y, and

2. UΓ,n(y) = (1− y)UΓ,n−1(y)− y
(
n−2
k1−1

) (
UΓ,n−M(y) + y

∑m−1
i=1 UΓ,n−M−i(y)

)
, where

m = min{k1, k2} and M = max{k1, k2}, for n > 1,

We will divide the proof into two cases, one where k1 ≥ k2 and the other where

k1 < k2.

Case 1. k1 ≥ k2.

Let (B, σ) be a fixed point of IΓ where B = (b1, . . . , bk) and σ = σ1 · · · σn. We

know that 1 is in the first cell of (B, σ). We claim that 2 must be in cell 2 or cell k1 + 1

of (B, σ). To see this, suppose that 2 is in cell c where c 6= 2 and c 6= k1 + 1. Since

there is no descent within any brick, 2 must be the first cell of its brick. Moreover,
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since the minimal elements of the bricks form an increasing sequence, reading from left

to right, 2 must be in the first cell of the second brick b2. Thus, 1 is in the first cell of

the first brick b1 and 2 is in the first cell of the second brick b2. Since c > 2, there is a

decrease between bricks b1 and b2 and, hence, there must be a Γ-match of σ contained

cells of b1 and b2 which involves 2 and the last cell of b1. Since all the elements of Γ

start with 1, this Γ-match must also involve 1 since only 1 can play the role of 1 in a

Γ-match that involves 2 and the last cell of b1. But in all such Γ-matches, 2 must be

in cell k1 + 1. Since c 6= k1 + 1, this means that there can be no Γ-match contained in

the cells of b1 and b2 which contradicts the fact that (B, σ) is a fixed point of IΓ.

Thus, we have two subcases.

Subcase 1.A. 2 is in cell 2 of (B, σ).

In this case there are two possibilities, namely, either (i) 1 and 2 are both in

the first brick b1 of (B, σ) or (ii) brick b1 is a single cell filled with 1 and 2 is in the

first cell of the second brick b2 of (B, σ). In either case, we know that 1 is not part

of a Γ-match in (B, σ). So if we remove cell 1 from (B, σ) and subtract 1 from the

elements in the remaining cells, we will obtain a fixed point O′ of IΓ in OΓ,n−1.

Moreover, we can create a fixed point O = (B, σ) ∈ On satisfying conditions

(1), (2), (3) and (4) of Lemma 1 where σ2 = 2 by starting with a fixed point

(B′, σ′) ∈ OΓ,n−1 of IΓ, where B
′ = (b′1, . . . , b

′
r) and σ′ = σ′1 · · ·σ′n−1, and then letting

σ = 1(σ′1+1) · · · (σ′n−1+1), and setting B = (1, b′1, . . . , b
′
r) or setting B = (1+b′1, . . . , b

′
r).

It follows that fixed points in Subcase 1.A will contribute (1− y)UΓ,n−1(y) to

UΓ,n(y).

Subcase 1.B. 2 is in cell k1 + 1 of (B, σ).

Since there is no decrease within the bricks of (B, σ) and the first numbers of
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the bricks are increasing, reading from left to right, it must be the case that 2 is in

the first cell of b2. Thus b1 has exactly k1 cells. In addition, b2 has at least k2 cells

since otherwise, there could be no Γ-match contained in the cells of b1 and b2 and we

could combine the bricks b1 and b2, which would mean that (B, σ) is not a fixed point

of IΓ. By our argument above, it must be the case that the Γ-match of σ contained in

the cells of b1 and b2 must start in the first cell. We first choose k1 − 1 numbers to fill

in the remaining cells of b1. There are
(
n−2
k1−1

)
ways to do this. For each such choice,

we let O′ be the result by removing the first k1 cells from (B, σ) and replacing the ith

largest remaining number by i for i = 1, . . . , n− k1, then O
′ will be a fixed point in

OΓ,n−k1 whose first brick is of size greater than or equal to k2.

On the other hand, suppose that we start with O′ ∈ OΓ,n−k1 which is a fixed

point of IΓ and whose first brick is of size greater than or equal to k2. Then we can

take any k1 − 1 numbers 1 < a1 < a2 < · · · < ak1−1 ≤ n and add a new brick at the

start which contains 1, a1, . . . ak1−1 followed by O′′ which is the result of replacing the

numbers in O′ by the numbers in {1, . . . , n} − {1, a1, . . . ak1−1} maintaining the same

relative order, then we will create a fixed point O of IΓ of size n whose first brick is of

size k1 and whose second brick starts with 2.

Thus we need to count the number of fixed points in OΓ,n−k1whose first brick

has size at least k2. Suppose that V = (D, τ) is a fixed point of OΓ,n−k1 where

D = (d1, . . . , dk) and τ = τ1 · · · τn−k1 . Now if d1 = j < k2, then there cannot be a

decrease between bricks d1 and d2 because otherwise there would have been a Γ-match

starting at cell 1 contained in the bricks d1 and d2 which is impossible since all

permutations in Γ have their only descent at position k1 > j. This means that the first

brick d1 must be filled with 1, . . . j. That is, since the minimal elements of the bricks
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are increasing reading from left to right, we must have that the first element of d2,

namely τj+1, is less than all the elements to its right and we have shown that all the

elements in the first brick are less than τj+1. It follows that τ1 · · · τj+1 = 12 · · · j(j+ 1).

Therefore, if we let V ′ be the result of removing the entire first brick of V and

subtracting j from the remaining numbers, then V ′ is a fixed point in OΓ,n−k1−j.

It follows that

UΓ,n−k1(y)−
k2−1∑
j=1

(−y)UΓ,n−k1−j(y)

equals the sum over all fixed points of IΓ,n−k1 whose first brick has size at least k2.

Hence the contribution of fixed points in Subcase 1.B to UΓ,n(y) is

(−y)

(
n− 2

k1 − 1

)(
UΓ,n−k1(y) +

k2−1∑
j=1

yUΓ,n−k1−j(y)

)
.

Combining the two cases, we see that for n > 1,

UΓ,n(y) = (1− y)UΓ,n−1(y)− y
(
n− 2

k1 − 1

)(
UΓ,n−k1(y) + y

k2−1∑
j=1

UΓ,n−k1−i(y)

)
. (2.6)

Case 2. k1 < k2.

Let O = (B, σ) be a fixed point of IΓ where B = (b1, . . . , bk) and σ = σ1 · · ·σn.

We know that 1 is in the first cell of O. By the same argument as in Case I, we know

that 2 must be in cell 2 or cell k1 + 1 of O. We now consider two subcases depending

on the position of 2 in O.

Subcase 2.A. 2 is in cell 2 of (B, σ).

By the same argument that we used in Subcase 1.A of Case 1, we can conclude
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that the fixed points of IΓ in Subcase 2.A will contribute (1− y)UΓ,n−1(y) to UΓ,n(y).

Subcase 2.B. 2 is in cell k1 + 1 of (B, σ).

Since the minimal elements of the bricks are increasing, reading from left to

right, it must be the case that 2 is in the first cell of b2. Thus, b1 has exactly k1 cells,

b2 has at least k2 cells, and there is a Γk1,k2-match in the cells of b1 and b2 which must

start at cell 1.

We first choose k1 − 1 numbers to fill in the remaining cells of b1. There are(
n−2
k1−1

)
ways to do this. For each of such choice, let d1 < · · · < dk2−k1−1 be the smallest

k2 − k1 − 1 numbers in {1, 2, . . . , n} − {σ1, . . . , σk1+1}. We claim that it must be the

case that σk1+1+i = di for i = 1, . . . , k2 − k1 − 1. If not, let j be the least i such that

σk1+1+i 6= di. Then di cannot be in brick b2 so that it must be the first element in

brick b3. But then there will be a decrease between bricks b2 and b3 which means that

there must be a Γk1,k2-match contained in the cells of b2 and b3. Note that there is

only one descent in each permutation of Γk1,k2 and this descent must occur at position

k1. It follows that this Γk1,k2-match must start at the (k2 − k1)th cell of b2. But this is

impossible since our assumption will ensure that σk1+1+(k2−k1−1) = σk2 > di.

It then follows that if we let O′ be the result by removing the first k2 cells from

O and adjusting the remaining numbers in the cells, then O′ will be a fixed point in

OΓ,n−k2 that starts with at least k1 cells in the first brick. Then we can argue exactly

as we did in Subcase 1.B to show that the contribution of fixed points in Subcase 2.B

to UΓ,n(y) is

−y
(
n− 2

k1 − 1

)(
UΓ,n−k2(y) +

k1−1∑
j=1

yUΓ,n−k2−j(y)

)
.
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It follows that in Case 2,

UΓk1,k2
,n(y) = (1− y)UΓk1,k2

,n(y)− y
(
n− 2

k1 − 1

)(
UΓ,n−k2(y) +

k1−1∑
j=1

yUΓ,n−k2−j(y)

)
(2.7)

for n > 1.

Comparing equations (2.6) and (2.7), it is easy to see that if m = min(k1, k2)

and M = max(k1, k2), then

UΓk1,k2
,n(y) = (1− y)UΓk1,k2

,n−1(y)− y
(
n− 2

k1 − 1

)(
UΓ,n−M(y) + y

m−1∑
i=1

UΓ,n−M−i(y)

)

for all n > 1 which proves Theorem 1.

When k1 = k2 = 2, Theorem 1 gives us the following corollary.

Corollary 2. For Γ = {1324, 1423}, then

NMΓ(t, x, y) =

(
1

UΓ(t, y)

)x
where UΓ(t, y) = 1 +

∑
n≥1

UΓ,n(y)
tn

n!
,

UΓ,1(y) = −y, and for n ≥ 2,

UΓ,n(y) = (1− y)UΓ,n−1(y)− y(n− 2) (UΓ,n−2(y) + yUΓ,n−3(y)) .

Thus, by Corollary 2,

UΓ2,2,n(y) = (1− y)UΓ2,2,n−1(y)− y(n− 2)
(
UΓ2,2,n−2(y) + yUΓ2,2,n−3(y)

)
.

In Table 2.1, we computed UΓ2,2,n(y) for n ≤ 14. We observe that the poly-
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nomials UΓ2,2,n(−y) in Table 2.1 are all log-concave. Here, a polynomial P (y) =

a0 + a1y+ · · ·+ any
n is called log-concave if ai−1ai+1 < a2

i , for all i = 2, . . . , n− 1, and

it is called unimodal if there exists an index k such that ai ≤ ai+1 for 1 ≤ i ≤ k − 1

and ai ≥ ai+1 for k ≤ i ≤ n− 1. We conjecture that the polynomials UΓ2,2,n(−y) are

log-concave, and hence, unimodal for all n. We checked this holds for n ≤ 21.

Table 2.1: The polynomials UΓ2,2,n(−y) for Γ2,2 = {1324, 1423}

n UΓ2,2,n(−y)
1 y
2 y + y2

3 y + 2y2 + y3

4 y + 5y2 + 3y3 + y4

5 y + 9y2 + 11y3 + 4y4 + y5

6 y + 14y2 + 36y3 + 19y4 + 5y5 + y6

7 y + 20y2 + 90y3 + 85y4 + 29y5 + 6y6 + y7

8 y + 27y2 + 188y3 + 337y4 + 162y5 + 41y6 + 7y7 + y8

9 y + 35y2 + 348y3 + 1057y4 + 842y5 + 273y6 + 55y7 + 8y8 + y9

10 y + 44y2 + 591y3 + 2749y4 + 3875y5 + 1731y6 + 424y7 + 71y8 + 9y9 + y10

11 y + 54y2 + 941y3 + 6229y4 + 14445y5 + 10151y6 + 3154y7 + 621y8

+89y9 + 10y10 + y11

12 y + 65y2 + 1425y3 + 12730y4 + 44684y5 + 52776y6 + 22195y7 + 5285y8

+870y9 + 109y10 + 11y11 + y12

13 y + 77y2 + 2073y3 + 24022y4 + 119432y5 + 226116y6 + 144007y7 + 43133y8

+8322y9 + 1177y10 + 131y11 + 12y12 + y13

14 y + 90y2 + 2918y3 + 42547y4 + 284922y5 + 807008y6 + 830095y7 + 331668y8

77027y9 + 12487y10 + 1548y11 + 155y12 + 13y13 + y14

One might hope to prove the unimodality of the polynomials UΓ2,2,n(−y) by

using the recursion

UΓ2,2,n(−y) = (1+y)UΓ2,2,n−1(−y)+(n−2)yUΓ2,2,n2(−y)+(n−2)y2UΓ2,2,n−3(−y) (2.8)

and showing that for large enough n, the polynomials on the right hand side of (2.8)

are all unimodal polynomials whose maximum coefficients occur at the same power
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of y. There are two problems with this idea. First, assuming that UΓ2,2,n(−y) is a

unimodal polynomial whose maximum coefficient occurs that yj, then we know that

(1 + y)UΓ2,2,n(−y) is a unimodal polynomial. However, it could be that the maximum

coefficient of (1 + y)UΓ2,2,n(−y) occurs at yj or at yj+1. That is, if P (y) is a unimodal

polynomial whose maximum coefficient occurs at yk, then (1 + y)P (y) could have its

maximum coefficient occur at either yk or yk+1. For example,

(1 + y)(1 + 5y + 2y2) = 1 + 6y + 7y2 + 2y3

while

(1 + y)(2 + 5y + y2) = 2 + 7y + 6y2 + y3.

Thus where the maximum coefficient of (1+y)UΓ2,2,n(−y) occurs depends on the relative

values of the coefficients on either side of the maximum coefficient of UΓ2,2,n(−y). For

n ≤ 20, the maximum coefficient of (1 + y)UΓ2,2,n(−y) occurs at the same power of y

where the maximum coefficient of UΓ2,2,n(−y) occurs, but it is not obvious that this

holds for all n.

Second, it is not clear where to conjecture the maximum coefficients in the

polynomials occur. That is, one might think from the table that for n ≥ 6, the

maximum coefficient in UΓ2,2,n(−y) occurs at ybn/2c+1, but this does not hold up.

For example, the maximum coefficient UΓ2,2,18(−y) occurs at y8 and the maximum

coefficient UΓ2,2,19(−y) occurs at y9. Moreover, the maximum coefficient UΓ2,2,26(−y)

occurs at y12 and the maximum coefficient UΓ2,2,27(−y) occurs at y12. Thus it is not

clear how to use the recursion (2.8) to even prove the unimodality of the polynomials

UΓ2,2,n(−y) much less prove that such polynomials are log concave.
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When k1 is larger than k2, the polynomials UΓk1,k2
,n(−y) are not always uni-

modal. For example, consider the case where k1 = 6 and k2 = 4. Mathematica once

again allows us to compute UΓ6,4,n(−y) for n = 10 and 11. It is quite easy to see from

Table 2.2 that neither polynomial is unimodal.

Table 2.2: The polynomials UΓ6,4,n(−y)

n UΓ6,4,n(−y)
10 y + 65y2 + 36y3 + 84y4 + 126y5 + 126y6 + 84y7 + 36y8 + 9y9 + y10

11 y + 192y2 + 227y3 + 120y4 + 210y5 + 252y6 + 210y7 + 120y8

+45y9 + 10y10 + y11

2.3.2 Adding an identity permutation to Γk1,k2

In this subsection, we want to consider the effect of adding an identity per-

mutation to Γk1,k2 . To simplify our analysis, we shall consider only the case where

k1 = k2, but the same type of analysis can be carried out in general. Thus, assume

that s ≥ k1 = k2 ≥ 2 and let Γk1,k1,s = Γk1,k1 ∪ {12 · · · s(s+ 1)}. Then we know that

UΓk1,k1,s
,n(y) =

∑
O∈OΓk1,k1,s

,n, IΓk1,k1,s
(O)=O

sgn(O)W (O).

We want to classify the fixed points of IΓk1,k1,s
by the size of the first brick. By

Lemma 1, it must be the case that the size of the first brick is less than or equal to

s. We let U
(r)
Γk1,k1,s

,n(y) denote the sum of sgn(O)W (O) over all fixed points of IΓk1,k1,s

whose first brick is of size r. Thus,

UΓk1,k1,s
,n(y) =

s∑
r=1

U
(r)
Γk1,k1,s

,n(y). (2.9)
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Now let O = (B, σ) be a fixed point of IΓk1,k1,s
where B = (b1, . . . , bk) and σ = σ1 · · ·σn.

By our arguments above, if b1 < k1, then the elements in the first brick of (B, σ) are

1, . . . , b1 so that for 1 ≤ r < k1,

U
(r)
Γk1,k1,s

,n(y) = −yUΓk1,k1,s
,n−r(y). (2.10)

Let

U
(≥k1)
Γk1,k1,s

,n(y) =
s∑

r=k1

U
(r)
Γk1,k1,s

,n(y)

be the sum of sgn(O)W (O) over all fixed points of IΓk1,k1,s
whose first brick has size

greater than or equal to k1. Clearly,

UΓk1,k1,s
,n(y) = U

(≥k1)
Γk1,k1,s

,n(y) +

k1−1∑
r=1

U
(r)
Γk1,k1,s

,n(y)

= U
(≥k1)
Γk1,k1,s

,n(y) +

k1−1∑
r=1

(−y)UΓk1,k1,s
,n−r(y)

so that

U
(≥k1)
Γk1,k1,s

,n(y) = UΓk1,k1,s
,n(y) +

k1−1∑
r=1

yUΓk1,k1,s
,n−r(y). (2.11)

Now suppose that r > k1. Then we claim that σi = i for i = 1, . . . , r − k1 + 1.

That is, we know that σ1 = 1 so that if it is not the case that σi = i for i =

1, . . . , r − k1 + 1, there must be a least i ≤ r − k1 + 1 which is not in the first brick

of (B, σ). Since there are no descents of σ within bricks and the minimal elements

of the bricks of (B, σ) are increasing, reading from left to right, it must be that i is

the first element of brick b2 and there is a decrease between bricks b1 and b2. Thus

there is a Γk1,k1,s-match that lies in the cells of b1 and b2 and the only place that
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such a match can start is at cell r − k1 + 1. But this is impossible since we would

have σr−k1+1 > i which is incompatible with having a Γk1,k1,s-match starting at cell

r − k1 + 1. It follows that we can remove the first r − k1 elements from (B, σ) and

reduce the remaining elements by r − k1 to produce a fixed point of IΓk1,k1,s
of size

n− (r − k1) whose first brick has size k1. Vice versa, if we start with a fixed point

(D, τ) of IΓk1,k1,s
of size n− (r − k1) where D = (d1, . . . , dk), τ = τ1 · · · τn−(r−k1), and

d1 = k1, then if we add 1, . . . , r− k1 to the first brick and raise the remaining numbers

by r − k1, we will produce a fixed point of IΓk1,k1,s
whose first brick is of size r. It

follows that for k1 < r ≤ s,

U
(r)
Γk1,k1,s

,n(y) = U
(k1)
Γk1,k1,s

,n−(r−k1)(y). (2.12)

Thus

U
(≥k1)
Γk1,k1,s

,n(y) =

s−k1∑
p=0

U
(k1)
Γk1,k1,s

,n−p(y). (2.13)

Finally consider U
(k1)
Γk1,k1,s

,n(y). Let (B, σ) be a fixed point of IΓk1,k1,s
where

B = (b1, . . . , bk), b1 = k1, and σ = σ1 · · ·σn. We then have two cases.

Case 1. 2 is in brick b1.

In this case, we claim that the first brick must contain the elements 1, . . . , k1.

That is, in such a situation 1 cannot be involved in a Γk1,k1,s-match in σ which means

that there is not enough room for a Γk1,k1,s-match that involves any elements from the

first brick. Thus as before, we can remove the first brick from (B, σ) and subtract k1

from the remaining elements of σ to produce a fixed point (D, τ) of IΓk1,k1,s
of size

n− k1. Such fixed points contribute (−y)UΓk1,k1,s
,n−k1(y) to U

(k1)
Γk1,k1,s

,n(y).

Case 2. 2 is in brick b2.
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In this case, we can argue as above that 2 be the first cell of the second brick b2

and b2 starts at cell k1 +1. Then we have
(
n−2
k1−1

)
ways to choose the remaining elements

in the first brick and if we remove the first brick and adjust the remaining elements,

we will produce a fixed point (D, τ) of IΓk1,k1,s
of size n− k1 whose first brick is of size

greater than or equal to k1. Such fixed points contribute (−y)
(
n−2
k1−1

)
U

(≥k1)
Γk1,k1,s

,n−k1
(y) to

U
(k1)
Γk1,k1,s

,n(y).

It follows that

U
(k1)
Γk1,k1,s

,n(y) = −yUΓk1,k1,s
,n−k1(y)− y

(
n− 2

k1 − 1

)
U

(≥k1)
Γk1,k1,s

,n−k1
(y)

= −yUΓk1,k1,s
,n−k1(y)−

y

(
n− 2

k1 − 1

)(
UΓk1,k1,s

,n−k1(y) + y

k1−1∑
r=1

UΓk1,k1,s
,n−k1−r(y)

)
.(2.14)

Putting equations (2.9), (2.10), (2.11), (2.12), (2.13), and (2.14) together, we

see that

UΓk1,k1,s
,n(y)

= −y
k1−1∑
r=1

UΓk1,k1,s
,n−r(y) +

s−k1∑
p=0

U
(k1)
Γk1,k1,s

,n−p(y)

= −y
k1−1∑
r=1

UΓk1,k1,s
,n−r(y)− y

s−k1∑
p=0

UΓk1,k1,s
,n−p−k1(y)

+

(
n− p− 2

k1 − 1

)(
UΓk1,k1,s

,n−p−k1(y) + y

k1−1∑
a=1

UΓk1,k1,s
,n−p−k1−a(y)

)

= −y
k1−1∑
r=1

UΓk1,k1,s
,n−r(y)− y

(
s−k1∑
p=0

(
1 +

(
n− p− 2

k1 − 1

))
UΓk1,k1,s

,n−p−k1(y)

+ y

(
n− p− 2

k1 − 1

) k1−1∑
a=1

UΓk1,k1,s
,n−p−k1−a(y)

)
.
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Thus we have the following theorem.

Theorem 3. Let Γk1,k1,s = Γk1,k1∪{12 · · · s(s+1)} where s ≥ k1. Then UΓk1,k1,s
,1(y) =

−y and for n ≥ 2,

UΓk1,k1,s
,n(y) = −y

k1−1∑
r=1

UΓk1,k1,s
,n−r(y)

− y

(
s−k1∑
p=0

(
1 +

(
n− p− 2

k1 − 1

))
UΓk1,k1,s

,n−p−k1(y)

+ y

(
n− p− 2

k1 − 1

) k1−1∑
a=1

UΓk1,k1,s
,n−p−k1−a(y)

)
.

For example, if k1 = 2, then

UΓ2,2,s,n(y) = −yUΓ2,2,s,n−1(y)

− y

(
s−2∑
p=0

(n− p− 1)UΓ2,2,s,n−2−p(y) + (n− p− 2)yUΓ2,2,s,n−3−p(y)

)
.

We shall further explore two special cases, namely, k1 = k2 = s = 2 where the

recursion becomes

UΓ2,2,2,n(y) = −yUΓ2,2,2,n−1(y)− y(n− 1)UΓ2,2,2,n−2(y)− y2(n− 2)UΓ2,2,2,n−3(y) (2.15)

for n > 1, and k1 = k2 = 2, s = 3 where the recursion becomes

UΓ2,2,3,n(y) =− yUΓ2,2,3,n−1(y)− y(n− 1)UΓ2,2,3,n−2(y)− y2(n− 2)UΓ2,2,3,n−3(y)−

y(n− 2)UΓ2,2,3,n−3(y)− y2(n− 3)UΓ2,2,3,n−4(y). (2.16)

Tables 2.3 and 2.4 below give the polynomials UΓ2,2,2,n(−y) for even and odd
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values of n, respectively.

Table 2.3: The polynomials UΓ2,2,2,2k(−y) for Γ2,2,2 = {1324, 1423, 123}

k n UΓ2,2,2,2k(−y)
1 2 y + y2

2 4 3y2 + 3y3 + y4

3 6 15y3 + 15y4 + 5y5 + y6

4 8 105y4 + 105y5 + 35y6 + 7y7 + y8

5 10 945y5 + 945y6 + 315y7 + 63y8 + 9y9 + y10

6 12 10395y6 + 10395y7 + 3465y8 + 693y9 + 99y10 + 11y11 + y12

7 14 135135y7 + 135135y8 + 45045y9 + 9009y10 + 1287y11 + 143y12

+13y13 + y14

Table 2.4: The polynomials UΓ2,2,2,2k+1(−y) for Γ2,2,2 = {1324, 1423, 123}

k n UΓ2,2,2,2k+1(−y)
1 3 2y2 + y3

2 5 8y3 + 4y4 + y5

3 7 48y4 + 24y5 + 6y6 + y7

4 9 384y5 + 192y6 + 48y7 + 8y8 + y9

5 11 3840y6 + 1920y7 + 480y8 + 80y9 + 10y10 + y11

6 13 46080y7 + 230408 + 57609 + 960y10 + 120y11 + 12y12 + y13

7 15 645120y8 + 322560y9 + 80640y10 + 13440y11 + 1680y12 + 168y13

+14y14 + y15

These data lead us to conjecture the following explicit formulas:

UΓ2,2,2,2k(−y) =
k∑
i=0

(2k − 1) ↓↓k−i yk+i (2.17)

UΓ2,2,2,2k+1(−y) =
k∑
i=0

(2k) ↓↓k−i yk+1+i (2.18)

where (x) ↓↓0= 1 and (x) ↓↓k= x(x− 2)(x− 4) · · · (x− 2k − 2) for k ≥ 1.

These formulas can be proved by induction. Note that it follows from (2.15)
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that for n > 1,

UΓ2,2,2,n(−y) = yUΓ2,2,2,n−1(−y) + y(n− 1)UΓ2,2,2,n−2(−y)− y2(n− 2)UΓ2,2,2,n−3(−y).

(2.19)

One can directly check these formulas for n ≤ 3. For n > 3, let UΓ2,2,2,n(−y)|yk

be the coefficient of yk in UΓ2,2,2,n(−y). Equation (2.19) allows us to write the coefficient

of yk+1+i, for 0 ≤ i ≤ k, in UΓ2,2,2,2k+1(−y) as

UΓ2,2,2,2k+1(−y)|yk+1+i = UΓ2,2,2,2k(−y)|yk+i + (2k)UΓ2,2,2,2k−1(−y)|yk+i

− (2k − 1)UΓ2,2,2,2k−2(−y)|yk+i−1

= (2k − 1) ↓↓k−i +(2k) · (2k − 2) ↓↓k−i

− (2k − 1) · (2k − 3) ↓↓k−i

= (2k) ↓↓k−i .

For the even case when n = 2k, the coefficient of yk+i, for 0 ≤ i ≤ k, in

UΓ2,2,2,2k(−y) is

UΓ2,2,2,2k(−y)|yk+i = UΓ2,2,2,2k−1(−y)|yk+i−1 + (2k − 1)UΓ2,2,2,2k−2(−y)|yk+i−1

− (2k − 2)UΓ2,2,2,2k−3(−y)|yk+i−2

= (2k − 2) ↓↓k−i +(2k − 1) · (2k − 3) ↓↓k−i

− (2k − 2) · (2k − 4) ↓↓k−i

= (2k − 1) ↓↓k−i .

This proves equations (2.17) and (2.18).
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Hence, we can give a closed formula for NMΓ2,2,2(t, x, y). That is, we have the

following theorem.

Theorem 4.

NMΓ2,2,2(t, x, y) = 1

1 +
(∑

n≥1
tn

n!

∑k
i=0(2k − 1) ↓↓k−i yk+i

)
+
(∑

n≥0
tn

n!

∑k
i=0(2k) ↓↓k−i yk+1+i

)
x

.

It follows from (2.16) that

UΓ2,2,3,n(−y) = yUΓ2,2,3,n−1(−y) + y(n− 1)UΓ2,2,3,n−2(−y) + y(n− 2)UΓ,n−3(−y)

− y2(n− 2)UΓ2,2,3,n−3(−y)− y2(n− 3)UΓ2,2,3,n−4(−y).

The three tables 2.5, 2.6, and 2.7 give the polynomials UΓ2,2,3,n(y) for n =

3k, n = 3k + 1, and n = 3k + 2, respectively.

Table 2.5: The polynomials UΓ2,2,3,3k(−y) for Γ2,2,3 = {1324, 1423, 1234}

k n UΓ2,2,3,3k(−y)
1 3 y + 2y2 + y3

2 6 4y2 + 33y3 + 19y4 + 5y5 + y6

3 9 28y3 + 767y4 + 781y5 + 267y6 + 55y7 + 8y8 + y9

4 12 280y4 + 20496y5 + 44341y6 + 20765y7 + 5137y8 + 861y9

+109y10 + 11y11 + y12

5 15 3640y5 + 598892y6 + 2825491y7 + 2072739y8 + 641551y9 + 125111y10

+17755y11 + 1977y12181y13 + 14y14 + y15

For any s ≥ 3, it is easy to see that the lowest power of y that occurs in

UΓ2,2,s,n(−y) corresponds to brick tabloids where we use the minimum number of

bricks. Since the maximum size of brick in a fixed point of IΓ2,2,s is s, we see that the
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Table 2.6: The polynomials UΓ2,2,3,3k+1(−y) for Γ2,2,3 = {1324, 1423, 1234}

k n UΓ2,2,3,3k+1(−y)
1 4 5y2 + 3y3 + y4

2 7 67y3 + 81y4 + 29y5 + 6y6 + y7

3 10 1166y4 + 3321y5 + 1645y6 + 417y7 + 71y8 + 9y9 + y10

4 13 23746y5 + 160647y6 + 128771y7 + 41055y8 + 8137y9 + 1167y10

+131y11 + 12y12 + y13

5 16 550844y6 + 8107518y7 + 12109429y8 + 5170965y9 + 1225973y10

+200253y11 + 24889y12 + 2493y13 + 209y14 + 15y15 + y16

Table 2.7: The polynomials UΓ2,2,3,3k+2(−y) for Γ2,2,3 = {1324, 1423, 1234}

k n UΓ2,2,3,3k+2(−y)
1 5 7y2 + 11y3 + 4y4 + y5

2 8 70y3 + 297y4 + 157y5 + 41y6 + 7y7 + y8

3 11 910y4 + 10343y5 + 9223y6 + 3069y7 + 613y8 + 89y9 + 10y10 + y11

4 14 14560y5 + 390564y6 + 687109y7 + 306413y8 + 74137y9 + 12261y10

+1537y11 + 155y12 + 13y13 + y14

minimum number of bricks that we can use for a fixed point of IΓ2,2,s of length sn is

n while the minimum number of bricks that we can use for a fixed point of IΓ2,2,s of

length sn+ j for 1 ≤ j ≤ s− 1 is n+ 1. We can prove the following general theorem

for the coefficients of the lowest power of y that appears in UΓ2,2,s,n(−y).

