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Once you eliminate the impossible, whatever remains, no matter how improbable,
must be the truth.
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ABSTRACT OF THE DISSERTATION

Extensions of the Reciprocity Method in Consecutive Pattern Avoidance
in Permutations

by

Quang Tran Bach
Doctor of Philosophy in Mathematics
University of California, San Diego, 2017

Professor Jeffrey Remmel, Chair

Let S,, denote the symmetric group. For any o € S,,, we let des(o) denote the
number of descents of ¢, inv(c) denote the number of inversions of o, and LRmin(o)
denote the number of left-to-right minima of ¢. Jones and Remmel developed the

Reciprocity Method to study the generating functions of the form

Z ;”' Z xLRmin(o) y1+des(a)

n>0  ceNMy(T)

where N'M,,(7) is the set of permutations ¢ in the symmetric group .S,, which have
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no consecutive 7-matches and 7 is a permutation that starts with 1 and has exactly
one descent.
In this thesis, we extend the reciprocity method to study the generating

functions of the form

Z Z :L,LRmin(O')yl—i-des(a)

n>0 " eeNMu(D

in the case where I' is a set of permutations such that, for all 7 € I', 7 starts with 1
but we do not put any conditions on the number of descents in 7. In addition, we
can also obtain the g-analog for the reciprocity method and compute the generating

functions of the form
INMp(t, q,2) = 1+ Z INMpn (¢, 2)

where INMr (¢, 2) = Z Zdes(@)+1,mv(@) - Our results from this extension then
ceN M, (T)
lead us to define natural refinements for the c-Wilf equivalence relation. That is, if

staty, ..., stat, are permutations statistics, we say that two sets of permutations I'

and A are (statq, ..., staty)-c-Wilf equivalent if for all n > 1,

Z ﬁ x;tati(a) _ Z f[ xgtati(a) '

O'ENMTL(F) =1 UENMn(A) i=1

This enables us to give many examples of pairs of permutations o and § in \S; which
are des-c-Wilf equivalent, (des, inv)-c-Wilf equivalent, and (des, inv, LRmin)-c-Wilf

equivalent.
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Chapter 1

Introduction

1.1 A quick history of permutation patterns

We first start with the basic definitions and terminologies for permutations
and permutation patterns.

We let S,, denote the group all permutations of length n. That is, S,, is the
set of all one-to-one maps o : {1,...,n} — {1,...,n} under composition. We let
Seo = Up>05,. Given o € S, we shall write ¢ = 0y ...0, where o; = 0(i). This way
of writing permutations is often referred to as one-line notation.

If o =010, € Sy, then we let Des(o) = {i : 0; > 0441} and des(o) =
|Des(o)| denote the descent set and the number of descents of o, respectively. We let
inv(o) = [{(4,5) : 1 <i < j <n&o; >0,}| denote the number of inversions of o and
coinv(o) = [{(4,7) : 1 <i < j<n & o, <o;}| denote the number of coinversions of
o. We define the reverse of o, 0", to be the permutation ¢” = ¢,0,,_1 - - - 0901 and the
complement of o, 0¢, to be the permutation 0¢ = 050§ - - - 0% where 0f =n+1—o; for

each 1 <17 < n. We say that o, is a left-to-right minima of o if o; > o; for all i < j.



For example, the left-to-right minima of o = 938471625 are 9, 3 and 1.

Given a sequence 7 = 7y ---7, of distinct positive integers, we define the
reduction of 7, red(7), to be the permutation of S,, that results by replacing the i-th
smallest element of 7 by ¢ for each i. For example red(53962) = 32541.

We define the usual p, g-analogues of n, n!, and (Z) as

g = PV 4P g+ P T+ = P - qn’
pP—q
nlpq! = [g[2]g- - [nly, and
[n] — [n]p,q!
k P [K]p.g![n — Klpg!

We shall use the standard conventions that [0],, = 0 and [0],,! = 1. Setting p =1 in
[M]p.g [M]pq!, and [}] b Yields [n]g, [n]4!, and mq, respectively.

Let 7=m...7;€S;and 0 = 0y...0, € 5,. Then we say that
1. 7 occurs in ¢ if there exists 1 <4, < --- < i; < nsuch that red(oy, 04, ...0;;) = 7,
2. there is a T-match starting in position i in o if red(030511...04,-1) = 7, and
3. 0 avoids T is there is no occurrence of 7 in o.

We note that a 7-match in o is often refered to as a consecutive occurrence of 7 in
o. There are many variations of the notions a pattern occurring in a permutation o
including barred patterns, vincular patterns, bivincular patterns, partially ordered
patterns, and mesh patterns. These types of patterns are described in Kitaev’s book
[29] which gives a broad introduction to the study of permutations patterns and its
applications. However, we shall not study such variations in this thesis. .

We let S,,(7) denote the set of permutations of S,, which avoid 7 and N'M,,(7)



denote the set of permutations of S,, which have no 7-matches. Let S,(7) = |S,(7)|
and NM, (1) = INM,(7)|. If a and 8 are elements of S;, then we say that « is
Wilf-equivalent to B if S,(«) = S,(B) for all n > 1 and we say that « is consecutive-
Wilf-equivalent (c- Wilf-equivalent) to B if NM,(«a) = NM,(B) for all n. For any
permutations 7 and o, we let 7-mch(o) denote the number of T-matches of o.

These definitions are easily extended to sets of permutations. That is, if I' C .S},

then we say that
L. T occursin o if there exists 1 <4y < --- <i; < n such that red(o;, 04, ...0;,) €T,
2. there is a I'-match starting in position i in o if red(o;0:41 - .. O'ij_l) eI, and
3. o avoids I' is there is no occurrence of I' in o.

We let S,,(T") denote the set of permutations of S,, which avoid T" and N'M,,(T") denote
the set of permutations of S, which have no I'-matches. We let S, (I') = |S,(I')|
and NM,(T') = INM,(T)|. If ' and A are subsets of S}, then we say that T' is
Wilf-equivalent to A if S,,(T') = S, (A) for all n and we say that I' is ¢- Wilf-equivalent
to A if NM,(T') = NM,,(A) for all n. For any permutation o and set of permutations
I, we let I'-mch(o) denote the number of I'-matches of o.

It is easy to see that the Wilf equivalence classes and c-Wilf equivalence classes
are closed under the operations of reverse and complement. It immediately follows
that there are at most two Wilf-equivalences classes in S5, namely {123,321} and
{132,213, 231, 312}. One of the first major results in the subject is due to Knuth in
1969, which says that the number of 321-avoiding permutations is equal to that of
132-avoiding permutations. Thus, in fact, all permutations in S3 are Wilf equivalent.

Moreover, for all 7 € Sz, S, (7) = C,, where C,, = #1(2:) is the n-th Catalan number.



There are three Wilf-equivalence classes in Sjy.

e The first Wilf-equivalence class in Sy is

{1234, 1243, 1432, 2134, 2143, 2341, 3142, 3214, 3412, 4123, 4312, 4321}. Béna [10]

gave an exact formula for S, (1342).

e The second Wilf-equivalence class in Sy is

{1342,1423,2314, 2413, 3142, 2431, 3124, 3241,4132,4213}. Gessel [21] in 1990

gave an explicit formula of S, (7) for any 7 in this class.

e The third Wilf-equivalence class in Sy is {1324, 4231}. It is still an open problem
to find an explicit formula for S,,(1324) or find a generating function for S, (1324).
There is a recursive formula given by Marinov and Radoi¢ié¢ [34] in 2003. The
upper and lower bounds for the growth of this class are provided by Béna [11]

and Bevan [9] in 2015.

In addition, there are numerous results that involve Wilf equivalent classes for sets of
two or more patterns of various lengths.

There are also refinements to the Wilf-equivalence and c-Wilf equivalence rela-
tion. For any permutation statistic stat on permutations and any pair of permutations

a and §in S, we say that o is stat-Wilf equivalent to 3 if for all n > 1

Z xstat(a): Z stat(o) (11)

0ESn(a) gESR(B)

More generally, if statq, ..., stat, are permutations statistics, then we say that a and



p are (staty,...,staty)-Wilf equivalent if for all n > 1,

O'GSn

(a) @

]1 stat;( Z H statl(a (12)

ceSn(B) i=1

Replacing S, (1) by N M,,(7) in equations (1.1) and (1.2) above gives us analogous
refinements for the c-Wilf equivalent relation.

The study of patterns in permutations and words has quite a long history
which can be dated back to Euler in 1749 and later MacMahon in the 1880s. In 1749,

Leonhard Euler introduced polynomials of the form

S
—

1=

e
i

where A,(t) = Y, cg %) is the Eulerian polynomial, the generating function of
the the number of descents over the symmetric group .S,,. In the 1880s, MacMahon
gave generating functions for the distribution of inversions in permutations and words.
In modern day terminology, these results correspond to occurrences or consecutive
occurrences of the pattern 21.

The origin of the modern day study of patterns in words can be traced back
to papers by Rotem, Rogers, and Knuth in 1970s and has been an active area of
research since then. It started with an exercise proposed by Knuth in the first volume
of his book “The Art of Computer Programming" [32]. In this particular exercise,
Knuth asked his reader to show that the number of stack-sortable permutations of
length n is given by +1( ) the n-th Catalan number. Here, a stack is a last-in
first-out linear sorting device that allows two operations push and pop. The input

of the algorithm is a permutation ¢ = oy05 -0, of length n. In the first step of



the algorithm, we push oy into the stack. Next, we compare o, with the left-most
remaining element in the input, namely o,. If 01 < 09, we pop o1 out of the stack, set
o1 as the first element of the output, and push o9 into the stack. Otherwise, we simply
push o into the stack on top of o;. Subsequently, in each stage of the algorithm, we
compare the left-most remaining element in the input with the top element in the
stack. The process ends when all the elements have been placed into the output. If
the output is another n-permutation s(o) = oy} - - - 0], such that o} <ol <--- <o,
then we say o is stack-sortable. 1t is well-known that the number of stack-sortable
permutation of length n equals to the number of permutations of the same length that
avoid the pattern 231. Therefore, this exercise provides the first explicit application
of permutation patterns in computer science.

The notion of patterns in permutations and words has also proved to be a useful
language in a variety of seemingly unrelated problems including the theory of Kazhdan-
Lusztig polynomials, singularities of Schubert varieties, Chebyshev polynomials, rook
polynomials for Ferrers boards, and various other sorting algorithms and sortable
permutations. In addition, the study of patterns in permutations and words also arises
in computational biology and theoretical physics. Many tools have been developed to
study a variety of problems such as how to count the number of permutations and
words that avoid a given pattern or collection of patterns or how to find the generating
function for the number of occurrences of a pattern or collection of patterns. There
also are two recent books in this area, one by Kitaev [29] which studies patterns in
permutations and another by Heubach and Mansour [23] which studies patterns in
words. There is also an annual conference dedicated purely to the study of patterns in

n

permutations and words called “Permutation Patterns," which was organized for the



first time at the University of Otago in Dunedin, New Zealand, in 2003.

1.2 Symmetric functions and brick tabloids

In this section, we give the necessary background on symmetric functions that
will be used throughout this thesis.

A partition of n is a sequence of positive integers A = (A1,..., As) such that
O< A <---<A;andn =M +---+ A;. Weshall write A - n to denote that X is
partition of n and we let £(\) denote the number of parts of A\. When a partition of
n involves repeated parts, we shall often use exponents in the partition notation to
indicate these repeated parts. For example, we will write (12,45) for the partition
(1,1,4,4,4,4,4).

If X\ = (Ai,..., ) is a partition of n, then a A-brick tabloid of shape n is
a filling of a rectangle consisting of n cells with bricks of sizes Aq,..., A; in such a
way that no two bricks overlap. For example, Figure 1.1 shows the six (1%, 2%)-brick

tabloids of shape (6).

00O [COoojc]
[ o ) ) o
[ o e o ]

Figure 1.1: The six (1%, 2?)-brick tabloids of shape (6).

Let By, denote the set of A-brick tabloids of shape (n) and let B, ,, be the
number of A-brick tabloids of shape (n). If B € B ,, we will write B = (by, ..., byy)) if
the lengths of the bricks in B, reading from left to right, are by, ..., by ). For example,
the brick tabloid in the top right position in Figure 1.1 is denoted as (1,2,2,1).

Let A denote the ring of symmetric functions in infinitely many variables



Z1,%2,... and let A, be the vector space of symmetric functions of degree n. We shall
define the n'® elementary and homogeneous symmetric functions e,, and h,, through
their respective generating functions.

Let E(t) denote the generating function for the sequence eg, e, es,.... We

define e,, by

E(t)=Y eut" = [J(1 +zit) = (1 +a1t)(1 +ant) - .
n=0 i=1
For example, if 0 = 14 = 25 = - - then E(t) becomes

(14 21t)(1 4 2t)(1 + x3t)

=1+ (21 + 2o + 23)t' + (2129 + 2223 + 2331 )t* + Ty T0758°,

which means that the first few elementary symmetric functions in three variables are
eo=1,e1 =21+ o+ x3, €9 = T1T9 + ToT3 + 321, and e3 = T1ToT3.
The n*® homogeneous symmetric function h,, is defined in a similar manner to

en. The generating function for h,, is defined to be

o0

o= z; it =111 jm‘

=1

For example, if 0 = x4 = 25 = - -+ then H(¢) becomes

() () (=)

=14zt + 232+ )1+ aot + 25t + - ) (1 + a3t + 2582 + -+ )

:1—|—(1]1—|—I2+l’3)t1+(ZL’%“}‘JI%+$§+I‘1x2+$2$3+$3$1)t2+"',



so the first few homogeneous symmetric functions in three variables are hy = 1,
hy = x1 + x5 + x3, and 2? + 23 + 22 + T125 + ToT3 + T3

Lastly, the n'® power symmetric function p, is defined to be
pn(ﬂfl,IQ,Ig,...) = 33?"‘1’3"‘1‘2"‘

It follows directly from their definition that

[e.9] (e 9]

1
H(t):Hl_% 111+x2 T B(—t)

1= 1=

For any partition A = (Ay,...,A) Fn,let ex = ey, ---€n,, ha = hy, -+ hy,, and
Pr =D, - - Dx,- 1t is well known that {e) : A\ n}, {hy: At n}, and {p) : A n} are
bases for A, for all n. So the functions e, ey, ... form an algebraically independent
set of generators for A, and hence, every element in A can be uniquely expressed
as a polynomial in the functions ey, eq,..., ey for some N. This means that a ring
homomorphism 6§ on A can be defined by simply specifying 6(e,,) for all n. This is the
basic idea for the homomorphism method which was initiated by the work of Brenti.
In [12], Brenti defined a ring homomorphism 6 by setting

(~1)" (o — 1)

Olen) = n!

and used it to obtain the following well-known generating function

z St = T2 (13)

oESy

However, Brenti did not use any results on the combinatorics of the transition matrices
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between bases of symmetric function. It was Remmel and his students who combined
homomorphisms and such combinatorics. Further details on these results can be found
in the book [37].

The most important foundation for Remmel’s development of the homomor-
phism method is perhaps the following identity, which was proved by Egecioglu and

Remmel in [17]

hy = (=1)""VBy, ey, (1.4)

This interpretation of h,, in terms of e, will aid us in describing the behavior of the
homomorphism 6 when applied to the homogeneous symmetric functions, which in
turn will allow us to find generating functions for permutation statistics.

In addition, in the book “Counting with Symmetric Functions" by Mendes
and Remmel [37], the authors also explored other relationships between different

symmetric functions. For example, it is well known that for n > 1,

i
L

(—1)ie7;pn_i = (—1)”71716”.

@
Il
o

Now by expanding E(—=z) > | p,2" and applying this result, we obtain

E(—=2) anz” = Z (i(—l)ielpn_1> = Z(—l)"*lnenz".

Thus,

anzn _ 220—1(;(1)_7:) nenz"' (L5)

Small modifications to the brick tabloids can help us describe the interpretation
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of p, in terms of e,. Let v be a function on the set of non-negative numbers. For each

B = (b1,...,by)) € Ban, we define the weight w, (B) of B to be w,(B) = v(b;) and

let

wo(Brn) = Y wi(B).

BEB)\,n
For example, let n = 8 and A\ = (12,3?). Then the weights of the six brick tabloids in

By n) are given in Figure 1.2 so that w, (B(1232)8) = 3v(1) 4 3v(3).

v(1) v(3)

Ol |l |l |0 O
v(1) v(3)

H| |10 | I 10| ||0]
v(1) v(3)

0| Il || ] I Il 100

Figure 1.2: The weights of the six (1?,22)-brick tabloids of shape (6).

In [33] and [36], the authors defined a new symmetric function p,,, for each n

by setting

Pow = Y (1) N, (Bym) ex- (1.6)
AFn
Therefore, by (1.5),

n an1(_1)n_1’/(n)entn o anl(—l)”_ll/(n)ent”
;pnﬂ B E(-t) B 2 _nso(—1)"ent™ '

(1.7)



12

Furthermore, we observe that when v(n) = 1, the above equation becomes

Z >1(_1)n_1€ntn 1
LY paut” =1+ 55 = =14 hat".
n>1 ano(_l)nent” E(-t) Z

n>1

It follows from (1.5) that when v(n) = n for all n > 1, p,,, equals the power symmetric
function p,.

Another natural extension to the method is given by Mendes, Remmel, and
Riehl in [38] where the authors extended the above result to the case of multiple
weight functions. Now suppose that we are given r weight functions «;, for 1 <i <r,
each is defined on the set of non-negative numbers. For each B € B, ,,, where ¢(\) > 7,

we define

We also define

For example, if B = (by,...,byn)) € Ban and we let Waipha,,a,(B) = a2(br)aa(ber))
when £(\) > 2, then the weights of the six brick tabloids of shape n = 8 and type

A = (1%,3?%) are given in Figure 1.3 below. Here,

War,as (Bazs2)s) = ar(1)aa(l) + a1 (3)az(3) + 201 (1)as(3) + 204 (3)as(1).
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In [38], Mendes, Remmel, and Riehl showed that

Prsaqycvar = Z (_1)n_€()\) Waq,..., ar(BA,n)ez\

AFn, L(N)>r
£2(N)
= Z ( 1>n7£(/\) Way oo (1) Hebz
T:(bl ..... bg()))elg)\’n =1

So that

_ H::I (Zn21(_1)n_1ai(n)enz")
nzzrpnm ..... T ano(_z)nen

(1.8)

This formula (1.8) provided an extension to the homomorphism method which
allowed the authors of [38] to give several combinatorial proofs for the generating
functions counting the numbers of descents in permutations with prescribed descent
run lengths. In Chapter 5, we shall explore another application of this result in
computing the generating functions counting the number of initial and final descents

in permutations.

o, (1)a,(3) a,(3)a5(3)

Lol || |l |0 O
a,(1)a,(3) a,(3)a, (1)

af | 0] | I 10| 110
o, (Day(1) a,(3)ay(1)

il Il |0 I Il 10|00

Figure 1.3: The (12,22)-brick tabloids of shape (6) under multiple weights.

There have been many other applications and extensions of Brenti’s homomor-

phism method over the recent years by Remmel and his co-authors. In [8], Beck and
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Remmel defined a new homomorphism 6, , by

where [n],,! is the p, g-analogue of n defined in the previous section. They then used

this homomorphism to show that

[n]p,q!ep,q(hn) _ Z xdes(a)qinv(a)pcoinv(o) )

O'ESn

This in turn allowed them to obtain the p, g-analogue of (1.3) as follows.

n

- t des(o) ,inv(c), coinv(o) __ z—1
> ]! > a gy = 1) (1.9)

n=0 P2 5es, T — €pgq

where

One can also apply the homomorphism method to the case of alternating
permutations. Here, we say that the permutation o = oy --- 0, € S, is alternating if
o;_1 > 0; and 0; < 0,41 for even 7. In addition, an alternating permutation of even
length is called even alternating while an alternating permutation of an odd length is

called odd alternating. Now consider the following homomorphism. ¢(e,) = (_n—)n (n)

1
|
where g(n) = 0 is n is odd and g(n) = (—1)™? if n is even. Then it can be shown
that (2n)!lp(ha,) = As,, where As, is the number of even alternating permutations of

length 2n. This leads to the following generating function

Z (Qt—;:)!Azn = (Z(—l)"(;:)') = sec (). (1.10)

n>0
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Similar argument can be used to show that (2n — 1)lp(p2,) = Ag,—1, where Ay, 4 is

the number of odd alternating permutations of length 2n — 1. Therefore,

th—l 1 )
Z m/bnq = ?P Zant

_ an_l(_l)nfl(%) ©(egn )t
> om0 Plean)(—)"

_ 2n—1
Zn>1(_1>n 1m

= tan(t). (1.11)

Combining (1.10) and (1.11) gives us the following well-known generating

function for the number of alternating permutations

n

o o0

" t
E Ana = E #|o € S, is alternating| = sec(t) + tan(t).
n=0 n=0

In [46], Wagner extended this idea to compute the generating functions over
the wreath product Cy§5,,. Specifically, Wagner considered the signed permutations in
Cr$§S,, with signs in the set Ok = {¢, €%, ..., "} where ¢ = ¢*/* and defined a partial
ordering € on the signed letters such that €'l <q €2 <q ... <qg enforall 0 <i <k
together with a partial ordering I' such that €‘a < €/b if a < b for all 4, j. The number

of (C§Sy)-descents and (Cy8S,,)-inversions of an element o € Cy8§S,, are given by

desg(0) = [i:1<i<n—1,0;>q0i1}| and

invg(o) = {@,)):1<i<j<mn,o;>ro;}
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This enabled the author of [46] to obtain the generating function for

Z E(O')ml’desk (O')yind (o)
UECk§Sn

and several related results. Langley and Remmel in [?] considered a sequence of
permutations ¥ = (oM, ... ")) in S, and define the common descents of the set X

to be
Comdes(X) = (ﬂiLlees(a(i))) and comdes(X) = |Comdes(3)].

Applying this method, they obtained an analogue for the generating functions of the

form

Z g ' Z a:comdeS(E)QiHV(Z)PCOinV(Z)

n>0 [n}P’Q. S=(cM,...,0L))eSL
as an P, Q-analog of (1.9) where @ = (¢1,...,q1), P = (p1,-..,pL), and these statistics

are defined as

L L
i inv(o(® coinv coinv(o(t
anv(Z) _ qu (™) and P () _ sz ( )).
i=1 =1

1.3 The main goal of this thesis

The main focus of this thesis is to apply an extension of the basic homor-
morphism method to study the distribution of descents over N'M,,(T"), the set of

permutations of length n which have no consecutive occurrences of I', where I' is a set
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of permutations. Specifically, we shall consider generating functions of the form

NMF(t,ZL‘ y Z NMFn ZL’ y Z Z LRmin(a)yl—I—deS(U)‘

n>0 : n>0 'aeNMn

In the case where I consists of a single permutation 7, we shall simply write NM..(¢, z, y)
for NMp(t, z,y).

Jones and Remmel [24-27] developed what they called the reciprocity method
to compute the generating function NM, (¢, z,y) for certain families of permutations
7 such that 7 starts with 1 and des(7) = 1. The basic idea of their approach is as
follows. If 7 starts with 1, then the results in [25] allows us to write NM, (¢, z,y) in

the form

where U, (t,y) ZUT"

n>0
Next one writes

1
1+ En>1 NM- n(1 y)tn '

U, (t,y) = (1.12)

One can then use the homomorphism method to give a combinatorial interpretation of
the right-hand side of (1.12) which can be used to find simple recursions for the coeffi-
cients U, ,,(y). This homomorphism method was first introduced by Brenti [12] and
later developed by Remmel and his students which is the subject of the book “Counting
with Symmetric Functions” by Mendes and Remmel [37]. The so-call homomorphism
method derives generating functions for various permutation statistics by applying a

ring homomorphism defined on the ring of symmetric functions A in infinitely many
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variables x1, s, ... to simple symmetric function identities such as H(t) = 1/E(—t),
where H(t) and E(t) are the generating functions for the homogeneous and elementary
symmetric functions defined above.

In their case, Jones and Remmel defined a homomorphism 6, on A by setting

97-(6”) = (_n1|)n NMT,n(lv y)

Then
6.(E(—t)) = ;NMm(l,y)g _ ﬁ
Hence
Un(t:9) = gy = Po(H )

which implies that

n'GT(hn> = UT,n(y)

Thus, if we can compute n!d,(h,) for all n > 1, then we can compute the polynomials
U:»(y) and the generating function U,(¢,y), which in turn allows us to compute
the generating function NM, (¢, z,y). Jones and Remmel [26,27] showed that one
can interpret n!6,(h,) as a certain signed sum of the weights of filled, labeled brick
tabloids when 7 starts with 1 and des(7) = 1. They then defined a weight-preserving,
sign-reversing involution I on the set of such filled, labeled brick tabloids which
allowed them to give a relatively simple combinatorial interpretation for n!d,(n,).
Consequently, they showed how such a combinatorial interpretation allowed them to
prove that for certain families of such permutations 7, the polynomials U, ,,(y) satisfy

simple recursions.
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In [3], Remmel and the dissertation author extended the reciprocity method to

study the polynomials Ur ,(y) where

" 1
H a 1+ Zn21 NMF,n(17 y)%

Ur(t,y) =1+ Y Ura(y)

n>1

in the case where I' is a set of permutations such that for all 7 € I', 7 starts with 1

and des(7) < 1. Specifically, we studied the case where
Tiw={0€S,:01=1,0441=2,00 <03 <+ < Opy, Opy41 < Opy2 < -+ < 0p}.

That is, I'y, x, consists of all permutations o of length p where 1 is in position 1, 2 is in
position k; + 1, and o consists of two increasing sequences, one starting at 1 and the
other starting at 2. Interestingly, our extension for the reciprocity method also applies
even when the permutations in I' do not have the same length nor the same descent
set. In addition, we also investigated a new phenomenon that arises when adding the
identity permutation 12... % to the family I'y, x,. Let I, kys = iy iy U{1---s(s+1)}
for some s > max(kj, ko). In certain cases, we were able to obtain explicit formulas
for the polynomials Upkl’kwm(y) for certain values of ky, ko, and s. For instance, if

I' = {1324, 123}, then we proved the following result for the polynomials Ur,(y)’s.

For all n > 0,
LEADT) e =2k + 1) ()
W(y) =Y skl e d Up onsi (y) = k) (_yynk
Ur2n(y) ]; TRl (—y) and Up on+1(y) ]; R o (—y)

Another example where we could find an explicit formula is the case I'95 s =

{1324, 1342, 123} where we showed that Ur,, 1(y) = —y, and for n > 2, the polyno-
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mials Ur, , , »(y)’s satisfy the recursion

UF2,2,s,n (y) = _yUF2,2,57n—1 (y) -
s—2

Z ((n —k— l)yUFz,Q,s,n—k—2(y> + (n —k— 2)y2UF2,2,5,n—k—3(y)) :
k=0

Using these recursions, we proved that

n n

Uty nan() = D_(2n=1) Hhums (=)™ and Ury 041 (9) = Y (20) L (=)™

i=0 =0

where for any z, (z) Jlo=1 and (z) Jdx=2(z —2)(z —4)--- (. — 2k — 2) for k > 1.

Remmel and the dissertation author also further extended the reciprocity
method to study the generating functions NMr (¢, z,y) where all the permutations I'
start with 1 but there is no restriction on the number of descents in a permutations
in I'. While the basic concepts of the reciprocity method still hold, the involution
defined by Jones and Remmel no longer works. Thus, we defined a new sign-reversing,
weight-preserving mapping Jr and, under this new involution, we were able to compute
the recursion for the polynomials Ur,(y) for the special cases where 7 € I' such that
des(7) = 7 > 1 and the bottom elements of these descents are 2,...,j + 1 when
reading from left to right. In most of the cases here, the analysis of the fixed points of
the involution Jr can be associated with counting the number of linear extensions for
certain Hasse diagrams.

Finally, we can obtained the g-analog for the reciprocity method and computed
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the generating functions of the form
tTL
INMF(ta q, Z) =1 + Z WINMF,H(Q7 Z)
>0 VT

where INMr (g, 2) = Z 2des(@)+1nv@) - OQur results from this extension led us
TEN My (D)
to define natural refinements for the c-Wilf equivalence relation. We also gave many
examples of pairs of permutations o and  such that a and g are (des, inv)-c-Wilf
equivalent, (des, LRmin)-c-Wilf equivalent, and (des, inv, LRmin)-c-Wilf equivalent.
The remainder of this thesis is organized as follows. Chapter 2 starts with the
results from Jones and Remmel on pattern matching in cycle structure which leads to
the development of their reciprocity method. In the same chapter, we also describe
Bach and Remmel’s extension to the reciprocity method to the case where I' is a
family of permutations that start with 1 and have des(7) < 1 for all 7 € I". In Chapter
3, we provide a new involution which will allow us to remove the restriction on the
number of descents in the forbidden patterns. We also consider examples where the
forbidden patterns 7 = 7 -+ 76 with 7y = 1,73 = 2,75 = 3 and des(7) = 2. In Chapter
4, we give the g-analogue to the reciprocity method and discuss several refinements
for the c-Wilf equivalent relation. We also provide conditions on permutations o and
g in S; which will guarantee that o and § are des-c-Wilf equivalent, (des, inv)-c-Wilf
equivalent, or (des, inv, LRmin)-c-Wilf equivalent. Lastly, in Chapter 5, we consider
several other applications of Brenti’s homomorphism method in finding the generating

functions for the number of initial and final descents in permutations.



Chapter 2

The reciprocity method

In this chapter, we extend the reciprocity method of Jones and Remmel [26,27]

to study generating functions of the form > o5 3 ) g Rmingy 1+des(o)

where I’
is a set of permutations which start with 1 and have at most one descent, N'M,,(T") is
the set of permutations ¢ in the symmetric group S,, which have no I'-matches, des(o)
is the number of descents of ¢ and LRminc is the number of left-to-right minima of
o. We also briefly introduce the study by Jones and Remmel on pattern matching in
cycle structure and use their result to show that this generating function is of the form
<m>x where Ur(t,y) = 3,50 Urn(y)% and the coefficients Ur,(y) satisfy some
simple recursions in the case where I' equals {1324,123}, {1324---p,12---(p — 1)}

and p > 5, or I' is the set of permutations 0 = oy - - - g, of length n = k; + ks where

]{31,/{32 Z 2, o1 = 1, Oki+1 = 2, and dGS(U) =1.

22
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2.1 Pattern matching in the cycle structure of per-

mutations

Jones and Remmel [24] initiated the study of study pattern matching conditions
in the cycle structure of a permutation. Suppose that 7 = 7 - - - 7; is a permutation in
S; and o is a permutation in S, with £k cycles (1, ..., Cj. Here, we shall always write
cycles in the form C; = (¢g; ..., ¢p,—1,;) Where c; is the smallest element in C; and
p; is the length of the cycle C;. In the cycle structure of o, we shall always arrange
the cycles by increasing smallest elements, i.e., we arrange the k cycles of o so that
co1 < ... < cor. Then we say that o has a cycle T-match if there is an ¢ such that
Ci = (co,i- .., Cp,—1;) where p; > j and an 7 such that red(c,;Cy41;- - Crij14) = T,
where we take indices of the form r+s mod p;. We denote the number of cycle T-match
in o by ¢-t-mch(o). For example, if 7 =21 3 and ¢ = (1,10,9)(2,3)(4,8,5,7,6) then
9 1 10 is a cycle 7-match in the first cycle while 75 8 and 6 4 7 are cycle T-matches
in the third cycle. In addition, c-7-mch(o) = 3.

Similarly, we say that 7 cycle occurs in o if there exists an ¢ such that C; =
(coi---,Cp—1) where p; > j and there is an r with 0 < r < p; — 1 with indices
0<i <...<i;; <p; — 1such that red(c, ;¢ i - Crgi,_,,s) = T Where again, we
take indices of the form r + s mod p;. We say that o cycle avoids 7 if there is no
cycle occurrence of 7 in 0. For example, if 7 =12 3 and o = (1, 10,9)(2, 3)(4,8,5,7,6)
then 4 57,45 6, and 5 6 8 are cycle occurrences of 7 in the third cycle.

We can extend of the notion of cycle matches and cycle occurrences to sets of
permutations in the obvious fashion. That is, suppose that I' is a set of permutations in

S; and o is a permutation in \S,, with k cycles C ... C. Then we say that o has a cycle
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I-match if there is an ¢ such that C; = (co; ..., ¢p,—1,;) where p; > j and an 7 such
that red(c¢,i¢,11, -+ - ¢rj-14) € I', where we take indices of the form r+s mod p;. We
say that I' cycle occurs in o if there exists an ¢ such that C; = (¢g; ..., Cp,—1,;) Where
pi > j and there is an r with 0 <7 < p; — 1 with indices 0 <4 < ... <4;1 <p; —1
such that red (¢, ;¢rqiy - - - Craij_y i ;) € I where again, we take indices of the form r + s
mod p;. We say that o cycle avoids T if there is no occurrence of I' in o.

For I' C §;, we let CS,,(I') denote the set of permutations of S,, which cycle
avoid I' and NCM,,(T") denote the set of permutations of .S,, which have no cycle
[-matches. We let C'S,(T') = |CS,(T")| and NCM,(T') = INCM,,(T)|.

