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Grounded Distributional Semantics for Abstract Words
Katsumi Takano (katsumi@utm.inf.uec.ac.jp)

Akira Utsumi (utsumi@uec.ac.jp)
Department of Informatics, The University of Electro-Communications

1-5-1, Chofugaoka, Chofushi, Tokyo 182-8585, Japan

Abstract

Since Harnad (1990) pointed out the symbol grounding prob-
lem, cognitive science research has demonstrated that ground-
ing in perceptual or sensorimotor experience is crucial to lan-
guage. Recent embodied cognition theories have argued that
language is more important for grounding abstract than con-
crete words; abstract words are grounded via language. Dis-
tributional semantics has recently addressed the embodied na-
ture of language and proposed multimodal semantic models.
However, these models are not cognitively plausible because
they do not address the recent embodiment view of abstract
concepts. Therefore, we propose a novel multimodal distribu-
tional semantics in which abstract words are represented indi-
rectly through grounded representations of their semantically
related concrete words. A simulation experiment demonstrated
that the proposed model achieved better performance in com-
puting the word similarity than other multimodal or text-based
distributional models. This finding suggests that the indirect
embodiment view is plausible and contributes to the improve-
ment of multimodal distributional semantics.

Introduction
Distributional semantics is a computational approach to con-
structing semantic representations of words by observing dis-
tributional statistics of word occurrence in large collections
of text. The lexical meaning of a word is represented by a
high-dimensional vector in a semantic space, and the degree
of semantic relatedness between any two words can be eas-
ily computed from their vectors, for example as the cosine
of two vectors. Because of its simplicity and versatility, dis-
tributional semantics has recently received enormous atten-
tion, and a variety of methods have been proposed and refined
(Turney & Pantel, 2010; Jones, Willits, & Dennis, 2015). Re-
cent advances of neural network language models or word
embedding models (Mikolov, Chen, Corrado, & Dean, 2013)
are also regarded as notable approaches of distributional se-
mantics.

However, distributional semantics has been criticized as
psychologically implausible because it is ungrounded or dis-
embodied (Glenberg & Robertson, 2000). Embodied cog-
nition theory argues that language is grounded in our sen-
sory perception and experience, but distributional semantic
models learn from only linguistic information and do not
use sensorimotor information. Although it is controversial
whether distributional semantics cannot essentially simulate
human semantic memory, it is no doubt that it cannot repre-
sent the meaning of some kinds of words, in particular con-
crete words, just as they are represented in human semantic
memory.

For this reason, recent studies of distributional seman-
tics have addressed the use of sensorimotor or perceptual
information to learn psychologically plausible lexical rep-
resentation. For example, Andrews, Vigliocco, and Vinson

(2009) used perceptual features collected as featural norm
to ground a language-based topic model on perceptual ex-
perience, and demonstrated that the integrated model outper-
formed the language-based topic model. Although the featu-
ral norm used in their study is represented by language, recent
attempts have been directed toward multimodal distributional
semantics (for a review, see Baroni, 2016), in which textual
information is integrated with multimodal information com-
puted directly from nonlinguistic inputs such as visual (Bruni,
Tran, & Baroni, 2014; Kiela, Hill, Korhonen, & Clark, 2014),
auditory (Kiela & Clark, 2015), or olfactory (Kiela, Bulat, &
Clark, 2015) ones.

Their primary research purpose is to improve the accuracy
of distributional semantic models by using multimodal infor-
mation and it has often been demonstrated that multimodal
information can improve the performance of language-based
distributional semantics. However, this is not always the case.
Kiela et al. (2014) showed that, although the inclusion of vi-
sual input improves the representations of concrete words,
it degrades the representations of abstract words. This find-
ing is highly important, because it seems to suggest that ab-
stract words may not be embodied in the same way as con-
crete words are embodied. It has also been pointed out by
recent development of the embodied view of language (e.g.,
Louwerse, 2011; Borghi & Cangelosi, 2014; Thill, Padó, &
Ziemke, 2014). These views argue that abstract words are
embodied differently from concrete words, and acquisition
of abstract words depends more heavily on linguistic expe-
rience. To provide a psychologically more plausible model,
distributional semantics must deal with the problem of ab-
stract words, and at the same time, such a theory can provide
an effective computational framework for testing the validity
of the embodiment theory of language.