Theorem 5. For n ≥ 1,

UΓ2,2,s,sn(−y)|yn =
n∏
i=1

((i− 1)s+ 1) (2.20)

and

UΓ2,2,s,sn+s−1(−y)|yn+1 =
n∏
i=1

((i+ 1)s+ 1). (2.21)

Proof. For (2.20), we first notice that any fixed point (B, σ) of IΓ2,2,s that contributes

to UΓ2,2,s,sn(−y)|yn must have only bricks of size s. Thus B = (s, . . . , s). We shall
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prove (2.20) by induction on n. Clearly, UΓ2,2,s,s(−y)|y = 1. Now suppose (B, σ) is

a fixed point of IΓ2,2,s of size sn where σ = σ1 · · · σsn. By our arguments above, the

first s− 1 elements of the first brick must be 1, 2, . . . , s− 1, reading from left to right.

The element in the next cell σs can be arbitrary. That is, if it is equal to s, then there

will be an increase between the first two bricks and if σs > s, then it must be the case

that σs+1 = s in which case there will by Γ2,2,s-match that involves the last two cells

of the first brick and the first two cells of the next brick. We can then remove the

first brick and adjust the remaining numbers to produce a fixed point O′ of IΓ2,2,s of

length s(n− 1) in which every brick is of size s. It follows by induction that

UΓ2,2,s,sn(−y)|yn = ((n− 1)s+ 1)UΓ2,2,s,s(n−1)(−y)|yn−1

= ((n− 1)s+ 1)
n−1∏
i=1

((i− 1)s+ 1)

=
n∏
i=1

((i− 1)s+ 1) .

Next consider UΓ2,2,s,2s−1(−y)|y2 . In this case, either the first brick of size s− 1

or the first brick is of size s. If the first brick is of size s, then we can argue as above

that the first s− 1 elements of the first brick are 1, . . . , s− 1, and we have s choices

for the last element of the first brick. If the first brick is of size s− 1, then we can

argue as above that the first s− 2 elements of the first brick are 1, . . . , s− 2, and we

have s+ 1 choices for the last element of the first brick. Thus

UΓ2,2,s,2s−1(−y)|y2 = 2s+ 1.

Next consider UΓ2,2,s,(ns+s−1)(−y)|yn+1 . In such a situation, any fixed point
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(B, σ) of IΓ2,2,s that can contribute to UΓ2,2,s,(ns+s−1)(−y)|yn+1 must have n bricks of

size s and one brick of size s − 1. If the first brick is of size s, then we can argue

as above that the first s− 1 elements of the first brick are 1, . . . , s− 1, and we have

sn choices for the last element of the first brick. Then we can remove this first

brick and adjust the remaining numbers to produce a fixed point O′ in IΓ2,2,s of size

(n − 1)s + s − 1 which has n − 1 bricks of size s and one brick of size s − 1. If the

first brick is of size s− 1, then we can argue as above that the first s− 2 elements of

the first brick are 1, . . . , s− 2, and we have sn+ 1 choices for the last element of the

first brick. Then we can remove this first brick and adjust the remaining numbers to

produce a fixed point O′ in IΓ2,2,s of size ns which has n bricks of size s

Thus if n ≥ 2,

UΓ2,2,s,(ns+s−1)(−y)|yn+1 = (sn+ 1)UΓ2,2,s,ns(−y)|yn + (sn)UΓ2,2,s,((n−1)s+s−1)(−y)|yn

= (sn+ 1)
n∏
i=1

((i− 1)s+ 1) + (sn)
n−1∏
i=1

((i+ 1)s+ 1)

= (s+ 1)
n−1∏
i=1

((i+ 1)s+ 1) + (sn)
n−1∏
i=1

((i+ 1)s+ 1)

= ((n+ 1)s+ 1)
n−1∏
i=1

((i+ 1)s+ 1)

=
n∏
i=1

((i+ 1)s+ 1).

Unfortunately, we cannot extend this type of argument to find the coefficients

UΓ2,2,s,ns+k(−y)|yn+1 where 1 ≤ k ≤ s− 2. The problem is that we have more than one

choice for the sizes of the bricks in such cases. For example, to compute UΓ2,2,3,4(−y)|y3 ,
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the brick sizes could be some rearrangement of (3,1) or (2,2). One can use our recursions

to compute UΓ2,2,s,ns+k(−y)|yn+1 for small values of s. For example, we can find all the

coefficients of the lowest power of UΓ2,2,3,n(−y). That is, we claim

(i) UΓ2,2,3,3k(−y)|yk =
∏k

i=1(3(i− 1) + 1),

(ii) UΓ2,2,3,3k+2(−y)|yk+1 =
∏k

i=1(3(i+ 1) + 1), and

(iii) if Ak = UΓ,3k+1(−y)|yk+1 then A1 = 5 and Ak = (3k−1)Ak−1 + (3k)
∏k−1

i=1 (3i+ 4)

for all k ≥ 2.

Clearly, (i) and (ii) follow from our previous theorem. To prove (iii), note that

Ak = UΓ,3k+1(−y)|yk+1 = UΓ,3k(−y)|yk + (3k)UΓ,3k−1(−y)|yk + (3k − 1)UΓ,3k−2(−y)|yk

− (3k − 1)UΓ,3k−2(−y)|yk−1 − (3k − 2)UΓ,3k−3(−y)|yk−1

=
k∏
i=1

(3i− 2) + (3k)
k−1∏
i=1

(3i+ 4) + (3k − 1)UΓ,3k−2(−y)|yk

− (3k − 2)
k−1∏
i=1

(3i− 2)

= (3k)
k−1∏
i=1

(3i+ 4) + (3k − 1)UΓ,3k−2(−y)|yk

= (3k − 1)Ak−1 + (3k)
k−1∏
i=1

(3i+ 4).

This explains all the coefficients for the smallest power of y in the polynomials

UΓ2,2,3,n(−y) for the family Γ2,2,3 = {1324, 1423, 1234}.
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2.3.3 The cases {1324, 123} and {1324 . . . p, 123 . . . p−1} for p ≥ 5

In addition, we can also show that the reciprocity method applies even in cases

where Γ is a family that contains permutations of different lengths. This is illustrated

through the two following theorems.

Theorem 6. Let Γ = {1324, 123}. Then

NMΓ(t, x, y) =

(
1

UΓ(t, y)

)x
where UΓ(t, y) = 1 +

∑
n≥1

UΓ,n(y)
tn

n!
,

UΓ,1(y) = −y, and for n ≥ 2,

UΓ,n(y) = −yUΓ,n−1(y)− yUΓ,n−2(y) +

bn/2c∑
k=2

(−y)kCk−1UΓ,n−2k(y).

Theorem 7. Let Γ = {1324 . . . p, 123 . . . p− 1} where p ≥ 5. Then

NMΓ(t, x, y) =

(
1

UΓ(t, y)

)x
where UΓ(t, y) = 1 +

∑
n≥1

UΓ,n(y)
tn

n!
,

UΓ,1(y) = −y, and for n ≥ 2,

UΓ,n(y) =

p−2∑
k=1

(−y)UΓ,n−k(y) +

p−2∑
k=1

bn−k
p−2
c∑

m=2

(−y)mUΓ,n−k−(m−1)(p−2)(y).

In the case of Theorem 6, the polynomials U{1324,123},n(−y) are the polynomials

in the sequences A039598 and A039599 in On-line Encyclopedia of Integer Sequences

[42] up to a power of y. The polynomials in sequences A039598 and A039599 are

related to the expansions of the powers of x in terms of the Chebyshev polynomials of

the second kind. We shall give a bijection between our combinatorial interpretation
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of U{1324,123},2n(−y) and one of the known combinatorial interpretations for A039599,

and a bijection between our combinatorial interpretation of U{1324,123},2n+1(−y) and

one of the known combinatorial interpretations for A039598. This will allow us to give

closed expressions for the polynomials U{1324,123},n(y). That is, we will prove that for

all n ≥ 0,

U{1324,123},2n(y) =
n∑
k=0

(2k + 1)
(

2n
n−k

)
n+ k + 1

(−y)n+k+1 and

U{1324,123},2n+1(y) =
n∑
k=0

2(k + 1)
(

2n+1
n−k

)
n+ k + 2

(−y)n+k.

Proof of Theorem 6

Let Γ = {1324, 123}. Let (B, σ) be a fixed point IΓ where B = (b1, . . . , bk) and

σ = σ1 · · ·σn. By Lemma 2, we know that all the bricks bi must be of size 1 or 2.

Since the minimal elements in bricks of B must weakly increase, we see that 1 must

be in cell 1 and 2 must be either in b1 or it is in the first cell of b2. Thus we have

three possibilities.

Case 1. 2 is in b1.

In this case, b1 must be of size 2 and we can remove b1 from (B, σ) are reduce

the remaining numbers by 2 to get a fixed point of IΓ of size n − 2. It then easily

follows that the fixed points in Case 1 contribute −yUΓ,n−2(y) to UΓ,n(y).

Case 2. 2 is in b2 and b1 = 1.

In this case, it is easy to see that 1 cannot be involved in any Γ-match so

that we can remove b1 from (B, σ) are reduce the remaining numbers by 1 to get a

fixed point of IΓ of size n− 1. It follows that the fixed points in Case 2 contribute

−yUΓ,n−1(y) to UΓ,n(y).
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Case 3. 2 is in b2 and b1 = 2.

In this case, there is descent between bricks b1 and b2 so that there must be a

1324-match in σ contained in the cells of b1 and b2. In particular, this means b2 = 2

and there is 1324-match starting at 1 in σ. We then have two subcases.

Subcase 3.A. There is no 1324-match in (B, σ) starting at cell 3

We claim that {σ1, . . . , σ4} = {1, 2, 3, 4}. If not, let d = min({1, 2, 3, 4} −

{σ1, . . . , σ4}). Then d must be in cell 5, the first cell of brick b3 and there is a decrease

between bricks b2 and b3 since d ≤ 4 < σ4. Thus, in order to avoid combining bricks

b2 and b3, we need a 1324-match among the cells of these two bricks. However, the

only possible 1324-match among the cells of b2 and b3 would have to start at cell 3

where σ3 = 2. This contradicts the assumption that there is no 1324-match in (B, σ)

starting at cell 3. As a result, it must be the case that the first four numbers must

occupy the first four cells of (B, σ) so we must have σ1 = 1, σ2 = 3, σ3 = 2, σ4 = 4,

and σ5 = 5. It then follows that if we let O′ be the result by removing the first four

cells from (B, σ) and then subtract 4 from the remaining entries in the cells, then O′

will be a fixed point in OΓ,n−4. It then easily follows that the contribution of fixed

points in subcase 3.A to UΓ,n(y) is (−y)2UΓ,n−4(y).

Subcase 3.B. There is a 1324-match in O starting at cell 3

In this case, there is decrease between bricks b2 and b3. Hence, the 1324-match

starting at cell 3 must be contained in the cells of b2 and b3 so that b3 must be of size

2. In general, suppose that the bricks b2, . . . , bk−1 all have exactly two cells and there

are 1324-matches starting at cells 1, 3, . . . , 2k − 3 but there is no 1324-match starting

at cell 2k − 1 in O.

Similar to Subcase 3.A, we will show that {σ1, . . . , σ2k} = {1, 2, . . . , 2k}.
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That is, the first 2k numbers must occupy the first 2k cells in O. If not, let

d = min({1, 2, . . . , 2k} − {σ1, . . . , σ2k}). Since the minimal elements of the bricks are

weakly increasing, it must be the case that d is in the first cell of bk+1. Next, the fact

that there are 1324-matches starting in cells 1, 3, . . . , 2k − 1 easily implies that σ2k is

the largest element in {σ1, . . . , σ2k} which means that σ2k > d. But then there is a

decrease between bricks bk and bk+1 which means that there must be a 1324-match

contained in the cells of bk and bk+1. This implies that there is a 1324-match starting

at cell 2k − 1 which contradicts our assumption.

Thus, if we remove the first 2k cells of (B, σ) and subtract 2k from the remaining

elements, we will obtain a fixed point O′ in OΓ,n−2k. Therefore, each fixed point O

in this case will contribute (−y)kUΓ,n−2k(y) to UΓ,n(y). The final task is to count the

number of permutations σ1 · · ·σ2k of S2k that has 1324-matches starting at positions

1, 3, . . . , 2k − 3. In [26], Jones and Remmel gave a bijection between the set of such σ

and the set of paths of length 2k − 2. Hence, there are Ck−1 such fixed points, where

Cn = 1
n−1

(
2n
n

)
is the nth Catalan number. It then easily follows that the contribution

of the fixed points in Subcase 3.B to UΓ,n(y) is

bn/2c∑
k=2

(−y)kCk−1UΓ,n−2k(y).

Hence, we know that UΓ,1 = −y and for n > 1,

UΓ,n(y) = −yUΓ,n−1(y)− yUΓ,n−2(y) +

bn/2c∑
k=2

(−y)kCk−1UΓ,n−2k(y).

This proves Theorem 6.

We have computed the polynomials U{1324,123},n(−y) for small n which are
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given in the Table 2.8 below.

Table 2.8: The polynomials UΓ,n(−y) for Γ = {1324, 123}

n U{1324,123},n(−y)
1 y
2 y + y2

3 2y2 + y3

4 2y2 + 3y3 + y4

5 5y3 + 4y4 + y5

6 5y3 + 9y4 + 5y5 + y6

7 14y4 + 14y5 + 6y6 + y7

8 14y4 + 28y5 + 20y6 + 7y7 + y8

9 42y5 + 48y6 + 27y7 + 8y8 + y9

10 42y5 + 90y6 + 75y7 + 35y8 + 9y9 + y10

We observe that, up to a power of y, the odd rows are the triangle A039598 in

the OEIS and the even rows are the triangle A039599 in the OEIS. These tables arise

from expanding the powers of x in terms of the Chebyshev polynomials of the second

kind. Since there are explicit formula for entries in these tables, we have the following

theorem.

Theorem 8. Let Γ = {1324, 123}. Then for all n ≥ 0,

UΓ,2n(y) =
n∑
k=0

(2k + 1)
(

2n
n−k

)
n+ k + 1

(−y)n+k+1 (2.22)

and

UΓ,2n+1(y) =
n∑
k=0

2(k + 1)
(

2n+1
n−k

)
n+ k + 2

(−y)n+k (2.23)

Proof. First we consider the polynomials UΓ,2n+1(−y) which correspond to the entries

in the table T (n, k) for 0 ≤ k ≤ n of entry A039598 in the OEIS. T (n, k) has an
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explicit formula, namely,

T (n, k) =
2(k + 1)

(
2n+1
n−k

)
n+ k + 2

for all n ≥ 0 and 0 ≤ k ≤ n. Let T (n, k) be set all of paths of length 2n+1 consisting of

either up steps (1, 1) or down steps (1,−1) that start at (0,0) and end at (2n+1, 2k+1)

which stay above the x-axis. Then one of the combinatorial interpretations of the

T (n, k)’s is that T (n, k) = |T (n, k)|. Let F2n+1,2k+1 be the set of all fixed points of IΓ

with 2k + 1 bricks of size 1 and n− k bricks of size 2. We will construct a bijection

θn,k from F2n+1,2k+1 onto T (n, k). Note all (B, σ) ∈ F2n+1,2k+1 have weight (−y)n+k+1

so that the bijections θn,k will prove (2.23).

First we must examine the fixed points of IΓ in greater detail. Note that

since Γ contains the identity permutation 123, all the bricks in any fixed point of IΓ

must be of size 1 or size 2. Next, we consider the structure of the fixed points of IΓ

which have k bricks of size 1 and ` bricks of size 2. Suppose (B, σ) is such a fixed

point where B = (b1, . . . , bk+`) and that the bricks of size 1 in B are bi1 , . . . , bik where

1 ≤ i1 < · · · < ik ≤ k + `. For any s, there cannot be a decrease between brick bij−1

and brick bij in B since otherwise we could combine bricks bij−1 and bij , which would

violate our assumption that (B, σ) is a fixed point of IΓ. Next we claim that if there

are s bricks of size 2 that come before brick bij so that bij covers cell 2s+ j in (B, σ),

then σ2s+j = 2s + j and {σ1, . . . , σ2s+j} = {1, . . . , 2s + j}. To prove this claim, we

proceed by induction. For the base case, suppose that bi1 covers cell 2s+ 1 so that

(B, σ) starts out with s bricks of size 2. If s = 0, there is nothing to prove. Next

suppose that s = 1. Then we know that in all fixed points of IΓ, 2 must be in cell 2 or

cell 3. Since there is an increase between b1 and b2, it must be the case that 1 and 2 lie

in b1 and since the minimal elements in the brick form a weakly increasing sequence,
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it must be the case that b2 is filled with 3. If s ≥ 2, then for 1 ≤ i < s, either there is

an increase between bi and bi+1 in which case the elements in bi and bi+1 must match

the pattern 1234, or there is a decrease between bi and bi+1 in which case the four

elements must match the pattern 1324. This means that if for each brick of size 2, we

place the second element of the brick on the top of the first element, then any two

consecutive bricks will be one of the two forms pictured in Figure 2.3. Thus if we

consider the s× 2 array built from the first s bricks of size 2, we will obtain a column

strict tableaux with distinct entries of shape (s, s). In particular, it must be the case

that the largest element in the array is the element which appears at the top of the

last column. That element corresponds to the second cell of brick bs. Since there is an

increase between brick bs and brick bs+1 it must mean that the element in brick bs+1

is larger than any of the elements that appear in bricks b1, . . . , bs. Thus σi < σ2s+1

for i ≤ 2s. Since the minimal elements in the bricks are increasing, it follows that

σ2s+1 < σj for all j > 2s + 1 so that it must be the case that σ2s+1 = 2s + 1 and

{σ1, . . . , σ2s+1} = {1, . . . , 2s+ 1}. Thus the base case of our induction holds.

1 2 3 4 1 3 2 4

1

2

3

4

1

3

2

4

Figure 2.3: Patterns for two consecutive brick of size 2 in a fixed point of
IΓ.

We can repeat the same argument for ij where j > 1. That is, by induction,

we can assume that if there are r bricks of size 2 that precede brick bij−1
, then

σ2r+j−1 = 2r + j − 1 and {σ1, . . . , σ2r+j−1} = {1, . . . , 2r + j − 1}. Hence if we remove

these elements and subtract 2r + j − 1 from the remaining elements in (B, σ), we
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would end up with a fixed point of Iγ. Thus we can repeat our argument for the

base case to prove that if there are s bricks of size 2 between brick bij−1
and bij , then

σ2r+2s+j = 2r + 2s+ j and {σ1, . . . , σ2r+2s+j} = {1, . . . , 2r + 2s+ j}.

Next we note that there is a well known bijection φ between standard tableaux

of shape (n, n) and Dyck paths of length 2n, see [43]. Here a Dyck path is path

consisting of either up steps (1, 1) or down steps (1,−1) that starts at (0,0) and ends

at (2n, 0) which stays above the x-axis. Given a standard tableau T , φ(T ) is the Dyck

path whose i-th segment is an up step if i is the first row and whose i-th segment is a

down step if i is in the second row. This bijection is illustrated in Figure 2.4.

Tφ (    ) 

1 2

3

4 5

6 7

8

9 10

11

12

T =

=

1 2 3 4 5 6 7 8 9 10 11 12

Figure 2.4: The bijection φ.

We can now easily describe our desired bijection θn,k. Starting with a fixed

point (B, σ) in F2n+1,2k+1 where B = (b1, . . . , bn+k+1), we can rotate all the bricks of

size 2 by −90 degrees and end up with an array consisting of bricks of size one and

2× r arrays corresponding to standard tableaux. For example, this step is pictured in

the second row of Figure 2.5. By our remarks above, each 2× r array corresponds to

standard tableaux of shape (r, r) where the entries lie in some consecutive sequence

of elements from {1, . . . , 2n+ 1}. Suppose that bi1 , . . . , bi2k+1
are the bricks of size 1

in B where i1 < · · · < i2k+1. Let Tj be the standard tableau corresponding to the

consecutive string of brick of size 2 immediately preceding brick bij and Pi be the Dyck

path φ(Ti). If there is no bricks of size 2 immediately preceding bij , then Pj is just
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the empty path. Finally let T2k+2 the standard tableau corresponding to the bricks of

size 2 following bi2k+1
and P2k+2 be the Dyck path corresponding to φ(T2k+2) where

again P2k+2 is the empty path if there are no bricks of size 2 following bi2k+1
. Then

θn,k(B, σ) = P1(1, 1)P2(1, 1) . . . P2k+1(1, 1)P2k+2.

For example, line 3 of Figure 2.5 illustrates this process. In fact, it easy to see that if

i is in the bottom row of intermediate diagram for (B, σ), then the i-th segment of

θn,k(B, σ) is an up step and if i is in the top row of intermediate diagram for (B, σ),

then the i-th segment of θn,k(B, σ) is an down step.

1 2 4 3 6 5 7 8 9 11 10 12 13 14 15

1 2

4

3

6

5

7

8 9

11

10

12

13 14

15

Figure 2.5: The bijection θn,k.

The inverse of θn,k is also easy to describe. That is, given a path P in T (n, k),

we let di be the step that corresponds to the last up step that ends at level i. Then P

can be factored as

P1d1P2d2 . . . P2k+1d2k+1P2k+2

where each Pi is a path that corresponds to a Dyck path that starts at level i− 1 and

ends at level i− 1 and stays above the line x = i− 1. Then for each i, Ti = φ−1(Pi) is
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a standard tableau. Using these tableaux and being cognizant of the restrictions on

the initial segments of elements of F2n+1,2k+1 preceding bricks of size 1, one can easily

reconstruct the 2 line intermediate array corresponding to T1d1T2d2 . . . T2k+1d2k+1T2k+2.

For example, this process is pictured on line 2 of Figure 2.6. Then we only have to

rotate all the bricks of size corresponding to a bricks of height 2 by 90 degrees to

obtain θ−1
n,k(P ). This step is pictured on line 3 of Figure 2.6.

1

4

2

6

3

7

5

8

9 10

11

12

13

14 15

1 4 2 6 3 7 5 8 9 10 11 1213 14 15

P1

P
2

3
P  = empty path

Figure 2.6: The bijection θ−1
n,k.

Next we consider the polynomials UΓ,2n(−y) which correspond to the entries in

the table R(n, k) for 0 ≤ k ≤ n of entry A039599 in the OEIS. R(n, k) has an explicit

formula, namely,

R(n, k) =
(2k + 1)

(
2n
n−k

)
n+ k + 1

for all n ≥ 0 and 0 ≤ k ≤ n. Let R(n, k) be set all of paths of length 2n consisting

of either up steps (1, 1) or down steps (1,−1) that start at (0,0) and end at (2n, 0)

that have k down steps that end on the line x = 0. Here there is no requirement that

the paths stay above the x-axis. Then one of the combinatorial interpretations of the

R(n, k)s is that R(n, k) = |R(n, k)|. Let F2n,2k be the set of all fixed points of IΓ with

2k bricks of size 1 and n− k bricks of size 2. We will construct a bijection βn,k from
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F2n,2k onto R(n, k). Note all (B, σ) ∈ F2n,2k weight (−y)n+k so that the bijections

βn,k will prove (2.23).

We can now easily describe our desired bijection βn,k. Starting with a fixed

point (B, σ) in F2n,2k1 where B = (b1, . . . , bn+k), we can rotate all the bricks of size 2

by −90 degrees and end up with an array consisting of bricks of size one and 2× r

arrays corresponding to standard tableaux. For example, this step is pictured in the

second row of Figure 2.8. By our remarks above, each 2 × r array corresponds to

standard tableaux of shape (r, r) where the entries lie in some consecutive sequence

of elements from {1, . . . , 2n}. Suppose that bi1 , . . . , bi2k are the bricks of size 1 in B

where i1 < · · · < i2k. Let Ts be the standard tableau corresponding to the bricks of

size 2 immediately preceding brick bjs for 1 ≤ s ≤ 2n and let T2k+1 be the standard

tableau corresponding to the bricks of size 2 following brick bi2k . For i = 0, . . . , 2k + 1,

let Pi be the Dyck path φ(Ti). In each case j where there are no such bricks of size 2,

then Pj is just the empty path. For each such i, let P i denote the flip of Pi, i.e. the

path that is obtained by flipping Pi about the x-axis. For example, the process of

flipping a Dyck path is pictured in Figure 2.7.

P =  

P =  

Figure 2.7: The flip of Dyck path.

Then

βn,k(B, σ) = P 1(1, 1)P2(1,−1)P 3(1, 1)P4(1,−1) . . . P 2k−1(1, 1)P2k(1,−1)P 2k+1.
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That is, each pair bi2j−1
, bi2j will correspond to an up step starting at x = 0 followed

by a Dyck path which starts at ends a line x = 1 followed by down step ending at

x = 0. These segments are then connected by flips of Dyck path that stay below

the x-axis. Thus βn,k(B, σ) will have exactly k down steps that end at x = 0. For

example, line 3 of Figure 2.8 illustrates this process.

1 2 4 3 6 5 7 8 9 1011 12 13 1415 16
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Figure 2.8: The bijection βn,k.

The inverse of βn,k is also easy to describe. That is, given a path P in R(n, k),

let f1, . . . , fk be the positions of the down steps that end at x = 0 and define e1, . . . , ek

so that e1 is the right most up step that starts at x = 0 and precedes f1 and for

2 ≤ i ≤ k„ ei is the right most up step that follows fi−1 and precedes fi. It is then

easy to see that the path Q1 which precedes e1 must be a path that starts at (0,0)

and ends at (e1 − 1, 0) and stays below the x-axis so that Q1 is the flip of some Dyck

path P1. Next, the path Q2 between (e1, 1) and (f1 − 1, 1) must either be empty or

is a path which stays above the line x = 1 and hence corresponds to the Dyck path

P2. In general, the path Q2j−1 that starts at (fj−1, 0) and ends at (ej − 1, 0) must

stay below the x-axis so that Q2j−1 is the flip of some Dyck path P2j−1. Similarly, the
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path Q2j between (ej, 1) and (fj − 1, 1) must either be empty or is a path which stays

above the line x = 1 and hence corresponds to the Dyck path P2j. Finally, the path

Q2k+1 which follows (fk, 0) is either empty or is a path that ends at (2n, 0) and stays

below the x-axis and, hence, corresponds to the flip of a Dyck path P2k+1. In this way,

we can recover the sequence of paths P1, . . . , P2k+1, which are either empty or Dyck

paths, such that

P = P 1(1, 1)P2(1,−1)P 3(1, 1)P4(1,−1) . . . P 2k−1(1, 1)P2k(1,−1)P 2k+1.

Then for each i, Ti = φ−1(Pi) is either a standard tableau or the empty tableau. Using

these tableaux and being cognizant of the restrictions on the initial segments of elements

of F2n,2k preceding bricks of size one described above, one can easily reconstruct the

2 line intermediate arrays corresponding to T1e1T2f2 . . . T2k−1e2kT2kf2kT2k+1. For

example, this process is pictured on line 2 of Figure 2.9. Then we only have to rotate

all the bricks of size corresponding to a brick of height 2 by 90 degrees to obtain

β−1
n,k(P ). This step is pictured on line 3 of 2.9.
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Figure 2.9: The bijection β−1
n,k.
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As a consequence of Theorem 8, we have a closed formula for NM{1323,123}(t, x, y).

Theorem 9.

NM{1323,123}(t, x, y) =

(
1

U{1323,123}(t, y)

)x
where

U{1323,123}(t, y) = 1 +
∑
n≥1

t2n

(2n)!

(
n∑
k=0

(2k + 1)
(

2n
n−k

)
n+ k + 1

(−y)n+k

)

+
∑
n≥0

t2n+1

(2n+ 1)!

(
n∑
k=0

2(k + 1)
(

2n+1
n−k

)
n+ k + 2

(−y)n+k+1

)
.

The proof of Theorem 7.

Let p ≥ 5 and Γp = {1324 . . . p, 123 . . . p− 1}. It follows from Lemma 2 that

any brick in a fixed point of IΓp has size less than or equal to p− 2.

Let (B, σ) be a fixed point of IΓp where B = (b1, . . . , bt) and σ = σ1 · · ·σn.

Suppose that b1 = k where 1 ≤ k ≤ p− 2. If b1 = 1, then σ1 = 1 and we can remove

brick b1 from (B, σ) and subtract 1 from the remaining elements to obtain a fixed

point O′ of IΓp of length n − 1. It is easy to see that such fixed points contribute

−yUΓp,n−1(y) to UΓp,(y).