Given a cycle C' = (¢, ..., cp—1) where ¢ is the smallest element in the cycle,
we let cdes(C) = 1 +des(co---¢p—1). Thus, cdes(C) counts the number of descent
pairs as we traverse once around the cycle because the extra factor of 1 counts the
descent pair ¢,_1 > ¢o. For example, if C' = (1,5,3,7,2) then cdes(C') = 3 which
counts the descent pairs 53,72, and 21 as we traverse once around C'. By convention,
if C' = (¢g) is one-cycle then cdes(C) = 1. If 0 € S, is a permutation with k cycles
C) ... Cy, then we define cdes(o) = S°F | edes(C;). We let cyc(o) denote the number
of cycles in o.

In [24], Jones and Remmel studied the generating functions

CAr(t,z,y) = 1—1—2 Z goye)yedes(@) - and

n>1 : 0€CSn (D)

NCMr(t,z,y) =1+ Z Z 2EYelo) edes(o)
n>1 'oeNCMn 1)

Their approach was to use the theory of exponential structures to reduce the problem

down to studying pattern matching in n-cycles. That is, let £,, denote the set of
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m-cycles in S,,. Suppose that R is a ring and for each m > 1, we have a weight
function Wi, : L, — R. We let W(Ly,) = > e, Win(C). Now suppose that o € S,
with the cycle structure ¢ = Cy---Cy. For each i, if C; is of size m then we let

W(C;) = Wy, (red(C;)). Lastly, we define the weight of o, W (o) by

Let C,, » denote the set of all permutations of S, with k cycles, then it is shown in the

book “Enumerative Combinatorics, vol. 2" by Stanley [43] that

L+ i_n' ifﬂk 3" W(o) = e Tmen M (2.1)

n>1 Uecn,k

Now let CS,, x(I") denote the set of permutations o € S,, with k cycles such that
o cycle avoids I' and let NCM,, ;. (T") denote the set of permutations o € S,, with k
cycles such that o has no cycle I'-matches. Similarly, let £(I") be the set of m cycles
v € Sy such that 7 cycle avoids I" with L&(T") = [£54(I")| and let £7¢™(T") be the set
of m cycles v € S,, such that v has no cycle I'-match with L*(T") = |£“™(T")|. We
are interested in the special cases of weight functions W* where WS*(C) = 1 if C
cycle avoids a set of permutations and W"(C') = 0 otherwise, or W2(C) =1 if C
has no cycle I'-matches and W“"(C') = 0 otherwise. Then under these special weight

functions, (2.1) becomes

tn " m cades
CAF(ta Z, y) =1+ Z ﬁ Z xk Z yCdeS(U) = ew Zmzl tnT ZCGﬂ%&’(F) yedes(©@
n>1 " k=1 0€CS, 1 (T)
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and

tn n " cdes
NCMr(t,z,y) =1+ ] STak YT el = B Roecpemn v
n>1 """ k=1  geNCM, ()

In the case I' = {7}, Jones and Remmel showed that if 7 € .S} is a permutation
that starts with 1, then we can reduce the problem of finding NCM._(t,z,y) to the
usual problem of finding the generating function of permutations that have no 7-
matches. Their approach is as follows. Suppose we are given a permutation o € S,
with k cycles C ---Cy. Assume we have arranged the cycles so that the smallest
element in each cycle is on the left and we arrange the cycles by decreasing smallest
elements. We let & be the permutation that arises from C' - - - Cy by by erasing all
the parenthesis and commas. For example, if o = (7,10,9,11)(4,8,6)(1,5, 3,2) then
c=71091148615 3 2. It is easy to see that the minimal elements of the cycles
correspond to left-to-right minima in . It is also easy to see that under the bijection
o — 7, cdes(o) = des(d) + 1 since every left-to-right minima is part of a descent pair
in 0.

In [24], Jones and Remmel proved that if 7 € S; and 7 starts with 1, then for

any o € S,
1. o has k cycles of and only if ¢ has k left-to-right minima,
2. cdes(o) = des(a) + 1, and
3. o has no cycle-T-match if and only if & has no 7-match.

The consequence of this result is that we can automatically obtain refinements

of generating functions for the number of permutations with no 7-matches when 7
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starts with 1. Specifically,

NM, (t, x,y) Z Z xLRmin(a)yudes(a)

n>0 ! TEN M (

=1+ Z Z x Z ycdes(6)

n>1 ! k=1 GeENCM,, k(T)

™ des(C
— % Lm>1 1 Lcecpem(n) Y e=(C)

= NCM, (¢, z,y).

This implies

n

NMT(t, 1, y) = Z ﬁ Z y1+deS(o) _ ezmzl L ZCeEPnCm(T) yedes(O) ‘
n>0 " gEN Man(7)

So

m

Z = Z yCdeS(C) = In (NMT (t7 1a y))
m

m>1 """ CeLnem(r)

which then gives
NM.(t,z,y) = NCM,(t, z,y) = e* ML) — (NM, (¢, 1, 9))" .

Hence, if we let

n

= ¢ 1 1
—U,,(y = 2.2
; T T NMe(t Ly) L+ ey GNMr,(1,y)’ (22)

then it is the case that

NN (r.0) = 3 SNt = ()
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Here, we can now exploit the identity H(t) = 1/FE(—t) between the generating
functions for the homogeneous and elementary symmetric functions and Egecioglu and
Remmel’s formula in (1.4) to define a homomorphism in order to give a combinatorial
interpretation of the right-hand side of (2.2) which can be used to find simple recursions
for the coefficients U, ,,(y). This homomorphism method shall be discussed in greater

details in the upcoming section.

2.2 The reciprocity method

In this section, we shall introduce Bach and Remmel’s extension to the reci-
procity method to find a combinatorial interpretation for Ur,(y) in the case where
I' is a set of permutations which all start with 1 and have at most one descent. We
can assume that I" contains at most one identity permutation. That is, if 12---s and
12---tarein I' for some s < t, then if we consecutively avoid 12 - - - s, we automatically
consecutively avoid 12---¢. Thus NM,,(T') = NM,,(T' — {12---¢}) for all n. In the
case where I' contains only one permutation 7, we simply replace I' by 7 to obtain the
original reciprocity method introduced by Jones and Remmel in [25-27].

We want give a combinatorial interpretation to

1 1
-~ NMp(t,1,y) 143, 5NMra,(1,y)

UF(t7 y)

where

NMp,(Ly)= Y gyt
oceN My, (T)

We define a homomorphism 6 on the ring of symmetric functions A by setting
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Or(ep) =1 and, for n > 1,

Hp(en) = (_1)HNMF,n(17 y)'

n!
It follows that
O (H(1) = 3 Op(h)t = = 1
' n>0 e 97<E(_t)) 1 +Zn21(_t)n9F(en)
1
= a = Ur(t,y).

1+ anl HNMF,n<17 y)

By (1.4), we have

nlor(h,) = ny (=1)""MBy, r(ey)

A-n
"
nly (=1) > I Mra(ty)
AFn (b1 ,,,,, bE(A))EBA,n =1
N ()
_ _ 1) ( ) NMpy (L), (23
S 3 (g IR 23)
n (b15-.be(x) ) EBAn i=1

Next, we want to give a combinatorial interpretation to the right hand side of
(2.3). We select a brick tabloid B = (b1, bs, ..., b)) of shape (n) filled with bricks
whose sizes induce the partition \. We interpret the multinomial coefficient (bly-n??be()\))
as the number of ways to choose an ordered set partition S = (51,5, ...,Sey)) of
{1,2,...,n} such that |S;| = b; for i = 1,...,¢(\). For each brick b;, we then fill
the cells of b; with numbers from S; such that the entries in the brick reduce to a

permutation ¢ = gy - -- op, in N My, (T'). We label each descent of o that occurs

within each brick as well as the last cell of each brick by y. This accounts for the
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des(e™)+1 within each brick. Finally, we use the factor (—1)™ to change the

factor y
label of the last cell of each brick from y to —y. We will denote the filled labeled brick
tabloid constructed in this way as (B, S, (cM, ... o)),

For example, when n = 17, T = {1324,1423,12345}, and B = (9,3,5,2),

consider the ordered set partition S = (5, S2,53,54) of {1,2,...,17}, where

S, ={2,5,6,9,11,15,16,17,19}, S, = {7,8,14}, S5 = {1,3,10,13, 18}, 5, = {4, 12},

and the permutations ¢ = 124653798 € NMy(I),0® =132 ¢
NM7(),0) =51243€NM;s(T), and 0¥ =2 1 € NM,y(T'). The construction

of (B,S,(cW,... o®)) is then pictured in Figure 2.1.

12,5,6,9,11,15,16,17,19} {7,8,14}  {1,3,10,13,18} {4,12}

oc@P=124653798 c?=132 0¥=51243 c¥=21

Y[y Y=Y _[¥ [V Y[y Y[y
2| 5] 9|15] 11] 6 |16]19117]|| 7]14] 8| ||18] 1] 3 |13]10]||12] 4|

Figure 2.1: The construction of a filled-labeled-brick tabloid.

We can then recover the triple (B, (Si,. .., Six), (W, ..., a®))) from B and
the permutation ¢ which is obtained by reading the entries in the cells from right to
left. We let Or,, denote the set of all filled labeled brick tabloids created this way.

That is, Or,, consists of all pairs O = (B, o) where
1. B = (b1,b,...,by) is a brick tabloid of shape n,

2. 0 =01---0, is a permutation in S,, such that there is no I'-match of o which

lies entirely in a single brick of B, and
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3. if there is a cell ¢ such that a brick b; contains both cells c and ¢+1 and 0. > 0,41,

then cell ¢ is labeled with a y and the last cell of any brick is labeled with —y.

We define the sign of each O to be sgn(O) = (—1)*™. The weight W (O) of O
is defined to be the product of all the labels y used in the brick. Thus, the weight of

the filled labeled brick tabloid from Figure 2.1 above is W(O) = y*'. Tt follows that

nlor(h,) = Y sgn(0)W(0). (2.4)

OGOF,n

We next define a sign-reversing, weight-preserving involution [ : Or,, — Or,.
Given a filled labeled brick tabloid (B, o) € Or, where B = (by,...,by), we read the

cells of (B, o) from left to right, looking for the first cell ¢ for which either
(i) cell ¢ is labeled with a y, or

(ii) cell ¢ is at the end of brick b; where o. > 0.,1 and there is no I-match of o that

lies entirely in the cells of the bricks b; and b; .

In case (i), we define Ir(B, o) to be the filled labeled brick tabloid obtained
from (B, o) by breaking the brick b; that contains cell ¢ into two bricks b and b
where b contains the cells of b; up to and including the cell ¢ while b7 contains the
remaining cells of b;. In addition, we change the label of cell ¢ from y to —y. In case
(ii), Ir(B, o) is obtained by combining the two bricks b; and b;,; into a single brick
b and changing the label of cell ¢ from —y to y. If neither case occurs, then we let
Ir(B,o) = (B,0).

For instance, the image of the filled labeled brick tabloid from the Figure 2.1

under this involution is shown below in Figure 2.2.



32

=AE Y[y (9] |¥ Y[y ¥y
(2] 5] 9 lz5]||11] 6[16]19117]|| 7] 14] 8|||18] 1] 3 ]13]10]|l12] 4]

Figure 2.2: I(O) for O in Figure 2.1.

We claim that as long as each permutation in I'" has at most one descent, then
It is an involution. Let (B,o) be an element of O., which is not a fixed point of
I. Suppose that I(B, o) is defined using case (i) where we split a brick b; at cell ¢
which is labeled with a y. In that case, we let a be the number in cell ¢ and o’ be the
number in cell ¢ + 1 which must also be in brick b;. Since cell ¢ is labeled with y, it
must be the case that a > a/. Moreover, there can be no cell labeled y that occurs
before cell ¢ since otherwise we would not use cell ¢ to define I(B, o). In this case,
we must ensure that when we split b; into b;» and b}’ , we cannot combine the brick
bj—1 with b;- because the number in that last cell of b;_; is greater than the number
in the first cell of b;- and there is no I'-match in the cells of b;_; and b;- since in such
a situation, Ir(Ip(B,0)) # (B,o0). However, since we always take an action on the
leftmost cell possible when defining It(B, 0), we know that we cannot combine b;_;
and b; so that there must be a I-match in the cells of b;,_; and b;. Moreover, if we
could now combine bricks b;_; and b;., then that I'-match must have involved the
number o’ and the number in cell d which is the last cell in brick b;_;. But that is
impossible because then there would be two descents among the numbers between cell
d and cell ¢ + 1 which would violate our assumption that the elements of I' have at
most one descent. Thus whenever we apply case (i) to define Ir(B, o), the first action
that we can take is to combine bricks b} and b} so that IZ(B,0) = (B, 0).

If we are in case (ii), then again we can assume that there are no cells labeled
y that occur before cell c. When we combine brick b; and b;, 1, then we will label cell

¢ with a y. It is clear that combining the cells of b; and b;;; cannot help us combine
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the resulting brick b with b;_; since, if there were a I'-match that prevented us from
combining bricks b;_; and b;, then that same I'-match will prevent us from combining
bj—1 and b. Thus, the first place where we can apply the involution will again be cell
¢ which is now labeled with a y so that I3(B,o) = (B, 0).

It is clear that if Ir(B, o) # (B, o), then
sgn(B, o)W (B,o0) = —sgn(Ir(B,o))W (Ir(B,0)).
Thus it follows from (2.4) that

nor(hy) = > sgn(0)W(0) = > sen(0)W(0).

OEO[‘ﬂn OEOrm,Ir‘(O):O

Hence if all permutations in I have at most one descent, then

Urn(y) = Y. se(O)W(0). (2.5)

OEOFyn,IF(O)ZO

Thus to compute Ur,(y), we must analyze the fixed points of Ir.

If (B,o) where B = (by,...,b;) and ¢ = o01---0, is a fixed point of the
involution I, then (B,o) cannot have any cell labeled y which means that the
elements of o that lie within any brick b; of B must be increasing. If it is the case
that an identity permutation 12---(k + 1) is in I', then no brick of B can have length
greater than k. Next, consider any two consecutive bricks b; and b;1 in B. Let ¢ be
the last cell of b; and ¢ + 1 be the first cell of b;; ;. Then either o, < 0.1 in which
case we say there is an increase between bricks b; and b; 11, or 0. > 0..1 in which case

we say there is a decrease between bricks b; and b;; 1. In the latter case, there must
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be a ['match of o that lies in the cells of b; and b;;; which must necessarily involve
o. and o.;1. Finally, we claim that since all the permutations in I' start with 1, the
minimal elements within the bricks of B must increase from left to right. That is,
consider two consecutive bricks b; and b; 1 and let ¢; and ¢;;; be the first cells of b,
and b4, respectively. Suppose that o., > o.,,,. Let d; be the last cell of b;. Then
clearly o.,,, < 0., < 04, so that there is a decrease between brick b; and brick b;;; and
hence there must be a [-match of ¢ that lies in the cells of b; and b;; that involves
the elements of o4, and o, ,. But this is impossible since our assumptions ensure that
Oc,., is the smallest element that lies in the bricks b; and b;4; so that it can only play
the role of 1 in any I'-match. But since every element of I' starts with 1, then any
['-match that lies in b; and b;4; that involves o, , must lie entirely in brick b;;; which
contradicts the fact that (B, o) was a fixed point of Ir.

We have the following lemma describing the fixed points of the involution Ir.

Lemma 1. Let I" be a set of permutations which all start with 1 and have at most one
descent. Let Q(y) be the set of rational functions in the variable y over the rationals
Q and let O : A — Q(y) be the ring homomorphism defined by setting Or(eg) = 1, and

Or(e,) = S NMr ,(1,y) forn > 1. Then

n!

n0r(hy) = > sgn(O)W (O)

OEO 1, Ir(0)=0

where Or,, is the set of objects and Ir is the involution defined above. Moreover,
O = (B,o) € Or,, where B = (by,...,b;) and 0 = 0y ---0, is a fized point of Iv if

and only if O satisfies the following four properties:

1. there are no cells labeled with y in O, i.e., the elements in each brick of O are
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IMCreasing,

2. the first elements in each brick of O form an increasing sequence, reading from

left to right,

3. if b; and b1 are two consecutive bricks in B, then either (a) there is increase
between b; and b;yq, i.e., Osi b, < Oy b0 OF (b) there is a decrease between
b; and biy1, t.e., Os3i by > T1assi_ by and there is a I'-match contained in the

elements of the cells of b; and b;;1 which must necessarily involve Osi 1y, and
=
TS by and
4. if T' contains an identity permutation 12---(k + 1), then b; < k for all i.

Note that since Ur,(y) = n!0r(h,), Lemma 1 gives us a combinatorial inter-
pretation of Ur,(y). Since the weight of of any fixed point (B, o) of It is —y raised
to the number of bricks in B, it follows that Ur,(—y) is always a polynomial with

non-negative integer coefficients.

2.3 Results of the reciprocity method

Having described the reciprocity methods, we now consider several results that

arise by setting specific values to the family I'.

2.3.1 The case I' =17, ,

Let ki,ky > 2 and p = ki + ky. We consider the family of permutations

I' =T, &, in S, where

Ly ={0€S,:01=1,0441=2,01 <03 <+ < Opy, Opys1 < Opy2 < -+ < Op}.
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We then have the following result.

Theorem 1. Let I' = T'y, x, where ki, ko > 2, m = min{ky, ka}, and M = max{ky, ko2 }.

Then
1
UF <t7 y)

T t"
) where Up(t,y) = 1+ Z UI‘,n(ig)Ev

n>1

NMr(t,x,y) = (

Uri(y) = —y, and for n > 2,

Ur,n(y) =(1- y)UF,nfl(y) - y(l:’ll_—21> <UF,nM(y) +vy Z_ UF,nMi(y>> .

Proof. By (2.5), we must show that the coefficients

Uny)= >, sen(O)W(0)
OEO[‘m,IF(O)ZO

have the following properties:
1. Ura(y) = —y, and

2. Urn(y) = (1=y)Urna(y) — y(;?l_j) (Ur,n—M(y) +y Z?:ll UF,n—M—i(?/)) , where

m = min{ky, ko } and M = max{ky, ka}, for n > 1,

We will divide the proof into two cases, one where k; > ko and the other where
ki < k.
Case 1. k1 > ko.

Let (B, o) be a fixed point of It where B = (by,...,b;) and 0 =0y ---0,,. We
know that 1 is in the first cell of (B, o). We claim that 2 must be in cell 2 or cell k; + 1
of (B,o). To see this, suppose that 2 is in cell ¢ where ¢ # 2 and ¢ # k; + 1. Since

there is no descent within any brick, 2 must be the first cell of its brick. Moreover,
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since the minimal elements of the bricks form an increasing sequence, reading from left
to right, 2 must be in the first cell of the second brick by. Thus, 1 is in the first cell of
the first brick b; and 2 is in the first cell of the second brick by. Since ¢ > 2, there is a
decrease between bricks b; and by and, hence, there must be a I'-match of o contained
cells of by and by which involves 2 and the last cell of b;. Since all the elements of I’
start with 1, this [-match must also involve 1 since only 1 can play the role of 1 in a
I'-match that involves 2 and the last cell of b;. But in all such I'-matches, 2 must be
in cell k; + 1. Since ¢ # k; + 1, this means that there can be no I'-match contained in
the cells of by and by which contradicts the fact that (B, o) is a fixed point of Ir.

Thus, we have two subcases.

Subcase 1.A. 2 is in cell 2 of (B, o).

In this case there are two possibilities, namely, either (i) 1 and 2 are both in
the first brick b; of (B, o) or (ii) brick b; is a single cell filled with 1 and 2 is in the
first cell of the second brick by of (B, ). In either case, we know that 1 is not part
of a I'-match in (B, o). So if we remove cell 1 from (B, o) and subtract 1 from the
elements in the remaining cells, we will obtain a fixed point O’ of Ir in Op,,_;.

Moreover, we can create a fixed point O = (B, o) € O, satisfying conditions
(1), (2), (3) and (4) of Lemma 1 where oo = 2 by starting with a fixed point
(B',0") € Or -1 of Ip, where B’ = (b,...,0.) and ¢’ =0} ---0,,_;, and then letting
o=1(c{+1)---(0],_,+1), and setting B = (1,b,...,b.) or setting B = (1+b),...,0.).

It follows that fixed points in Subcase 1.A will contribute (1 — y)Ur,,—1(y) to
Ur,n(y)-

Subcase 1.B. 2 is in cell k; + 1 of (B, 0).

Since there is no decrease within the bricks of (B, o) and the first numbers of
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the bricks are increasing, reading from left to right, it must be the case that 2 is in
the first cell of by. Thus b; has exactly k; cells. In addition, by has at least ko cells
since otherwise, there could be no I'-match contained in the cells of b; and by, and we
could combine the bricks b; and by, which would mean that (B, o) is not a fixed point
of Ir. By our argument above, it must be the case that the I'-match of ¢ contained in
the cells of b; and b, must start in the first cell. We first choose k; — 1 numbers to fill
in the remaining cells of b;. There are (;:21) ways to do this. For each such choice,
we let O’ be the result by removing the first k; cells from (B, o) and replacing the "
largest remaining number by ¢ for i = 1,...,n — ky, then O’ will be a fixed point in
Orn—r, whose first brick is of size greater than or equal to ks.

On the other hand, suppose that we start with O’ € Or,,_x, which is a fixed
point of I+ and whose first brick is of size greater than or equal to ks. Then we can
take any k1 — 1 numbers 1 < ay < as < --- < ax;,—1 < n and add a new brick at the
start which contains 1, ay,...ag,_1 followed by O” which is the result of replacing the
numbers in O’ by the numbers in {1,...,n} — {1,a4,...ax,—1} maintaining the same
relative order, then we will create a fixed point O of I of size n whose first brick is of
size k1 and whose second brick starts with 2.

Thus we need to count the number of fixed points in Or,,_x, whose first brick
has size at least ky. Suppose that V = (D, 7) is a fixed point of Or,_j, where
D = (dy,...,dy) and 7 = 7y -+ - T, Now if dy = j < ko, then there cannot be a
decrease between bricks d; and ds because otherwise there would have been a I'-match
starting at cell 1 contained in the bricks d; and dy which is impossible since all
permutations in I' have their only descent at position k; > j. This means that the first

brick d; must be filled with 1,...7. That is, since the minimal elements of the bricks
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are increasing reading from left to right, we must have that the first element of ds,
namely 711, is less than all the elements to its right and we have shown that all the
elements in the first brick are less than 7;,1. It follows that 7 - - -7, = 12+ j(j +1).
Therefore, if we let V' be the result of removing the entire first brick of V' and
subtracting j from the remaining numbers, then V"’ is a fixed point in Op,,_¢,_;.

It follows that

ko—1

Ut () = > (=) Ur it~ (%)

J=1

equals the sum over all fixed points of It ,_, whose first brick has size at least ks.

Hence the contribution of fixed points in Subcase 1.B to Ur,(y) is

ko—1
(—v) <]:L1 __21) (Up,n_kl(y) + ; yUp,n_kl—j(y)) .

Combining the two cases, we see that for n > 1,

ko—1

Urn(y) = (1 = y)Urn-1(y) — y(;jl —_21) (Ur,n—k1 (y)+y Z Ur,n—ku—i(y)) . (2.6)

Case 2. k1 < ks.

Let O = (B, o) be a fixed point of Ir where B = (by,...,by) and 0 = oy - - - 0p,.
We know that 1 is in the first cell of O. By the same argument as in Case I, we know
that 2 must be in cell 2 or cell k; + 1 of O. We now consider two subcases depending
on the position of 2 in O.

Subcase 2.A. 2 is in cell 2 of (B, o).

By the same argument that we used in Subcase 1.A of Case 1, we can conclude
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that the fixed points of Ir in Subcase 2.A will contribute (1 — y)Ur ,,—1(y) to Ur,(y).

Subcase 2.B. 2 is in cell k; + 1 of (B, 0).

Since the minimal elements of the bricks are increasing, reading from left to
right, it must be the case that 2 is in the first cell of by. Thus, b; has exactly k; cells,
by has at least ky cells, and there is a I'y, 5,-match in the cells of b; and b, which must
start at cell 1.

We first choose ki — 1 numbers to fill in the remaining cells of b;. There are
(,?1__21) ways to do this. For each of such choice, let d; < --- < dg,_k,—1 be the smallest
ky — k1 — 1 numbers in {1,2,...,n} — {o1,...,0%,+1}. We claim that it must be the
case that oy, 4114, =d; fort =1,... ks — k; — 1. If not, let j be the least ¢ such that
Ok, +1+i 7 d;. Then d; cannot be in brick by so that it must be the first element in
brick b3. But then there will be a decrease between bricks b; and b3 which means that
there must be a I'y, ,-match contained in the cells of by and b3. Note that there is
only one descent in each permutation of I'y, , and this descent must occur at position
ki. It follows that this I'y, x,-match must start at the (kg — kl)th cell of by,. But this is
impossible since our assumption will ensure that oy, 414 (ky—k,—1) = Ok, > d;.

It then follows that if we let O" be the result by removing the first ko cells from
O and adjusting the remaining numbers in the cells, then O’ will be a fixed point in
Orn—k, that starts with at least k; cells in the first brick. Then we can argue exactly

as we did in Subcase 1.B to show that the contribution of fixed points in Subcase 2.B

to Ur,(y) is

k1—1
n—2
—Y (/ﬁ _ 1) (Ur,n—kz W)+ > yUrn—to— (y)) .
7=1
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It follows that in Case 2,

ki —1
Ury (@) = (1= 9)Ur, o n(y) =y (:1 __21> <Ur,n—k2 (y) + Z yUF,n_kz—j(y)>
- (2.7)
for n > 1.
Comparing equations (2.6) and (2.7), it is easy to see that if m = min(ky, k2)

and M = max(ky, ks), then

m—1
n—2
Urk1,k2,n(y) =(1- y)UFklka,nfl(y) - ?J<k1 _ 1) (UF,nM(y) +vy Z UF,nMi(y)>
i=1

for all n > 1 which proves Theorem 1. O]
When k; = ky = 2, Theorem 1 gives us the following corollary.

Corollary 2. For I' = {1324, 1423}, then

1 * t"
NMr(t,x,y) = (m) where Ur(t,y) =1+ Z Unn(y)m7
’ n>1 )

Ura(y) = —y, and forn > 2,
Urn(y) = (1 = 9)Urpn-1(y) — y(n — 2) (Urn—2(y) + yUrn-s(y)) -
Thus, by Corollary 2,
Urspn(y) = (1= 9)Urs50-1(y) = y(n = 2) (Uryon—2(y) + yUrszn-3(y)) -

In Table 2.1, we computed Ur,, ,(y) for n < 14. We observe that the poly-
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nomials Ur,,»(—y) in Table 2.1 are all log-concave. Here, a polynomial P(y) =

agp+ a1y + - -+ a,y™ is called log-concave if a;_ya;41 < a?, foralli=2,...,n—1, and

it is called unimodal if there exists an index k such that a; < a;;q for 1 <i<k—1

and a; > a;11 for k <i <n — 1. We conjecture that the polynomials Upwm(—y) are

log-concave, and hence, unimodal for all n. We checked this holds for n < 21.
Table 2.1: The polynomials Ur,, »,(—y) for I'yo = {1324, 1423}

UF2,2,n(_y>
Yy
Y+
Y+ 2y* 4y
y + 5y? + 3y + o
Y+ 9y? + 119° + 4yt + P
y + 14y? + 36 + 19y* 4 5y° + ¢/
y + 20y2 + 90y° + 85y* + 29¢° + 640 + 7
y + 27y% + 188y% + 337y* + 162y° + 419° + Ty + ¢°
y + 35y% + 348y + 1057y* + 842y° + 273y + 5537 + 8y® + ¢°
y + 44y? + 59113 + 2749y* + 3875y° 4+ 1731y5 + 424y" + 71y% + 9y° + ¢y*°
y + 54y? + 941> + 6229y* + 14445¢° + 10151y5 + 3154y + 62148
+89y? 4 10y + ¢!
y + 65y% + 14253 + 12730y* + 44684y° + 52776y5 + 22195y" + 528512
+870y° 4+ 109y'° + 11yt + 2
Y+ 7Ty + 20733 + 24022y* + 119432y° + 22611615 + 144007y" + 4313313
+8322¢° + 1177y'° + 131y" + 129" + 413
y + 90y? + 2918y® + 42547y* + 284922y + 807008y° + 830095y” + 331668y°
77027y? + 12487y'0 4+ 1548y + 155y'2 + 13y*3 4 y'*

O© 00 1 O Uik W N B

— — [ —Y
w [\»} = O

—_
S

One might hope to prove the unimodality of the polynomials Ur,, ,(—y) by

using the recursion

UF2,27n(_y) = (1+y)UF2,2,n—1(_y)+(n_2)yUF2,2,n2<_y)+(n_2)y2UF2,2,n—3(_y) (28)

and showing that for large enough n, the polynomials on the right hand side of (2.8)

are all unimodal polynomials whose maximum coefficients occur at the same power
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of y. There are two problems with this idea. First, assuming that Ur,, ,(—y) is a
unimodal polynomial whose maximum coefficient occurs that 37, then we know that
(14 y)Ury,n(—y) is a unimodal polynomial. However, it could be that the maximum
coefficient of (1 +y)Ur,, .(—y) occurs at ¢/ or at y/*'. That is, if P(y) is a unimodal
polynomial whose maximum coefficient occurs at y*, then (1 + y)P(y) could have its

maximum coefficient occur at either y* or y*+'. For example,

(1+y)1+ 5y +2y%) =1+ 6y + 79> + 2

while

(1+4)(2+ 5y +9?) =2+ Ty + 6% + °.

Thus where the maximum coefficient of (1+y)Ur, , »(—y) occurs depends on the relative
values of the coefficients on either side of the maximum coefficient of Ur,, ,,(—y). For
n < 20, the maximum coefficient of (1 + y)Ur, ,»(—y) occurs at the same power of y
where the maximum coefficient of Ur, ,,(—¥) occurs, but it is not obvious that this
holds for all n.

Second, it is not clear where to conjecture the maximum coefficients in the
polynomials occur. That is, one might think from the table that for n > 6, the
maximum coefficient in Ur,, ,(—y) occurs at y™/2/*1 but this does not hold up.
For example, the maximum coefficient Ur, , 15(—y) occurs at y* and the maximum
coefficient Ur, , 19(—y) occurs at y°. Moreover, the maximum coefficient Ur, , 26(—¥)
occurs at y'? and the maximum coefficient Ur, , »7(—y) occurs at y'*. Thus it is not
clear how to use the recursion (2.8) to even prove the unimodality of the polynomials

Ur,,.n(—y) much less prove that such polynomials are log concave.
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When £, is larger than &y, the polynomials Upkl,kzvn(—y) are not always uni-
modal. For example, consider the case where k; = 6 and ky = 4. Mathematica once
again allows us to compute Ur, , »(—y) for n = 10 and 11. It is quite easy to see from
Table 2.2 that neither polynomial is unimodal.

Table 2.2: The polynomials Ur , »n(—y)
n ‘ UFE,A,n(_y)
10 | y + 6552 4 36y° + 84y* + 1269° + 126y5 + 84y” + 36y° + 9y° + y'°

11 |y + 192y? + 227y° + 120y* + 210y° + 252y° + 210y" + 120y°
+45y° + 10y + ¢y

2.3.2 Adding an identity permutation to I'; i,

In this subsection, we want to consider the effect of adding an identity per-
mutation to I'y, ,. To simplify our analysis, we shall consider only the case where
k1 = ko, but the same type of analysis can be carried out in general. Thus, assume

that s > ky = ko > 2 and let T'y, s = Ty iy U{12---s(s+ 1)}. Then we know that

Urkl,kl,sﬂl(y) = Z Sgn(O)W(O)

Oeorkl,kl,svr“ kal’kl’s (O):O

We want to classify the fixed points of I, , _ by the size of the first brick. By
Lemma 1, it must be the case that the size of the first brick is less than or equal to

s. We let U

Fkl,kl,.SHn

(y) denote the sum of sgn(O)W(O) over all fixed points of Ir, ,

whose first brick is of size r. Thus,

Urypen®) = D UL (). (2.9)
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Now let O = (B, o) be a fixed point of Ir, ,  where B = (by,...,b;) and o =01 -+ 0y,
By our arguments above, if b; < ki, then the elements in the first brick of (B, o) are
1,...,by so that for 1 <r < ky,

Ul ) = —yUrn, o (v). (2.10)

Let

s

>k r
UER L) = U W)

r=kq
be the sum of sgn(O)W(0) over all fixed points of I, ,, . whose first brick has size

greater than or equal to k;. Clearly,

k1—1
o >k:1
UF’@LM,Sv”(y) - Fkl kq,s:M + 2 : Fkl kq,8:M
kl 1

>k1
Fkl kq,sT + Z UFkl kq,sM— 7"(3/)

so that
ki—1
>k
UE) @) = Ury o @) + D 9Ury o (8): (2.11)
r=1

Now suppose that » > k. Then we claim that o; =7 fori=1,...,r — k; + 1.
That is, we know that o; = 1 so that if it is not the case that o; = i for ¢ =
1,...,7 — ki1 + 1, there must be a least ¢ < r — k; 4+ 1 which is not in the first brick
of (B, o). Since there are no descents of ¢ within bricks and the minimal elements
of the bricks of (B, o) are increasing, reading from left to right, it must be that 7 is
the first element of brick b, and there is a decrease between bricks b; and by. Thus

there is a I'y, i, s-match that lies in the cells of b; and b, and the only place that
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such a match can start is at cell » — k; + 1. But this is impossible since we would
have o,_,+1 > ¢ which is incompatible with having a I'y, , s-match starting at cell
r — ki + 1. It follows that we can remove the first » — ky elements from (B, o) and
reduce the remaining elements by r — k1 to produce a fixed point of Ir, ,  of size
n — (r — k1) whose first brick has size ky. Vice versa, if we start with a fixed point
(D,7) of Ir, . . ofsizen — (r — ki) where D = (dy,...,dg), =71+ Tp_(r—;), and
dy = kq, then if we add 1,...,7 — Ky to the first brick and raise the remaining numbers
by r — ki, we will produce a fixed point of I, ,  whose first brick is of size r. It

follows that for k1 <r <'s,

(r) _ grk1)
UFkl,kl,s’n(y) - Ul—‘ki,kl,&n—(r—kl)(y)' (212)
Thus
s—ki
>k k
Utiir @) = D UL, W) (2.13)
p=0
Finally consider Ug:)kl .n(y). Let (B,o) be a fixed point of I, , . where
B = (by,...,bg), by = k1, and 0 = 0y - - - 0,,. We then have two cases.