In this paper, therefore, we propose a novel distributional
semantic model by taking into account the recent embod-
ied view of abstract concepts. We focus on visual images
as a source of perceptual information, as used in many other
studies on multimodal distributional semantics, and propose a
mechanism of embodiment of abstract concepts via language,
in which an embodied vector representation of an abstract
word is obtained from the embodied representations of con-
crete words that are semantically related to that abstract word.
We then test the psychological plausibility of the proposed
method using human similarity ratings of English word pairs.

Embodiment of Abstract Words
Abstract concepts pose a serious challenge to the embodied
theory of language. As Dove (2015) pointed out, it is difficult
to see how representations grounded in perceptual experience
can capture the content of abstract concepts or words such as
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truth and justice. Even if abstract concepts somewhat depend
on perceptual experience, the way in which such abstract con-
cepts are grounded seems to differ from concrete concepts.
This intuition has been supported by a number of empirical
findings obtained in cognitive neuroscience. Neuroimaging
studies have demonstrated that processing of abstract con-
cepts elicits greater activation of the left perisylvian language
network (such as the left inferior frontal gyrus and the left
superior temporal cortex) as compared to processing of con-
crete concepts (e.g., Binder, Desai, Graves, & Conant, 2009;
Wang, Conder, Blitzer, & Shinkareva, 2010). Vigliocco et al.
(2014) also found greater engagement of the rostral anterior
cingulate cortex, an area associated with emotional process-
ing, for abstract than concepts words.

Some embodied theories claim a general mechanism of
embodiment common to both concrete and abstract concepts.
For example, Barsalou’s (1999) theory of perceptual symbol
systems argues that concepts (and meanings as well) are not
amodal, formal symbols, but rather inherently modal, per-
ceptual symbols, which refer to perceptual states (or neural
representations) in sensorimotor systems. These perceptual
symbols become integrated into a simulator for a concept that
enables us to simulate sensorimotor experience of perceiv-
ing and/or acting on exemplars of that concept. According
to Barsalou (1999), abstract concepts are represented in the
same perceptual symbol systems, although the simulator of
abstract concepts is constructed from not only sensorimotor
but also introspective states or events. Barsalou (1999) ex-
plains this by using examples such as truth and negation, but
the explanation is relatively vague and limited to some logical
or affective concepts.

Recently, a number of studies have attempted to resolve the
problem of abstract concepts while maintaining the embod-
ied view by emphasizing the role of language in processing
of abstract concepts. For example, Word-as-Tools (WAT) the-
ory (Borghi & Cangelosi, 2014) claims that words function as
tools to extend our cognition and such the linguistic function
is more crucial for abstract than for concrete words represen-
tation. Dove (2014) argues for a similar view that language
provides an important means of extending our cognitive or
mental capabilities by enabling access to an embodied repre-
sentational system that exists independently of language. The
basic idea underlying these views is that abstract words are
grounded in sensorimotor or perceptual experiences, but the
embodiment is indirect, rather than direct in the case of con-
crete words. This “indirect embodiment” view is proposed
more clearly by Thill et al. (2014). They propose a “division
of labor” approach between a perceptual layer that associates
basic, concrete concepts with perceptual features and a rela-
tional layer that grounds more complex and abstract concepts
in relation to basic concepts. Gleitman et al.’s (2005) expla-
nation of how “hard words” are acquired is closely related to
the indirect embodiment view. In the early stage of lexical ac-
quisition, the meaning of concrete words is acquired directly
from perceptual information via word-to-world pairing. In
the later stage, the meaning of hard words, which is not eas-
ily accessible through perception, is acquired by a structure-

to-world mapping procedure that combines linguistic obser-
vations with cooccurring perceptual experience. From the
distributional semantics side, Louwerse (2011) also put for-
ward the indirect embodiment view, namely the symbol in-
terdependency hypothesis, to refute a criticism against distri-
butional semantics made by the embodied view. According
to the symbol interdependency hypothesis, language compre-
hension is symbolic through interdependencies of amodal lin-
guistic symbols, while it is indirectly embodied through the
references linguistic symbols make to perceptual representa-
tions. Hence, “language has evolved to become a commu-
nicative short-cut for language users and encodes relations in
the world, including embodied relations (ibid., p.279).”