Next assume that 2 ≤ k ≤ p − 2. First we claim that 1, . . . , k − 1 must be

in b1. That is, since the minimal elements in the bricks increase, reading from left

to right, and the elements within each brick are increasing, it follows that the first

element of brick b2 is smaller than every element of σ to its right. Thus if there is an
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increase between bricks b1 and b2, it must be the case the elements in brick b1 are the

k smallest elements. If there is a decrease between bricks b1 and b2, then there must

be a 1324 . . . p-match that lies in the cells of b1 and b2 which must start at position

k − 1. Thus σk−1 < σk+1 which means that σ1, . . . , σk−1 must be the smallest k − 1

elements. We then have two cases depending on the position of k in σ.

Case 1. k is in the kth cell of (B, σ).

In this case, if we remove the entire brick b1 from (B, σ) and subtract k from

the numbers in the remaining cells, we will obtain a fixed point O′ of IΓp,n−k. It then

easily follows that fixed points in Case 1 will contribute −yUΓp,n−k(y) to UΓp,n(y).

Case 2. k is in cell k + 1 of (B, σ).

In this case, it is easy to see that k is in the first cell of the second brick in

(B, σ) and there must be a 1324 . . . p-match between the cells of the first two bricks.

This match must start from cell k − 1 in O with the numbers k − 1 and k playing the

roles of 1 and 2, respectively, in the match. This forces the brick b2 to have exactly

p− 2 cells. Thus we have two subcases.

Subcase 2.A. There is no 1324 . . . p-match in (B, σ) starting at cell k + p− 3

In this case, we claim that {σ1, . . . , σk+p−2} = {1, . . . , k + p− 2}. That is, we

know that the element in the first cell of brick b3 is smaller than any of the elements

of σ to its right. Moreover, if there was a decrease between brick b2 and b3, then there

must be a 1324 . . . p-match starting in cell k + p− 3. Since we are assuming there is

not such a match this means that there is an increase between bricks b2 and b3. Since

the last element of b2 must be the largest element in either brick b1 or b2, it follows

that {σ1, . . . , σk+p−2} = {1, . . . , k + p − 2}. This forces that σi = i for i ≤ k − 1,

σk = k + 1, σk+1 = k, σk+2 = k + 2, σi = i for k + 2 < i ≤ k + p− 2. Hence, the first
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two bricks of (B, σ) are completely determined. It then follows that if we let O′ be the

result by removing the first k + p− 2 cells from (B, σ) and subtracting k + p− 2 from

the numbers in the remaining cells, then O′ will be a fixed point in OΓp,n−k−(p−2). It

then easily follows that fixed points in Subcase 2.A contribute (−y)2UΓp,n−k−(p−2)(y)

to UΓp,n(y).

Subcase 2.b. There is a 1324 . . . p-match in (B, σ) starting at cell k + p− 3

In this case, it must be that σk+p−3 < σk+p−1 < σk+p−2 so that there is a

decrease between bricks b2 and b3. This means that the 1324 . . . p-match starting

in cell k + p − 3 must be contained in bricks b2 and b3. In particular, this means

that b3 = p − 2. In general, suppose that the bricks b2, . . . , bm−1 all have exactly

p − 2 cells and let ci = k + (i − 1)(p − 2) − 1 for all 1 ≤ i ≤ m − 1, so that ci is

the second-to-last cell of brick bi. In addition, suppose there are 1324 . . . p-matches

starting at cells c1, c2, . . . , cm−1 but there are no 1324 . . . p-match starting at cell

cm = k − (m− 1)(p− 2)− 1 in O. We then have the situation pictured in Figure 2.10

below.

c
2

c
m−1

c
m

−matchΓ

−matchΓ −matchΓ

−matchΓ

... ... ... ... ...
k−1

no

Figure 2.10: A fixed point with Γp-matches starting at ci for i = 1, . . . ,m−1.

First, we claim that {σ1, σ2, . . . , σcm+1} = {1, 2, . . . , cm+1}. Since there is no

Γp-match starting at σcm in σ, it cannot be that there is decrease between brick bm

and bm+1. Because the minimal elements in the bricks of B increase, reading from

left to right, and the elements in each brick increase, it follows that σcm+2, which is

the first element of brick bm+1, is smaller than all the elements to its right. On the
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other hand, because there are 1324 · · · p-matches starting in σ starting at c1, . . . , cm−1

it follows that σcm+1, which is last cell in brick bm, is greater than all elements of σ to

its left. It follows that {σ1, σ2, . . . , σcm+1} = {1, 2, . . . , cm+1}.

Next we claim that we can prove by induction that σci = ci and {σ1, . . . , σci} =

{1, . . . , ci} for 1 ≤ i ≤ m. Our arguments above show that σi = i for i =

1, . . . , k − 1 = c1. Thus the base case holds. So assume that σcj−1
= cj−1, for

1 ≤ i ≤ j, and {σ1, σ2, . . . , scj−1
} = {1, 2, . . . , cj−1}. Since there is a 132 · · · p-

match in σ starting at position cj−1 and p ≥ 5, it must be the case that all

the numbers σcj−1
, σcj−1+1, . . . , σcj−1+p−3 are all less than σcj = σcj−1+p−2. Since

{σ1, σ2, . . . , σcj−1
} = {1, 2, . . . , cj−1}, we must have σcj ≥ cj. If σcj > cj, then let

d be the smallest number from {1, 2, . . . , cj} that does not belong to the bricks

b1, . . . , bj. Since the numbers in a brick increase and the first cells of the bricks form

an increasing sequence, it must be the case that d is in the first cell of brick bj+1,

namely σcj+2 = d. We have two possibilities for j.

1. If j < m, then σcj+2 = d < cj ≤ σcj . This contradicts the assumption that there

is a 1324 . . . p-match starting from cell cj in σ for σcj needs to play the role of 1

in such a match.

2. If j = m, then there is a descent between the bricks bm and bm+1 and there must

be a 1324 . . . p-match that lies entirely in the cells of bm and bm+1 in O. However,

the only possible match must start from cell cm, the second-to-last cell in bm.

This contradicts our assumption that there is no match starting from cell cm in

O.

Hence, σcj = cj and {σ1, σ2, . . . , σcj} = {1, 2, . . . , cj}. for 1 ≤ j ≤ m.
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We claim that the values of σi are forced for i ≤ cm + 1. That is, consider

the first 1324 · · · p-match starting at position k − 1. Since p ≥ 5, we know that

σk+p−2 = k + p − 2 > σk+2. This forces that σk = k + 1, σk+1 = k, σk+2 =

k + 2 so that the values of σi for i ≤ k + p − 2. This type of argument can be

repeated for all the remaining 1324 · · · p-matches starting at c2, . . . , cm−1. Thus if we

remove the first k + (m − 1)(p − 2) cells of O, we obtain a fixed point O′ of IΓp in

OΓp,n−k−(m−1)(p−2). On the other hand, suppose that we start with a fixed point (D, τ)

of IΓp in OΓp,n−k−(m−1)(p−2) where D = (d1, . . . , dr) and τ = τ1, . . . , τn−k−(m−1)(p−2).

Let τ = τ 1 · · · τn−k−(m−1)(p−2) be the result of adding n − k − (m − 1)(p − 2) to

every element of τ . Then it is easy to see that (B, σ) is a fixed point of IΓp , where

B = (k, (p− 2)m, d1, . . . , dr) and σ = σ1 · · ·σk+(m−1)p−2τ where σ1 · · ·σk+(m−1)(p−2) is

the unique permutation in Sk+(m−1)(p−2) with 1324 · · · p-matches starting at positions

c1, . . . , cm−1. It follows that the contribution of the fixed points in Case 2.b to UΓp,n(y)

is
∑

m≥3(−y)mUΓp,n−k−(m−1)(p−2)(y).

Hence, for any fixed point Ok that has k cells in the first brick, for 1 ≤ k ≤ p−2,

the contribution of Ok to UΓp,n(y) is

(−y)UΓp,n−k(y) +

bn−k
p−2
c∑

m=2

(−y)mUΓp,n−k−(m−1)(p−2)(y).

Therefore, we obtain the following recursion for UΓp,n(y) as follows.

UΓp,n(y) =

p−2∑
k=1

(−y)UΓp,n−k(y) +

p−2∑
k=1

bn−k
p−2
c∑

m=2

(−y)mUΓp,n−k−(m−1)(p−2)(y).

This completes the proof of Theorem 7.

The results of this chapter is based on the paper by Bach and Remmel [3].



Chapter 3

The case of multiple descents

We first recall from the previous chapters that the two assumptions on Γ that

allow the reciprocity method to work are that

(A) all τ in Γ start with 1 and

(B) all τ in Γ have at most one descent.

First, assumption (A) ensures that we can write NMΓ(t, x, y) in the form
(

1
UΓ(t,y)

)x
.

Second, assumption (B) ensures that the involution I used to simplify the weighted

sum over all filled, labeled brick tabloids that equals n!θτ (hn) is actually an involution

and to ensure that the elements in any brick of a filled, labeled brick tabloids which is

a fixed point of I must be increasing. Finally, (A) is used again to ensure that the

minimal elements in bricks of any fixed point of I are increasing when read from left

to right.

The main goal of this chapter is to study how we can apply the reciprocity

method in the case where we no longer insist that all the τ ∈ Γ have at most one

descent. We shall show that we can modify the definition of the involution used in
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the early chapter to simplify the weighted sum over all filled, labeled brick tabloids

that equals n!θτ (hn). However, the set of fixed points in such cases will be more

complicated than in the case where Γ contains only permutations with at most one

descent in that it will no longer be the case that, for fixed points of the involution,

the fillings will be increasing in bricks and the minimal elements of the brick increase,

reading from left to right. Nevertheless, we shall show that there still are a number of

cases where we can successfully analyze the fixed points to prove that the polynomials

UΓ,n(y) satisfy some simple recursions.

We note that our results allow us to compute NMτ (t, x, y) in two cases where

τ = τ1 . . . τ6 and τ1 = 1, τ3 = 2, and τ5 = 3. Namely, the cases where τ = 162534 and

τ = 142536. All such permutations have des(τ) = 2.

3.1 A new involution

In Section 2.2, we defined the homomorphism θΓ on the ring of symmetric

functions Λ by setting θΓ(e0) = 1 and, for n ≥ 1,

θΓ(en) =
(−1)n

n!
NMΓ,n(1, y).

Under this homomorphism, we proved that

n!θΓ(hn) =
∑

O∈OΓ,n

sgn(O)W (O),

where the sum is over the set of all filled labeled brick tabloids described in the same

section. The sign of each O ∈ OΓ,n is given by sgn(O) = (−1)`(λ), and the weight
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W (O) of O is defined to be the product of all the labels y used in the brick.

Now we shall define a new sign-reversing, weight-preserving mapping JΓ :

OΓ,n → OΓ,n as follows. Let (B, σ) ∈ OΓ,n where B = (b1, . . . , bk) and σ = σ1 . . . σn.

Then for any i, we let first(bi) be the element in the left-most cell of bi and last(bi) be

the element in the right-most cell of bi. Then we read the cells of (B, σ) from left to

right, looking for the first cell c such that either

Case I. cell c is labeled with a y in some brick bj and either (a) j = 1 or (b) j > 1

with either (b.1) last(bj−1) < first(bj) or (b.2) last(bj−1) > first(bj) and there is

τ -match contained in the cells of bj−1 and the cells bj that end weakly to the left of

cell c for some τ ∈ Γ, or

Case II. cell c is at the end of brick bi where σc > σc+1 and there is no Γ-match of σ

that lies entirely in the cells of the bricks bi and bi+1.

In Case I, we define JΓ((B, σ)) to be the filled labeled brick tabloid obtained

from (B, σ) by breaking the brick bj that contains cell c into two bricks b′j and b′′j

where b′j contains the cells of bj up to and including the cell c while b′′j contains the

remaining cells of bj. In addition, we change the label of cell c from y to −y. In Case

II, JΓ((B, σ)) is obtained by combining the two bricks bi and bi+1 into a single brick

b and changing the label of cell c from −y to y. If neither case occurs, then we let

JΓ((B, σ)) = (B, σ).

For example, suppose Γ = {τ} where τ = 14253 and (B, σ) ∈ OΓ,19 pictured

at the top of Figure 3.1. We cannot use cell c = 4 to define JΓ(B, σ), because if we

combined bricks b1 and b2, then red(9 15 11 16 13) = τ would be a τ -match contained

in the resulting brick. Similarly, we cannot use cell c = 6 to apply the involution

because it fails to meet condition (b.2). In fact the first c for which either Case I or
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ΓJ

2 5 9 15 11 16 13 17 7 14 8 18 1 3 6 19 12 410

2 5 9 15 11 16 13 17 10 7 14 8 18 1 3 6 19 12 4

−y y y −y y −y y −y y −y

−y y −y −y y −y y −y y −y

Figure 3.1: An example of the involution JΓ.

Case II applies is cell c = 8 so that JΓ(B, σ) is equal to the (B′, σ) pictured on the

bottom of Figure 3.1.

We now prove that JΓ is an involution by showing J2
Γ is the identity mapping.

Let (B, σ) ∈ OΓ,n where B = (b1, . . . , bk) and σ = σ1 . . . σn. The key observation here

is that applying the mapping JΓ to a brick in Case I will produce one in Case II, and

vice versa.

Suppose the filled, labeled brick tabloid (B, σ) is in Case I and its image

JΓ((B, σ)) is obtained by splitting some brick bj after cell c into two bricks b′j and b
′′
j .

There are now two possibilities.

(a) c is in the first brick b1. In this case, c must be the first cell which is labeled

with y so that the elements in b′1 will be increasing. Furthermore, since we are

assuming there is no Γ-match in the cells of brick b1 in (B, σ), there cannot be

any Γ-match that involves the cells of bricks b′1 and b′′1 in JΓ((B, σ)). Hence, when

we consider JΓ((B, σ)), the first possible cell where we can apply JΓ will be cell

c because we can now combine b′1 and b′′1. Thus, when we apply JΓ to JΓ((B, σ)),

we will be in Case II using cell c so that we will recombine bricks b′1 and b′′1 into

b1 and replace the label of −y on cell c by y. Hence JΓ(JΓ((B, σ))) = (B, σ) in

this case.
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(b) c is in brick bj , where j > 1. Note that our definition of when a cell labeled y can

be used in Case I to define JΓ depends only on the cells and the brick structure

to the left of that cell. Hence, we can not use any of the cells labeled y to the

left of c to define JΓ(JΓ((B, σ))). Similarly, if we have two bricks bs and bs+1

which lie entirely to the left of cell c such that last(bs) = σd > first(bs+1) = σd+1,

the criteria to use cell d in the definition of JΓ on JΓ((B, σ)) depends only

on the elements in bricks bs and bs+1. Thus, the only cell d which we could

possibly use to define JΓ on JΓ((B, σ)) that lies to the left of c is the last cell

of bj−1. However, our conditions that either last(bj−1) < first(bj) = first(b′j) or

last(bj−1) > first(bj) = first(b′j) with a Γ-match contained in the cells of bj−1

and b′j force the first cell that can be used to define JΓ on JΓ((B, σ)) to be cell

c. Thus, when we apply JΓ to JΓ((B, σ)), we will be in Case II using cell c and

we will recombine bricks b′j and b
′′
j into bj and replace the label of −y on cell c

by y. Thus JΓ(JΓ((B, σ))) = (B, σ) in this case.

Suppose (B, σ) is in Case II and we define JΓ((B, σ)) at cell c, where c is last

cell of bj and σc > σc+1. Then by the same arguments that we used in Case I, there

can be no cell labeled y to the left of this cell c in either (B, σ) or J(B, σ) which can

be used to define the involution JΓ. This follows from the fact that the brick structure

before cell c is unchanged between (B, σ) and J(B, σ). Similarly, there can be no two

bricks that lie entirely to the left of cell c in JΓ((B, σ)) that can be combined under

JΓ. Thus, the first cell that we can use to define JΓ to JΓ((B, σ)) is cell c and it is

easy to check that it satisfies the conditions of Case I. Thus, when we apply JΓ to

JΓ((B, σ)), we will be in Case I using cell c and we will combine bricks bj and bj+1

into a single brick b and replaced the label on cell c by y. Then it is easy to see that
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when applying JΓ to JΓ((B, σ)), we will split b back into bricks bj and bj+1 and change

the label on cell c back to −y. Thus, JΓ(JΓ((B, σ))) = (B, σ) in this case.

Hence JΓ is an involution. Also, it is clear that if JΓ(B, σ) 6= (B, σ), then

sgn(B, σ)W (B, σ) = −sgn(JΓ(B, σ))W (JΓ(B, σ)). Hence, it follows from (2.4) that

UΓ,n(y) = n!θΓ(hn) =
∑

O∈OΓ,n

sgn(O)W (O) =
∑

O∈OΓ,n,JΓ(O)=O

sgn(O)W (O).

Therefore, to compute UΓ,n(y), we must analyze the fixed points of JΓ. Our next

lemma characterizes the fixed points of JΓ.

Lemma 2. Let B = (b1, . . . , bk) be a brick tabloid of shape (n) and σ = σ1 . . . σn ∈ Sn.

Then (B, σ) is a fixed point of JΓ if and only if it satisfies the following properties:

(a) if i = 1 or i > 1 and last(bi−1) < first(bi), then bi can have no cell labeled y so

that σ must be increasing in bi,

(b) if i > 1 and σe = last(bi−1) > first(bi) = σe+1, then there must be a Γ-match

contained in the cells of bi−1 and bi which must necessarily involve σe and σe+1

and there can be at most k − 1 cells labeled y in bi, and

(c) if Γ has the property that, for all τ ∈ Γ such that des(τ) = j ≥ 1, the bottom

elements of the descents in τ are 2, . . . , j + 1, when reading from left to right,

then first(b1) < first(b2) < · · · < first(bk).

Proof. Suppose (B, σ) is a fixed point of JΓ. Then it must be the case that in (B, σ),

there is no cell c to which either Case I or Case II applies. That is, when attempting

to apply the involution JΓ to (B, σ), we cannot split any brick at a cell labeled y and
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we cannot combine two consecutive bricks where the last cell of the first brick is larger

than the first cell of the second brick.

For (a), note that if there is a cell labeled y in bi and c is the left-most cell of

bi labeled with y, then c satisfies the conditions of Case I. Thus, there can be no cell

labeled y in bi.

For (b), note that if there is no Γ-match contained in the cells of bi−1 and bi,

then e satisfies the conditions of Case II. Thus, there must be a Γ-match contained in

the cells of bi−1 and bi. If there are k or more cells labeled y in bi, then let c be the

kth cell, reading from left to right, which is labeled with y. Then we know there is

τ -match contained in the cells of bi−1 and bi which must necessarily involve σe and

σe+1 for some τ ∈ Γ. But this τ -match must end weakly before cell c since otherwise

τ would have at least k + 1 descents. Thus c would satisfy the conditions to apply

Case I of our involution. Hence there can be no such c which means that each such

brick can contain at most k − 1 descents.

To prove (c), suppose for a contradiction that there exist two consecutive bricks

bi and bi+1 such that σe = first(bi) > first(bi+1) = σf . There are two cases.

Case A. σ is increasing in bi.

In this case, σf−1 = last(bi). If σf−1 < σf , then we know that σe ≤ σf−1 < σf which

contradicts our choice of σe and σf . Thus it must be the case that σf−1 > σf . But

then there is τ ∈ Γ such that des(τ) = j ≥ 1 and there is a τ -match in the cells of bi

and bi+1 involving the σf−1 and σf . By our assumptions, σf can only play the role of

2 in such a τ -match. Hence there must be some σg with e ≤ g ≤ f − 2 which plays

the role of 1 in this τ -match. But then we would have σe ≤ σg < σf which contradicts

our choice of σe and σf . Thus σ cannot be increasing in bi.
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Case B. σ is not increasing in bi.

In this case, by part (a), we know that it must be the case that σe−1 = last(bi−1) >

σe = first(bi) and, by (b), there is τ ∈ Γ such that des(τ) = j ≥ 1 and there is a

τ -match in the cells of bi−1 and bi involving the cells σe−1 and σe. Call this τ -match

α and suppose that cell h is the bottom element of the last descent in α. It cannot

be that σe = σh. That is, there can be no cell labeled y that occurs after cell h in bi

since otherwise the left-most such cell c would satisfy the conditions of Case I of the

definition of JΓ. But this would mean that σ is increasing in bi starting at σh so that

if σe = σh, then σ would be increasing in bi which contradicts our assumption in this

case. Thus there is some 2 ≤ i ≤ j such that σe plays the role of i in the τ -match

α and σh plays the role of j + 1 in the τ -match α. But this means that σe is the

smallest element in brick bi. That is, let σc be the smallest element in bi. If σe 6= σc,

then σc must be the bottom of some descent in bi which implies that c ≤ h. But then

σc is part of the τ -match α which means that σc must be playing the role of one of

i+ 1, . . . , j+ 1 in the τ -match α and σe is playing the role of i in the τ -match α which

is impossible if σe 6= σc. It follows that σe ≤ σf−1. Hence, it can not be that case

that σf−1 < σf since otherwise σe < σf . Thus it must be the case that σf−1 > σf .

But this means that there exists some δ ∈ Γ such that des(δ) = p ≥ 1 and there is a

δ-match in the cells of bi and bi+1 involving the σf−1 and σf . Call this δ-match β. By

assumption, the bottom elements of the descents in δ are 2, 3, . . . , p + 1 so that σf

must be playing the role of 2, 3, . . . , p + 1 in the δ-match β. Let σg be the element

that plays the role of 1 in the δ-match β. σg must be in bi since δ must start with 1.

But then we would have that σe ≤ σg < σf since σe is the smallest element in bi.

Thus, both Case A and Case B are impossible. Hence we must have that
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first(b1) < first(b2) < · · · < first(bk).

We note that if condition (3) of the Lemma fails, it may be that the first

elements of the bricks do not form an increasing sequence. For example, it is easy to

check that if Γ = {15342}, then the (B, σ) pictured in Figure 3.2 is such a fixed point

of JΓ.

16

−y y −y −y −y −y−y

19

y

21 3 18415 5 6 7 8 17 9 10 11 1213 14

Figure 3.2: A fixed point of J{15342}.

3.2 Results of the new involution

In this section, we shall compute the generating functions NMΓ(t, x, y) when Γ =

{14253, 15243}, Γ = {142536}, and when Γ = {τa} for any a ≥ 2 where τa ∈ S2a is the

permutation such that τ1τ3 . . . τ2a−1 = 12 . . . a and τ2τ4 . . . τ2a = (2a)(2a−1) . . . (a+1).

In each case, the permutations have at least two descents. Below are the main results.

Theorem 10. Let Γ = {14253, 15243}. Then

NMΓ(t, x, y) =

(
1

UΓ(t, y)

)x
where UΓ(t, y) = 1 +

∑
n≥1

UΓ,n(y)
tn

n!
,

with UΓ,1(y) = −y, and for n ≥ 2,

UΓ,n(y) = (1− y)UΓ,n−1(y)− y2(n− 3) (UΓ,n−4(y) + (1− y)(n− 5)UΓ,n−5(y))

− y3(n− 3)(n− 5)(n− 6)UΓ,n−6(y).
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Let Cn = 1
n+1

(
2n
n

)
be the n-th Catalan number. Let Mn be the n× n matrix

whose elements on the main diagonal equals C2, whose elements on j-th diagonal

above the main diagonal are C3j+2, whose elements on the sub-diagonal are −1, and

whose elements in diagonal below the sub-diagonal are 0. Thus,

Mk =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

C2 C5 C8 C11 · · · C3k−4 C3k−1

−1 C2 C5 C8 · · · C3k−7 C3k−4

0 −1 C2 C5 · · · C3k−10 C3k−7

0 0 −1 C2 · · · C3k−13 C3k−10

...
...

...
...

...
...

0 0 0 0 · · · C2 C5

0 0 0 0 · · · −1 C2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Let Pk be the matrix obtained from Mk by replacing each Cm in the last column by

Cm−1. Thus,

Pk =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

C2 C5 C8 C11 · · · C3k−4 C3k−2

−1 C2 C5 C8 · · · C3k−7 C3k−5

0 −1 C2 C5 · · · C3k−10 C3k−8

0 0 −1 C2 · · · C3k−13 C3k−11

...
...

...
...

...
...

0 0 0 0 · · · C2 C4

0 0 0 0 · · · −1 C1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Theorem 11. Let τ = 142536. Then

NMτ (t, x, y) =

(
1

Uτ (t, y)

)x
where Uτ (t, y) = 1 +

∑
n≥1

Uτ,n(y)
tn

n!
,
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with Uτ,1(y) = −y, and for n ≥ 2,

Uτ,n(y) = (1− y)UΓ,n−1(y) +

b(n−8)/6c∑
k=0

det(Mk+1)y3k+3Un−6k−7(y)

+

bn−6/6c∑
k=0

det(Pk+1)(−y3k+2) [Uτ,n−6k−4(y) + yUτ,n−6k−5(y)] .

Theorem 12. For any n ≥ 2, let τ = τ1 . . . τ2a ∈ S2a where τ1τ3 . . . τ2a−1 = 123 . . . a

and τ2τ4 . . . τ2a = (2a)(2a− 1) . . . (a+ 1). Then

NMτ (t, x, y) =

(
1

Uτ (t, y)

)x
where Uτ (t, y) = 1 +

∑
n≥1

Uτ,n(y)
tn

n!
,

with Uτ,1(y) = −y, and for n ≥ 2,

Uτ,n(y) = (1− y)Uτ,n−1(y)

−
b(n−2a)/(2a)c∑

k=0

(
n− (k + 1)a− 1

(k + 1)a− 1

)
y(k+1)a−1Uτa,n−(2(k+1)a)+1(y)

+

b(n−2a−2)/(2a)c∑
k=0

(
n− (k + 1)a− 2

(k + 1)a

)
y(k+1)aUτa,n−(2(k+1)a)−1(y).

3.2.1 The case Γ = {14253, 15243}

We first consider the proof of Theorem 10 in the case where Γ = {14253, 15243},

which is the simplest of our examples. For convenience, we first restate the statement

of Theorem 10 below.

Theorem. Let Γ = {14253, 15243}. Then

NMΓ(t, x, y) =

(
1

UΓ(t, y)

)x
where UΓ(t, y) = 1 +

∑
n≥1

UΓ,n(y)
tn

n!
,
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with UΓ,1(y) = −y, and for n ≥ 2,

UΓ,n(y) = (1− y)UΓ,n−1(y)− y2(n− 3) (UΓ,n−4(y) + (1− y)(n− 5)UΓ,n−5(y))

− y3(n− 3)(n− 5)(n− 6)UΓ,n−6(y).

Proof. Let Γ = {14253, 15243}, we need to show that the polynomials

UΓ,n(y) =
∑

O∈OΓ,n,JΓ(O)=O

sgn(O)W (O)

satisfy the following properties:

1. UΓ,1(y) = −y, and

2. for n ≥ 2,

UΓ,n(y) = (1− y)UΓ,n−1(y)− y2(n− 3) (UΓ,n−4(y) + (1− y)(n− 5)UΓ,n−5(y))

− y3(n− 3)(n− 5)(n− 6)UΓ,n−6(y).

It is easy to see when n = 1, the only fixed point comes from brick tabloid

that has a single brick of size 1 which contains 1 and the label on cell 1 is −y. Thus

UΓ,1(y) = −y.

For n ≥ 2, let O = (B, σ) be a fixed point of JΓ where B = (b1, . . . , bk) and

σ = σ1 · · ·σn. First we show that 1 must be in the first cell of B. That is, if 1 = σc

where c > 1, then σc−1 > σc. We claim that whenever we have a descent σi > σi+1 in

σ, then σi and σi+1 must be part of a Γ-match in σ. That is, it is either the case that

(i) there are bricks bs and bs+1 such that σi is the last cell of bs and σi+1 is the first cell
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of bs+1 or (ii) there is a brick bs that contains both σi and σi+1. In case (i), condition

3 of Lemma 2 ensures that σi and σi+1 must be part of Γ-match. In case (ii), we know

that cell i is labeled with y. It follows from condition (2) of Lemma 2 that it can not

be that either s = 1 so that bs = b1 or that s > 1 and last(bs−1) < first(bs) because

those conditions force that σ is increasing in bs. Thus we must have that s > 1 and

last(bs−1) > first(bs). Since (B, σ) is a fixed point of JΓ, it cannot be that there is a

Γ-match in σ which includes last(bs−1) and first(bs) that ends weakly to the left of

σi because then cell i would satisfy Case I of our definition of JΓ and, hence, (B, σ)

would not be a fixed point of JΓ. Thus the Γ-match which includes last(bs−1) and

first(bs) must involve σi and σi+1. However, there can be no Γ-match that involves

σc−1 and σc since σc = 1 can only play the role of 1 in a Γ-match and each element of

Γ starts with 1. Thus, we must have σ1 = 1.

Next we claim that 2 must be in either cell 2 or cell 3 in O. For a contradiction,

assume that 2 is in cell c for c > 3. Then once again σc−1 > σc so that there must be

a Γ-match in σ that involves the two cells c− 1 and c in (B, σ). However, In this case,

the number which is in cell c− 2 must be greater than σc so that the only possible

Γ-match that involves 2 must start from cell c where 2 plays the role of 1 in the match.

Thus there is no Γ-match in σ that involves σc−1 and σc. We now have two cases.

Case 1. 2 is in cell 2 of O.