Case 1. 2 is in brick b;.

In this case, we claim that the first brick must contain the elements 1,..., k.
That is, in such a situation 1 cannot be involved in a I', j, s-match in o which means
that there is not enough room for a I'y, , s-match that involves any elements from the
first brick. Thus as before, we can remove the first brick from (B, o) and subtract k;
from the remaining elements of o to produce a fixed point (D, 7) of Ir, , . of size
n — k. Such fixed points contribute (—=y)Ur, , .nt (y) to Uk (y).

Dk kom0

Case 2. 2 is in brick b,.
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In this case, we can argue as above that 2 be the first cell of the second brick b,
and by starts at cell k1 +1. Then we have ( ,?1__21) ways to choose the remaining elements
in the first brick and if we remove the first brick and adjust the remaining elements,
we will produce a fixed point (D, 7) of Ir, , . of size n — ki whose first brick is of size

greater than or equal to k1. Such fixed points contribute (—y)(”_Q)U(zkl) (y) to

k1—1) " Tk ky,s:n—k1
(k1)
UFkl,kl,s,n (y> *

It follows that

k n—2 Sk
Ulgki?kl,sﬂl(y) e _yUFkhkl,s,n—kl (y) - y (k‘l _ 1) Ul&;,;z,s,n#ﬁ (y)

= _yUFkl,kl,szn_kl (y) -

k1—1
n—2
y<k1 o 1> (UFkl,kl,san_kl (y) + Yy Z Ur‘kl’kbs,n—kl—?“(y)) (214)

r=1

Putting equations (2.9), (2.10), (2.11), (2.12), (2.13), and (2.14) together, we

see that

UFkl Jk,85T0 (y)

ki1—1 s—k1
k
= —y Z Ul"klyklys,n—r(y> + Z Ul&ki?kl,sm—p(y)
r=1 p=0
ki—1 s—kq

=Y Z Urklxklyszn*"'(y) -y Z Urkl’klys,nfp—kl (y)
r=1 p=0
n—p-— 2 ki—1
i ( ki —1 ) (Urkl’kl’s’nph(y) Yy Z Urklxklaé"npkla(y)>
a=1

k1—1 -
n—p-— 2
— _y Z UFk17k1157n_T(y> - y( Z (1 + ( kl . 1 )) Ur\kl’kl,s’n_p—kl (y)
r=1 e
n—mp-— 2 k1—1
+ ( ki —1 ) ZUFklklsn —p—k1— a<y)>
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Thus we have the following theorem.

Theorem 3. Let I'y, s = Uiy 4, U{12- -+ s(s+1)} where s > k. Then Ur, , 1(y) =

—y and forn > 2,

k1—1

U@ = 5 3 U
r=1

S*kl
n—p-— 2
- y( 2 <1 " ( ki —1 )) Uri, sy om—p—ta ()

p=0

ki—1
n—p-— 2
- y( ki—1 > Z Urklyklvsvnp’ﬁa(y)) .

a=1

For example, if k; = 2, then

UFz,z,s,n (y) = _yUFQ,Q,s/n*l (y)

s—2
—y (Z(n =P = DUy n2-p(y) +(n—p— 2)yUr2,2,87n—3—p(y)) :

p=0

We shall further explore two special cases, namely, k1 = ky = s = 2 where the

recursion becomes

UF2,2,2,TL(y) = _yUFQ,z,Q,nfl(y) - y(n - 1)UF2,2,2JL*2(3/> - yQ(n - 2>UF2,2,2,n*3(y) (215>

for n > 1, and k1 = ky = 2, s = 3 where the recursion becomes

UF2,2,3,n<y) = yUF2,2,3,n*1(y) - y<n - 1)UF2,2,37H*2(3/> - y2<n - Q)Urz,z,s,n*3 (y)_

y(n - Q)UF2,2,37H—3(y) - y2 (n - 3)UF2,2,37TL—4(y)' (2'16)

Tables 2.3 and 2.4 below give the polynomials Ur,,,»(—¥) for even and odd
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values of n, respectively.

Table 2.3: The polynomials Ur,, , 2x(—y) for 'y = {1324,1423,123}

UF2,2,272/€(_3/>

N OOt WND PR
— =
o8 ® o3

14

y+y°
3y% + 3% + ¢
159 + 15y* + 5y + ¢/
105y* 4+ 105y° + 35¢° + Ty" + 3®
945y° 4 945y° + 315y + 63y° + 9y° + y'°
10395y5 + 10395y " + 3465¢° + 693y° + 99y1° + 11y + y!2
135135y" + 135135y% + 45045y + 9009y'° + 1287y*t + 143y'2
+13y" 4y

Table 2.4: The polynomials Ur, , , 2r4+1(—¥) for Iy 90 = {1324,1423,123}

UF2,2,2721€+1 (_y>

N O O W N
— =
o = © oW 3

15

2y2 + yS

8y3 + 4y4 + y5

A8y* 4 244 + 6y8 + o7

384y° +192y° + 48y" + 8y° + ¢’

3840y° + 1920y" + 480y° + 80y° + 10y'° + y"!

46080y” 4 23040% + 5760° 4+ 960y 4 120y + 12y'2 4 y'3

645120y° + 322560y° + 806400 4 13440y™" + 1680y'2 + 168y'3
+14y14 + y15

These data lead us to conjecture the following explicit formulas:

k

UF2,2,2,2/€<_Q) = Z(2k - 1) \H/k—l yk—H (2'17)
=0
k
UF2,2,2,2k+1(_y) = Z<2k) \l/\Lk*Z yk+1+l (218)
=0

where (2) Jlo=1and (z) Jdx=2(x —2)(z —4)--- (x — 2k — 2) for k > 1.

These formulas can be proved by induction. Note that it follows from (2.15)
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that for n > 1,

UF2,2,27H(_y) = yUF2,2,2,n—1(_y) + y(n - l)UF2,2,2,n—2(_y) - y2(n - Q)UF2,2,2,71—3(_y)'
(2.19)

One can directly check these formulas for n < 3. For n > 3, let Up, , ,n(—y)ly»
be the coefficient of y* in Ur, ,, »(—y). Equation (2.19) allows us to write the coefficient

of y"F for 0 <i <k, in Ur,,,2k+1(—Yy) as

Uryp2,2641 (= Y) [yrrii = Urg 00 (=Y) |yrts 4+ (26)Ury 55,261 (—4) [yt
— (2k = )Ury 55 26-2(=Y) yprizs
= (2k — 1) $u—i +(2k) - (2k — 2) Hp—
—(2k—1)- (2k = 3) W

= (2k) Lo -

For the even case when n = 2k, the coefficient of y**%, for 0 < i < k, in

UF2,2,2,2/€(_?J) 18

Urg 026 (=Y)|yiri = Urg 201 (=) |yerims + (2k = 1)Ury 5 26—2(—4)[yrri-1
— (2k — 2)Ury 5 2k—3(—Y) | ye+i-2
= (2k — 2) Jai +(2k — 1) - (2k — 3) Ldns
2k - 2)- (2~ 4) L

= (2k—1) Hi—i -

This proves equations (2.17) and (2.18).
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Hence, we can give a closed formula for NMr, , , (¢, 7,y). That is, we have the

following theorem.

Theorem 4.

NMF2,2,2 (tu xz, y) =

1
T+ (S, o, 25 2k —1) Ly %) 4+ (3 o0 & S8 (2k) Lo ykt1+
n>1 nl 24i=0 k—i Y n>0 nl 24i=0 k—i Y

It follows from (2.16) that

UF2,2,37TL(_y> = yUF2,2,37n71<_y) + y(n - 1)UF2,2,37H*2(_y> + y(n - 2)UF,n*3<_y)

- y2 (TL - 2)UF2,2,37TL—3(_y> - y2 (TL - 3)UF2,2,37n—4(_y)'

The three tables 2.5, 2.6, and 2.7 give the polynomials Ur,, ,»(y) for n =
3k,n =3k + 1, and n = 3k + 2, respectively.
Table 2.5: The polynomials Ur,, , 3i(—y) for ['y 25 = {1324, 1423, 1234}

n UF2,2,3,3/€(_y)

3 | y+202+4°

6 | 4y + 33y3 + 19y* + 59° + ¢/°

9 | 28y3 4 767y* + 781y’ + 267y5 + 55y7 + 8y® + ¢/°

12 | 280y* 4 20496y° + 44341y5 + 20765y" + 5137y® + 8617°

+109y10 + 11yt + y12

5 | 15 | 3640y° + 598892y5 4 2825491y + 2072739y® + 641551y° + 125111y
+17755yM + 1977y'2181y" + 14y + y'°

A~ W N =

For any s > 3, it is easy to see that the lowest power of y that occurs in
Ury,.,n(—Yy) corresponds to brick tabloids where we use the minimum number of

bricks. Since the maximum size of brick in a fixed point of Ir,, , is s, we see that the
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Table 2.6: The polynomials Ur, , , si41(—¥) for Iy g3 = {1324,1423,1234}

n UF2,2,373k+1(_y)

4 | 5y + 3% +yt

67y + 81y* + 29y° + 6y° + y”

10 | 1166y* + 3321y° + 1645y° + 417y" + 7T1y® 4+ 9¢° + y'°

13 | 23746y° + 160647y° + 128771y 4+ 41055y° + 8137¢° + 1167y*°

+131y11 + 12y12 +y13

5| 16 | 550844y° + 8107518y" + 12109429y® + 5170965y 4 1225973y'°
4200253y + 24889y'2 + 2493y'3 + 209y + 15y + y'6

=W N
-3

Table 2.7: The polynomials Ur, , , si2(—¥) for Iyg3 = {1324,1423,1234}

n UF2,2,373k+2(_y)

Ty? + 11y° + 4yt + ¢°

70y3 4 297y* 4 157y° + 419° + 7y" + ¢/

11 | 910y* 4 10343y° + 9223y° + 3069y” + 613y° + 89y” + 10y'0 + ¢!

14 | 14560y° + 39056415 + 687109y" + 306413y® + 74137y + 122610
+1537y! + 155912 + 13y'3 + ¢4

B~ W N | T
co Ot

minimum number of bricks that we can use for a fixed point of Ir,,  of length sn is
n while the minimum number of bricks that we can use for a fixed point of Ir,,, of
length sn+j for 1 <7 <s—1isn+ 1. We can prove the following general theorem

for the coefficients of the lowest power of y that appears in Ur, , , »(—Y).

Theorem 5. Forn > 1,

Uy psn(=9)ly = [ [ (G = 1)s +1) (2.20)

and

Ury . snts-1(—Y) |yn+1 = H((Z +1)s+1). (2.21)

i=1
Proof. For (2.20), we first notice that any fixed point (B, o) of Ir,, that contributes

to Ury,,,.sn(—¥)|y» must have only bricks of size s. Thus B = (s,...,s). We shall
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prove (2.20) by induction on n. Clearly, Ur,,, s(~y)|, = 1. Now suppose (B, o) is
a fixed point of Ir,,  of size sn where o = 0y ---0,,. By our arguments above, the
first s — 1 elements of the first brick must be 1,2,...,s — 1, reading from left to right.
The element in the next cell o, can be arbitrary. That is, if it is equal to s, then there
will be an increase between the first two bricks and if o4 > s, then it must be the case
that 0,11 = s in which case there will by I'; 5 ;-match that involves the last two cells
of the first brick and the first two cells of the next brick. We can then remove the
first brick and adjust the remaining numbers to produce a fixed point O’ of Ir,,  of

length s(n — 1) in which every brick is of size s. It follows by induction that

UF2,2,S,SH(_y)’y" - ((n - 1)5 + 1>UF2,2,S,S(N—1)(_y)|y"*1

:((n—1)3+1)1:[((i—1)5+1)
ﬁ i—1)s+1).

=1

Next consider Ur, , , 2s—1(—¥)|,2. In this case, either the first brick of size s — 1
or the first brick is of size s. If the first brick is of size s, then we can argue as above
that the first s — 1 elements of the first brick are 1,...,s — 1, and we have s choices
for the last element of the first brick. If the first brick is of size s — 1, then we can
argue as above that the first s — 2 elements of the first brick are 1,...,s — 2, and we

have s + 1 choices for the last element of the first brick. Thus

UF2,2,5,25—1(—y)|y2 = 2s+ 1.

Next consider Ur,, , (ns+s—1)(—¥)|y»+1. In such a situation, any fixed point
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(B,o) of Ir,,, that can contribute to Ur,, , (ns+s—1)(—¥)|y»+1 must have n bricks of

ly
size s and one brick of size s — 1. If the first brick is of size s, then we can argue
as above that the first s — 1 elements of the first brick are 1,...,s — 1, and we have
sn choices for the last element of the first brick. Then we can remove this first
brick and adjust the remaining numbers to produce a fixed point O" in I, , , of size
(n —1)s +s — 1 which has n — 1 bricks of size s and one brick of size s — 1. If the
first brick is of size s — 1, then we can argue as above that the first s — 2 elements of
the first brick are 1,...,s — 2, and we have sn + 1 choices for the last element of the
first brick. Then we can remove this first brick and adjust the remaining numbers to

produce a fixed point O" in Ir,, , of size ns which has n bricks of size s

Thus if n > 2,

Ul“z,z,s,(ns+8—1)(_y)‘y’“rl = (3n + 1)UF2,2,s,nS(_y)|y“ + (Sn)UFQ,z,s,((n—l)s+S—1)<_y)‘y”
n—1

(i—1Ds+1)+ (sn) H((Z +1)s+1)

n—1

=(sn+1)

| .
=l 3
—_

n

=(s+1) | ((i+1)s+1)+ (sn)H((i+ 1)s+1)

n—1

=((n+1)s+1) H((i +1)s+1)

=[G+ Ds+1).

i=1
[l

Unfortunately, we cannot extend this type of argument to find the coefficients
Ury.s s mstk(—Y)|yn+1 where 1 < k < s —2. The problem is that we have more than one

choice for the sizes of the bricks in such cases. For example, to compute Ur, , , 4(—¥)|ys,
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the brick sizes could be some rearrangement of (3,1) or (2,2). One can use our recursions
to compute Ur,, , ns+k(—Y)|yn+1 for small values of s. For example, we can find all the

coefficients of the lowest power of Ur,, , »(—y). That is, we claim
(1) Uraaaan(=9)lye = [Ty (3G — 1) + 1),
(H) UF2,2,3,3k+2(_y>’yk+l = Hf:l (3<Z + 1) + 1)7 and

(iii) if Ay = Uprsp41(—y)|ye+1 then Ay =5 and Ay = (3k — 1) Ap_1 + (3k) [T (3i+4)

for all k& > 2.

Clearly, (i) and (ii) follow from our previous theorem. To prove (iii), note that

A = Ur i1 (—=y) |yerr = Urse(—y)|yr + (3K)Ur sp—1(—y) |y + (3k — 1)Ur 3p—2(—y)|

— Bk = DUrsk-a(=y)lyr—r — 3k = 2)Ur g—3(=y) |y

- ﬁ(?n’ —2) + (3k) ﬁ(&' +4) + (3k — 1)U gp_a(—y)|ye
— (3k—2) ﬁ(?)i —2)

= (3k) ﬁ(?ﬂ' +4) + (3k — 1)U spa(—y)|ye

= (3k — 1) Ay_y + (3k) ﬁ(gz +4).

This explains all the coefficients for the smallest power of y in the polynomials

Ur, s n(—y) for the family Tyo 5 = {1324, 1423, 1234}
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2.3.3 The cases {1324,123} and {1324...p,123...p—1} for p > 5

In addition, we can also show that the reciprocity method applies even in cases
where I' is a family that contains permutations of different lengths. This is illustrated

through the two following theorems.

Theorem 6. Let I' = {1324,123}. Then

1 * t"
NMr(t,2,y) = | ——— ) where Un(t,y) = 1+ > Upa(y)—,
F( 7‘737?/) (UI‘<t7y)) wnere F( 7y) +nz>; r, (y)n'
Uri(y) = —y, and for n > 2,
[n/2]
Urn(y) = =yUrn1(y) = yUrn2(y) + > (=) CeraUrn-a(y).
k=2
Theorem 7. Let I' = {1324...p,123...p — 1} where p > 5. Then
NMr(t, z,y) L R Ur(ty) =1+ U ()tn
x,y) = ——| where = w(y)—,
r\t, T,y UF(t,y) r\t,y £ rn\Y ’I’L'
Ura(y) = —y, and forn > 2,
p—2 p—2 L%J
UF,n(y) = (_y)UF,nka/) + <_y)mUF,n—k—(m—1)(p—2) (y)
k=1 k=1 m=2

In the case of Theorem 6, the polynomials U{1324’123},n(—y) are the polynomials
in the sequences A039598 and A039599 in On-line Encyclopedia of Integer Sequences
[42] up to a power of y. The polynomials in sequences A039598 and A039599 are
related to the expansions of the powers of x in terms of the Chebyshev polynomials of

the second kind. We shall give a bijection between our combinatorial interpretation
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of Uf1324,123},2n(—¥) and one of the known combinatorial interpretations for A039599,
and a bijection between our combinatorial interpretation of U{1324,123}72n+1(—y) and
one of the known combinatorial interpretations for A039598. This will allow us to give
closed expressions for the polynomials Uyi304,123,»(y). That is, we will prove that for
alln >0,

"2k 1) ()

U{1324,123},2n(y) = Z S /A\n—k/
—~ nt+k+l

" 2k + 1) (3]

Upisaaiza 2n1(y) = Z ) (—y)™t-.
—~ n+tk+2

(_ )n+k+1 and

Proof of Theorem 6

Let T" = {1324, 123}. Let (B, 0) be a fixed point Iy where B = (by,...,b;) and
o =010, By Lemma 2, we know that all the bricks b; must be of size 1 or 2.
Since the minimal elements in bricks of B must weakly increase, we see that 1 must
be in cell 1 and 2 must be either in b; or it is in the first cell of by. Thus we have
three possibilities.

Case 1. 2 is in b;.

In this case, by must be of size 2 and we can remove b; from (B, o) are reduce
the remaining numbers by 2 to get a fixed point of Iy of size n — 2. It then easily
follows that the fixed points in Case 1 contribute —yUr ,—2(y) to Ur,(y).

Case 2. 21isin by and by = 1.

In this case, it is easy to see that 1 cannot be involved in any I'-match so

that we can remove b; from (B, o) are reduce the remaining numbers by 1 to get a

fixed point of I+ of size n — 1. It follows that the fixed points in Case 2 contribute

_yUF,n—l (y) to UF,n (y)
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Case 3. 21isin by and by = 2.

In this case, there is descent between bricks b, and by so that there must be a
1324-match in o contained in the cells of b; and by. In particular, this means by = 2
and there is 1324-match starting at 1 in 0. We then have two subcases.

Subcase 3.A. There is no 1324-match in (B, o) starting at cell 3

We claim that {oy,...,04} = {1,2,3,4}. If not, let d = min({1,2,3,4} —
{o1,...,04}). Then d must be in cell 5, the first cell of brick b3 and there is a decrease
between bricks by and b3 since d < 4 < 4. Thus, in order to avoid combining bricks
by and b3, we need a 1324-match among the cells of these two bricks. However, the
only possible 1324-match among the cells of b, and b3 would have to start at cell 3
where o3 = 2. This contradicts the assumption that there is no 1324-match in (B, o)
starting at cell 3. As a result, it must be the case that the first four numbers must
occupy the first four cells of (B, o) so we must have 0y = 1, 09 = 3, 03 =2, 04 = 4,
and o5 = 5. It then follows that if we let O’ be the result by removing the first four
cells from (B, o) and then subtract 4 from the remaining entries in the cells, then O’
will be a fixed point in Or,_4. It then easily follows that the contribution of fixed
points in subcase 3.A to Ur,(y) is (—y)?Urn_a(y).

Subcase 3.B. There is a 1324-match in O starting at cell 3

In this case, there is decrease between bricks by and bs. Hence, the 1324-match
starting at cell 3 must be contained in the cells of by and b3 so that b3 must be of size
2. In general, suppose that the bricks bs, ..., b;_; all have exactly two cells and there
are 1324-matches starting at cells 1,3, ...,2k — 3 but there is no 1324-match starting
at cell 2k — 1 in O.

Similar to Subcase 3.A; we will show that {oy,...,00} = {1,2,...,2k}.
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That is, the first 2k numbers must occupy the first 2k cells in O. If not, let
d=min({1,2,...,2k} — {o1,...,09}). Since the minimal elements of the bricks are
weakly increasing, it must be the case that d is in the first cell of b;1. Next, the fact
that there are 1324-matches starting in cells 1,3, ...,2k — 1 easily implies that oo is
the largest element in {0y, ..., 09} which means that o9, > d. But then there is a
decrease between bricks b and b1 which means that there must be a 1324-match
contained in the cells of by and by, 1. This implies that there is a 1324-match starting
at cell 2k — 1 which contradicts our assumption.

Thus, if we remove the first 2k cells of (B, ) and subtract 2k from the remaining
elements, we will obtain a fixed point O" in Or ,_g;. Therefore, each fixed point O
in this case will contribute (—y)*Ur,,_ar(y) to Ur,(y). The final task is to count the
number of permutations oy - - - g9; of Sy that has 1324-matches starting at positions
1,3,...,2k — 3. In [26], Jones and Remmel gave a bijection between the set of such o
and the set of paths of length 2k — 2. Hence, there are Cj_; such fixed points, where
C, =1 (2”) is the n'* Catalan number. It then easily follows that the contribution

n—1\n

of the fixed points in Subcase 3.B to Ur,(y) is

[n/2]
Z (=) Cr1Ur m—ai(y).
k=2
Hence, we know that Ur; = —y and for n > 1,
[n/2]
Urn(y) = =yUrn1(y) = yUrn2(y) + > (=) CerUn-a(y).
k=2

This proves Theorem 6.

We have computed the polynomials Ugiseq,1231,,(—y) for small n which are
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given in the Table 2.8 below.
Table 2.8: The polynomials Ur,(—y) for I' = {1324, 123}

U{1324,123},n(—y)

Y

y+y?

2y* +y°

2y* + 3y° + y*

5y + Ayt + o

5% + 9yt + 5y° + 9°

14y* + 1495 + 69° + 47

14y* + 28y° + 2045 + 7y" + ¢/°
4295 + 48y + 27y + 8y® + 3°
429 + 90y° + 75y + 35¢y° + 9y® + y1°

© 00 1O Ul W N~ B

—
e}

We observe that, up to a power of y, the odd rows are the triangle A039598 in
the OEIS and the even rows are the triangle A039599 in the OEIS. These tables arise
from expanding the powers of x in terms of the Chebyshev polynomials of the second
kind. Since there are explicit formula for entries in these tables, we have the following

theorem.

Theorem 8. Let I' = {1324,123}. Then for all n > 0,

n 2k 1 2n
Ura2n(y) = Z %(—y)wkﬂ (2.22)

k=0

and
L2k D)
Uronia(y) =) — e 5 () (2.23)

k=0
Proof. First we consider the polynomials Ur a,41(—y) which correspond to the entries

in the table T'(n, k) for 0 < k < n of entry A039598 in the OEIS. T'(n, k) has an
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explicit formula, namely,
2(k +1) ("))
n+k+2

T(n, k) =

foralln > 0and 0 < k < n. Let T (n, k) be set all of paths of length 2n+1 consisting of
either up steps (1, 1) or down steps (1, —1) that start at (0,0) and end at (2n+1,2k+1)
which stay above the z-axis. Then one of the combinatorial interpretations of the
T(n,k)’s is that T'(n, k) = |T (n, k)|. Let Font196+1 be the set of all fixed points of It
with 2k + 1 bricks of size 1 and n — k bricks of size 2. We will construct a bijection
Ok from Fopi10k41 onto T (n, k). Note all (B, o) € Fany1.2k+1 have weight (—y) T+
so that the bijections 6, ; will prove (2.23).

First we must examine the fixed points of Ir in greater detail. Note that
since I' contains the identity permutation 123, all the bricks in any fixed point of I
must be of size 1 or size 2. Next, we consider the structure of the fixed points of I
which have k bricks of size 1 and ¢ bricks of size 2. Suppose (B, o) is such a fixed
point where B = (b1, ..., bg1¢) and that the bricks of size 1 in B are b;,,...,b; where
1< <---<ip <k+/{. For any s, there cannot be a decrease between brick bi;—1
and brick b;; in B since otherwise we could combine bricks b;, 1 and b;;, which would
violate our assumption that (B, o) is a fixed point of Ir. Next we claim that if there
are s bricks of size 2 that come before brick b;, so that b;; covers cell 2s + j in (B, o),
then oy = 2s+ j and {o1,...,0954+;} = {1,...,2s + j}. To prove this claim, we
proceed by induction. For the base case, suppose that b;, covers cell 2s 4+ 1 so that
(B, o) starts out with s bricks of size 2. If s = 0, there is nothing to prove. Next
suppose that s = 1. Then we know that in all fixed points of I, 2 must be in cell 2 or
cell 3. Since there is an increase between b; and by, it must be the case that 1 and 2 lie

in b; and since the minimal elements in the brick form a weakly increasing sequence,
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it must be the case that b, is filled with 3. If s > 2, then for 1 < i < s, either there is
an increase between b; and b;,; in which case the elements in b; and b;,; must match
the pattern 1234, or there is a decrease between b; and b;,; in which case the four
elements must match the pattern 1324. This means that if for each brick of size 2, we
place the second element of the brick on the top of the first element, then any two
consecutive bricks will be one of the two forms pictured in Figure 2.3. Thus if we
consider the s x 2 array built from the first s bricks of size 2, we will obtain a column
strict tableaux with distinct entries of shape (s, s). In particular, it must be the case
that the largest element in the array is the element which appears at the top of the
last column. That element corresponds to the second cell of brick bs. Since there is an
increase between brick by and brick by, it must mean that the element in brick bgyq
is larger than any of the elements that appear in bricks by,...,bs. Thus 0; < 0951
for © < 2s. Since the minimal elements in the bricks are increasing, it follows that
02s+1 < o for all j > 2s + 1 so that it must be the case that 09,41 = 25 + 1 and

{o1,...,09s41} ={1,...,2s 4+ 1}. Thus the base case of our induction holds.
2“34 3“24

2|4 3|4
113 112

~N
~

Figure 2.3: Patterns for two consecutive brick of size 2 in a fixed point of
Ir.

We can repeat the same argument for 7; where j > 1. That is, by induction,
we can assume that if there are r bricks of size 2 that precede brick b;,_,, then
Oytjo1 =2r+j—1and {o1,...,004;-1} ={1,...,2r + j — 1}. Hence if we remove

these elements and subtract 2r + j — 1 from the remaining elements in (B, o), we



63

would end up with a fixed point of I,. Thus we can repeat our argument for the

base case to prove that if there are s bricks of size 2 between brick b;, , and b;;, then

1
Oortostj = 2r +2s+j and {o1,...,0942:4;} = {1,...,2r+2s + j}.
Next we note that there is a well known bijection ¢ between standard tableaux
of shape (n,n) and Dyck paths of length 2n, see [43]. Here a Dyck path is path
consisting of either up steps (1,1) or down steps (1, —1) that starts at (0,0) and ends
at (2n,0) which stays above the z-axis. Given a standard tableau T', ¢(7") is the Dyck

path whose i-th segment is an up step if ¢ is the first row and whose i-th segment is a

down step if ¢ is in the second row. This bijection is illustrated in Figure 2.4.

3(6|7|9|10]12
T= 1| 2/4|5|8]|11

. M

1 2 3 4 5 6 7 89 1011 12

Figure 2.4: The bijection ¢.

We can now easily describe our desired bijection 0, ;. Starting with a fixed
point (B, o) in Fayt106+1 Where B = (by, ..., b,1k+1), we can rotate all the bricks of
size 2 by —90 degrees and end up with an array consisting of bricks of size one and
2 x r arrays corresponding to standard tableaux. For example, this step is pictured in
the second row of Figure 2.5. By our remarks above, each 2 x r array corresponds to
standard tableaux of shape (r,r) where the entries lie in some consecutive sequence

of elements from {1,...,2n + 1}. Suppose that b;,,...,b are the bricks of size 1

12k41
in B where 7; < --- < igp41. Let T; be the standard tableau corresponding to the

consecutive string of brick of size 2 immediately preceding brick b;; and P; be the Dyck

path ¢(T;). If there is no bricks of size 2 immediately preceding b;;, then P; is just
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the empty path. Finally let T5;,o the standard tableau corresponding to the bricks of

size 2 following b and Py, be the Dyck path corresponding to ¢(T5y42) where

12k+1

again Py o is the empty path if there are no bricks of size 2 following b Then

12k+1"
6n,k<B; O') = Pl(l, 1)P2(1, 1) Ce P2k+1(1, 1)P2k+2.

For example, line 3 of Figure 2.5 illustrates this process. In fact, it easy to see that if
i is in the bottom row of intermediate diagram for (B, o), then the i-th segment of
0,1(B,0) is an up step and if 7 is in the top row of intermediate diagram for (B, o),

then the i-th segment of 6,, (B, o) is an down step.

][z [«] [ ][ [~ sl ool

4] 6|7 11|12

[z] [2]s]5] [8] [9]z0] [23] [24]

NS

Figure 2.5: The bijection 0, j.

~

5

The inverse of 6, is also easy to describe. That is, given a path P in T (n, k),
we let d; be the step that corresponds to the last up step that ends at level i. Then P
can be factored as

PidyPady . . . Popy1dogs1 Porta

where each P; is a path that corresponds to a Dyck path that starts at level ¢ — 1 and

ends at level i — 1 and stays above the line z =i — 1. Then for each i, T, = ¢~ '(P}) is
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a standard tableau. Using these tableaux and being cognizant of the restrictions on
the initial segments of elements of Fo,419k+1 preceding bricks of size 1, one can easily
reconstruct the 2 line intermediate array corresponding to Tid;Tods . . . Top1dokr1Tok 0.
For example, this process is pictured on line 2 of Figure 2.6. Then we only have to
rotate all the bricks of size corresponding to a bricks of height 2 by 90 degrees to

obtain 0, } (P). This step is pictured on line 3 of Figure 2.6.

P, = empty path
2

4
1235@1012

1 4m2 6“3 7“5 8”@'1011“1213'

Figure 2.6: The bijection 0;2

Next we consider the polynomials Ur 2, (—y) which correspond to the entries in
the table R(n, k) for 0 < k < n of entry A039599 in the OEIS. R(n, k) has an explicit
formula, namely,

(26 +1)(,")

Bk ==

for all n > 0 and 0 < k < n. Let R(n, k) be set all of paths of length 2n consisting
of either up steps (1, 1) or down steps (1, —1) that start at (0,0) and end at (2n,0)
that have k down steps that end on the line = 0. Here there is no requirement that
the paths stay above the z-axis. Then one of the combinatorial interpretations of the
R(n, k)s is that R(n, k) = |R(n, k)|. Let Fa,2r be the set of all fixed points of It with

2k bricks of size 1 and n — k bricks of size 2. We will construct a bijection 3, ; from
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Fonar onto R(n, k). Note all (B,0) € Fopar weight (—y)"™ so that the bijections
B, will prove (2.23).

