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A Bayesian approach to mitigation of publication bias

Maime Guan and Joachim Vandekerckhove†
University of California, Irvine

Abstract
The reliability of published research findings in psychology has been a topic
of rising concern. Publication bias, or treating positive findings differently
from negative findings, is a contributing factor to this “crisis of confidence,”
in that it likely inflates the number of false positive effects in the litera-
ture. We demonstrate a Bayesian model averaging approach that takes into
account the possibility of publication bias and allows for a better estimate
of true underlying effect size. Accounting for the possibility of bias leads
to a more conservative interpretation of published studies as well as meta-
analyses. We provide mathematical details of the method and examples.

Introduction

It is reasonably well established that publication bias—a differential publishing rate
between positive and negative results—permeates the scientific literature (Franco, Malhotra,
& Simonovits, 2014). Some of the strongest such claims are made by Ioannidis (2005), who
famously concluded that “most claimed research findings are false” (p. 696). Decades earlier,
Rosenthal (1979) had pointed out the theoretical possibility that all research findings are
false, and that file drawers around the world conceal the 95% of studies whose luck of the
draw did not lead to publication. The prevalence of publication bias has been a growing
concern in psychology, especially in recent years, and is often mentioned as one of the
causes of the “crisis of confidence” (Pashler & Wagenmakers, 2012). As Young, Ioannidis,
and Al–Ubaydli (2008) point out, “the small proportion of results chosen for publication
are unrepresentative of scientists’ repeated samplings of the real world” (p. 1418) It is no
wonder, then, that successful replication attempts are scarce (e.g., Francis, 2012a).

The favorable results preferred by systemic publication bias are often defined by
statistical significance. Results are said to be ‘significant’ if the probability p of observing
data that are at least as extreme as the observed is smaller than some criterion α if the null
hypothesis is true. The conventional criterion (for psychological scientists) in null hypothesis
significance testing (NHST), α = .05, sets a convenient bar for consideration by researchers

JV was supported by NSF grant #1230118 from the Methods, Measurements, and Statistics panel
and John Templeton Foundation grant #48192. MG was supported by NSF-GRFP grant #DGE-1321846.
†Corresponding author.
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and reviewers alike. However, the presence of an arbitrary threshold may contribute to
the number of positive findings reported in the literature. Masicampo and Lalande (2012)
surveyed the distributions of p-values in three prominent psychological journals and found
that p-values were conspicuously more common than expected just below α.

To tackle this important and widespread issue of publication bias, the field can en-
deavor to prevent future cases, as well as take action to alleviate the current state of
psychological science. Our focus is on the latter goal of mitigation, by postulating a set of
possible bias mechanisms and using these to improve the estimation of effect sizes in the
presumed presence of publication bias.

The idea of publication bias detection is not new—there exist tests for it in the
literature (e.g., the test for “excess significance” based on Ioannidis & Trikalinos, 2007),
and these have been applied on numerous occasions (e.g., Francis, 2012a, 2012b, 2012c).
Neither are we the first to propose behavioral models of the publication process (Givens,
Smith, & Tweedie, 1997; Greenwald, 1975; Hedges, 1992), and there are several recently-
developed approaches to deal with publication bias.

One such new method, based on the p-curve, is due to Simonsohn, Nelson, and Sim-
mons (2014). The p-curve is the distribution of statistically significant p-values for a set of
independent findings. The exact shape of the p-curve is used to determine the evidential
value of that particular set of findings, or the set’s ability to rule out selective reporting as
the sole explanation of those findings. The central intuition is that if the null hypothesis
is true,1 p-curves are expected to be uniform, but if the null is false, only right-skewed
p-curves with more low than high significant p-values are diagnostic of evidential values.
The p-curve method assesses if the observed p distribution is significantly right-skewed.
Inference from p-curve is analogous to null hypothesis significance testing; a right-skewed
p-curve does not imply all studies have evidential value, similar to how significance does
not imply all observations were influenced by the experimental manipulation. Therefore,
p-curve can only determine whether selective reporting can be ruled out as an explanation
for a set of significant findings and cannot make conclusions about estimates of the true
underlying population effect size.

Stanley and Doucouliagos (2013) propose another approach consisting of a set of meta-
regression approximations that are designed to be a practical solution to the publication bias
issue. This method is developed from Taylor polynomial approximations to the conditional
mean of a truncated distribution, because results are selected to be statistically significant
in the desirable direction. The observed effects will consequently depend on the population’s
true effect, plus another term that reflects selection bias. A critical limitation of this method
is that it requires a relatively large number of estimates on the same empirical phenomenon
because they are based on regression analysis.

Lastly, p-uniform (van Assen, van Aert, & Wicherts, in press) is again based on the
distribution of p-values conditional on a certain population effect size µ. For example,
if the true population effect size is zero, then the conditional p-value distribution should
be close to the uniform distribution. Therefore, p-uniform tests the null hypothesis by

1That is, if the effect size is truly zero, and all the ancillary assumptions of the significance test are met.
It is important to keep in mind that there are many ways for a null hypothesis to be violated. In the case
of a t test, p is not uniformly distributed if there is heteroskedasticity or if the conditional distributions are
not normal. The p-curve is also not uniform in the case of compund hypotheses such as a one-tailed t test.
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testing whether the observed conditional p-value distribution deviates from the uniform.
This method performs three tasks simultaneously: (a) the testing of publication bias; (b)
effect size estimation, and (c) the testing of the null hypothesis of no effect. p-uniform
only considers studies that report statistically significant results, so those containing non-
significant effects are discarded. p-uniform makes two assumptions: (1) homogeneity of
population effect size across all studies and (2) that all studies with statistically significant
results are equally likely to be published and included in the meta-analysis. According to
the authors, p-uniform is the first method to possess the aforementioned three qualities,
without making sophisticated assumptions or choices.