However, despite receiving much attention from cognitive
science over the recent years, the indirect embodiment view
of abstract words has not been addressed by computational
studies on distributional semantics, as pointed out in the intro-
duction. Although multimodal distributional semantics incor-
porates the embodied view of language into an algorithm for
constructing word vectors, it cannot deal with the problem of
abstract words. Kiela et al.’s (2014) approach clearly shows
this difficulty; to improve the accuracy of multimodal word
vectors, they excluded visual information when constructing
vectors of abstract words, while including visual information
for concrete words. For distributional semantics to be a psy-
chologically more plausible model, it is highly necessary to
integrate the indirect embodiment view into multimodal dis-
tributional semantics. This is what we aim to accomplish in
this paper.

Grounded Distributional Semantics
Our grounded distributional semantic model, whose algo-
rithm is shown in Figure 1, is based on the indirect embod-
iment view that grounding of abstract words is mediated by
language. Therefore, different grounding methods are used
for concrete and abstract words. For a concrete word, its vec-
tor representation is constructed by combining a text-based
vector (computed from a text corpus) with a visual vector
computed from images for that word (i.e., Steps 3(a) and 4
of Figure 1). This method does not differ from Kiela et al.’s
(2014) and other standard methods for multimodal distribu-
tional semantics. On the other hand, the vector representation
of an abstract word is constructed by combining a text-based
vector with visual vectors of concrete words semantically re-
lated to that abstract word (i.e., Steps 3(b) and 4).

An important part of this algorithm is the classification be-
tween concrete and abstract words at Step 2. In this paper,
we use the image dispersion method proposed by Kiela et al.
(2014). This method is motivated by the intuition that the
diversity of images retrieved for a particular word depends
on its concreteness. It is generally expected that images for
concrete concepts such as “apple” are more similar to one
another than those for abstract concepts such as “happiness.”
The degree of image dispersion for a concept is defined as the
average pairwise cosine similarity between all the vector rep-
resentations in the set of images for that concept. All words
are sorted in descending order of image dispersion, and top

2172



1. Construct a linguistic semantic space DSML from a text
corpus.

2. Divide the vocabulary V into concrete words VC and ab-
stract words VA (i.e., V =VC ∪VA and VC ∩VA = ϕ ).

3. Construct a visual semantic space DSMV using visual im-
ages.

(a) For a concrete word wC
i ∈VC, compute a visual vector

y(wC
i ) directly from the images labeled with wC

i .
(b) For an abstract word wA

i ∈VA, compute a visual vector
y(wA

i ) as ∑wC
j ∈SN(wA

i )
y(wC

j ) where SN(wA
i ) ⊂ VC is a

set of n semantic neighbors of (i.e., n concrete words
semantically related to) wA

i . Semantic neighbors of wA
i

are computed in the linguistic semantic space DSML.

4. Construct a grounded semantic space DSMG by combin-
ing DSML and DSMV as follows. For each word wi ∈V ,
normalize x(wi) ∈ DSML and y(wi) ∈ DSMV , and con-
catenate them.

Figure 1: Overall algorithm of the proposed distributional se-
mantic model.

100pabs (0 < pabs < 1) percent are judged to be abstract and
constitute VA. Kiela et al. (2014) confirmed that the degree
of image dispersion is a valid measure for concreteness by
showing a high correlation between concreteness ratings and
dispersion values. Furthermore, as compared to concreteness
rating data, image dispersion is more appropriate for judg-
ing the importance of embodiment in the acquisition of word
meanings, because the consistency among images for a word
is likely to imply that this word refers to a discernible object
or action in the world that we can easily recognize through
perceptual experience.

Determining semantic neighbors (or in other words, “me-
diator words”) of an abstract word is also a key step for suc-
cessful modeling. We apply a simple method that chooses n
concrete words most similar to a target abstract word. How-
ever, this simple method may not work well in some cases.
Some highly abstract words (e.g., truth, wisdom) may not
have semantically similar concrete words, but this method
forces such abstract words to be represented by visual vec-
tors of n concrete words, which may be relatively more simi-
lar than other concrete words but absolutely dissimilar to the
abstract words. Hence, we consider another method, in which
N(> n) semantic neighbors of an abstract word are selected
from the whole vocabulary V , and then n most concrete words
are selected from N semantic neighbors according to the de-
gree of image dispersion. If n concrete words cannot be se-
lected (i.e., N semantic neighbors contain less than n concrete
words), no visual vector is attached to that abstract word in
the same way as Kiela et al.’s (2014) method.