We can now easily describe our desired bijection (3, ;. Starting with a fixed
point (B, o) in Fap ok1 where B = (b, ..., b,1x), we can rotate all the bricks of size 2
by —90 degrees and end up with an array consisting of bricks of size one and 2 x r
arrays corresponding to standard tableaux. For example, this step is pictured in the
second row of Figure 2.8. By our remarks above, each 2 x r array corresponds to
standard tableaux of shape (r,7) where the entries lie in some consecutive sequence

of elements from {1,...,2n}. Suppose that b;,,...,b;, are the bricks of size 1 in B

iok
where 7; < -+ < ig. Let Ty be the standard tableau corresponding to the bricks of
size 2 immediately preceding brick b;, for 1 < s < 2n and let 15,1 be the standard

tableau corresponding to the bricks of size 2 following brick b;,,. For ¢ =0,...,2k 4+ 1,

ik
let P; be the Dyck path ¢(T;). In each case j where there are no such bricks of size 2,
then P; is just the empty path. For each such i, let P; denote the flip of P, i.e. the
path that is obtained by flipping P; about the x-axis. For example, the process of

flipping a Dyck path is pictured in Figure 2.7.

Figure 2.7: The flip of Dyck path.

P=

ﬁ:

Then

Bur(B,0) = Pi(1,1)P(1,—1)P3(1,1)Py(1, 1) ... Poy_1(1, 1) Payy(1, —1) Popy1.
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That is, each pair b b;,. will correspond to an up step starting at x = 0 followed

12515 Yigj
by a Dyck path which starts at ends a line x = 1 followed by down step ending at
x = 0. These segments are then connected by flips of Dyck path that stay below
the x-axis. Thus £, (B, o) will have exactly k& down steps that end at = 0. For

example, line 3 of Figure 2.8 illustrates this process.

|2 4“3 sm 7||911E012||1415

&

235910

AN AN

NS

Figure 2.8: The bijection £, .

The inverse of (3, is also easy to describe. That is, given a path P in R(n, k),
let f1,..., fr be the positions of the down steps that end at = 0 and define ey, ..., e
so that e; is the right most up step that starts at x = 0 and precedes f; and for
2 <14 <k, e; is the right most up step that follows f;_; and precedes f;. It is then
easy to see that the path ); which precedes e; must be a path that starts at (0,0)
and ends at (e; — 1,0) and stays below the z-axis so that @); is the flip of some Dyck
path P;. Next, the path Q3 between (eq,1) and (f; — 1,1) must either be empty or
is a path which stays above the line x = 1 and hence corresponds to the Dyck path
P,. In general, the path @9;_1 that starts at (f;_1,0) and ends at (e; — 1,0) must

stay below the z-axis so that (J2;_1 is the flip of some Dyck path P;_;. Similarly, the
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path ()y; between (ej, 1) and (f; —1,1) must either be empty or is a path which stays
above the line = 1 and hence corresponds to the Dyck path FPs;. Finally, the path
Q2x+1 which follows (fy,0) is either empty or is a path that ends at (2n,0) and stays
below the x-axis and, hence, corresponds to the flip of a Dyck path Ps,. In this way,
we can recover the sequence of paths Py, ..., Py 1, which are either empty or Dyck

paths, such that
P - ?1(1, 1)P2(1, —1>?3(1, 1)P4(]., —].) . ~F2k—1(17 1)P2k(1, —1)?2k+1.

Then for each i, T; = ¢~ *(F;) is either a standard tableau or the empty tableau. Using
these tableaux and being cognizant of the restrictions on the initial segments of elements
of Fa,.0r preceding bricks of size one described above, one can easily reconstruct the
2 line intermediate arrays corresponding to TieiTsfs ... Tog_1€01 ok forTor11. For
example, this process is pictured on line 2 of Figure 2.9. Then we only have to rotate
all the bricks of size corresponding to a brick of height 2 by 90 degrees to obtain

B;i(P) This step is pictured on line 3 of 2.9.

VAN
N

1] s[4 [7] [8] []

{
1|2 m 3|5 m 6 10 11M12 14M1315H

Figure 2.9: The bijection ﬁ;,{z

~
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]

As a consequence of Theorem 8, we have a closed formula for NM{y393.1233 (, 7, ).

Theorem 9.

) here
w
L {1323,123} (ta y)

NMi323123) (t, 2, y) = <

2 (P (2k+1)( "
Upisasosy(t,y) = 1+ Z (;n)' (Z %(—y)”’“)

n>1 k=0
) Z 201 " 2(k+ 1) (> (g
= Cn+DI\Z nt+k+2

The proof of Theorem 7.

Let p>5and I') = {1324...p,123...p — 1}. It follows from Lemma 2 that
any brick in a fixed point of It has size less than or equal to p — 2.

Let (B,0) be a fixed point of Ir, where B = (by,...,b) and 0 = 0y ---0y.
Suppose that by = k where 1 < k < p—2. If b = 1, then o7 = 1 and we can remove
brick b; from (B, o) and subtract 1 from the remaining elements to obtain a fixed
point O of I, of length n — 1. It is easy to see that such fixed points contribute
—yUr, n-1(y) to Ur, (y).

Next assume that 2 < k < p — 2. First we claim that 1,...,k — 1 must be
in b;. That is, since the minimal elements in the bricks increase, reading from left
to right, and the elements within each brick are increasing, it follows that the first

element of brick by is smaller than every element of o to its right. Thus if there is an
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increase between bricks b, and by, it must be the case the elements in brick b; are the
k smallest elements. If there is a decrease between bricks b; and by, then there must
be a 1324 ... p-match that lies in the cells of b; and by which must start at position
k — 1. Thus ox_1; < 041 which means that oy,...,0,_1 must be the smallest k£ — 1
elements. We then have two cases depending on the position of k in o.

Case 1. k is in the k™" cell of (B, o).

In this case, if we remove the entire brick b; from (B, o) and subtract k from
the numbers in the remaining cells, we will obtain a fixed point O" of It ,_4. It then
easily follows that fixed points in Case 1 will contribute —yUr, ,—«(y) to Up, »(y).
Case 2. kisin cell k+ 1 of (B,0).

In this case, it is easy to see that £ is in the first cell of the second brick in
(B, o) and there must be a 1324. .. p-match between the cells of the first two bricks.
This match must start from cell £ — 1 in O with the numbers £ — 1 and k playing the
roles of 1 and 2, respectively, in the match. This forces the brick b, to have exactly
p — 2 cells. Thus we have two subcases.

Subcase 2.A. There is no 1324...p-match in (B, o) starting at cell k +p — 3

In this case, we claim that {oy,..., 04,2} = {1,...,k +p—2}. That is, we
know that the element in the first cell of brick b3 is smaller than any of the elements
of o to its right. Moreover, if there was a decrease between brick b, and b3, then there
must be a 1324 ... p-match starting in cell £ 4+ p — 3. Since we are assuming there is
not such a match this means that there is an increase between bricks by and b3. Since
the last element of b, must be the largest element in either brick b; or by, it follows
that {o1,...,061p—2} = {1,...,k +p —2}. This forces that o; = i for i < k — 1,

or=k+1, 001 =k, op0=k+2,0,=1for k+2 <1< k+p—2. Hence, the first
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two bricks of (B, o) are completely determined. It then follows that if we let O’ be the
result by removing the first & + p — 2 cells from (B, o) and subtracting k + p — 2 from
the numbers in the remaining cells, then O’ will be a fixed point in Or, ;—p—(p—2)- It
then easily follows that fixed points in Subcase 2.A contribute (—y)?Ur, n——(p-2)(y)
to Up,n(y).

Subcase 2.b. There is a 1324. .. p-match in (B, o) starting at cell k +p — 3

In this case, it must be that o44,-3 < Opip-1 < Okip—2 so that there is a
decrease between bricks b, and b3. This means that the 1324 ... p-match starting
in cell £+ p — 3 must be contained in bricks by and b3. In particular, this means
that b3 = p — 2. In general, suppose that the bricks b, ..., b,_1 all have exactly
p—2cellsand let ¢; = k+ (i —1)(p—2) — 1 for all 1 < i < m — 1, so that ¢; is
the second-to-last cell of brick b;. In addition, suppose there are 1324 ... p-matches
starting at cells ¢1,c¢,..., 1 but there are no 1324...p-match starting at cell
Cm=k—(m—1)(p—2)—11in O. We then have the situation pictured in Figure 2.10

below.

-match [-match

k-1 c2 cm—l cm

[-match no -match

Figure 2.10: A fixed point with I')-matches starting at ¢; fori =1,... ,m—1.

First, we claim that {o1,09,...,0c,,,} = {1,2,...,¢nt1}. Since there is no
I')-match starting at o.,, in o, it cannot be that there is decrease between brick b,,
and b,,11. Because the minimal elements in the bricks of B increase, reading from
left to right, and the elements in each brick increase, it follows that o, 2, which is

the first element of brick b,,,1, is smaller than all the elements to its right. On the
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other hand, because there are 1324 - - - p-matches starting in o starting at ¢1,..., ¢
it follows that o, 11, which is last cell in brick b,,, is greater than all elements of o to

its left. It follows that {o1,00,...,0¢, .} ={1,2,..., cmi1}-

Next we claim that we can prove by induction that o., = ¢; and {0y, ...,0.} =
{1,...,¢} for 1 < i < m. Our arguments above show that o; = i for i =
I,...,k —1 = ¢;. Thus the base case holds. So assume that o, , = ¢; 1, for

1 <i < j,and {01,09,...,5, .} = {1,2,...,¢;_1}. Since there is a 132---p-
match in o starting at position c¢;—; and p > 5, it must be the case that all
the numbers o.,_,,0._,41,...,0¢_,4p-3 are all less than o, = 0, _ 4, 2. Since
{o1,00,...,0¢,,} = {1,2,...,¢;_1}, we must have 0., > ¢;. If 0., > ¢;, then let
d be the smallest number from {1,2,...,¢;} that does not belong to the bricks
by, ..., b;. Since the numbers in a brick increase and the first cells of the bricks form

an increasing sequence, it must be the case that d is in the first cell of brick b;4,

namely o, 2 = d. We have two possibilities for j.

L. If j <m, then 0,12 = d < ¢; < 0.,;. This contradicts the assumption that there
is a 1324. .. p-match starting from cell ¢; in o for o.; needs to play the role of 1

in such a match.

2. If j = m, then there is a descent between the bricks b,, and b,,1 and there must
be a 1324 ... p-match that lies entirely in the cells of b, and b,, 1 in O. However,
the only possible match must start from cell ¢,,, the second-to-last cell in b,,.

This contradicts our assumption that there is no match starting from cell ¢,, in

0.

Hence, o.; = ¢; and {01,02,...,0¢} ={1,2,...,¢;}. for 1 <j <m.
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We claim that the values of o; are forced for ¢ < ¢,, + 1. That is, consider
the first 1324 - .- p-match starting at position £ — 1. Since p > 5, we know that
Okip-2 = k +p —2 > opo. This forces that o, = k+ 1, 041 = k, Op2 =
k + 2 so that the values of o; for i < k + p — 2. This type of argument can be
repeated for all the remaining 1324 - - - p-matches starting at cso, ..., ¢,,—1. Thus if we
remove the first k 4 (m — 1)(p — 2) cells of O, we obtain a fixed point O’ of I, in
Or, n—k—(m-1)(p—2)- On the other hand, suppose that we start with a fixed point (D, 1)
of Ir, in Or, n—k—(m-1)(p—2) Where D = (di,...,d,) and 7 = 7y,..., Tk (m—1)(p—2)-
Let T = 71+ Tpn_p—(m-1)(p—2) be the result of adding n — k — (m — 1)(p — 2) to
every element of 7. Then it is easy to see that (B,0) is a fixed point of I, where
B=(k,(p—2)"diy,...,d,)and 0 = 01 Ops(m-1)p—27 Where o1 - Opp(m_1)(p—2) I8
the unique permutation in Sy (m—1)(p—2) With 1324 - - - p-matches starting at positions
C1,...,Cm_1. It follows that the contribution of the fixed points in Case 2.b to Upp,n(y)
i5 2 mz3(=¥)"Ury ok (m-1)(0-2) ()

Hence, for any fixed point Oy, that has k cells in the first brick, for 1 < k£ < p—2,

the contribution of Oy, to Ur, ,(y) is

—k
E=.

<_y)UFp,nfk(y) + (_y>mUFp,n—k—(m—1)(p—2) (y)

m=2

Therefore, we obtain the following recursion for Ur, ,,(y) as follows.

p—2 p—2 L%J
Ur,n(y) = D _(=9)Ur,m-r(y) + (=) Uryn—k—(m-1)0-2) (%)
k=1 k=1 m=2
This completes the proof of Theorem 7. O]

The results of this chapter is based on the paper by Bach and Remmel [3].



Chapter 3

The case of multiple descents

We first recall from the previous chapters that the two assumptions on I' that

allow the reciprocity method to work are that
(A) all 7 in T" start with 1 and
(B) all 7 in I' have at most one descent.

First, assumption (A) ensures that we can write NMr(¢, x,y) in the form <m>w
Second, assumption (B) ensures that the involution I used to simplify the weighted
sum over all filled, labeled brick tabloids that equals n!6,(h,) is actually an involution
and to ensure that the elements in any brick of a filled, labeled brick tabloids which is
a fixed point of I must be increasing. Finally, (A) is used again to ensure that the
minimal elements in bricks of any fixed point of I are increasing when read from left
to right.

The main goal of this chapter is to study how we can apply the reciprocity
method in the case where we no longer insist that all the 7 € I' have at most one

descent. We shall show that we can modify the definition of the involution used in
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the early chapter to simplify the weighted sum over all filled, labeled brick tabloids
that equals n!6,(h,). However, the set of fixed points in such cases will be more
complicated than in the case where I' contains only permutations with at most one
descent in that it will no longer be the case that, for fixed points of the involution,
the fillings will be increasing in bricks and the minimal elements of the brick increase,
reading from left to right. Nevertheless, we shall show that there still are a number of
cases where we can successfully analyze the fixed points to prove that the polynomials
Ur.»(y) satisfy some simple recursions.

We note that our results allow us to compute NM., (¢, z,y) in two cases where
T=1...T7¢ and 71 = 1, 73 = 2, and 75 = 3. Namely, the cases where 7 = 162534 and

T = 142536. All such permutations have des(7) = 2.

3.1 A new involution

In Section 2.2, we defined the homomorphism 6r on the ring of symmetric
functions A by setting 0r(eq) = 1 and, for n > 1,

(="

n!

Qr(en) =

NMF,n(L y)

Under this homomorphism, we proved that

nlor(h,) = Y sgn(0)W(0),

OGOF,n

where the sum is over the set of all filled labeled brick tabloids described in the same

section. The sign of each O € O, is given by sgn(O) = (=1)*¥, and the weight
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W(O) of O is defined to be the product of all the labels y used in the brick.

Now we shall define a new sign-reversing, weight-preserving mapping Jr :
Or,, — Or,, as follows. Let (B,0) € Or,, where B = (by,...,by) and 0 = 0y ...0,.
Then for any i, we let first(b;) be the element in the left-most cell of b; and last(b;) be
the element in the right-most cell of b;. Then we read the cells of (B, o) from left to
right, looking for the first cell ¢ such that either
Case I. cell ¢ is labeled with a y in some brick b; and either (a) j =1 or (b) 7 > 1
with either (b.1) last(b;_;) < first(b;) or (b.2) last(b;_y) > first(b;) and there is
T-match contained in the cells of b;_; and the cells b; that end weakly to the left of
cell ¢ for some 7 € I, or
Case II. cell ¢ is at the end of brick b; where o. > 0.1 and there is no I'-match of o
that lies entirely in the cells of the bricks b; and b; .

In Case I, we define Jr((B, o)) to be the filled labeled brick tabloid obtained
from (B, o) by breaking the brick b; that contains cell ¢ into two bricks ¥ and b
where b contains the cells of b; up to and including the cell ¢ while b7 contains the
remaining cells of b;. In addition, we change the label of cell ¢ from y to —y. In Case
II, Jr((B,0)) is obtained by combining the two bricks b; and b;;; into a single brick
b and changing the label of cell ¢ from —y to y. If neither case occurs, then we let
Jr((B,0)) = (B,0).

For example, suppose I' = {7} where 7 = 14253 and (B, o) € Or 19 pictured
at the top of Figure 3.1. We cannot use cell ¢ = 4 to define Jp(B, o), because if we
combined bricks b; and by, then red(9 15 11 16 13) = 7 would be a 7-match contained
in the resulting brick. Similarly, we cannot use cell ¢ = 6 to apply the involution

because it fails to meet condition (b.2). In fact the first ¢ for which either Case I or
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Yy Yy -y
2|5 915|

|18 1|3 619|

y [y
[12]4]

|11 16 |13 171_0”7 14 8|

s [y [-v
[2]5] 9015

|11 16 |13 17|

-y

o

Figure 3.1: An example of the involution Jr.

y |-

Yy -y
|7 14 8|

|18 1|3 619|

y [y
[12]4]

Case IT applies is cell ¢ = 8 so that Jp(B, o) is equal to the (B’, o) pictured on the
bottom of Figure 3.1.

We now prove that Jr is an involution by showing J2 is the identity mapping.
Let (B,o) € Or,, where B = (by,...,b;) and 0 = 01 ...0,. The key observation here
is that applying the mapping Jr to a brick in Case I will produce one in Case II, and
vice versa.

Suppose the filled, labeled brick tabloid (B,o) is in Case I and its image
Jr((B,0)) is obtained by splitting some brick b; after cell ¢ into two bricks b and bf.

There are now two possibilities.

(a) cis in the first brick b;. In this case, ¢ must be the first cell which is labeled
with y so that the elements in 0} will be increasing. Furthermore, since we are
assuming there is no I'-match in the cells of brick b; in (B, o), there cannot be
any ['-match that involves the cells of bricks 0] and b} in Jr((B,c)). Hence, when
we consider Jp((B, o)), the first possible cell where we can apply Jr will be cell
¢ because we can now combine b} and b{. Thus, when we apply Jr to Jr((B,0)),
we will be in Case II using cell ¢ so that we will recombine bricks ¢} and b/ into
b, and replace the label of —y on cell ¢ by y. Hence Jp(Jr((B,0))) = (B,o) in

this case.
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(b) cisin brick b;, where j > 1. Note that our definition of when a cell labeled y can
be used in Case I to define Jr depends only on the cells and the brick structure
to the left of that cell. Hence, we can not use any of the cells labeled y to the
left of ¢ to define Jr(Jr((B,0))). Similarly, if we have two bricks b, and bs1;
which lie entirely to the left of cell ¢ such that last(bs) = o4 > first(bs11) = 0441,
the criteria to use cell d in the definition of Jr on Jr((B,o)) depends only
on the elements in bricks bs; and bs.1. Thus, the only cell d which we could
possibly use to define Jr on Jr((B, o)) that lies to the left of ¢ is the last cell
of bj_1. However, our conditions that either last(b;_1) < first(b;) = first(b}) or
last(bj—1) > first(b;) = first(b}) with a I'-match contained in the cells of b; 4
and b force the first cell that can be used to define Jr on Jr((B,0)) to be cell
c¢. Thus, when we apply Jr to Jr((B, o)), we will be in Case II using cell ¢ and
we will recombine bricks b; and b} into b; and replace the label of —y on cell ¢

by y. Thus Jr(Jr((B,0))) = (B, o) in this case.

Suppose (B, o) is in Case II and we define Jr((B,0)) at cell ¢, where ¢ is last
cell of b; and o, > 0.41. Then by the same arguments that we used in Case I, there
can be no cell labeled y to the left of this cell ¢ in either (B, o) or J(B,¢) which can
be used to define the involution Jr. This follows from the fact that the brick structure
before cell ¢ is unchanged between (B, o) and J(B, ). Similarly, there can be no two
bricks that lie entirely to the left of cell ¢ in Jr((B,0)) that can be combined under
Jr. Thus, the first cell that we can use to define Jr to Jr((B,0)) is cell ¢ and it is
easy to check that it satisfies the conditions of Case I. Thus, when we apply Jr to
Jr((B,0)), we will be in Case I using cell ¢ and we will combine bricks b; and b,44

into a single brick b and replaced the label on cell ¢ by y. Then it is easy to see that



79

when applying Jr to Jp((B, o)), we will split b back into bricks b; and b;;; and change
the label on cell ¢ back to —y. Thus, Jp(Jr((B,0))) = (B, o) in this case.
Hence Jr is an involution. Also, it is clear that if Jpr(B,o) # (B,0), then

sgn(B, o)W (B,o0) = —sgn(Jr(B,0))W (Jr(B,0)). Hence, it follows from (2.4) that

Ura(y) = nlor(h,) = Y sgn(O)W(0) = > sgn(O)W (O).

Oeof‘,n OEO["n,JF(O):O

Therefore, to compute Ur,(y), we must analyze the fixed points of Jp. Our next

lemma characterizes the fixed points of Jr.

Lemma 2. Let B = (by,...,bg) be a brick tabloid of shape (n) and o = 0y...0, € S,.

Then (B, o) is a fized point of Jr if and only if it satisfies the following properties:

(a) ifi=1ori>1 and last(b;—1) < first(b;), then b; can have no cell labeled y so

that o must be increasing in b;,

(b) if i > 1 and o. = last(bi—1) > first(b;) = 0ey1, then there must be a I'-match
contained in the cells of b;_1 and b; which must necessarily involve o, and o1

and there can be at most k — 1 cells labeled y in b;, and

(c) if I' has the property that, for all T € T such that des(t) = j > 1, the bottom
elements of the descents in T are 2,...,j + 1, when reading from left to right,

then first(by) < first(by) < - -+ < first(by,).

Proof. Suppose (B, o) is a fixed point of Jp. Then it must be the case that in (B, o),
there is no cell ¢ to which either Case I or Case II applies. That is, when attempting

to apply the involution Jr to (B, o), we cannot split any brick at a cell labeled y and
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we cannot combine two consecutive bricks where the last cell of the first brick is larger
than the first cell of the second brick.

For (a), note that if there is a cell labeled y in b; and c is the left-most cell of
b; labeled with y, then c¢ satisfies the conditions of Case I. Thus, there can be no cell
labeled y in b;.

For (b), note that if there is no I'-match contained in the cells of b;,_; and b;,
then e satisfies the conditions of Case II. Thus, there must be a I'-match contained in
the cells of b;_; and b;. If there are k or more cells labeled y in b;, then let ¢ be the
Et" cell, reading from left to right, which is labeled with 3. Then we know there is
T-match contained in the cells of b;_; and b; which must necessarily involve o, and
Oey1 for some 7 € I'. But this 7-match must end weakly before cell ¢ since otherwise
7 would have at least k£ + 1 descents. Thus ¢ would satisfy the conditions to apply
Case I of our involution. Hence there can be no such ¢ which means that each such
brick can contain at most k — 1 descents.

To prove (c), suppose for a contradiction that there exist two consecutive bricks
b; and b;1; such that o, = first(b;) > first(b;41) = 0. There are two cases.

Case A. o is increasing in b;.

In this case, o1 = last(b;). If 071 < o, then we know that o. < 071 < oy which
contradicts our choice of o, and o;. Thus it must be the case that o;_; > oy. But
then there is 7 € I' such that des(7) = j > 1 and there is a 7-match in the cells of b;
and b;1 involving the o;_; and 0. By our assumptions, oy can only play the role of
2 in such a 7-match. Hence there must be some o, with e < g < f — 2 which plays
the role of 1 in this 7-match. But then we would have 0. < 0, < o which contradicts

our choice of o, and o;. Thus o cannot be increasing in b;.
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Case B. ¢ is not increasing in b;.

In this case, by part (a), we know that it must be the case that o._; = last(b;_1) >
o, = first(b;) and, by (b), there is 7 € I' such that des(r) = j > 1 and there is a
T-match in the cells of b;_; and b; involving the cells o._; and o.. Call this 7-match
« and suppose that cell h is the bottom element of the last descent in «. It cannot
be that o, = oj,. That is, there can be no cell labeled y that occurs after cell h in b;
since otherwise the left-most such cell ¢ would satisfy the conditions of Case I of the
definition of Jr. But this would mean that o is increasing in b; starting at o, so that
if 0. = oy,, then ¢ would be increasing in b; which contradicts our assumption in this
case. Thus there is some 2 < i < j such that o, plays the role of ¢ in the 7-match
«a and oy, plays the role of 7 4+ 1 in the 7-match a. But this means that o, is the
smallest element in brick b;. That is, let o. be the smallest element in b;. If o, # o,
then o, must be the bottom of some descent in b; which implies that ¢ < h. But then
o. is part of the 7-match o which means that o, must be playing the role of one of
t+1,...,7+1 in the 7-match o and o, is playing the role of ¢ in the 7-match o which
is impossible if o, # o.. It follows that o. < oy_;. Hence, it can not be that case
that oy_; < oy since otherwise o, < o;. Thus it must be the case that oy_; > oy.
But this means that there exists some § € I such that des(d) = p > 1 and there is a
0-match in the cells of b; and b;4, involving the o¢_; and 0. Call this /-match 3. By
assumption, the bottom elements of the descents in ¢ are 2,3,...,p + 1 so that oy
must be playing the role of 2,3,...,p+ 1 in the d-match 3. Let o, be the element
that plays the role of 1 in the d-match 8. o, must be in b; since  must start with 1.
But then we would have that o, < o4 < 0y since o, is the smallest element in b;.

Thus, both Case A and Case B are impossible. Hence we must have that
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first(by) < first(be) < - -+ < first(by). O

We note that if condition (3) of the Lemma fails, it may be that the first
elements of the bricks do not form an increasing sequence. For example, it is easy to
check that if I' = {15342}, then the (B, o) pictured in Figure 3.2 is such a fixed point

of JF.

-y ‘
18|

I v] [
[1] 2] ]9

[15]16] 4 [ 5]

-y

[6]

Figure 3.2: A fixed point of J{i5349}.

—y
[7]s [17]

Yy -y
|13 14| 9 |10 11|

|12

3.2 Results of the new involution

In this section, we shall compute the generating functions NMr(t, z, y) when I' =
{14253,15243}, I = {142536}, and when I = {7, } for any a > 2 where 7, € Sy, is the
permutation such that 773 ... 79,1 = 12...a and 77y ... 72q = (2a)(2a—1) ... (a+1).

In each case, the permutations have at least two descents. Below are the main results.

Theorem 10. Let I' = {14253,15243}. Then

1 * t"
NMr(t,z,y) = (m) where Up(t,y) =1+ Z UF,n(y)ﬁ7
’ n>1 ’

with Ur1(y) = —y, and for n > 2,

Urn(y) = (1= y)Urn-1(y) — ¥*(n = 3) (Urn-a(y) + (1 = y)(n = 5)Ur n—s5(y))

—y*(n = 3)(n = 5)(n — 6)Ur.n—s(y)-
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Let C, = L(i?) be the n-th Catalan number. Let M,, be the n x n matrix

n+1

whose elements on the main diagonal equals C5, whose elements on j-th diagonal

above the main diagonal are Cs;;9, whose elements on the sub-diagonal are —1, and

whose elements in diagonal below the sub-diagonal are 0. Thus,

Cy C; Cy
-1 Cy Cs
0 -1

My=10 0 -1

CVll
Cs
Cs

Cy

03k74
C3k—7
C(3k—10

03]{713

C3k’71
Ck—a
Cap—7

C3k710 :

Let Py be the matrix obtained from M} by replacing each C,, in the last column by

Cho—1. Thus,
Cy C; Cy
-1 Cy GCs
0 —1 (%

P.=10 0 -1

Theorem 11. Let 7 = 142536. Then

1
U:(t,y)

NM. (t,z,y) = (

Cu
Cs
Cs

Cy

C3k‘—10

CY3]~3713

Cs

) where U (t,y) =1+ ZUT,n(y)m7

Cap—g

CSkfll ’

Cy

Ch

tn

n>1
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with U1 (y) = —y, and for n > 2,

[(n—8)/6]
Urn(y) = (1 = y)Ur Z det(My11)y** P Un—er—7(y)
[n—6/6]
+ > det(Peya) (") [Urn-er-a(y) + yUrn-er—5(y)] -
k=0

Theorem 12. For anyn > 2, let T =1y ...Toq € Soq where TT3...Toq_1 = 123...a

and o7y ... Toq = (2a)(2a — 1) ... (a +1). Then

1 N "
NM,(t,z,y) = (U G y)) where U, (t,y) =1+ ZUT:"(y)E’

n>1

with Uy 1 (y) = —y, and for n > 2,

Urn(y) = (1 = y)Urna(y)

[(n—2a)/(2a)]
_ Z n—(k+1)a—-1 s o)
k=0 (k + ].)CL —1 Ta,n—(2(k+1)a)+1

l(n—2a—2)/(2q)] (n —(k+1a
+

-2
(k—l—l)aU

k=0

3.2.1 The case I' = {14253, 15243}

We first consider the proof of Theorem 10 in the case where I' = {14253, 15243},
which is the simplest of our examples. For convenience, we first restate the statement

of Theorem 10 below.

Theorem. Let I = {14253, 15243}. Then

1 ‘ "
NMr(t,z,y) = (m) where Urp(t,y) =1+ Z URn(?/)ma

n>1
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with Ur1(y) = —y, and for n > 2,

Urn(y) = (1 = y)Urn-1(y) — ¥*(n = 3) (Urn—a(y) + (1 = y)(n = 5)Ur n-s(y))

—y*(n = 3)(n = 5)(n — 6)Ur.n—s(y)-

Proof. Let T' = {14253, 15243}, we need to show that the polynomials

Uny)= Y,  sen(O)W(0)

OEOFYH,JF(O):O
satisfy the following properties:
1. Ura(y) = —y, and

2. forn > 2,

Urn(y) = (L= 9)Urn-1(y) = y*(n = 3) (Urn-a(y) + (1 = y)(n = 5)Ur.n—5(y))

—y(n = 3)(n = 5)(n = 6)Ur,o(y).

It is easy to see when n = 1, the only fixed point comes from brick tabloid
that has a single brick of size 1 which contains 1 and the label on cell 1 is —y. Thus
Ura(y) = —y.

For n > 2, let O = (B, o) be a fixed point of Jr where B = (by,...,b) and
o =070, First we show that 1 must be in the first cell of B. That is, if 1 = o,
where ¢ > 1, then 0.1 > 0.. We claim that whenever we have a descent o; > g, in
o, then o; and ;1 must be part of a I-match in ¢. That is, it is either the case that

(i) there are bricks bs and b, such that o; is the last cell of bs and ;1 is the first cell
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of bsyq or (ii) there is a brick b that contains both o; and o;41. In case (i), condition
3 of Lemma 2 ensures that o; and 0;,; must be part of I'-match. In case (ii), we know
that cell 7 is labeled with y. It follows from condition (2) of Lemma 2 that it can not
be that either s = 1 so that by = by or that s > 1 and last(bs_1) < first(bs) because
those conditions force that o is increasing in b,. Thus we must have that s > 1 and
last(bs—1) > first(bs). Since (B, o) is a fixed point of Jr, it cannot be that there is a
[-match in o which includes last(bs_1) and first(bs) that ends weakly to the left of
o; because then cell ¢ would satisfy Case I of our definition of Jr and, hence, (B, o)
would not be a fixed point of Jp. Thus the I'-match which includes last(b,_;) and
first(bs) must involve o; and 0;,1. However, there can be no I'-match that involves
0.1 and o, since o. = 1 can only play the role of 1 in a ['-match and each element of
I' starts with 1. Thus, we must have o; = 1.

Next we claim that 2 must be in either cell 2 or cell 3 in O. For a contradiction,
assume that 2 is in cell ¢ for ¢ > 3. Then once again o. 1 > 0. so that there must be
a I-match in o that involves the two cells ¢ — 1 and ¢ in (B, o). However, In this case,
the number which is in cell ¢ — 2 must be greater than o, so that the only possible
[-match that involves 2 must start from cell ¢ where 2 plays the role of 1 in the match.
Thus there is no I'-match in ¢ that involves o._; and o.. We now have two cases.
Case 1. 2 is in cell 2 of O.

In this case there are two possibilities, namely, either (i) 1 and 2 are both in the first
brick by of (B, o) or (ii) brick b; is a single cell filled with 1, and 2 is in the first cell
of the second brick by of O. In either case, we know that 1 is not part of a [-match in
0. So if we remove cell 1 from O and subtract 1 from the elements in the remaining

cells, we will obtain a fixed point O" of Jr in Op,,_.
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Moreover, we can create a fixed point O = (B, o) € O,, of Jr satisfying the three
conditions of Lemma 2 where 09 = 2 by starting with a fixed point (B’,0’) € Or,,—1
of Jp, where B’ = (by,...,b.) and o/ = o} ---0/,_;, and then letting ¢ = 1(o} +
1)--- (ol _y+1), and setting B = (1,b},...,b)) or setting B = (1 +b],...,b.).

It follows that fixed points in Case 1 will contribute (1 —y)Ur ,—1(y) to Ur.(y).
Case 2. 2 isin cell 3 of O = (B, 0).

Since there is no decrease within the first brick b, of O = (B, o), it must be the
case that 2 is in the first cell of brick by and there must be either a 14253-match
or a 15243-match that involves the cells of the first two bricks. Therefore, we know
that brick by has at least 3 cells. In addition, we claim that 3 is in cell 5 of O since
otherwise, 3 must be in some cell ¢ for ¢ > 6 and there must be a I'-match between
the two cells ¢ — 1 and ¢ in O. By the previous argument, we can see that if 3 is too
far away from 1 and 2, then it must play the role of 1 in any match that involves cell
c. Thus, the only possible ['-match that contains cell ¢ must also start at ¢ and can
never involve both cells ¢ — 1 and ¢. Also, 3 cannot be in cell 2 nor 4 in O since both
o9 and o4 are greater than 3, due to the I'-match starting from cell 1. We now have
two subcases depending on whether or not there is a I'match in O starting at cell 3.