Our proposed Bayesian mitigation method encompasses these characteristics as well,
in addition to being a Bayesian approach to detect and mitigate the effects of publication
bias in the field. We believe we are the first to attempt mitigation of publication bias by—
as we will demonstrate—averaging over a set of plausible behavioral models. Our interest
is foremost in recovering the true underlying effect size as accurately as possible, and not
necessarily to decide whether a particular field exhibits more or less publication bias.

Behavioral models for publication bias

We postulate a set of four generative behavioral models for the publication process.
While this set is not exhaustive, we believe it covers a reasonably large range of possible
processes. The first model is a no-bias model under which all results, regardless of statistical
significance, are published. This would be the optimal scenario for the scientific literature,
but it is unlikely to hold in all cases. The second model is an extreme-bias model in which
nonsignificant results are never published. The presence of occasional nonsignificant results
in the literature implies that this model cannot hold in all cases either. The third model is
one inspired by Greenwald (1975), in which nonsignificant results are published with some
constant (but unknown) probability. Finally, the fourth model is one inspired by Givens
et al. (1997), in which the publication probability is an exponentially decreasing function
of the p-value if p > α (i.e., it diminishes as the observed p-value departs from α = .05).2

For each of the four models, we consider two possible states of nature: either (a) there
exists a true effect of some unknown magnitude; or (b) the true effect size is 0. While the
behavioral processes are conveniently described through a censoring function that operates
on the p-value, the state-of-nature component of these models depends on the specific
experiment to which our method is applied (i.e., it depends on whether the experiment is
comparing two means with a t or a z test, or interactions with an F or a χ2 test, etc.).
Each of these models has, as a parameter, the size of the experimental effect, and fitting
these models to the observed data (i.e., the reported effect size) will yield a new estimate
of the effect size conditional on the censoring process.

The general formulation of the likelihood function associated with these models is:

p
(
δobs

∣∣∣ ηtrue,M,Θ
)
∝ p

(
δobs

∣∣∣ ηtrue)CM (
δobs,Θ

)
,

where δobs is an observed test statistic, ηtrue is the true effect size (which may be 0 for some
2There is a fifth possible model, in which very high p-values are also more likely to be published, because

they are erroneously seen as providing evidence for the null. We describe a model with this property in the
Discussion but do not add it to our set of behavioral models here.
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Figure 1 . Predictions made by the eight proposed models. Left column: the censoring
functions for each of the four biasing processes, with on the horizontal axis the observed p-
value and on the vertical axis the probability of publication Ppub. Middle and right column:
the resulting truncated central (center) and noncentral (right) t distributions after applying
the censoring functions. The top row is the no-bias model, where the resulting t distributions
are simply the central and noncentral t distributions untouched. For the remaining three
rows, the t distributions are truncated to the region of significance or downweighted in the
complementary region, as determined by the corresponding biasing functions. The figure
illustrates that each behavioral model generates t distributions with a unique shape.
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models), and CM is a model-specific censoring function that describes the probability of an
observation of size δobs being published, given the parameters Θ of the censoring process.
Figure 1 summarizes the eight models, and a comprehensive mathematical treatment of the
models is given in Appendix A. Models of this form are known in the statistical literature
as selection models (e.g., Bayarri & DeGroot, 1987, 1991, Iyengar & Greenhouse, 1988).

Bayesian model averaging

A critical issue is that, while we may define any number of behavioral processes that
censor the published literature, we do not know which process, if any, was in play for a
given report. However, there exist standard statistical tools for dealing with the unknown.
The most common such tool is marginalizing over (a.k.a., “integrating out”) an unknown:

p
(
ηtrue

∣∣∣ δobs) =
∑
p
(
ηtrue

∣∣∣M, δobs
)
P
(
M
∣∣∣ δobs) ,

where p
(
ηtrue

∣∣∣M, δobs
)
is the posterior distribution of the effect size under a censoring pro-

cess M and given the observed test statistic δobs. P
(
M
∣∣∣ δobs) is the probability that M

happened given the observed data. Crucially, we treat the identity of the censoring process
M as merely another unknown and compute the likelihood of each possible value for ηtrue
using the probability of each model’s truth as a weight (equivalently, we can compute the
posterior distribution of a mitigated test statistic δmit as a simple transformation of ηtrue).
Computing those weights—the posterior probabilities—for each model relies on the same
principle, combined with Bayes’ theorem: P

(
M
∣∣∣ δobs) = p

(
δobs

∣∣∣M)
P (M) /p

(
δobs

)
.

p
(
δobs

)
, in turn, is obtained through marginalization: p

(
δobs

)
=
∑
p
(
δobs

∣∣∣M)
P (M).

Taken together, this yields the posterior distribution of δmit given δobs, which we may
then use to make inferences about the existence or non-existence of an effect. In particular,
we can now quantify the degree to which the observation δobs changes how likely we consider
it that the true effect size is 0. The degree of change from prior to posterior information is
known as the Bayes factor, and integrating over models in this way is commonly referred
to as Bayesian model averaging (for an introduction, see Hoeting, Madigan, Raftery, &
Volinsky, 1999).

Finally, in the case of multiple independent studies s = 1, . . . , S, and hence a set
of multiple observed test statistics

{
δobss

}S
s=1

, we can compute an aggregated posterior

distribution p
(
δmit

∣∣∣∣ {δobss }S
s=1

)
. The details of this computation are in Appendix B.