In this case there are two possibilities, namely, either (i) 1 and 2 are both in the first

brick b1 of (B, σ) or (ii) brick b1 is a single cell filled with 1, and 2 is in the first cell

of the second brick b2 of O. In either case, we know that 1 is not part of a Γ-match in

σ. So if we remove cell 1 from O and subtract 1 from the elements in the remaining

cells, we will obtain a fixed point O′ of JΓ in OΓ,n−1.
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Moreover, we can create a fixed point O = (B, σ) ∈ On of JΓ satisfying the three

conditions of Lemma 2 where σ2 = 2 by starting with a fixed point (B′, σ′) ∈ OΓ,n−1

of JΓ, where B
′ = (b′1, . . . , b

′
r) and σ′ = σ′1 · · ·σ′n−1, and then letting σ = 1(σ′1 +

1) · · · (σ′n−1 + 1), and setting B = (1, b′1, . . . , b
′
r) or setting B = (1 + b′1, . . . , b

′
r).

It follows that fixed points in Case 1 will contribute (1− y)UΓ,n−1(y) to UΓ,n(y).

Case 2. 2 is in cell 3 of O = (B, σ).

Since there is no decrease within the first brick b1 of O = (B, σ), it must be the

case that 2 is in the first cell of brick b2 and there must be either a 14253-match

or a 15243-match that involves the cells of the first two bricks. Therefore, we know

that brick b2 has at least 3 cells. In addition, we claim that 3 is in cell 5 of O since

otherwise, 3 must be in some cell c for c > 6 and there must be a Γ-match between

the two cells c− 1 and c in O. By the previous argument, we can see that if 3 is too

far away from 1 and 2, then it must play the role of 1 in any match that involves cell

c. Thus, the only possible Γ-match that contains cell c must also start at c and can

never involve both cells c− 1 and c. Also, 3 cannot be in cell 2 nor 4 in O since both

σ2 and σ4 are greater than 3, due to the Γ-match starting from cell 1. We now have

two subcases depending on whether or not there is a Γ-match in O starting at cell 3.

Subcase 2.a. There is no Γ-match in O starting at cell 3.

In this case, we first choose a number x to fill in cell 2 of O. There are n− 3 choices

for x. For each choice of σ2 = x, we let d be the smallest of the remaining numbers,

that is,

d = min ({1, 2, . . . , n} − {1, 2, 3, σ2}) .

We claim that d must be either in cell 4 or cell 6 in (B, σ). First, d cannot be in cell 7

since otherwise there would be a Γ-match in σ starting at cell 3. Next d cannot be a
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cell c where c > 7 since otherwise σc−1 > σc = d which means that there must be a

Γ-match in σ which includes both σc−1 and σc. However, in the case, we would also

have σc−2 > σc which implies the only role that σc can play in a Γ-match is 1.

1

1

1

2

2

32

3

3d

d

d

x

x

x

−y

−y

−y

y

y

y −y

z

z

Figure 3.3: The possible choice for d in Subcase 2a.

This leaves us with three possibilities which are pictured in Figure 3.3. That

is, either (i) d is in cell 4, (ii) d is in cell 6 and is in brick b2 or (iii) d is in cell 6, but

is the first element of brick b3. In case (i), we can remove that first four cells from

B, reduce the remaining elements of σ to obtain a permutation α ∈ Sn−4, and let

B′ = (b2 − 2, b3, . . . , bk) to obtain a fixed point (B′, α) of JΓ of size n− 4. Such fixed

points will contribute −y2UΓ,n−4(y) to UΓ,n(y). In case (ii), we have (n− 5) ways to

choose the element z in cell 4. Then we can remove that first five cells cells from

B, reduce the remaining elements of σ to obtain a permutation α ∈ Sn−5, and let

B′ = (b2 − 3, b3, . . . , bk) to obtain a fixed point (B′, α) of JΓ of size n− 5. Such fixed

points will contribute −y2UΓ,n−5(y) to UΓ,n(y). In case (iii), we have (n − 5) ways

to choose the element z in cell 4. Then we can remove that first five cells cells from

B, reduce the remaining elements of σ to obtain a permutation α ∈ Sn−5, and let

B′ = (b2 − 3, b3, . . . , bk) to obtain a fixed point (B′, α) of JΓ of size n− 5. Such fixed

points will contribute y3UΓ,n−5(y) to UΓ,n(y). Therefore, the total contribution of the
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fixed points from Subcase 2.a. is

−y2(n− 3) (UΓ,n−4(y) + (1− y)(n− 5)UΓ,n−5(y)) .

Subcase 2.b. There is a Γ-match in O starting at cell 3.

In this case, we first choose a number x to fill in cell 2 of O. There are n− 3 choices

for x. For each choice of σ2, let d = min ({1, . . . , n} − {1, 2, 3, σ2}) . Then we claim

that d must be in cell 7. That is, we can argue as in Subcase 2a that it cannot be that

d in cell c for c > 7. But since there is a Γ-match starting at cell 3 we know σ4 > σ7

and σ6 > σ7 so that d cannot be in cells 4 or 6. We then have (n− 5)(n− 6) ways to

choose σ4 = z and σ6 = a.

Next, by condition (b) of Lemma 2, we know that each brick in b in B can

contain at most one descent. Since we know that b2 must have size at least 3 because

there is a Γ-match in σ starting at cell 1 which is contained in b1 and b2, this means

that either b2 = 3 or b2 = 4. We claim that b2 is of size 4. That is, if b2 = 3, then

either (I) a > d are in b3 or (II) brick b3 contains a single cell containing a and d is

the first cell of b4. Case (I) cannot happen because then last(b2) = 3 < first(b3) = a

which implies that the elements in b3 must be increasing by condition (a) of Lemma 2.

Case (II) cannot happen because that last(b3) = a > first(b4) = d which implies there

must be a Γ-match contained in the cells of b3 and b4 which involves both σ6 = a

and σ7 = d which is impossible since a > d. Thus we are in the situation pictured in

Figure 3.4.

Then we can remove that first six cells cells from B, reduce the remaining

elements of σ to obtain a permutation α ∈ Sn−6, and let B′ = (b3, . . . , bk) to obtain a

fixed point (B′, α) of JΓ of size n− 6. Such fixed points will contribute (n− 3)(n−
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Figure 3.4: Subcase 2b.

5)(n− 6)y3UΓ,n−6(y) to UΓ,n(y).

In total, we obtain the recursion for UΓ,n(y) as follows.

UΓ,n(y) = (1− y)UΓ,n−1(y)− y2(n− 3) (UΓ,n−4(y) + (1− y)(n− 5)UΓ,n−5(y)) +

y3(n− 3)(n− 5)(n− 6)UΓ,n−6(y).

This proves Theorem 10.

Using Theorem 10, we computed the initial values of the UΓ,n(y)s which are

given in Table 3.1.

Table 3.1: The polynomials UΓ,n(−y) for Γ = {14253, 15243}

n UΓ,n(y)
1 −y
2 −y + y2

3 −y + 2y2 − y3

4 −y + 3y2 − 3y3 + y4

5 −y + 4y2 − 4y3 + 4y4 − y5

6 −y + 5y2 − 2y3 + 2y4 − 5y5 + y6

7 −y + 6y2 + 5y3 − 28y4 + 5y5 + 6y6 − y7

8 −y + 7y2 + 19y3 − 123y4 + 123y5 − 19y6 − 7y7 + y8

9 −y + 8y2 + 42y3 − 334y4 + 588y5 − 334y6 + 42y7 + 8y8 − y9

10 −y + 9y2 + 76y3 − 726y4 + 1606y5 − 1606y6 + 726y7 − 76y8 − 9y9 + y10

Using these initial values of the UΓ,n(y)s, one can then compute the initial

values of NMΓ,n(x, y) which are given in Table 3.2.
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Table 3.2: The polynomials MNΓ,n(x, y) for Γ = {14253, 15243}

n NMΓ,n(x, y)
1 xy
2 xy + x2y2

3 xy + xy2 + 3x2y2 + x3y3

4 xy + 4xy2 + 7x2y2 + xy3 + 4x2y3 + 6x3y3 + x4y4

5 xy + 11xy2 + 15x2y2 + 9xy3 + 30x2y3 + 25x3y3 + xy4 + 5x2y4 + 10x3y4

+10x4y4 + x5y5

6 xy + 26xy2 + 31x2y2 + 58xy3 + 146x2y3 + 90x3y3 + 22xy4 + 79x2y4

+120x3y4 + 65x4y4 + xy5 + 6x2y5 + 15x3y5 + 20x4y5 + 15x5y5 + x6y6

7 xy + 57xy2 + 63x2y2 + 282xy3 + 588x2y3 + 301x3y3 + 252xy4 + 770x2y4

+896x3y4 + 350x4y4 + 51xy5 + 210x2y5 + 364x3y5 + 350x4y5 + 140x5y5

+xy6 + 7x2y6 + 21x3y6 + 35x4y6 + 35x5y6 + 21x6y6 + x7y7

3.2.2 The case Γ = {142536}

In this section, we shall study the generating function Uτ (t, y) where τ = 142536.

We let Jτ denote the involution JΓ from Section 3.1 where Γ = {τ}. We claim that

the polynomials

Uτ,n(y) =
∑

O∈Oτ,n,Jτ (O)=O

sgn(O)W (O)

satisfy the following properties:

1. Uτ,1(y) = −y, and

2. for n ≥ 2,

Uτ,n(y) = (1− y)UΓ,n−1(y) +

b(n−8)/6c∑
k=0

det(Mk+1)y3k+3Un−6k−7(y)

+

b(n−6)/6c∑
k=0

det(Pk+1)(−y3k+2) [Uτ,n−6k−4(y) + yUτ,n−6k−5(y)] .

It is easy to see when n = 1, the only fixed point comes from brick tabloid

that has a single brick of size 1 which contains 1 and the label on cell 1 is −y. Thus
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Uτ,1(y) = −y.

For n ≥ 2, let O = (B, σ) be a fixed point of IΓ where B = (b1, . . . , bk) and

σ = σ1 · · ·σn. First we show that 1 must be in the first cell of B. That is, if 1 = σc

where c > 1, then σc−1 > σc. We claim that whenever we have a descent σi > σi+1 in

σ, then σi and σi+1 must be part of a τ -match in σ. That is, it is either the case that

(i) there are bricks bs and bs+1 such that σi is the last cell of bs and σi+1 is the first cell

of bs+1 or (ii) there is a brick bs that contains both σi and σi+1. In case (i), condition

3 of Lemma 2 ensures that σi and σi+1 must be part of τ -match. In case (ii), we know

that cell i is labeled with y. It follows from condition (2) of Lemma 2 that it can not

be that either s = 1 so that bs = b1 or that s > 1 and last(bs−1) < first(bs) because

those conditions force that σ is increasing in bs. Thus we must have that s > 1 and

last(bs−1) > first(bs). Since (B, σ) is a fixed point of Jτ , it cannot be that there is a

τ -match in σ which includes last(bs−1) and first(bs) that ends weakly to the left of

σi because then cell i would satisfy Case I of our definition of Jτ and, hence, (B, σ)

would not be a fixed point of Jτ . Thus the τ -match which includes last(bs−1) and

first(bs) must involve σi and σi+1. However, there can be no τ -match that involves

σc−1 and σc since σc = 1 can only play the role of 1 in τ -match and τ starts with 1.

Thus we must have σ1 = 1.

Next we claim that 2 must be in either cell 2 or cell 3 in O. For a contradiction,

assume that 2 is in cell c for c > 3. Then once again σc−1 > σc so that there must be

a τ -match in σ that involves the two cells c− 1 and c in (B, σ). However, since 2 is

too far from 1 in B, the only possible 142536-match that involves 2 must start from

cell c where 2 plays the role of 1 in the match. We then have two cases.

Case 1. 2 is in cell 2 of O.
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In this case, there are two possibilities, namely, either (i) 1 and 2 are both in the first

brick b1 of (B, σ) or (ii) brick b1 is a single cell filled with 1 and 2 is in the first cell of

the second brick b2 of (B, σ). In either case, we know that 1 is not part of a τ -match

in (B, σ). So if we remove cell 1 from (B, σ) and subtract 1 from the elements in the

remaining cells, we will obtain a fixed point (B′, σ′) of JΓ in OΓ,n−1.

Moreover, we can create a fixed point O = (B, σ) ∈ On satisfying the three

conditions of Lemma 2 where σ2 = 2 by starting with a fixed point (B′, σ′) ∈ OΓ,n−1

of JΓ, where B
′ = (b′1, . . . , b

′
r) and σ′ = σ′1 · · ·σ′n−1, and then letting σ = 1(σ′1 +

1) · · · (σ′n−1 + 1), and setting B = (1, b′1, . . . , b
′
r) or setting B = (1 + b′1, . . . , b

′
r).

It follows that fixed points in Case 1 will contribute (1−y)UΓ,n−1(y) to UΓ,n(y).

Case 2. 2 is in cell 3 of O = (B, σ).

Since there is no decrease within the first brick b1 of O = (B, σ), it must be the case

that 2 is in the first cell of brick b2 and there must be a 142536-match that involves

the cells of the first two bricks. Therefore, we know that brick b2 has at least 4 cells.

To analyze this case, it will be useful to picture O = (B, σ) as a 2-line array

A(O) where the elements in the i-th column are σ2i−1 and σ2i reading from bottom to

top. In A(O), imagine the we draw an directed arrow from the cell containing i to

the cell containing i+ 1. Then it is easy to see that a τ -match correspond to block of

points as pictured in Figure 3.5

1

4

2 3

5 6

Figure 3.5: A 142536-match as a 2-line array.
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Now imagine that A(0) starts with series of τ -matches starting at positions

1, 3, 5, . . .. We have pictured this situation at the top of Figure 3.6. Now consider

the brick structure of O = (B, σ). Since the elements of b1 must be increasing and

σ2 > σ3, it must be the case that b1 = 2 and b2 ≥ 4. We claim that b2 = 4 because

if b2 > 4, then σ6 > σ7 would be a descent in b2. Thus cell 6 would be labeled with

a y. The τ -match starting at cell 1 ends a cell 6 so that cell 6 would satisfy Case I

of our definition of Jτ which contracts that the fact that O = (B, σ) is a fixed point

of Jτ . Now the fact that σ6 > σ7 implies that b3 ≥ 2 since there must be a τ -match

that involves σ6 and σ7. Now if there is a τ -match starting at cell 7, then we can

see that σ8 > σ9. It cannot be that σ8 and σ9 are both in b3 because it would follow

that cell 8 would be labeled with a y and the τ -match starting at σ3 would end at

cell 8. Thus cell 8 would be in Case I of our definition of Jτ which contracts that

the fact that O = (B, σ) is a fixed point of Jτ . Thus it must be the case that b3 = 2.

But the τ -match starting at cell 7 forces σ8 > σ9 so that there is a decrease between

last(b3) and first(b4) which implies that there is τ contained in b3 and b4, which then

means that b4 ≥ 4. Now if there is a τ -matches starting at σ9, then it must be the

case that σ12 > σ13. Hence, it cannot be b4 > 4 since otherwise cell 12 is labeled with

a y. Since the τ -match starting a cell 7 ends at cell 12, then cell 12 would be in Case

I of our definition of Jτ which contracts that the fact that O = (B, σ) is a fixed point

of Jτ . Thus it must be the case that b4 = 4. We can continue to reason in this way

to conclude that if there are τ -matches starting at cells 1, 3, 7, 9, . . . , 6k + 1, 6k + 3,

then b2i−1 = 2 for i = 1, , 2k + 1 and b2i = 4 for i = 1, . . . , 2k. Similarly, if there are

τ -matches starting at cells 1, 3, 7, 9, . . . , 6k + 1 but no τ -match starting at cell 6k + 3,

then b2i−1 = 2 for i = 1, , 2k and b2i = 4 for i = 1, . . . , 2k − 1 and b2k ≥ 4.
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τ τ τ τ

τ τ

τ

ττ τ

Figure 3.6: Fixed points that start with series of τ -matches.

Note that our arguments above did not use the fact that there were τ -matches

starting at cells 5, 11, . . .. Indeed, these matches are not necessary to force the

brick structure described above. For example, suppose that there were no τ -match

starting at cell 5 but there where τ -matches starting at cell 7. We have pictured this

situation on the second line of Figure 3.6 where we have written ¬τ below the position

corresponding to cell 5 to indicate that there is not a τ -match starting a cell 5. Then

one can see from the diagram pictured in the second line of Figure 3.6, that it must

be the case that σ6 < σ9. It follows that if one looks at the requirements on σ to start

with such a series of τ -matches, then σ must be a linear extension of poset whose

Hasse diagram is pictured at the bottom of Figure 3.6.

There are now two cases depending on where the sequence of τ -matches starting

at positions 1, 3, 7, 9, . . . ends.

Case 2.1. There are τ -matches in σ starting at positions 1, 3, 7, 9, . . . , 6k + 3, but

there is no τ -match starting at position 6k + 7. This situation is pictured in Figure

3.7 in the case where k = 2.
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In this case, we claim that {σ1, . . . , σ6k+8} = {1, 2, . . . , 6k + 8}. If not, then i

be the least element in {1, 2, . . . , 6k+8}−{σ1, . . . , σ6k+8}. The question then becomes

for which j is σj = i. It easy to see from the diagram at the top of Figure 3.7,

that σ6k+8 > σr for r = 1, . . . , 6k + 7. This implies that σ6k+8 ≥ 6k + 8. But since

i ∈ {1, 2, . . . , 6k + 8} − {σ1, . . . , σ6k+8}, it must be the case that σ6k+8 > 6k + 8 ≥ i.

We claim that j cannot equal 6k+ 9. That is, if i = 6k+ 9, then σ6k+8 > σ6k+9.

It cannot be that σ6k+8 and σ6k+9 are in brick b2k+3 because then σ6k+8 is labeled

with y and there is a τ -match contained in bricks b2k+2 and b2k+3 that ends before

cell 6k + 8 which means that cell 6k + 8 satisfies Case 1 of our definition of Jτ which

violates our assumption that (B, σ) is fixed point of Jτ . If σ6k+9 starts brick b2k+4,

then brick b2k+3 must be of size 2 and there must be a τ -match contained in bricks

b2k+3 and b2k+4 that involves σ6k+8 and σ6k+9. But since σ2k+8 > σ2k+9, that τ -match

can only start at cell 6k + 7 which violates our assumption in this case.

Next we claim that j cannot be ≥ 6k + 10. That is, if j ≥ 6k + 10, then both

σj−2 and σj−1 are greater than σj = i. Thus σj−1 and σj must be part of τ -match in

σ. But then the elements in two cells before cell j are bigger than that in cell j which

means that the only role that σj can play in a τ -match is 1. Thus there can be no

τ -match that includes σj−1 and σj.

τ τ τ τ τ τ τ

−y−y −yy y −yy−y−y

Figure 3.7: Fixed points that start with series of τ -matches in Case 2.1.
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Let α be the permutation that is obtained from σ by removing the elements

1, . . . , 6k + 7 and subtracting 6k + 7 from the remaining elements. Let B′ be the brick

structure (b2k+3 − 1, b2k+4, . . . , bk). Then it is easy to see that (B′, α) is a fixed point

of Jτ is size n− 6k − 7.

Vice versa, suppose we start with a fixed point (B′, α) of Jτ whose size n−6k−7

where B′ = (d1, d2, . . . , ds). Then we can obtain a fixed point (B, σ) of size n which

has τ -matches in σ starting at positions 1, 3, 7, 9, . . . , 6k + 3, but no τ -match starting

at position 6k + 7 by letting σ1 . . . σ6k+7 be any permutation of 1, . . . , 6k + 7 which

is a linear extension of the poset whose Hasse diagram is pictured at the bottom of

Figure 3.7 and letting σ6k+8 . . . σn be the sequence that results by adding 6k + 7 to

each element of α. Then let B = (b1, . . . , b2k+2, d1 + 1, d2, . . . , ds) where b2i+1 = 2 for

i = 0, . . . , k and b2i = 4 for i = 1, . . . , k + 1.

It follows that contribution to Uτ,n(y) from the fixed points in Case 2.1 equal

bn−8
6
c∑

k=0

G6k+7y
3k+3Uτ,n−6k−7,

where G6k+7 is the number of linear extensions of the poset pictured at the bottom of

Figure 3.7 of size 6k + 7.

Next, we want to compute the number of linear extensions of G6k+7. It is easy

to see that the left-most two elements at the bottom of the Hasse diagram of G6k+7

must be first two elements of the linear extension and the right-most element at the

top of the Hasse diagram must be the largest element in any linear extension of G6k+7.

Thus the number of linear extensions of Ḡ6k+4 which is the Hasse diagram of G6k+7

with those three elements removed, equals the number of linear extension of G6k+7.
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We have pictured the Hasse diagrams of Ḡ4, Ḡ10 and Ḡ16 in Figure 3.8.

G

G

G

=
4

10
=

16
=

Figure 3.8: The Hasse diagram of Ḡ6k+4 for k = 0, 1, 2.

Now let A0 = 1 and Ak+1 be the number of linear extensions of Ḡ6k+4 for k ≥ 0.

It is easy to see that A1 = 2. There is a natural recursion satisfied by the Ak, namely,

for k > 1,

Ak+1 =
k∑
j=0

C2+3jAk−j

where Cn = 1
n+1

(
2n
n

)
is the n-th Catalan number. First, consider the number of linear

extensions of the Hasse diagram of the poset Dn with n columns of the type pictured

in Figure 3.9. It is easy to see that this is the number of standard tableaux of shape

(n2) which is well known to equal to Cn.

Figure 3.9: The Hasse diagram of Dn.

Next if we look at the Hasse diagram of Ḡ6k+4 it is easy to see that there are

no relation that is forced between the elements in columns 3i for i = 1, . . . , k. Now

suppose that we partition the set of linear extensions of Ḡ6k+4 by saying the bottom

element in column 3i is less than the top element in column 3i for i = 1, . . . , j and the

top element of column 3j + 3 is less than the bottom elements of column 3j + 3. Then
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we will have a situation as pictured in Figure 3.10 in the case where k = 6 and j = 2.

One can see that when one straightens out the resulting Hasse diagram, it starts with

the Hasse diagram of D2+3j and all those elements must be less than the elements in

the top part of Hasse diagram which is a copy of the Hasse diagram of Ḡ6(k−j−1)+4.

Figure 3.10: Partitioning the Hasse Diagram of Ḡ6k+4.

Now consider the determinant of the n × n matrix Mn whose elements on

the main diagonal are C2, the elements on the j-diagonal above the main are C2+3j

for j ≥ 1, the elements on the sub-diagonal are −1, and the elements below the

sub-diagonal are 0. For example we have pictured in M7 in Figure 3.11. It is then easy

to see that det(M1) = C2 = 2. For n > 1 if we expand the determinant by minors

about the first row, then we see that we have the recursion

det(Mk) =
k−1∑
j=0

C2+3jdet(Mk−j−1),

where we set det(M0) = 1.

For example, suppose that we expand the determinant M7 pictured in Figure

3.11 about the element of C8 in the first row. Then in the next two rows, we are forced

to expand about the −1’s. It is easy to see that the total sign of these expansion is

always +1 so that in this case, we would get a contribution of C8det(M4) to det(M7).
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Figure 3.11: The matrix M7.

Thus it follows that An = det(Mn) for all n.

Hence the contribution to Uτ,n from the fixed points in Case 1 equals

bn−8
6
c∑

k=0

det(Mk+1)y3k+3Uτ,n−6k−7.

Case 2.2 There are τ -matches in σ starting at positions 1, 3, 7, 9, . . . , 6k+1, but there

is no τ -match starting at position 6k + 3. This situation is pictured in Figure 3.12 in

the case where k = 3.

ττ τ τ τ τ τ τ

−y −y −y −y −y −y −yy y y y

Figure 3.12: Fixed points that start with series of τ -matches in Case 2.2.

In this case, we claim that {σ1, . . . , σ6k+5} = {1, 2, . . . , 6k + 5}. If not, then

let i be the least element in {1, 2, . . . , 6k + 5} − {σ1, . . . , σ6k+5}. The question then
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becomes for which j is σj = i. It easy to see from the diagram at the top of Figure

3.12, that σ6k+6 > σr for r = 1, . . . , 6k + 5 and that σ6k+5 > σr for r = 1, . . . , 6k + 5.

This implies that σ6k+5 ≥ 6k + 5, but since i ∈ {1, 2, . . . , 6k + 5} − {σ1, . . . , σ6k+5}, it

follows that 6k + 5 < σ6k+5 < σ6k+6.

It cannot be that i = σ6k+7 because then σ6k+6 > σ6k+7. Note that σ6k+3, σ6k+4,

σ6k+5, and σ6k+6 are elements of brick b2k+2. If σ6k+7 was also and element of brick

b2k+2, then σ6k+6 would be marked with a y and there is a τ -match contained in bricks

b2k+1 and b2k+2 that ends at cell 6k+ 6 so that we could apply Case 1 of the involution

Jτ at cell 6k+ 6, which violates our assumption that (B, σ) was a fixed point of Jτ . If

σ6k+7 starts brick b2k+3, then there must be a τ -match that involves σ6k+6 and σ6k+7

and is contained in bricks b2k+2 and b2k+3. Since we are assuming that there is no

τ -match cannot starting at σ6k+3, it must be the case that there is a τ -match starting

at σ6k+5. But then we have that situation pictured in Figure 3.13. In Figure 3.13, the

dark arrows are forced by the τ -matches starting at σ6k+1 and σ6k+5. However the top

two elements in brick b2k+2 are σ6k+5 and σ6k+6, which are both greater than i. This

means that the dotted arrow is forced which implies that there is a τ -match starting

at cell σ6k+3.

Finally, it cannot be the case that j > 6k + 7, because then it must be the

case that σj−1 > σj so that σj−1 and σj must be part of a τ -match in σ. But in this

situation, the elements 1, . . . , i− 1 lie in cells that are more than 2 cells away from

the cell containing i. This means that in any τ -match in σ containing the element

i, i can only play the role of 1 in that τ -match. Thus, there could not be a τ -match

containing σj−1 and σj.
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i

τ

Figure 3.13: i starts brick b2k+3.

Next, consider the possible j such that σj = 6k+6. It cannot be that j > 6k+7,

because then it must be the case that σj−1 > σj so that σj−1 and σj must be part

of a τ -match in σ. But in this situation, the elements 1, . . . , 6k + 5 lie in cells that

are more than 2 cells away from the cell containing 6k + 6. This means that in any

τ -match containing the element 6k + 6 in σ, 6k + 6 can only play the role of 1 in that

τ -match. Thus there could not be a τ -match in σ containing σj−1 and σj. It follows

that 6k + 6 = σ6k+6 or σ6k+7. Let α be the permutation that is obtained from σ by

removing the elements 1, . . . , 6k + 4, setting α1 = 1, and letting α2 . . . , αn − (6k + 4)

be the result of subtracting 6k + 5 from σ6k+6 . . . σn. Let B′ be the brick structure

(b2k+2 − 2, b2k+3, . . . , bk). Then it is easy to see that (B′, α) is a fixed point of Jτ is

size n− 6k − 4 that starts with a brick of size at least 2.

Vice versa, suppose we start with a fixed point (B′, α) of Jτ whose size n−6k−4

that starts with a brick of size at least 2 where B′ = (d1, d2, . . . , ds). Then we can

obtain a fixed point (B, σ) of size n which has τ -matches in σ starting at positions

1, 3, 7, 9, . . . , 6k + 1, but no τ -match starting at position 6k + 3, by letting σ1 . . . σ6k+5

be any permutation of 1, . . . , 6k + 5 which is a linear extension of the poset whose

Hasse diagram is pictured at the bottom of Figure 3.12 and letting σ6k+6 . . . σn be

the sequence that results by adding 6k + 5 to each element of α2 . . . αn−(6k+4). We let

B = (b1, . . . , b2k+1, d1 + 2, d2, . . . , ds) where b2i+1 = 2 for i = 0, . . . , k and b2k = 4 for
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i = 1, . . . , k.

Note that for any n, our arguments above show that the only fixed points

(D, γ) of Jτ of size n where D = (d1, . . . , dk) and σ = σ1 . . . σn which do not start with

a brick of size at least 2 are the ones that start with a brick b1 = 1 where σ1 = 1 and

σ2 = 2. Clearly such fixed points are counted by −yUn−1,y because d1 would have

weight −y and ((d2, . . . , dk), (σ2 − 1)(σ3 − 1) . . . (σn − 1)) could be any fixed point of

Jτ of size n− 1. It follows that sum of the weights of all fixed points of Jτ of size n

which start with a brick of size at least 2 is equal to

Uτ,n − (−yUn−1,τ ) = Uτ,n + yUn−1,τ .

It follows that contribution to Uτ,n from the fixed points in Case 2.2 equal

−
bn−6

6
c∑

k=0

G6k+4y
3k+2(Uτ,n−6k−4 + yUτ,n−6k−5),

where G6k+4 is the number of linear extensions of the poset pictured at the bottom of

Figure 3.12 of size 6k + 4.

Next we want to compute the number of linear extensions of G6k+4. It is easy to

see that the left-most two elements at the bottom of the Hasse diagram of G6k+4 must

be first two elements of the linear extension. Thus the number of linear extensions of

Ḡ6k+2 which is the Hasse diagram of G6k+4 with those two elements removed, equals

the number of linear extension of G6k+4. We have pictured the Hasse diagrams of Ḡ2,

Ḡ8 and Ḡ14 in Figure 3.14.

Now let B0 = 1 and Bk+1 be the number of linear extensions of Ḡ6k+2 for k ≥ 0.

It is easy to see that B1 = 1. Again there is a natural recursion satisfied by the Bks,
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Figure 3.14: The Hasse diagram of Ḡ6k+2 for k = 0, 1, 2.

namely, for k > 1,

Bk+1 = C3k+1 +
k−1∑
j=0

C2+3jBk−j−1,

where Cn = 1
n+1

(
2n
n

)
is the n-th Catalan number.