Subcase 2.a. There is no I'-match in O starting at cell 3.

In this case, we first choose a number x to fill in cell 2 of O. There are n — 3 choices
for x. For each choice of o9 =z, we let d be the smallest of the remaining numbers,
that is,

d=min ({1,2,...,n} —{1,2,3,09}).

We claim that d must be either in cell 4 or cell 6 in (B, o). First, d cannot be in cell 7

since otherwise there would be a I'-match in o starting at cell 3. Next d cannot be a
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cell ¢ where ¢ > 7 since otherwise o._1 > o. = d which means that there must be a
I'-match in ¢ which includes both o._; and o.. However, in the case, we would also

have o._5 > 0. which implies the only role that o, can play in a I'-match is 1.

-y oy
[1]x|||2] d]3
-y oy

[1]x|||2] z]3 | a

=y y -y

[1]x|| 2] z]3][a

Figure 3.3: The possible choice for d in Subcase 2a.

This leaves us with three possibilities which are pictured in Figure 3.3. That
is, either (i) d is in cell 4, (ii) d is in cell 6 and is in brick by or (iii) d is in cell 6, but
is the first element of brick b3. In case (i), we can remove that first four cells from
B, reduce the remaining elements of ¢ to obtain a permutation o € S,,_4, and let
B’ = (by — 2,bs,...,by) to obtain a fixed point (B’, «) of Jr of size n — 4. Such fixed
points will contribute —4?Ur,,_4(y) to Ur,(y). In case (ii), we have (n — 5) ways to
choose the element z in cell 4. Then we can remove that first five cells cells from
B, reduce the remaining elements of ¢ to obtain a permutation a € 5,,_5, and let
B’ = (by — 3,bs,...,bx) to obtain a fixed point (B’, «) of Jr of size n — 5. Such fixed
points will contribute —y*Ur,,_5(y) to Ur,(y). In case (iii), we have (n —5) ways
to choose the element z in cell 4. Then we can remove that first five cells cells from
B, reduce the remaining elements of o to obtain a permutation o € S,,_5, and let
B’ = (by — 3,bs,...,bx) to obtain a fixed point (B’, «) of Jr of size n — 5. Such fixed

points will contribute y*Ur,,_5(y) to Ur,(y). Therefore, the total contribution of the



89

fixed points from Subcase 2.a. is

—y*(n = 3) (Urn-a(y) + (1 = y)(n = 5)Urn-s(y)) -

Subcase 2.b. There is a ['match in O starting at cell 3.

In this case, we first choose a number x to fill in cell 2 of O. There are n — 3 choices
for . For each choice of o9, let d = min ({1,...,n} —{1,2,3,0,}). Then we claim
that d must be in cell 7. That is, we can argue as in Subcase 2a that it cannot be that
d in cell ¢ for ¢ > 7. But since there is a I'-match starting at cell 3 we know o4 > o7
and og > 07 so that d cannot be in cells 4 or 6. We then have (n — 5)(n — 6) ways to
choose 04 = z and og = a.

Next, by condition (b) of Lemma 2, we know that each brick in b in B can
contain at most one descent. Since we know that by must have size at least 3 because
there is a I'-match in o starting at cell 1 which is contained in b; and bs, this means
that either by = 3 or by, = 4. We claim that by is of size 4. That is, if b, = 3, then
either (I) a > d are in by or (II) brick b3 contains a single cell containing a and d is
the first cell of by. Case (I) cannot happen because then last(by) = 3 < first(bs) = a
which implies that the elements in b3 must be increasing by condition (a) of Lemma 2.
Case (II) cannot happen because that last(bs) = a > first(bs) = d which implies there
must be a I'-match contained in the cells of b3 and b, which involves both o5 = «a
and o7 = d which is impossible since a > d. Thus we are in the situation pictured in
Figure 3.4.

Then we can remove that first six cells cells from B, reduce the remaining
elements of ¢ to obtain a permutation « € S,,_¢, and let B’ = (b3, ..., bx) to obtain a

fixed point (B’, ) of Jr of size n — 6. Such fixed points will contribute (n — 3)(n —



90

-y y =y

|1 x||2 2|3 a”d

Figure 3.4: Subcase 2b.

5)(n —6)y*Ur n—6(y) to Upn(y).

In total, we obtain the recursion for Ur,(y) as follows.

Urn(y) = (1 = y)Urn-1(y) — ¥*(n = 3) (Ur—a(y) + (L = y)(n — 5)Ur n—s(y)) +

y*(n = 3)(n = 5)(n — 6)Urn—6(y)-

This proves Theorem 10. O
Using Theorem 10, we computed the initial values of the Ur,(y)s which are
given in Table 3.1.

Table 3.1: The polynomials Ur,(—y) for I' = {14253, 15243}

n UF,n(y)

L] -y

2 | —y+y?

3| —y+22—y°

4 | —y+3y* - 3y° + ¢

5| —y+4yP 4 +4yt -y

6 | —y+5y% — 2% + 2yt — 5y° + oS

7 | —y+ 6y + 5y — 28y* + 5y° + 6y° — 7

8 | —y + Ty? 4+ 19y% — 123y* + 123y° — 199° — 7y" + ¢/

9 | —y + 8y + 429> — 334y* + 588y° — 334y5 + 4297 + 8y® — ¢/°
10 | —y + 9y + 76y® — 726y* + 1606y° — 160635 + 72677 — 76y® — 9y° + y*°

Using these initial values of the Ur,(y)s, one can then compute the initial

values of NMr ,,(z,y) which are given in Table 3.2.
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Table 3.2: The polynomials M Nr,,(z,y) for I' = {14253, 15243}

NMr . (z,y)

xry

oy + 722

2y + zy? + 3x%y? + 2393

xy + day? + 72y? + xy® + 422y + 6233 + aty?

xy + 11ay? + 152%y% + 9y + 3022y + 2523y + axy* + 5a®y* + 1023y*
+10z%y* + 2%y°

6 | zy + 26zy? + 3122y? + 58zy> + 1462%y3 + 9023y3 + 22zy* + 792%y*

+12023y* + 652y + 2y® + 6225 + 1523y° + 202y® + 152°y° + 28¢5

7 | xy + 57xy? + 632%y? + 282y + 588x%y? + 30123y3 + 252xy* + 7702%y?

+89623y* 4 3502 y* 4 51ay® 4 2102%y° 4 36423y° 4 350x%y° 4 1402°y°
+ayb 4+ T2y8 4+ 212395 4 352%y5 4 352°y5 4 21255 4 2"y”

U W N =B

3.2.2 The case I' = {142536}

In this section, we shall study the generating function U, (t,y) where 7 = 142536.
We let J; denote the involution Jp from Section 3.1 where I' = {7}. We claim that

the polynomials

Unly)= Y,  sen(O)W(0)

OEOT,TLyJ‘F(O):O

satisfy the following properties:

1. U;a(y) = —y, and

2. for n > 2,
L(n—8)/6]
UT,n(y) = (]- - y)UF,n—l(y) + Z det(Mk+1)y3k+3Un—6k—7(y>
k=0
L(n—6)/6]
+ Y det(Posn) (=) [Urmsh-a(¥) + YUrn—ck—5()]
k=0

It is easy to see when n = 1, the only fixed point comes from brick tabloid

that has a single brick of size 1 which contains 1 and the label on cell 1 is —y. Thus
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Uri(y) = —v.

For n > 2, let O = (B, o) be a fixed point of Ir where B = (by,...,b;) and
o =070, First we show that 1 must be in the first cell of B. That is, if 1 = o,
where ¢ > 1, then 0.1 > 0.. We claim that whenever we have a descent o; > ;1 in
o, then o; and 0,1 must be part of a 7-match in ¢. That is, it is either the case that
(i) there are bricks bs and b, such that o; is the last cell of bs and ;1 is the first cell
of bsyq or (ii) there is a brick b that contains both o; and o;41. In case (i), condition
3 of Lemma 2 ensures that o; and 0,41 must be part of 7-match. In case (ii), we know
that cell 7 is labeled with y. It follows from condition (2) of Lemma 2 that it can not
be that either s = 1 so that by = by or that s > 1 and last(bs_1) < first(bs) because
those conditions force that o is increasing in b;,. Thus we must have that s > 1 and
last(bs—1) > first(bs). Since (B, o) is a fixed point of J;, it cannot be that there is a
7-match in ¢ which includes last(bs_;) and first(b,) that ends weakly to the left of
o; because then cell i would satisfy Case I of our definition of J, and, hence, (B, o)
would not be a fixed point of J.. Thus the 7-match which includes last(bs_;) and
first(bs) must involve o; and o;41. However, there can be no 7-match that involves
0.1 and o, since . = 1 can only play the role of 1 in 7-match and 7 starts with 1.
Thus we must have o; = 1.

Next we claim that 2 must be in either cell 2 or cell 3 in O. For a contradiction,
assume that 2 is in cell ¢ for ¢ > 3. Then once again o. 1 > 0. so that there must be
a T-match in o that involves the two cells ¢ — 1 and ¢ in (B, o). However, since 2 is
too far from 1 in B, the only possible 142536-match that involves 2 must start from
cell ¢ where 2 plays the role of 1 in the match. We then have two cases.

Case 1. 2 is in cell 2 of O.
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In this case, there are two possibilities, namely, either (i) 1 and 2 are both in the first
brick by of (B, o) or (ii) brick b; is a single cell filled with 1 and 2 is in the first cell of
the second brick by of (B, o). In either case, we know that 1 is not part of a 7-match
in (B,o). So if we remove cell 1 from (B, o) and subtract 1 from the elements in the
remaining cells, we will obtain a fixed point (B’,0’) of Jr in Or 1.

Moreover, we can create a fixed point O = (B, o) € O, satisfying the three
conditions of Lemma 2 where o5 = 2 by starting with a fixed point (B’,¢’) € Or,,—1
of Jr, where B" = (b},...,b.) and ¢/ = o}---0]_,, and then letting o = 1(o} +
1)---(o},_; +1), and setting B = (1,¥},...,b.) or setting B = (1+1b},...,b.).

It follows that fixed points in Case 1 will contribute (1—y)Ur ,,—1(y) to Ur »(y).
Case 2. 2 isin cell 3 of O = (B, 0).

Since there is no decrease within the first brick b; of O = (B, ¢), it must be the case
that 2 is in the first cell of brick by and there must be a 142536-match that involves
the cells of the first two bricks. Therefore, we know that brick by has at least 4 cells.

To analyze this case, it will be useful to picture O = (B, o) as a 2-line array
A(O) where the elements in the i-th column are oy;_; and oy; reading from bottom to
top. In A(O), imagine the we draw an directed arrow from the cell containing ¢ to

the cell containing ¢ + 1. Then it is easy to see that a 7-match correspond to block of

points as pictured in Figure 3.5

4 5 6
1 2 3

Figure 3.5: A 142536-match as a 2-line array.
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Now imagine that A(0) starts with series of T-matches starting at positions
1,3,5,.... We have pictured this situation at the top of Figure 3.6. Now consider
the brick structure of O = (B, o). Since the elements of b; must be increasing and
09 > 03, it must be the case that b; = 2 and by > 4. We claim that by = 4 because
if by > 4, then o4 > o7 would be a descent in by. Thus cell 6 would be labeled with
a y. The T-match starting at cell 1 ends a cell 6 so that cell 6 would satisfy Case I
of our definition of J. which contracts that the fact that O = (B, o) is a fixed point
of J.. Now the fact that og > o7 implies that b3 > 2 since there must be a 7-match
that involves og and o7. Now if there is a 7-match starting at cell 7, then we can
see that og > 09. It cannot be that og and og are both in b3 because it would follow
that cell 8 would be labeled with a y and the 7-match starting at o3 would end at
cell 8. Thus cell 8 would be in Case I of our definition of .J. which contracts that
the fact that O = (B, o) is a fixed point of J;. Thus it must be the case that b3 = 2.
But the 7-match starting at cell 7 forces og > 09 so that there is a decrease between
last(b3) and first(by) which implies that there is 7 contained in b3 and by, which then
means that by > 4. Now if there is a 7-matches starting at g9, then it must be the
case that o195 > 013. Hence, it cannot be by > 4 since otherwise cell 12 is labeled with
a y. Since the 7-match starting a cell 7 ends at cell 12, then cell 12 would be in Case
I of our definition of J, which contracts that the fact that O = (B, o) is a fixed point
of J,. Thus it must be the case that by = 4. We can continue to reason in this way
to conclude that if there are 7-matches starting at cells 1,3,7,9,...,6k + 1,6k + 3,
then by; 1 =2 fori=1,,2k+ 1 and by; = 4 for i = 1,...,2k. Similarly, if there are
T-matches starting at cells 1,3,7,9,...,6k + 1 but no 7-match starting at cell 6k + 3,

thenbgi_1:2f0ri:1,,2k andbgi:4fori:1,...,2k—1andbgkzél.
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Figure 3.6: Fixed points that start with series of 7-matches.

Note that our arguments above did not use the fact that there were 7-matches
starting at cells 5,11,.... Indeed, these matches are not necessary to force the
brick structure described above. For example, suppose that there were no 7-match
starting at cell 5 but there where 7-matches starting at cell 7. We have pictured this
situation on the second line of Figure 3.6 where we have written =7 below the position
corresponding to cell 5 to indicate that there is not a 7-match starting a cell 5. Then
one can see from the diagram pictured in the second line of Figure 3.6, that it must
be the case that g < 9. It follows that if one looks at the requirements on ¢ to start
with such a series of 7-matches, then ¢ must be a linear extension of poset whose
Hasse diagram is pictured at the bottom of Figure 3.6.

There are now two cases depending on where the sequence of 7-matches starting
at positions 1,3,7,9,... ends.

Case 2.1. There are T-matches in o starting at positions 1,3,7,9,...,6k + 3, but
there is no 7-match starting at position 6k + 7. This situation is pictured in Figure

3.7 in the case where k = 2.
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In this case, we claim that {o1,..., 06,48} = {1,2,...,6k + 8}. If not, then i
be the least element in {1,2,...,6k+8} —{o1,...,06r+s}. The question then becomes
for which j is 0; = 7. It easy to see from the diagram at the top of Figure 3.7,
that ogryrs > o, for r = 1,...,6k + 7. This implies that o415 > 6k 4+ 8. But since
ie{l,2,...,6k+8} —{o1,...,06k+s8}, it must be the case that ogp1s > 6k + 8 > i.

We claim that j cannot equal 6k +9. That is, if © = 6k 49, then ogris > Ogrio-
It cannot be that ogris and ogri9 are in brick bogi3 because then ogiig is labeled
with y and there is a 7-match contained in bricks bgy o and b3 that ends before
cell 6k + 8 which means that cell 6k + 8 satisfies Case 1 of our definition of J, which
violates our assumption that (B, o) is fixed point of J,. If ogi9 starts brick bo.q,
then brick by 3 must be of size 2 and there must be a 7-match contained in bricks
bok+s and bogy4 that involves ogiis and ogxr9. But since ogyg > 09p19, that T-match
can only start at cell 6k 4 7 which violates our assumption in this case.

Next we claim that j cannot be > 6k + 10. That is, if j > 6k + 10, then both
0j_9 and o;_; are greater than o; = ¢. Thus 0;_; and o; must be part of 7-match in
o. But then the elements in two cells before cell j are bigger than that in cell j which
means that the only role that o; can play in a 7-match is 1. Thus there can be no
7-match that includes o;_; and o;.

=y oy =y y =Yooy oy =y

. =9

(S =e

%
i
//

=0—@

Figure 3.7: Fixed points that start with series of 7-matches in Case 2.1.
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Let a be the permutation that is obtained from ¢ by removing the elements
1,...,6k + 7 and subtracting 6k + 7 from the remaining elements. Let B’ be the brick
structure (bogys — 1, bogra, ..., bg). Then it is easy to see that (B, «) is a fixed point
of J. is size n — 6k — 7.

Vice versa, suppose we start with a fixed point (B’, ) of J whose size n—6k—7
where B’ = (dy,d, . ..,ds). Then we can obtain a fixed point (B, o) of size n which
has 7-matches in o starting at positions 1,3,7,9,...,6k + 3, but no 7-match starting
at position 6k + 7 by letting oy ... 04,17 be any permutation of 1,...,6k + 7 which
is a linear extension of the poset whose Hasse diagram is pictured at the bottom of
Figure 3.7 and letting ogx.s - - - 0, be the sequence that results by adding 6k 4 7 to
each element of a. Then let B = (by,...,bogr2,dy + 1,ds, ..., ds) where by = 2 for
1=0,....,kand by =4 fori=1,...,k+ 1.

It follows that contribution to U ,(y) from the fixed points in Case 2.1 equal

=
3k+3
E Goksry™ " Ur n—6k—17,
k=0

where Ggp.7 is the number of linear extensions of the poset pictured at the bottom of
Figure 3.7 of size 6k + 7.

Next, we want to compute the number of linear extensions of Ggiy7. It is easy
to see that the left-most two elements at the bottom of the Hasse diagram of Ggj 7
must be first two elements of the linear extension and the right-most element at the
top of the Hasse diagram must be the largest element in any linear extension of Ggp 7.
Thus the number of linear extensions of G4 which is the Hasse diagram of G7

with those three elements removed, equals the number of linear extension of Ggj. 7.
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We have pictured the Hasse diagrams of G4, Gy and Gy in Figure 3.8.

[)
|

10

$

a16 =

—@ ~-@
=@ >@

Figure 3.8: The Hasse diagram of G4 for k =0, 1,2.

Now let Ag = 1 and A;,; be the number of linear extensions of G4 for k > 0.

It is easy to see that A; = 2. There is a natural recursion satisfied by the A, namely,

for k > 1,
k
Ap1 = Z Coy3jAk—j
§=0
where C,, = #1 (2:) is the n-th Catalan number. First, consider the number of linear

extensions of the Hasse diagram of the poset D,, with n columns of the type pictured
in Figure 3.9. It is easy to see that this is the number of standard tableaux of shape

(n?) which is well known to equal to C,,.

4
¥
-4
4

't
!
't
't

Figure 3.9: The Hasse diagram of D,,.

Next if we look at the Hasse diagram of G4 it is easy to see that there are
no relation that is forced between the elements in columns 3i for ¢ = 1,...,k. Now
suppose that we partition the set of linear extensions of G4 by saying the bottom
element in column 3i is less than the top element in column 3¢ for ¢ = 1,..., 5 and the

top element of column 35 + 3 is less than the bottom elements of column 35 + 3. Then
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we will have a situation as pictured in Figure 3.10 in the case where £k = 6 and j = 2.
One can see that when one straightens out the resulting Hasse diagram, it starts with
the Hasse diagram of D, 3; and all those elements must be less than the elements in

the top part of Hasse diagram which is a copy of the Hasse diagram of GG(k—j—1)+4-

-9

-o -o
e e

-4

-t -t

-
)
)

Y Y
e e

=
=4
)

)

)

Figure 3.10: Partitioning the Hasse Diagram of Ggj4.

Now consider the determinant of the n x n matrix M, whose elements on
the main diagonal are Cs, the elements on the j-diagonal above the main are Cy,s3;
for 7 > 1, the elements on the sub-diagonal are —1, and the elements below the
sub-diagonal are 0. For example we have pictured in M; in Figure 3.11. It is then easy
to see that det(M;) = Cy = 2. For n > 1 if we expand the determinant by minors
about the first row, then we see that we have the recursion

k—1
det(My) = Copgidet(My_j_1),
5=0
where we set det(My) = 1.

For example, suppose that we expand the determinant M7 pictured in Figure
3.11 about the element of Cg in the first row. Then in the next two rows, we are forced
to expand about the —1’s. It is easy to see that the total sign of these expansion is

always +1 so that in this case, we would get a contribution of Cgdet(My) to det(My).
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C, C4 Ci G €y Cy,
@ C, C; Cg Gy Cu Cypy
0 @ C, C; C € Cu
o 0 -1¢C, C; C; C,
0o 0 o0 -1 C, C, Cg
o o0 o0 o0 -1 C, C4
o o0 o o o -1 C,

Figure 3.11: The matrix M;.

Thus it follows that A, = det(M,,) for all n.

Hence the contribution to U, from the fixed points in Case 1 equals

1252)
> det(Mia)y™ *Us-g—r.
k=0

Case 2.2 There are T-matches in o starting at positions 1,3,7,9,...,6k+ 1, but there
is no 7-match starting at position 6k + 3. This situation is pictured in Figure 3.12 in

the case where k = 3.

-y y -y -y y -y -y y =y =y Yy
O S0 —S0 O OSO O OS00——0
iR RN
T T T T T T T AT

Figure 3.12: Fixed points that start with series of 7-matches in Case 2.2.

In this case, we claim that {oy,..., 06045} = {1,2,...,6k + 5}. If not, then

let i be the least element in {1,2,...,6k + 5} — {01,...,06ks5}. The question then
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becomes for which j is o; = ¢. It easy to see from the diagram at the top of Figure
3.12, that ogpi6 > o for r =1,...,6k + 5 and that ogpy5 > o, forr=1,... 6k + 5.
This implies that ogr5 > 6k + 5, but since i € {1,2,...,6k +5} — {o1,...,06k45}, it
follows that 6k + 5 < ogras < Ogkre-

It cannot be that ¢ = gg.7 because then g6 > ograr7. Note that oggis, Okra,
O6kt5, and ogry¢ are elements of brick by 9. If ogryr was also and element of brick
bokt2, then g6 would be marked with a y and there is a 7-match contained in bricks
bor+1 and bogy o that ends at cell 6k 4 6 so that we could apply Case 1 of the involution
J; at cell 6k + 6, which violates our assumption that (B, o) was a fixed point of J,. If
Ograr starts brick boxy3, then there must be a 7-match that involves ogr16 and ogryr
and is contained in bricks boy o and bogi3. Since we are assuming that there is no
T-match cannot starting at ogr.3, it must be the case that there is a 7-match starting
at ogrts. But then we have that situation pictured in Figure 3.13. In Figure 3.13, the
dark arrows are forced by the 7-matches starting at o, 1 and g 5. However the top
two elements in brick byxyo are ogri5 and ogxy6, Which are both greater than . This
means that the dotted arrow is forced which implies that there is a 7-match starting
at cell ogg3.

Finally, it cannot be the case that 5 > 6k 4 7, because then it must be the
case that o;_; > o0; so that 0;_; and o; must be part of a 7-match in . But in this
situation, the elements 1,...,7 — 1 lie in cells that are more than 2 cells away from
the cell containing ¢. This means that in any 7-match in ¢ containing the element
1, © can only play the role of 1 in that 7-match. Thus, there could not be a 7-match

containing o;_; and o;.
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Figure 3.13: i starts brick bogy 3.

Next, consider the possible j such that o; = 6k+-6. It cannot be that j > 6k4-7,
because then it must be the case that o;_; > o; so that o;_; and o; must be part
of a 7-match in ¢. But in this situation, the elements 1,...,6k + 5 lie in cells that
are more than 2 cells away from the cell containing 6k + 6. This means that in any
T-match containing the element 6k + 6 in o, 6k 4+ 6 can only play the role of 1 in that
7-match. Thus there could not be a 7-match in ¢ containing o;_; and o;. It follows
that 6k + 6 = ogr16 Or 0gr7. Let a be the permutation that is obtained from o by
removing the elements 1, ..., 6k + 4, setting ay = 1, and letting oy ..., a, — (6k + 4)
be the result of subtracting 6k + 5 from og46...0,. Let B’ be the brick structure
(bogt2 — 2, bogts, ..., bg). Then it is easy to see that (B, «) is a fixed point of J, is
size n — 6k — 4 that starts with a brick of size at least 2.

Vice versa, suppose we start with a fixed point (B, ) of J, whose size n—6k—4
that starts with a brick of size at least 2 where B’ = (dy,ds, ...,d;). Then we can
obtain a fixed point (B, o) of size n which has 7-matches in o starting at positions
1,3,7,9,...,6k + 1, but no 7-match starting at position 6k + 3, by letting oy . .. o615
be any permutation of 1,...,6k + 5 which is a linear extension of the poset whose
Hasse diagram is pictured at the bottom of Figure 3.12 and letting ogii6...0, be
the sequence that results by adding 6k + 5 to each element of a ... c,_(sp44). We let

B = (bl,...7b2k+1,d1—|—2,d2,...,ds) where b2i+1 :2fOI"L':O,...,k and ka:4fOI'
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1=1,...,k.

Note that for any n, our arguments above show that the only fixed points
(D,~) of J, of size n where D = (dy,...,d;) and 0 = 0y ... 0, which do not start with
a brick of size at least 2 are the ones that start with a brick b; = 1 where oy = 1 and
oy = 2. Clearly such fixed points are counted by —yU,_;, because d; would have
weight —y and ((da, . ..,dg), (02 — 1)(03 —1)... (0, — 1)) could be any fixed point of
J; of size n — 1. It follows that sum of the weights of all fixed points of J. of size n

which start with a brick of size at least 2 is equal to
U‘r,n - (_yUnfl,T) = UT,n + yUnfl,‘r-

It follows that contribution to U, from the fixed points in Case 2.2 equal

| 258 ]
- Z Gorray™ 2 (Urn—6k—a + YUrn_k—5),
=0

where G4 is the number of linear extensions of the poset pictured at the bottom of
Figure 3.12 of size 6k + 4.

Next we want to compute the number of linear extensions of Gg4. It is easy to
see that the left-most two elements at the bottom of the Hasse diagram of G4 must
be first two elements of the linear extension. Thus the number of linear extensions of
Gleir2 which is the Hasse diagram of G4 with those two elements removed, equals
the number of linear extension of Ggj,4. We have pictured the Hasse diagrams of G,
Gs and Gy, in Figure 3.14.

Now let By = 1 and Byy; be the number of linear extensions of G’6k+2 for k > 0.

It is easy to see that By = 1. Again there is a natural recursion satisfied by the Bjs,
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Figure 3.14: The Hasse diagram of G0 for k =0, 1,2.

namely, for £ > 1,

k—1
Byt = Capp1 + Z Cot3jBr—j—1,
=0
where C,, = HLH(ZH") is the n-th Catalan number.

As in the case of the posets G4, there is no relations that is forced between
the elements of the elements in columns 3i for ¢ = 1,...,k. Now suppose that we
partition the set of linear extensions of G, by saying the bottom element in column
3i is less than the top element in column 3¢ for + = 1,...,7 and the top element of
column 37 + 3 is less than the bottom elements of column 35 + 3. First if j = &,
then we will have a copy of Dsiq which gives a contribution of Cs;11 to the number
of linear extensions of Ggpyq. If j < k, then we will have a situation as pictured in
Figure 3.15 in the case where k = 6 and j = 2. One can see that when one straightens
out the resulting Hasse diagram, one obtains a diagram that starts with the Hasse
diagram of Ds3; and all those elements must be less than the elements in the top
part of Hasse diagram which is a copy of the Hasse diagram of Gﬁ(k_j_le.

Let P, be the matrix that is obtained from the matrix M, by replacing the
elements C,, in the last column by C,,_;. For example we have pictured in P; in

Figure 3.16. It is then easy to see that det(P;) = 1. For n > 1 if we expand the
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Figure 3.15: Partitioning the Hasse Diagram of Ggjs.

determinant by minors about the first row, then we see that we have the recursion

k—2
det(Py) = Csp—2 + Z Copg;det(Py_j_1),
j=0
where we set det(Fp) = 1.
For example, suppose that we expand the determinant P; pictured in Figure
3.16 about the element of C'ig in the first row. Then in the next five rows, we would
be forced to expand about the —1’s. It is easy to see that the total sign of these
expansion is always +1 so that in this case, we would get a contribution of Cig to
the det(P;). Expanding the determinant about the other elements in the first row
gives the remaining terms of the recursion just like it did in the expansion of the
determinant of M,,.
Thus it follows that B,, = det(FP,) for all n.
Hence the contribution of fixed points of J; to U, ,(y) in the Case 2.2 equals

125°)

- Z det(Pot 1)y 2 (Urn—6k—a + YUrn—ok—5)-

k=0
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C, C; C G Cu Cpy @
@ C, C5 Cg Gy Cu Cy
0 @ c, ¢, ¢, C, Cp
0o 0 @ c, C, C; C,
o o0 0 @ c, C;, C,
o o0 o0 0 @ Cc, C,
0 o o0 o0 0 @ 1

Figure 3.16: The matrix P;.

Therefore, we obtain the recursion for U.,(y) for 7 = 142536 is as follows.

UT,TL(Z/) = (1 - y)U‘r,n71<y) + Z det<Mk+1)yBkJrgU‘r,nkaf?(y)

[(n—6)/6

)/6]
Z det(Per1)y* ™ [Urn—on—s(y) + yUrn—ch—s(y)] -
k=0
In Table 3.3, we computed Uygs36,,(y) for n < 14.

3.2.3 The proof of Theorem 12

Let 7, =7 =7y ...7T9 Where 173 ... Toq_1 = 12...aand o7y . .. T2y = (2a)(2a—
1)...(a+1). If we picture 7, in a 2-line array like we did in the earlier section, then

we will get a diagram as pictured in Figure 3.17

2a 2a-1 2a-2 a+2 a+l
D
1 2 3 a-1 a

Figure 3.17: The Hasse diagram associated with 7,.

The key property that 7, has is that if 0 = 07 ... 09, is permutation where we
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Table 3.3: The polynomials U, ,(y) for 7 = 142536.

n | Uia2s36.0(Y)

L -y

2 | —y+y°

3| —y+2° -y

4 | —y+3y°=3y° + ¢

5 | —y+4dy® —6y° + 4y —y°

6 | —y+5y> — 9> + 10y* — 5¢° +9°

7 | —y+ 6y? — 13y3 + 18y* — 15¢° + 69° — ¢”

8 | —y+ Ty? — 18y° + 27y* — 32y° + 21y% — Ty7 + o8

9 | —y+ 8y? — 2493 + 40y* — 54y® + 52¢° — 28y" + 8% — ¢°

10 | —y + 9y? — 31y3 + 58y* — 85y° + 100y° — 79y + 363° — 9y° + y*°

11 | —y + 10y? — 399> + 82y* — 129y° + 1705 — 172y7 + 1145 — 457°
_|_10y10 . yll

12 | —y + 11y? — 48> + 113y* — 191y° + 289y% — 320y" + 278y°
—158y" + 55y10 — 11y't 4 y'2

13 | —y + 12y* — 58y® + 152y* — 277y5 + 456y° — 578y + 568y® — 427¢°

+212y1% — 66yt + 12y12 — 13
14 | —y + 13y? — 69y> + 200y* — 394y° + 689y° — 1031y" + 1068y® + 956y°

+629y10 — 277y 4 78y — 13y"3 4 14

have marked some of the 7,-matches by placing an x at the start of a 7 so that every
element of ¢ is contained in some 7,-match and any two consecutive marked 7, in o
share at least one element, then it must be the case that o103...09,_1 = 12...m and
0904 ...09m = (2m)(2m — 1) ... (m + 1). That is, it must be the case that o = 7,,.
This can easily be seen from the picture of overlapping 7,-matches like the one pictured
in Figure 3.18 where a = 4 and m = 12. Note that in such a situation, we will in fact

have 7, matches starting at positions 1,3,5,...,2(m —a) + 2 in o.

X x X X x

LT

Figure 3.18: The Hasse diagram of overlapping 7,-mathces.
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We need to show that the polynomials

Uronly) = > sgn(0)W(0)

OGOTG,TL,JTG(O):O
satisfy the following properties:
1. Us;a(y) = —y, and

2. forn > 2,

UT,n(y) =(1- y)UT,nfl(y)

[(n—2a)/(2a)]
n—(k+1)a-1 a
- ( )y(kﬂ) Uryn—(2(k41)0)+1(Y)

k=0 (k + 1)CL —1
[(n—2a—2)/(2a)]
" P e =2 ey (v)
(k+1)a Tan—(2(k+1)a)—-1(Y)-
k=0
Again, it is easy to see that when n = 1,U, 1(y) = —y. For n > 2, let

O = (B, o) be a fixed point of J,, where B = (by,...,b;) and 0 = 0y ---0,. By the
same argument as the previous sections, it must be the case that 1 is in the first cell
of O and 2 must be in either cell of 2 or cell 3 in O. Thus, we now have two cases.
Case 1. 2 isin cell 2 of O.

Similar to Case 1 in the proof of Theorem 11, there are two possibilities, namely,
either (i) 1 and 2 are both in the first brick b, of (B, o) or (ii) brick b; is a single cell
filled with 1 and 2 is in the first cell of the second brick b, of O. In either case, we
can remove cell 1 from O and subtract 1 from the elements in the remaining cells,
we will obtain a fixed point O’ of J;, in O,, ,_1. So the fixed points in this case will

contribute (1 —y)U-, n—1(y) to Ur, n(y).
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Case 2. 2isin cell 3 of O = (B, 0).
In this case, 05 > 03 = 2. Since o must be increasing in by, it follows that 2 is in the
first cell of brick by and there must be a 7, match in the cells of b; and b, which can
only start at cell 1. Thus it must be the case that brick b, has at least 2a — 2 cells.