Simulation studies

To demonstrate the effects of statistical mitigation, we performed a series of Monte
Carlo studies, of which we report four. All studies were based on 500 simulations of each
case.

(1) Single result re-analysis. In this Monte Carlo study, we simulated a single
empirical result regarding some hypothetical phenomenon of a given effect size. In the
simulation, the true effect size ranged from 0 (no effect) to 0.3 (a large effect) in increments of
0.05. The result of a one-sided paired t test (for positive effects) was then either “published”
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Figure 2 . Recovery of the mitigation method (squares) for a single paper, evaluated under
three different bias conditions, with three different sample sizes, and a range of effect sizes.
The classical effect size measure Hedges’ g (diamonds) is given for comparison. Vertical
lines extend one standard deviation in each direction. In almost all scenarios, the mitigation
method either outperforms the classical method, or recovers the same effect size.

or not, with the publication decision based on one of three regimes: Either the finding was
subjected to no publication bias at all (“no bias”), or was subjected to extreme publication
bias (“only bias”; only significant effects published), or to a combination of all four censoring
functions (with equal probability; “mixture”). This implies that oftentimes no result was
published, so there was nothing to compute. In the cases where a result was published,
we applied our mitigation method to improve the estimate of the underlying effect size. In
addition to the three biasing regimes, we also manipulated the simulated sample size n,
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which was either small (n = 20), medium (n = 60), or large (n = 150). These values were
inspired by Marszalek, Barber, Kohlhart, and Holmes (2011)’s review of typical sample sizes
in experimental psychology.

Each panel in Figure 2 represents one regime × sample size combination, with the
horizontal axis indicating the true value of the effect size and the vertical axis representing
the estimated effect size. Squares indicate our mitigated effect size, diamonds indicate the
classical effect size measure Hedges’ g (also computed in each case on the basis of a single
“published” effect size). Unbiased estimates fall on the indicated diagonal.

In almost all cases, the mitigated effect size is closer to the true effect size than the
classical estimator. As the degree of publication bias increases, both measures perform
worse, but the effect of publication bias on the classical estimator is dramatic while the
effect on the new estimator is comparatively modest. Both methods converge to the true
value as the sample size n in the simulated papers increases,3 and in the no-bias scenario
Hedges’ g is exact (on average).

(2) Meta-analysis. In the second Monte Carlo study, we simulated a situation in
which ten independent studies were conducted on the same hypothetical phenomenon of a
given effect size. Again, our effect sizes ranged from 0 to 0.3 in increments of 0.05. For
each of the ten studies, the result of a one-sided paired t test was either published or not,
under the same three regimes as above, so that some proportion of the results was visible
in the literature. We also again manipulated the simulated sample size n, which was either
small (n = 20), medium (n = 60), or large (n = 150), and which was the same for all
studies in each set. The “unpublished” results were discarded, and meta-analytic effect
sizes computed, either using our new method, or using the aggregated Hedges’ g.

Figure 3 is set up in the same way as Figure 2, with each panel representing one regime
× sample size combination; horizontal axes indicating the true value of the effect size and
vertical axes representing the estimated effect size; Squares indicate our mitigated effect
size and diamonds indicate the classical aggregated effect size Hedges’ g (also computed
only on the basis of the “published” effect sizes).

It is again true that in almost all cases, the mitigated effect size is closer to the
true effect size, and that the effect of increasing publication bias is greater for the classical
estimator than for the new estimator.

(3,4) Meta-analysis with different priors. The final two Monte Carlo studies
served to illustrate the sensitivity of our analyses to the prior distribution over models.
For this purpose, we repeated the meta-analytical design of the second Monte Carlo study
with two alternative prior distributions. Our default prior was (20, 20, 1, 1, 1, 1, 1, 1) /46
(see Appendix B for a rationale), but in these simulations we changed it first to
(20, 0, 1, 0, 1, 0, 1, 0) /23, eliminating the null hypothesis, and then to (0, 0, 0, 0, 1, 1, 1, 1) /4,
eliminating all but the two more nuanced biasing processes. The qualitative effect of these
changes on the recovery performance was negligible, and we do not discuss them here.

3For large effect sizes and large sample sizes, the numerical integration required to compute the mitigated
effect size becomes somewhat time-consuming, so we omit those conditions from the studies reported in
Figures 2 and 3 while we work to make the software more efficient.
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Figure 3 . Recovery of the mitigation method (squares) for a simulated literature of 10
papers, of which only a biased subset is visible to the method, evaluated under three different
bias conditions, with three different sample sizes, and a range of effect sizes. The classical
effect size measure Hedges’ g (diamonds) is given for comparison. In almost all scenarios,
the mitigation method either outperforms the classical method, or recovers the same effect
size.