Evaluation Experiment
Test Data
As test data for evaluating distributional semantic mod-
els, we used two word similarity norms, namely WordSim-

353 (Finkelstein et al., 2001) and SimLex-999 (Hill, Re-
ichart, & Korhonen, 2015), which are well-known gold-
standards widely used in the computational linguistics com-
munity. These data contain English word pairs (353 pairs
in WordSim-353 and 999 pairs in SimLex-999) with human
similarity ratings. The similarity ratings in WordSim-353 are
regarded as measures of semantic relatedness (or in other
words, associative similarity), while the ratings in SimLex-
999 reflect semantic similarity (or taxonomic similarity). For
example, a pair of clothes – closet is rated 8.00 in WordSim-
353, but 1.96 in SimLex-999. These two words are related
because the word “closet” refers to a small room or cabinet
for hanging “clothes,” but their meanings are not similar.

Multimodal Semantic Space
We generated a text-based semantic space (i.e., DSML in Fig-
ure 1) from the British National Corpus with 100M word to-
kens as follows. First, we constructed a word-cooccurrence
matrix with 43,528 different words (and thus the dimensions
of the matrix were 43,528 × 43,528). The cooccurrence fre-
quency was counted within a sentence. Second, the word-
cooccurrence matrix was weighted by positive pointwise mu-
tual information (PPMI), which generally achieves better per-
formance (Bullinaria & Levy, 2007). Finally, the weighted
matrix was smoothed by singular value decomposition (SVD)
and the dimension of row word vectors was reduced to 300.

To construct a visual semantic space (i.e., DSMV in Fig-
ure 1), we collected 30 images for each word using Flickr
image retrieval, from which a visual vector for that word was
constructed. As a method for visual vector computation, we
used the well-known Bag of Visual Words (BoVW) approach
(Sivic & Zisserman, 2003). BoVW computes a vector rep-
resentation for each image by clustering into visual words
a set of local descriptors obtained from the image dataset,
and then by computing a histogram of visual word counts. In
this paper, we extracted SURF descriptors (Bay, Tuytelaars,
& Van Gool, 2006) using a dense keypoint sampling method.
Each local descriptor is represented by a 3×128-dimensional
vector, because a SURF feature is normally represented in a
128-dimensional vector and computed for each of the three
components of HSV. All the SURF feature vectors were clus-
tered into 300 visual words, and each image is represented by
a 300-dimensional histogram vector of visual words. Finally,
a visual vector for each word is computed by summing the
visual vectors of all the images retrieved by that word, and
then by weighting the summed vector by PPMI.

Method
According to the proposed method shown in Figure 1, we
constructed several grounded semantic spaces by changing
the values of the parameters pabs (from 0.10 to 0.95 in steps
of 0.05), n (from 1 to 5), and N (from 10 to 50 in steps of
10, 100, and all). To evaluate the relative performance of
the proposed model, we also generated the standard multi-
modal representations and Kiela et al.’s (2014) filtering-based
representations. In the standard method, every word is rep-
resented by concatenating its linguistic vector with a visual
vector computed directly from images of that word. In Kiela
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Table 1: Correlation coefficients between the cosine similarity computed by the distributional semantic models and the pairwise
similarity ratings of two datasets. For the proposed model, the highest correlation is shown boldfaced for each of the two
datasets. For the other models (including the proposed model with N =all), results obtained with the same parameters as the
proposed model are selectively shown.

Model WordSim-353 SimLex-999
Text-based DSML 0.525 0.248
Visual DSMV , Standard 0.227 0.118
Visual DSMV , Proposed (pabs = 0.50, n = 2, N =all) 0.257 0.112
Visual DSMV , Proposed (pabs = 0.95, n = 2, N =all) 0.185 0.085
Grounded DSMG, Standard 0.476 0.235
Grounded DSMG, Kiela et al. (2014) (pabs = 0.50) 0.510 0.262
Grounded DSMG, Kiela et al. (2014) (pabs = 0.95) 0.532 0.245
Grounded DSMG, Proposed (pabs = 0.50, n = 2, N =all) 0.478 0.220
Grounded DSMG, Proposed (pabs = 0.95, n = 2, N =all) 0.390 0.179
Grounded DSMG, Proposed (pabs = 0.95, n = 2, N = 30) 0.551 0.260
Grounded DSMG, Proposed (pabs = 0.80, n = 5, N = 30) 0.535 0.278
Note. pabs = the proportion (i.e., threshold) of abstract words; n = the number of se-
mantic neighbors (i.e., mediator words) from which visual vectors of abstract words are
computed; N = the size of population from which n mediator words are chosen.

et al.’s (2014) filtering-based method, concrete words, which
are determined by image dispersion, are represented in the
same way as the standard method (i.e., concatenation of their
linguistic and visual vectors), while abstract words are repre-
sented only by their linguistic vectors.