Again, we shall think of O = (B, o) as a two line array A(0) where column i
consists of og;_1 and oy;, reading from bottom to top. Now imagine that A(0) starts
with series of 7-matches starting at positions 1, 3,5,.... Our observation above shows
that if this sequence of consecutive 7,-matches covers cells 1, ..., 2k for some k, then
in the two line array A(O), all in entries in the first row of the first k& columns are less
than all the entries in top row of the first k£ columns, the cells in the bottom row of
the first k£ columns are increasing, reading from left to right, and the cells in top row
are increasing, reading from right to left.

Next we consider the possible brick structures of O = (B, o). We claim that we
are in one of two subcases: Subcase (2.A) where there is a k£ > 0 such that there are 7,-
matches in o starting at cells 1,3,2a+1,2a+3,...,2(k—1)a+1,2(k—1)a+3,2ka+1,
there is no 7,-match in o starting at cell 2ka + 3, 2 = by = b3 = .-+ = byy_1,
20 — 2 = by = by = --+ = by, and bogyy = 2 and bogyo > 2a — 2 or Subcase
(2.B) where there is a £ > 0 such that there are 7,-matches in o starting at cells
1,3,2a + 1,2a + 3,...,2(k — 1)a+ 1,2(k — 1)a + 3,2ka + 1,2ka + 3, there is no
T,-match in o starting at cell 2(k + 1)a + 1, 2 = by = by = -+ = bog_1 = bog1,
20 —2="by = by = -+ = bopyo, and bog3 > 2. Subcase (2.A) is pictured at the top of
Figure 3.19 and Subcase (2.B) is pictured at the bottom of Figure 3.19 in the case
where a = 4 and k = 2. Note that by our remarks above, we also know the relative

order of the elements involved in these 7,-matches in ¢ which is indicated by the poset
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whose Hasse diagram is pictured in Figure 3.19. We can prove this by induction. That
is, suppose k = 0 and we are in Subcase (2.A). Then there is a 7,-match in o starting
a cell 1 but no 7,-match in o starting at cell 3. Our argument above shows that b; = 2
and by > 2a — 2. Next suppose that k = 0 and we are in Subcase (2.B) so that there
are T,-matches in o starting in cells 1 and 3 but there is no 7,-match in o starting at
cell 2a + 1. Then we claim we claim that b, = 2a — 2. That is, in such a situation we
would know that oy, > 09,41. Thus, if by > 2a — 2, then 2a would be labeled with a
y. The 7,-match starting at cell 1 ends at cell 2a so that cell 2a would satisfy Case I
of our definition of J;, which contracts that the fact that O = (B, o) is a fixed point
of J,,. Thus, brick bs must start at cell 2a + 1. Now the fact that oy, > 09,41 implies
that b3 > 2 since there must be a 7,-match that involves o9, and 09,41 and lies in

cells of by and bs.

]

pla - e

?]

¢
4
4
~ [ 3
!
4
y
~ 3
¢
¢
y

-
-
-

T T

Figure 3.19: Subcases (2.A) and (2.B).

Now assume by induction that for £ > 1, there are 7,-matches in o starting at
cells 1,3,2a+ 1,2a+3,...,2(k—1)a+1,2(k —1)a+3,2=b; = b3 = -+ = bog_1,
20 —2 ="by = by =+ = bo_o, and by, > 2a — 2. Suppose we are in Subcase (2.A)
so that there is 7,-match starting at cell 2ka + 1 but there is no 7, starting at cell
2ka + 3. Then we know that oo, > 09rer1 due to the 7,-match in o starting at

cell 2(k — 1)a + 1. It cannot be the case that by, > 2a — 2 since then cells 2ka and
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2ka+ 1 are contained in brick by so that cell 2ka would be marked with a y. However,
the 7,-match staring at cell 2(k — 1)a + 1, which is the first cell of by, ends at cell
2ka so that cell 2ka would satisfy Case I of our definition of .J,, which violates our
assumption that (B, o) is a fixed point of J,,. This means that by, = 2a — 2 and
bory1 starts at cell 2ka + 1. Since 094 > 094x11 due to the 7,-match in o starting at
cell 2(k — 1)a + 3, we know that there must be a 7,-match contained in the cells of
bor and bogy1 so that bor 1 > 2. But then because of the 7,-match in o starting at
cell 2ka + 1, we know that gopqio > 0okers. It cannot be that cell 2ka + 3 is in brick
bar11 because then cell 2k + 2 would be marked with a y and there is a 7,-match in o
starting at cell 2(k — 1)a + 3 which ends at cell 2k 4 2 which is contained in the bricks
b and bog 1 which means that cell 2ka 4+ 2 would satisfy Case 1 of our definition of
J;, which violates our assumption that (B, o) is a fixed point of J,,. Thus it must
be the case that by, ; = 2 and brick byg.o starts at cell 2ka + 3. But this means
that there must be a 7,-match in ¢ contained in the cells of bog, 1 and byg o so that
bok+o > 2a — 2. Now if there is also a 7,-match in o starting at cell 2ka + 3, then we
claim that bogyo = 2a — 2. That is, we know that oax41)a > O2(k41)as1. It cannot be
that boxio > 2a — 2 because then cell 2(k + 1)a would be labeled with a y and the
T,-match in o starting at cell 2ka + 1 ends at cell 2(k + 1)a and is contained in the
bricks bory1 and beyyo so that cell 2(k + 1)a would satisfy Case 1 of our definition
of J,, which would violate our assumption that (B, o) is fixed point of J,,. Thus
bok+2 = 2a — 2. But then due to the 7,-match in o starting at cell 2(k + 1)a + 3, we
know that oa(k11)a > T2(k+1)a+1 Which means that there must be a 7, match contained
in bricks boy o and bgky3. This means that bog,g > 2.

Thus we have two cases to consider.
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Subcase (2.A) There is a k > 0 such that there are 7,-matches in o starting at cells
1,3,2a+1,2a+3,...,2(k —1)a+1,2(k — 1)a + 3,2ka + 1, there is no 7,-match in o
starting at cell 2ka +3,2=5by =bg =+ =bop_1, 2a —2 =by = by = - - - = by, and
bok+1 = 2 and boy o > 2a — 2.

Here, we claim that {1,...,(k+ 1)a + 1} = {01,03,...,020k+1)a—1, O2(k+1)a}-
That is, if one considers the diagram at the top of Figure 3.19, then the elements in
the bottom row are 1,2,..., (k + 1)a, reading from left to right, and the element at

the top of column (k + 1)a is equal to (k + 1)a + 1. If this is not the case, then let

i = mln({L ) (k + 1)(1 + 1} - {017 03, ---502(k+1)a—1> a2(k+1)a})-

This means oy(141)q > ¢ and, hence one can see by the relative order of the elements in
the first (k+1)a columns of A(O) that ¢ can not lie in the first (k+1)a columns. Then
the question is for what j is 0; = 4. First we claim that it cannot be that oy 41)a41 = ¢.
That is, in such a situation, oay1)a > To(k+1)at1. Now it cannot be that oa(x41), and
O2(k+1)at+1 lie in brick boryo because then the 7,-match in o that starts in the first cell
of bog41 ends at cell 2(k + 1)a which means that cell 2(k + 1)a would be labeled with
a y and satisfy Case I of our definition of J., which would violate our assumption
that (B, o) is fixed point of J, . Thus it must be the case that brick b3 starts at
cell 2(k + 1)a + 1. But then there must be a 7,-match in ¢ contained in the cells of
bricks bogyo and box3 which would imply that there is a 7,-match in o starting at cell
2ka + 3 which violates our assumption in this case. Hence j > 2(k + 1)a + 1 which
implies that both o;_5 and o;_; are greater than o; = i. But then there could be no
T,-match in o which contains both o;_; and o; because the only role that i could play

in 7,-match in ¢ would be 1 under those circumstances.
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It follows that if we remove the elements in A(0) from the first (k4 1)a — 1
columns plus the bottom element of column (k + 1)a, then (B’,0’), where B’ =
(bok2 — (2a — 1), bgpys, ..., b)) and o' = red(0agkt1)q - - - 0n), Will be a fixed point of
Jr, of size n — (2(k + 1)a) + 1. Note that in such a situation, we will have (n(fk(_ﬁr)gf;l)
ways to choose the elements of that lie in the top rows of the first (k4 1)a — 1 columns
of A(O). Note that the powers of y coming from the bricks by, ..., by is y** and the

powers of y coming from bricks by and by is —y?~ L. It follows that the elements

in Subcase (2.A) contribute

|(n—2a)/(20)|
-y n—(k+1)a—1 a1y ¥
=0 (k+1a—-1 Tan—(2(k+1)a)+1

to Uz, n(y).
Subcase (2.B). There is a k > 0 such that there are 7,-matches in o starting at
cells 1,3,2a + 1,2a + 3,...,2(k — 1)a + 1,2(k — 1)a + 3,2ka + 1,2ka + 3, there is
no 7,-match in o starting at cell 2(k + 1)a+ 1, 2 = by = b3 = -+ = bop_1 = bogs1,
2a —2=0by=by = -+ = bopyo, and bogj 3 > 2.

Here, we claim that {1,...,(k+ 1)a +2} = {01,03, ..., O2(kt1)at15 O2(k+1)at2 -
That is, if one considers the diagram at the bottom of Figure 3.19, then the elements
in the bottom row are 1,2,..., (k+1)a+ 1, reading from left to right, and the element
at the top of column (k + 1)a + 1 is equal to (k + 1)a + 2. If this is not the case, then

let

i=min({1,...,(k+1)a+ 2} —{o1,03,...,020k+1)a+1, O2(k+1)at2})-

This means oy(x41)e42 > ¢ and, hence one can see by the relative order of the elements

in the first (k + 1)a + 1 columns of A(O) that ¢ can not lie in the first (k + 1)a + 1
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columns. Then the question is for what j is 0; = 7. First we claim that it cannot
be that oy(;41)a+3 = 7. That is, in such as situation, ookr1)ar2 > To(k+1)ars. Now it
cannot be that oo41)a+2 and oap41)a+s lie in brick by, 3 because then the 7,-match
in o that starts in the first cell of by, ends at cell 2(k 4+ 1)a + 2 which means that
cell 2(k 4 1)a + 2 would be labeled with a y and satisfy Case I of our definition of .J,,
which would violate our assumption that (B, o) is fixed point of J,,. Thus it must
be the case by = 2 that brick by, 4 starts at cell 2(k + 1)a + 3. But then there
must be a 7,-match in ¢ contained in the cells of bricks bgy 3 and bgy 4 which would
imply that there is a 7,-match in o starting at cell 2(k + 1)a + 1 which violates our
assumption in this case. Hence j > 2(k 4 1)a + 3 which implies that both o,_, and
oj_1 are greater than o; = 7. But then there could be no 7,-match in o which contains
both o;_; and o; because the only role that ¢ could play in 7,-match in o would be 1
under those circumstances.

It follows that if we remove the elements in A(0) from the first (k4 1)a + 1
columns plus the bottom element of column (k + 1)a + 2, then (B’,0’), where B’ =

(bokts — 1,bokta, ..., by) and o = red(oakt1)as2 - - - On, Will be a fixed point of J;, of

n—(k+1)a—2

size n — (2(k + 1)a) — 1. Note that in such a situation, we will have ( (bt

) ways
to choose the elements of that lie in the top rows of the first (k 4+ 1)a — 1 columns
of A(O). Note that the powers of y coming from the bricks by, .. ., by, is y*F+t1e. It
follows that the elements in Subcase (2.B) contribute
L(n—2a-2)/(2a)]
Z (n— (k + Ua_Q)y(kH)“U

Ta,n—(2(k+1)a)—1 (y)
p (k+1)a

to Usr, n(y).
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Therefore, the recursion for the polynomials U, ,(y) is given by

Urn(y) = (1 = y)Urn1(y)

1 -
)y(kH)G sy @k 1)a)+1(Y)

k+1)aU

[(n—2a—2)/(2a)]
n—(k+1)a—2
( ) ( rom—(2(k+1)a)—1(Y)-

This concludes the proof of Theorem 12. m

3.2.4 The remaining cases of 7 = 152634, 7 = 152436, 7 = 162435,

and 7 = 142635

Our results in Sections 3.2.2 and 3.2.3 allows us to compute NM, (¢, z,y) in
two cases where 7 =77...7¢ and 7y = 1, 73 = 2, and 75 = 3. Namely, the case where
7 = 142536 is consider in Theorem 11 and the case where 7 = 162534 is a special case
of Theorem 12 where a = 3. All such permutations have des(7) = 2. We now consider
the other four cases where 7 = 152634, 7 = 152436, 7 = 162435, and 7 = 142635.

Case 7 = 152634.

Let 7 = 152634, we will show that the polynomials

Uny)= Y,  sen(O)W(0)

0€OF 1, Jr (0)=0
satisfy the following properties:

L. UT,l(Z/) =Y and
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2. for n > 2,

—2k -2
N (—1)ky2R(2k — 1) (n ok )Uq—,n—4k—1<y)7

where (2k—1)!! is the double factorial given by (2k—1)!! = 1-3--- (2k—3)-(2k—1).

Again, it is easy to see that whenn = 1,U,1(y) = —y. Forn > 2, let O = (B, 0)
be a fixed point of I+ where B = (by,...,b;) and o = 0y - - - 0,,. By the same argument
as before, it must be the case that 1 is in the first cell of O and 2 must be in either
cell of 2 or cell 3 in O.

Case I. 2 is in cell 2 of O.

If 2 is in the second cell of O then, similar to Case 1 in the proof of Theorem 11, there
are two possibilities, namely, either (i) 1 and 2 are both in the first brick b; of (B, o)
or (ii) brick by is a single cell filled with 1 and 2 is in the first cell of the second brick
by of O. In either case, we can remove cell 1 from O and subtract 1 from the elements
in the remaining cells, we will obtain a fixed point O’ of Jp in Or,_;. So the fixed
points in this case will contribute (1 — y)Ur ,—1(y) to Ur,(y).

Case II. 2 is in cell 3 of O.

On the other hand, if 2 is in the third cell of O = (B, o) then we know that 2 must be
in the first cell of brick by and there must be a 152634-match starting from cell 1 that
involves the cells of the first two bricks. Furthermore, it must be the case that brick
by has at least 4 cells and that 3 is in cell 5 of O. Unlike the previous two cases, the
152634-match that starts from cell 1 of O implies that o < 09 < 04 so we cannot have

a 152634-match starting from the third cell of O. Thus, the next possible 7-match of
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O can only start from cell 5. We now have two subcases.

Subcase Il.a. There is no 7-match in O starting at cell 5.
By the same argument presented in the proof of Theorem 12, it must be the case that
o6 = 4 and we have (";4) ways to choose two numbers to fill in the cells 2 and 4 of
O. We can now remove the first five cells of O to obtain a fixed point O’ of length
n — 5. Hence, the contribution of Subcase ILa to U,,, is —y* ("54) Urn—s(y).

Subcase I1.b. There is a 7-match in O starting at cell 5.
In this case, we cannot have a 152634-match starting from cell 7 since og > 019 (due
to the match starting from cell 5). Therefore, the next possible match can only start
from cell 9 in O. If there is no 152634-match in O starting from cell 9, then by the
same argument of subcase 2.b in Section 4, we must have g9;,_1 = k for 1 < k <5 and
o010 = 6. We have ("26) ways to fill in the cells 2,4,6, and 8 in O. In addition, the
two 152634-matches that start form cell 1 and 5 in O imply that the entries in cells
2,4,6, and 8 must follow the Hasse diagram given in the left picture of Figure 3.20.
Hence, there are 3 ways to arrange these chosen number so that the matches in the
initial segment are satisfied. We can then remove the first nine cells of O and adjust
the remaining entries to obtain a fixed point of length n — 9. This process, as showed
above, is reversible and thus, the contribution of this case to U, is 3y* ("26) Un—9(y).

In the general case, suppose there are k 152634-matches starting from cells
1,5,7,...,4k — 3 but there is no 152634-match starting from cell 4k 4 1. Similar to
the case for 7 = 162534 before, we know that within the first 4k + 2 cells of O, all the
numbers from {1,2,...,2k+ 1} must occupy the odd position cells and o452 = 2k + 2.

Therefore, we will choose 2k entries to complete the initial segment and remove the

first 4k + 1 cells to obtain a fixed point of O, ,,_g;—1. Hence, for any given value of k,
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the contribution of fixed points in this case is (—1)%y?* M, ("7;’;72) Urn—ak—1(y), where

M;. is the number of ways to arrange the chosen numbers into the even cells of the
initial segment such that the 152634-matches between the cells are satisfied. This
number in turn is given by the number of linear extensions of the right diagram in

Figure 3.20 .

Og 0, Ok O4ka O4g O12 Og [eF3
[ ] [ ] [] [ ]

[ S O

O¢ Oy O4k-2 O4k-6 O4k-10 O10 Os 04

Figure 3.20: The ordering of {09, 04, ..., 04} for k = 2 (left) and for general
k (right).

To count the number of linear extensions for the right diagram in Figure 3.20,
we first observe that o4;_o is smaller than every other entries and thus, it must be the
case that o4,_o = min{oy,0y4,...,04}. Next, we have 2k — 1 choices for the value of
o4 For each of such choice, we then have M;_; ways to arrange the remaining entries

in to the Hasse diagram. Thus, the recursion for My, is given by My = (2k — 1) Mj_;.

From this recursion, it is easy to see that
M, =(2k—-1)2k—=3)---5-3=(2k—1)IL.

Hence, the total contribution of Case II is
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S (1) 2k — 1) (” - ;: B 2) Ur i (3):

k=1
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Combining with the factor from Case I, we have proved the following recursion for
the polynomials U, ,(y) in the case 7 = 152634.

n—2

=] n — 2k —2

Uen) = (1= )0rca) 4 3 (0822~ 00 ("7 20 s

Case 7 = 152436.

Let 7 = 152436, we want to derive a recursion for the polynomials

Ua) = > sgn(O)W(0),

OEO["n,JF(O)ZO

where the sum is over all the fixed point of the involution J,. Let O = (B,0) € O,,,
be a fixed point .J;. Following the previous cases, it is still the case that U, (y) = —v.
In addition, similar to the above cases, it is easy to see that oy = 1 and that either
09 = 2 or 03 = 2. As seen before, if o9 = 2 then the contribution of the fixed points in
this case to U, ,,(y) is (1 — y)Urn-1(y).

If o3 = 2, then it must be the case that the first brick b; in O has exactly
two cells, the second brick by starts with 2 and has at least four cells, and there is a
152436-match that starts from cell 1 and involves the first six cells of O. In addition,
we also know that o5 = 3. Similar to the case 7 = 152634, then 152436-match starting
from cell 1 implies that o4 > 04 so there can be any 152436-match that starts from
cell 4. Thus, the next possible T-match must start from cell 5 in O.
Case A. There is no 7-match in O starting at cell 5.
In this case, following the same argument in Subcase 2.1 from the proof of Theorem

11, we can see that the first five integers must belong to the first five cells in O, i.e.
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{1,2,3,4,5} = {01,09,03,04,05} and that o = 6. Furthermore, the 152436-match
that starts from cell 1 in O implies that o9 = 5 and o, = 4. Therefore, just like in the
proof of Theorem 11, we can remove that first five cells of O to obtain a fixed point
of length n — 5 and thus, the contribution of this case to U, (y) is —y*Us ,—5(y).
Case B. There is a 7-match in O starting at cell 5.

In this case, the second 7-match implies that og < 019 so there cannot be any 152436-
match starting from cell 7 in O so the next possible match must start from cell 9.
If there is no 7-match in O starting from cell 9, then by the previous argument,
we can see that the first nine integers must belong to the first nine cells of O and
that 019 = 10. We can then remove the first nine cells of O and subtract 9 from the
remaining entries to obtain a fixed point if length n — 9. The contribution of this case
is then given by y*SoU, ., o(y) where Sy is the number of ways to arrange the integers
{1,2,...,9,10} into the first ten cells of O such that the two 7-matches in the initial
segment are satisfied.

Just like the previous sections, we will find S5 through the number of linear
extensions of a certain Hasse diagram. In this case, it is the diagram to the left of
Figure 3.21 below. It is easy to see that 0y = 1,03 = 2,05 = 3,06 =9, and 019 = 10
so we can simplify this diagram into the one to the right of the same figure. Hence,

Sy = (g) = 10. Thus, the contribution of this case to U, ,(y) is 10y*U, ,,—o(y).

03 Og O1o 0Oz
> e .
Os® Og — Os® ® Og
.
94 O3 Os o7 O9 o7 O9y

Figure 3.21: The ordering of {o1,09,...,010} in Ss.

In general, suppose there are k 152436-matches starting from cells 1, 5,9, ...4k—
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3 but there is no 7-match starting from cell 4k 4 1. Similar to the proof of Theorem 11,
we first claim that the first 4k+1 integers belong to the first 4k+1 cells and 4k +2 must
be in cell 4k + 2 in O. To see this, let m = min ({1,2,...,4k+ 1} — {01, ..., 048+1) -
We know that m cannot be more than 2 cells away from cell 4k + 1 in O. Furthermore,
m cannot be in cell 4k + 2 since the fact that 7 ends with 6, the largest entry, implies
that we need o412 > 4k 4+ 2 > m in order to satisfy the overlapping 7-matches in
the initial segment. Thus, the only possible place for d is cell 4k 4+ 3 in O. This cell
4k 4 3 then must start a new brick and there is a decrease between cells 4k + 2 and
4k + 3. In order to prevent combining the bricks, we need a 7-match that involves
both cells 4k + 2 and 4k + 3. However, such 7-match can only start from cell 4k + 1, a
contradiction. The fact that o410 = 4k + 2 also follows from a similar argument.

Now if we remove the first 4k 4+ 1 cells of O and subtract 4k + 1 from the
remaining numbers, then we will obtain a fixed point O" of length n — 4k — 1. As
showed before, this process is reversible and thus the contribution of the fixed points
in this case is (—1)*y?*S,.U, ,,_ar_1(y), where Sy is the number of ways to arrange the
chosen numbers into the even cells of the initial segment such that the 152436-matches
between the cells are satisfied. In this case, it is given by the S, the number of linear
extensions of the top Hasse diagram in Figure 3.22. Therefore, the contribution of
fixed points in this case to U, ,(y) is (—1)*4**S,U, —ax—1(y). Hence, we obtain the
recursion for the polynomials U, ,(y) for the case 7 = 152436 as follows.

L”‘QJ

Urn(y) = (1 = y)Urn-1(y) + k %Sk Urn—ak-1(y).
k=1

To complete the recursion of Uyz2436 ,(y), we now need to compute Sy, which is

given by the number of linear extensions of the top diagram in Figure 3.22. It is easy
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® Saks Sak-2
) ]

$1 S3 Ss S7 S S11 S13 Sak7 Sak-s Sak3

Figure 3.22: The ordering of {01, 09, ..., 0412} in Sy (top) and its simplified

structure (bottom).
to see that this diagram can be simplified in to the bottom Hasse diagram in the same
figure. Unlike the previous cases, instead of a closed formula, we can only obtain a
recursion for the number of linear extensions Si. In [40], Pan and Remmel considered
the generalized form of the bottom diagram in Figure 3.22 where we allow the first
vertical line segment to have more than one vertices. Figure 3.23 below describes this
generalized diagram whose number of linear extensions is defined by the authors of
[40] as L(k,n) for integers n > 1 and k > 3. They showed that L(k,n) satisfy the

following recursion

pH2 forn=1
L(p,n) = ")

Z?;é(p —NG+1DLB+jn—1) foralln>2.

t, e—>o—>e

So $1 S3 Ss S7 Sy San7 Sans San-3

Figure 3.23: The generalized diagram for L(k,n).

In our case, it is easy to see that S, = L(3,k — 1) and thus we obtain the
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following recursion for S as follows.

1 forn=1

Sk = (g) =10 for n = 2 (3.1)

3L(3,k—2)+4L(4,n—2) +3L(5,n—2) foralln>2.

\

The recursion in (3.1) allows us to compute the first few values of Si. They are given

in Table 3.4 below.
Table 3.4: The first eight values of S.

E 1] 2 3 4 5 6 7 8
Sk | 110|215 | 7200 | 328090 | 18914190 | 1318595475 | 107813147200

This concludes the proof for the case 7 = 152436 O

Case 7 = 162435

Suppose 7 = 162435, we will prove that the polynomials

Uny)= Y,  se(O)W(0)

OEO["n,JF(O)ZO

satisfy the following recursion: U, ;(y) = —y, and for n > 2,

Urnly) = (1= )Urpa(®) + 3 (—)" (" — 2k - 3) Urnaaly) T[4 - 3).

2k —1 .
k=1 i=1

Again, it is easy to see that when n = 1,U,;(y) = —y. When n > 2, using the

same arguments as the previous sections, we can see that in any given fixed point
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O = (B, 0) of the involution, we always have o1 = 1 and either oy = 2 or 03 = 2. When
0y = 2, namely 2 is in the second cell of O, we obtain the contribution (1 —y)U; ,,—1(y)
to Urn(y).

When o3 = 2, we know that 2 must start the second brick by and it must
be the case that the first brick b; has exactly two cells and there is a 162435-match
starting from cell 1 in O. Similar to the argument from the cases 7 = 152634 and
T = 152436 before, we can see that the next possible 162435-match must start from
cell 5 in O. If there is no 162435-match starting from cell 5, then it must be the case
that o0y = 1,00 = 4,03 = 2,05 = 3 and 0 = 5. In this case, we will choose an integer
to fill in cell 4 and remove the first 4 cells to obtain a fixed point of length n — 5. It is
easy to see that this process also is reversible and thus the contribution in this case to
Urn(y) is =y(n = 5)Urns(y).

In general, we can assume there are k 162435-matches starting at the cells
1,5,9,...,4k — 3 but there is no 7-match starting from cell 4k + 1 in O. Similar to
the previous case, our scheme here is to fix some entries into the initial 4k + 2 cells
and then remove the first 4k + 1 cells to obtain a fixed point of length n — 4k — 1.
However, unlike the cases that 7 ends with 6 where we can show that the first 4k + 2
integers must belong to the first 4k 4 2 cells or the cases that 7 ends with 4 and we
have g9; 1 =1, for all 1 <¢ < k+ 1 and o419 = 2k 4+ 2, when 7 ends with 5, none
of the above properties hold. However, we will be able to show the following fact

regarding the entries in the initial 4k + 2 cells of O.

Lemma. Let O be a fixed point of length n of the involution Jigoa3s and suppose that
there are 162435-matches in the cells of O starting from cells 1,5,9,...,4k — 3 but

there is no T-match starting from cell 4k + 1 in O. Then
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(i) The integers in {1,2,...,2k+2,2k+ 3} belong to the first 4k +2 cells of O, and
(1) If o4x12 = d then d is smaller than every elements in O to its right.

Proof: For (i), letm = min ({1,2,...,2k,2k+1 } —{01,09,...,04k42}). Then
m cannot be in the middle of brick by, since there is already a descent within this
brick locating at cell 4k due to the 162435-match staring from cell 4k — 3 in O. In
addition, this m cannot be in the middle of any brick b; for j > k4 1 for m will then
play the role of 1 in any match that lies to the right of cell 4k + 2 and involve m.
This shows that m must be at the start of some brick b; for j > k + 1 and the only
possibility is that m starts brick b, o since the initial elements of the bricks form an
increasing sequence. Now recall that m cannot be more than three cells away from
cell 4k 4+ 1 and thus, it must be the case that brick b, ; has exactly four cells and
there is a decrease between last(bgy1) and first(bgy2). Since O is a fixed point of the
involution, in order to prevent combining the bricks, there must be a 162435-match
that is contained in the cells of the two brick by, and bg,o and such match can start
from cell 4k — 1 or cell 4k 4+ 1 in O. It is easy to see that both cases are impossible
since a 162435-match starting from cell 4k — 3 will prevent one starting from cell
4k — 1, and we have already assumed that there is no 7-match in O starting from cell
4k + 1. Hence, all integers {1,2,...,2k + 2,2k + 3} must be in the initial 4k + 2 cells
of O.

For (ii), let ¢ = min{i < d = o4j42 : 0; = i for some j > 4k + 2} and suppose
that o, = c¢. We first observe that ¢ cannot be in the same brick b, as d since
there already is a decrease in byy; occurring at cell 4k. Furthermore, since c is the
smallest number to the right of cell 4k 4 2, ¢ cannot be in the middle of any brick

and thus, it must be at the start of a brick, which in this case is bg,3. This case is
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also impossible since ¢ < d < last(bgy1) so in order to prevent combining the bricks,
there must be a 162435-match that involves cells A — 1 and h. However, since c is the
smallest number to the right of cell 4k 4 2, it will play the role of 1 in any such match,
a contradiction. O

Knowing the previous result, we will now fill in the remaining cells of the initial
4k + 2 cells and there are (";,35;3) ways to do that. Lastly, we will remove the first
4k 4+ 1 cells to obtain a fixed point of length n — 4k — 1. In total, for any given value
of k, the contribution of the fixed points in this case is (—y)k(";;ff) T U p—ai—1(y)
where T}, is the number of ways to arrange the numbers in the initial segment such
that the 162435-matches between the bricks are satisfied.

Our last task for this proof is to count the number of such arrangements. Let
D be the set of 4k + 2 integers chosen for the initial segment and label the elements of
the set as D = {d; < dy < d3 < ... < dyps1 < dagr2}. As usual, we let g; denote the
entry in cell i of O. It is easy to see that between any two consecutive 162435-matches,
the number that plays the role of 6 in the latter match plays the role of 5 in the
former. Thus, o9, which plays the role of 6 in the very first 162435-match, will be
the greatest number in the initial segment. Similarly, og, which plays the role of
5 in the first match and that of 6 in the second match, will be the second largest
number. On the other hand, o7 < 03 < o5 are the three smallest number in the
initial segment. Hence, when putting the numbers in D into the cells, it must be
the case that o, = dy, 09 = dagi2,03 = do,05 = d3, and g = dys1. Since there is
no restriction between o, and the rest of the initial segment, we will pick one of

the remaining entries of D to fill in this cell with 4k — 3 choices for this. Once we

make our choice for o4, says o4 = d;, we can place the three smallest numbers of
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Dy = D\{dy,ds, ds, d;, dgpr1, dagr2} into cells 7 and 9, and place the greatest number

in Dy in cell 10. We then make another choice for og and repeat the process with the

remaining set of numbers. Recursively, we can see that the number of ways to arrange

the numbers in D into the initial segment is [[*_, (4k — 3). Hence, Ty, = ]\, (4k — 3).
In conclusion, for n > 2, the recursion of U, ,(y) is given by

2]

Urn(y) = (1= 9)Urns(y) + (—y)* (” ;]ff I 3> Ui (y) H(4i - 3).

Case 7 = 142635

The same proof for case 7 = 162435 also works for the case 7 = 142635 except
we now have a different number of ways to arrange the chosen entries of D into the
initial 4k + 2 cells such that the 142635-matches between the bricks are satisfied. In
this case, when n > 2, the recursion for U, ,(y) is given by

2]

Unnli) = (= s+ 3 (" 52 T ) ot

where Ly is the number of linear extensions given by the Hasse diagram in Figure 3.24

below.

S1 S2 S3 Sa Ss Se S7 Sok2 Sok1

Figure 3.24: The ordering of the first 4k 4 2 cells of O for 7 = 142635.