Example applications

Wishful seeing. We now consider a single test within a published paper. Balcetis
and Dunning (2010) reported evidence for “wishful seeing,” a phenomenon in which desirable
objects are perceived to be physically closer than other objects that are less desirable. This
effect, the authors suggest, serves the function of energizing the perceiver to engage in



MITIGATING PUBLICATION BIAS 9

1+ 1− 2+ 2− 3+ 3− 4+ 4−
0

0.1

0.2

0.3

0.4

0.5

0.6

model

p
ro
b
a
b
il
it
y

÷2.66

×1.92

÷1.37 ÷1.99

 

 

effect size g

d
e
n
si
ty

 

 

B = 0.63

−2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5prior

posterior

prior

posterior

Figure 4 . Model results for the “wishful seeing” example. Left panel: Prior and posterior
probabilities over models. Numbers in the horizontal axis labels indicate the model, + and
− indicate the states of nature (true effect vs. no true effect, resp.). Above the bars we
indicate the posterior ratio between the two states of nature within each biasing model.
For example, if we assume there is no bias at all (i.e., M1 is true), then we have 2.66
times more evidence for the effect than we do for the null, but if we assume bias is extreme
(i.e., M2 is true), then we have 1.92 times more evidence for the null than we do for the
effect. Right panel: Prior and posterior distributions over the true value of the effect size
Hedges’ g. Both distributions have point masses at g = 0 (i.e., a probability that the effect
size is exactly zero owing to the inclusion of the four no-effect models), which are displayed
as bars. The posterior distribution at 0 is lower than the prior, indicating that the data
support the effect slightly more than the null. Aggregated over all models, there is 1.59
times more evidence for the effect than there is for the null (1.59 = 1

0.63).

actions that lead to the goal of obtaining the desirable object. In one study, participants
were asked to position themselves at a certain distance relative to an object. The authors
hypothesized that participants would stand further from a desirable object (chocolates)
than from an undesirable one (feces), because desirable chocolate would be misperceived
as physically closer. In line with their prediction, the authors found a significant effect
on perceived distance depending on whether participants saw chocolates or feces (unpaired
t50 = 2.29, p = .026, Hedges’ g = 0.64).

Using only the reported t value and sample size, and making no assumptions beyond
those requisite for the t test and a prior on effect size Hedges’ g = t

√
(nf + nc)/(nfnc),

we are able to compute probabilities for each of the eight models (using formulas given in
Appendix B). These probabilities can then be used as weights to compute a new, mitigated
effect size (or, equivalently, t value) that takes into account the possibility and likelihood
of biasing mechanisms.

The result of this exercise is displayed in Figure 4. The left panel depicts prior (grey
bars; see Appendix B for a rationale of the choice of prior model probabilities) and posterior
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(black bars) probabilities of the eight models. The largest change in probability from prior
to posterior is seen in modelM2−: the extreme-bias model under the assumption that the
null hypothesis is true becomes almost 8 times more likely after taking into account the
data. ModelM1+, the model of no bias with the null hypothesis being false, received the
highest weight. The panel shows no compelling reason to prefer the two more complex
biasing processesM3 andM4.

The posterior distribution (black bars) quantifies what we know intuitively: a sig-
nificant t value results either from a true effect reported in an unbiased world, or no true
effect and an active biasing process. From the posterior distribution, we also learn that if
we assume there is no publication bias, then there is about 2.66 times as much evidence
for the alternative hypothesis as there is for the null (by comparing the two leftmost black
bars). If we assume there is extreme bias, there is about 1.92 times as much evidence for
the null as there is for the alternative (by comparing the next two black bars).

The right panel of Figure 4 shows the prior and posterior distributions of the effect
size parameter. Since half of the models under consideration predict an effect size of exactly
zero, the prior and posterior probabilities of this null hypothesis are shown as bars in the
figure. The panel shows that the data reported by Balcetis and Dunning (2010) do not
deliver convincing evidence regarding the effect. The probability that g = 0 is slightly
lower after observing the data than it was before (the Bayes factor B in favor of the null
hypothesis is 0.63).

In order to evaluate the sensitivity of our method to the prior assumptions, we re-
peated the analysis under three scenarios that differ in the prior. In alternative scenario 1,
we give prior weight only to M1. This is equivalent to a default Bayesian t-test using a
unit-information Bayes factor (as in Rouder, Speckman, Sun, Morey, & Iverson, 2009), and
yields a Bayes factor B = 2.81 against the null. In alternative scenario 2, we distribute prior
weight overM1 andM2. This leads to a very similar inference but with a spike-and-slab
prior on the effect size that has a spike at g = 0. Now B = 1.34 against the null. In
scenario 3, we consider only the models that allow for an effect size (M1+,M2+,M3+, and
M4+). Including the possibility of bias turns the balance of evidence: B = 0.96.

Our primary analysis described above allows for both true null effects and publication
bias, and there the evidence for the null was even stronger. It is clear from this example
that the outcome of revisiting a single empirical result depends to some extent on whether
or not we are willing to consider that the effect may be truly zero, and whether or not we
are willing to consider the possibility of a biased publication process. However, the analysis
as presented here (in Fig. 4) allows for nuanced conclusions to accommodate different prior
assumptions.

Meta-analysis: Depression. Using the statistical mitigation approach, we can
also mitigate the effects of publication bias in meta-analyses. In this section, we consider
Bolier et al.’s 2013 meta-analysis of the effectiveness of positive psychology interventions.
Bolier et al. focused on the effects of positive psychology interventions on subjective well-
being, psychological well-being, and depressive symptoms. We will focus on the effects on
depressive symptoms. The authors included a total of 14 studies that looked at positive
psychology interventions on depression. We extracted the focal statistics (z-values) directly
from Figure 4 in the original article, and used those z-values for our mitigation analysis.