As in the case of the posets Ḡ6k+4, there is no relations that is forced between

the elements of the elements in columns 3i for i = 1, . . . , k. Now suppose that we

partition the set of linear extensions of Ḡ6k+2 by saying the bottom element in column

3i is less than the top element in column 3i for i = 1, . . . , j and the top element of

column 3j + 3 is less than the bottom elements of column 3j + 3. First if j = k,

then we will have a copy of D3k+1 which gives a contribution of C3k+1 to the number

of linear extensions of Ḡ6k+4. If j < k, then we will have a situation as pictured in

Figure 3.15 in the case where k = 6 and j = 2. One can see that when one straightens

out the resulting Hasse diagram, one obtains a diagram that starts with the Hasse

diagram of D2+3j and all those elements must be less than the elements in the top

part of Hasse diagram which is a copy of the Hasse diagram of Ḡ6(k−j−1)+2.

Let Pn be the matrix that is obtained from the matrix Mn by replacing the

elements Cm in the last column by Cm−1. For example we have pictured in P7 in

Figure 3.16. It is then easy to see that det(P1) = 1. For n > 1 if we expand the
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Figure 3.15: Partitioning the Hasse Diagram of Ḡ6k+2.

determinant by minors about the first row, then we see that we have the recursion

det(Pk) = C3k−2 +
k−2∑
j=0

C2+3jdet(Pk−j−1),

where we set det(P0) = 1.

For example, suppose that we expand the determinant P7 pictured in Figure

3.16 about the element of C19 in the first row. Then in the next five rows, we would

be forced to expand about the −1’s. It is easy to see that the total sign of these

expansion is always +1 so that in this case, we would get a contribution of C19 to

the det(P7). Expanding the determinant about the other elements in the first row

gives the remaining terms of the recursion just like it did in the expansion of the

determinant of Mn.

Thus it follows that Bn = det(Pn) for all n.

Hence the contribution of fixed points of Jτ to Uτ,n(y) in the Case 2.2 equals

−
bn−6

6
c∑

k=0

det(Pk+1)y3k+2(Uτ,n−6k−4 + yUτ,n−6k−5).
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Figure 3.16: The matrix P7.

Therefore, we obtain the recursion for Uτ,n(y) for τ = 142536 is as follows.

Uτ,n(y) = (1− y)Uτ,n−1(y) +

b(n−8)/6c∑
k=0

det(Mk+1)y3k+3Uτ,n−6k−7(y)

−
b(n−6)/6c∑

k=0

det(Pk+1)y3k+2 [Uτ,n−6k−4(y) + yUτ,n−6k−5(y)] .

In Table 3.3, we computed U142536,n(y) for n ≤ 14.

3.2.3 The proof of Theorem 12

Let τa = τ = τ1 . . . τ2a where τ1τ3 . . . τ2a−1 = 12 . . . a and τ2τ4 . . . τ2a = (2a)(2a−

1) . . . (a+ 1). If we picture τa in a 2-line array like we did in the earlier section, then

we will get a diagram as pictured in Figure 3.17

a−1 a

a+1a+2

21 3

2a 2a−1 2a−2

Figure 3.17: The Hasse diagram associated with τa.

The key property that τa has is that if σ = σ1 . . . σ2m is permutation where we
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Table 3.3: The polynomials Uτ,n(y) for τ = 142536.

n U142536,n(y)
1 −y
2 −y + y2

3 −y + 2y2 − y3

4 −y + 3y2 − 3y3 + y4

5 −y + 4y2 − 6y3 + 4y4 − y5

6 −y + 5y2 − 9y3 + 10y4 − 5y5 + y6

7 −y + 6y2 − 13y3 + 18y4 − 15y5 + 6y6 − y7

8 −y + 7y2 − 18y3 + 27y4 − 32y5 + 21y6 − 7y7 + y8

9 −y + 8y2 − 24y3 + 40y4 − 54y5 + 52y6 − 28y7 + 8y8 − y9

10 −y + 9y2 − 31y3 + 58y4 − 85y5 + 100y6 − 79y7 + 36y8 − 9y9 + y10

11 −y + 10y2 − 39y3 + 82y4 − 129y5 + 170y6 − 172y7 + 114y8 − 45y9

+10y10 − y11

12 −y + 11y2 − 48y3 + 113y4 − 191y5 + 289y6 − 320y7 + 278y8

−158y9 + 55y10 − 11y11 + y12

13 −y + 12y2 − 58y3 + 152y4 − 277y5 + 456y6 − 578y7 + 568y8 − 427y9

+212y10 − 66y11 + 12y12 − y13

14 −y + 13y2 − 69y3 + 200y4 − 394y5 + 689y6 − 1031y7 + 1068y8 + 956y9

+629y10 − 277y11 + 78y12 − 13y13 + y14

have marked some of the τa-matches by placing an x at the start of a τ so that every

element of σ is contained in some τa-match and any two consecutive marked τa in σ

share at least one element, then it must be the case that σ1σ3 . . . σ2m−1 = 12 . . .m and

σ2σ4 . . . σ2m = (2m)(2m − 1) . . . (m + 1). That is, it must be the case that σ = τm.

This can easily be seen from the picture of overlapping τa-matches like the one pictured

in Figure 3.18 where a = 4 and m = 12. Note that in such a situation, we will in fact

have τa matches starting at positions 1, 3, 5, . . . , 2(m− a) + 2 in σ.

x x x x x

Figure 3.18: The Hasse diagram of overlapping τa-mathces.
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We need to show that the polynomials

Uτa,n(y) =
∑

O∈Oτa,n,Jτa (O)=O

sgn(O)W (O)

satisfy the following properties:

1. Uτ,1(y) = −y, and

2. for n ≥ 2,

Uτ,n(y) = (1− y)Uτ,n−1(y)

−
b(n−2a)/(2a)c∑

k=0

(
n− (k + 1)a− 1

(k + 1)a− 1

)
y(k+1)a−1Uτa,n−(2(k+1)a)+1(y)

+

b(n−2a−2)/(2a)c∑
k=0

(
n− (k + 1)a− 2

(k + 1)a

)
y(k+1)aUτa,n−(2(k+1)a)−1(y).

Again, it is easy to see that when n = 1, Uτa,1(y) = −y. For n ≥ 2, let

O = (B, σ) be a fixed point of Jτa where B = (b1, . . . , bt) and σ = σ1 · · · σn. By the

same argument as the previous sections, it must be the case that 1 is in the first cell

of O and 2 must be in either cell of 2 or cell 3 in O. Thus, we now have two cases.

Case 1. 2 is in cell 2 of O.

Similar to Case 1 in the proof of Theorem 11, there are two possibilities, namely,

either (i) 1 and 2 are both in the first brick b1 of (B, σ) or (ii) brick b1 is a single cell

filled with 1 and 2 is in the first cell of the second brick b2 of O. In either case, we

can remove cell 1 from O and subtract 1 from the elements in the remaining cells,

we will obtain a fixed point O′ of Jτa in Oτa,n−1. So the fixed points in this case will

contribute (1− y)Uτa,n−1(y) to Uτa,n(y).
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Case 2. 2 is in cell 3 of O = (B, σ).

In this case, σ2 > σ3 = 2. Since σ must be increasing in b1, it follows that 2 is in the

first cell of brick b2 and there must be a τa match in the cells of b1 and b2 which can

only start at cell 1. Thus it must be the case that brick b2 has at least 2a− 2 cells.

Again, we shall think of O = (B, σ) as a two line array A(0) where column i

consists of σ2i−1 and σ2i, reading from bottom to top. Now imagine that A(0) starts

with series of τ -matches starting at positions 1, 3, 5, . . .. Our observation above shows

that if this sequence of consecutive τa-matches covers cells 1, . . . , 2k for some k, then

in the two line array A(O), all in entries in the first row of the first k columns are less

than all the entries in top row of the first k columns, the cells in the bottom row of

the first k columns are increasing, reading from left to right, and the cells in top row

are increasing, reading from right to left.

Next we consider the possible brick structures of O = (B, σ). We claim that we

are in one of two subcases: Subcase (2.A) where there is a k ≥ 0 such that there are τa-

matches in σ starting at cells 1, 3, 2a+1, 2a+3, . . . , 2(k−1)a+1, 2(k−1)a+3, 2ka+1,

there is no τa-match in σ starting at cell 2ka + 3, 2 = b1 = b3 = · · · = b2k−1,

2a − 2 = b2 = b4 = · · · = b2k, and b2k+1 = 2 and b2k+2 ≥ 2a − 2 or Subcase

(2.B) where there is a k ≥ 0 such that there are τa-matches in σ starting at cells

1, 3, 2a + 1, 2a + 3, . . . , 2(k − 1)a + 1, 2(k − 1)a + 3, 2ka + 1, 2ka + 3, there is no

τa-match in σ starting at cell 2(k + 1)a + 1, 2 = b1 = b3 = · · · = b2k−1 = b2k+1,

2a− 2 = b2 = b4 = · · · = b2k+2, and b2k+3 ≥ 2. Subcase (2.A) is pictured at the top of

Figure 3.19 and Subcase (2.B) is pictured at the bottom of Figure 3.19 in the case

where a = 4 and k = 2. Note that by our remarks above, we also know the relative

order of the elements involved in these τa-matches in σ which is indicated by the poset
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whose Hasse diagram is pictured in Figure 3.19. We can prove this by induction. That

is, suppose k = 0 and we are in Subcase (2.A). Then there is a τa-match in σ starting

a cell 1 but no τa-match in σ starting at cell 3. Our argument above shows that b1 = 2

and b2 ≥ 2a− 2. Next suppose that k = 0 and we are in Subcase (2.B) so that there

are τa-matches in σ starting in cells 1 and 3 but there is no τa-match in σ starting at

cell 2a+ 1. Then we claim we claim that b2 = 2a− 2. That is, in such a situation we

would know that σ2a > σ2a+1. Thus, if b2 > 2a− 2, then 2a would be labeled with a

y. The τa-match starting at cell 1 ends at cell 2a so that cell 2a would satisfy Case I

of our definition of Jτa which contracts that the fact that O = (B, σ) is a fixed point

of Jτa . Thus, brick b3 must start at cell 2a+ 1. Now the fact that σ2a > σ2a+1 implies

that b3 ≥ 2 since there must be a τa-match that involves σ2a and σ2a+1 and lies in

cells of b2 and b3.

τ

ττ τ τ τ τ τ

τ τ τ τ τ

−y −y −y −y −y

−y −y −y −y −y

y y y y y y

y y y y y y

Figure 3.19: Subcases (2.A) and (2.B).

Now assume by induction that for k ≥ 1, there are τa-matches in σ starting at

cells 1, 3, 2a + 1, 2a + 3, . . . , 2(k − 1)a + 1, 2(k − 1)a + 3, 2 = b1 = b3 = · · · = b2k−1,

2a − 2 = b2 = b4 = · · · = b2k−2, and b2k ≥ 2a − 2. Suppose we are in Subcase (2.A)

so that there is τa-match starting at cell 2ka + 1 but there is no τa starting at cell

2ka + 3. Then we know that σ2ka > σ2ka+1 due to the τa-match in σ starting at

cell 2(k − 1)a + 1. It cannot be the case that b2k > 2a− 2 since then cells 2ka and
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2ka+ 1 are contained in brick b2k so that cell 2ka would be marked with a y. However,

the τa-match staring at cell 2(k − 1)a + 1, which is the first cell of b2k, ends at cell

2ka so that cell 2ka would satisfy Case I of our definition of Jτa which violates our

assumption that (B, σ) is a fixed point of Jτa . This means that b2k = 2a − 2 and

b2k+1 starts at cell 2ka+ 1. Since σ2ak > σ2ak+1 due to the τa-match in σ starting at

cell 2(k − 1)a+ 3, we know that there must be a τa-match contained in the cells of

b2k and b2k+1 so that b2k+1 ≥ 2. But then because of the τa-match in σ starting at

cell 2ka+ 1, we know that σ2ka+2 > σ2ka+3. It cannot be that cell 2ka+ 3 is in brick

b2k+1 because then cell 2k + 2 would be marked with a y and there is a τa-match in σ

starting at cell 2(k− 1)a+ 3 which ends at cell 2k+ 2 which is contained in the bricks

b2k and b2k+1 which means that cell 2ka+ 2 would satisfy Case 1 of our definition of

Jτa which violates our assumption that (B, σ) is a fixed point of Jτa . Thus it must

be the case that b2k+1 = 2 and brick b2k+2 starts at cell 2ka + 3. But this means

that there must be a τa-match in σ contained in the cells of b2k+1 and b2k+2 so that

b2k+2 ≥ 2a− 2. Now if there is also a τa-match in σ starting at cell 2ka+ 3, then we

claim that b2k+2 = 2a− 2. That is, we know that σ2(k+1)a > σ2(k+1)a+1. It cannot be

that b2k+2 > 2a − 2 because then cell 2(k + 1)a would be labeled with a y and the

τa-match in σ starting at cell 2ka+ 1 ends at cell 2(k + 1)a and is contained in the

bricks b2k+1 and b2k+2 so that cell 2(k + 1)a would satisfy Case 1 of our definition

of Jτa which would violate our assumption that (B, σ) is fixed point of Jτa . Thus

b2k+2 = 2a− 2. But then due to the τa-match in σ starting at cell 2(k + 1)a+ 3, we

know that σ2(k+1)a > σ2(k+1)a+1 which means that there must be a τa match contained

in bricks b2k+2 and b2k+3. This means that b2k+3 ≥ 2.

Thus we have two cases to consider.
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Subcase (2.A) There is a k ≥ 0 such that there are τa-matches in σ starting at cells

1, 3, 2a+ 1, 2a+ 3, . . . , 2(k − 1)a+ 1, 2(k − 1)a+ 3, 2ka+ 1, there is no τa-match in σ

starting at cell 2ka+ 3, 2 = b1 = b3 = · · · = b2k−1, 2a− 2 = b2 = b4 = · · · = b2k, and

b2k+1 = 2 and b2k+2 ≥ 2a− 2.

Here, we claim that {1, . . . , (k + 1)a + 1} = {σ1, σ3, . . . , σ2(k+1)a−1, σ2(k+1)a}.

That is, if one considers the diagram at the top of Figure 3.19, then the elements in

the bottom row are 1, 2, . . . , (k + 1)a, reading from left to right, and the element at

the top of column (k + 1)a is equal to (k + 1)a+ 1. If this is not the case, then let

i = min({1, . . . , (k + 1)a+ 1} − {σ1, σ3, . . . , σ2(k+1)a−1, σ2(k+1)a}).

This means σ2(k+1)a > i and, hence one can see by the relative order of the elements in

the first (k+1)a columns of A(O) that i can not lie in the first (k+1)a columns. Then

the question is for what j is σj = i. First we claim that it cannot be that σ2(k+1)a+1 = i.

That is, in such a situation, σ2(k+1)a > σ2(k+1)a+1. Now it cannot be that σ2(k+1)a and

σ2(k+1)a+1 lie in brick b2k+2 because then the τa-match in σ that starts in the first cell

of b2k+1 ends at cell 2(k + 1)a which means that cell 2(k + 1)a would be labeled with

a y and satisfy Case I of our definition of Jτa which would violate our assumption

that (B, σ) is fixed point of Jτa . Thus it must be the case that brick b2k+3 starts at

cell 2(k + 1)a+ 1. But then there must be a τa-match in σ contained in the cells of

bricks b2k+2 and b2k+3 which would imply that there is a τa-match in σ starting at cell

2ka+ 3 which violates our assumption in this case. Hence j > 2(k + 1)a+ 1 which

implies that both σj−2 and σj−1 are greater than σj = i. But then there could be no

τa-match in σ which contains both σj−1 and σj because the only role that i could play

in τa-match in σ would be 1 under those circumstances.
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It follows that if we remove the elements in A(0) from the first (k + 1)a− 1

columns plus the bottom element of column (k + 1)a, then (B′, σ′), where B′ =

(b2k+2 − (2a − 1), b2k+3, . . . , bt) and σ′ = red(σ2(k+1)a . . . σn), will be a fixed point of

Jτa of size n− (2(k+ 1)a) + 1. Note that in such a situation, we will have
(
n−(k+1)a−1

(k+1)a−1

)
ways to choose the elements of that lie in the top rows of the first (k+ 1)a− 1 columns

of A(O). Note that the powers of y coming from the bricks b1, . . . , b2k is yka and the

powers of y coming from bricks b2k+1 and b2k+2 is −ya−1. It follows that the elements

in Subcase (2.A) contribute

−
b(n−2a)/(2a)c∑

k=0

(
n− (k + 1)a− 1

(k + 1)a− 1

)
y(k+1)a−1Uτa,n−(2(k+1)a)+1(y)

to Uτa,n(y).

Subcase (2.B). There is a k ≥ 0 such that there are τa-matches in σ starting at

cells 1, 3, 2a + 1, 2a + 3, . . . , 2(k − 1)a + 1, 2(k − 1)a + 3, 2ka + 1, 2ka + 3, there is

no τa-match in σ starting at cell 2(k + 1)a + 1, 2 = b1 = b3 = · · · = b2k−1 = b2k+1,

2a− 2 = b2 = b4 = · · · = b2k+2, and b2k+3 ≥ 2.

Here, we claim that {1, . . . , (k + 1)a+ 2} = {σ1, σ3, . . . , σ2(k+1)a+1, σ2(k+1)a+2}.

That is, if one considers the diagram at the bottom of Figure 3.19, then the elements

in the bottom row are 1, 2, . . . , (k+ 1)a+ 1, reading from left to right, and the element

at the top of column (k + 1)a+ 1 is equal to (k + 1)a+ 2. If this is not the case, then

let

i = min({1, . . . , (k + 1)a+ 2} − {σ1, σ3, . . . , σ2(k+1)a+1, σ2(k+1)a+2}).

This means σ2(k+1)a+2 > i and, hence one can see by the relative order of the elements

in the first (k + 1)a+ 1 columns of A(O) that i can not lie in the first (k + 1)a+ 1
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columns. Then the question is for what j is σj = i. First we claim that it cannot

be that σ2(k+1)a+3 = i. That is, in such as situation, σ2(k+1)a+2 > σ2(k+1)a+3. Now it

cannot be that σ2(k+1)a+2 and σ2(k+1)a+3 lie in brick b2k+3 because then the τa-match

in σ that starts in the first cell of b2k+2 ends at cell 2(k + 1)a+ 2 which means that

cell 2(k + 1)a+ 2 would be labeled with a y and satisfy Case I of our definition of Jτa

which would violate our assumption that (B, σ) is fixed point of Jτa . Thus it must

be the case b2k+3 = 2 that brick b2k+4 starts at cell 2(k + 1)a + 3. But then there

must be a τa-match in σ contained in the cells of bricks b2k+3 and b2k+4 which would

imply that there is a τa-match in σ starting at cell 2(k + 1)a+ 1 which violates our

assumption in this case. Hence j > 2(k + 1)a+ 3 which implies that both σj−2 and

σj−1 are greater than σj = i. But then there could be no τa-match in σ which contains

both σj−1 and σj because the only role that i could play in τa-match in σ would be 1

under those circumstances.

It follows that if we remove the elements in A(0) from the first (k + 1)a + 1

columns plus the bottom element of column (k + 1)a+ 2, then (B′, σ′), where B′ =

(b2k+3 − 1, b2k+4, . . . , bt) and σ′ = red(σ2(k+1)a+2 . . . σn, will be a fixed point of Jτa of

size n− (2(k + 1)a)− 1. Note that in such a situation, we will have
(
n−(k+1)a−2

(k+1)a

)
ways

to choose the elements of that lie in the top rows of the first (k + 1)a − 1 columns

of A(O). Note that the powers of y coming from the bricks b1, . . . , b2k2 is y(k+1)a. It

follows that the elements in Subcase (2.B) contribute

b(n−2a−2)/(2a)c∑
k=0

(
n− (k + 1)a− 2

(k + 1)a

)
y(k+1)aUτa,n−(2(k+1)a)−1(y)

to Uτa,n(y).
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Therefore, the recursion for the polynomials Uτ,n(y) is given by

Uτ,n(y) = (1− y)Uτ,n−1(y)

−
b(n−2a)/(2a)c∑

k=0

(
n− (k + 1)a− 1

(k + 1)a− 1

)
y(k+1)a−1Uτa,n−(2(k+1)a)+1(y)

+

b(n−2a−2)/(2a)c∑
k=0

(
n− (k + 1)a− 2

(k + 1)a

)
y(k+1)aUτa,n−(2(k+1)a)−1(y).

This concludes the proof of Theorem 12.

3.2.4 The remaining cases of τ = 152634, τ = 152436, τ = 162435,

and τ = 142635

Our results in Sections 3.2.2 and 3.2.3 allows us to compute NMτ (t, x, y) in

two cases where τ = τ1 . . . τ6 and τ1 = 1, τ3 = 2, and τ5 = 3. Namely, the case where

τ = 142536 is consider in Theorem 11 and the case where τ = 162534 is a special case

of Theorem 12 where a = 3. All such permutations have des(τ) = 2. We now consider

the other four cases where τ = 152634, τ = 152436, τ = 162435, and τ = 142635.

Case τ = 152634.

Let τ = 152634, we will show that the polynomials

UΓ,n(y) =
∑

O∈OΓ,n,JΓ(O)=O

sgn(O)W (O)

satisfy the following properties:

1. Uτ,1(y) = −y, and
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2. for n ≥ 2,

Uτ,n(y) = (1− y)UΓ,n−1(y)

+

bn−2
4 c∑

k=1

(−1)ky2k(2k − 1)!!

(
n− 2k − 2

2k

)
Uτ,n−4k−1(y),

where (2k−1)!! is the double factorial given by (2k−1)!! = 1·3 · · · (2k−3)·(2k−1).

Again, it is easy to see that when n = 1, Uτ,1(y) = −y. For n ≥ 2, let O = (B, σ)

be a fixed point of IΓ where B = (b1, . . . , bk) and σ = σ1 · · · σn. By the same argument

as before, it must be the case that 1 is in the first cell of O and 2 must be in either

cell of 2 or cell 3 in O.

Case I. 2 is in cell 2 of O.

If 2 is in the second cell of O then, similar to Case 1 in the proof of Theorem 11, there

are two possibilities, namely, either (i) 1 and 2 are both in the first brick b1 of (B, σ)

or (ii) brick b1 is a single cell filled with 1 and 2 is in the first cell of the second brick

b2 of O. In either case, we can remove cell 1 from O and subtract 1 from the elements

in the remaining cells, we will obtain a fixed point O′ of JΓ in OΓ,n−1. So the fixed

points in this case will contribute (1− y)UΓ,n−1(y) to UΓ,n(y).

Case II. 2 is in cell 3 of O.

On the other hand, if 2 is in the third cell of O = (B, σ) then we know that 2 must be

in the first cell of brick b2 and there must be a 152634-match starting from cell 1 that

involves the cells of the first two bricks. Furthermore, it must be the case that brick

b2 has at least 4 cells and that 3 is in cell 5 of O. Unlike the previous two cases, the

152634-match that starts from cell 1 of O implies that σ6 < σ2 < σ4 so we cannot have

a 152634-match starting from the third cell of O. Thus, the next possible τ -match of
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O can only start from cell 5. We now have two subcases.

Subcase II.a. There is no τ -match in O starting at cell 5.

By the same argument presented in the proof of Theorem 12, it must be the case that

σ6 = 4 and we have
(
n−4

2

)
ways to choose two numbers to fill in the cells 2 and 4 of

O. We can now remove the first five cells of O to obtain a fixed point O′ of length

n− 5. Hence, the contribution of Subcase II.a to Uτ,n is −y2
(
n−4

2

)
Uτ,n−5(y).

Subcase II.b. There is a τ -match in O starting at cell 5.

In this case, we cannot have a 152634-match starting from cell 7 since σ8 > σ10 (due

to the match starting from cell 5). Therefore, the next possible match can only start

from cell 9 in O. If there is no 152634-match in O starting from cell 9, then by the

same argument of subcase 2.b in Section 4, we must have σ2k−1 = k for 1 ≤ k ≤ 5 and

σ10 = 6. We have
(
n−6

4

)
ways to fill in the cells 2, 4, 6, and 8 in O. In addition, the

two 152634-matches that start form cell 1 and 5 in O imply that the entries in cells

2, 4, 6, and 8 must follow the Hasse diagram given in the left picture of Figure 3.20.

Hence, there are 3 ways to arrange these chosen number so that the matches in the

initial segment are satisfied. We can then remove the first nine cells of O and adjust

the remaining entries to obtain a fixed point of length n− 9. This process, as showed

above, is reversible and thus, the contribution of this case to Uτ,n is 3y4
(
n−6

4

)
Un−9(y).

In the general case, suppose there are k 152634-matches starting from cells

1, 5, 7, . . . , 4k − 3 but there is no 152634-match starting from cell 4k + 1. Similar to

the case for τ = 162534 before, we know that within the first 4k + 2 cells of O, all the

numbers from {1, 2, . . . , 2k+1} must occupy the odd position cells and σ4k+2 = 2k+2.

Therefore, we will choose 2k entries to complete the initial segment and remove the

first 4k + 1 cells to obtain a fixed point of Oτ,n−6k−1. Hence, for any given value of k,
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the contribution of fixed points in this case is (−1)ky2kMk

(
n−2k−2

2k

)
Uτ,n−4k−1(y), where

Mk is the number of ways to arrange the chosen numbers into the even cells of the

initial segment such that the 152634-matches between the cells are satisfied. This

number in turn is given by the number of linear extensions of the right diagram in

Figure 3.20 .

σ4k-6

σ4k-8 σ2

σ4

σ8

σ10σ4k-2

σ4k-4σ4k

σ4k-10 σ6

σ12σ2

σ4

σ8

σ6

Figure 3.20: The ordering of {σ2, σ4, . . . , σ4k} for k = 2 (left) and for general
k (right).

To count the number of linear extensions for the right diagram in Figure 3.20,

we first observe that σ4k−2 is smaller than every other entries and thus, it must be the

case that σ4k−2 = min{σ2, σ4, . . . , σ4k}. Next, we have 2k − 1 choices for the value of

σ4k. For each of such choice, we then have Mk−1 ways to arrange the remaining entries

in to the Hasse diagram. Thus, the recursion for Mk is given by Mk = (2k − 1)Mk−1.

From this recursion, it is easy to see that

Mk = (2k − 1)(2k − 3) · · · 5 · 3 = (2k − 1)!!.

Hence, the total contribution of Case II is

bn−2
4 c∑

k=1

(−1)ky2k(2k − 1)!!

(
n− 2k − 2

2k

)
Uτ,n−4k−1(y).
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Combining with the factor from Case I, we have proved the following recursion for

the polynomials Uτ,n(y) in the case τ = 152634.

Uτ,n(y) = (1− y)UΓ,n−1(y) +

bn−2
4 c∑

k=1

(−1)ky2k(2k − 1)!!

(
n− 2k − 2

2k

)
Uτ,n−4k−1(y).

Case τ = 152436.

Let τ = 152436, we want to derive a recursion for the polynomials

UΓ,n(y) =
∑

O∈OΓ,n,JΓ(O)=O

sgn(O)W (O),

where the sum is over all the fixed point of the involution Jτ . Let O = (B, σ) ∈ Oτ,n

be a fixed point Jτ . Following the previous cases, it is still the case that Uτ,1(y) = −y.

In addition, similar to the above cases, it is easy to see that σ1 = 1 and that either

σ2 = 2 or σ3 = 2. As seen before, if σ2 = 2 then the contribution of the fixed points in

this case to Uτ,n(y) is (1− y)Uτ,n−1(y).

If σ3 = 2, then it must be the case that the first brick b1 in O has exactly

two cells, the second brick b2 starts with 2 and has at least four cells, and there is a

152436-match that starts from cell 1 and involves the first six cells of O. In addition,

we also know that σ5 = 3. Similar to the case τ = 152634, then 152436-match starting

from cell 1 implies that σ4 > σ6 so there can be any 152436-match that starts from

cell 4. Thus, the next possible τ -match must start from cell 5 in O.

Case A. There is no τ -match in O starting at cell 5.

In this case, following the same argument in Subcase 2.1 from the proof of Theorem

11, we can see that the first five integers must belong to the first five cells in O, i.e.
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{1, 2, 3, 4, 5} = {σ1, σ2, σ3, σ4, σ5} and that σ6 = 6. Furthermore, the 152436-match

that starts from cell 1 in O implies that σ2 = 5 and σ4 = 4. Therefore, just like in the

proof of Theorem 11, we can remove that first five cells of O to obtain a fixed point

of length n− 5 and thus, the contribution of this case to Uτ,n(y) is −y2Uτ,n−5(y).

Case B. There is a τ -match in O starting at cell 5.

In this case, the second τ -match implies that σ8 < σ10 so there cannot be any 152436-

match starting from cell 7 in O so the next possible match must start from cell 9.

If there is no τ -match in O starting from cell 9, then by the previous argument,

we can see that the first nine integers must belong to the first nine cells of O and

that σ10 = 10. We can then remove the first nine cells of O and subtract 9 from the

remaining entries to obtain a fixed point if length n− 9. The contribution of this case

is then given by y4S2Uτ,n−9(y) where S2 is the number of ways to arrange the integers

{1, 2, . . . , 9, 10} into the first ten cells of O such that the two τ -matches in the initial

segment are satisfied.

Just like the previous sections, we will find S2 through the number of linear

extensions of a certain Hasse diagram. In this case, it is the diagram to the left of

Figure 3.21 below. It is easy to see that σ1 = 1, σ3 = 2, σ5 = 3, σ6 = 9, and σ10 = 10

so we can simplify this diagram into the one to the right of the same figure. Hence,

S2 =
(

5
2

)
= 10. Thus, the contribution of this case to Uτ,n(y) is 10y4Uτ,n−9(y).