In [40], Pan and Remmel obtained a more generalized result for the diagram in
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Figure 3.23 by allowing each side of the squares in the diagram to contain any number
of vertices. Suppose we have n squares in our diagram and let a4, ...a,,a,+1 be the
number of vertices in each vertical line segment, not counting the endpoints. Similarly,
let by,...b, and ¢y, ..., ¢, be the number of internal vertices on the top and bottom hor-
izontal line segments, respectively. This diagram is illustrated in Figure 3.25. Denote
the number of linear extension of such diagram by L(ay, ..., apy1;b1,...,bp;¢1, ..., Cn).
The authors of [40] showed that the number of linear extensions of the Hasse diagram

in Figure 3.25 satifies the recursion

L(al,...,anﬂ;bl,...,bn;cl,...,cn)
a1+b1+1
as+k\ (a1 +b+a+1—-k
— Z (2 )(1 L )L(a2—|—k,...,an+1;b2,...,bn;CQ,...,cn).
k C1
k=0
(3.2)
.%.abﬁj—».;».». A‘b:.*».*». atl):.—». *—=0 A‘b:.%.
! ! ! ! !
ool W afele D
E»oa--—».»i—»oa -—».»E». 4-»—»0»5 5—»04 o—>o~>:
Cy c, Cs Cs

Figure 3.25: The Hasse diagram for L(ay,...,an41;01,. .., bp;c1,. .., Cn)-
Knowing the result in (3.2), our goal now will be to transform the Hasse diagram
of Figure 3.24 into that of Figure 3.25 with¢; =---¢, =1l and ¢y = --- = a,41 = 0.
To this end, we will try to “shuffle" the vertices uq, us, ..., u; of Figure 3.24 into the
intervals [to, 3], [t3,t4], - ., [tk_1,tx], and [tx, txio]. Starting with wuy, it is easy to see
that we can put this vertex in to any of the interval given by [ta, t5], ..., [tk—1, tx], and
[tk, tpro]. Let i = m denotes the fact that we insert u; into the interval that starts by

t,, for 2 < m < k. Consequently, this increase the value of b,, by 1. Similarly, we make
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a choice to insert uy into one of the intervals [t3,t4],. .., [tk, tri2] by choosing a value
for iy between 3 and k. Again, if i, = h then the number of internal vertices of the
interval [ty t541] Will be increased by 1. In general, for any sequence (i1, s, ..., k1)
with 7 +1 <¢; <k, we can transform the Hasse diagram of Figure 3.24 into a special
case of the Figure 3.25 where a1 = ... =a; =0,¢1 = ... = ¢4—1 = 1, and b; equals the
number of vertices u’s shuffled into the upper horizontal interval [t;,¢;41]. Lastly, for
2 < j <k —1, within each horizontal line segment [t;,¢;11] with b; internal vertices,
there are b;! ways to rearrange the entries; whereas in the interval [tg, t542| with by + 2
vertices, there are (b’“; Y (bp +2)! = Bt way to rearrange the entries. Therefore, we

2

can express Ly in terms of L(ay,...,an41;01,...,bp5¢1,...,¢y) as follows.

k k k k—1
(b +2)!
Lkzz... Z Z <—2 Hbi! L(0,...,0;0,by, by, ... bg_1;1,...,1)
1=2 i o=k ‘

— —1 ik,lzk

where for each 1 < j <k,

S
Il

X(it Zj)~

t=1

Here, for any statement A, y(A) is the indicator function given by x(A) =1 if A is
true and x(A) = 0 if A is false.

Again, we can use Mathematica to compute the first few terms of L. These
values are given in Table 3.5 below.

Table 3.5: The first eight values of Ly.

E|1[2] 3 4 5 6 7 8
Ly | 119210 | 8691 | 534474 | 44281890 | 4650892884 | 594362020995

The majority of the results presented in this chapter is based on [5], an
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unpublished paper by Remmel and the dissertation author. However, the last part of
the chapter consists of new material on computing NM, (¢, z,y) in the other four cases

where 7 =71 ...7¢ and 71 = 1, 73 = 2, and 75 = 3, in which the dissertation author is

the main investigator.



Chapter 4

Refinements of the c-Wilf

equivalent relation

The main goal of this chapter is to study refinements of the c-Wilf equiva-
lence relation. For any permutation statistic stat on permutations and any pair of

permutations o and 8 in S;, we say that « is stat-c-Wilf equivalent to § if for all

n>1,
Z xstat(c) _ Z xstat(a).
ceEN My (a) ceN My (B)
More generally, if stat, ..., stat, are permutations statistics, then we say that a and

[ are (staty,...,staty)-c-Wilf equivalent if for all n > 1,

NZ ﬁ stat; ( ): Z H statz(a
ceEN My (a) =1

ceEN My (B) 1=

The first question is whether there are interesting examples of stat-c-Wilf
equivalent permutations. The answer is yes. There are a number of such examples

in the case where stat(o) is either inv(c), the number of inversions of o, or coinv(o),

131
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the number of co-inversions of . Here if 0 =01 ...0, € 5, then

inv(e) = {(,7):1<i<j<n&o; >o0;} and

coinv(o) = |{(4,5):1<i<j<n& o <o}

Since for any permutation o € S,, inv(o) + coinv(c) = (4), it follows that

Z xinv(a) _ Z xinv(a) .

ceN My (a) N My (B)

if and only if

Z xcoinv(a) _ Z xcoinv(a) .

oEN My () geEN Mn(B)

Thus we will only consider inv-c-Wilf equivalence. It turns out that there are a large
number of examples of @ and S which are inv-c-Wilf equivalent when a and § are
minimal overlapping permutations.

We say that a permutation 7 € S; where j > 3 has the minimal overlapping
property, or is minimal overlapping, if the smallest ¢ such that there is a permutation
o € S; with 7-mch(o) = 2 is 2j — 1. This means that in any permutation o = oy ... 0y,
any two T-matches in o can share at most one letter which must be at the end of the
first 7-match and the start of the second 7-match. For example, 7 = 123 does not have
the minimal overlapping property since 7-mch(1234) = 2 and the 7-match starting
at position 1 and the 7-match starting at position 2 share two letters, namely, 2 and
3. However, it is easy to see that the permutation 7 = 132 does have the minimal
overlapping property. That is, the fact that there is an ascent starting at position

1 and descent starting at position 2 means that there cannot be two 7-matches in
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a permutation o € S, which share two or more letters. If 7 € S; has the minimal
overlapping property, then the shortest permutations ¢ such that 7-mch(o) = n will
have length n(j — 1) + 1. Thus, we let MP,,j_1)+1 be the set of permutations
0 € Sy(j-1)+1 such that 7-mch(o) = n. We shall refer to the permutations in
MP,nii—1)+1 as mazimum packings for 7. Then we let mp; ,j—1)11 = [MPrai—1)41]
and

inv(a)pcoinv(a) .

MPrn-1)+1(P, @) = g
O—EM,PT,n(jfl)+1

Duane and Remmel [16] proved the following theorem about minimal overlap-

ping permutations.

Theorem 13. If 7 € S; has the minimal overlapping property, then

Z

Z 7 -mch(o) Comv(o)qlnv(a) _
g O’ES

1
WD+ n ‘
1 — (t + Zn>1 m(x - 1) mpT,n(j_1)+1(p7 Q)>

They also proved the following theorem.

Theorem 14. Suppose that 7 =7 ...7; where 7y =1 and 7; = s, then

MPr (ni1)G-1)+1(P @) =

coinv(T) inv(T s—1)n(j— n+]- j_]- +1—S
P g oplTne ( )(~ ) } Mprn(j-1)+1(P; q)
] =9 p,q
so that
_ (coinv(T) inv(T) ntl - (s—1)(j— 1) "+1 ] - 1 + 1—s
Mpr ninyG-1+1(P, @) = (p g™ p H ha _
=1 p,q
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An immediate consequence of Theorems 13 and 14 is the following theorem.

Corollary 15. Suppose that o = ...« and 8 = By ...3; are permutations in S;
such that oy = By =1, a; = B = s, inv(a) = inv(B), and a and B have the minimal

overlapping property. Then

tn a-mchn(o inv(o tn -mcn(o inv(o
Z[n_]qux h(o),, ():Z[n_]quxﬁ h(o) ginv(o).

n>0 T o€S, n>0 " o€Sy

We shall give several examples of a pair of permutations that « and S that
satisfy the hypotheses of Corollary 15 and thus are inv-c-Wilf equivalent. It is easy to
see that there are no pairs o and [ satisfying the hypothesis of Corollary 15 in Sj.
That is, there are only three possible pairs o and § which start with 1 and end with

the same numbers, namely,
1. a=1342 and = 1432,
2. a=1243 and = 1423, and
3. a=1234 and § = 1324.

In each case, inv(a) # inv(f). However a = 14532 and = 15342 do satisfy the
hypothesis of Corollary 15. Moreover it is easy to check that for any n > 5, any two
permutations of the form a = 145302 and § = 153402, where o is the increasing
sequence 678 - - - n, satisfy the hypothesis of Corollary 15. Thus, there are non-trivial
examples of inv-c-Wilf equivalence for all n > 1. In fact, Duane and Remmel proved

an even stronger result than Theorem 14. That is, they proved the following theorem.

Theorem 16. Suppose a = aq...c; and f = Bi...5; are minimal overlapping
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permutations in S; and oy = 1 and o = B;, then for alln > 1,

MPan(j—1)+1 = MPBn(j—1)+1-

]f n addition, pcoinv(a)qinv(a) — pcoinv(ﬁ)qinv(,ﬁ)) then

mpa,n(j—l)-i—l(pv Q) = mpﬁ,n(j—l)-i-l(p» Q)-

Combining Theorems 13 and 16, we have the following theorem.

Theorem 17. Suppose that o = a;y...c; and = By...[5; are permutations in
S; such that oy = By, o = B, inv(a) = inv(f), and a and [ have the minimal

overlapping property. Then

Z Z o -mch(o) 1nv(0) Z Z T B-mch(o) 1nv(a)

q’ oESy q' oESy

Theorem 17 above relaxes the condition that a and £ both have to start with
1 and thus, introduces a stronger condition than just being inv-c-Wilf equivalent.
In fact, we shall say that o and g are strongly inv-c- Wilf equivalent if they satisfy
the hypotheses of Theorem 17. As an example, one can check that o = 241365 and
£ = 234165 both start and end with the same element and have the same number of
inversions. Therefore, they are strongly inv-c-Wilf equivalent.

Of course, one can make similar definitions in the case where we replace c-Wilf
equivalence by Wilf equivalence. For example, we say that « is stat-Wilf equivalent

ofifforalln>1

Z xstat(cr) Z Istat

7€Sn(a) a€Sn(B)
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Although this language has not been used, there are numerous examples in the
literature where researchers have given a bijection ¢,, : S,,(a) — S, (/) to prove that
a and § are Wilf equivalent where the bijection ¢, preserves other statistics. One
example of this phenomenon is the work of Claesson and Kitaev [14] who gave a
classification of various bijections between 321-avoiding and 132-avoiding permutations
according to what statistics they preserved.

Our goal now is to give examples of a and 8 such that a and § are des-c-Wilf

equivalent. The main result of this chapter is the following.

Theorem 18. Suppose that « = o ...« and B = By ...B3; are permutations in S,
such that oq = 1 = 1, oj = B, des(a) = des(B), and a and  have the minimal

overlapping property. Then

Z Z des(a) Z Z des(a) ‘

n>0 'aeNMn(a n>0 'ae/\//\/ln(ﬁ

Thus o and B are des-c-Wilf equivalent.

If in addition, inv(«) = inv(3), then

Z [:L; ' Z xdes(a)qinv(a) _ Z [;_T' Z xdes(o') qinv(o’).

n>0 T GeNMpu(a) n>0 9 GeNMu(B)
Thus o and [ are (des, inv)-c- Wilf equivalent.

In order to prove this theorem, we are interested in computing generating

functions of the form

INMp(t, ¢, 2) = 1+ Z INMr,n q,2),
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where INMr (¢, 2) = Z 2des(@)+1inv(9) " which is a g-analogue of NMp(t, 1, ).
cEN M, (T)
We shall write
1
INMF(t,q, Z) = n
1+ anl IUr (g, Z)#ql
so that
t" 1

U(t,q,2) =1+ Y _1Ur,(q,2)

n>1

(]! INMr(t,q,2) (4.1)

If I' = {7}, we shall write INM, (¢, ¢, z) for INMr(¢, ¢, z), INM; ,,(q, ) for INMr (¢, 2),
1U,(t,q, z) for IUr(t,q, 2), and 1U, (¢, 2) for IUr (g, 2). As before, we shall use the
homomorphism method to give us a combinatorial interpretation of the right-hand
side of (4.1) which can be used to develop recursions for IUr (g, 2). In the case where
a and f satisfy all the hypothesis of Theorem 18, then we will show that IU, ,(q, 2)
and IUg ,(q, z) satisfy the same recursions so that INM,(t, ¢, z) = INM3(t, ¢, 2).
Finally, there are stronger conditions on permutations a and 3 in S; which
will guarantee that o and 8 are des-c-Wilf equivalent, (des, inv)-c-Wilf equivalent,
or (des,inv, LRmin)-c-Wilf equivalent. That is, we say that a and § are mutually
manimal overlapping if o and 8 are minimal overlapping and the smallest n such that
there exist a permutation o € S,, with a-mch(c) > 1 and -mch(o) > 1 is 2j — 1.
This ensures that in any permutation o, any pair of a-matches, any pair of g matches,
and any pair of matches where one match is an a-match and one match is a S-match
can share at most one letter. There are lots of examples of minimal overlapping
permutations o and 8 in S; such that o and 8 are mutually minimal overlapping. For
example, we shall prove that any minimal overlapping pair of permutations a and (8 in
S; which start with 1 and end with 2 are automatically mutually minimal overlapping.

We will also give examples of minimal overlapping permutations a@ = «; ... «a; and
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B = p1...58;in S; such that a; = ; = 1 and «; = ; which are not mutually minimal

overlapping. Then we shall give a bijective proof the following theorem.

Theorem 19. Suppose o = o ... and B = By ... [5; are permutations in S; which
are mutually minimal overlapping and there is an 1 < a < j such that o; = B; for all

i<a, o, =p,=1, aj =f;, and des(a) = des(3). Then

Z Z des(o)uLRmin(cr) _ Zt_T: Z Zdes(a)uLRmin(o)'
n

n>0 'o—eNMn (@) n>0 N M, (B)

Thus o and 5 are (des, LRmin)-c- Wilf equivalent.

If in addition, inv(a) = inv(3), then

Z [;}L ‘ Z xdes(a) qinv(a LRmin(o) Z Z xdes(a) qinv(a)uLRmin(J)‘
q

cEN My () n>0 nl ceEN M (B

Thus o and 8 are (des,inv, LRmin)-c- Wilf equivalent.

4.1 The proof of Theorem 18

In this section, we shall prove Theorem 18. To remind the readers of the result,

we shall restate the theorem below.

Theorem. Suppose that « = oy ...« and B = Bi ... [B; are permutations in S; such
that oy = B =1, aj = B, des(a) = des(f3), and a and B have the minimal overlapping

property. Then

Z Z :L,des(o) Z Z wdes(a) )

n>0 " eeN My (a n>0 " ceNM,(8
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Thus o and 3 are des-c- Wilf equivalent.

If in addition, inv(a) = inv(3), then

Z [t_T| Z xdes(a) qinv(o) _ Z [:L_;' Z .’L'deS(U) qinv(U) .

w20 TN e v (o) n>0 V0 e ML (8)
Thus o and [ are (des, inv)-c- Wilf equivalent.
This theorem is an immediate consequence of our next result.

Theorem 20. Let 7 = 1i79---7, € S, be such that 1 = 1,7, = s where 2 < s < p,

and T has the minimal overlapping property. Then

n

t

INM,(t,q,z) = ———— where [U.(t,q,z) =1 1U, ,.(q, ,

(t.q,2) 0 (tq.2) here (t.q,2) +; (g Z)[n]q!

with 1U;1(q, z) = —z, and forn > 2,
]UT,n(Q7 Z) = (1 - Z)[UT,nfl(qa Z) - ZdeS(T)quV(T) |iZ : j:| UT’"*I’+1 (q? Z).
q
Proof. Let
INMF,TL(q7 Z) _ Z Zdes(a)-&-lqinv(a). (42)
€N My (T)

We define a ring homomorphism 6r on the ring of symmetric functions A by setting

Or(eg) = 1 and

Or(en) = S INM (g, ) (4.3)

]!
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for n > 1. It then follows that

Or(H(1)) = ; Or (ha)t" = 0-(E(—t)) 1+ Y ns1(=t)"0r(en)
_ 1 =1Ur(t, q, 2). (4.4)

1 + Zn>1 [ INMF n(Q7 )

Using (1.4), we can compute

[n]g0r(ha) =[]yt Y (1" By, br(en)

AFn
- [”]q!Z(_l)n_é(A) Z H INMFb(Qa z)
AFn (b1 ..... bg()\))EBA n =1
n 170
= —1)*™ INMy . . (4.5
> (1) Y ) [[NMra(a2)- (45)
AFn (b1,-.., bg()\))EB)\’n q =1

To give combinatorial interpretation to the right hand side of (4.5), we select a
brick tabloid B = (b1, bs, ..., byx)) of shape (n) filled with bricks whose sizes induce
the partition A. Given an ordered set partition S = (51,52, ...,5x)) of {1,2,...,n}
such that |S;| = b;, for i = 1,...,£(\), let S; T S2 1 ... Sen) T denote the permutation
of S,, which results by taking the elements of S; in increasing order and concatenating

them from left to right. For example,

{1,5,6} 1 {7,9} 1 {2,3, 4,8} 1= 156792348.

It follows from [8] that we can interpret the g-multinomial coefficient [bl nbm)] as
»»»» 4 q

the sum of ¢™v119%:1-51 gyer all ordered set partitions S = (S1,82,...,S)) of

{1,2,...,n} such that |S;| = b;, for i = 1,...,£(\). For each brick b;, we then fill



141

the cells of b; with numbers from S; such that the entries in the brick reduce to a
permutation 0@ = gy --- 0y, in N M,, (I'). It follows that if we sum ¢™¥(?) over all

possible choices of (Si, Sy, ..., Se»)), we will obtain

£(p)

n . ,
| | inv(o(®)
q .
{bl, cee bg()\):|

q =1

We label each descent of o that occurs within each brick as well as the last cell of
each brick by z. This accounts for the factor 24es(@)+1 within each brick. Finally,
we use the factor (—1)*™ to change the label of the last cell of each brick from z
to —z. We will denote the filled labeled brick tabloid constructed in this way as
(B,S, (oD, ... gty

For example, when n = 17,I' = {1324,1423,12345}, and B = (9,3,5,2),
consider the ordered set partition & = (51, 52,53,5;) of {1,2,...,19} where S; =
{2,5,6,9,11,15,16,17,19}, So = {7,8,14}, S5 = {1,3,10,13,18}, S, = {4,12} and
the permutations ¢V = 124653798 € NMy(I), 0@ =132 € NMj3(T),
c® =51243€ NM;s(), and o® =2 1 € NM,(T'). Then the construction of

(B,S,(cW, ..., o™)) is pictured in Figure 4.1.

{2,5,6,9,11,15,16,17,19} {7,8,14} {1,3,10,13,18} (4,12}

o@=124653798 0?=1382 o®=512483 o®=21

2|2 z A 2 |=-2| 2| =2

-2 z
(2] 5] 9]15] 11] 6[16]19]17]|[ 7]14] 5] |l18] 1] 3 |1310|||12] 4]

Figure 4.1: The construction of a filled, labeled brick tabloid.

We can then recover the triple (B, (S, ..., Siy), (W, ..., a))) from B and
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the permutation ¢ which is obtained by reading the entries in the cells from right to
left. We let Or,, denote the set of all filled labeled brick tabloids created this way.

That is, Or,, consists of all pairs O = (B, o) where
1. B = (b1, b, ...,by) is a brick tabloid of shape n,

2. 0 =010, is a permutation in S,, such that there is no I'-match of o which

lies entirely in a single brick of B, and

3. if there is a cell ¢ such that a brick b; contains both cells ¢ and ¢+1 and o, > 0,41,

then cell ¢ is labeled with a z and the last cell of any brick is labeled with —z.

We define the sign of each O to be sgn(0) = (—1)*™. The weight W (O) of O
is defined to be ¢™(?) times the product of all the labels z used in the brick. Thus,
the weight of the filled, labeled brick tabloid from Figure 4.1 above is W(0O) = z'¢®.

It follows that

(1] 0r(ha) = Y sgn(O)W(O). (4.6)

OGO["n

Then we can use the same sign-reversing, weight-preserving mapping Jr :
Or, — Or,, that we used in the previous sections to simplify 4.6). That is, let
(B,o) € Or,, where B = (by,...,b;) and 0 = 0y ...0,. Then for any i, we let first(b;)
be the element in the left-most cell of b; and last(b;) be the element in the right-most
cell of b;. Then we read the cells of (B, o) from left to right, looking for the first cell ¢
that belongs to either one of the following two cases.
Case I. Either cell ¢ is in the first brick b; and is labeled with a z, or it is in some

brick b;, for 7 > 1, with either
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i. last(bj_1) < first(b;) or

ii. last(bj_q) > first(b;) and there is a 7 in I' such that there is a 7-match which

ends weakly to the left of cell ¢ and is contained in the cells of b;_; and the cells

b;.

Case II. Cell ¢ is at the end of brick b; where o. > 0.1 and there is no I'-match of o
that lies entirely in the cells of the bricks b; and b; 1.

In Case I, we define Jp((B, o)) to be the filled, labeled brick tabloid obtained
from (B, o) by breaking the brick b; that contains cell ¢ into two bricks b and b
where b contains the cells of b; up to and including the cell ¢ while b7 contains the
remaining cells of b;. In addition, we change the labeling of cell ¢ from z to —z. In
Case 11, Jr((B, o)) is obtained by combining the two bricks b; and b;4; into a single
brick b and changing the label of cell ¢ from —z to z. If neither case occurs, then we
let Jr((B,0)) = (B,0).

It follows from our results in the previous chapter that Jr is an involution.
That is, if Jr(B,o0) # (B, o), then sgn(B, o)W (B,0) = —sgn(Jr(B,0))W (Jr(B,0)).

Thus, it follows from (4.6) that

mlor(h) = 3 sen(O)W©O)= Y sen(O)W(0).  (47)

OEO[‘,n OEOFJL,J[‘(O):O

Hence if all permutations in I' start with 1, then

TUr (g, 2) = > sen(O)W(0). (4.8)

OEOF’n,IF(O)ZO

Thus, to compute IUr (g, z), we must analyze the fixed points of Jr. Recall
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that we have the following characterization of the fixed points of Jr.

Lemma 3. Let B = (by,...,bg) be a brick tabloid of shape (n) and o = 0y...0, € S,.

Then (B, o) is a fized point of Jr if and only if it satisfies the following properties:

(a) ifi=1ori>1 and last(b;_1) < first(b;), then b; can have no cell labeled z so

that o must be increasing in b;,

(b) if i > 1 and o, = last(b;_1) > first(b;) = 0er1, then there must be a I'-match
contained in the cells of b;_1 and b; which must necessarily involve o, and geiq

and there can be at most k — 1 cells labeled z in b;, and

(c) if I has the property that, for all T € T such that des(t) = j > 1, the bottom
elements of the descents in T are 2,...,7 + 1, when reading from left to right,
then

first(by) < first(by) < --- < first(by).

In our case, we are considering the special case where I' = {7} where 7 =7 ... 7,
and 7 is a minimal overlapping permutation such that 71 = 1 and 7, = s where
2 < s < p. Thus we shall use the notation J, for Jr in this case.

When n = 1, the only fixed point comes from the configuration that consists
of a single cell filled with 1 and labeled —z. Therefore, it must be the case that
1U;41(q,2) = —=.

For n > 2, let (B,0) be a fixed point of J. where B = (by,...,b;) and
0 =070, Weclaim that 1 is in the first cell of (B, o). To see this, suppose 1 is in
cell ¢ where ¢ > 1. Hence o._1 > 0.. We claim that whenever o._1 > 0., 0.1 and o,
must be elements of some 7-match in ¢. That is, ¢ cannot be in brick b; because the

elements in the first brick of any fixed point must be increasing. So we assume that
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c is in brick b; where 2 < ¢ < k. If ¢ is the first cell of b;, then last(b;—1) > first(d;)
and there must be a 7-match in the cells of b;_; and b; which involves cells ¢ — 1
and c. If ¢ is not the first cell of b;, then we can not have that last(b;—1) < first(b;)
since this would force ¢ to be increasing in the cells of b;. Thus, we must have that
last(b;—1) > first(b;) and there must be a 7-match in the cells of b;_; and b;. This
T-match cannot end before cell ¢ since then ¢ would satisfy the conditions of Case I of
our definition of .J; which would contradict the fact that (B, o) is a fixed point of /.
Hence, cell ¢ must be part of this 7-match. Thus if 0. = 1 where ¢ > 1, then o._; and
o. are elements of a 7-match in ¢. But since 7 starts with 1, the only role 0. = 1 can
play is a 7-match is 1 and hence o._; and o, cannot be elements of a 7-match in o.
Hence, 01 = 1. We now have two cases.

Case 1. There is no 7-match in (B, o) that starts from the first cell.

In this case, we claim that 2 must be in cell 2 of (B, ). By contradiction, suppose 2
is in cell ¢ where ¢ # 2. For any ¢ > 2, it is easy to see that o. 1 > 2 = o, so there is
a decrease between the two cells ¢ — 1 and ¢ in (B, ). By our argument above, there
must exist a 7-match « that involves the two cells ¢ — 1 and c¢. In this case, o must
include 1 which is in cell 1 because it must be the case that 1 and 2 play the role of 1
and 2 in the 7-match «, respectively. This contradicts our assumption that there is
no 7-match starting from the first cell. Hence, oy = 2.

In this case there are two possibilities, namely, either (i) 1 and 2 are both in
the first brick by of (B, o) or (ii) brick b; is a single cell filled with 1 and 2 is in the
first cell of the second brick by of (B, o). In either case, we know that 1 is not part
of a 7-match in (B, o). So if we remove cell 1 from (B, o) and subtract 1 from the

elements in the remaining cells, we will obtain a fixed point (B’c’) of Jr in Or,,—1.
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Moreover, we can create a fixed point O = (B, o) € O, satisfying the three
conditions of Lemma 2 where 09 = 2 by starting with a fixed point (B’,0’) € Or,,—1
of Jr, where B" = (by,...,b)) and o' = o} ---0/_,, and then letting 0 = 1(o} +
1)--- (ol _y+1), and setting B = (1,b},...,b)) or setting B = (1 +b],...,b.).

It follows that fixed points in Case 1 will contribute (1 — 2)IUr,_1(g, ) to
IUr (g, 2).

Case 2. There is a 7-match in (B, o) that starts from the first cell.

In this case, the T7-match that starts from the first cell of (B, o) must involve the
cells of the first two bricks b; and by in (B, o). Since there is no decrease within the
first brick b; of (B, o), it must be the case that the first brick b; has exactly d cells,
where 1 < d < p is the position of the first descent in 7, and the brick b, has at least
p — d cells. Furthermore, we can see that the brick by consists of exactly des(7) — 1
decreases, positioned according to their corresponding descents in 7. We first claim
that all the integers in {1,...,s — 1, s} must belong to the first p cells of (B, o). To
see this, suppose otherwise and let m = min{i : 1 < i < 5,04, = i for some k > p}.
That is, m is the smallest integer from {1,...,s — 1, s} that occupies a cell k strictly
to the right of cell p in (B, o). It follows that m is the smallest number that occupies a

cell strictly to the right of cell p in O and thus, it is the case that o1 > s > m = oy.

Then there are three possibilities:
(i) brick by has more than p — d cells and m is in brick b,
(ii) m starts some brick b; for j > 2, or
(iii) m is in the middle of some brick b; for j > 2.

We will show that each of these cases contradicts our assumption (B, o) is a fixed
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point of Jr.

In case (i), since oj_1 > 0y, there is a decrease in brick by that occurs strictly
to the right of cell p. However, due to the 7-match starting from cell 1 of O, brick by
already has des(7) — 1 descents, the maximum number of allowed descents in a brick.
Thus, by the second property of Lemma 2, this is a contradiction.

In case (ii), since last(bj_1) = ox_1 > oy = first(b;), by Lemma 2, there must
be a 7-match that is contained in the cells of b;_; and b; and ends weakly to the left
of cell k& which contains m. Since 7 is a minimal overlapping permutation, the only
possible 7-match beside from the first one that starts from cell 1 in (B, o) must occur
weakly to the right of cell p in O. However, since m is the smallest number in the cells
to the right of cell p and 7 starts with 1, any match that involves m must also start
from this cell. Thus, we can never have a 7-match in (B, o) that involves both cells
k—1and k in (B, o).

In case (iii), suppose that m occupies cell k that is in the middle of brick b,.
There are now two possibilities between the last cell of b;_; and the first cell of brick
b;: either last(b;_;) < first(b;) or last(b;_;) > first(b;). If last(b;_1) < first(b;) then
we can simply break the brick b; after cell £ — 1, contradicting the fact that (B, o)
is a fixed point. On the other hand, if last(b;_;) > first(b;) then by Lemma 2, there
must be a 7-match that ends weakly to the left of cell k, and involves the two cells
k — 1 and k. However, by previous argument, this cannot hold.

Hence, it must be the case that all the integers {1,2,...,s — 1, s} belong to
the first p cells of (B, o). Furthermore, we only have one way to arrange these entries,
according to their respective position within the 7-match. This also implies that

op = 5. We will then choose p — s numbers and fill these numbers in the empty cells
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within the first p cells of (B, o) such that red(oy02 - -0,) = 7. There are (Z:j) ways

to do this and keeping track of the inversions between our choice of p — s numbers

n—s

and the elements of (B, o) which occurs after cell p, we obtain a factor of [pfs

} from
q
our possible choices. Then we have to count the inversions among the first p elements

mv(r) We notice that since 7 has the minimal

of (B, o), which contributes a factor of ¢
overlapping property, the next possible T-match in (B, ) must start from cell p that
contains s. In addition, according to Lemma 2, any brick in a fixed point of the
involution can have at most des(7) — 1 descents within the brick so there cannot be
any descents in by after cell p. By construction, o, = s is less than the elements which
occur to the right of cell p. Therefore, we can remove the first p — 1 cells of (B, o)
and obtain a fixed point (B, 0’) of length n — p + 1.

This process is also reversible. Suppose 7 € S, is a minimal overlapping
permutation with 7 = 1,7, = s, and the first descent in 7 occurs at position d. Given
a fixed point (B’,0’) of length n — p 4+ 1 where B’ = (b),...,b.) and a choice T" of
p— s elements from {s+1,...,n}, welet o* be the permutation of {1,...,s}UT such
that red(c*) = 7 and 0™ be the permutation of {1,...,n} — ({1,...,s} UT) such
that red(c*) = ¢’. Then if we let 0 = o*0™ and B = (d,p —d — 1 + b}, b5,...,b)),
then (B, o) will be a fixed point of Jr of length n that has 7-match starting in cell 1.

It follows that the contribution of the fixed points in Case 2 to IU,,(q, 2) is

es(T) inv(T n—s:s
p—3s q
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Combining Cases 1 and 2, we see that for n > 2,

n—s

1U,,.(¢,2) = (1 — 2)IU,,,_1(q, 2) — 23 g { } U, pi1(g, 2)

b—5],

which is what we wanted to prove. O]
It is easy to see that Theorem 18 follows immediately from Theorem 20. That
is, Theorem 20 shows that for a minimal overlapping permutation 7 € S; that starts

with 1, the generating function

INM t, 1, z)=1+ Z Z des(0)+1

n>1 ! TEN M (

depends only on s = 7; and des(7). Thus if & and § are minimal overlapping permu-
tations which start with 1 and end with s and des(a) = des(f), then INM, (¢, 1,2) =
INMg(t, 1, 2) so that o and [ are des-c-Wilf equivalent. Similarly, Theorem 20 shows
that for a minimal overlapping permutation 7 € S; that starts with 1, the generating

function

INM t ,q, % =14+ Z Z Zdes(a)—l—lqinv(o—)
n2>1 UENM (1)

depends only on s = 7;, des(7), and inv(7). Thus if @ and S are minimal over-
lapping permutations which start with 1 and end with s and des(«) = des() and
inv(a) = inv(p), then INM, (¢, ¢, ) = INMg(t, ¢, 2) so that a and (3 are (des, inv)-c-
Wilf equivalent.

There are lots of examples minimal overlapping permutations o and S for
which the hypothesis of Theorem 18 apply. For example, consider n = 5. Since we are

only interested in permutations that start with 1, we know that such a permutation
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a starts with a rise. Then « cannot end in a rise since otherwise « is not minimal
overlapping. Thus a must start with 1 and end in a descent. There are no such
permutations that end in 5 and there are only two such permutations that end in 4,
namely, 12354 and 13254 and these two permutations do not have the same number
of descents. This leaves us 10 possible permutations to consider which we have listed
in the following table. For each such o, we have list des(¢), inv(o), and indicated
whether is minimal overlapping.

Table 4.1: The c-Wilf equivalent classes of length 5.

o des(o) | inv(o) | Is minimal overlapping?
12453 | 1 1 yes
12543 | 2 3 yes
14253 | 2 3 no
15243 | 2 4 no
13452 | 1 3 yes
13542 | 2 4 yes
14352 | 2 4 yes
14532 | 2 ) yes
15342 | 2 5) yes
15432 | 3 6 yes

Theorem 18 tells us that all the elements in the set {13542, 14352, 14532, 15342}
are des-c-Wilf equivalent. It also shows that the same set breaks up into 2 (des, inv)-
c-Wilf equivalence classes, namely, {13542, 14352} and {14532, 15342}.

Another natural question to ask is whether the size of (des, inv)-c-Wilf equiva-
lence classes can get arbitrarily large as n goes to infinity. The answer to this question
is yes. First, it is easy to see that if o is a permutation that starts with 1 and ends
with 2, it is automatically minimal overlapping. That is, if 0 = 01 ...0, where 01 =1

and o, = 2, then there can be no 2 < i < n — 1 such that the first 7 elements of ¢ has
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the same relative order as the last ¢ elements of o because in the first ¢ elements of
o the smallest element is at the start while in the last ¢ elements of o, the smallest
element is at the end.