The results are depicted in Figure 5. The left panel shows the prior and posterior
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Figure 5 . Results for the depression meta-analysis. Left panel: Prior and posterior proba-
bilities over models. The most weight (and largest shift) is seen in the models that suppose
constant or exponential bias, with true effect size zero. The extreme-bias model (M2) is
falsified by the presence of non-significant results. Within each biasing model, the posterior
probability of the null model is much higher than that of the effect model. Right panel:
Prior and posterior distributions over the true value of the test statistic z. The point mass
at z = 0 is approximately 62.2% higher under the posterior than under the prior. Given
that the prior point mass on z = 0 was 50% and the maximum shift is therefore by a factor
of 2, this indicates a sizeable shift in the weight of evidence towards the null value.

probabilities over models. We observe large increases in probability from prior to posterior
in both modelsM3− andM4−, the two more complex biasing models under the assumption
that the null hypothesis is true. In addition, modelM1− with no bias under the assumption
that the null is true also receives considerable weight: 8.48 times more than the no-bias
model with an effect (M1+). Results show next to no evidence in support of any model
that assumes the null hypothesis is false. The right panel shows the prior and posterior
probability distributions of the effect size parameter z. The large weight of the various
null-effect models is seen here in the increased posterior density at z = 0. The Bayes
factor in favor of the null hypothesis is 27.81, making the posterior probability of the null
approximately 96.5%.

Meta-analysis: Sleep quality. In this section, we consider another meta-analysis.
Casement and Swanson (2012) conducted a meta-analysis of imagery rehearsal therapy for
post-trauma nightmares; aggregating results from 9 papers. The original analysis evaluated
the effect of imagery rehearsal on three measures: nightmare frequency, sleep quality, and
posttraumatic stress. We will revisit the effect on sleep quality (as measured by the Pitts-
burgh Sleep Quality Index or PSQI). We obtained the focal statistics from each of the nine
individual studies listed in Table 2 (p. 571) of Casement and Swanson (2012).4

The Bayesian mitigation results of this meta-analysis are summarized in Figure 6.
4We thank Melynda Casement for kindly providing data pertaining to the meta-analysis.



MITIGATING PUBLICATION BIAS 12

1+ 1− 2+ 2− 3+ 3− 4+ 4−
0

0.2

0.4

0.6

0.8

1

model

p
ro
b
a
b
il
it
y

0.89

0.00 0.04 0.07

 

 

prior

posterior

effect size z

d
e
n
si
ty

 

 

B ≈ 0

−6 −4 −2 0 2
0

0.2

0.4

0.6

0.8

1

1.2
prior

posterior

Figure 6 . Results for the sleep quality meta-analysis. Left panel: Prior and posterior
probabilities over models. The exact posterior probabilities are printed. Right panel: Prior
and posterior distributions over the true value of z. The point mass at z = 0 is negligible
under the posterior, indicating a strong shift in the weight of evidence towards the hypothesis
that there is a non-zero effect.

From the left panel, it is clear that the most posterior weight is given toM1+, the model
under which there is no bias and the null hypothesis is false (i.e., there is an effect of
imagery rehearsal on sleep quality). The rest of the models receive negligible weight. In the
right panel, we show the prior and posterior distributions of the effect parameter measured
in terms of z values. It is evident here that the meta-analysis data from Casement and
Swanson (2012) indeed changes the information about the effect. The posterior mean z is
approximately 0.614, and the probability density at z = 0 is essentially zero—it is trillions
of times lower after observing the data than before (Bayes factor against the null: 7×1015).
Overall, our results show that after taking into account the possibility of various forms of
publication bias, this meta-analysis indicates that imagery rehearsal is indeed effective in
improving sleep quality.

Discussion

We have outlined a novel method for inference regarding published effects. Our
method is based on the assumption that there may be processes biasing the visibility of
empirical studies, and relies on probability calculus to perform inference conditional on this
possibility. The method has many desirable qualities that resonate well with intuitions re-
searchers have about science and statistics. All that is required to apply the method is the
published effect sizes. Sets of studies that consist exclusively of just-significant findings—
which indicates that bias is likely, and non-significant findings are disproportionally hidden
from the literature—are rendered inconclusive or indicative of only very small effects, while
sets that contain effects of various sizes (including non-significant ones) provide more evi-
dence for relatively larger effects. Unlike classical null hypothesis significance testing, our
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Bayesian method allows for the affirmation of the null hypothesis as well as its falsification,
in addition to allowing for the inclusion of prior information.

Throughout, we focus on the empirical literature on a topic as the population of in-
terest: For the purposes of effect size estimation across papers, all included studies should
report on the same effect so that our mitigated effect size has a clear interpretation. How-
ever, we do not see the model probabilities as parameters to be estimated for any population.
Instead, we think of the entire biasing process as an inhomogeneous mixture of various cen-
soring mechanisms. Any given paper, under a given set of fleeting circumstances, may fit
the assumptions of any model or some combination of them.

There are some potential caveats with the approach we present here. First, there
is the issue that assuming the possibility of publication bias makes the analysis overly
conservative in the case where publication bias does not occur. However, we believe that
in most common use cases, this is not a concern as we know publication bias to be a
widespread issue. More generally, our method requires the explicit inclusion of domain
knowledge both in the formulation of the biasing processes, their relative probabilities, and
the prior distribution of the effect sizes. We believe the assumptions we have chosen are (a)
both sensible and in line with what is known of the field and (b) superior to the assumption
of no publication bias that is implicit in all classical analyses.

Second, the censoring processes that we propose all assume that significant results are
always published. Clearly this is not the case—papers submitted for publication are often
rejected even bearing statistically significant results. However, we do not believe that there
exists any systematic suppression of results because they were statistically significant to such
an extent that it is skewing the literature at a scale comparable to the bias against the null.
Furthermore, it is reasonable to assume that those papers with significant results that are
not published often have issues unrelated to the outcome, for example with the experimental
design (which would preclude use in meta-analysis in its own right). Finally, if indeed a
nonignorable fraction of significant results goes unpublished, randomly, even though the
applied methods are sound, then a valid interpretation of our censoring functions is simply
that they describe the probability of publication of a nonsignificant result relative to the
probability of publication of a significant result, with as only restriction that the former is
no greater than the latter, which we consider a very weak assumption.