The performance of each semantic space was measured by
Pearson’s correlation coefficient between the computed co-
sine values and the semantic similarity ratings in the test data.
If the proposed semantic space can improve the performance
as compared to the standard multimodal and Kiela et al.’s
(2014) semantic spaces as well as to the text-based seman-
tic space, it would demonstrate that the indirect embodiment
view of abstract words is supported computationally.

Result
Table 1 shows the correlation coefficients between the cosine
similarity computed by the distributional semantic models
and the similarity ratings of the test data. Overall, the pro-
posed grounded semantic space achieved better performance
on both datasets than the text-based model, standard multi-
modal model, and Kiela et al.’s (2014) model. This result
indicates that the proposed model is made psychologically
more plausible by language-mediated visual representations
of abstract words, thus providing computational evidence for
the indirect embodiment view of abstract words.

The result that the standard multimodal model did not out-
perform the text-based model is consistent with Kiela et al.’s
(2014) result; this indicates that inclusion of perceptual input
does not always improve the quality of lexical meaning repre-
sentations. To overcome this difficulty, Kiela et al. (2014) did
not use perceptual information to represent image-dispersed
words, but we use language-mediated perceptual information
for those words, in accordance with the recent idea of em-

bodiment of abstract concepts. Hence, the observed better
performance of our model against Kiela et al.’s (2014) model
demonstrates the plausibility of our refined representations
and the indirect embodiment view.

On the other hand, the proposed method yielded worse per-
formance when all abstract words are represented using the
visual vectors of their semantic neighbors (i.e., in the case
of N = all in Table 1). This result implies that indirect em-
bodiment via language is not always effective; Kiela et al.’s
(2014) method of not including visual information works bet-
ter in some cases. In other words, some abstract words (e.g.,
truth, wisdom) need not to be grounded in perceptual experi-
ence and their meanings may be able to be captured primarily
by linguistic information.

The proposed grounded model achieved the best perfor-
mance at very high pabs (pabs = 0.95 for WordSim-353 and
pabs = 0.80 for SimLex-999). This result indicates that only
a relatively small number of words need to be grounded di-
rectly in perceptual information; most words are likely to
be grounded via language or need not to be grounded. It
may also implies that word concreteness does not necessar-
ily determine the necessity of grounding in perceptual ex-
perience. Table 2 lists some example words that are com-
puted as concrete and abstract by the proposed model. Some
highly concrete words (e.g., baby, computer, seafood) whose
concreteness ratings (1 to 5) (Brysbaert, Warriner, & Kuper-
man, 2014) are higher than 4.5 and many moderately con-
crete words (e.g., currency, interview, summer) whose con-
creteness ratings are higher than 3.0 are classified as abstract.
Nevertheless, indirect grounding is effective in representing
these words. The proposed model improved the accuracy of
similarity computation for word pairs in WordSim-353 such
as governor – interview, currency–market, summer–drought,
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Table 2: Examples of concrete and abstract words in
WordSim-353 classified by the proposed DSMG (pabs = 0.95,
n = 2, N = 30). For an abstract word, its mediator words
(i.e., concrete words used for computing its visual vectors)
are also shown in parentheses. Note that no mediator words
are shown for some abstract words because N semantic neigh-
bors of those words do not include n concrete words.