Now consider three consecutive elements z,x + 1,2 + 2. Then the sequences
t1(x) = (x4+1)(x+2)x and t5(x) = (x+2)z(x+1) each have one descent and two inver-
sions. It follows that if we start with the permutation o = 1¢,(3) ¢1(6) t1(9) - - - t1(3n) 2,
then we can replace any of the sequence t1(3k) by its corresponding sequence t5(3k)
and it will keep the inversion number and the descent number of the permutation the
same. Thus, the size of the (des, inv)-c-Wilf equivalence class of o is at least 2".

There are lots of other examples of this type. For example, consider four
consecutive elements x,z + 1,z + 2,z + 3. Then the sequences s;(z) = (z + 1)(x +
2)z(z+3) and sy(x) = z(x+3)(z+1)(x +2) each have one descent and two inversions.
It follows that if we start with the permutation 7 =1 s1(3) $1(7) s1(11)...s1(4dn—1) 2,
then we can replace any of the sequence s1(4k — 1) by its corresponding sequence
so(4k — 1) and it will keep the inversion number and the descent number of the
permutation the same. This same argument can also be extended to permutations
o € S, that start with 123 -- -k and end with k + 1, for any £ > 0. Hence, the size of

the (des, inv)-c-Wilf equivalence class of 7 is at least 2".

4.2 The proof of Theorem 19

In Theorem 19, we study the (des, LRmin)-c-Wilf equivalent relation and its
g-analog which arise as another consequence of Theorem 20. First, we observe that
for any permutation 7, NM, (¢, 1,y) = INM, (¢, z,1) and hence, U, (t,y) = 1U.(¢, z,1).

Thus, if @ and § are minimal overlapping permutations which start with 1 and end
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with s with des(a) = des(8), then U,(t,y) = Us(t, y). This leads to

NM, (.2, y) (ﬁ) _ (@) — NMo (2, y).

Hence, if @ and  are minimal overlapping permutations which start with 1 and end
with s and des(a) = des(8), then a and 8 are (des, LRmin)-c-Wilf equivalent. In fact,
by relaxing the condition that o and 8 start with 1, we can generalize this result for
pairs of permutations a and ( that satisfy the condition which we refer to as mutually
minimal overlapping.

Before proceeding with the proof of Theorem 19, we first recall the definition of
mutually minimal overlapping permutations. Here, we say that a and 8 are mutually
minimal overlapping if o and [ are minimal overlapping and the smallest n such that
there exist a permutation o € S, such that a-mch(c) > 1 and S-mch(o) > 11is 25 — 1.
This ensures that in any permutation o, any pair of a-matches, any pair of g matches,
and any pair of matches where one match is an a-match and one match is a S-match
can share at most one letter.

Note that if « = ay ... and 8 = ;... [; are minimal overlapping permu-
tations in §; that start with 1 and end with 2, then a and § are mutually minimal
overlapping. That is, it cannot be that there is 1 < ¢ < j such that the last ¢ elements
of a have the same relative order as the first ¢ elements of /3 since the first ¢ elements
of o has its smallest element at the start while the last ¢ elements of 5 has it smallest
element at the end. Similarly, it can not be that there is 1 < ¢ < j such that the last ¢

elements of § have the same relative order as the first ¢ elements of . On the other
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hand, if

a = 193827654 and

B = 139875264,

then one can check that o and /3 are minimal overlapping, des(«) = des(f) = 4, and
inv(a) = inv(f) = 19. However « and f are not mutually minimal overlapping since
the first 3 elements of o have the same relative order as that last three elements of 5.

We shall give a bijective proof for a slightly stronger version of Theorem 18. In

fact, Theorem 18 is the special case of the following result when a = 1.

Theorem. Suppose a« = ... and = (... [; are permutations in S; which are
mutually minimal overlapping and there is an 1 < a < j such that oy; = 3; for i1 < a,
ag = fo =1, aj = ;, and des(a) = des(p).

Then

Z Z des(a) yLRmin(U) Z Z des(a) yLRmin(U) ]

n>0 .O'G/\/Mn n>0 .O'G/\/Mn

Thus a and 8 are (des, LRmin)-c- Wilf equivalent.

If in addition, inv(«a) = inv(5), then

t" es(o min(o) inv(oc " es(o min(o) inv(oc
Z o Z gdes(o)y LRmin(o) inv() Z o Z gdes(@) g LRmin(e) ginv(o)
q q

T oeN My () n>0 " oeN My (8)

Thus o and [ are (des, LRmin, inv)-c- Wilf equivalent.
Proof. For any n > 0, we can partition the elements of S,, into four sets:

1. A, equals the set of o € S, such that a-mch(o) > 0 and S-mch(o) = 0,
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2. B, equals the set of o € S,, such that S-mch(c) > 0 and a-mch(c) = 0,
3. C, equals the set of o € S,, such that S-mch(o) > 0 and a-mch(o) > 0,
4. D, equals the set of o € S, such that f-mch(c) = 0 and a-mch(o) = 0.

Clearly N M, («) = D,, U B,, and NM,,(8) = D, U A,. Thus, to prove that

Z Zdes(o)uLRmin(o') — Z Zdes(a) uLRmin(a) :
TEN My, () ceEN M (B)

we need only prove that

Z Zdes(o)uLRmin(cr) — Z Zdes(o)uLRmin(U).

O'EAn UeBn

Thus, we need to define a bijection ¢ : A, — B, such that for all ¢ € A,,
des(o) = des(¢(0)) and LRmin(c) = LRmin(¢(c)). One simply replaces each a-
match o0;...0,4j_1 in o by the S-match where we rearrange 0,41 ...0;4,_2 so that it
matches . Given our conditions on a and 3, this mean that we will simply rearrange
Oita---0Oitj—2 to match the order of the elements 8,41 ...5;-1. Since o is minimal
overlapping, the elements that we rearrange in any two a matches of o are disjoint.
Hence ¢ is well defined.

The fact that a, = 8, = 1 ensures that ;.1 is less than each of the elements
Oita---0Oitj—2 S0 that rearranging these can not effect the number of left-to-right
minima. So LRmin(c) = LRmin(¢(o)). The fact that des(a) = des(f) ensures
that our rearrangement o;;;...0;1;_1 does not effect the number of descents so
that des(o) = des(¢(o)). Moreover, if inv(a) = inv(f), then our rearrangement

Oita - Oitj—2 does not effect the number of inversions so that inv(c) = inv(¢(0)).
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Next we claim the fact that o and  are mutually minimal overlapping ensures
that ¢(o) is in B,,. That is, if ¢(o) has an a match, then if must have been the case
that there was a-match o; ... 04,1 in o such that the rearrangement of 0,44 ... 042
or possibly two consecutive a-matches in o 0;...0;19;_2 such that the rearrangement
of 0itq...0i+j—2 and the rearrangement of 0,4, 144 ...0i42j—3 caused an a-match to
appear. In either case, this would mean that that there is an a-match in ¢(o) which
shares more than 2 letters with a S-match in ¢(c). This is impossible since o and
(3 are mutually minimal overlapping. Finally, it is clear how to define ¢~*(c). One
simply replaces each S-match o;...0,4;_1 in 0 by the a-match where we rearrange
Oita---Oitj—2 so that it matches a. The same arguments will ensure that o1 is well

defined and maps B,, into A,,. Thus ¢ proves theorem. n

Lastly, we observe that our proof of Theorem 20 can also be modified to prove
the following theorem which allows us to study the c-Wilf equivalent relations between

families of permutations.

Theorem 21. Suppose I' = {a(l), e ,&(k)} is a set of minimal overlapping permuta-
tions in S, which all start with 1 and a® and o) are mutually minimal overlapping
foralll <i<j<k. Foreach1l <1 <k, let s; be the last element of oD, Then

1 "

where [Up(t,y) =1+ Z IUr (g, 2)——

INMp(t, ¢, 2) = ————— ,
r(t,q,2) [Ur(t, q, 2) pe [n]q!

with [Ur1(q, 2) = —z, and forn > 2,

k
es(a®) inv(a® n—s;
[UF,n(qv Z) = (1 - z)]UF,n—l(CL Z) - Z Zd ( )q ( ) |:p _ Si:| qUT,n—p+1(qa Z)

=1

The results in this chapter is based on a paper by Bach and Remmel [4].



Chapter 5

Generating Function for Initial and

Final Descents

In this final chapter, we shall take a step away from the study of consecutive
patterns in permutations and consider another application of the homomorphism
method introduced in the first chapter to study the number of initial and final descents
in permutations. The results of this chapter will appear in a future paper by Remmel
and the dissertation author.

For each permutation o = 0105 --- 0, € 5,, we let
indes(0) = max{i: oy >--- > 0;}
be the number of initial descents in o, and let
findes(o) =max{n —j+1:0; > 0,41 > > 0,}

be the number of final descents in o. For example, if o = 983741652 then indes(c) = 3

156



157

and findes(o) = 2.
The main goal of this chapter is to apply the homomorphism method through

the identities in (1.5) and (1.8) to study the generating functions of the forms

t" es(0), indes(o) . inv(o), coinv(o
3 -3 gslo)yindesto) ginto)eoin(a) g

nZO [n]qu UESn

Z [ ?]5n ' Z xdeS(o)yindes(o)zﬁndes(a)qinv(g)pcoinv(a)'
nzo " pa- O'ESn

Specifically, we shall prove the following two theorems.

Theorem 22.

(erv —1)(z — 1)y — 1) +y(eps ’ —1)

D,q
y(zy —z + 1) (z — ey V)

where € , is the p,q—analogue of the exponential function e* given by

(5)
e;,q =1 +Z : lxn'
[n]p,q’

Theorem 23.

" es(o), indes(o wndes(o) inv(o), coitnv(o
Z[n]‘zxdmyd()zfd()q()p ()
77,22 p:.q- O'GSTL

=G(z,y,z,t) + Alz,y, 2,t) — (B(z,y, 2,t) — C(x,y, 2,t) — D(z,y, 2,t))
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where

eVt _ pyzt — 1
Az, y, 2, t) = 20— 9272

TYZz
—1)(e*¥ — xyt —
B(x7y7 Z’t) — (y )( P,q y )’
ryly — z)(zy — 2z + 1)
z—1)(e**t —xzt — 1
C(x7 y? Z’ t) - ( )( p7q )7

xz(y —z)(xz —x+ 1)
t(x—1)
e —tlx—1)—1
D t) = o
(zy,2,1) (z—1)(zy —x+1)(zz —x+1)
F(z,y,t)F(x,z,1)
t(x—1)

yz(x — )(zy —x 4+ 1)(xzz —xz+ 1)(z — epq

with

G(z,y,z2,t) =

Fa,yt) = (y— 1)@ - el +yef " — (ay —z+1).

q p,q

5.1 The proof of Theorem 22

Following the main idea of the homomorphism method, we first define a ring

homomorphism ¢ by letting ¢(eg) = 1 and

for n > 1. We want to show that [n], !¢ (pny) =D cs, ples(0)yindes(o) ginv(o) peoinv (o)
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Indeed, by applying the ¢ to both sides of (1.6), one can obtain the following.

[ ] @pnl/ = pQ‘Z n W BA )90(@\)

A-n
Z(A) (”)
=[lpg! P (-0 Y o
AFn B=(b1,.,bs(x))EBxn =1
3 3 n (%)
b1 bg b£ A 1
AEn B=(b1,...,bg(x)) EBAn P2 MW g

b1 —2 ()
« ((l’y)bll . Z(xy)k( b —2— k> H bfl

=2

(5.1)

From the right hand size of (5.1), we create combinatorial objects by picking a
partition A of n. We then select a brick tabloid B = (by, ..., by»)) € By, and label the
terminal cell in each brick with 1. For each brick b; for 2 < i < £()), we shall label the
nonterminal cells with either x or —1. These contribute to the term Hf(:)‘; (x —1)%t
n (5.1). For the first brick in B, we shall apply a different labeling scheme. That
is, we can either label every nonterminal cells of b; with zy, or we can label the first
k cells in by with zy for where 0 < k < by — 2, followed by a —1 label in cell k£ + 1,
and the rest of the nonterminal cells in b; with either z or —1. Thus, the labeling of
the first brick will contribute a factor of ((xy)bl_l — 2 (ay)k (a 1)bi_2_k) to the
right hand side of (5.1).

We shall consider the following lemma in order to interpret the p, g-multinomial
coefficient in terms of the number of inversions and co-inversions. This is a generaliza-

tion of the result by Carlitz in [13] with the proof given in the book [37].
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Lemma 4. For positive integers by, ..., b, which sum to n,

n > (bzz) _ inv(r)+>. (bg) coinv(r)
|:b17 . ) bk’:| P,q 1 Z ! g

reR(1%1,...,kb)

— Z qinv (0)pcoi’rw(a)

€Sy, has descending runs
of lengths bi,ba,...,bx

where R(1°%1,2%2 .. k%) is the set of rearrangements of by 1's,by 2's,... by k's and

a descending run in o is a consecutive decreasing subsequence of .

If the bricks in B have lengths by, ..., by when read from left to right, then
Lemma 4 uses the powers of p and ¢ to fill the cells of B with a permutation o € S,
such that the elements in o are decreasing within each brick. We also decorate each
cell of B with ¢®p% where a; counts the number of cells to the right of cell 4 which
are filled with a number smaller than o;, and ; counts the number of those that are

larger than o;. This accounts for the term | (%) i (5.1).

n
b17627-.~,bz(,\)}p7qq

For example, one such combinatorial object created in the above manner is

given in Figure 5.1 for n = 14 and B = (6,3, 1,2, 2).

XY|xy|-1|x |-1|1T |1 x |1 |1 |Xx|1T]|-1]1

q12p1 q9p3 q5p6 q4p6 q2p7 q0p8 q6p1 q5p1 q0p5 q1p3 q3p0 q2p0 q1p0 q0p0

13110 6 | 5 | 3 |1 |{12( 11218 |[14]| 9|7 |4

Figure 5.1: An example of the object created from equation (5.1).

This gives a configuration 7' = (B, o, L) where B is the brick tabloid of shape
(n) and type A, o is the permutation used to fill in the cells of B, and L keeps track of
the zy, z,£1 labels of B. We let 7T, be the set of all possible configuration 7' created

under this process. That is, 7, consists of all triples (B, o, £) where
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i. B = (b,ba,...,by»)) is a brick tabloid in Bj ,
ii. 0 =010,...0,Iisapermutation of S,, with descent runs of lengths by, by, ..., byy).
iii. £ is the labeling of the brick tabloid B following the rule described above.

For each T' € T, we define the weight of such combinatorial object to be the product
of all ’s, y’s, £1’s, and the powers of p and ¢, then [n], ,!¢(pn,) is the weighted sum

of all possible objects. For instance, the weight of the object given in Figure 5.1 is

$5y2q51p40-

Now we define a mapping I : T,, — 7T, as follows. Given a filled, labeled brick
tabloid O = (B, 0, L) € T,, we read the cells of B from left to right, looking for the

first cell ¢ for which either
(A) cell ¢ is in the middle of some brick b; and is labeled with —1, or

(B) cell ¢ is at the end of brick b;, cell ¢+ 1 immediately to the right of it starts a

new brick b;,1, and there is a decrease between o, and o.4;.

If we are in case (A), then we define I(O) to be the filled, labeled brick tabloid
obtained from O by breaking the brick b; that contains cell ¢ into two bricks b; and b
where b} contains the cells of b; up to and including the cell ¢ while b/ is the remaining
cells of b;. In addition, we change the labeling of cell ¢ from —1 to 1. If we are in case
(B), then the image I(O) is obtained by combining the two bricks b; and b;;; and
change the label of cell ¢ from 1 to —1. For instance, the image of the brick tabloids
from Figure 5.1 under this involution is given in Figure 5.2 below.

We claim that the mapping I : 7,, — 7,, defined above is indeed an involution,

that is, I(1(O)) = O for all O € T,. To see this, let O € T, and suppose I(O) is
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xylxyl 1 [ xTal1 [alxTa 1] x][1]-1]1

"% %3 | ¢%O|[|a%e8 | % |8 || oB"| o [a%° | [|a™R%||| a%O| a?O|| | 4| ¢%°

31106 |53 [1(|{12(11(2]8 (14| 9|7 |4

Figure 5.2: The image of the filled, labeled brick tabloid from Figure 5.1.

the image of O under the mapping. If we are in case (A) where I(O) is obtained by
breaking a brick b; into two bricks b, and b at some internal cell ¢ which is labeled
with -1 in O. Then it is the case that in 7(O), cell ¢ is at the end of brick 0] and there
is a decrease between o. and o..1. Furthermore, there cannot be any cell £ where
k < ¢ that is labeled with -1 since otherwise, we would not use cell ¢ to define the
mapping. Hence, when we reapply the mapping to 1(O), we have to combine the
bricks 0} and b back into b; and revert the label of cell ¢ from 1 to -1. Suppose now
we are in case (B) where cell ¢ is at the end of brick b; with o, > .., and we combine
the two bricks b; and b;; Then it must be the case that there is no cell labeled -1
that comes before cell ¢ and that there is no decrease between any two consecutive
brick before brick b;. Thus, when we apply the mapping to /(O), we will have to split
the brick after cell c. In either case, we have I(I(O)) = O which shows that I is an
involution.

If neither case occurs, then we let 1(O) = O, a fixed point of this involution.
Let F;(7,) be the set of all fixed points under the involution /. An example of an
element of F;(7,) is depicted in Figure 5.3 below. If O = (B,0,L) € F;(7,) then
O cannot have any cell labeled —1, and there must be an increase between any two
consecutive bricks. This guarantees that within the first brick of any fixed point O,
the last cell is labeled with 1 while the non-terminating cells are labeled with zy. In

addition, all the bricks of O other than the first one have their last cell labeled with 1
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while the non-terminating cells are labeled with x. Thus, if O = (B, 0, £) then the
power of z is des(o), while the power of y counts the number of initial descent in o.
Furthermore, the total powers of ¢ and p in the cells counts the number of inversion

and co-inversion of o, respectively.

ylxyl|xy|xylxy |1 | x| x| 11| x]|1]| x|1

q12p1 qu3 q5p6 q4p6 q2p7 q0p8 q6p1 q5p1 q0p5 q1p3 q3p0 q1p1 q1p0 quO

13110 6 | 5 | 3 |1 ||{12(11 (2|18 |[14]|7 [|9 |4

Figure 5.3: A fixed point of the involution I.

Thus, we have

[n]qu!0<pn7y) _ Z W(O) _ Z w(O) _ Z xdes(a)yindes(a)qinv(o')pcoinv(a)’

0€eThn OE.F[(%) 0ESh

as desired.
To complete the proof and obtain the required generating function, we then

use the relationship between p,, , and e, given in (1.5), as follows.

E " es(o), indes(o) inv(o), coinv(o S n
[1]p.q! Y gles(o)yindes(o) i) peoinv(e) - — Ny, )
n>1 VP 5eg, n=0

= 0 (Z pn,utn>
n>1

= 0 > s (1) (n)e,t”
a T+ 3oy en(—0)"
> onst (F1)" v (n)0 (e )t

RS SR T T




n>1
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The numerator of (5.2) then becomes

—2

3

(3)¢n
S me ) = 300 ((my)”‘1 = (ay)i(e - 1)n—2—k>

1 []p.q!

gt ((mn_l _ ’Exy)”‘l —(z— 1)"—1)

zy — (v —1)

=0

vy —w+1 L [7]p.q!

1 1\ Wy ¢ 1z - 1)
B ry—x+1 Z ((1 y) [n]p,q! - (I - 1)[”]17,11!

((zy)* — 2™y + (@ — 1))

n>1
1 Yy — 1 txy 1 t(z—1)
a:y—x+1( Yy (ep’q )+x—1(ep’q )
(=D — (el — 1) +y(ee ) — 1) .
ylr —1)(zy —x 4+ 1) ’ '
The denominator of (5.2) gives
n q(g)tn n—1
L+ Oe)(—t)" = 1-Y_ Sz —1)
1 () (t(z — 1))
Ly
Tr— 1 nz]_ [n]paq'
]' t(x—1
= 1-— (e = 1)
T — eﬁ,(g_l)
= — 5.4
— (5.4)

The statement of the theorem thus follows shortly from (5.3) and (5.4). O
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5.2 Generating function for the number of initial

and final descents

The main goal of this section is to prove the following result of Theorem 23.

" es(o), indes(o indes(o) inv(o), coinv(oc
Z[]lzxd()yd()zfd()q()p (o)
n>2 Npg: oE€Sh

=G(z,y,2,t) + Alz,y, 2,t) — (B(z,y, 2,t) — C(x,y, z,t) — D(z,y,2,t))

where

eV — pyzt — 1
Alz,y, 2 t) = 22 9277

TYZ
—1)(e™ — zyt — 1
B(g@y,zﬂf) — (y )( y2y) y )’
ry(y — 2)(xy —x +1)
z—1)(e* —xzt — 1
C("T7 y’ Z7t) - ( )( p7q >7

xz(y —2)(zz —x + 1)
t(z—1)
e —tlx—1)—1
D t) = .
(,9,21) (z—1)(azy —x+1)(zz —x+1)
F(z,y,t)F(x,z,t)

ya(x = D(ay — 2+ D(zz — 2+ Dz —epg ")

for

G(z,y,z,t) =

Fa,y.t) = (y = (@ — ety +yey™ — (zy — o +1).

q p,q

To this end, we shall use the same ring homomorphism 6 : A — Q[z] from the

proof of Theorem 22 given by ¢(ep) = 1 and ¢(e,) = (?nl}):q:l (v — 1)n—1q(g) for n > 1.

However, unlike the case of Theorem 22 where we weight the brick tabloids only by

the length of their first bricks, we now define the two weighting functions o and ay
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on the first and last brick of every brick tabloid respectively by

R D (7 N s Vi

ai(n) = ) . and
as(n) = (z2)" ' = S0 (wz)k (v — 1) 2k
() il

Observe that for the first and last bricks, we also have the following results:

b1> b1—2
(b)) = ((wy>b1—1 DN 1>b1-2-k> - and

[bl]p q' 0
b boeay—2
—1)becn—1 ( £<2>‘)) 2(X)
V(bg()\)>0(eb£ N ) — ( ) q (wz)bg(x)*l _ Z (xz)k(x . 1)17/3@)*2*76
. [be(n]p.q! P

Given a brick tabloid B = (by, ..., byy)) € By, x with £(X) > 2, the weight w(B)
under oy and o is then given by wa, a,(B) = a1(b1)aa(beyy). The new basis P4,

..... a

defined by Mendes, Remmel, and Riehl in (1.8) now becomes

Pnjar,ar = Z (_1)n7£(/\)wa1,012 (Bn,k)e/\'
AFn;E(A)>2

Similar to the argument of the previous section, we will start our proof by applying

the homomorphism ¢ to [n], ¢!Pn:as.a, to obtain the following result.
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[M]p.g!e(Priar,az) = [M]p,q! Z Way a5 (Br,x) (ex)

AFn;(A)>2
)
= [n]pﬂ! Z Z War,an (B) H (P(ebi)
)\Fn;é()\)ZZ BZ(bl ..... bg(/\))EBny)\ =1

= [n]pq! > (—1)" " Ma (br)as(bey))

AFN(A) 22 B=(b1,...,bg (1)) EBn,A

) bi—1 bi—1
(=1 (z — 1)
- H [bi]p q!
=1 ’

> 2 {bl..ébg(x)]m L (=0

AFN(A)>2 B=(b1,...,bg(x)) EBn,A

b1—2
X ((ﬂﬁy)"l‘1 = (ay)(x - 1)“‘“)

k=0
be()\)—Q

x| (@)™ = N ()@ - 1)) L (55)

k=0

The combinatorial interpretation for the right hand side of (5.5) can be obtained
from a similar manner to that of (5.1). First, we take a partition A = (A, Aa..., Agr)) F
n such that £(\) > 2 and pick a brick tabloid B = (b1, b, ..., byy)) of shape n and
type A. Observe that the condition that ¢(\) > 2 is quite important in this proof and
will greatly affect our analysis for the fixed points. This fact will become more evident
in the later part of this proof. We then fill the cells of B with a permutation o € S,
such that o has descending runs of lengths b;. ..., by») and also fill in each cell ¢ of
B with ¢%p” where a; counts the number of cells to the right of cell 7 which are
filled with number smaller than o;, and ; counts those that are larger than ;. By

} qZ (%) in (5.5). The terms Hf(:)é)*l(w— )bt

p.q

Lemma 4, this is counted by [bl ooy
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correspond to the labeling of the middle bricks by, ..., byy)-1 in B with x and 1.
The term (zy)" ' — S0 2 (2y)*(z — 1) 2% corresponds to the labeling of the first
bricks where we can use one of the two schemes described in the above section. The
same argument holds for the labeling of the last brick by(y), where we simply replace y
with 2 to obtain the factor of (xz)b» =1 — Z@f_z(a:z)k(m — 1)l =2k,

Thus, we obtain a configuration M = (B, o, L) where B is a brick tabloid of
shape n and type A where ¢(B) > 2, 0 € S, is the permutation used to fill in the cells
of B, and L keeps track of the z,v, z, and 1 labels of B. We let M,, be the set of all
possible configurations M created under this process. For each M € M,,, we let the

weight w(M) to be the product of all the z,y, z, and —1 labels of M. Therefore, the

identity in (5.5) now becomes

[1]p.a!0(Pricr.as) = Y w(O). (5.6)

OeM,

Again, the set M,, contains of all objects (B, o, £) with both positive and negative
weight. To eliminate the elements with a negative weight, we shall again apply an
involution I" : M,, = M,,. To be specific, we will modify the involution given in the
previous section, as follows. Given a filled, labeled brick tabloid O = (B, 0, L) € M,,,

we read the cells of B from left to right, looking for the first cell ¢ for which either
(A) cell ¢ is in the middle of some brick b; and is labeled with —1, or

(B) cell ¢ is at the end of brick b;, cell ¢+ 1 immediately to the right of it starts a
new brick b;;1, there is a decrease between o, and o1, and the brick tabloid B

has more than two bricks within.

In case (A), we break the brick b; that contains cell ¢ into two bricks ¢ and b/
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where b, contains the cells of b; up to and including the cell ¢ while b is the remaining
cells of b;. In addition, we change the labeling of cell ¢ from —1 to 1. In case (B),we
combine the two bricks b; and b;;; and change the label of cell ¢ from 1 to —1. Of
course, if neither case occurs then we simply have a fixed point for the involution. If
we let F7(M,,) be the set of all fixed points of the involution I’ then the identity in

(5.6) now gives

5l (Priaras) = Y w(O)= D w(O).

OeM,, O€eF(My)

However, unlike before, 3= 7/ (rq,) W(O) # e, gdes(o)qindes(o) ginv(a)ycoinv(o),
The new restriction in case (B) introduces a sets of configurations of M,, where we
are unable to combine the bricks as doing so will reduce the number of bricks in B to
below the minimum requirement of two, which then causes the co-domain of I’ to no
longer be M,,. Thus, we now have two kinds of fixed points under this involution I’.

The first kind consists of all “regular" configurations (B, o, £) where B has either

(a.) at least three bricks with no cell labeled with —1 and there is an increase between

every two consecutive bricks in B, or

(b.) two bricks with no cell labeled —1 but there is an increase between the last cell

of b; and the first cell of b,.

In either case, we can see that, for the corresponding permutation o, all the initial
descents of ¢ are labeled with xy, all the final descents in ¢ are labeled with xz, and

all the other descents are labeled with x. The total weight of these objects corresponds
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to the term

Z mdes(a)yindes(a) Zﬁndes(a) qinv(a)pcoinv(a)

0ESH, n>2
in the desired generating function. Figure 5.4 below gives an example of this kind of

fixed points.

XY\ Xy [ Xy | xy|xy |1 | X | x| 1 |X2|XZ|xz |xz |1

q12p1 q9p3 q5p6 q4p6 q2p7 q0p8 q6p1 q5p1 q0p5 q4p0 q3p0 q2p0 q1p0 qOPO

13110 6 | 5 | 3 |1 ||{12(11(2|14]| 9|8 | 7 |4

Figure 5.4: A “regular" fixed point of the involution I’.

The second kind of fixed point for this involution consists of all configurations
(B, 0, L) where B has exactly two bricks with last(b;) > first(by) but we are unable
to combine the bricks in order to maintain the minimum number of bricks being
at least two. Then it is easy to see that the permutation o used to fill in the cells
of B must be the reverse identity permutation of S,, namely o = (n,n —1,...,1).
Furthermore, since we are attempting to combine the bricks, it must be the case that
the first brick b; of B contains no —1 label. As a result, the first brick of B must be
labeled with 1 for its last cell and with zy for every non-terminal cell. Since we have
already used the last cell of brick b; to define the mapping, the labeling of the last
brick now becomes irrelevant. That is, we can label the last brick using any term from
(z2)P2~1 = 2% 2(22)*(x — 1)727%. The numbers of inversions and co-inversions in

n

this fixed point are given by q(2> p°. Therefore, if we let k be the length of the first
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brick, then the total weight of these new objects is given by

S alE) () (() -3 ) 1))
B O e  f Lo
_’;q( ) (zy)* <(xz) ¢ e )
= q(g) < <1 — m_;m) k;l (xy)k_l(:pz)"_k_l
1 = . e
F oy e )
_ o) (=D (@) = ()" (zy)" ! — (x — 1)1
1 ( (y—2)(xz —x+1) +(xz—x+1)(:cy—x+1))
—® ( (y=D(y)" ' (=D(x)"" (x — 1) )
(y—2)zy—ax+1) (W—2)(zz—x+1) (ey—zx+1)(zz—ax+1))

In terms of the number of inversions, co-inversions, descents, initial descents,
and final descents, the correct weight corresponding to the reverse identity permutation

is (a:yz)"_lq@). Hence,

[n]p,qm(pn;ahaz)

_ Z xdes(a) yindes(a) Zﬁndes(o) qinv(a)pcoinv(a) - (l,yz)nflq(g)

0ESn, n>2

D (Dt e (o 1y
((y > :

(3
ta —2)(zy—x2+4+1) (y—2)(zz—24+1) (zz—z+1)(zy—2x+1)
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The generating function thus becomes

Z t" Z mdes(a)yindes(a) Zﬁndes(a)qinv(a)pcoinv(a)

|
>2 [n]pvq' 0ESn, n>2

_ n 1 q(g)(xy2t>n _ (y — q xyt
= 2 Vimanes)" + zyz 4 Z [n] ! zy(y — 2)( xy —r+1 Z

n>2

N (z—1) Zq a:zt

xz(y —2)(rz —x + 1

1 q<><t< — 1)
+ Ny —2 50 Z — (5.7)

(x —1)(zz —x+

Each term in the right hand side of (5.7) then gives

o Z e niyqzt ey _xzyzzt -1 Aoy, 2.1, 5.9
(y_ 1) q xyt (y—l)( xyt—xyt—l)
ry(y —2)(zy — v +1 Z Coayly—2)(zy —a+1) = By, 1),
(5.9)
(z—1) q(g)(xzt)” ~(y—=1)(e;, v —xat — 1)
xz(y — 2)(rz —x + 1) nZZQ g x2(y— Z)(xz ) =C(x,y,2,1),
(5.10)
! a?(t(x — 1)
(x—=1)(zz—x+1)(azy —ax+1) ; []p.q!
B 0D _pz—1)—1
S (r—D(ey—z+D(zz—x+1) = D(z,y,2,t),
(5.11)
S b = (ot CU ") (S (" affen)”)

n>2 (Priase )t 143 (=1)"0(en) ()"

(5.12)



173

Similar to (5.4), the denominator of (5.12) becomes

r— et(:vfl)
L+ Y (1) 0(en)(—t)" = —21—. (5.13)

rz—1
n>1

The first component of the numerator in (5.12) becomes

> q(’z’)ﬂ; ( R 2 et e 1)n—1)

zy—x+1

y—1 q) (ayt)" 1 qB)(t(a
ETErET D S vy e D
— y——l eyt _ 1
B R T A R ey vy
y—1 oyt 1 tHa—1) 1
yley—z+1) P (z—1)(ry —x+1) P9 y(r —1)
_ (=D - Degy + yepy ) — (xy —x +1)
y(r —1)(zy — v +1)
_ F(z,y,1)
y(r —1)(zy —x +1)

(epq = 1)

(5.14)

By similar computation, the second component of the numerator of (5.12) becomes

(z = 1)(z — 1)er? + zepy ) — (22— + 1)
2(x—1)(xz—z+1)
F(x,z,1t)

- 2(x — 1) (rz — 2z +1) (5.15)

D (=1 ag(n)f(e)t" =

n>1

Then we combine the results from (5.12), (5.13), (5.14), and (5.15) to obtain
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w o (s an(m)f(en)t") (51 (=1)" aa(n)0(en)t")
; )t = L3 s (=1)m0(en) (1)
F(x,y,t)F(x,z,t)
yz(z — 1)(ay — 2z + 1)(xz — x + 1) (z — etl==1)
= G(z,y,2,1t). (5.16)

Lastly, we put the results from (5.8), (5.9), (5.10), (5.11), and (5.16) together
to complete the proof for Theorem 23. n
Finally, we notice that the same machinery presented in this chapter can also be
applied to study the generation function for the number of initial and final descents in
alternating permutations. These results will appear in a subsequent paper by Remmel

and the dissertation author.
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