Third, there may be other biasing mechanisms in addition to the ones we propose
here. However, we believe that the set of processes we consider spans a reasonably large
range of possible mechanisms—that is, we struggle to think of biasing mechanisms that
will yield fundamentally different censoring functions. One possible exception is a practice
known as “hypothesizing after the results are known” (HARKing), which may in fact cause
an overrepresentation of results that are clearly nonsignificant (e.g., p > .50), because these
results are declared non-pivotal after they are known, and are then reported parenthetically
in a paper with a different focal test. We decided not to include a HARKing model here
because such a model would apply to a different set of observations (such as “non-pivotal
statistics,” which are published statistics that are not used to support inference regarding
a new finding or that are otherwise irrelevant for the main narrative of a paper; e.g.,
manipulation checks and failed secondary manipulations). A possible HARKing model is
formally very similar toM4, but predicts that the probability of publishing nonsignificant
findings increases as e−γ(1−p). Another biasing mechanism for which we do not currently



MITIGATING PUBLICATION BIAS 14

account is academic fraud.
Fourth, our meta-analyses as we have implemented them here make the assumption

of independence between studies. In practice, this assumption may be wrong and biases
may tend to be correlated (positively in the case of labs repeatedly publishing on the same
topic, but negatively in the case of adversarial replication attempts).5 Our Bayesian model
averaging framework allows us to account for correlated bias in the same way we deal with
other unknowns: marginalization over the unknown quantity. We provide the equations for
such an exercise in Appendix B, but leave the implementation of this analysis aside until a
computationally efficient treatment for this case is developed.

Finally, we wish to emphasize again the subjectivity of some of the assumptions we
have made, and the fact that reasonable people can reasonably disagree in the case of
differing prior assumptions. The method that we have outlined allows for the inclusion of a
wide variety of prior assumptions, and it may be improved by further psychological research
in the behavioral processes of publication bias.
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Appendix A
Behavioral models of publication bias

Here we detail the behavioral models of publication bias that we employ to mitigate the
effects of bias on reported effect sizes, and we describe the details of the Bayesian inference
methods that we apply to these models. For convenience of exposition, we will focus on
unpaired t tests, but the method extends to other parametric tests based on p-values.

In the description of the models that follows, p (·) will indicate a likelihood function,
t (· | ν) will indicate the probability density function of a central t distribution with ν degrees
of freedom and t’ (· |x, ν) of the noncentral t distribution with noncentrality parameter x.
T (· | ν) and T ’ (· |x, ν) indicate their respective cumulative distribution functions. n1 and
n2 will be the sample sizes in two groups. δobs will indicate a test statistic (TS) obtained
from the sample. A ‘true’ effect size (ES) will be indicated ηtrue. The mitigated TS δmit is
our estimate of the true TS.

Throughout, it is important to note that, given a sample size and a design, any
TS uniquely maps to an ES. For example, for the unpaired t test, ηtrue = ϕδtrue with
ϕ =

√
n1+n2
n1n2

. Transformations for other inferential tests are well known (e.g., Ellis, 2010;
or succinctly in Footnote 4 of Verhagen & Wagenmakers, 2014). To define a prior for the
TS, we propose a unit information prior on the ES ηtrue: ηtrue ∼ N (0, 1). We can readily
transform this prior to the scale of the TS:

(
δtrue

∣∣M+
)
∼ N

(
0, ϕ2), where M+ indicates

any model under which the null hypothesis ηtrue = 0 is false. The prior might also be
generalized to

(
δtrue

∣∣M+
)
∼ N

(
ϕµ, ϕ2σ2), to either reduce the slightly assumptive nature

of the unit information prior or to incorporate genuine prior knowledge.
The available data are n1 and n2 and the observed TS δobs of at least one experiment.

Associated with δobs is an observed p-value pobs = 2 × T
(
−|δobs|

∣∣∣ ν). Below, we give the
likelihood functions associated with each of the four behavioral models of publication bias,
under each of the two states of nature (H0 false or true).

M1: A no-bias model

SupposeM1: There is no publication bias. The probability of publishing, Ppub, is 1.
CaseM1+: H0 false. p

(
δobs

∣∣∣M1+, η
true

)
= t’

(
δobs

∣∣∣ ηtrue, ν) , with true ES ηtrue.

CaseM1−: H0 true. p
(
δobs

∣∣∣M1−, η
true

)
= t

(
δobs

∣∣∣ ν) , with ν degrees of freedom.

M2: An extreme-bias model

Suppose M2: Publication bias is extreme—publication only happens if significance
is found. The probability of publishing, Ppub, is a step function of pobs:

Ppub
(
pobs

)
=
{

0 if pobs ≥ α
1 otherwise .

where pobs is a function of the observed TS δobs, as above, and α is conventionally set to
.05. Associated with α is the critical TS δcrit, which is the smallest TS (in absolute value)
to be considered significant at level α (i.e., any TS under −δcrit or above δcrit would be
considered statistically significant).
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Case M2+: H0 false.

p
(
δobs

∣∣∣M2+, η
true

)
=
{

0 if pobs ≥ α
1
B2
t’
(
δobs

∣∣∣ ηtrue, ν) otherwise ,

or the t’ distribution truncated to the significance region. Note that the denominator B2 can
be computed without the need for expensive numerical methods, using the direct calculation
of the cumulative noncentral t distribution T ’:

B2 =
∫−δcrit
−∞ t’

(
x
∣∣ ηtrue, ν) dx+

∫+∞
δcrit t’

(
x
∣∣ ηtrue, ν) dx

= T ’
(
−δcrit

∣∣ ηtrue, ν)+ 1− T ’
(
δcrit

∣∣ ηtrue, ν) .
Case M2−: H0 true.

p
(
δobs

∣∣∣M2−
)

=


0 if pobs ≥ α

t(δobs | ν)∫ −δcrit
−∞ t(x | ν)dx+

∫ +∞
δcrit

t(x | ν)dx
= 1

α t
(
δobs

∣∣∣ ν) otherwise ,

that is, the t distribution truncated to the region that yields statistical significance.