σ1

σ2

σ4 σ8

σ6

σ3 σ5 σ7 σ9

σ10 σ2

σ4 σ8

σ7 σ9

Figure 3.21: The ordering of {σ1, σ2, . . . , σ10} in S2.

In general, suppose there are k 152436-matches starting from cells 1, 5, 9, . . . 4k−
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3 but there is no τ -match starting from cell 4k+ 1. Similar to the proof of Theorem 11,

we first claim that the first 4k+1 integers belong to the first 4k+1 cells and 4k+2 must

be in cell 4k + 2 in O. To see this, let m = min ({1, 2, . . . , 4k + 1} − {σ1, . . . , σ4k+1) .

We know that m cannot be more than 2 cells away from cell 4k+ 1 in O. Furthermore,

m cannot be in cell 4k + 2 since the fact that τ ends with 6, the largest entry, implies

that we need σ4k+2 ≥ 4k + 2 > m in order to satisfy the overlapping τ -matches in

the initial segment. Thus, the only possible place for d is cell 4k + 3 in O. This cell

4k + 3 then must start a new brick and there is a decrease between cells 4k + 2 and

4k + 3. In order to prevent combining the bricks, we need a τ -match that involves

both cells 4k+ 2 and 4k+ 3. However, such τ -match can only start from cell 4k+ 1, a

contradiction. The fact that σ4k+2 = 4k + 2 also follows from a similar argument.

Now if we remove the first 4k + 1 cells of O and subtract 4k + 1 from the

remaining numbers, then we will obtain a fixed point O′ of length n − 4k − 1. As

showed before, this process is reversible and thus the contribution of the fixed points

in this case is (−1)ky2kSkUτ,n−4k−1(y), where Sk is the number of ways to arrange the

chosen numbers into the even cells of the initial segment such that the 152436-matches

between the cells are satisfied. In this case, it is given by the Sk, the number of linear

extensions of the top Hasse diagram in Figure 3.22. Therefore, the contribution of

fixed points in this case to Uτ,n(y) is (−1)ky2kSkUτ,n−4k−1(y). Hence, we obtain the

recursion for the polynomials Uτ,n(y) for the case τ = 152436 as follows.

Uτ,n(y) = (1− y)UΓ,n−1(y) +

bn−2
4 c∑

k=1

(−1)ky2kSkUτ,n−4k−1(y).

To complete the recursion of U152436,n(y), we now need to compute Sk, which is

given by the number of linear extensions of the top diagram in Figure 3.22. It is easy
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σ1

σ2

σ4 σ8

σ6

σ3 σ5 σ7 σ9

σ10

σ12

σ11 σ13

σ16

σ14

σ15 σ17 σ4k-1 σ4k+1

σ4k+2

σ4k

σ4k-2

s1 s3 s5 s7 s9 s11 s13

s2

s4 s8 s12 s16

s6 s10 s14

s4k-7 s4k-5 s4k-3

s4k-6

s4k-4 s4k

s4k-2

Figure 3.22: The ordering of {σ1, σ2, . . . , σ4k+2} in Sk (top) and its simplified
structure (bottom).

to see that this diagram can be simplified in to the bottom Hasse diagram in the same

figure. Unlike the previous cases, instead of a closed formula, we can only obtain a

recursion for the number of linear extensions Sk. In [40], Pan and Remmel considered

the generalized form of the bottom diagram in Figure 3.22 where we allow the first

vertical line segment to have more than one vertices. Figure 3.23 below describes this

generalized diagram whose number of linear extensions is defined by the authors of

[40] as L(k, n) for integers n ≥ 1 and k ≥ 3. They showed that L(k, n) satisfy the

following recursion

L(p, n) =


(
p+2

3

)
for n = 1∑p−1

j=0(p− j)(j + 1)L(3 + j, n− 1) for all n ≥ 2.

s0 s1

s2

s3

s4

s5

s6

s8

s7 s9

s10

s12

s4n-3

s4n-4

s4n-5

s4n-6

s4n-7

s4n-8

t1

t2

tp

tp-1

Figure 3.23: The generalized diagram for L(k, n).

In our case, it is easy to see that Sk = L(3, k − 1) and thus we obtain the
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following recursion for Sk as follows.

Sk =



1 for n = 1(
5
3

)
= 10 for n = 2

3L(3, k − 2) + 4L(4, n− 2) + 3L(5, n− 2) for all n ≥ 2.

(3.1)

The recursion in (3.1) allows us to compute the first few values of Sk. They are given

in Table 3.4 below.

Table 3.4: The first eight values of Sk.

k 1 2 3 4 5 6 7 8
Sk 1 10 215 7200 328090 18914190 1318595475 107813147200

This concludes the proof for the case τ = 152436

Case τ = 162435

Suppose τ = 162435, we will prove that the polynomials

UΓ,n(y) =
∑

O∈OΓ,n,JΓ(O)=O

sgn(O)W (O)

satisfy the following recursion: Uτ,1(y) = −y, and for n ≥ 2,

Uτ,n(y) = (1− y)UΓ,n−1(y) +

bn−2
4 c∑

k=1

(−y)k
(
n− 2k − 3

2k − 1

)
Uτ,n−4k(y)

k∏
i=1

(4i− 3).

Again, it is easy to see that when n = 1, Uτ,1(y) = −y. When n ≥ 2, using the

same arguments as the previous sections, we can see that in any given fixed point
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O = (B, σ) of the involution, we always have σ1 = 1 and either σ2 = 2 or σ3 = 2.When

σ2 = 2, namely 2 is in the second cell of O, we obtain the contribution (1− y)Uτ,n−1(y)

to Uτ,n(y).

When σ3 = 2, we know that 2 must start the second brick b2 and it must

be the case that the first brick b1 has exactly two cells and there is a 162435-match

starting from cell 1 in O. Similar to the argument from the cases τ = 152634 and

τ = 152436 before, we can see that the next possible 162435-match must start from

cell 5 in O. If there is no 162435-match starting from cell 5, then it must be the case

that σ1 = 1, σ2 = 4, σ3 = 2, σ5 = 3 and σ6 = 5. In this case, we will choose an integer

to fill in cell 4 and remove the first 4 cells to obtain a fixed point of length n− 5. It is

easy to see that this process also is reversible and thus the contribution in this case to

Uτ,n(y) is −y(n− 5)Uτ,n−5(y).

In general, we can assume there are k 162435-matches starting at the cells

1, 5, 9, . . . , 4k − 3 but there is no τ -match starting from cell 4k + 1 in O. Similar to

the previous case, our scheme here is to fix some entries into the initial 4k + 2 cells

and then remove the first 4k + 1 cells to obtain a fixed point of length n− 4k − 1.

However, unlike the cases that τ ends with 6 where we can show that the first 4k + 2

integers must belong to the first 4k + 2 cells or the cases that τ ends with 4 and we

have σ2i−1 = i, for all 1 ≤ i ≤ k + 1 and σ4k+2 = 2k + 2, when τ ends with 5, none

of the above properties hold. However, we will be able to show the following fact

regarding the entries in the initial 4k + 2 cells of O.

Lemma. Let O be a fixed point of length n of the involution J162435 and suppose that

there are 162435-matches in the cells of O starting from cells 1, 5, 9, . . . , 4k − 3 but

there is no τ -match starting from cell 4k + 1 in O. Then
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(i) The integers in {1, 2, . . . , 2k+ 2, 2k+ 3} belong to the first 4k+ 2 cells of O, and

(ii) If σ4k+2 = d then d is smaller than every elements in O to its right.

Proof: For (i), letm = min ({1, 2, . . . , 2k, 2k + 1 } − {σ1, σ2, . . . , σ4k+2}). Then

m cannot be in the middle of brick bk+1 since there is already a descent within this

brick locating at cell 4k due to the 162435-match staring from cell 4k − 3 in O. In

addition, this m cannot be in the middle of any brick bj for j > k + 1 for m will then

play the role of 1 in any match that lies to the right of cell 4k + 2 and involve m.

This shows that m must be at the start of some brick bj for j > k + 1 and the only

possibility is that m starts brick bk+2 since the initial elements of the bricks form an

increasing sequence. Now recall that m cannot be more than three cells away from

cell 4k + 1 and thus, it must be the case that brick bk+1 has exactly four cells and

there is a decrease between last(bk+1) and first(bk+2). Since O is a fixed point of the

involution, in order to prevent combining the bricks, there must be a 162435-match

that is contained in the cells of the two brick bk+1 and bk+2 and such match can start

from cell 4k − 1 or cell 4k + 1 in O. It is easy to see that both cases are impossible

since a 162435-match starting from cell 4k − 3 will prevent one starting from cell

4k − 1, and we have already assumed that there is no τ -match in O starting from cell

4k + 1. Hence, all integers {1, 2, . . . , 2k + 2, 2k + 3} must be in the initial 4k + 2 cells

of O.

For (ii), let c = min{i < d = σ4k+2 : σj = i for some j > 4k + 2} and suppose

that σh = c. We first observe that c cannot be in the same brick bk+1 as d since

there already is a decrease in bk+1 occurring at cell 4k. Furthermore, since c is the

smallest number to the right of cell 4k + 2, c cannot be in the middle of any brick

and thus, it must be at the start of a brick, which in this case is bk+3. This case is
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also impossible since c < d ≤ last(bk+1) so in order to prevent combining the bricks,

there must be a 162435-match that involves cells h− 1 and h. However, since c is the

smallest number to the right of cell 4k+ 2, it will play the role of 1 in any such match,

a contradiction.

Knowing the previous result, we will now fill in the remaining cells of the initial

4k + 2 cells and there are
(
n−2k−3

2k−1

)
ways to do that. Lastly, we will remove the first

4k + 1 cells to obtain a fixed point of length n− 4k − 1. In total, for any given value

of k, the contribution of the fixed points in this case is (−y)k
(
n−2k−3

2k−1

)
TkUτ,n−4k−1(y)

where Tk is the number of ways to arrange the numbers in the initial segment such

that the 162435-matches between the bricks are satisfied.

Our last task for this proof is to count the number of such arrangements. Let

D be the set of 4k+ 2 integers chosen for the initial segment and label the elements of

the set as D = {d1 < d2 < d3 < . . . < d4k+1 < d4k+2}. As usual, we let σi denote the

entry in cell i of O. It is easy to see that between any two consecutive 162435-matches,

the number that plays the role of 6 in the latter match plays the role of 5 in the

former. Thus, σ2, which plays the role of 6 in the very first 162435-match, will be

the greatest number in the initial segment. Similarly, σ6, which plays the role of

5 in the first match and that of 6 in the second match, will be the second largest

number. On the other hand, σ1 < σ3 < σ5 are the three smallest number in the

initial segment. Hence, when putting the numbers in D into the cells, it must be

the case that σ1 = d1, σ2 = d4k+2, σ3 = d2, σ5 = d3, and σ6 = d4k+1. Since there is

no restriction between σ4 and the rest of the initial segment, we will pick one of

the remaining entries of D to fill in this cell with 4k − 3 choices for this. Once we

make our choice for σ4, says σ4 = di, we can place the three smallest numbers of
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D1 = D\{d1, d2, d3, di, d4k+1, d4k+2} into cells 7 and 9, and place the greatest number

in D1 in cell 10. We then make another choice for σ8 and repeat the process with the

remaining set of numbers. Recursively, we can see that the number of ways to arrange

the numbers in D into the initial segment is
∏k

i=1(4k− 3). Hence, Tk =
∏k

i=1(4k− 3).

In conclusion, for n ≥ 2, the recursion of Uτ,n(y) is given by

Uτ,n(y) = (1− y)UΓ,n−1(y) +

bn−2
4 c∑

k=1

(−y)k
(
n− 2k − 3

2k − 1

)
Uτ,n−4k(y)

k∏
i=1

(4i− 3).

Case τ = 142635

The same proof for case τ = 162435 also works for the case τ = 142635 except

we now have a different number of ways to arrange the chosen entries of D into the

initial 4k + 2 cells such that the 142635-matches between the bricks are satisfied. In

this case, when n ≥ 2, the recursion for Uτ,n(y) is given by

Uτ,n(y) = (1− y)UΓ,n−1(y) +

bn−2
4 c∑

k=1

(−y)k
(
n− 2k − 3

2k − 1

)
Uτ,n−4k(y)Lk,

where Lk is the number of linear extensions given by the Hasse diagram in Figure 3.24

below.

t1

u1 u2

t2

s1 s2 s3

t3

u3

s4 s5

t4

s6 s7 s2k-2 s2k-1

tk+1

uk-1

tk tk+2

Figure 3.24: The ordering of the first 4k + 2 cells of O for τ = 142635.

In [40], Pan and Remmel obtained a more generalized result for the diagram in
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Figure 3.23 by allowing each side of the squares in the diagram to contain any number

of vertices. Suppose we have n squares in our diagram and let a1, . . . an, an+1 be the

number of vertices in each vertical line segment, not counting the endpoints. Similarly,

let b1, . . . bn and c1, . . . , cn be the number of internal vertices on the top and bottom hor-

izontal line segments, respectively. This diagram is illustrated in Figure 3.25. Denote

the number of linear extension of such diagram by L(a1, . . . , an+1; b1, . . . , bn; c1, . . . , cn).

The authors of [40] showed that the number of linear extensions of the Hasse diagram

in Figure 3.25 satifies the recursion

L(a1, . . . , an+1; b1, . . . , bn; c1, . . . , cn)

=

a1+b1+1∑
k=0

(
a2 + k

k

)(
a1 + b1 + c1 + 1− k

c1

)
L(a2 + k, . . . , an+1; b2, . . . , bn; c2, . . . , cn).

(3.2)

{a1 {a2 {a3 {a4 }an }an+1

{ b1 { b2 { b3 { b4

{

c1

{

c2

{

c3

{

c4

Figure 3.25: The Hasse diagram for L(a1, . . . , an+1; b1, . . . , bn; c1, . . . , cn).

Knowing the result in (3.2), our goal now will be to transform the Hasse diagram

of Figure 3.24 into that of Figure 3.25 with c1 = · · · cn = 1 and a1 = · · · = an+1 = 0.

To this end, we will try to “shuffle" the vertices u1, u2, . . . , uk of Figure 3.24 into the

intervals [t2, t3], [t3, t4], . . . , [tk−1, tk], and [tk, tk+2]. Starting with u1, it is easy to see

that we can put this vertex in to any of the interval given by [t2, t3], . . . , [tk−1, tk], and

[tk, tk+2]. Let i1 = m denotes the fact that we insert u1 into the interval that starts by

tm for 2 ≤ m ≤ k. Consequently, this increase the value of bm by 1. Similarly, we make
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a choice to insert u2 into one of the intervals [t3, t4], . . . , [tk, tk+2] by choosing a value

for i2 between 3 and k. Again, if i2 = h then the number of internal vertices of the

interval [th, th+1] will be increased by 1. In general, for any sequence (i1, i2, . . . , ik−1)

with j + 1 ≤ ij ≤ k, we can transform the Hasse diagram of Figure 3.24 into a special

case of the Figure 3.25 where a1 = . . . = ak = 0, c1 = . . . = ck−1 = 1, and bj equals the

number of vertices u’s shuffled into the upper horizontal interval [tj, tj+1]. Lastly, for

2 ≤ j ≤ k − 1, within each horizontal line segment [tj, tj+1] with bj internal vertices,

there are bj ! ways to rearrange the entries; whereas in the interval [tk, tk+2] with bk + 2

vertices, there are
(
bk+2

2

)
(bk + 2)! = (bk+2)!

2
way to rearrange the entries. Therefore, we

can express Lk in terms of L(a1, . . . , an+1; b1, . . . , bn; c1, . . . , cn) as follows.

Lk =
k∑

i1=2

· · ·
k∑

ik−2=k−1

k∑
ik−1=k

(
(bk + 2)!

2

k−1∏
i=1

bi!

)
L(0, . . . , 0; 0, b1, b2, . . . , bk−1; 1, . . . , 1)

where for each 1 ≤ j ≤ k,

bj =

j−1∑
t=1

χ(it = j).

Here, for any statement A, χ(A) is the indicator function given by χ(A) = 1 if A is

true and χ(A) = 0 if A is false.

Again, we can use Mathematica to compute the first few terms of Lk. These

values are given in Table 3.5 below.

Table 3.5: The first eight values of Lk.

k 1 2 3 4 5 6 7 8
Lk 1 9 210 8691 534474 44281890 4650892884 594362020995

The majority of the results presented in this chapter is based on [5], an
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unpublished paper by Remmel and the dissertation author. However, the last part of

the chapter consists of new material on computing NMτ (t, x, y) in the other four cases

where τ = τ1 . . . τ6 and τ1 = 1, τ3 = 2, and τ5 = 3, in which the dissertation author is

the main investigator.



Chapter 4

Refinements of the c-Wilf

equivalent relation

The main goal of this chapter is to study refinements of the c-Wilf equiva-

lence relation. For any permutation statistic stat on permutations and any pair of

permutations α and β in Sj, we say that α is stat-c-Wilf equivalent to β if for all

n ≥ 1, ∑
σ∈NMn(α)

xstat(σ) =
∑

σ∈NMn(β)

xstat(σ).

More generally, if stat1, . . . , statk are permutations statistics, then we say that α and

β are (stat1, . . . , statk)-c-Wilf equivalent if for all n ≥ 1,

∑
σ∈NMn(α)

k∏
i=1

x
stati(σ)
i =

∑
σ∈NMn(β)

k∏
i=1

x
stati(σ)
i .

The first question is whether there are interesting examples of stat-c-Wilf

equivalent permutations. The answer is yes. There are a number of such examples

in the case where stat(σ) is either inv(σ), the number of inversions of σ, or coinv(σ),

131



132

the number of co-inversions of σ. Here if σ = σ1 . . . σn ∈ Sn, then

inv(σ) = |{(i, j) : 1 ≤ i < j ≤ n & σi > σj}| and

coinv(σ) = |{(i, j) : 1 ≤ i < j ≤ n & σi < σj}|.

Since for any permutation σ ∈ Sn, inv(σ) + coinv(σ) =
(
n
2

)
, it follows that

∑
σ∈NMn(α)

xinv(σ) =
∑

σ∈NMn(β)

xinv(σ).

if and only if ∑
σ∈NMn(α)

xcoinv(σ) =
∑

σ∈NMn(β)

xcoinv(σ).

Thus we will only consider inv-c-Wilf equivalence. It turns out that there are a large

number of examples of α and β which are inv-c-Wilf equivalent when α and β are

minimal overlapping permutations.

We say that a permutation τ ∈ Sj where j ≥ 3 has the minimal overlapping

property, or is minimal overlapping, if the smallest i such that there is a permutation

σ ∈ Si with τ -mch(σ) = 2 is 2j−1. This means that in any permutation σ = σ1 . . . σn,

any two τ -matches in σ can share at most one letter which must be at the end of the

first τ -match and the start of the second τ -match. For example, τ = 123 does not have

the minimal overlapping property since τ -mch(1234) = 2 and the τ -match starting

at position 1 and the τ -match starting at position 2 share two letters, namely, 2 and

3. However, it is easy to see that the permutation τ = 132 does have the minimal

overlapping property. That is, the fact that there is an ascent starting at position

1 and descent starting at position 2 means that there cannot be two τ -matches in
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a permutation σ ∈ Sn which share two or more letters. If τ ∈ Sj has the minimal

overlapping property, then the shortest permutations σ such that τ -mch(σ) = n will

have length n(j − 1) + 1. Thus, we let MPτ,n(j−1)+1 be the set of permutations

σ ∈ Sn(j−1)+1 such that τ -mch(σ) = n. We shall refer to the permutations in

MPn,n(j−1)+1 as maximum packings for τ . Then we let mpτ,n(j−1)+1 = |MPτ,n(j−1)+1|

and

mpτ,n(j−1)+1(p, q) =
∑

σ∈MPτ,n(j−1)+1

qinv(σ)pcoinv(σ).

Duane and Remmel [16] proved the following theorem about minimal overlap-

ping permutations.

Theorem 13. If τ ∈ Sj has the minimal overlapping property, then

∑
n≥0

tn

[n]p,q!

∑
σ∈Sn

xτ -mch(σ)pcoinv(σ)qinv(σ) =

1

1− (t+
∑

n≥1
tn(j−1)+1

[n(j−1)+1]p,q !
(x− 1)nmpτ,n(j−1)+1(p, q))

.

They also proved the following theorem.

Theorem 14. Suppose that τ = τ1 . . . τj where τ1 = 1 and τj = s, then

mpτ,(n+1)(j−1)+1(p, q) =

pcoinv(τ)qinv(τ)p(s−1)n(j−1)

[
(n+ 1)(j − 1) + 1− s

j − s

]
p,q

mpτ,n(j−1)+1(p, q)

so that

mpτ,(n+1)(j−1)+1(p, q) =
(
pcoinv(τ)qinv(τ)

)n+1
p(s−1)(j−1)(n+1

2 )
n+1∏
i=1

[
i(j − 1) + 1− s

j − s

]
p,q

.
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An immediate consequence of Theorems 13 and 14 is the following theorem.

Corollary 15. Suppose that α = α1 . . . αj and β = β1 . . . βj are permutations in Sj

such that α1 = β1 = 1, αj = βj = s, inv(α) = inv(β), and α and β have the minimal

overlapping property. Then

∑
n≥0

tn

[n]q!

∑
σ∈Sn

xα-mch(σ)qinv(σ) =
∑
n≥0

tn

[n]q!

∑
σ∈Sn

xβ-mch(σ)qinv(σ).

We shall give several examples of a pair of permutations that α and β that

satisfy the hypotheses of Corollary 15 and thus are inv-c-Wilf equivalent. It is easy to

see that there are no pairs α and β satisfying the hypothesis of Corollary 15 in S4.

That is, there are only three possible pairs α and β which start with 1 and end with

the same numbers, namely,

1. α = 1342 and β = 1432,

2. α = 1243 and β = 1423, and

3. α = 1234 and β = 1324.

In each case, inv(α) 6= inv(β). However α = 14532 and β = 15342 do satisfy the

hypothesis of Corollary 15. Moreover it is easy to check that for any n > 5, any two

permutations of the form α = 1453σ2 and β = 1534σ2, where σ is the increasing

sequence 678 · · ·n, satisfy the hypothesis of Corollary 15. Thus, there are non-trivial

examples of inv-c-Wilf equivalence for all n ≥ 1. In fact, Duane and Remmel proved

an even stronger result than Theorem 14. That is, they proved the following theorem.

Theorem 16. Suppose α = α1 . . . αj and β = β1 . . . βj are minimal overlapping
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permutations in Sj and α1 = β1 and αj = βj, then for all n ≥ 1,

mpα,n(j−1)+1 = mpβ,n(j−1)+1.

If in addition, pcoinv(α)qinv(α) = pcoinv(β)qinv(β), then

mpα,n(j−1)+1(p, q) = mpβ,n(j−1)+1(p, q).

Combining Theorems 13 and 16, we have the following theorem.

Theorem 17. Suppose that α = α1 . . . αj and β = β1 . . . βj are permutations in

Sj such that α1 = β1, αj = βj, inv(α) = inv(β), and α and β have the minimal

overlapping property. Then

∑
n≥0

tn

[n]q!

∑
σ∈Sn

xα-mch(σ)qinv(σ) =
∑
n≥0

tn

[n]q!

∑
σ∈Sn

xβ-mch(σ)qinv(σ).

Theorem 17 above relaxes the condition that α and β both have to start with

1 and thus, introduces a stronger condition than just being inv-c-Wilf equivalent.

In fact, we shall say that α and β are strongly inv-c-Wilf equivalent if they satisfy

the hypotheses of Theorem 17. As an example, one can check that α = 241365 and

β = 234165 both start and end with the same element and have the same number of

inversions. Therefore, they are strongly inv-c-Wilf equivalent.

Of course, one can make similar definitions in the case where we replace c-Wilf

equivalence by Wilf equivalence. For example, we say that α is stat-Wilf equivalent

to β if for all n ≥ 1 ∑
σ∈Sn(α)

xstat(σ) =
∑

σ∈Sn(β)

xstat(σ).
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Although this language has not been used, there are numerous examples in the

literature where researchers have given a bijection φn : Sn(α)→ Sn(β) to prove that

α and β are Wilf equivalent where the bijection φn preserves other statistics. One

example of this phenomenon is the work of Claesson and Kitaev [14] who gave a

classification of various bijections between 321-avoiding and 132-avoiding permutations

according to what statistics they preserved.

Our goal now is to give examples of α and β such that α and β are des-c-Wilf

equivalent. The main result of this chapter is the following.

Theorem 18. Suppose that α = α1 . . . αj and β = β1 . . . βj are permutations in Sj

such that α1 = β1 = 1, αj = βj, des(α) = des(β), and α and β have the minimal

overlapping property. Then

∑
n≥0

tn

n!

∑
σ∈NMn(α)

xdes(σ) =
∑
n≥0

tn

n!

∑
σ∈NMn(β)

xdes(σ).

Thus α and β are des-c-Wilf equivalent.

If in addition, inv(α) = inv(β), then

∑
n≥0

tn

[n]q!

∑
σ∈NMn(α)

xdes(σ)qinv(σ) =
∑
n≥0

tn

[n]q!

∑
σ∈NMn(β)

xdes(σ)qinv(σ).

Thus α and β are (des, inv)-c-Wilf equivalent.

In order to prove this theorem, we are interested in computing generating

functions of the form

INMΓ(t, q, z) = 1 +
∑
n≥0

tn

[n]q!
INMΓ,n(q, z),
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where INMΓ,n(q, z) =
∑

σ∈NMn(Γ)

zdes(σ)+1qinv(σ), which is a q-analogue of NMΓ(t, 1, y).

We shall write

INMΓ(t, q, z) =
1

1 +
∑

n≥1 IUΓ,n(q, z) tn

[n]q !

so that

IU(t, q, z) = 1 +
∑
n≥1

IUΓ,n(q, z)
tn

[n]q!
=

1

INMΓ(t, q, z)
. (4.1)

If Γ = {τ}, we shall write INMτ (t, q, z) for INMΓ(t, q, z), INMτ,n(q, z) for INMΓ,n(q, z),

IUτ (t, q, z) for IUΓ(t, q, z), and IUτ,n(q, z) for IUΓ,n(q, z). As before, we shall use the

homomorphism method to give us a combinatorial interpretation of the right-hand

side of (4.1) which can be used to develop recursions for IUΓ,n(q, z). In the case where

α and β satisfy all the hypothesis of Theorem 18, then we will show that IUα,n(q, z)

and IUβ,n(q, z) satisfy the same recursions so that INMα(t, q, z) = INMβ(t, q, z).

Finally, there are stronger conditions on permutations α and β in Sj which

will guarantee that α and β are des-c-Wilf equivalent, (des, inv)-c-Wilf equivalent,

or (des, inv,LRmin)-c-Wilf equivalent. That is, we say that α and β are mutually

minimal overlapping if α and β are minimal overlapping and the smallest n such that

there exist a permutation σ ∈ Sn with α-mch(σ) ≥ 1 and β-mch(σ) ≥ 1 is 2j − 1.

This ensures that in any permutation σ, any pair of α-matches, any pair of β matches,

and any pair of matches where one match is an α-match and one match is a β-match

can share at most one letter. There are lots of examples of minimal overlapping

permutations α and β in Sj such that α and β are mutually minimal overlapping. For

example, we shall prove that any minimal overlapping pair of permutations α and β in

Sj which start with 1 and end with 2 are automatically mutually minimal overlapping.

We will also give examples of minimal overlapping permutations α = α1 . . . αj and
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β = β1 . . . βj in Sj such that α1 = β1 = 1 and αj = βj which are not mutually minimal

overlapping. Then we shall give a bijective proof the following theorem.

Theorem 19. Suppose α = α1 . . . αj and β = β1 . . . βj are permutations in Sj which

are mutually minimal overlapping and there is an 1 ≤ a < j such that αi = βi for all

i ≤ a, αa = βa = 1, αj = βj, and des(α) = des(β). Then

∑
n≥0

tn

n!

∑
σ∈NMn(α)

zdes(σ)uLRmin(σ) =
∑
n≥0

tn

n!

∑
σ∈NMn(β)

zdes(σ)uLRmin(σ).

Thus α and β are (des,LRmin)-c-Wilf equivalent.

If in addition, inv(α) = inv(β), then

∑
n≥0

tn

[n]q!

∑
σ∈NMn(α)

xdes(σ)qinv(σ)uLRmin(σ) =
∑
n≥0

tn

n!

∑
σ∈NMn(β)

xdes(σ)qinv(σ)uLRmin(σ).

Thus α and β are (des, inv,LRmin)-c-Wilf equivalent.

4.1 The proof of Theorem 18

In this section, we shall prove Theorem 18. To remind the readers of the result,

we shall restate the theorem below.

Theorem. Suppose that α = α1 . . . αj and β = β1 . . . βj are permutations in Sj such

that α1 = β1 = 1, αj = βj, des(α) = des(β), and α and β have the minimal overlapping

property. Then

∑
n≥0

tn

n!

∑
σ∈NMn(α)

xdes(σ) =
∑
n≥0

tn

n!

∑
σ∈NMn(β)

xdes(σ).
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Thus α and β are des-c-Wilf equivalent.

If in addition, inv(α) = inv(β), then

∑
n≥0

tn

[n]q!

∑
σ∈NMn(α)

xdes(σ)qinv(σ) =
∑
n≥0

tn

[n]q!

∑
σ∈NMn(β)

xdes(σ)qinv(σ).

Thus α and β are (des, inv)-c-Wilf equivalent.

This theorem is an immediate consequence of our next result.