Concrete words in VC

animal, bread, car, carnivore, collection, food, for-
est, impartiality, jaguar, mammal, marathon, market,
moon, office, shower, television, tiger, water, zoo

Abstract words in VA

activity, alcohol, astronomer (lunar, saturn), baby,
bird, book (collection, print), center, chance, chil-
dren (playgroup, whist), cognition (representational,
intentionality), computer, currency (ecu, lira), dis-
covery, drought (soil, rainforest), experience, fam-
ily (home, bear), flood (stream, storm), fruit (bean,
salad), girl, governor (governorship, appoint), index,
interview (quote, television), king, law, liquid (water,
bubble), love, marriage, media (magazine, television),
museum (collection, painting), music, psychology,
reason, seafood (salad, pasta), sprint (marathon, ath-
lete), summer (garden, lake), treatment, word

summer:

garden:

lake:

Figure 2: Examples of images for an indirectly grounded
word summer and its mediator words garden and lake used
in our multimodal distributional semantic model.

and seafood–food, as compared to the text-based model and
the standard multimodal model. For example, as shown in
Figure 2, a variety of images associated with the word sum-
mer seem not to represent one discernible concept, and thus
they are somewhat harmful for an appropriate visual repre-
sentation of summer. On the other hand, images for the me-
diator words garden and lake are highly consistent, and these
visual information can represent some aspects of summer.

Hence, it may be inappropriate that we refer to the par-
titioning of vocabulary (VA and VC at Step 2 of Figure 1) in
terms of abstractness. Rather, what this partitioning really
reflects is the necessity of grounding in perceptual experi-
ence. Note that this finding is consistent with the existing
findings on lexical acquisition (e.g., Gleitman et al., 2005).
“Easy” words (mostly nouns), which express concrete basic-
level concepts, are learned at the early stage of word learning,

and then many other words are learned through the knowl-
edge of easy words, leading to a rapid vocabulary growth.

Discussion
In this paper, inspired by the recent view of the embodiment
of abstract words, we have proposed a novel approach to mul-
timodal distributional semantics. In the proposed method, the
grounded visual representation of an abstract word is learned
through semantically related mediator words, rather than di-
rectly from images for that word as used in the standard mul-
timodal distributional semantics. The plausibility of the pro-
posed method is tested and justified by comparing the cosine
similarity computed by distributional semantics with human
semantic similarity ratings. This finding can be interpreted as
supporting the indirect embodiment view of abstract words.

However, our model is not so sophisticated and rather pre-
liminary. It did not achieve a statistically significant improve-
ment over the existing multimodal semantic models. We can
point out several issues to improve the quality of the model.
One important issue to address for future research is a method
for choosing mediator words whose visual vectors form the
grounded representation of an abstract word (at Step 3(b) of
Figure 1). In this paper, we simply apply semantic similarity
computed by the text-based model as a measure of choosing
mediator words, but a number of empirical studies have sug-
gested that some other factors affect the embodiment of ab-
stract words. For example, emotion (or affect) is suggested to
play an important role in processing abstract words (Kousta,
Vigliocco, Vinson, Andrews, & Del Campo, 2011; Vigliocco
et al., 2014). Affective experience is crucial in the ground-
ing of abstract concepts, and thus it is likely that affectively
similar words are effective mediators of embodiment for ab-
stract words. Age-of-acquisition may also be related to the
embodiment of abstract words, because basic words learned
at the early stage of lexical acquisition are represented primar-
ily perceptually, while other words learned at the later stage
are acquired through the knowledge of basic words (Gleitman
et al., 2005; Thill et al., 2014).

Another important research topic is the use of motor in-
formation for distributional semantics. Multimodal semantic
spaces learned from static images are less than grounded in
motor experience. To overcome this difficulty, we can con-
sider distributional semantics using feature vectors extracted
from videos or continuous image sequences.

Further refinement can be achieved in the proposed model
if we consider different ways of indirect grounding accord-
ing to the degree of abstractness for words. For example, the
number of mediator words can be determined depending on
the abstractness of words. We can also combine an original
visual vector directly computed from the images for an ab-
stract word with those for mediator words if the original vec-
tor is somewhat useful for representing the meaning of the
abstract word.

Through these improvements, we can obtain a psycholog-
ically more plausible distributional model, and multimodal
distributional semantics would hold promise as the computa-
tional basis for a psychologically testable theory of embodied
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cognition and symbol grounding.

Acknowledgments
This research was supported by JSPS KAKENHI Grant Num-
bers JP15H02713, JP15K12045, and SCAT Research Grant.

References
Andrews, M., Vigliocco, G., & Vinson, D. (2009). Integrat-

ing experiential and distributional data to learn semantic
representations. Psychological Review, 116, 463–498.

Baroni, M. (2016). Grounding distributional semantics in the
visual world. Linguistic Issues in Language Technologies,
10(1), 3–13.