M3: A constant-bias model inspired by Greenwald

Greenwald (1975) proposed a model of the research-publication process in which a
number of parameters characterize the various steps of publishing in psychology, such as
the investigators’ probability of reporting research and the editors’ probability of publish-
ing manuscripts reporting significant or nonsignificant results. We simplify this model by
summarizing the probabilities in each step into one single constant probability of publishing
nonsignificant results.

Suppose M3: Publication occurs with certainty if a significant effect is found, but
also with some constant probability π if no significant effect is found. The probability of
publishing, Ppub, is

Ppub
(
pobs, π

)
=
{
π if pobs ≥ α
1 otherwise .

Case M3+: H0 false.

p
(
δobs

∣∣∣M3+, η
true, π

)
=

 π 1
B3
t’
(
δobs

∣∣∣ ηtrue, ν) if pobs ≥ α
1
B3
t’
(
δobs

∣∣∣ ηtrue, ν) otherwise
,

where 0 ≤ π ≤ 1 with prior π ∼ U (0, 1), and

B3 = π
∫ δcrit
−δcrit t’

(
x
∣∣ ηtrue, ν) dx+

∫+∞
δcrit t’

(
x
∣∣ ηtrue, ν) dx+

∫−δcrit
−∞ t’

(
x
∣∣ ηtrue, ν) dx

= 1− (1− π)
[
T ’
(
δcrit

∣∣ ηtrue, ν)− T ’ (−δcrit ∣∣ ηtrue, ν)] .
Case M3−: H0 true.

p
(
δobs

∣∣∣M3−, π
)

=

 π 1
A3
t
(
δobs

∣∣∣ ν) if pobs ≥ α
1
A3
t
(
δobs

∣∣∣ ν) otherwise
,

where A3 = π
∫ δcrit
−δcrit t (x | ν) dx+ 2

∫+∞
δcrit t (x | ν) dx = π (1− α) + α.
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M4: An exponential-bias model inspired by Givens

In Givens et al. (1997), another approach is introduced to estimate and adjust for
publication bias, by partitioning the unit interval into segments so that a p-value from any
given study falls into one of these regions. Each interval region is assigned a corresponding
probability of publication, with probabilities decreasing as the region departs from signifi-
cance. InM4, we capture this same concept with a probability of publishing that decreases
exponentially as a function of the difference between the observed p-value pobs and α. The
rate of exponential decay as pobs departs from α is determined by a strictly positive rate
parameter λ. A-priori, we suppose λ ∼ Exp (5).

Suppose M4: Publication occurs with certainty if a significant effect is found, but
also with some nonzero probability if no significant effect is found.

Ppub
(
pobs, λ

)
=
{
e−λ(pobs−α) if pobs ≥ α
1 otherwise

.

Case M4+: H0 false.

p
(
δobs

∣∣∣M4+, η
true, λ

)
=

 e−λ(pobs−α) 1
B4
t’
(
δobs

∣∣∣ ηtrue, ν) if pobs ≥ α
1
B4
t’
(
δobs

∣∣∣ ηtrue, ν) otherwise
,

where
B4 =

∫ δcrit
−δcrit e

−λ(p(x,ν)−α)t’
(
x
∣∣ ηtrue, ν) dx

+
∫+∞
δcrit t’

(
x
∣∣ ηtrue, ν) dx+

∫−δcrit
−∞ t’

(
x
∣∣ ηtrue, ν) dx

=
∫ δcrit
−δcrit e

−λ(p(x,ν)−α)t’
(
x
∣∣ ηtrue, ν) dx

+
[
1− T ’

(
δcrit

∣∣ ηtrue, ν)]+ T ’
(
−δcrit

∣∣ ηtrue, ν) dx.
with p (x, ν) = 2× T (−|x| | ν), the p-value associated with a particular observation given ν
degrees of freedom.

Case M4−: H0 true.

p
(
δobs

∣∣∣M4−, λ
)

=

 e−λ(pobs−α) 1
A4
t
(
δobs

∣∣∣ ν) if pobs ≥ α
1
A4
t
(
δobs

∣∣∣ ν) otherwise
,

where
A4 =

∫ δcrit
−δcrit e

−λ(p(x,ν)−α)t (x | ν) dx+ 2
∫+∞
δcrit t (x | ν) dx

=
∫ δcrit
−δcrit e

−λ(p(x,ν)−α)t (x | ν) dx+ α.