Theorem 20. Let τ = τ1τ2 · · · τp ∈ Sp be such that τ1 = 1, τp = s where 2 ≤ s < p,

and τ has the minimal overlapping property. Then

INMτ (t, q, z) =
1

IUτ (t, q, z)
where IUτ (t, q, z) = 1 +

∑
n≥1

IUτ,n(q, z)
tn

[n]q!
,

with IUτ,1(q, z) = −z, and for n ≥ 2,

IUτ,n(q, z) = (1− z)IUτ,n−1(q, z)− zdes(τ)qinv(τ)

[
n− s
p− s

]
q

Uτ,n−p+1(q, z).

Proof. Let

INMΓ,n(q, z) =
∑

σ∈NMn(Γ)

zdes(σ)+1qinv(σ). (4.2)

We define a ring homomorphism θΓ on the ring of symmetric functions Λ by setting

θΓ(e0) = 1 and

θΓ(en) =
(−1)n

[n]q!
INMΓ,n(q, z) (4.3)
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for n ≥ 1. It then follows that

θΓ(H(t)) =
∑
n≥0

θΓ(hn)tn =
1

θτ (E(−t))
=

1

1 +
∑

n≥1(−t)nθΓ(en)

=
1

1 +
∑

n≥1
tn

[n]q !
INMΓ,n(q, z)

= IUΓ(t, q, z). (4.4)

Using (1.4), we can compute

[n]q!θΓ(hn) = [n]q!
∑
λ`n

(−1)n−`(λ)Bλ,n θΓ(eλ)

= [n]q!
∑
λ`n

(−1)n−`(λ)
∑

(b1,...,b`(λ))∈Bλ,n

`(λ)∏
i=1

(−1)bi

[bi]q!
INMΓ,bi(q, z)

=
∑
λ`n

(−1)`(λ)
∑

(b1,...,b`(λ))∈Bλ,n

[
n

b1, . . . , b`(λ)

]
q

`(λ)∏
i=1

INMΓ,bi(q, z). (4.5)

To give combinatorial interpretation to the right hand side of (4.5), we select a

brick tabloid B = (b1, b2, . . . , b`(λ)) of shape (n) filled with bricks whose sizes induce

the partition λ. Given an ordered set partition S = (S1, S2, . . . , S`(λ)) of {1, 2, . . . , n}

such that |Si| = bi, for i = 1, . . . , `(λ), let S1 ↑ S2 ↑ . . . S`(λ) ↑ denote the permutation

of Sn which results by taking the elements of Si in increasing order and concatenating

them from left to right. For example,

{1, 5, 6} ↑ {7, 9} ↑ {2, 3, 4, 8} ↑= 156792348.

It follows from [8] that we can interpret the q-multinomial coefficient
[

n
b1,...,b`(λ)

]
q
as

the sum of qinv(S1↑S2↑...S`(λ)↑) over all ordered set partitions S = (S1, S2, . . . , S`(λ)) of

{1, 2, . . . , n} such that |Si| = bi, for i = 1, . . . , `(λ). For each brick bi, we then fill
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the cells of bi with numbers from Si such that the entries in the brick reduce to a

permutation σ(i) = σ1 · · ·σbi in NMbi(Γ). It follows that if we sum qinv(σ) over all

possible choices of (S1, S2, . . . , S`(λ)), we will obtain

[
n

b1, . . . , b`(λ)

]
q

`(µ)∏
i=1

qinv(σ(i)).

We label each descent of σ that occurs within each brick as well as the last cell of

each brick by z. This accounts for the factor zdes(σ(i))+1 within each brick. Finally,

we use the factor (−1)`(λ) to change the label of the last cell of each brick from z

to −z. We will denote the filled labeled brick tabloid constructed in this way as

〈B,S, (σ(1), . . . , σ(`(λ)))〉.

For example, when n = 17,Γ = {1324, 1423, 12345}, and B = (9, 3, 5, 2),

consider the ordered set partition S = (S1, S2, S3, S4) of {1, 2, . . . , 19} where S1 =

{2, 5, 6, 9, 11, 15, 16, 17, 19}, S2 = {7, 8, 14}, S3 = {1, 3, 10, 13, 18}, S4 = {4, 12} and

the permutations σ(1) = 1 2 4 6 5 3 7 9 8 ∈ NM9(Γ), σ(2) = 1 3 2 ∈ NM3(Γ),

σ(3) = 5 1 2 4 3 ∈ NM5(Γ), and σ(4) = 2 1 ∈ NM2(Γ). Then the construction of

〈B,S, (σ(1), . . . , σ(4))〉 is pictured in Figure 4.1.

= 2 1σ(4)= 1 3 2(2)σ = 5 1 2 4 3(3)σ

{2,5,6,9,11,15,16,17,19} {7,8,14} {1,3,10,13,18} {4,12} 

σ(1)

2 7 814 18 1 3 1013 12 4

= 1 2 4 6 5 3 7 9 8 

65 9 1115 1916 17

z z z −z z −z z z −z z −z

Figure 4.1: The construction of a filled, labeled brick tabloid.

We can then recover the triple 〈B, (S1, . . . , S`(λ)), (σ
(1), . . . , σ(`(λ)))〉 from B and
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the permutation σ which is obtained by reading the entries in the cells from right to

left. We let OΓ,n denote the set of all filled labeled brick tabloids created this way.

That is, OΓ,n consists of all pairs O = (B, σ) where

1. B = (b1, b2, . . . , b`(λ)) is a brick tabloid of shape n,

2. σ = σ1 · · ·σn is a permutation in Sn such that there is no Γ-match of σ which

lies entirely in a single brick of B, and

3. if there is a cell c such that a brick bi contains both cells c and c+1 and σc > σc+1,

then cell c is labeled with a z and the last cell of any brick is labeled with −z.

We define the sign of each O to be sgn(O) = (−1)`(λ). The weight W (O) of O

is defined to be qinv(σ) times the product of all the labels z used in the brick. Thus,

the weight of the filled, labeled brick tabloid from Figure 4.1 above is W (O) = z11q84.

It follows that

[n]q!θΓ(hn) =
∑

O∈OΓ,n

sgn(O)W (O). (4.6)

Then we can use the same sign-reversing, weight-preserving mapping JΓ :

OΓ,n → OΓ,n that we used in the previous sections to simplify 4.6). That is, let

(B, σ) ∈ OΓ,n where B = (b1, . . . , bk) and σ = σ1 . . . σn. Then for any i, we let first(bi)

be the element in the left-most cell of bi and last(bi) be the element in the right-most

cell of bi. Then we read the cells of (B, σ) from left to right, looking for the first cell c

that belongs to either one of the following two cases.

Case I. Either cell c is in the first brick b1 and is labeled with a z, or it is in some

brick bj, for j > 1, with either
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i. last(bj−1) < first(bj) or

ii. last(bj−1) > first(bj) and there is a τ in Γ such that there is a τ -match which

ends weakly to the left of cell c and is contained in the cells of bj−1 and the cells

bj.

Case II. Cell c is at the end of brick bi where σc > σc+1 and there is no Γ-match of σ

that lies entirely in the cells of the bricks bi and bi+1.

In Case I, we define JΓ((B, σ)) to be the filled, labeled brick tabloid obtained

from (B, σ) by breaking the brick bj that contains cell c into two bricks b′j and b′′j

where b′j contains the cells of bj up to and including the cell c while b′′j contains the

remaining cells of bj. In addition, we change the labeling of cell c from z to −z. In

Case II, JΓ((B, σ)) is obtained by combining the two bricks bi and bi+1 into a single

brick b and changing the label of cell c from −z to z. If neither case occurs, then we

let JΓ((B, σ)) = (B, σ).

It follows from our results in the previous chapter that JΓ is an involution.

That is, if JΓ(B, σ) 6= (B, σ), then sgn(B, σ)W (B, σ) = −sgn(JΓ(B, σ))W (JΓ(B, σ)).

Thus, it follows from (4.6) that

[n]q!θΓ(hn) =
∑

O∈OΓ,n

sgn(O)W (O) =
∑

O∈OΓ,n,JΓ(O)=O

sgn(O)W (O). (4.7)

Hence if all permutations in Γ start with 1, then

IUΓ,n(q, z) =
∑

O∈OΓ,n,IΓ(O)=O

sgn(O)W (O). (4.8)

Thus, to compute IUΓ,n(q, z), we must analyze the fixed points of JΓ. Recall
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that we have the following characterization of the fixed points of JΓ.

Lemma 3. Let B = (b1, . . . , bk) be a brick tabloid of shape (n) and σ = σ1 . . . σn ∈ Sn.

Then (B, σ) is a fixed point of JΓ if and only if it satisfies the following properties:

(a) if i = 1 or i > 1 and last(bi−1) < first(bi), then bi can have no cell labeled z so

that σ must be increasing in bi,

(b) if i > 1 and σe = last(bi−1) > first(bi) = σe+1, then there must be a Γ-match

contained in the cells of bi−1 and bi which must necessarily involve σe and σe+1

and there can be at most k − 1 cells labeled z in bi, and

(c) if Γ has the property that, for all τ ∈ Γ such that des(τ) = j ≥ 1, the bottom

elements of the descents in τ are 2, . . . , j + 1, when reading from left to right,

then

first(b1) < first(b2) < · · · < first(bk).

In our case, we are considering the special case where Γ = {τ} where τ = τ1 . . . τp

and τ is a minimal overlapping permutation such that τ1 = 1 and τp = s where

2 ≤ s ≤ p. Thus we shall use the notation Jτ for JΓ in this case.

When n = 1, the only fixed point comes from the configuration that consists

of a single cell filled with 1 and labeled −z. Therefore, it must be the case that

IUτ,1(q, z) = −z.

For n ≥ 2, let (B, σ) be a fixed point of Jτ where B = (b1, . . . , bk) and

σ = σ1 · · ·σn. We claim that 1 is in the first cell of (B, σ). To see this, suppose 1 is in

cell c where c > 1. Hence σc−1 > σc. We claim that whenever σc−1 > σc, σc−1 and σc

must be elements of some τ -match in σ. That is, c cannot be in brick b1 because the

elements in the first brick of any fixed point must be increasing. So we assume that
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c is in brick bi where 2 ≤ i ≤ k. If c is the first cell of bi, then last(bi−1) > first(bi)

and there must be a τ -match in the cells of bi−1 and bi which involves cells c − 1

and c. If c is not the first cell of bi, then we can not have that last(bi−1) < first(bi)

since this would force σ to be increasing in the cells of bi. Thus, we must have that

last(bi−1) > first(bi) and there must be a τ -match in the cells of bi−1 and bi. This

τ -match cannot end before cell c since then c would satisfy the conditions of Case I of

our definition of Jτ which would contradict the fact that (B, σ) is a fixed point of Jτ .

Hence, cell c must be part of this τ -match. Thus if σc = 1 where c > 1, then σc−1 and

σc are elements of a τ -match in σ. But since τ starts with 1, the only role σc = 1 can

play is a τ -match is 1 and hence σc−1 and σc cannot be elements of a τ -match in σ.

Hence, σ1 = 1. We now have two cases.

Case 1. There is no τ -match in (B, σ) that starts from the first cell.

In this case, we claim that 2 must be in cell 2 of (B, σ). By contradiction, suppose 2

is in cell c where c 6= 2. For any c > 2, it is easy to see that σc−1 > 2 = σc so there is

a decrease between the two cells c− 1 and c in (B, σ). By our argument above, there

must exist a τ -match α that involves the two cells c− 1 and c. In this case, α must

include 1 which is in cell 1 because it must be the case that 1 and 2 play the role of 1

and 2 in the τ -match α, respectively. This contradicts our assumption that there is

no τ -match starting from the first cell. Hence, σ2 = 2.

In this case there are two possibilities, namely, either (i) 1 and 2 are both in

the first brick b1 of (B, σ) or (ii) brick b1 is a single cell filled with 1 and 2 is in the

first cell of the second brick b2 of (B, σ). In either case, we know that 1 is not part

of a τ -match in (B, σ). So if we remove cell 1 from (B, σ) and subtract 1 from the

elements in the remaining cells, we will obtain a fixed point (B′σ′) of JΓ in OΓ,n−1.
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Moreover, we can create a fixed point O = (B, σ) ∈ On satisfying the three

conditions of Lemma 2 where σ2 = 2 by starting with a fixed point (B′, σ′) ∈ OΓ,n−1

of JΓ, where B
′ = (b′1, . . . , b

′
r) and σ′ = σ′1 · · ·σ′n−1, and then letting σ = 1(σ′1 +

1) · · · (σ′n−1 + 1), and setting B = (1, b′1, . . . , b
′
r) or setting B = (1 + b′1, . . . , b

′
r).

It follows that fixed points in Case 1 will contribute (1 − z)IUΓ,n−1(q, z) to

IUΓ,n(q, z).

Case 2. There is a τ -match in (B, σ) that starts from the first cell.

In this case, the τ -match that starts from the first cell of (B, σ) must involve the

cells of the first two bricks b1 and b2 in (B, σ). Since there is no decrease within the

first brick b1 of (B, σ), it must be the case that the first brick b1 has exactly d cells,

where 1 < d < p is the position of the first descent in τ, and the brick b2 has at least

p− d cells. Furthermore, we can see that the brick b2 consists of exactly des(τ)− 1

decreases, positioned according to their corresponding descents in τ . We first claim

that all the integers in {1, . . . , s− 1, s} must belong to the first p cells of (B, σ). To

see this, suppose otherwise and let m = min{i : 1 ≤ i ≤ s, σk = i for some k > p}.

That is, m is the smallest integer from {1, . . . , s− 1, s} that occupies a cell k strictly

to the right of cell p in (B, σ). It follows that m is the smallest number that occupies a

cell strictly to the right of cell p in O and thus, it is the case that σk−1 ≥ s > m = σk.

Then there are three possibilities:

(i) brick b2 has more than p− d cells and m is in brick b2,

(ii) m starts some brick bj for j > 2, or

(iii) m is in the middle of some brick bj for j > 2.

We will show that each of these cases contradicts our assumption (B, σ) is a fixed
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point of JΓ.

In case (i), since σk−1 > σk, there is a decrease in brick b2 that occurs strictly

to the right of cell p. However, due to the τ -match starting from cell 1 of O, brick b2

already has des(τ)− 1 descents, the maximum number of allowed descents in a brick.

Thus, by the second property of Lemma 2, this is a contradiction.

In case (ii), since last(bj−1) = σk−1 > σk = first(bj), by Lemma 2, there must

be a τ -match that is contained in the cells of bj−1 and bj and ends weakly to the left

of cell k which contains m. Since τ is a minimal overlapping permutation, the only

possible τ -match beside from the first one that starts from cell 1 in (B, σ) must occur

weakly to the right of cell p in O. However, since m is the smallest number in the cells

to the right of cell p and τ starts with 1, any match that involves m must also start

from this cell. Thus, we can never have a τ -match in (B, σ) that involves both cells

k − 1 and k in (B, σ).

In case (iii), suppose that m occupies cell k that is in the middle of brick bj.

There are now two possibilities between the last cell of bj−1 and the first cell of brick

bj: either last(bj−1) < first(bj) or last(bj−1) > first(bj). If last(bj−1) < first(bj) then

we can simply break the brick bj after cell k − 1, contradicting the fact that (B, σ)

is a fixed point. On the other hand, if last(bj−1) > first(bj) then by Lemma 2, there

must be a τ -match that ends weakly to the left of cell k, and involves the two cells

k − 1 and k. However, by previous argument, this cannot hold.

Hence, it must be the case that all the integers {1, 2, . . . , s− 1, s} belong to

the first p cells of (B, σ). Furthermore, we only have one way to arrange these entries,

according to their respective position within the τ -match. This also implies that

σp = s. We will then choose p− s numbers and fill these numbers in the empty cells
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within the first p cells of (B, σ) such that red(σ1σ2 · · ·σp) = τ . There are
(
n−s
p−s

)
ways

to do this and keeping track of the inversions between our choice of p− s numbers

and the elements of (B, σ) which occurs after cell p, we obtain a factor of
[
n−s
p−s

]
q
from

our possible choices. Then we have to count the inversions among the first p elements

of (B, σ), which contributes a factor of qinv(τ). We notice that since τ has the minimal

overlapping property, the next possible τ -match in (B, σ) must start from cell p that

contains s. In addition, according to Lemma 2, any brick in a fixed point of the

involution can have at most des(τ)− 1 descents within the brick so there cannot be

any descents in b2 after cell p. By construction, σp = s is less than the elements which

occur to the right of cell p. Therefore, we can remove the first p − 1 cells of (B, σ)

and obtain a fixed point (B, σ′) of length n− p+ 1.

This process is also reversible. Suppose τ ∈ Sp is a minimal overlapping

permutation with τ1 = 1, τp = s, and the first descent in τ occurs at position d. Given

a fixed point (B′, σ′) of length n − p + 1 where B′ = (b′1, . . . , b
′
r) and a choice T of

p− s elements from {s+ 1, . . . , n}, we let σ∗ be the permutation of {1, . . . , s}∪T such

that red(σ∗) = τ and σ∗∗ be the permutation of {1, . . . , n} − ({1, . . . , s} ∪ T ) such

that red(σ∗) = σ′. Then if we let σ = σ∗σ∗∗ and B = (d, p − d − 1 + b′1, b
′
2, . . . , b

′
r),

then (B, σ) will be a fixed point of JΓ of length n that has τ -match starting in cell 1.

It follows that the contribution of the fixed points in Case 2 to IUτ,n(q, z) is

−zdes(τ)qinv(τ)

[
n− s
p− s

]
q

IUτ,n−p+1(q, z).
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Combining Cases 1 and 2, we see that for n ≥ 2,

IUτ,n(q, z) = (1− z)IUτ,n−1(q, z)− zdes(τ)qinv(τ)

[
n− s
p− s

]
q

IUτ,n−p+1(q, z)

which is what we wanted to prove.

It is easy to see that Theorem 18 follows immediately from Theorem 20. That

is, Theorem 20 shows that for a minimal overlapping permutation τ ∈ Sj that starts

with 1, the generating function

INMτ (t, 1, z) = 1 +
∑
n≥1

tn

n!

∑
σ∈NMn(τ)

zdes(σ)+1

depends only on s = τj and des(τ). Thus if α and β are minimal overlapping permu-

tations which start with 1 and end with s and des(α) = des(β), then INMα(t, 1, z) =

INMβ(t, 1, z) so that α and β are des-c-Wilf equivalent. Similarly, Theorem 20 shows

that for a minimal overlapping permutation τ ∈ Sj that starts with 1, the generating

function

INMτ (t, q, z) = 1 +
∑
n≥1

tn

[n]q!

∑
σ∈NMn(τ)

zdes(σ)+1qinv(σ)

depends only on s = τj, des(τ), and inv(τ). Thus if α and β are minimal over-

lapping permutations which start with 1 and end with s and des(α) = des(β) and

inv(α) = inv(β), then INMα(t, q, z) = INMβ(t, q, z) so that α and β are (des, inv)-c-

Wilf equivalent.

There are lots of examples minimal overlapping permutations α and β for

which the hypothesis of Theorem 18 apply. For example, consider n = 5. Since we are

only interested in permutations that start with 1, we know that such a permutation
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α starts with a rise. Then α cannot end in a rise since otherwise α is not minimal

overlapping. Thus α must start with 1 and end in a descent. There are no such

permutations that end in 5 and there are only two such permutations that end in 4,

namely, 12354 and 13254 and these two permutations do not have the same number

of descents. This leaves us 10 possible permutations to consider which we have listed

in the following table. For each such σ, we have list des(σ), inv(σ), and indicated

whether is minimal overlapping.

Table 4.1: The c-Wilf equivalent classes of length 5.

σ des(σ) inv(σ) Is minimal overlapping?
12453 1 1 yes
12543 2 3 yes
14253 2 3 no
15243 2 4 no
13452 1 3 yes
13542 2 4 yes
14352 2 4 yes
14532 2 5 yes
15342 2 5 yes
15432 3 6 yes

Theorem 18 tells us that all the elements in the set {13542, 14352, 14532, 15342}

are des-c-Wilf equivalent. It also shows that the same set breaks up into 2 (des, inv)-

c-Wilf equivalence classes, namely, {13542, 14352} and {14532, 15342}.

Another natural question to ask is whether the size of (des, inv)-c-Wilf equiva-

lence classes can get arbitrarily large as n goes to infinity. The answer to this question

is yes. First, it is easy to see that if σ is a permutation that starts with 1 and ends

with 2, it is automatically minimal overlapping. That is, if σ = σ1 . . . σn where σ1 = 1

and σn = 2, then there can be no 2 ≤ i ≤ n− 1 such that the first i elements of σ has
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the same relative order as the last i elements of σ because in the first i elements of

σ the smallest element is at the start while in the last i elements of σ, the smallest

element is at the end.

Now consider three consecutive elements x, x+ 1, x+ 2. Then the sequences

t1(x) = (x+1)(x+2)x and t2(x) = (x+2)x(x+1) each have one descent and two inver-

sions. It follows that if we start with the permutation σ = 1 t1(3) t1(6) t1(9) · · · t1(3n) 2,

then we can replace any of the sequence t1(3k) by its corresponding sequence t2(3k)

and it will keep the inversion number and the descent number of the permutation the

same. Thus, the size of the (des, inv)-c-Wilf equivalence class of σ is at least 2n.

There are lots of other examples of this type. For example, consider four

consecutive elements x, x + 1, x + 2, x + 3. Then the sequences s1(x) = (x + 1)(x +

2)x(x+ 3) and s2(x) = x(x+ 3)(x+ 1)(x+ 2) each have one descent and two inversions.

It follows that if we start with the permutation τ = 1 s1(3) s1(7) s1(11) . . . s1(4n−1) 2,

then we can replace any of the sequence s1(4k − 1) by its corresponding sequence

s2(4k − 1) and it will keep the inversion number and the descent number of the

permutation the same. This same argument can also be extended to permutations

σ ∈ Sn that start with 123 · · · k and end with k + 1, for any k > 0. Hence, the size of

the (des, inv)-c-Wilf equivalence class of τ is at least 2n.

4.2 The proof of Theorem 19

In Theorem 19, we study the (des,LRmin)-c-Wilf equivalent relation and its

q-analog which arise as another consequence of Theorem 20. First, we observe that

for any permutation τ , NMτ (t, 1, y) = INMτ (t, z, 1) and hence, Uτ (t, y) = IUτ (t, z, 1).

Thus, if α and β are minimal overlapping permutations which start with 1 and end
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with s with des(α) = des(β), then Uα(t, y) = Uβ(t, y). This leads to

NMα(t, x, y) =

(
1

Uα(t, y)

)x
=

(
1

Uβ(t, y)

)x
= NMα(t, x, y).

Hence, if α and β are minimal overlapping permutations which start with 1 and end

with s and des(α) = des(β), then α and β are (des,LRmin)-c-Wilf equivalent. In fact,

by relaxing the condition that α and β start with 1, we can generalize this result for

pairs of permutations α and β that satisfy the condition which we refer to as mutually

minimal overlapping.

Before proceeding with the proof of Theorem 19, we first recall the definition of

mutually minimal overlapping permutations. Here, we say that α and β are mutually

minimal overlapping if α and β are minimal overlapping and the smallest n such that

there exist a permutation σ ∈ Sn such that α-mch(σ) ≥ 1 and β-mch(σ) ≥ 1 is 2j − 1.

This ensures that in any permutation σ, any pair of α-matches, any pair of β matches,

and any pair of matches where one match is an α-match and one match is a β-match

can share at most one letter.

Note that if α = α1 . . . αj and β = β1 . . . βj are minimal overlapping permu-

tations in Sj that start with 1 and end with 2, then α and β are mutually minimal

overlapping. That is, it cannot be that there is 1 < i < j such that the last i elements

of α have the same relative order as the first i elements of β since the first i elements

of α has its smallest element at the start while the last i elements of β has it smallest

element at the end. Similarly, it can not be that there is 1 < i < j such that the last i

elements of β have the same relative order as the first i elements of α. On the other
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hand, if

α = 1 9 3 8 2 7 6 5 4 and

β = 1 3 9 8 7 5 2 6 4,

then one can check that α and β are minimal overlapping, des(α) = des(β) = 4, and

inv(α) = inv(β) = 19. However α and β are not mutually minimal overlapping since

the first 3 elements of α have the same relative order as that last three elements of β.

We shall give a bijective proof for a slightly stronger version of Theorem 18. In

fact, Theorem 18 is the special case of the following result when a = 1.

Theorem. Suppose α = α1 . . . αj and β = β1 . . . βj are permutations in Sj which are

mutually minimal overlapping and there is an 1 ≤ a < j such that αi = βi for i ≤ a,

αa = βa = 1, αj = βj, and des(α) = des(β).

Then

∑
n≥0

tn

n!

∑
σ∈NMn(α)

xdes(σ)yLRmin(σ) =
∑
n≥0

tn

n!

∑
σ∈NMn(β)

xdes(σ)yLRmin(σ).

Thus α and β are (des,LRmin)-c-Wilf equivalent.

If in addition, inv(α) = inv(β), then

∑
n≥0

tn

[n]q!

∑
σ∈NMn(α)

xdes(σ)yLRmin(σ)qinv(σ) =
∑
n≥0

tn

[n]q!

∑
σ∈NMn(β)

xdes(σ)yLRmin(σ)qinv(σ).

Thus α and β are (des,LRmin, inv)-c-Wilf equivalent.

Proof. For any n ≥ 0, we can partition the elements of Sn into four sets:

1. An equals the set of σ ∈ Sn such that α-mch(σ) > 0 and β-mch(σ) = 0,
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2. Bn equals the set of σ ∈ Sn such that β-mch(σ) > 0 and α-mch(σ) = 0,

3. Cn equals the set of σ ∈ Sn such that β-mch(σ) > 0 and α-mch(σ) > 0,

4. Dn equals the set of σ ∈ Sn such that β-mch(σ) = 0 and α-mch(σ) = 0.

Clearly NMn(α) = Dn ∪Bn and NMn(β) = Dn ∪ An. Thus, to prove that

∑
σ∈NMn(α)

zdes(σ)uLRmin(σ) =
∑

σ∈NMn(β)

zdes(σ)uLRmin(σ),

we need only prove that

∑
σ∈An

zdes(σ)uLRmin(σ) =
∑
σ∈Bn

zdes(σ)uLRmin(σ).

Thus, we need to define a bijection φ : An → Bn such that for all σ ∈ An,

des(σ) = des(φ(σ)) and LRmin(σ) = LRmin(φ(σ)). One simply replaces each α-

match σi . . . σi+j−1 in σ by the β-match where we rearrange σi+1 . . . σi+j−2 so that it

matches β. Given our conditions on α and β, this mean that we will simply rearrange

σi+a . . . σi+j−2 to match the order of the elements βa+1 . . . βj−1. Since α is minimal

overlapping, the elements that we rearrange in any two α matches of σ are disjoint.

Hence φ is well defined.

The fact that αa = βa = 1 ensures that σi+a−1 is less than each of the elements

σi+a . . . σi+j−2 so that rearranging these can not effect the number of left-to-right

minima. So LRmin(σ) = LRmin(φ(σ)). The fact that des(α) = des(β) ensures

that our rearrangement σi+1 . . . σi+j−1 does not effect the number of descents so

that des(σ) = des(φ(σ)). Moreover, if inv(α) = inv(β), then our rearrangement

σi+a . . . σi+j−2 does not effect the number of inversions so that inv(σ) = inv(φ(σ)).
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Next we claim the fact that α and β are mutually minimal overlapping ensures

that φ(σ) is in Bn. That is, if φ(σ) has an α match, then if must have been the case

that there was α-match σi . . . σi+j−1 in σ such that the rearrangement of σi+a . . . σi+j−2

or possibly two consecutive α-matches in σ σi . . . σi+2j−2 such that the rearrangement

of σi+a . . . σi+j−2 and the rearrangement of σi+j−1+a . . . σi+2j−3 caused an α-match to

appear. In either case, this would mean that that there is an α-match in φ(σ) which

shares more than 2 letters with a β-match in φ(σ). This is impossible since α and

β are mutually minimal overlapping. Finally, it is clear how to define φ−1(σ). One

simply replaces each β-match σi . . . σi+j−1 in σ by the α-match where we rearrange

σi+a . . . σi+j−2 so that it matches α. The same arguments will ensure that φ−1 is well

defined and maps Bn into An. Thus φ proves theorem.

Lastly, we observe that our proof of Theorem 20 can also be modified to prove

the following theorem which allows us to study the c-Wilf equivalent relations between

families of permutations.

Theorem 21. Suppose Γ = {α(1), . . . , α(k)} is a set of minimal overlapping permuta-

tions in Sp which all start with 1 and α(i) and α(j) are mutually minimal overlapping

for all 1 ≤ i < j ≤ k. For each 1 ≤ i ≤ k, let si be the last element of α(i). Then

INMΓ(t, q, z) =
1

IUΓ(t, q, z)
where IUΓ(t, y) = 1 +

∑
n≥1

IUΓ,n(q, z)
tn

[n]q!
,

with IUΓ,1(q, z) = −z, and for n ≥ 2,

IUΓ,n(q, z) = (1− z)IUΓ,n−1(q, z)−
k∑
i=1

zdes(α(i))qinv(α(i))

[
n− si
p− si

]
q

Uτ,n−p+1(q, z).

The results in this chapter is based on a paper by Bach and Remmel [4].



Chapter 5

Generating Function for Initial and

Final Descents

In this final chapter, we shall take a step away from the study of consecutive

patterns in permutations and consider another application of the homomorphism

method introduced in the first chapter to study the number of initial and final descents

in permutations. The results of this chapter will appear in a future paper by Remmel

and the dissertation author.

For each permutation σ = σ1σ2 · · ·σn ∈ Sn, we let

indes(σ) = max{i : σ1 > · · · > σi}

be the number of initial descents in σ, and let

findes(σ) = max{n− j + 1 : σj > σi+1 > · · · > σn}

be the number of final descents in σ. For example, if σ = 983741652 then indes(σ) = 3

156
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and findes(σ) = 2.