Barsalou, L. (1999). Perceptual symbol systems. Behavioral
and Brain Sciences, 22, 577–660.

Bay, H., Tuytelaars, T., & Van Gool, L. (2006). SURF:
Speeded up robust features. In A. Leonardis, H. Bischof,
& A. Pinz (Eds.), Computer vision — ECCV 2006 (pp.
404–417). Springer.

Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L.
(2009). Where is the semantic system? a critical review
and meta-analysis of 120 functional neuroimaging stud-
ies. Cerebral Cortex, 19, 2767–2796.

Borghi, A. M., & Cangelosi, A. (2014). Action and language
integration: From humans to cognitive robots. Topics in
Cognitive Science, 6, 344–358.

Bruni, E., Tran, N. K., & Baroni, M. (2014). Multimodal
distributional semantics. Jounral of Artificial Intelligence
Research, 49, 1–47.

Brysbaert, M., Warriner, A. B., & Kuperman, V. (2014). Con-
creteness ratings for 40 thousand generally known English
word lemmas. Behavior Research Methods, 46, 904–991.

Bullinaria, J. A., & Levy, J. P. (2007). Extracting seman-
tic representations from word co-occurrence statistics: A
computational study. Behavior Research Methods, 39(3),
510–526.

Dove, G. (2014). Thinking in words: Language as an em-
bodied medium of thought. Topics in Cognitive Science,
6, 371–389.

Dove, G. (2015). Three symbol ungrounding problems: Ab-
stract concepts and the future of embodied cognition. Psy-
chonomic Bulletin & Review, Online First Articles.

Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan,
Z., Wolfman, G., & Ruppin, E. (2001). Placeing search in
context: The concept revisited. In Proceedings of the 10th
international conference on world wide web (pp. 406–
414).

Gleitman, L. R., Cassidy, K., Nappa, R., Papafragou, A., &
Trueswell, J. C. (2005). Hard words. Language Learning
and Development, 1(1), 23–64.

Glenberg, A., & Robertson, D. (2000). Symbol grounding
and meaning: A comparison of high-dimensional and em-
bodied theories of meaning. Journal of Memory and Lan-
guage, 43, 379–401.

Harnad, S. (1990). The symbol grounding problem. Physica
D, 42, 335–346.

Hill, F., Reichart, R., & Korhonen, A. (2015). SimLex-999:
Evaluating semantic models with (genuine) similarity es-
timation. Computational Linguistics, 41(4), 665–695.

Jones, M. N., Willits, J., & Dennis, S. (2015). Mod-
els of semantic memory. In J. R. Busemeyer, Z. Wang,
J. T. Townsend, & A. Eidels (Eds.), Oxford handbook
of mathematical and computational psychology (pp. 232–
254). New York, NY: Oxford University Press.

Kiela, D., Bulat, L., & Clark, S. (2015). Grounding seman-
tics in olfactory perception. In Proceedings of the 53rd
annual meeting of the association for computational lin-
guistics and the 7th international joint conference on nat-
ural language processing (pp. 231–236).

Kiela, D., & Clark, S. (2015). Multi- and cross-modal seman-
tics beyond vision: Grounding in auditory perception. In
Proceedings of the 2015 conference on empirical methods
in natural language processing (emnlp2015) (pp. 2461–
2470).

Kiela, D., Hill, F., Korhonen, A., & Clark, S. (2014). Im-
proving multi-modal representations using image disper-
sion: Why less is sometimes more. In Proceedings of the
52nd annual meeting of the association for computational
linguistics (pp. 835–841).

Kousta, S.-T., Vigliocco, G., Vinson, D. P., Andrews, M., &
Del Campo, E. (2011). The representation of abstract
words: Why emotion matters. Journal of Experimental
Psychology: General, 140(1), 14–34.

Louwerse, M. M. (2011). Symbol interdependency in sym-
bolic and embodied cognition. Topics in Cognitive Sci-
ence, 3, 273–302.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Ef-
ficient estimation of word representations in vector space.
In Proceedings of workshop at the international confer-
ence on learning representation (iclr).

Sivic, J., & Zisserman, A. (2003). Video Google: A text re-
trieval approach to object matching in videos. In Proceed-
ings of ieee international conference on computer vision
(ICCV 2003), volume 2 (pp. 1470–1477).
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