Appendix B
Bayesian inference details

Computation of Jeffreys weights

A standard Bayesian approach to model comparison is the Bayes factor (Jeffreys, 1961;
Kass & Raftery, 1995). Bayes factors summarize the evidence provided by the observed
data in favor of one model over another, and implicitly control for goodness-of-fit as well as
model complexity. The Bayes factor B between two models is simply the ratio of Bayesian
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evidence, also known as the marginal likelihood, for each model. The Bayesian evidence E
is computed by integrating the likelihood over the prior parameter space, so that the Bayes
factor between two models,M1+ andM2−, denoted B(M1+ :M2−) is:

B(M1+ :M2−) = E1+
E2−

=
∫
p (x | θ1,M1+) p (θ1 |M1+) dθ1∫
p (x | θ2,M2−) p (θ2 |M2−) dθ2

where p (x | θ2,M2−) is the data-dependent likelihood for M2−, p (θ1 |M1+) is the prior
distribution over the parameters ofM1+, and the conditioning of the evidences and Bayes
factor on the data x is implicit. In our case, the Bayes factors between these two models is
nontrivial but not prohibitive. If |δobs| < |δcrit|, B(M1+ :M2−) = +∞, because this is an
impossible occurrence underM2−. Otherwise,

B(M1+ :M2−) = α

∫
t’
(
δobs

∣∣∣ ηtrue, ν)N (ηtrue ∣∣ 0,√n) dηtrue
t (δobs | ν) .

Note that the integral in the denominator disappears because modelM2− has no random
parameters. The integral in the numerator can be efficiently approximated with numerical
methods such as Gaussian quadrature (Abramowitz, Stegun, et al., 1972).

The Bayes factor is the ratio of the posterior odds of one model to its prior odds,
regardless of the actual value of the prior odds. Because it is an odds ratio, it has a
convenient and intuitive interpretation. If B(M1+ :M2−) is greater than 1, then M1+
is more strongly supported by the observed data than M2−. Similarly, if B(M1+ :M2−)
is less than 1, then M2− is more strongly supported by the observed data than M1+.
Intuitively, it quantifies how much one should update one’s prior beliefs about the models
under consideration, given evidence from the observed data. The Bayes factor also operates
nicely on a continuum, as opposed to classical NHST in which a p value is judged against a
single arbitrary cut-off criterion α. Jeffreys (1961) suggests some interpretative boundaries,
with values of 3, 10, and 30 corresponding to strengths of evidence that are “barely worth
a mention,” “substantial,” and “strong,” respectively.

Jeffreys weights are a multi-alternative extension of Bayes factors, taking the Bayesian
evidence for each model and normalizing by the sum of evidences over all models under
consideration (Vandekerckhove, Matzke, & Wagenmakers, 2015). For our eight models, if
the evidence forMk is denoted Ek, then the corresponding Jeffreys weight Jk is:

Jk = Ek∑8
j=1 Ej

.

Jeffreys weights can be multiplied with model priors to arrive at model posterior probabil-
ities:

P (Mk |x) = JkP (Mk)∑8
j=1 JjP (Mj)

.

Model priors

We need to define a prior distribution over the eight possible modelsM1+, . . . ,M4−.
In selecting our prior over models, we followed three main desiderata. First, we hold
that observing a single significant TS should not allow us to differentiate between a
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no-bias model and an extreme-bias model with the same true effect size. Given that
B(M1− :M2−) = α, we decide that the prior for these models must reflect that ratio,
so that P (M1−) = P (M2−) /α. Not scaling P (M2−) by at least 1/α would cause a single
significant observation to lead us to conclude that publication bias occurred.6 Additionally,
we do not want the prior to prefer either of the two states of nature: ∀i : p (Mi−) = p (Mi+).
Finally, we want the prior to express prior equiprobability among all the biasing mechanisms
(not including the no-bias mechanism). Taking all these desiderata together, the prior over
models is defined as (20, 20, 1, 1, 1, 1, 1, 1) /46, and this is the prior pictured in Figures 4, 5,
and 6.

Aggregation of information across studies

Given multiple independent studies s, each with a unique observed TS δobss , the ag-
gregated posterior distribution of δmit is obtained by first applying Bayes’ theorem, then
implementing the independence assumption, and then marginalizing over models:

p

(
δmit

∣∣∣∣ {δobss }S
1

)
∝ p

(
δmit

)
p

({
δobss

}S
1

∣∣∣∣ δmit)
∝ p

(
δmit

)∏S
s=1 p

(
δobss

∣∣∣ δmit)
∝ p

(
δmit

)∏S
s=1

∑
M p

(
δobss

∣∣∣ δmit,M)
P

(
M
∣∣∣∣ {δobss }S

1

)
,

and finally, computing the normalizing constant, so that

p

(
δmit

∣∣∣∣ {δobss }S
1

)
=

p
(
δmit

)∏S
s=1

∑
M p

(
δobss

∣∣∣ δmit,M)
P

(
M
∣∣∣∣ {δobss }S

1

)
∫∞
−∞ p (x)

∏S
s=1

∑
M p (δobss |x,M)P

(
M|{δobss }

S
1

)
dx
. (1)

In cases where the independence assumption is violated or not desired, a correlated
error structure can instead be explicitly modeled, so that the effect size factor in the likeli-
hood function becomes N

({
ϕsδ

obs
s

}S
1

∣∣∣∣ {ϕsδmit}S1 ,Σ) , with Σ ∈ RS×S . Unfortunately, the
evaluation of the associated posterior distribution would require the repeated computation
of an integral over the space of all covariance matrices, which is currently prohibitively
expensive.

6A reviewer remarked that 20:1 prior odds (if α = .05) in favor of a no-bias model seems excessive given
that we know bias for significant results to be widespread. Our argument for this model prior is admittedly
subjective. We elicited our prior starting from the assumption that a single significant observation should
not be discriminating between the bias and no-bias models.