The main goal of this chapter is to apply the homomorphism method through

the identities in (1.5) and (1.8) to study the generating functions of the forms

∑
n≥0

tn

[n]p,q!

∑
σ∈Sn

xdes(σ)yindes(σ)qinv(σ)pcoinv(σ), and

∑
n≥0

tn

[n]p,q!

∑
σ∈Sn

xdes(σ)yindes(σ)zfindes(σ)qinv(σ)pcoinv(σ).

Specifically, we shall prove the following two theorems.

Theorem 22.

∑
n≥1

tn

[n]p,q!

∑
σ∈Sn

xdes(σ)yindes(σ)qinv(σ)pcoinv(σ)

=
(etxyp,q − 1)(x− 1)(y − 1) + y(e

t(x−1)
p,q − 1)

y(xy − x+ 1)(x− e
t(x−1)
p,q )

where exp,q is the p, q−analogue of the exponential function ex given by

exp,q = 1 +
∑
n≥1

q(
n
2)

[n]p,q!
xn.

Theorem 23.

∑
n≥2

tn

[n]p,q!

∑
σ∈Sn

xdes(σ)yindes(σ)zfindes(σ)qinv(σ)pcoinv(σ)

= G(x, y, z, t) + A(x, y, z, t)− (B(x, y, z, t)− C(x, y, z, t)−D(x, y, z, t))
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where

A(x, y, z, t) =
exyztp,q − xyzt− 1

xyz
,

B(x, y, z, t) =
(y − 1)(exytp,q − xyt− 1)

xy(y − z)(xy − x+ 1)
,

C(x, y, z, t) =
(z − 1)(exztp,q − xzt− 1)

xz(y − z)(xz − x+ 1)
,

D(x, y, z, t) =
e
t(x−1)
p,q − t(x− 1)− 1

(x− 1)(xy − x+ 1)(xz − x+ 1)
,

G(x, y, z, t) =
F (x, y, t)F (x, z, t)

yz(x− 1)(xy − x+ 1)(xz − x+ 1)(x− e
t(x−1)
p,q )

with

F (x, y, t) = (y − 1)(x− 1)exytp,q + yet(x−1)
p,q − (xy − x+ 1).

5.1 The proof of Theorem 22

Following the main idea of the homomorphism method, we first define a ring

homomorphism ϕ by letting ϕ(e0) = 1 and

ϕ(en) =
(−1)n−1

[n]p,q!
(x− 1)n−1q(

n
2),

for n ≥ 1. We want to show that [n]p,q!ϕ(pn,ν) =
∑

σ∈Sn x
des(σ)yindes(σ)qinv(σ)pcoinv(σ).
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Indeed, by applying the ϕ to both sides of (1.6), one can obtain the following.

[n]p,q!ϕ(pn,ν) =[n]p,q!
∑
λ`n

(−1)n−`(λ)ων(Bλ,n) ϕ(eλ)

=[n]p,q!
∑
λ`n

(−1)n−`(λ)
∑

B=(b1,...,b`(λ))∈Bλ,n

ων(B)

`(λ)∏
i=1

(−1)bi−1q(
bi
2 )

[bi]p,q!
(x− 1)bi−1

=
∑
λ`n

∑
B=(b1,...,b`(λ))∈Bλ,n

[
n

b1, b2, . . . , b`(λ)

]
p,q

q
∑

(bi2 )

×

(
(xy)b1−1 −

b1−2∑
k=0

(xy)k(x− 1)bi−2−k

)
`(λ)∏
i=2

(x− 1)bi−1.

(5.1)

From the right hand size of (5.1), we create combinatorial objects by picking a

partition λ of n. We then select a brick tabloid B = (b1, . . . , b`(λ)) ∈ Bλ,n and label the

terminal cell in each brick with 1. For each brick bi for 2 ≤ i ≤ `(λ), we shall label the

nonterminal cells with either x or −1. These contribute to the term
∏`(λ)

i=2 (x− 1)bi−1

in (5.1). For the first brick in B, we shall apply a different labeling scheme. That

is, we can either label every nonterminal cells of b1 with xy, or we can label the first

k cells in b1 with xy for where 0 ≤ k ≤ b1 − 2, followed by a −1 label in cell k + 1,

and the rest of the nonterminal cells in b1 with either x or −1. Thus, the labeling of

the first brick will contribute a factor of
(

(xy)b1−1 −
∑b1−2

k=0 (xy)k(x− 1)bi−2−k
)
to the

right hand side of (5.1).

We shall consider the following lemma in order to interpret the p, q-multinomial

coefficient in terms of the number of inversions and co-inversions. This is a generaliza-

tion of the result by Carlitz in [13] with the proof given in the book [37].
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Lemma 4. For positive integers b1, . . . , bk which sum to n,

[
n

b1, . . . , bk

]
p,q

q
∑

(bi2 ) =
∑

r∈R(1b1 ,...,kbk )

qinv(r)+
∑

(bi2 )pcoinv(r)

=
∑

σ∈Sn has descending runs
of lengths b1,b2,...,bk

qinv(σ)pcoinv(σ)

where R(1b1 , 2b2 , . . . , kbk) is the set of rearrangements of b1 1′s, b2 2′s, . . . , bk k
′s and

a descending run in σ is a consecutive decreasing subsequence of σ.

If the bricks in B have lengths b1, . . . , b`(λ) when read from left to right, then

Lemma 4 uses the powers of p and q to fill the cells of B with a permutation σ ∈ Sn

such that the elements in σ are decreasing within each brick. We also decorate each

cell of B with qαipβi where αi counts the number of cells to the right of cell i which

are filled with a number smaller than σi, and βi counts the number of those that are

larger than σi. This accounts for the term
[

n
b1,b2,...,b`(λ)

]
p,q
q
∑

(bi2 ) in (5.1).

For example, one such combinatorial object created in the above manner is

given in Figure 5.1 for n = 14 and B = (6, 3, 1, 2, 2).

1 1 11 1-1-1 -1-1x x xxy xy

1 23 4510 6 111213 78 914

q12p1 q9p3 q5p6 q4p6 q2p7 q0p8 q6p1 q5p1 q0p5 q1p3 q3p0 q2p0 q1p0 q0p0

Figure 5.1: An example of the object created from equation (5.1).

This gives a configuration T = (B, σ,L) where B is the brick tabloid of shape

(n) and type λ, σ is the permutation used to fill in the cells of B, and L keeps track of

the xy, x,±1 labels of B. We let Tn be the set of all possible configuration T created

under this process. That is, Tn consists of all triples (B, σ,L) where
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i. B = (b1, b2, . . . , b`(λ)) is a brick tabloid in Bλ,n

ii. σ = σ1σ2 . . . σn is a permutation of Sn with descent runs of lengths b1, b2, . . . , b`(λ).

iii. L is the labeling of the brick tabloid B following the rule described above.

For each T ∈ Tn, we define the weight of such combinatorial object to be the product

of all x’s, y’s, ±1’s, and the powers of p and q, then [n]p,q!ϕ(pn,ν) is the weighted sum

of all possible objects. For instance, the weight of the object given in Figure 5.1 is

x5y2q51p40.

Now we define a mapping I : Tn → Tn as follows. Given a filled, labeled brick

tabloid O = (B, σ,L) ∈ Tn, we read the cells of B from left to right, looking for the

first cell c for which either

(A) cell c is in the middle of some brick bi and is labeled with −1, or

(B) cell c is at the end of brick bj, cell c+ 1 immediately to the right of it starts a

new brick bj+1, and there is a decrease between σc and σc+1.

If we are in case (A), then we define I(O) to be the filled, labeled brick tabloid

obtained from O by breaking the brick bi that contains cell c into two bricks b′i and b
′′
i

where b′i contains the cells of bi up to and including the cell c while b′′i is the remaining

cells of bi. In addition, we change the labeling of cell c from −1 to 1. If we are in case

(B), then the image I(O) is obtained by combining the two bricks bj and bj+1 and

change the label of cell c from 1 to −1. For instance, the image of the brick tabloids

from Figure 5.1 under this involution is given in Figure 5.2 below.

We claim that the mapping I : Tn → Tn defined above is indeed an involution,

that is, I(I(O)) = O for all O ∈ Tn. To see this, let O ∈ Tn and suppose I(O) is
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1 1 11 1-11 -1-1x x xxy xy

1 23 4510 6 111213 78 914

q12p1 q9p3 q5p6 q4p6 q2p7 q0p8 q6p1 q5p1 q0p5 q1p3 q3p0 q2p0 q1p0 q0p0

Figure 5.2: The image of the filled, labeled brick tabloid from Figure 5.1.

the image of O under the mapping. If we are in case (A) where I(O) is obtained by

breaking a brick bi into two bricks b′i and b
′′
i at some internal cell c which is labeled

with -1 in O. Then it is the case that in I(O), cell c is at the end of brick b′i and there

is a decrease between σc and σc+1. Furthermore, there cannot be any cell k where

k < c that is labeled with -1 since otherwise, we would not use cell c to define the

mapping. Hence, when we reapply the mapping to I(O), we have to combine the

bricks b′i and b
′′
i back into bi and revert the label of cell c from 1 to -1. Suppose now

we are in case (B) where cell c is at the end of brick bj with σc > σc+1 and we combine

the two bricks bj and bj+1 Then it must be the case that there is no cell labeled -1

that comes before cell c and that there is no decrease between any two consecutive

brick before brick bj. Thus, when we apply the mapping to I(O), we will have to split

the brick after cell c. In either case, we have I(I(O)) = O which shows that I is an

involution.

If neither case occurs, then we let I(O) = O, a fixed point of this involution.

Let FI(Tn) be the set of all fixed points under the involution I. An example of an

element of FI(Tn) is depicted in Figure 5.3 below. If O = (B, σ,L) ∈ FI(Tn) then

O cannot have any cell labeled −1, and there must be an increase between any two

consecutive bricks. This guarantees that within the first brick of any fixed point O,

the last cell is labeled with 1 while the non-terminating cells are labeled with xy. In

addition, all the bricks of O other than the first one have their last cell labeled with 1
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while the non-terminating cells are labeled with x. Thus, if O = (B, σ,L) then the

power of x is des(σ), while the power of y counts the number of initial descent in σ.

Furthermore, the total powers of q and p in the cells counts the number of inversion

and co-inversion of σ, respectively.

1 1 11 1x xxy xy

1 23 4510 6 111213 78 914

q12p1 q9p3 q5p6 q4p6 q2p7 q0p8 q6p1 q5p1 q0p5 q1p3 q3p0 q1p1 q1p0 q0p0

xy xyxy x x

Figure 5.3: A fixed point of the involution I.

Thus, we have

[n]p,q!θ(pn,ν) =
∑
O∈Tn

ω(O) =
∑

O∈FI(Tn)

ω(O) =
∑
σ∈Sn

xdes(σ)yindes(σ)qinv(σ)pcoinv(σ),

as desired.

To complete the proof and obtain the required generating function, we then

use the relationship between pn,ν and en given in (1.5), as follows.

∑
n≥1

tn

[n]p,q!

∑
σ∈Sn

xdes(σ)yindes(σ)qinv(σ)pcoinv(σ) =
∞∑
n=0

tnθ(pn,ν)

= θ

(∑
n≥1

pn,νt
n

)

= θ

(∑
n≥1(−1)n−1ν(n)ent

n

1 +
∑

n≥1 en(−t)n

)

=

∑
n≥1(−1)n−1ν(n)θ(en)tn

1 +
∑

n≥1 θ(en)(−t)n
. (5.2)
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The numerator of (5.2) then becomes

∑
n≥1

(−1)n−1ν(n)θ(en)tn =
∑
n≥1

q(
n
2)tn

[n]p,q!

(
(xy)n−1 −

n−2∑
k=0

(xy)k(x− 1)n−2−k

)

=
∑
n≥1

q(
n
2)tn

[n]p,q!

(
(xy)n−1 − (xy)n−1 − (x− 1)n−1

xy − (x− 1)

)

=
1

xy − x+ 1

∑
n≥1

q(
n
2)tn

[n]p,q!

(
(xy)n − xnyn−1 + (x− 1)n−1

)
=

1

xy − x+ 1

∑
n≥1

((
1− 1

y

)
q(

n
2)(txy)n

[n]p,q!
+
q(

n
2) (t(x− 1))n

(x− 1)[n]p,q!

)

=
1

xy − x+ 1

(
y − 1

y
(etxyp,q − 1) +

1

x− 1
(et(x−1)
p,q − 1)

)
=

(x− 1)(y − 1)(etxyp,q − 1) + y(et(x−1) − 1)

y(x− 1)(xy − x+ 1)
. (5.3)

The denominator of (5.2) gives

1 +
∑
n≥1

θ(en)(−t)n = 1−
∑
n≥1

q(
n
2)tn

[n]p,q!
(x− 1)n−1

= 1− 1

x− 1

∑
n≥1

q(
n
2) (t(x− 1))n

[n]p,q!

= 1− 1

x− 1

(
et(x−1)
p,q − 1

)
=

x− e
t(x−1)
p,q

x− 1
. (5.4)

The statement of the theorem thus follows shortly from (5.3) and (5.4).
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5.2 Generating function for the number of initial

and final descents

The main goal of this section is to prove the following result of Theorem 23.

∑
n≥2

tn

[n]p,q!

∑
σ∈Sn

xdes(σ)yindes(σ)zfindes(σ)qinv(σ)pcoinv(σ)

= G(x, y, z, t) + A(x, y, z, t)− (B(x, y, z, t)− C(x, y, z, t)−D(x, y, z, t))

where

A(x, y, z, t) =
exyztp,q − xyzt− 1

xyz
,

B(x, y, z, t) =
(y − 1)(exytp,q − xyt− 1)

xy(y − z)(xy − x+ 1)
,

C(x, y, z, t) =
(z − 1)(exztp,q − xzt− 1)

xz(y − z)(xz − x+ 1)
,

D(x, y, z, t) =
e
t(x−1)
p,q − t(x− 1)− 1

(x− 1)(xy − x+ 1)(xz − x+ 1)
,

G(x, y, z, t) =
F (x, y, t)F (x, z, t)

yz(x− 1)(xy − x+ 1)(xz − x+ 1)(x− e
t(x−1)
p,q )

for

F (x, y, t) = (y − 1)(x− 1)exytp,q + yet(x−1)
p,q − (xy − x+ 1).

To this end, we shall use the same ring homomorphism θ : Λ→ Q[x] from the

proof of Theorem 22 given by ϕ(e0) = 1 and ϕ(en) = (−1)n−1

[n]p,q !
(x− 1)n−1q(

n
2) for n ≥ 1.

However, unlike the case of Theorem 22 where we weight the brick tabloids only by

the length of their first bricks, we now define the two weighting functions α1 and α2
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on the first and last brick of every brick tabloid respectively by

α1(n) =
(xy)n−1 −

∑n−2
k=0(xy)k(x− 1)n−2−k

(x− 1)n−1
, and

α2(n) =
(xz)n−1 −

∑n−2
k=0(xz)k(x− 1)n−2−k

(x− 1)n−1
.

Observe that for the first and last bricks, we also have the following results:

ν(b1)θ(eb1) =
(−1)b1−1q(

b1
2 )

[b1]p,q!

(
(xy)b1−1 −

b1−2∑
k=0

(xy)k(x− 1)b1−2−k

)
, and

ν(b`(λ))θ(eb`(λ)
) =

(−1)b`(λ)−1q(
b`(λ)

2
)

[b`(λ)]p,q!

(xz)b`(λ)−1 −
b`(λ)−2∑
k=0

(xz)k(x− 1)b`(λ)−2−k

 .

Given a brick tabloid B = (b1, . . . , b`(λ)) ∈ Bn,λ with `(λ) ≥ 2, the weight w(B)

under α1 and α2 is then given by ωα1,α2(B) = α1(b1)α2(b`(λ)). The new basis Pn;α1,...,αr

defined by Mendes, Remmel, and Riehl in (1.8) now becomes

pn;α1,α2 =
∑

λ`n;`(λ)≥2

(−1)n−`(λ)ωα1,α2(Bn,λ)eλ.

Similar to the argument of the previous section, we will start our proof by applying

the homomorphism ϕ to [n]p,q!pn:α1,α2 to obtain the following result.
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[n]p,q!ϕ(pn;α1,α2) = [n]p,q!
∑

λ`n;`(λ)≥2

ωα1,α2(Bn,λ) ϕ(eλ)

= [n]p,q!
∑

λ`n;`(λ)≥2

∑
B=(b1,...,b`(λ))∈Bn,λ

ωα1,α2(B)

`(λ)∏
i=1

ϕ(ebi)

= [n]p,q!
∑

λ`n;`(λ)≥2

∑
B=(b1,...,b`(λ))∈Bn,λ

(−1)n−`(λ)α1(b1)α2(b`(λ))

×
`(λ)∏
i=1

(−1)bi−1(x− 1)bi−1

[bi]p,q!

=
∑

λ`n;`(λ)≥2

∑
B=(b1,...,b`(λ))∈Bn,λ

[
n

b1 . . . b`(λ)

]
p,q

`(λ)−1∏
i=2

(x− 1)bi−1

×

(
(xy)b1−1 −

b1−2∑
k=0

(xy)k(x− 1)b1−2−k

)

×

(xz)b`(λ)−1 −
b`(λ)−2∑
k=0

(xz)k(x− 1)b`−2−k

 . (5.5)

The combinatorial interpretation for the right hand side of (5.5) can be obtained

from a similar manner to that of (5.1). First, we take a partition λ = (λ1, λ2 . . . , λ`(λ)) `

n such that `(λ) ≥ 2 and pick a brick tabloid B = (b1, b2, . . . , b`(λ)) of shape n and

type λ. Observe that the condition that `(λ) ≥ 2 is quite important in this proof and

will greatly affect our analysis for the fixed points. This fact will become more evident

in the later part of this proof. We then fill the cells of B with a permutation σ ∈ Sn

such that σ has descending runs of lengths b1. . . . , b`(λ) and also fill in each cell i of

B with qαipβi where αi counts the number of cells to the right of cell i which are

filled with number smaller than σi, and βi counts those that are larger than σi. By

Lemma 4, this is counted by
[

n
b1,b2,...,b`(λ)

]
p,q
q
∑

(bi2 ) in (5.5). The terms
∏`(λ)−1

i=2 (x−1)bi−1
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correspond to the labeling of the middle bricks b2, . . . , b`(λ)−1 in B with x and ±1.

The term (xy)b1−1 −
∑b1−2

k=0 (xy)k(x− 1)b1−2−k corresponds to the labeling of the first

bricks where we can use one of the two schemes described in the above section. The

same argument holds for the labeling of the last brick b`(λ), where we simply replace y

with z to obtain the factor of (xz)b`(λ)−1 −
∑b`(λ)−2

k=0 (xz)k(x− 1)b`(λ)−2−k.

Thus, we obtain a configuration M = (B̄, σ,L) where B̄ is a brick tabloid of

shape n and type λ where `(B̄) ≥ 2, σ ∈ Sn is the permutation used to fill in the cells

of B̄, and L keeps track of the x, y, z, and 1 labels of B̄. We letMn be the set of all

possible configurations M created under this process. For each M ∈Mn, we let the

weight w(M) to be the product of all the x, y, z, and −1 labels of M. Therefore, the

identity in (5.5) now becomes

[n]p,q!θ(pn;α1,α2) =
∑
O∈Mn

w(O). (5.6)

Again, the setMn contains of all objects (B̄, σ,L) with both positive and negative

weight. To eliminate the elements with a negative weight, we shall again apply an

involution I ′ :Mn →Mn. To be specific, we will modify the involution given in the

previous section, as follows. Given a filled, labeled brick tabloid O = (B̄, σ,L) ∈Mn,

we read the cells of B̄ from left to right, looking for the first cell c for which either

(A) cell c is in the middle of some brick bi and is labeled with −1, or

(B) cell c is at the end of brick bj, cell c+ 1 immediately to the right of it starts a

new brick bj+1, there is a decrease between σc and σc+1, and the brick tabloid B̄

has more than two bricks within.

In case (A), we break the brick bi that contains cell c into two bricks b′i and b
′′
i
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where b′i contains the cells of bi up to and including the cell c while b′′i is the remaining

cells of bi. In addition, we change the labeling of cell c from −1 to 1. In case (B),we

combine the two bricks bj and bj+1 and change the label of cell c from 1 to −1. Of

course, if neither case occurs then we simply have a fixed point for the involution. If

we let F ′I(Mn) be the set of all fixed points of the involution I ′ then the identity in

(5.6) now gives

[n]p,q!θ(pn;α1,α2) =
∑
O∈Mn

ω(O) =
∑

O∈FI(Mn)

ω(O).

However, unlike before,
∑

O∈F ′I(Mn) ω(O) 6=
∑

σ∈Sn x
des(σ)yindes(σ)qinv(σ)pcoinv(σ).

The new restriction in case (B) introduces a sets of configurations ofMn where we

are unable to combine the bricks as doing so will reduce the number of bricks in B̄ to

below the minimum requirement of two, which then causes the co-domain of I ′ to no

longer beMn. Thus, we now have two kinds of fixed points under this involution I ′.

The first kind consists of all “regular" configurations (B, σ,L) where B has either

(a.) at least three bricks with no cell labeled with −1 and there is an increase between

every two consecutive bricks in B, or

(b.) two bricks with no cell labeled −1 but there is an increase between the last cell

of b1 and the first cell of b2.

In either case, we can see that, for the corresponding permutation σ, all the initial

descents of σ are labeled with xy, all the final descents in σ are labeled with xz, and

all the other descents are labeled with x. The total weight of these objects corresponds
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to the term ∑
σ∈Sn, n≥2

xdes(σ)yindes(σ)zfindes(σ)qinv(σ)pcoinv(σ)

in the desired generating function. Figure 5.4 below gives an example of this kind of

fixed points.

1 1 1x xzxy xy

1 23 4510 6 111213 78914

q12p1 q9p3 q5p6 q4p6 q2p7 q0p8 q6p1 q5p1 q0p5 q4p0 q3p0 q2p0 q1p0 q0p0

xy xyxy x xzxz xz

Figure 5.4: A “regular" fixed point of the involution I ′.

The second kind of fixed point for this involution consists of all configurations

(B̄, σ,L) where B̄ has exactly two bricks with last(b1) > first(b2) but we are unable

to combine the bricks in order to maintain the minimum number of bricks being

at least two. Then it is easy to see that the permutation σ used to fill in the cells

of B̄ must be the reverse identity permutation of Sn, namely σ = (n, n − 1, . . . , 1).

Furthermore, since we are attempting to combine the bricks, it must be the case that

the first brick b1 of B̄ contains no −1 label. As a result, the first brick of B̄ must be

labeled with 1 for its last cell and with xy for every non-terminal cell. Since we have

already used the last cell of brick b1 to define the mapping, the labeling of the last

brick now becomes irrelevant. That is, we can label the last brick using any term from

(xz)b2−1 −
∑b2−2

k=0 (xz)k(x− 1)b2−2−k. The numbers of inversions and co-inversions in

this fixed point are given by q(
n
2)p0. Therefore, if we let k be the length of the first
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brick, then the total weight of these new objects is given by

n−1∑
k=1

q(
n
2)(xy)k−1

(
(xz)n−k−1 −

n−k−2∑
i=0

(xz)i(x− 1)n−2−k−i

)

=
n−1∑
k=1

q(
n
2)(xy)k−1

(
(xz)n−k−1 − (xz)n−k−1 − (x− 1)n−k−1

xz − x+ 1

)

= q(
n
2)
((

1− 1

xz − x+ 1

) n−1∑
k=1

(xy)k−1(xz)n−k−1

+
1

xz − x+ 1

n−1∑
k=1

(xy)k−1(x− 1)n−k−1

)
= q(

n
2)
(

(z − 1) ((xy)n−1 − (xz)n−1)

(y − z)(xz − x+ 1)
+

(xy)n−1 − (x− 1)n−1

(xz − x+ 1)(xy − x+ 1)

)
= q(

n
2)
(

(y − 1)(xy)n−1

(y − z)(xy − x+ 1)
− (z − 1)(xz)n−1

(y − z)(xz − x+ 1)
− (x− 1)n−1

(xy − x+ 1)(xz − x+ 1)

)
.

In terms of the number of inversions, co-inversions, descents, initial descents,

and final descents, the correct weight corresponding to the reverse identity permutation

is (xyz)n−1q(
n
2). Hence,

[n]p,q!θ(pn;α1,α2)

=
∑

B∈F ′I(Mn)

ω(B)

=
∑

σ∈Sn, n≥2

xdes(σ)yindes(σ)zfindes(σ)qinv(σ)pcoinv(σ) − (xyz)n−1q(
n
2)

+ q(
n
2)
(

(y − 1)(xy)n−1

(y − z)(xy − x+ 1)
− (z − 1)(xz)n−1

(y − z)(xz − x+ 1)
− (x− 1)n−1

(xz − x+ 1)(xy − x+ 1)

)
.
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The generating function thus becomes

∑
n≥2

tn

[n]p,q!

∑
σ∈Sn, n≥2

xdes(σ)yindes(σ)zfindes(σ)qinv(σ)pcoinv(σ)

=
∑
n≥2

θ(pn;α1,α2)tn +
1

xyz

∑
n≥2

q(
n
2)(xyzt)n

[n]p,q!
− (y − 1)

xy(y − z)(xy − x+ 1)

∑
n≥2

q(
n
2)(xyt)n

n!

+
(z − 1)

xz(y − z)(xz − x+ 1)

∑
n≥2

q(
n
2)(xzt)n

[n]p,q!

+
1

(x− 1)(xz − x+ 1)(xy − x+ 1)

∑
n≥2

q(
n
2)(t(x− 1))n

[n]p,q!
. (5.7)

Each term in the right hand side of (5.7) then gives

1

xyz

∑
n≥2

q(
n
2)(xyzt)n

[n]p,q!
=

exyztp,q − xyzt− 1

xyz
= A(x, y, z, t), (5.8)

(y − 1)

xy(y − z)(xy − x+ 1)

∑
n≥2

q(
n
2)(xyt)n

[n]p,q!
=

(y − 1)(exytp,q − xyt− 1)

xy(y − z)(xy − x+ 1)
= B(x, y, z, t),

(5.9)

(z − 1)

xz(y − z)(xz − x+ 1)

∑
n≥2

q(
n
2)(xzt)n

[n]p,q!
=

(y − 1)(exztp,q − xzt− 1)

xz(y − z)(xz − x+ 1)
= C(x, y, z, t),

(5.10)

1

(x− 1)(xz − x+ 1)(xy − x+ 1)

∑
n≥2

q(
n
2)(t(x− 1))n

[n]p,q!

=
e
t(x−1)
p,q − t(x− 1)− 1

(x− 1)(xy − x+ 1)(xz − x+ 1)
= D(x, y, z, t),

(5.11)∑
n≥2

θ(pn:α1,α2)tn =

(∑
n≥1(−1)n−1α1(n)θ(en)tn

) (∑
n≥1(−1)n−1α2(n)θ(en)tn

)
1 +

∑
n≥1(−1)nθ(en)(−t)n

.

(5.12)
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Similar to (5.4), the denominator of (5.12) becomes

1 +
∑
n≥1

(−1)nθ(en)(−t)n =
x− e

t(x−1)
p,q

x− 1
. (5.13)

The first component of the numerator in (5.12) becomes

∑
n≥1

(−1)n−1α1(n)θ(en)tn

=
∑
n≥1

q(
n
2)tn

[n]p,q!

(
(xy)n−1 − (xy)n−1 − (x− 1)n−1

xy − x+ 1

)

=
y − 1

y(xy − x+ 1)

∑
n≥1

q(
n
2)(xyt)n

[n]p,q!
+

1

(x− 1)(xy − x+ 1)

∑
n≥1

q(
n
2)(t(x− 1))n

[n]p,q!

=
y − 1

y(xy − x+ 1)
(exytp,q − 1) +

1

(x− 1)(xy − x+ 1)
(et(x−1)
p,q − 1)

=
y − 1

y(xy − x+ 1)
exytp,q +

1

(x− 1)(xy − x+ 1)
et(x−1)
p,q − 1

y(x− 1)

=
(y − 1)(x− 1)exytp,q + ye

t(x−1)
p,q − (xy − x+ 1)

y(x− 1)(xy − x+ 1)

=
F (x, y, t)

y(x− 1)(xy − x+ 1)
(5.14)

By similar computation, the second component of the numerator of (5.12) becomes

∑
n≥1

(−1)n−1α2(n)θ(en)tn =
(z − 1)(x− 1)exztp,q + ze

t(x−1)
p,q − (xz − x+ 1)

z(x− 1)(xz − x+ 1)

=
F (x, z, t)

z(x− 1)(xz − x+ 1)
(5.15)

Then we combine the results from (5.12), (5.13), (5.14), and (5.15) to obtain



174

∑
n≥2

θ(pn:α1,α2)tn =

(∑
n≥1(−1)n−1α1(n)θ(en)tn

) (∑
n≥1(−1)n−1α2(n)θ(en)tn

)
1 +

∑
n≥1(−1)nθ(en)(−t)n

=
F (x, y, t)F (x, z, t)

yz(x− 1)(xy − x+ 1)(xz − x+ 1)(x− et(x−1))

= G(x, y, z, t). (5.16)

Lastly, we put the results from (5.8), (5.9), (5.10), (5.11), and (5.16) together

to complete the proof for Theorem 23.

Finally, we notice that the same machinery presented in this chapter can also be

applied to study the generation function for the number of initial and final descents in

alternating permutations. These results will appear in a subsequent paper by Remmel

and the dissertation author.
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